Both insulin resistance and dyslipidaemia are determined by genetic and environmental factors. Depending on their expression and their function, gene variants may influence either insulin action or other metabolic traits. Nutrition also plays an important role in the development and progression of these conditions. Genetic background may interact with habitual dietary fat composition, affecting predisposition to insulin resistance syndrome and individual responsiveness to changes in dietary fat intake. In this context, nutrigenetics has emerged as a multidisciplinary field focusing on studying the interactions between nutritional and genetic factors and health outcomes. Due to the complex nature of gene-environment interactions, however, dietary therapy may require a "personalized" nutrition approach in the future. Although the results have not always been consistent, gene variants that affect primary insulin action, and particularly their interaction with the environment, are important modulators of glucose metabolism. The purpose of this review is to present some evidence of studies that have already demonstrated the significance of gene-nutrient interactions (adiponectin gene, Calpain-10, glucokinase regulatory protein, transcription factor 7-like 2, leptin receptor, scavenger receptor class B type I etc.) that influence insulin resistance in subjects with metabolic syndrome.
Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.