[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1993 Sep;92(3):1326–1335. doi: 10.1172/JCI116706

Activation of the alternative complement pathway by exposure of phosphatidylethanolamine and phosphatidylserine on erythrocytes from sickle cell disease patients.

R H Wang 1, G Phillips Jr 1, M E Medof 1, C Mold 1
PMCID: PMC288274  PMID: 7690777

Abstract

Deoxygenation of erythrocytes from sickle cell anemia (SCA) patients alters membrane phospholipid distribution with increased exposure of phosphatidylethanolamine (PE) and phosphatidylserine (PS) on the outer leaflet. This study investigated whether altered membrane phospholipid exposure on sickle erythrocytes results in complement activation. In vitro deoxygenation of sickle but not normal erythrocytes resulted in complement activation measured by C3 binding. Additional evidence indicated that this activation was the result of the alterations in membrane phospholipids. First, complement was activated by normal erythrocytes after incubation with sodium tetrathionate, which produces similar phospholipid changes. Second, antibody was not required for complement activation by sickle or tetrathionate-treated erythrocytes. Third, the membrane regulatory proteins, decay-accelerating factor (CD55) and the C3b/C4b receptor (CD35), were normal on sickle and tetrathionate-treated erythrocytes. Finally, insertion of PE or PS into normal erythrocytes induced alternative pathway activation. SCA patients in crisis exhibited increased plasma factor Bb levels compared with baseline, and erythrocytes isolated from hospitalized SCA patients had increased levels of bound C3, indicating that alternative pathway activation occurs in vivo. Activation of complement may be a contributing factor in sickle crisis episodes, shortening the life span of erythrocytes and decreasing host defense against infections.

