WO2025023132A1 - Artificial leather and method for producing artificial leather - Google Patents
Artificial leather and method for producing artificial leather Download PDFInfo
- Publication number
- WO2025023132A1 WO2025023132A1 PCT/JP2024/025721 JP2024025721W WO2025023132A1 WO 2025023132 A1 WO2025023132 A1 WO 2025023132A1 JP 2024025721 W JP2024025721 W JP 2024025721W WO 2025023132 A1 WO2025023132 A1 WO 2025023132A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- artificial leather
- fiber
- ultrafine
- fibers
- web
- Prior art date
Links
- 239000002649 leather substitute Substances 0.000 title claims abstract description 164
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 25
- 229920001410 Microfiber Polymers 0.000 claims abstract description 119
- 239000000835 fiber Substances 0.000 claims description 236
- 229920001971 elastomer Polymers 0.000 claims description 82
- 239000000806 elastomer Substances 0.000 claims description 82
- 238000011282 treatment Methods 0.000 claims description 53
- 238000002788 crimping Methods 0.000 claims description 21
- 238000000034 method Methods 0.000 description 66
- 229920000642 polymer Polymers 0.000 description 56
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 39
- 229920005989 resin Polymers 0.000 description 38
- 239000011347 resin Substances 0.000 description 38
- -1 polyethylene terephthalate Polymers 0.000 description 36
- 238000005299 abrasion Methods 0.000 description 32
- 239000002131 composite material Substances 0.000 description 28
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 22
- 229920000139 polyethylene terephthalate Polymers 0.000 description 18
- 239000005020 polyethylene terephthalate Substances 0.000 description 18
- 238000005259 measurement Methods 0.000 description 16
- 238000011156 evaluation Methods 0.000 description 15
- 239000000178 monomer Substances 0.000 description 15
- 238000009987 spinning Methods 0.000 description 15
- 230000000052 comparative effect Effects 0.000 description 13
- 229920000728 polyester Polymers 0.000 description 12
- 238000004080 punching Methods 0.000 description 12
- 239000004372 Polyvinyl alcohol Substances 0.000 description 11
- 229920002451 polyvinyl alcohol Polymers 0.000 description 11
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 9
- 239000007788 liquid Substances 0.000 description 9
- 229920003225 polyurethane elastomer Polymers 0.000 description 9
- 229920000800 acrylic rubber Polymers 0.000 description 8
- 239000003960 organic solvent Substances 0.000 description 8
- 229920000058 polyacrylate Polymers 0.000 description 8
- 239000007787 solid Substances 0.000 description 8
- 239000002904 solvent Substances 0.000 description 8
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical group OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 7
- 239000004698 Polyethylene Substances 0.000 description 7
- 239000003795 chemical substances by application Substances 0.000 description 7
- 238000004043 dyeing Methods 0.000 description 7
- 230000000694 effects Effects 0.000 description 7
- 239000010985 leather Substances 0.000 description 7
- 229920000573 polyethylene Polymers 0.000 description 7
- 229920002635 polyurethane Polymers 0.000 description 7
- 239000004814 polyurethane Substances 0.000 description 7
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 6
- 239000000654 additive Substances 0.000 description 6
- 150000002009 diols Chemical class 0.000 description 6
- QQVIHTHCMHWDBS-UHFFFAOYSA-N isophthalic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1 QQVIHTHCMHWDBS-UHFFFAOYSA-N 0.000 description 6
- 229920001225 polyester resin Polymers 0.000 description 6
- 230000000704 physical effect Effects 0.000 description 5
- 229920000515 polycarbonate Polymers 0.000 description 5
- 239000004417 polycarbonate Substances 0.000 description 5
- 239000004645 polyester resin Substances 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 125000003118 aryl group Chemical group 0.000 description 4
- 210000001124 body fluid Anatomy 0.000 description 4
- 239000010839 body fluid Substances 0.000 description 4
- 239000002270 dispersing agent Substances 0.000 description 4
- FJQXCDYVZAHXNS-UHFFFAOYSA-N methadone hydrochloride Chemical compound Cl.C=1C=CC=CC=1C(CC(C)N(C)C)(C(=O)CC)C1=CC=CC=C1 FJQXCDYVZAHXNS-UHFFFAOYSA-N 0.000 description 4
- 229920001778 nylon Polymers 0.000 description 4
- 239000005871 repellent Substances 0.000 description 4
- 230000002940 repellent Effects 0.000 description 4
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 3
- 229920003232 aliphatic polyester Polymers 0.000 description 3
- 239000001768 carboxy methyl cellulose Substances 0.000 description 3
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 3
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 3
- 239000003086 colorant Substances 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 239000000975 dye Substances 0.000 description 3
- 239000000839 emulsion Substances 0.000 description 3
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 3
- 239000004745 nonwoven fabric Substances 0.000 description 3
- 229920000098 polyolefin Polymers 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 230000001953 sensory effect Effects 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 2
- 206010004542 Bezoar Diseases 0.000 description 2
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 2
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 2
- 239000005977 Ethylene Substances 0.000 description 2
- VQTUBCCKSQIDNK-UHFFFAOYSA-N Isobutene Chemical compound CC(C)=C VQTUBCCKSQIDNK-UHFFFAOYSA-N 0.000 description 2
- JHWNWJKBPDFINM-UHFFFAOYSA-N Laurolactam Chemical compound O=C1CCCCCCCCCCCN1 JHWNWJKBPDFINM-UHFFFAOYSA-N 0.000 description 2
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 2
- 239000004677 Nylon Substances 0.000 description 2
- 229920000571 Nylon 11 Polymers 0.000 description 2
- 229920000299 Nylon 12 Polymers 0.000 description 2
- 229920002292 Nylon 6 Polymers 0.000 description 2
- 229920002302 Nylon 6,6 Polymers 0.000 description 2
- 229920000572 Nylon 6/12 Polymers 0.000 description 2
- 239000004721 Polyphenylene oxide Substances 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 150000001336 alkenes Chemical class 0.000 description 2
- 239000003242 anti bacterial agent Substances 0.000 description 2
- 239000002216 antistatic agent Substances 0.000 description 2
- 239000002585 base Substances 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 2
- 125000002091 cationic group Chemical group 0.000 description 2
- 239000000460 chlorine Substances 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- 238000007334 copolymerization reaction Methods 0.000 description 2
- 239000000986 disperse dye Substances 0.000 description 2
- FJKIXWOMBXYWOQ-UHFFFAOYSA-N ethenoxyethane Chemical compound CCOC=C FJKIXWOMBXYWOQ-UHFFFAOYSA-N 0.000 description 2
- 239000004744 fabric Substances 0.000 description 2
- 239000003063 flame retardant Substances 0.000 description 2
- 230000009477 glass transition Effects 0.000 description 2
- 229920001519 homopolymer Polymers 0.000 description 2
- 239000000314 lubricant Substances 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 238000002074 melt spinning Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- 229920000218 poly(hydroxyvalerate) Polymers 0.000 description 2
- 229920000747 poly(lactic acid) Polymers 0.000 description 2
- 229920002401 polyacrylamide Polymers 0.000 description 2
- 229920001083 polybutene Polymers 0.000 description 2
- 229920002961 polybutylene succinate Polymers 0.000 description 2
- 239000004631 polybutylene succinate Substances 0.000 description 2
- 229920009537 polybutylene succinate adipate Polymers 0.000 description 2
- 239000004630 polybutylene succinate adipate Substances 0.000 description 2
