[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

Ab initio modeling of glycosyl torsions and anomeric effects in a model carbohydrate: 2-ethoxy tetrahydropyran

Biophys J. 2007 Jul 1;93(1):1-10. doi: 10.1529/biophysj.106.099986.

Abstract

A range of ab initio calculations were carried out on the axial and equatorial anomers of the model carbohydrate 2-ethoxy tetrahydropyran to evaluate the level of theory required to accurately evaluate the glycosyl dihedral angle and the anomeric ratio. Vacuum CCSD(T)/CBS extrapolations at the global minimum yield DeltaE = E(equatorial) - E(axial) = 1.42 kcal/mol. When corrected for solvent (by the IEFPCM model), zero-point vibrations and entropy, DeltaG(298) = 0.49 kcal/mol, in excellent agreement with the experimental value of 0.47 +/- 0.3 kcal/mol. A new additivity scheme, the layered composite method (LCM), yields DeltaE to within 0.1 kcal/mol of the CCSD(T)/CBS result at a fraction of the computer requirements. Anomeric ratios and one-dimensional torsional surfaces generated by LCM and the even more efficient MP2/cc-pVTZ level of theory are in excellent agreement, indicating that the latter is suitable for force-field parameterization of carbohydrates. Hartree-Fock and density functional theory differ from CCSD(T)/CBS for DeltaE by approximately 1 kcal/mol; they show similar deviations in torsional surfaces evaluated from LCM. A comparison of vacuum and solvent-corrected one- and two-dimensional torsional surfaces indicates the equatorial form of 2-ethoxy tetrahydropyran is more sensitive to solvent than the axial.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, N.I.H., Intramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Computer Simulation
  • Dimerization
  • Models, Chemical*
  • Models, Molecular*
  • Molecular Conformation
  • Pyrans / chemistry*
  • Surface Properties

Substances

  • Pyrans