[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

ZA200304931B - Improvements in or relating to liquid detergent compositions. - Google Patents

Improvements in or relating to liquid detergent compositions. Download PDF

Info

Publication number
ZA200304931B
ZA200304931B ZA200304931A ZA200304931A ZA200304931B ZA 200304931 B ZA200304931 B ZA 200304931B ZA 200304931 A ZA200304931 A ZA 200304931A ZA 200304931 A ZA200304931 A ZA 200304931A ZA 200304931 B ZA200304931 B ZA 200304931B
Authority
ZA
South Africa
Prior art keywords
composition
composition according
sulfonic acid
alkyl benzene
benzene sulfonic
Prior art date
Application number
ZA200304931A
Inventor
Antonio Cordellina
Giorgio Franzolin
Daniele Fregonese
Alessandro Latini
Sara Quaggia
Original Assignee
Reckitt Benckiser Nv
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Reckitt Benckiser Nv filed Critical Reckitt Benckiser Nv
Publication of ZA200304931B publication Critical patent/ZA200304931B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/83Mixtures of non-ionic with anionic compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/22Sulfonic acids or sulfuric acid esters; Salts thereof derived from aromatic compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/04Detergent materials or soaps characterised by their shape or physical properties combined with or containing other objects
    • C11D17/041Compositions releasably affixed on a substrate or incorporated into a dispensing means
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/04Detergent materials or soaps characterised by their shape or physical properties combined with or containing other objects
    • C11D17/041Compositions releasably affixed on a substrate or incorporated into a dispensing means
    • C11D17/042Water soluble or water disintegrable containers or substrates containing cleaning compositions or additives for cleaning compositions
    • C11D17/043Liquid or thixotropic (gel) compositions
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/20Organic compounds containing oxygen
    • C11D3/2003Alcohols; Phenols
    • C11D3/2041Dihydric alcohols
    • C11D3/2044Dihydric alcohols linear
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/43Solvents
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/72Ethers of polyoxyalkylene glycols

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Detergent Compositions (AREA)