- 229920001707 polybutylene terephthalate Polymers 0.000 description 2
- 229920000570 polyether Polymers 0.000 description 2
- 239000004626 polylactic acid Substances 0.000 description 2
- 230000000379 polymerizing effect Effects 0.000 description 2
- 229920000306 polymethylpentene Polymers 0.000 description 2
- 239000011116 polymethylpentene Substances 0.000 description 2
- 229920005862 polyol Polymers 0.000 description 2
- 150000003077 polyols Chemical class 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- GHMLBKRAJCXXBS-UHFFFAOYSA-N resorcinol Chemical compound OC1=CC=CC(O)=C1 GHMLBKRAJCXXBS-UHFFFAOYSA-N 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 230000008961 swelling Effects 0.000 description 2
- 229920001169 thermoplastic Polymers 0.000 description 2
- 239000004416 thermosoftening plastic Substances 0.000 description 2
- BYEAHWXPCBROCE-UHFFFAOYSA-N 1,1,1,3,3,3-hexafluoropropan-2-ol Chemical compound FC(F)(F)C(O)C(F)(F)F BYEAHWXPCBROCE-UHFFFAOYSA-N 0.000 description 1
- UZKWTJUDCOPSNM-UHFFFAOYSA-N 1-ethenoxybutane Chemical compound CCCCOC=C UZKWTJUDCOPSNM-UHFFFAOYSA-N 0.000 description 1
- OVGRCEFMXPHEBL-UHFFFAOYSA-N 1-ethenoxypropane Chemical compound CCCOC=C OVGRCEFMXPHEBL-UHFFFAOYSA-N 0.000 description 1
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- GNUGVECARVKIPH-UHFFFAOYSA-N 2-ethenoxypropane Chemical compound CC(C)OC=C GNUGVECARVKIPH-UHFFFAOYSA-N 0.000 description 1
- WDQMWEYDKDCEHT-UHFFFAOYSA-N 2-ethylhexyl 2-methylprop-2-enoate Chemical compound CCCCC(CC)COC(=O)C(C)=C WDQMWEYDKDCEHT-UHFFFAOYSA-N 0.000 description 1
- RUMACXVDVNRZJZ-UHFFFAOYSA-N 2-methylpropyl 2-methylprop-2-enoate Chemical compound CC(C)COC(=O)C(C)=C RUMACXVDVNRZJZ-UHFFFAOYSA-N 0.000 description 1
- CFVWNXQPGQOHRJ-UHFFFAOYSA-N 2-methylpropyl prop-2-enoate Chemical compound CC(C)COC(=O)C=C CFVWNXQPGQOHRJ-UHFFFAOYSA-N 0.000 description 1
- YZTJKOLMWJNVFH-UHFFFAOYSA-N 2-sulfobenzene-1,3-dicarboxylic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1S(O)(=O)=O YZTJKOLMWJNVFH-UHFFFAOYSA-N 0.000 description 1
- UPMLOUAZCHDJJD-UHFFFAOYSA-N 4,4'-Diphenylmethane Diisocyanate Chemical compound C1=CC(N=C=O)=CC=C1CC1=CC=C(N=C=O)C=C1 UPMLOUAZCHDJJD-UHFFFAOYSA-N 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- 239000005057 Hexamethylene diisocyanate Substances 0.000 description 1
- 239000005058 Isophorone diisocyanate Substances 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 1
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 1
- CYTYCFOTNPOANT-UHFFFAOYSA-N Perchloroethylene Chemical group ClC(Cl)=C(Cl)Cl CYTYCFOTNPOANT-UHFFFAOYSA-N 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- XSTXAVWGXDQKEL-UHFFFAOYSA-N Trichloroethylene Chemical group ClC=C(Cl)Cl XSTXAVWGXDQKEL-UHFFFAOYSA-N 0.000 description 1
- 241001584775 Tunga penetrans Species 0.000 description 1
- QYKIQEUNHZKYBP-UHFFFAOYSA-N Vinyl ether Chemical class C=COC=C QYKIQEUNHZKYBP-UHFFFAOYSA-N 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 239000000980 acid dye Substances 0.000 description 1
- 239000002390 adhesive tape Substances 0.000 description 1
- 235000011037 adipic acid Nutrition 0.000 description 1
- 239000001361 adipic acid Substances 0.000 description 1
- 125000002723 alicyclic group Chemical group 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 1
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 1
- 235000011130 ammonium sulphate Nutrition 0.000 description 1
- 239000003429 antifungal agent Substances 0.000 description 1
- 229940121375 antifungal agent Drugs 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 239000012736 aqueous medium Substances 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000001680 brushing effect Effects 0.000 description 1
- 239000004067 bulking agent Substances 0.000 description 1
- 238000012662 bulk polymerization Methods 0.000 description 1
- CDQSJQSWAWPGKG-UHFFFAOYSA-N butane-1,1-diol Chemical compound CCCC(O)O CDQSJQSWAWPGKG-UHFFFAOYSA-N 0.000 description 1
- CQEYYJKEWSMYFG-UHFFFAOYSA-N butyl acrylate Chemical compound CCCCOC(=O)C=C CQEYYJKEWSMYFG-UHFFFAOYSA-N 0.000 description 1
- 150000001718 carbodiimides Chemical class 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 238000009960 carding Methods 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 239000000701 coagulant Substances 0.000 description 1
- 230000001112 coagulating effect Effects 0.000 description 1
- 230000015271 coagulation Effects 0.000 description 1
- 238000005345 coagulation Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- OIWOHHBRDFKZNC-UHFFFAOYSA-N cyclohexyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OC1CCCCC1 OIWOHHBRDFKZNC-UHFFFAOYSA-N 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 239000002781 deodorant agent Substances 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 125000001142 dicarboxylic acid group Chemical group 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- BXOUVIIITJXIKB-UHFFFAOYSA-N ethene;styrene Chemical group C=C.C=CC1=CC=CC=C1 BXOUVIIITJXIKB-UHFFFAOYSA-N 0.000 description 1
- SUPCQIBBMFXVTL-UHFFFAOYSA-N ethyl 2-methylprop-2-enoate Chemical compound CCOC(=O)C(C)=C SUPCQIBBMFXVTL-UHFFFAOYSA-N 0.000 description 1
- 229920001038 ethylene copolymer Polymers 0.000 description 1
- 239000005038 ethylene vinyl acetate Substances 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000002979 fabric softener Substances 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000007850 fluorescent dye Substances 0.000 description 1
- 239000004088 foaming agent Substances 0.000 description 1
- 239000003205 fragrance Substances 0.000 description 1
- 238000010528 free radical solution polymerization reaction Methods 0.000 description 1
- 239000003349 gelling agent Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- RRAMGCGOFNQTLD-UHFFFAOYSA-N hexamethylene diisocyanate Chemical compound O=C=NCCCCCCN=C=O RRAMGCGOFNQTLD-UHFFFAOYSA-N 0.000 description 1
- ACCCMOQWYVYDOT-UHFFFAOYSA-N hexane-1,1-diol Chemical compound CCCCCC(O)O ACCCMOQWYVYDOT-UHFFFAOYSA-N 0.000 description 1
- 239000012510 hollow fiber Substances 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- NIMLQBUJDJZYEJ-UHFFFAOYSA-N isophorone diisocyanate Chemical compound CC1(C)CC(N=C=O)CC(C)(CN=C=O)C1 NIMLQBUJDJZYEJ-UHFFFAOYSA-N 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000006224 matting agent Substances 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 238000010297 mechanical methods and process Methods 0.000 description 1
- 239000000434 metal complex dye Substances 0.000 description 1
- XJRBAMWJDBPFIM-UHFFFAOYSA-N methyl vinyl ether Chemical compound COC=C XJRBAMWJDBPFIM-UHFFFAOYSA-N 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 125000001280 n-hexyl group Chemical group C(CCCCC)* 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- 238000000053 physical method Methods 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 1
- 229920006122 polyamide resin Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 239000005056 polyisocyanate Substances 0.000 description 1
- 229920001228 polyisocyanate Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920005672 polyolefin resin Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- BOQSSGDQNWEFSX-UHFFFAOYSA-N propan-2-yl 2-methylprop-2-enoate Chemical compound CC(C)OC(=O)C(C)=C BOQSSGDQNWEFSX-UHFFFAOYSA-N 0.000 description 1
- LYBIZMNPXTXVMV-UHFFFAOYSA-N propan-2-yl prop-2-enoate Chemical compound CC(C)OC(=O)C=C LYBIZMNPXTXVMV-UHFFFAOYSA-N 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 239000000985 reactive dye Substances 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- IBBQVGDGTMTZRA-UHFFFAOYSA-N sodium;2-sulfobenzene-1,3-dicarboxylic acid Chemical compound [Na].OC(=O)C1=CC=CC(C(O)=O)=C1S(O)(=O)=O IBBQVGDGTMTZRA-UHFFFAOYSA-N 0.000 description 1
