Nuclear receptors (NRs) are a unique superfamily of transcription factors (TFs) which are involved in and play a crucial role in almost all aspects of mammalian physiology. Small Heterodimer Partner (SHP; NR0B2), an exceptional member of this superfamily of NRs, have been identified as a key regulatory factor of the transcription of a variety of genes involved in diverse metabolic pathways, and are thereby an important factor in a variety of physiological functions. Since its discovery a decade ago, considerable progress has been made in the elucidation of the underlying mechanism by which SHP regulates various metabolic processes, and the results of previous studies support its importance in the maintenance of metabolic homeostasis. In this review, we have evaluated the current state of understanding of the molecular mechanisms and the resultant physiological interpretations governed by SHP.