Description

IMPROVEMENTS IN OR RELATING TO LIQUID DETERGENT
’ COMPOSITIONS . The present invention relates to liquid detergent compositions, especially compositions which dissolve and disperse satisfactorily in water.
Liquid detergent compositions comprising surfactants are known. Such compositions can be used, for example, for laundry use, for example for fine-fabric laundry use or for heavy duty laundry use, or as hand or machine dishwashing compositions. They may also be used in liquid toilet rim blocks and as hard surface cleaners.
In general detergent compositions comprise a large amount of water. For example, hand dishwashing compositions often contain up to 80 wt% water. Such compositions do not generally have any compatibility problems when being diluted with a large quantity of water.
EP 0907711 describes non-aqueous anionic containing detergent compositions in which the anionic is an alkali- metal salt of Ci0-Cis alkyl benzene sulfonic acid and having a 2-phenyl isomer content lower than 22%. Such compositions are described as providing stable and pourable compositions. Also described is that the alkylbenzene sulfonate anionic surfactant is a solid which only partially dissolves in the non-aqueous liquid diluent, so as to form the structural phase.
For some purposes it is desirable to have detergent compositions which are anhydrous or substantially anhydrous. However, such compositions may be difficult . to disperse or dissolve in large quantities of water. In particular they may gel when diluted with water. . 35
We have surprisingly discovered a composition which overcomes this problem of gelling.
Accordingly the present invention provides a liquid
- 2 = detergent composition comprising: ’ a) an alkyl benzene sulfonic acid neutralised with an alkanolamine, said alkyl benzene sulfonic acid ' containing less than 25%, preferably less than 20%, of the 2-phenyl isomer; and b) an organic solvent; said composition containing less than 5 wt% ideally less than 3 wt% water. Larger amounts of water can be found in the composition which is chemically or physically bound. Therefore, the amount of water is preferably less than 5 wt%, ideally less than 3wt%, of free water. By free water we mean water that is not physically or chemically bound.
It is known that alkyl benzene sulfonic acids can be produced by a variety of processes in which an alkyl chain is attached to a benzene ring by a catalysed reaction. Various catalysts are known. It is usual in liquid detergents to use an alkyl benzene sulfonic acid produced using an AlCl; catalyst. Such alkyl benzene sulfonic acids typically contain at least 25% of the 2- phenyl isomer, that is the isomer in which the alkyl : chain is attached to the benzene ring at the 2-position of the alkyl chain. The use of alkyl benzene sulfonic acids produced using other catalysts is in many cases avoided because they have disadvantages. For example, the alkyl benzene sulfonic acid produced by a process using a hydrogen fluoride (HF) catalyst is generally not used in aqueous compositions because the alkyl benzene sulfonic acid produced can give a cloudy appearance to the detergent composition, especially when used at a high concentration and in combination with electrolytes. 1
The liquid detergent composition of the present . 35 invention must contain an alkyl benzene sulfonic acid neutralised with an alkanol amine which contains less than 25%, preferably less than 20%, of the 2-phenyl isomer. Preferably it contains less than 15%, and more preferably less than 12% or less than 10% of the 2-phenyl isomer.
The alkyl benzene sulfonic acids produced using a HF . catalyst contains less than 25%, preferably less than 20%, of the 2-phenyl isomer and can therefore be used in the present invention. Such alkyl benzene sulfonic acids are commercially available, for example as Solfodac AC3-I from Condea or Petresul 550 from Petresa.
The alkyl benzene sulfonic acid may be produced using other catalysts, for example AlCl;, if an additional step, for example a separation step, is carried out to ensure that the final composition contains less than 25%, preferably less than 20%, of the 2-phenyl isomer in relation to the total amount of alkyl benzene sulfonic acid isomers present.
The alkyl benzene sulfonic acid contains other isomers, in particular the 3-, 4-, 5- and 6-phenyl isomers. These may be present in any proportions relative to each other. The alkyl chain may be linear or branched, although linear is preferred. The alkyl chain is generally a Cs.i14 alkyl chain, for example a Cjp-13 alkyl chain. A single alkyl benzene sulfonic acid, or a mixture of two or more, may be used.
The alkyl benzene sulfonic acid is preferably neutralised with an alkanol amine. It is not possible to neutralise it with, for example, sodium or potassium hydroxide, since this leads to a solid product rather than a liquid product. (for example as described in
EP 0907711). The alkanol amine may contain one, two or c three alkanol groups, which may be same or different.
For example it can contain one, two or three methanol, . 35 ethanol, propanol or isopropanol groups. Desirably it is a monoethanolamine, diethanolamine or triethanolamine or a mixture thereof. Particularly desirable is a mixture of monoethanolamine and triethanolamine, for example in a weight ratio of from 1:1 to 1:2, especially from 1:1.25