- VOCIMMJSIGHGGL-UHFFFAOYSA-N sodium;3-sulfonaphthalene-1,2-dicarboxylic acid Chemical compound [Na].C1=CC=CC2=C(C(O)=O)C(C(=O)O)=C(S(O)(=O)=O)C=C21 VOCIMMJSIGHGGL-UHFFFAOYSA-N 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 229920001909 styrene-acrylic polymer Polymers 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 239000000988 sulfur dye Substances 0.000 description 1
- 229920003051 synthetic elastomer Polymers 0.000 description 1
- 239000005061 synthetic rubber Substances 0.000 description 1
- KKEYFWRCBNTPAC-UHFFFAOYSA-N terephthalic acid group Chemical group C(C1=CC=C(C(=O)O)C=C1)(=O)O KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 1
- 229950011008 tetrachloroethylene Drugs 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- UBOXGVDOUJQMTN-UHFFFAOYSA-N trichloroethylene Natural products ClCC(Cl)Cl UBOXGVDOUJQMTN-UHFFFAOYSA-N 0.000 description 1
- ZIBGPFATKBEMQZ-UHFFFAOYSA-N triethylene glycol Chemical compound OCCOCCOCCO ZIBGPFATKBEMQZ-UHFFFAOYSA-N 0.000 description 1
- 239000000984 vat dye Substances 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 229920003169 water-soluble polymer Polymers 0.000 description 1
- 230000037303 wrinkles Effects 0.000 description 1
- 238000004383 yellowing Methods 0.000 description 1
- 239000004711 α-olefin Substances 0.000 description 1
Images
Definitions
- the present invention relates to artificial leather and a method for manufacturing artificial leather.
- leather-like sheets such as artificial leather have flexibility and functionality not found in natural leather and are therefore used in a variety of applications such as clothing and materials. Moreover, artificial leathers are required to satisfy not only sensory requirements such as appearance (a surface texture closer to that of natural leather), feel (a combination of a soft touch and a moderate sense of fullness and solidity), and color development (vividness and depth of color), but also physical property requirements such as light fastness, pilling resistance, and abrasion resistance at a high level. To meet these requirements, various proposals have been made.
- Patent Document 1 describes a leather-like sheet including an ultrafine fiber entangled body made of ultrafine fiber bundles and a polymeric elastomer provided inside the ultrafine fiber bundles, in which the ultrafine fiber bundles are made of ultrafine single fibers having an average cross-sectional area of 0.1 to 30 ⁇ m2 , the average cross-sectional area of which is 40 to 400 ⁇ m2 , and the ultrafine fiber bundles are present at a density of 600 to 4000 pieces/ mm2 in any cross section parallel to the thickness direction of the ultrafine fiber entangled body.
- the leather-like sheet is described as having a luxurious appearance, good quality stability such as robustness and surface abrasion resistance, and excellent practicality.
- Patent Document 2 describes an artificial leather substrate made of a nonwoven fabric structure of ultrafine long fiber bundles, in which the ultrafine long fiber bundles have a cross-sectional area of 170 to 700 ⁇ m 2 and an aspect ratio of 4.0 or less, and in any cross section parallel to the thickness direction of the nonwoven fabric structure, the cross sections of the ultrafine long fiber bundles are present in a range of 1500 to 3000 pieces/mm 2.
- the above artificial leather substrate is described as having high levels of both sensory performance and physical property performance, which have been conventionally recognized as mutually exclusive performances.
- artificial leather is generally produced by stapling multicomponent fibers spun from two types of polymers with different solubilities and degradability, forming a web of the desired weight using a card, cross wrapper, random weber, etc., and then entangling the fibers with each other using a needle punch, water jet, etc. to form an entangled nonwoven fabric.
- a solution or emulsion of a polymeric elastomer such as polyurethane is applied to the fabric to coagulate it, and then one of the components in the multicomponent fibers is removed or reduced to form ultrafine fibers, or by performing the above process of impregnating and coagulating the polymeric elastomer and the process of forming the multicomponent fibers into ultrafine fibers in the reverse order.
- a polymeric elastomer such as polyurethane
- Patent Documents 1 and 2 improve the quality of artificial leather, they have problems such as the tendency for fibers to come off and unsatisfactory surface abrasion resistance and pilling resistance, and so on.
- problems such as the tendency for fibers to come off and unsatisfactory surface abrasion resistance and pilling resistance, and so on.
- an organic solvent or a polymeric elastomer is applied to the surface of the artificial leather, it is possible to suppress the fiber from coming off and to improve the abrasion resistance and pilling resistance of the surface to some extent.
- this increases the cost, and the use of an organic solvent has a problem of adverse effects on the human body and the environment.
- the present invention aims to solve the above-mentioned problems and provide artificial leather that has excellent texture, surface abrasion resistance, and pilling resistance, as well as a manufacturing method for the artificial leather.
- An artificial leather containing ultrafine fibers An artificial leather, wherein, in a cut surface when cut at a depth of 0.3 mm from the surface, the maximum area of the cut surface of the ultrafine fiber bundle is 4,500 ⁇ m2 or more, and the proportion of the number of the ultrafine fiber bundles having a cut surface area of 500 ⁇ m2 or more to the total number of the cut surfaces of the ultrafine fiber bundles is 60% or more.
- the present invention can provide artificial leather that is excellent in texture, surface abrasion resistance, and pilling resistance, and a method for producing the artificial leather. Furthermore, the present invention can provide artificial leather that has the above-mentioned effects without applying an organic solvent or a polymer elastomer to the surface of the artificial leather.
- the image in Figure 1 was printed, the printed side was placed under a flat panel light, and light was shone from the printed side, allowing the image to be seen through to the back side.
- the cut surfaces of the ultrafine fiber bundles present on the cut surface were then painted black from the back side, resulting in a transferred image (an image in which the left and right sides of Figure 1 are reversed).
- the artificial leather of the present embodiment is an artificial leather containing ultrafine fibers, and in a cut surface when cut at a depth of 0.3 mm from the surface, the maximum area of the cut surface of the ultrafine fiber bundles is 4,500 ⁇ m2 or more, and the proportion of the number of the ultrafine fiber bundles having a cut surface area of 500 ⁇ m2 or more to the total number of the cut surfaces of the ultrafine fiber bundles is 60% or more.
- the above-mentioned artificial leather has a maximum area of the cut surface of the ultrafine fiber bundles that is a predetermined value or more, and the number ratio of the ultrafine fiber bundles that is a predetermined value or more, when cut at a depth of 0.3 mm from the surface, so that the artificial leather has excellent texture, surface abrasion resistance, and pilling resistance.
- the artificial leather of the present invention means an artificially produced leather having a texture similar to that of natural leather, and includes raised artificial leather with a raised surface, grained artificial leather, etc. Furthermore, raised artificial leather includes suede-like, velour-like, nubuck-like, etc., as variations depending on the raised surface state.