Full text

PDF
1326

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arese P., Turrini F., Bussolino F., Lutz H. U., Chiu D., Zuo L., Kuypers F., Ginsburg H. Recognition signals for phagocytic removal of favic, malaria-infected and sickled erythrocytes. Adv Exp Med Biol. 1991;307:317–327. doi: 10.1007/978-1-4684-5985-2_28. [DOI] [PubMed] [Google Scholar]
  2. Bjornson A. B., Gaston M. H., Zellner C. L. Decreased opsonization for Streptococcus pneumoniae in sickle cell disease: studies on selected complement components and immunoglobulins. J Pediatr. 1977 Sep;91(3):371–378. doi: 10.1016/s0022-3476(77)81303-6. [DOI] [PubMed] [Google Scholar]
  3. Chiu D., Lubin B., Roelofsen B., van Deenen L. L. Sickled erythrocytes accelerate clotting in vitro: an effect of abnormal membrane lipid asymmetry. Blood. 1981 Aug;58(2):398–401. [PubMed] [Google Scholar]
  4. Chonn A., Cullis P. R., Devine D. V. The role of surface charge in the activation of the classical and alternative pathways of complement by liposomes. J Immunol. 1991 Jun 15;146(12):4234–4241. [PubMed] [Google Scholar]
  5. Chudwin D. S., Korenblit A. D., Kingzette M., Artrip S., Rao S. Increased activation of the alternative complement pathway in sickle cell disease. Clin Immunol Immunopathol. 1985 Oct;37(1):93–97. doi: 10.1016/0090-1229(85)90139-4. [DOI] [PubMed] [Google Scholar]
  6. Comis A., Easterbrook-Smith S. B. Inhibition of serum complement haemolytic activity by lipid vesicles containing phosphatidylserine. FEBS Lett. 1986 Mar 3;197(1-2):321–327. doi: 10.1016/0014-5793(86)80350-7. [DOI] [PubMed] [Google Scholar]
  7. DeCeulaer K., Wilson W. A., Morgan A. G., Serjeant G. R. Plasma haemoglobin and complement activation in sickle cell disease. J Clin Lab Immunol. 1981 Jul;6(1):57–60. [PubMed] [Google Scholar]
  8. DeCeulaer K., Wilson W. A., Morgan A. G., Serjeant G. R. Plasma haemoglobin and complement activation in sickle cell disease. J Clin Lab Immunol. 1981 Jul;6(1):57–60. [PubMed] [Google Scholar]
  9. Fearon D. T. Regulation of the amplification C3 convertase of human complement by an inhibitory protein isolated from human erythrocyte membrane. Proc Natl Acad Sci U S A. 1979 Nov;76(11):5867–5871. doi: 10.1073/pnas.76.11.5867. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Feola M., Simoni J., Tran R., Lox C. D., Canizaro P. C. The toxicity of erythrocytic stroma. Prog Clin Biol Res. 1989;319:361–382. [PubMed] [Google Scholar]
  11. Franck P. F., Bevers E. M., Lubin B. H., Comfurius P., Chiu D. T., Op den Kamp J. A., Zwaal R. F., van Deenen L. L., Roelofsen B. Uncoupling of the membrane skeleton from the lipid bilayer. The cause of accelerated phospholipid flip-flop leading to an enhanced procoagulant activity of sickled cells. J Clin Invest. 1985 Jan;75(1):183–190. doi: 10.1172/JCI111672. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Freedman J. Membrane-bound immunoglobulins and complement components on young and old red cells. Transfusion. 1984 Nov-Dec;24(6):477–481. doi: 10.1046/j.1537-2995.1984.24685066804.x. [DOI] [PubMed] [Google Scholar]
  13. Fujita T., Inoue T., Ogawa K., Iida K., Tamura N. The mechanism of action of decay-accelerating factor (DAF). DAF inhibits the assembly of C3 convertases by dissociating C2a and Bb. J Exp Med. 1987 Nov 1;166(5):1221–1228. doi: 10.1084/jem.166.5.1221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gewurz A. T., Lint T. F., Imherr S. M., Garber S. S., Gewurz H. Detection and analysis of inborn and acquired complement abnormalities. Clin Immunol Immunopathol. 1982 May;23(2):297–311. doi: 10.1016/0090-1229(82)90116-7. [DOI] [PubMed] [Google Scholar]
  15. Haest C. W., Deuticke B. Experimental alteration of phospholipid-protein interactions within the human erythrocyte membrane. Dependence on glycolytic metabolism. Biochim Biophys Acta. 1975 Sep 2;401(3):468–480. doi: 10.1016/0005-2736(75)90244-8. [DOI] [PubMed] [Google Scholar]
  16. Haest C. W., Deuticke B. Possible relationship between membrane proteins and phospholipid asymmetry in the human erythrocyte membrane. Biochim Biophys Acta. 1976 Jun 17;436(2):353–365. doi: 10.1016/0005-2736(76)90199-1. [DOI] [PubMed] [Google Scholar]
  17. Haest C. W., Plasa G., Kamp D., Deuticke B. Spectrin as a stabilizer of the phospholipid asymmetry in the human erythrocyte membrane. Biochim Biophys Acta. 1978 May 4;509(1):21–32. doi: 10.1016/0005-2736(78)90004-4. [DOI] [PubMed] [Google Scholar]
  18. Hammer C. H., Wirtz G. H., Renfer L., Gresham H. D., Tack B. F. Large scale isolation of functionally active components of the human complement system. J Biol Chem. 1981 Apr 25;256(8):3995–4006. [PubMed] [Google Scholar]