- 4 ~ to 1:1.75, more especially about 1:1.5, which may lead to . enhanced generation of foam. , The alkylbenzene sulfonic acid neutralised with an alkanolamine is capable of fully dissolving/mixing into liquid diluents with low water content which may Be clear, and which are chemically an physically stable over extended periods, at least 6 months and/or up to 36 months.
The organic solvent may be any organic solvent, although it is desirable that it is miscible with water.
Examples of organic solvents are glycols, glycerine or an alcohol. Preferred organic solvents are C;., alcohols such as ethanol or propanol, and C,;.4, glycols such as monoethylene glycol and monopropylene glycol.
The composition of the present invention may contain further surfactants such as anionic, nonionic, amphoteric, cationic or zwitterionic surfactants, or a mixture thereof.
Anionic surfactants may include anionic organic surfactants, usually employed in soluble salt forms, preferably as alkali metal salts, especially as sodium salts. Although other types of anionic surfactants may be utilized, such as higher fatty acyl sarcosides, soaps of fatty acids (including metal soaps and amine soaps), preferred anionic surfactants are those which are described as of a sulfonate or sulfate type, which may be designated as sulf (on)ates. These include higher fatty alcohol sulfates, higher fatty alcohol polyalkoxylate . sulfates, olefin sulfonates, a-methyl ester sulfonates and paraffin sulfonates. An extensive listing of anionic , 35 detergents, including such sulf (on) ate surfactants, is given on pages 25 to 138 of the text Surface Active
Agents and Detergents, Vol. II, by Schwartz, Perry and
Berch, published in 1958 by Interscience Publishers, Inc.
Usually the higher alkyl group of such anionic
- 5 = surfactants has 8 to 24 carbon atoms, especially 10 to 20 . carbon atoms, preferably 12 to 18 carbon atoms, and the alkoxylate content of such anionic surfactants that are . alkoxylated (preferably ethoxylated or ethoxylated/propoxylated) is in the range of 1 to 4 moles of alkoxy groups per mole of surfactant.
Another preferred class of anionic surfactants comprises alkali metal (preferably sodium) alkyl sulfates, preferably having linear alkyl groups of 12 to 18 carbon atoms.
Another preferred class of anionic surfactants comprises alkali metal (preferably sodium) alkoxylated sulfates, preferably having linear alkyl groups of 12 to 18 carbon atoms, and preferably having 1 to 4 moles of alkoxy groups per mole of surfactant.
Non-ionic surfactants may be selected from, for example, alcohol alkoxylates such as alcohol ethoxylates, also known as alkylpoly (ethylene oxides) and alkylpolyoxyethylene ethers, alkylphenol ethoxylates, ethylene oxide/propylene oxide block copolymers, alkyl polyglucosides, alkanolamides and amine oxides. Alcohol ethoxylates, alkylphenol ethoxylates and ethylene oxide/propylene oxide block copolymers are condensation products of higher alcohols with lower alkylene oxides.
In such non-ionic surfactants the higher fatty moiety will normally be of 11 to 15 carbon atoms and there will usually be present from 3 to 20, preferably from 3 to 15, more preferably from 3 to 10, and most . preferably from 3 to 7, moles of alkylene oxide per mole of higher fatty alcohol. , 35
Non-ionic surfactants of interest include alkyl polyglucosides, the hydrophobic carbon chain length varying from 8 to 16 carbon atoms depending on the feedstock (oleochemical or petrochemical) and the hydrophilic polyglucose chain length varying between one : and more than eight units of glucose. v Amphoteric surfactants may be selected from, for example, alkyl betaines, alkyl/aryl betaines, amidoalkyl betaines, imidazolinium-type betaines, sulfobetaines and sultaines.
The anionic surfactants, including the alkyl benzene sulfonic acid neutralised with an alkanolamine, are suitably present in a total amount of at least 10 wt%, and more preferably at least 20 wt% based on the total weight of the composition. The anionic surfactants are also suitably present in an amount of up to 95 wt, preferably up to 70 wt%, more preferably up to 60 wt%,and ideally up to 40 wt%, based on the total weight of the composition.
One or more non-ionic surfactant (s), when present, is/are suitably present in an amount of at least 0.1 wt%, preferably at least 0.5 wt%, more preferably at least 1 wt¥%. Good compositions can also be prepared with higher amounts of non-ionic surfactant (s), for example in an amount of at least 2 wt%, preferably at least 4 wt%, and most preferably at least 8 wt%, based on the total weight of the composition. One or more non-ionic surfactant (s), when present, is/are suitably present in an amount of up to 80 wt%, preferably up to 70 wt%, more preferably up to 50 wt%, most preferably up to 35 wt%, and especially up to 20 wt%, based on the total weight of the composition.
One or more amphoteric surfactant (s), when present, . is/are suitably present in an amount of at least 0.1 wt$, preferably at least 02 wt%, more preferably at least 04 . 35 wt%, based on the total weight of the composition. Good compositions can also be prepared with higher amounts of amphoteric surfactant (s), for example at least 1 wt%, preferably at least 2 wt%, more preferably at least 5 wt%, based on the total weight of the composition. One or more amphoteric surfactant(s), when present, is/are , suitably present in an amount of up to 30 wt$%, preferably up to 20%, more preferably up to 15 wt%, based on the . total weight of the composition.