- a cut surface when cut at a depth of 0.3 mm from the surface means, in the case of napped artificial leather, a cut surface when sliced at a position where the difference between the thickness of the napped artificial leather and the thickness from the surface opposite to the fiber napped surface to the cut surface is 0.3 mm, and in the case of grain-finished artificial leather, means a cut surface when sliced at a position where the difference between the thickness of the fiber layer constituting the grain-finished artificial leather and the thickness from the surface of the fiber layer opposite to the surface in contact with the resin layer to the cut surface is 0.3 mm. Note that this cut surface is a surface parallel to the surface direction of the artificial leather and perpendicular to the thickness direction.
- excellent texture means that the texture is close to that of natural leather, such as excellent density, flexibility, and a good feel.
- the thickness of the artificial leather of the present embodiment is not particularly limited, but from the viewpoint of obtaining an artificial leather having better texture, surface abrasion resistance, and pilling resistance, it is preferably 0.1 to 2.0 mm, more preferably 0.3 to 1.5 mm, and even more preferably 0.5 to 1.2 mm.
- the above "thickness” is a value measured in accordance with JIS L1096 (2010) (Method A).
- the apparent density of the artificial leather of the present embodiment is not particularly limited, but from the viewpoint of obtaining an artificial leather having better texture, surface abrasion resistance, and pilling resistance, it is preferably 0.1 to 1.0 g/cm 3 , more preferably 0.2 to 0.9 g/cm 3 , and even more preferably 0.3 to 0.8 g/cm 3 .
- the above "apparent density” is a value measured in accordance with JIS L1096 (2010) (Method A).
- the basis weight of the artificial leather of the present embodiment is not particularly limited, but from the viewpoint of obtaining an artificial leather having better texture, surface abrasion resistance, and pilling resistance, it is preferably 100 to 1000 g/m 2 , more preferably 150 to 800 g/m 2 , and even more preferably 200 to 600 g/m 2 .
- the above "basis weight” is a value measured in accordance with JIS L1096 (2010) (Method A).
- the artificial leather of this embodiment is not particularly limited, but from the viewpoint of more easily obtaining the effects of the present invention, it is preferable that the artificial leather is a napped artificial leather having a napped surface.
- the ultrafine fibers contained in the artificial leather of this embodiment are ultrafine fibers obtained by removing at least one component from a multicomponent fiber (composite fiber) made of at least two or more kinds of spinnable polymers having different chemical or physical properties.
- the ultrafine fiber bundle in the present invention is a bundle of a plurality of ultrafine fibers, and refers to an assembly of ultrafine fibers in which three or more ultrafine fibers are gathered together and are adjacent to each other with a distance between the ultrafine fibers of 6 ⁇ m or less, and the total area of the cut surfaces of the gathered ultrafine fibers is 60 ⁇ m2 or more.
- the ultrafine fibers of the present embodiment are preferably long fibers from the viewpoint of obtaining an artificial leather having better texture, surface abrasion resistance, and pilling resistance.
- long fibers means continuous fibers that are not short fibers intentionally cut after spinning. More specifically, it means filaments or continuous fibers that are not short fibers intentionally cut to a fiber length of about 3 to 80 mm.
- the fiber length of the islands-in-the-sea type composite fiber before being made into ultrafine fibers, which will be described later, is preferably 100 mm or more, and more preferably 200 mm or more.
- the long fibers may be continuous fibers having a fiber length of several meters, several hundred meters, several kilometers, or more that are produced, for example, by a spunbonding method and continuously spun. Note that, in some cases, the long fibers are inevitably cut into short fibers in the production process due to needle punching during entanglement or surface buffing.
- resins constituting the ultrafine fibers of this embodiment include modified PET such as polyethylene terephthalate (hereinafter sometimes referred to as "PET"), isophthalic acid modified PET, sulfoisophthalic acid modified PET, and cationic dye dyeable PET; aromatic polyesters such as polybutylene terephthalate and polyhexamethylene terephthalate; aliphatic polyesters such as polylactic acid, polyethylene succinate, polybutylene succinate, polybutylene succinate adipate, and polyhydroxybutyrate-polyhydroxyvalerate resin; nylons such as nylon 6, nylon 66, nylon 10, nylon 11, nylon 12, and nylon 6-12; and fibers such as polypropylene, polyethylene, polybutene, polymethylpentene, and chlorine-based polyolefins.
- PET polyethylene terephthalate
- isophthalic acid modified PET sulfoisophthalic acid modified PET
- cationic dye dyeable PET aromatic polyesters such as polybutylene terephthalate
- the modified PET is a PET in which at least a part of the ester-forming dicarboxylic acid monomer units or diol monomer units of unmodified PET is replaced with a substitutable monomer unit.
- modified monomer units substituting dicarboxylic acid monomer units include units derived from isophthalic acid, sodium sulfoisophthalic acid, sodium sulfonaphthalenedicarboxylic acid, adipic acid, etc., which substitute terephthalic acid units.
- modified monomer units substituting diol monomer units include units derived from diols such as butanediol and hexanediol, which substitute ethylene glycol units.
- polyester-based resins such as aromatic polyesters and aliphatic polyesters are preferred.
- modified PET such as polyethylene terephthalate (PET), isophthalic acid-modified PET, sulfoisophthalic acid-modified PET, and cationic dye-dyeable PET
- aromatic polyesters such as polybutylene terephthalate and polyhexamethylene terephthalate
- aliphatic polyesters such as polylactic acid, polyethylene succinate, polybutylene succinate, polybutylene succinate adipate, and polyhydroxybutyrate-polyhydroxyvalerate resin
- nylons such as nylon 6, nylon 66, nylon 10, nylon 11, nylon 12, and nylon 6-12
- polyolefins such as polypropylene, polyethylene, polybutene, polymethylpentene, and chlorine-based polyolefins
- the resin constituting the ultrafine fibers of this embodiment may contain various additives to the extent that the effect of the present invention is not impaired.
- additives include catalysts, colorants, heat resistance agents, flame retardants, lubricants, stain-resistant agents, fluorescent brighteners, matting agents, gloss improvers, antistatic agents, fragrances, deodorizers, antibacterial agents, anti-mite agents, inorganic fine particles, etc.
- the maximum area of the cut surface of the ultrafine fiber bundles when cut at a depth of 0.3 mm from the surface is 4,500 ⁇ m2 or more .
- the maximum area of the cut surface of the ultrafine fiber bundle is preferably 5000 ⁇ m 2 or more, more preferably 5500 ⁇ m 2 or more, and even more preferably 6000 ⁇ m 2 or more, and from the viewpoint of obtaining an artificial leather having ease of production and excellent appearance, the maximum area of the cut surface of the ultrafine fiber bundle is preferably 30000 ⁇ m 2 or less, more preferably 25000 ⁇ m 2 or less, and even more preferably 20000 ⁇ m 2 or less.
- the maximum area of the cut surface of the ultrafine fiber bundle is preferably 5000 to 30000 ⁇ m 2 , more preferably 5500 to 25000 ⁇ m 2 , and even more preferably 6000 to 20000 ⁇ m 2 .
- the "maximum area of the cut surface of the ultrafine fiber bundle" is a value calculated based on a photograph of the cut surface when the artificial leather is cut at a depth of 0.3 mm from the surface thereof, taken with a scanning electron microscope (SEM) at 100 times magnification, and specifically, is measured by the procedure described in the Examples.
- the ratio of the number of ultrafine fiber bundles having a cut surface area of 500 ⁇ m2 or more to the total number of cut surfaces of the ultrafine fiber bundles is 60% or more.
- the ratio of the number of the ultrafine fiber bundles having a cut surface area of 500 ⁇ m2 or more to the total number of the cut surfaces of the ultrafine fiber bundles is preferably 61% or more, more preferably 63% or more, and even more preferably 65% or more, from the viewpoint of obtaining an artificial leather having better texture, surface abrasion resistance, and pilling resistance, and when the artificial leather has a fiber-raised surface, from the viewpoint of deterioration in appearance due to the base being visible through gaps in the napped fibers, is preferably 95% or less, more preferably 93% or less, and even more preferably 90% or less. That is, the ratio of the number is preferably 61 to 95%, more preferably 63 to 93%, and even more preferably 65 to 90%.
