Interdisciplinary research at the interface of polymer chemistry and the biomedical sciences has produced the first polymer-based nanomedicines for the diagnosis and treatment of cancer. These water-soluble hybrid constructs, designed for intravenous administration, fall into two main categories: polymer-protein conjugates or polymer-drug conjugates. Polymer conjugation to proteins reduces immunogenicity, prolongs plasma half-life and enhances protein stability. Polymer-drug conjugation promotes tumor targeting through the enhanced permeability and retention (EPR) effect and, at the cellular level following endocytic capture, allows lysosomotropic drug delivery. The successful clinical application of polymer-protein conjugates (PEGylated enzymes and cytokines) and promising results arising from clinical trials with polymer-bound chemotherapy (e.g. doxorubicin, paclitaxel, camptothecins) has provided a firm foundation for more sophisticated second-generation constructs that deliver the newly emerging target-directed anticancer agents (e.g. modulators of the cell cycle, signal transduction inhibitors and antiangiogenic drugs) in addition to polymer-drug combinations (e.g. endocrine- and chemo-therapy).