A preferred laundry detergent composition includes as surfactant (s) the one or more alkyl benzene sulfonic acids neutralised by an alkanolamine, optionally one or more further anionic surfactants, and one or more non- ionic surfactant (s). Preferably such surfactant (s) is/are the only surfactant (s) or the major surfactant (s) present in the composition. By this we mean such surfactants including alkyl benzene sulfonic acids neutralised with an alkanolamine are present in a larger amount by weight than all other surfactant types in total, and preferably constitute at least 60 wt%, preferably at least 80 wt%, more preferably at least 95 wt%, and most preferably 100 wt% of the total weight of surfactants in the composition.
Especially preferred compositions employ the alkyl benzene sulfonic acid neutralised with an alkanclamine as the cleansing surfactant (s) and no further surfactants.
Alternative preferred compositions also employ one or more non-ionic cleansing surfactants, the weight ratio of the former to the latter being at least 2:1, preferably at least 4:1.
In an alternative and preferred embodiment the weight ratio of the alkyl benzene sulfonic acid salt to the non-ionic surfactant is at least 1:1, were preferably at least 0.75:1.
The surfactants in total suitably provide at least . 35 10 wt%, more preferably at least 20 wt$%, most preferably at least 30 wt%, and especially at least 50 wt% of the total weight of a laundry detergent composition. Suitably the surfactants in total provide(s) up to 99 wt%, especially up to 95 wt%, for example up to 70 wt%, of the total weight of the composition.
A detergent composition of the present invention may . include one or more further components such as desiccants, sequestrants, enzymes, silicones, emulsifying agents, viscosifiers, acids, bases, pH regulators (buffers), bleaches, bleach activators, hydrotropes, opacifiers, builders, foam controllers, solvents, preservatives, disinfectants, pearlising agents, limescale preventatives, such as citric acid, optical brighteners, dye transfer inhibitors, thickeners, gelling agents, colour fading inhibitors and aesthetic ingredients, for example fragrances and colourants.
Suitable foam controllers are soaps, for example ~ based on coconut fatty acids. Such controllers may be present in an amount of up to 20 wt%, for example up to 10 wt%, preferably 1 to 5 wt%, especially 2 to 3 wt, especially about 2.5 wt%, of the composition based on the total amount of the composition.
The alkyl benzene sulfonic acid neutralised with an alkanolamine is preferably present in the composition of the present invention in an amount of up to 70 wt%, for example from 10 to 60 wt%. For concentrated compositions an amount of 40 to 60 wt% may be appropriate whereas for dilute compositions an amount of from 10 to 30 wt% may be more appropriate.
In an alternative and preferred embodiment the alkyl benzene sulfonic acid neutralised with an alkanolamine is present in an amount of 10 to 20 wt%.
The organic solvent may be present in the composition in any amount, for example in an amount of up to 50 wt%. Preferably it is present in an amount of from 5 to 30 wt%, especially from 10 to 20 wt%, especially about 15 wt%.
In an alternative and preferred embodiment the . organic solvent is present in the composition in an amount of 35 to 55 wt%. Ideally the solvent is } monopropylene glycol or a blend of monopropylene glycol and glycerine (ideally 80:20 to 20:80 wt ratio).
The composition of the present invention contains less than 3 wt% water. Compositions containing more than 3 wt% water may not be stable on storage or may have a cloudy appearance. Desirably the composition contains less than 2 wt% water, even more desirably less than 1 wt% water. Most preferably, the composition is substantially anhydrous. It will be appreciated that higher water content could be included in substantially anhydrous systems when it is chemically or physically bound.
The liquid detergent composition of the present invention may have a wide variety of uses. Thus it may be used, for example, as a laundry detergent composition, for example, for fine fabrics such as wool or for heavy duty laundry use such as for a normal wash.
Alternatively, the composition may be a wash booster for adding to the wash in addition to the usual detergent used. It may also be used as a hard-surface cleaner or in a liquid toilet rim block of the type described in EP-
A-538,957 or EP-A-785,315. The composition may also be used as a hard-surface cleaning composition or as a liguid hand or machine dishwashing composition.
The present composition is especially suitable for use in a water-soluble container where the container is ; simply added to a large quantity of water and dissolves, releasing its contents. The favourable dissolution and ; 35 dispersion properties of the composition of the present invention are particularly useful in this context.
Thus the present invention also provides a water- soluble container containing a composition as defined above.
The water-soluble container may comprise a thermoformed or injection moulded water-soluble polymer.
It may also simply comprise a water-soluble film. Such containers are described, for example, in EP-A-524,721,
GB-A-2,244,258, WO 92/17,381 and WO 00/55, 068.