  19. Hebbel R. P. Beyond hemoglobin polymerization: the red blood cell membrane and sickle disease pathophysiology. Blood. 1991 Jan 15;77(2):214–237. [PubMed] [Google Scholar]
  20. Hebbel R. P., Schwartz R. S., Mohandas N. The adhesive sickle erythrocyte: cause and consequence of abnormal interactions with endothelium, monocytes/macrophages and model membranes. Clin Haematol. 1985 Feb;14(1):141–161. [PubMed] [Google Scholar]
  21. Holguin M. H., Martin C. B., Bernshaw N. J., Parker C. J. Analysis of the effects of activation of the alternative pathway of complement on erythrocytes with an isolated deficiency of decay accelerating factor. J Immunol. 1992 Jan 15;148(2):498–502. [PubMed] [Google Scholar]
  22. Hong K., Kinoshita T., Dohi Y., Inoue K. Effect of trypsinization on the activity of human factor H. J Immunol. 1982 Aug;129(2):647–652. [PubMed] [Google Scholar]
  23. Hunsicker L. G., Ruddy S., Austen K. F. Alternate complement pathway: factors involved in cobra venom factor (CoVF) activation of the third component of complement (C3). J Immunol. 1973 Jan;110(1):128–138. [PubMed] [Google Scholar]
  24. Johnston R. B., Jr, Newman S. L., Struth A. G. An abnormality of the alternate pathway of complement activation in sickle-cell disease. N Engl J Med. 1973 Apr 19;288(16):803–808. doi: 10.1056/NEJM197304192881601. [DOI] [PubMed] [Google Scholar]
  25. Joiner K. A., Brown E. J., Frank M. M. Complement and bacteria: chemistry and biology in host defense. Annu Rev Immunol. 1984;2:461–491. doi: 10.1146/annurev.iy.02.040184.002333. [DOI] [PubMed] [Google Scholar]
  26. Kinoshita T., Medof M. E., Silber R., Nussenzweig V. Distribution of decay-accelerating factor in the peripheral blood of normal individuals and patients with paroxysmal nocturnal hemoglobinuria. J Exp Med. 1985 Jul 1;162(1):75–92. doi: 10.1084/jem.162.1.75. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Lubin B., Chiu D., Bastacky J., Roelofsen B., Van Deenen L. L. Abnormalities in membrane phospholipid organization in sickled erythrocytes. J Clin Invest. 1981 Jun;67(6):1643–1649. doi: 10.1172/JCI110200. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Lubin B., Kuypers F., Chiu D. Red cell membrane lipid dynamics. Prog Clin Biol Res. 1989;319:507–524. [PubMed] [Google Scholar]
  29. Lublin D. M., Atkinson J. P. Decay-accelerating factor and membrane cofactor protein. Curr Top Microbiol Immunol. 1990;153:123–145. doi: 10.1007/978-3-642-74977-3_7. [DOI] [PubMed] [Google Scholar]
  30. Lutz H. U., Bussolino F., Flepp R., Fasler S., Stammler P., Kazatchkine M. D., Arese P. Naturally occurring anti-band-3 antibodies and complement together mediate phagocytosis of oxidatively stressed human erythrocytes. Proc Natl Acad Sci U S A. 1987 Nov;84(21):7368–7372. doi: 10.1073/pnas.84.21.7368. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Medof M. E., Iida K., Mold C., Nussenzweig V. Unique role of the complement receptor CR1 in the degradation of C3b associated with immune complexes. J Exp Med. 1982 Dec 1;156(6):1739–1754. doi: 10.1084/jem.156.6.1739. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Medof M. E., Kinoshita T., Nussenzweig V. Inhibition of complement activation on the surface of cells after incorporation of decay-accelerating factor (DAF) into their membranes. J Exp Med. 1984 Nov 1;160(5):1558–1578. doi: 10.1084/jem.160.5.1558. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Medof M. E., Kinoshita T., Silber R., Nussenzweig V. Amelioration of lytic abnormalities of paroxysmal nocturnal hemoglobinuria with decay-accelerating factor. Proc Natl Acad Sci U S A. 1985 May;82(9):2980–2984. doi: 10.1073/pnas.82.9.2980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Mold C., Bradt B. M., Nemerow G. R., Cooper N. R. Epstein-Barr virus regulates activation and processing of the third component of complement. J Exp Med. 1988 Sep 1;168(3):949–969. doi: 10.1084/jem.168.3.949. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Mold C. Effect of membrane phospholipids on activation of the alternative complement pathway. J Immunol. 1989 Sep 1;143(5):1663–1668. [PubMed] [Google Scholar]
  36. Mold C., Nemerow G. R., Bradt B. M., Cooper N. R. CR2 is a complement activator and the covalent binding site for C3 during alternative pathway activation by Raji cells. J Immunol. 1988 Mar 15;140(6):1923–1929. [PubMed] [Google Scholar]
  37. Mold C., Walter E. I., Medof M. E. The influence of membrane components on regulation of alternative pathway activation by decay-accelerating factor. J Immunol. 1990 Dec 1;145(11):3836–3841. [PubMed] [Google Scholar]
  38. Nicholson-Weller A., Burge J., Fearon D. T., Weller P. F., Austen K. F. Isolation of a human erythrocyte membrane glycoprotein with decay-accelerating activity for C3 convertases of the complement system. J Immunol. 1982 Jul;129(1):184–189. [PubMed] [Google Scholar]