- portion of the number of ultrafine fiber bundles having a cut surface area of 500 ⁇ m2 or more relative to the total number of cut surfaces of the ultrafine fiber bundles is a value calculated based on a photograph of a cut surface when the artificial leather is cut at a depth of 0.3 mm from the surface thereof, taken with a scanning electron microscope (SEM) at 100 times magnification, and specifically, is measured by the procedure described in the Examples.
- SEM scanning electron microscope
- the total area of the cut surfaces of the ultrafine fiber bundles at a cut surface at a depth of 0.3 mm from the surface is preferably 25,000 ⁇ m2 /mm2 or more , more preferably 40,000 ⁇ m2 /mm2 or more , and even more preferably 50,000 ⁇ m2/mm2 or more, from the viewpoint of obtaining an artificial leather having excellent texture, surface abrasion resistance, and pilling resistance, and is preferably 200,000 ⁇ m2 /mm2 or less, more preferably 180,000 ⁇ m2 /mm2 or less , and even more preferably 150,000 ⁇ m2 / mm2 or less , from the viewpoint of obtaining an artificial leather having ease of production and good tear strength.
- the total area of the cut surfaces of the ultrafine fiber bundle is preferably 25,000 to 200,000 ⁇ m 2 /mm 2 , more preferably 40,000 to 180,000 ⁇ m 2 /mm 2 , and even more preferably 50,000 to 150,000 ⁇ m 2 /mm 2 .
- the "total area of the cut surfaces of the ultrafine fiber bundles" is a value calculated based on a photograph of the cut surfaces when the artificial leather is cut at a depth of 0.3 mm from the surface thereof, taken with a scanning electron microscope (SEM) at 100 times magnification, and specifically, is measured by the procedure described in the Examples.
- the average diameter of the ultrafine fibers of this embodiment is preferably 7.5 ⁇ m or less, more preferably 6.0 ⁇ m or less, even more preferably 5.5 ⁇ m or less, and even more preferably 5.0 ⁇ m or less, from the viewpoint of obtaining artificial leather with better texture, surface abrasion resistance, and pilling resistance.
- the average diameter of the ultrafine fibers of this embodiment is preferably 1.0 to 7.5 ⁇ m, and more preferably 1.5 to 6.0 ⁇ m.
- the average fineness of the ultrafine fibers of this embodiment is preferably 0.50 dtex or less, more preferably 0.40 dtex or less, and even more preferably 0.30 dtex or less.
- the average fineness of the ultrafine fibers of this embodiment is preferably 0.01 to 0.50 dtex, and more preferably 0.01 to 0.40 dtex.
- the "average diameter" and "average fineness” are values calculated based on the cross-sectional areas of a plurality of ultrafine fibers randomly selected from an enlarged photograph of the cross sections of the ultrafine fibers, and are specifically measured by the procedure described in the Examples.
- the artificial leather of the present embodiment may contain a polymer elastomer.
- the polymer elastomer may be any that has been conventionally used in artificial leathers. Specific examples include polyurethane elastomers, acrylonitrile elastomers, olefin elastomers, polyester elastomers, and acrylic elastomers, with polyurethane elastomers and acrylic elastomers being preferred.
- polyurethane elastomer examples include various polyurethane elastomers obtained by combining, as main components, at least one polymer polyol having an average molecular weight of 500 to 3000 selected from polyester diols, polyether diols, polyether ester diols, polycarbonate diols, polycarbonate ether diols, polycarbonate ester diols, and the like, and at least one polyisocyanate selected from aromatic, alicyclic, and aliphatic diisocyanates, such as 4,4'-diphenylmethane diisocyanate, isophorone diisocyanate, and hexamethylene diisocyanate, and further combining at least one low molecular weight compound having two or more active hydrogen atoms, such as ethylene glycol and ethylenediamine, in a predetermined molar ratio, and polymerizing these in one stage or multiple stages by a melt polymerization method, a bulk polymerization method, a solution
- the acrylic elastomer may be a monomer having a homopolymer glass transition temperature in the range of -90 to -5°C, preferably a non-crosslinkable monomer, such as at least one soft component selected from the group consisting of methyl acrylate, n-butyl acrylate, isobutyl acrylate, isopropyl acrylate, n-hexyl (meth)acrylate, and 2-ethylhexyl (meth)acrylate, and a monomer having a homopolymer glass transition temperature in the range of 50 to 250°C, preferably a non-crosslinkable monomer, such as methyl methacrylate, ethyl methacrylate, isopropyl methacrylate, isobutyl methacrylate, cyclohexyl methacrylate, or 2-ethylhexyl methacrylate.
- a non-crosslinkable monomer such as at least one soft component selected from the group consisting
- acrylic elastomers examples include various acrylic elastomers obtained by polymerizing at least one hard component selected from the group consisting of acrylic acid, (meth)acrylic acid, and a monofunctional or polyfunctional ethylenically unsaturated monomer unit capable of forming a crosslinked structure, or an ethylenically unsaturated monomer unit introduced into a polymer chain that can react to form a crosslinked structure, such as at least one ethylenically unsaturated monomer that is a crosslinkable component selected from the group consisting of ethylene glycol di(meth)acrylate, triethylene glycol di(meth)acrylate, polyethylene glycol di(meth)acrylate, and 1,4-butanediol di(meth)acrylate.
- Artificial leathers obtained by using polyurethane elastomers as the main polymeric elastomers are preferred because they have a good balance of texture and mechanical properties, and if the type is appropriately selected, they also have a good balance including durability.
- Artificial leathers obtained by using acrylic elastomers are unsuitable for forming napped artificial leathers because the acrylic elastomers have lower adhesion to ultrafine fiber bundles than the polyurethane elastomers and are poor in the nap fixing effect during nap formation, but are particularly preferred for forming grain-finished artificial leathers because the degree of hardening of the texture relative to the content is suppressed.
- the polymer elastomer different types may be mixed and contained, or different types may be contained in multiple batches.
- a polymer elastomer such as synthetic rubber may be added as necessary to form a polymer elastomer composition.
- the content of the polymer elastomer in the artificial leather is preferably 5 to 45% by mass, more preferably 7 to 40% by mass, and even more preferably 8 to 30% by mass, from the viewpoint of obtaining artificial leather with excellent texture.
- the artificial leather of this embodiment may or may not contain components other than the ultrafine fibers and the polymeric elastomer.
- Such other components include the other components contained in the ultrafine fibers described above and the same as the various additives that can be added to the polymeric elastomer body fluid described in step (4) below.
- the other components may be encapsulated in at least one of the ultrafine fibers and the polymeric elastomer.
- the content of the other components is preferably 0.5 to 10.0 mass %, more preferably 1.0 to 5.0 mass %, and even more preferably 1.5 to 3.0 mass %, relative to the mass of the artificial leather, from the viewpoints of water absorbency, water repellency, stain resistance, and the like, while making it easier for the other components to exert their intended effects.
- Examples of the island component resins contained in the islands-in-sea type composite fibers and which later become the ultrafine fibers include the same resins as those constituting the ultrafine fibers in the above-mentioned "ultrafine fibers.”
- As the sea component resin contained in the islands-in-sea type composite fiber and removed by extraction, decomposition, etc. it is preferable to use a resin that has a different solubility or decomposability from the island component resin and has low compatibility with it. It is preferable to appropriately select such a resin depending on the type of the island component resin and the production method.
- ⁇ -olefins having 4 or less carbon atoms such as ethylene, propylene, 1-butene, and isobutene
- vinyl ethers such as methyl vinyl ether, ethyl vinyl ether, n-propyl vinyl ether, isopropyl vinyl ether, and n-butyl vinyl ether.