In all cases, the polymer is formed into a container or receptable such as a pouch which can receive the composition, which is filled with the composition and then sealed, for example by heat sealing along the top of the container in vertical form-fill-processes or by laying a further sheet of water-soluble polymer or moulded polymer on top of the container and sealing it to the body of the container, for example by heat sealing.
Desirably the water-soluble polymer is a poly (vinyl alcohol) (PVOH). The PVOH may be partially or fully alcoholised or hydrolysed. For example, it may be from 40 to 100% preferably 70 to 92%, more preferably about 88%, alcoholised or hydrolysed, polyvinyl acetate. When . the polymer is in film form, the film may be cast, blown or extruded.
The water-soluble polymer is generally cold water (20°C) soluble, but depending on its chemical nature, for example the degree of hydrolysis of the PVOH, may be insoluble in cold water at 20°C, and only become soluble in warm water or hot water having a temperature of, for example, 30°C, 40C, 50°C or even 60°C. Because the composition contains only up to 3 wt% water, the , composition will not attack the PVOH container.
The containers of the present invention find ) particular use where a unit-dosage form of the composition is required. Thus, for example, the composition may be a dishwashing or laundry detergent composition, especially for use in a domestic washing machine. The use of the container may place restrictions : on its size. Thus, for example, a suitable size for a container to be used in a laundry or dishwashing machine . is a rounded cuboid container having a length of 1 to
S5cm, especially 3.5 to 4.5cm, a width of 1.5 to 3.5cm, especially 2 to 3cm, and a height of 1 to 2cm, especially 1.25 to 1.75cm. The container may hold, for example, from 10 to 40g of the composition, especially from 15, 20 or 30 to 40g of the composition for laundry use or from to 20g of the composition for dishwashing use.
The composition of the present invention may have a pH of, for example, 5 to 9, especially 5.5 to 7, more especially 5.5 to 6.5. The viscosity, measured using a 15 Brookfield viscometer, model DV-II+, with spindle S31 at 12 RPM and at 20°C, is desirably 500 to 3000 cps, especially 800 to 1500 cps, more especially about 1100 cps.
The present invention is now further described in the following Examples, in which all of the parts are parts by weight unless otherwise mentioned.
A preferred additional additive is an enzyme, especially an protease, or a mixture of enzymes (such as protease combined with a lipase and/or a cellulase and/or an amylase, and/or a cutinase and/or a peroxidase enzyme). Such enzymes are well known and are adequately described in the literature (see
WO 00/23548 page 65 to 68, which is incorporated herein by reference). . The enzyme will be present in an amount of, by weight, 0.1 to 5.0%, ideally 0.3% to 4.0% and preferably . 35 1% to 3%.
The viscosity of the composition of the present invention, measured using a Brookfield viscometer, model
DV-II+, with spindle S831 at 12 RPM and at 20°C, is desirably 500 to 3000 cps, more especially 800 to 1500 cps, especially about 1100 cps. . Specific compositions described herein have a very low viscosity, despite having high surfactant contacts, and are a preferred feature of the invention having several advantages in handling and the filling of containers.
Low viscosity compositions are characterised in that they are made changing the weight ratio sulfonic acid/nonionic, preferably the presence of a second surfactant causes the formation of mixed micelles that have a different aggregation behavior in terms of inter- micellar strength so the viscosity drop on decreasing the molar ratio Sulfonic acid/nonionic. In the table are reported the data relating formula in which the overall content of surfactants is not changed but the ratio sulfonic acid/nonionic is decreased this is correlates with the viscosity determined with a Brookfield viscometer DV E spindle 1 speed 10 rpm
Table (matrix: surfactants 38% enzyme 2%, glycerol 8%,
Borax 2%, monopropylene glycol 40.9 %, Kathon 0.1%, Peg 200 5%, coconut oil 2%, MEA 3.5 %.) T= 20°C, Brookfield
DV-E, rpm 10, spindle 1.
CA LCI
1) sulfonic acid obtained with HF as catalyst; 2) lialet 125 - 5 Condea.
Therefore preferred compositions have a low viscosity of less than 190cps, ideally less than 100cps, . with a ratio of LAS to non-ionic of between 0.5:1 to 1:0.5 and, preferably, the total amount of surfactant is less than 50%wt of the composition.
The present invention is now further described in the following Examples in which all the parts are parts by weight unless otherwise mentioned.
Example 1
A fine-fabric laundry composition
The following components were mixed together:
Monopropylene glycol - 15.0 parts
Genapol AO 3070 - 12.0 parts
Solfodac AC3-I - 45.0 parts
Monoethanolamine - 5.0 parts
The composition was then subjected to continuous cooling, and the following components were added:
Triethanolamine - 10.0 parts
Coconut fatty acid - 2.0 parts
Marlinat 242/90M - 9.0 parts
Bitrex (trade mark) - 0.005 parts
Dye (1% aqueous solution) - 0.13 parts
Perfume - 1.44 parts
Genapol AO 3070 is a Ci4.15 fatty alcohol ethoxylated with 3 or 7 ethylene oxide units in a 1:1 ratio. ' Marlinat 242/90M is a C;0-Cis alcohol polyethylene glycol (2EQ), ether sulfate, monoisopropanolammmonium salt.
The composition was mixed until homogeneous. A ~
Multivac thermoforming machine operating at 6 cycles/min. and at ambient conditions of 25°C under 35% RH (+5% RH) was used to thermoform a PVOH film. This was Monosol