  39. Oglesby T. J., Allen C. J., Liszewski M. K., White D. J., Atkinson J. P. Membrane cofactor protein (CD46) protects cells from complement-mediated attack by an intrinsic mechanism. J Exp Med. 1992 Jun 1;175(6):1547–1551. doi: 10.1084/jem.175.6.1547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Op den Kamp J. A. Lipid asymmetry in membranes. Annu Rev Biochem. 1979;48:47–71. doi: 10.1146/annurev.bi.48.070179.000403. [DOI] [PubMed] [Google Scholar]
  41. Pearson H. A., Spencer R. P., Cornelius E. A. Functional asplenia in sickle-cell anemia. N Engl J Med. 1969 Oct 23;281(17):923–926. doi: 10.1056/NEJM196910232811703. [DOI] [PubMed] [Google Scholar]
  42. Polley M. J., Müller-Eberhard H. J. Enharncement of the hemolytic activity of the second component of human complement by oxidation. J Exp Med. 1967 Dec 1;126(6):1013–1025. doi: 10.1084/jem.126.6.1013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Ross G. D., Medof M. E. Membrane complement receptors specific for bound fragments of C3. Adv Immunol. 1985;37:217–267. doi: 10.1016/s0065-2776(08)60341-7. [DOI] [PubMed] [Google Scholar]
  44. Ross G. D., Yount W. J., Walport M. J., Winfield J. B., Parker C. J., Fuller C. R., Taylor R. P., Myones B. L., Lachmann P. J. Disease-associated loss of erythrocyte complement receptors (CR1, C3b receptors) in patients with systemic lupus erythematosus and other diseases involving autoantibodies and/or complement activation. J Immunol. 1985 Sep;135(3):2005–2014. [PubMed] [Google Scholar]
  45. Schwartz R. S., Tanaka Y., Fidler I. J., Chiu D. T., Lubin B., Schroit A. J. Increased adherence of sickled and phosphatidylserine-enriched human erythrocytes to cultured human peripheral blood monocytes. J Clin Invest. 1985 Jun;75(6):1965–1972. doi: 10.1172/JCI111913. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Seya T., Hara T., Matsumoto M., Sugita Y., Akedo H. Complement-mediated tumor cell damage induced by antibodies against membrane cofactor protein (MCP, CD46). J Exp Med. 1990 Dec 1;172(6):1673–1680. doi: 10.1084/jem.172.6.1673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Shukla S. D., Hanahan D. J. Membrane alterations in cellular aging: susceptibility of phospholipids in density (age)-separated human erythrocytes to phospholipase A2. Arch Biochem Biophys. 1982 Mar;214(1):335–341. doi: 10.1016/0003-9861(82)90038-8. [DOI] [PubMed] [Google Scholar]
  48. Smith C. A., Pangburn M. K., Vogel C. W., Müller-Eberhard H. J. Molecular architecture of human properdin, a positive regulator of the alternative pathway of complement. J Biol Chem. 1984 Apr 10;259(7):4582–4588. [PubMed] [Google Scholar]
  49. Tanaka Y., Schroit A. J. Insertion of fluorescent phosphatidylserine into the plasma membrane of red blood cells. Recognition by autologous macrophages. J Biol Chem. 1983 Sep 25;258(18):11335–11343. [PubMed] [Google Scholar]
  50. Tomasko M. A., Chudwin D. S. Complement activation in sickle cell disease: a liposome model. J Lab Clin Med. 1988 Aug;112(2):248–253. [PubMed] [Google Scholar]
  51. Wagner G. M., Schwartz R. S., Chiu D. T., Lubin B. H. Membrane phospholipid organization and vesiculation of erythrocytes in sickle cell anaemia. Clin Haematol. 1985 Feb;14(1):183–200. [PubMed] [Google Scholar]
  52. Williamson P., Bateman J., Kozarsky K., Mattocks K., Hermanowicz N., Choe H. R., Schlegel R. A. Involvement of spectrin in the maintenance of phase-state asymmetry in the erythrocyte membrane. Cell. 1982 Oct;30(3):725–733. doi: 10.1016/0092-8674(82)90277-x. [DOI] [PubMed] [Google Scholar]
  53. Wilson W. A., Thomas E. J. Activation of the alternative pathway of human complement by haemoglobin. Clin Exp Immunol. 1979 Apr;36(1):140–144. [PMC free article] [PubMed] [Google Scholar]
  54. Wilson W. A., Thomas E. J., Sissons J. G. Complement activation in asymptomatic patients with sickle cell anaemia. Clin Exp Immunol. 1979 Apr;36(1):130–139. [PMC free article] [PubMed] [Google Scholar]
  55. Winkelstein J. A., Drachman R. H. Deficiency of pneumococcal serum opsonizing activity in sickle-cell disease. N Engl J Med. 1968 Aug 29;279(9):459–466. doi: 10.1056/NEJM196808292790904. [DOI] [PubMed] [Google Scholar]
  56. Wong W. Y., Powars D. R., Chan L., Hiti A., Johnson C., Overturf G. Polysaccharide encapsulated bacterial infection in sickle cell anemia: a thirty year epidemiologic experience. Am J Hematol. 1992 Mar;39(3):176–182. doi: 10.1002/ajh.2830390305. [DOI] [PubMed] [Google Scholar]
  57. deCiutiis A. C., Peterson C. M., Polley M. J., Metakis L. J. Alternative pathway activation in sickle cell disease and beta-thalassemia major. J Natl Med Assoc. 1978 Jul;70(7):503–506. [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES