[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

PGC-1alpha protects skeletal muscle from atrophy by suppressing FoxO3 action and atrophy-specific gene transcription

Proc Natl Acad Sci U S A. 2006 Oct 31;103(44):16260-5. doi: 10.1073/pnas.0607795103. Epub 2006 Oct 19.

Abstract

Maintaining muscle size and fiber composition requires contractile activity. Increased activity stimulates expression of the transcriptional coactivator PGC-1alpha (peroxisome proliferator-activated receptor gamma coactivator 1alpha), which promotes fiber-type switching from glycolytic toward more oxidative fibers. In response to disuse or denervation, but also in fasting and many systemic diseases, muscles undergo marked atrophy through a common set of transcriptional changes. FoxO family transcription factors play a critical role in this loss of cell protein, and when activated, FoxO3 causes expression of the atrophy-related ubiquitin ligases atrogin-1 and MuRF-1 and profound loss of muscle mass. To understand how exercise might retard muscle atrophy, we investigated the possible interplay between PGC-1alpha and the FoxO family in regulation of muscle size. Rodent muscles showed a large decrease in PGC-1alpha mRNA during atrophy induced by denervation as well as by cancer cachexia, diabetes, and renal failure. Furthermore, in transgenic mice overexpressing PGC-1alpha, denervation and fasting caused a much smaller decrease in muscle fiber diameter and a smaller induction of atrogin-1 and MuRF-1 than in control mice. Increased expression of PGC-1alpha also increased mRNA for several genes involved in energy metabolism whose expression decreases during atrophy. Transfection of PGC-1alpha into adult fibers reduced the capacity of FoxO3 to cause fiber atrophy and to bind to and transcribe from the atrogin-1 promoter. Thus, the high levels of PGC-1alpha in dark and exercising muscles can explain their resistance to atrophy, and the rapid fall in PGC-1alpha during atrophy should enhance the FoxO-dependent loss of muscle mass.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Biomarkers
  • Forkhead Transcription Factors / genetics
  • Forkhead Transcription Factors / metabolism*
  • Gene Expression Regulation
  • Mice
  • Mice, Transgenic
  • Muscle, Skeletal / metabolism*
  • Muscle, Skeletal / pathology*
  • Muscular Atrophy / genetics
  • Muscular Atrophy / metabolism*
  • Muscular Atrophy / pathology*
  • Nerve Tissue Proteins / genetics
  • Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha
  • Trans-Activators / genetics
  • Trans-Activators / metabolism*
  • Transcription Factors
  • Transcription, Genetic / genetics*

Substances

  • Biomarkers
  • Forkhead Transcription Factors
  • Nerve Tissue Proteins
  • Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha
  • Ppargc1a protein, mouse
  • Trans-Activators
  • Transcription Factors
  • atrophin-1