M8534 obtained Chris Craft Inc., Gary, Indiana, USA, having a degree of hydrolysis of 88% and a thickness of 100 pm. The PVOH film was thermoformed into a rectangular mould of 39mm length, 29mm width and 16mm depth, with its bottom edges being rounded to a radius of 10mm at 115 to 118°C. The thus formed pocket was filled with 17ml of the above composition, and is 75 pum thick film of Monosol M8534 PVOH was placed on top and heat sealed at 144 to 148°C.
The detergent composition was found to dissolve satisfactorily in domestic laundry machines. It was also found to dissolve quickly when added to a large quantity of water having a hardness of 25°F at 20°C to provide a final solution containing the detergent composition in an amount of 5 wt%.
Examples 2 to 9
Example 1 was repeated, except for replacing the
Genapol AO 3070 by the following components.
Example 2: Genapol UD 079 obtainable from Clariant, being a C;; fatty alcohol ethoxylated with 7 ethylene oxide units.
Example 3: Genapol UD 030 obtainable from Clariant, being a C;; fatty alcohol ethoxylated with 3 ethylene oxide units.
Example 4: Genapol OA O50 obtainable from Clariant, being a Cj4.;5 fatty alcohol ethoxylated . with 5 ethylene oxide units.
Example 5: Lutensol TO3-TO7-1:1 obtainable from BASF, being a C;3 fatty alcohol ethoxylated with 3 or 7 ethylene oxide units in a 1:1 ratio.
Example 6: Lutensol TO7 obtainable from BASF, being a
Cia fatty alcohol ethoxylated with 7 ethylene oxide units.
Example 7: Lutensol TO5 obtainable from BASF, being a
Ciz fatty alcohol ethoxylated with 5 ethylene oxide units.
Example 8: Lutensol AO7 obtainable from BASF, being a
Ciz-15 fatty alcohol ethoxylated with 7 ethylene oxide units.
Example 9: Dehydol LT7 obtainable from Henkel, being a Cis. fatty alcohol ethoxylated with 7 ethylene oxide units.
In all instances the composition was found to dissolve satisfactorily in a large amount of water following the test set out in Example 1.
Example 10
A laundry detergent booster composition
Parts
Lialet 125/5 (nonionic) 23
Petresul 550 (lauryl alkyl sulfonate) 15.5
Genencor Properase (protease) 2.0
Glycerol 8.0
Borax (Na tetraborate decahydrate) 2.0
Monopropylene glycol 42.0
Kathon GC 0.1
PEG 200 5.0
Coconut oil 2
Monoethanolamine (MEA) 3.5
The following components were mixed together:
Monopropylene glycol 42 parts
PEG 200 5 parts
Nonionic 23 parts
Kathon 0.1 parts
Coconut fatty acid 2 parts —
LAS Solfodoc AC3-D 15.5 parts . MEA 3.5 ‘ The temperature rise up to 60°C and while the solution cooled to room temperature was prepared in a separated batch an enzymatic solution made with:
Glycerol 67 parts
Borax 16.5 parts
Enzyme 16.5 parts i0
When the first solution was at room temperature were added 12 parts of the enzymatic solution under rapid stirring. At the end the dye is added 0.002 parts
Example 11-18
In a similar way to the preparation of Example 10 ; the following examples were prepared
Tngredient
Lialet 125/5 (non-ionic Condea) {24.00
LAS (sulfonic acid - HF 15.5 alkylation process)
Properase 1600
Dye ~~ 10.0002
Glycerol
Monoprop. Glyc. 41.40
Kathon GC (perservative Rohm 0.10 and Haas)
BEG 200 — Totaili00.00
Ingredient
Lialet 125/5 (nonionic from 24.00
Condea)
LAS (sulfonic acid - HF 20 alkylation process) i N
Kathon GC (perservative form 0.10 ron and race) on
Lialet 125/5 (nionionic 24.00 eustactantsy oom PU
LAS (sulfonic acid - HF 20 ehkylation process)
Kathon GC (perservative form 0.10 form and mang om 00
Lialet 125/5 (nionionic 24.00 emrocrancyy ooome 0]
LAS (sulfonic acid - HF 15.5 eleylation process)
Kathon GC (perservative form 0.10 om and mang om 0 - ]100.00
Surfactants)
LAS (sulfonic acid - HF 20 elkyiation proces :
Kathon GC (perservative form 0.10 om and mane) oe om
Aerosil 200 (silica form 2.0 beguasa) etm 0
Lialet 125/5 (nionionic 24.00 otoctante) ome [0
LAS (sulfonic acid - HF 20 eleyiation process) Lo
Kathon GC (perservative form 0.10
Ee
Aerosil 200 (silica form
Lialet 125/5 (nionionic 24.00 ctectance) oome PRO
LAS (sulfonic acid - HF 15.5 leyiotion process) [oo
Kathon GC (perservative form y
Degussa) 1
Lytron (opacisier)
PEG 200 — otailivo.oo
Ingredient
Lialet 125/5 (nionionic 24.00 surfactants)
LAS (sulfonic acid - HF 15.5 alkylation process)
Properase 1600 L bye 10.0002
Glycerol
Monoprop. Glyc.
Kathon GC (perservative form 0.10
Rohm and Haas)
Aerosil 200 (silica form 2.0
Degussa)
PEG 200 — otall100.00
Comparative Example A
The following components were mixed together:
Monopropylene glycol - 8.0 parts
Lutensol AO7 - 20.0 parts
Alkyl benzene sulfonic acid - 45.0 parts obtained using an AlCl; catalyst
Triethanolamine - 27.0 parts
The composition did not dissolve satisfactorily in a large amount of water following the test set out in
Example 1.
Comparative Example B
The following components were mixed together:
Lutensol AO7 - 20.0 parts
Alkyl benzene sulfonic acid - 50.0 parts : obtained using an AlCl; catalyst
Triethanolamine - 30.0 parts
The composition did not dissolve satisfactorily in a large amount of water following the test set out in
Example 1.
Comparative Example C :
The following components were mixed together:
Monopropylene glycol - 6.5 parts
Lutensol AO7 - 11.0 parts
Alkyl benzene sulfonic acid - 45.0 parts obtained using an AlCl; catalyst
Triethanolamine - 30.0 parts
Coconut fatty acids - 7.5 parts
The composition did not dissolve satisfactorily in a large amount of water following the test set out in
Example 1. y