- the content of copolymerized units in polyvinyl alcohol is preferably from 1 to 20 mol %, more preferably from 4 to 15 mol %, and even more preferably from 6 to 13 mol %. Furthermore, since the fiber properties are improved when the copolymerization unit is ethylene, ethylene-modified polyvinyl alcohol is more preferable.
- the ethylene unit content in the ethylene-modified polyvinyl alcohol is preferably 4 to 15 mol %, more preferably 6 to 13 mol %.
- the preferred method for producing a fiber web is to use the so-called spunbond method to collect ultrafine fiber-generating fibers that have been melt-spun onto a net without cutting them, and form a fiber web of long continuous fibers.
- a conjugate spinning die having a large number of nozzle holes arranged in a predetermined pattern is used to continuously extrude molten strands of islands-in-sea type conjugate fibers from a spinning nozzle at a predetermined extrusion speed, and the strands are substantially cooled and solidified by cooling air at some stage between just below the nozzle holes and the suction device described below.
- a high-velocity air stream is applied to the strands using a suction device such as an air jet nozzle, and the conjugate fibers are uniformly pulled and thinned to a desired diameter or fineness.
- a long-fiber fiber web can be produced by a spunbonding method in which the composite fibers are opened by a collision plate, air stream, or the like depending on the texture of the resulting fiber web, and then collected and deposited on a collecting surface such as a conveyor belt-like moving net while being sucked from the opposite side of the net to form a long-fiber web.
- the fiber web may be subjected to a heat press treatment to impart shape stability, and the fiber web may be fusion-bonded accordingly.
- the basis weight or thickness of the obtained fiber web is adjusted by wrapping (supplying one fiber web perpendicular to the flow direction of the process and folding it almost in the width direction (horizontal direction), or folding a web supplied parallel to the flow direction of the process in its length direction (vertical direction)) or stacking (stacking a plurality of fiber webs) to obtain the desired basis weight and thickness.
- a mechanical entanglement treatment is performed by a known method such as a needle punch method. This three-dimensionally entangles the fibers constituting the fiber web, particularly the fibers between adjacent layers of wrapped or stacked layered fiber webs.
- various process conditions are appropriately selected, such as the type of needle (needle shape and count, barb shape and depth, number and position of barbs, etc.), the number of needle punches (needle punch processing density per unit area obtained by multiplying the density of needles implanted in a needle board by the number of strokes that the board applies to a unit area of a fiber web), and the needle punch depth (depth at which the needles apply to the fiber web).
- press crimping with a roll having an uneven shape is preferable from the viewpoint of obtaining an artificial leather that has good processability, texture, surface abrasion resistance, and pilling resistance.
- the uneven shape is preferably a periodic uneven shape, and the average height difference between the recesses and the protrusions is preferably 1 to 30 mm, more preferably 1.5 to 25 mm, and even more preferably 2 to 20 mm.
- the distance between the recesses and the distance between the protrusions are preferably 1 to 30 mm, more preferably 1.5 to 25 mm, and even more preferably 2 to 20 mm.
- the step (3) is a step of forming a web laminate by stacking a plurality of the crimped fiber webs.
- the crimped fiber webs may be stacked with all the crimp directions in the same direction, or the crimped fiber web may be stacked while changing the conveying direction to a 90° direction and folding back by a cross-wrapping method.
- the number of layers of the fiber web to be laminated is not particularly limited, but from the viewpoints of reducing the basis weight unevenness of the entangled fiber sheet and mechanical strength, it is preferably 2 layers or more, more preferably 3 layers or more, and from the viewpoint of ease of production, it is preferably 30 layers or less, more preferably 25 layers or less. That is, the number of layers of the fiber web to be laminated is preferably 2 to 30 layers, more preferably 3 to 25 layers.
- Step (4) is a step of entangling the web laminate to form an entangled fiber sheet.
- the web laminate is subjected to a mechanical entanglement treatment using a known method such as a needle punching method or a high-pressure water jet treatment method, thereby three-dimensionally entangling the fibers constituting the fiber web, particularly the fibers between adjacent layers of a wrapped or stacked layered fiber web.
- various process conditions are appropriately selected, such as the type of needle (needle shape and count, barb shape and depth, number and position of barbs, etc.), the number of needle punches (needle punch processing density per unit area obtained by multiplying the density of needles implanted in a needle board by the number of strokes at which the board acts on the fiber web per unit area), and the needle punch depth (depth at which the needles act on the fiber web).
- a web laminate having a crimped fiber web laminated thereon When a web laminate having a crimped fiber web laminated thereon is used and an entanglement treatment is performed by a needle punching method, the crimped fiber web is caught by the barbs, and the moving fibers move with many surrounding fibers, increasing the amount of fibers oriented in the thickness direction and improving the degree of entanglement. This suppresses the fibers from coming off during surface friction, improving the abrasion resistance and pilling resistance. Therefore, it is preferable to use a web laminate having a crimped fiber web laminated thereon and perform an entanglement treatment by a needle punching method.
- the punch density in the needle punching treatment is preferably 1500 to 5500 punches/cm 2 , and more preferably 2000 to 5000 punches/cm 2. If the punch density is within the above range, insufficient entanglement is suppressed, preventing the surface of the artificial leather from becoming rough due to fraying of the fibers on the surface, and also preventing fiber breakage from causing a decrease in the degree of entanglement.
- an oil agent or an antistatic agent may be applied to the ultrafine fiber-generating fiber, fiber web, crimped fiber web, web laminate, entangled fiber sheet, etc.
- the ultrafine fiber-generating fiber, fiber web, crimped fiber web, web laminate, entangled fiber sheet, etc. may be immersed in hot water at about 70 to 150°C for shrinkage treatment to make the entanglement dense in advance.
- the basis weight of the entangled fiber sheet obtained by entanglement is preferably in the range of about 100 to 2000 g/ m2 .
- the entangled fiber sheet may be subjected to a treatment to further increase the fiber density and the degree of entanglement by heat shrinking as necessary.
- the entangled fiber sheet densified by the heat shrinking treatment may be further densified, and the fiber density may be further increased by a heat press treatment as necessary for the purpose of fixing the shape of the entangled fiber sheet and smoothing the surface.
- the step (5) is a step of impregnating the entangled fiber sheet with the polymeric elastomer.
- the entangled fiber sheet is impregnated with a polymeric elastomer at least at one of the stages before and after the removal of the sea component.
- the ultrafine fibers inside the fiber bundle are less likely to be restrained by the polymer elastomer, i.e., the ultrafine bundle is less likely to be affected by the polymer elastomer, making it easier to obtain an artificial leather with excellent flexibility.
- the ultrafine fibers that form the fiber bundle after the sea part is removed from the islands-in-sea type composite fiber are impregnated with a polymer elastomer, the polymer elastomer penetrates into the voids in the fiber bundle, and the ultrafine fibers that form the fiber bundle are restrained by the polymer elastomer, thereby obtaining an artificial leather with a hard texture.
- a non-aqueous polymer elastomer liquid in which the polymer elastomer is dissolved or dispersed in a solvent may be used, or an aqueous polymer elastomer liquid in which the polymer elastomer is dispersed in an aqueous medium together with a dispersant as necessary may be used.
- a uniform polymer elastomer liquid is easily obtained, and in the latter case, it is easy to reduce the amount of organic solvent used.
- the concentration of the polymeric elastomer body fluid ie, the content of the polymeric elastomer in the polymeric elastomer body fluid, is preferably 0.1 to 60% by mass.
- the polymer elastic body fluid may contain various additives as appropriate, provided that the additives do not impair the properties of the artificial leather that is finally obtained. These additives include colorants such as dyes and pigments, coagulation regulators, antioxidants, ultraviolet absorbers, fluorescent agents, antifungal agents, penetrating agents, defoamers, lubricants, water repellents, oil repellents, thickeners, bulking agents, hardening accelerators, foaming agents, and water-soluble polymer compounds such as polyvinyl alcohol and carboxymethyl cellulose.