Claims (20)

1. A liquid detergent composition comprising:
. a) an alkyl benzene sulfonic acid neutralised with an alkanolamine, said alkyl benzene sulfonic acid containing less than 25%, preferably less than 20%, of the 2-phenyl isomer; and b) an organic solvent; said composition containing less than 3 wt% water.
2. A composition according to claim 1 wherein the alkyl benzene sulfonic acid contains less than 15% of the 2- phenyl isomer.
3. A composition according to claim 1 or 2 wherein the alkyl benzene sulfonic acid is a Cy.;4 alkyl benzene sulfonic acid.
4. A composition according to claim 3 wherein the alkyl benzene sulfonic acid is a Cjp-13 alkyl benzene sulfonic acid.
5. A composition according to any one of the preceding claims wherein the alkyl benzene sulfonic acid has been produced by the HF-catalysed process.
6. A composition according to any one of the preceding claims wherein the alkanolamine is monoethanolamine, diethanolamine, triethanolamine or a mixture thereof.
7. A composition according to claim 6 in which the alkanolamine is a mixture of monoethanolamine and triethanolamine.
. 35 8. A composition according to any one of the preceding claims wherein the organic solvent is a glycol, glycerine or an alcohol or a mixture thereof
9. A composition according to claim 8 wherein the organic solvent is monopropylene glycel or ethanol.
10. A composition according to any one of the preceding . claims which contains less than 1 wt% water.
11. A composition according to claim 10 which is anhydrous.
12. A composition according to any one of the preceding claims which comprises from 10 to 60 wt% alkyl benzene sulfonic acid neutralised with an alkanolamine.
13. A composition according to any one of the preceding claims which comprises from 10 to 20 wt% organic solvent.
14. A composition according to any one of the preceding claims which also comprises a nonionic surfactant.
15. A composition according to any one of the preceding claims which has a pH of from 5.5 to 7.
16. A composition according to any one of the preceding claims which is a laundry composition.
17. A composition according to claim 16 which is a fine fabric laundry composition
18. A water-soluble container containing a composition as defined in any one of the preceding claims.
19. A container according to claim 18 which comprises a thermoformed or injection moulded water-soluble polymer.
20. A container according to claim 18 or 19 wherein the , 35 water-soluble polymer is a poly (vinyl alcohol).
ZA200304931A 2001-01-19 2003-06-25 Improvements in or relating to liquid detergent compositions. ZA200304931B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB0101480A GB2371308B (en) 2001-01-19 2001-01-19 A liquid detergent composition