- step (5) Details of the polymer elastomer used in step (5) are as explained in the "Polymer elastomer" section above.
- the polymer elastomer may be impregnated into the entangled fiber sheet, and then solidified by a conventional dry or wet method to fix the polymer elastomer in the entangled fiber sheet.
- the dry method here refers to any method in which a solvent, dispersant, etc. are removed by drying or the like to fix the polymer elastomer in a fiber sheet structure.
- the wet method here refers to any method in which a polymer elastomer is temporarily or completely fixed in the entangled fiber sheet structure prior to removing the dispersant by treating the entangled fiber sheet structure impregnated with a polymer elastomer liquid with a non-solvent or coagulant for the polymer elastomer, or by using an aqueous polymer elastomer liquid containing a heat-sensitive gelling agent or the like to heat the impregnated entangled fiber sheet.
- Step (6) is a step of removing at least one component from the ultrafine fiber.
- the one component is preferably a sea component resin contained in the islands-in-sea composite fiber. By removing the sea component, the ultrafine fiber can be converted into a fiber bundle of ultrafine fibers.
- the sea component is a water-soluble resin such as a polyvinyl alcohol resin, a water-soluble polyester resin, an easily alkali-decomposable modified polyester resin, a polyacrylamide resin, or a carboxymethyl cellulose resin
- the sea component can be removed with water.
- the sea component is insoluble in water but soluble in organic solvents and the island component resin is a polyamide resin or a polyester resin
- the organic solvent for dissolving and removing the sea component include toluene, trichloroethylene, and tetrachloroethylene.
- toluene which has a high resin dissolving power.
- the fibers may be densified by subjecting them to a heat shrinkage treatment (fiber shrinkage treatment) using steam, hot water, dry heat, or the like.
- the artificial leather of the present embodiment may have a napped surface.
- any of the known methods such as buffing with sandpaper or card cloth, brushing, etc. may be used.
- a solvent capable of dissolving or swelling the polymeric elastomer or ultrafine fiber bundles for example, a treatment liquid containing dimethylformamide (DMF) or the like when the polymeric elastomer is a polyurethane elastomer, or a treatment liquid containing a phenolic compound such as resorcinol, may be applied to the surface to be nap-raised.
- DMF dimethylformamide
- a treatment liquid containing a phenolic compound such as resorcinol
Landscapes
- Synthetic Leather, Interior Materials Or Flexible Sheet Materials (AREA)
Abstract
Description
本発明は、人工皮革、及び人工皮革の製造方法に関する。 The present invention relates to artificial leather and a method for manufacturing artificial leather.
人工皮革等の皮革様シートは、天然皮革にはない柔軟性や機能性を有していることから、衣料や資材等、種々の用途に使用されている。
また、人工皮革は、外観(天然皮革により近い表面感)、風合い(柔軟な手触りと適度な膨らみ感や充実感の兼備)、発色性(色の鮮明さや濃度感)等の感性面での要求だけでなく、耐光性、耐ピリング性、耐磨耗性等の物性面での要求を全て高いレベルで満足することが求められており、これを解決すべく種々の提案がなされてきた。
2. Description of the Related Art Leather-like sheets such as artificial leather have flexibility and functionality not found in natural leather and are therefore used in a variety of applications such as clothing and materials.
Moreover, artificial leathers are required to satisfy not only sensory requirements such as appearance (a surface texture closer to that of natural leather), feel (a combination of a soft touch and a moderate sense of fullness and solidity), and color development (vividness and depth of color), but also physical property requirements such as light fastness, pilling resistance, and abrasion resistance at a high level. To meet these requirements, various proposals have been made.
例えば、特許文献1には、極細繊維束からなる極細繊維絡合体及びその内部に付与された高分子弾性体を含む皮革様シートであって、前記極細繊維束は、平均断面積が0.1~30μm2の極細単繊維からなり、その平均断面積が40~400μm2であり、前記極細繊維束は、前記極細繊維絡合体の厚さ方向と平行な任意の断面において600~4000個/mm2の密度で存在する皮革様シートが記載されている。上記皮革様シートは、高級感ある外観を有し、堅牢性や表面磨耗性等の品質安定性が良好であり、実用性に優れることが記載されている。
また、例えば、特許文献2には、極細長繊維束の不織布構造体からなる人工皮革用基材であって、極細長繊維束が、断面積170~700μm2、扁平率4.0以下であり、不織布構造体の厚さ方向と平行任意の断面において、極細長繊維束の断面が1500~3000個/mm2の範囲で存在している人工皮革用基材が記載されている。上記人工皮革用基材は、従来は相反する性能であると認識されてきた感性面の性能と物性面での性能とを、いずれも高いレベルで兼備すると記載されている。
For example, Patent Document 1 describes a leather-like sheet including an ultrafine fiber entangled body made of ultrafine fiber bundles and a polymeric elastomer provided inside the ultrafine fiber bundles, in which the ultrafine fiber bundles are made of ultrafine single fibers having an average cross-sectional area of 0.1 to 30 μm2 , the average cross-sectional area of which is 40 to 400 μm2 , and the ultrafine fiber bundles are present at a density of 600 to 4000 pieces/ mm2 in any cross section parallel to the thickness direction of the ultrafine fiber entangled body. The leather-like sheet is described as having a luxurious appearance, good quality stability such as robustness and surface abrasion resistance, and excellent practicality.
Also, for example, Patent Document 2 describes an artificial leather substrate made of a nonwoven fabric structure of ultrafine long fiber bundles, in which the ultrafine long fiber bundles have a cross-sectional area of 170 to 700 μm 2 and an aspect ratio of 4.0 or less, and in any cross section parallel to the thickness direction of the nonwoven fabric structure, the cross sections of the ultrafine long fiber bundles are present in a range of 1500 to 3000 pieces/mm 2. The above artificial leather substrate is described as having high levels of both sensory performance and physical property performance, which have been conventionally recognized as mutually exclusive performances.
人工皮革は、一般的に、特許文献1及び2に記載のように、溶解性、分解性を異にする2種類の重合体から紡糸した多成分系繊維をステープル化し、カード、クロスラッパー、ランダムウェーバー等を用いて所望の重量のウェブとし、次いでニードルパンチ、ウォータージェット等により繊維を互いに絡ませることで絡合不織布化した後、ポリウレタンに代表される高分子弾性体の溶液またはエマルジョン液を付与して凝固させ、その後で該多成分系繊維中の一成分の除去または減量により極細繊維とする方法、あるいは前記において高分子弾性体を含浸・凝固させる工程と該多成分系繊維を極細繊維とする工程を逆の順序で行う方法等により製造されている。 As described in Patent Documents 1 and 2, artificial leather is generally produced by stapling multicomponent fibers spun from two types of polymers with different solubilities and degradability, forming a web of the desired weight using a card, cross wrapper, random weber, etc., and then entangling the fibers with each other using a needle punch, water jet, etc. to form an entangled nonwoven fabric. After that, a solution or emulsion of a polymeric elastomer such as polyurethane is applied to the fabric to coagulate it, and then one of the components in the multicomponent fibers is removed or reduced to form ultrafine fibers, or by performing the above process of impregnating and coagulating the polymeric elastomer and the process of forming the multicomponent fibers into ultrafine fibers in the reverse order.
特許文献1及び2に記載の技術により、人工皮革の品質は向上するものの、繊維が素抜けし易い、表面の耐摩耗性や耐ピリング性等が満足できるものではない等の問題があり、感性面及び物性面の要求をさらに高いレベルで満足できる人工皮革が求められていた。
また、有機溶剤や高分子弾性体等を人工皮革表面に塗布すると、繊維の素抜けを抑制し、表面の耐摩耗性や耐ピリング性を多少改善することができるものの、コスト高となり、かつ有機溶剤を使用する場合、人体や環境へ悪影響を与えるという問題があった。
Although the techniques described in Patent Documents 1 and 2 improve the quality of artificial leather, they have problems such as the tendency for fibers to come off and unsatisfactory surface abrasion resistance and pilling resistance, and so on. Thus, there has been a demand for artificial leather that can satisfy sensory and physical property requirements at an even higher level.