Publications (1)

Publication Number Publication Date
ZA200304931B true ZA200304931B (en) 2004-06-25

Family

ID=9907157

Family Applications (1)

Application Number Title Priority Date Filing Date
ZA200304931A ZA200304931B (en) 2001-01-19 2003-06-25 Improvements in or relating to liquid detergent compositions.

Country Status (2)

Country Link
GB (1) GB2371308B (en)
ZA (1) ZA200304931B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4339267A1 (en) * 2022-09-16 2024-03-20 The Procter & Gamble Company Water-soluble unit dose article comprising liquid laundry detergent composition which comprises polyethylene glycol

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3981998A (en) * 1974-03-08 1976-09-21 Waldstein David A Bactericidal and fungicidal 1,3,5 trialkanol triazines
GB1527141A (en) * 1976-01-06 1978-10-04 Procter & Gamble Liquid detergent composition
EP0070074B2 (en) * 1981-07-13 1997-06-25 THE PROCTER & GAMBLE COMPANY Foaming surfactant compositions
US6239094B1 (en) * 1996-06-28 2001-05-29 The Procter & Gamble Company Nonaqueous detergent compositions containing specific alkyl benzene sulfonate surfactant
US6133217A (en) * 1998-08-28 2000-10-17 Huntsman Petrochemical Corporation Solubilization of low 2-phenyl alkylbenzene sulfonates

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4339267A1 (en) * 2022-09-16 2024-03-20 The Procter & Gamble Company Water-soluble unit dose article comprising liquid laundry detergent composition which comprises polyethylene glycol

Also Published As

Publication number Publication date
GB2371308A (en) 2002-07-24
GB0101480D0 (en) 2001-03-07
GB2371308B (en) 2003-10-15

Similar Documents

Publication Publication Date Title
EP1352048B1 (en) Improvements in or relating to liquid detergent compositions
US11891587B2 (en) Water-soluble unit dose article
US9187714B2 (en) Structured liquid detergent or cleaning agent having a flow limit and inorganic salt
CA2433837C (en) Liquid detergent composition comprising alkyl benzene sulfonic acid and an alkanolamine
EP1516917A1 (en) Liquid unit dose detergent composition
ES2655025T3 (en) Highly concentrated liquid washing or cleaning agent
EP3039111B2 (en) Aqueous liquid compositions
US10781401B2 (en) Structured washing agent or cleaning agent with a flow limit
CA2596478A1 (en) Low-foaming liquid laundry detergent
US6172020B1 (en) Powdered automatic dishwashing tablets
GB2375768A (en) Encapsulated liquid detergent compositions
ZA200304931B (en) Improvements in or relating to liquid detergent compositions.
AU2002225153A1 (en) Improvements in or relating to liquid detergent compositions
KR20160044917A (en) Envelope type detergent
AU2002225167A1 (en) Improvements in or relating to liquid detergent composititons
EP4337752B1 (en) Composition
EP4337751B1 (en) Composition
US20230279311A1 (en) Water-soluble unit dose article comprising an ethoxylated alcohol non-ionic surfactant