In addition, when an organic solvent or a polymeric elastomer is applied to the surface of the artificial leather, it is possible to suppress the fiber from coming off and to improve the abrasion resistance and pilling resistance of the surface to some extent. However, this increases the cost, and the use of an organic solvent has a problem of adverse effects on the human body and the environment.
本発明は上述した問題が解決され、風合い、表面の耐摩耗性、及び耐ピリング性に優れる人工皮革、及びその人工皮革の製造方法を提供することを目的とする。 The present invention aims to solve the above-mentioned problems and provide artificial leather that has excellent texture, surface abrasion resistance, and pilling resistance, as well as a manufacturing method for the artificial leather.
本発明者らは種々検討した結果、表面から0.3mmの深さで切断した際の切断面において、極細繊維束の切断面の最大面積が所定の値以上であり、かつ極細繊維束の個数割合が所定の値以上であることにより、上記課題を解決し得ることを見出し、本発明に至った。すなわち、本発明は以下の発明を包含する。 After extensive investigation, the inventors discovered that the above problems could be solved by ensuring that the maximum area of the cut surface of the ultrafine fiber bundles is equal to or greater than a specified value, and that the percentage of the number of ultrafine fiber bundles is equal to or greater than a specified value, when the cut surface is cut at a depth of 0.3 mm from the surface, and thus arrived at the present invention. In other words, the present invention encompasses the following inventions.
[1]極細繊維を含む人工皮革であって、
表面から0.3mmの深さで切断した際の切断面において、極細繊維束の切断面の最大面積が4500μm2以上であり、かつ、前記極細繊維束の切断面の合計個数に対する、切断面の面積が500μm2以上である前記極細繊維束の個数割合が60%以上である、人工皮革。
[2]前記切断面における、前記極細繊維束の総面積が50000μm2/mm2以上である、上記[1]に記載の人工皮革。
[3]前記極細繊維の平均径が、7.5μm以下である、上記[1]又は[2]に記載の人工皮革。
[4]前記極細繊維の平均繊度が、0.5dtex以下である、上記[1]~[3]のいずれかに記載の人工皮革。
[5]前記極細繊維が長繊維である、上記[1]~[4]のいずれかに記載の人工皮革。
[6]高分子弾性体を、45質量%以下含む、上記[1]~[5]のいずれかに記載の人工皮革。
[7]上記[1]~[6]のいずれかに記載の人工皮革の製造方法であって、
極細繊維発生型繊維から形成された繊維ウェブを準備する工程と、
前記繊維ウェブに捲縮処理を付与し、捲縮繊維ウェブを形成する工程と、
前記捲縮繊維ウェブを複数枚重ねてウェブ積層体を形成する工程と、
前記ウェブ積層体を絡合して絡合繊維シートを形成する工程と、
前記極細発生型繊維から少なくとも一成分を除去する工程とを備える、人工皮革の製造方法。
[8]前記絡合繊維シートへ前記高分子弾性体を含浸させる工程をさらに備える、上記[7]に記載の人工皮革の製造方法。
[1] An artificial leather containing ultrafine fibers,
An artificial leather, wherein, in a cut surface when cut at a depth of 0.3 mm from the surface, the maximum area of the cut surface of the ultrafine fiber bundle is 4,500 µm2 or more, and the proportion of the number of the ultrafine fiber bundles having a cut surface area of 500 µm2 or more to the total number of the cut surfaces of the ultrafine fiber bundles is 60% or more.
[2] The artificial leather according to the above-mentioned [1], wherein the total area of the ultrafine fiber bundles in the cut surface is 50,000 µm 2 /mm 2 or more.
[3] The artificial leather according to the above [1] or [2], wherein the average diameter of the ultrafine fibers is 7.5 μm or less.
[4] The artificial leather according to any one of the above [1] to [3], wherein the average fineness of the ultrafine fibers is 0.5 dtex or less.
[5] The artificial leather according to any one of the above [1] to [4], wherein the ultrafine fibers are long fibers.
[6] The artificial leather according to any one of the above [1] to [5], containing 45% by mass or less of a polymer elastomer.
[7] A method for producing an artificial leather according to any one of [1] to [6] above,
Providing a fibrous web formed from microfiber-generating fibers;
A step of subjecting the fiber web to a crimping treatment to form a crimped fiber web;
forming a web laminate by stacking a plurality of the crimped fiber webs;
entangling the web laminate to form an entangled fiber sheet;
and removing at least one component from the ultrafine fibers.
[8] The method for producing an artificial leather according to the above [7], further comprising a step of impregnating the entangled fiber sheet with the polymer elastomer.
本発明によれば、風合い、表面の耐摩耗性、及び耐ピリング性に優れる人工皮革、及びその人工皮革の製造方法を提供することができる。また、本発明によれば、有機溶剤や高分子弾性体を人工皮革表面に塗布しなくても、上記効果を有する人工皮革を得ることができる。 The present invention can provide artificial leather that is excellent in texture, surface abrasion resistance, and pilling resistance, and a method for producing the artificial leather. Furthermore, the present invention can provide artificial leather that has the above-mentioned effects without applying an organic solvent or a polymer elastomer to the surface of the artificial leather.
以下、本発明の実施形態に係る人工皮革、及び本発明の実施形態に係る人工皮革の製造方法(以下、「本実施形態の人工皮革」、「本実施形態の人工皮革の製造方法」ということがある)について説明する。 The artificial leather according to the embodiment of the present invention and the manufacturing method of the artificial leather according to the embodiment of the present invention (hereinafter, sometimes referred to as "artificial leather according to the present embodiment" or "manufacturing method of the artificial leather according to the present embodiment") will be described below.
[人工皮革]
本実施形態の人工皮革は、極細繊維を含む人工皮革であって、表面から0.3mmの深さで切断した際の切断面において、極細繊維束の切断面の最大面積が4500μm2以上であり、かつ、前記極細繊維束の切断面の合計個数に対する、切断面の面積が500μm2以上である前記極細繊維束の個数割合が60%以上である。
上記人工皮革は、表面から0.3mmの深さで切断した際の切断面において、極細繊維束の切断面の最大面積が所定の値以上であり、かつ極細繊維束の個数割合が所定の値以上であることにより、風合い、表面の耐摩耗性、及び耐ピリング性に優れる人工皮革とすることができる。
なお、本発明の人工皮革は、人工的に製造された天然皮革に近い風合いを有するものを意味し、表面が起毛された立毛人工皮革、銀付調人工皮革等を含む。さらに、立毛人工皮革は、表面の起毛状態によるバリエーションとしてスエード調、ベロア調、ヌバック調等を含む。
本明細書において、「表面から0.3mmの深さで切断した際の切断面」とは、立毛人工皮革の場合は、立毛人工皮革の厚さと、繊維立毛面の反対側の面から切断面までの厚さの差が0.3mmとなる位置でスライスした際の切断面を意味し、銀付調人工皮革の場合は、銀付調人工皮革を構成する繊維層の厚さと、繊維層の、樹脂層に接する面と反対側の面から切断面までの厚さの差が0.3mmとなる位置でスライスした際の切断面を意味する。なお、この切断面は人工皮革の面方向と平行な面であり、厚さ方向とは直交する面である。
また、本明細書において、「風合いに優れる」とは、緻密性、柔軟性等に優れ、触感が良好であること等、天然皮革が有する風合いに近いことを意味する。
[Artificial leather]
The artificial leather of the present embodiment is an artificial leather containing ultrafine fibers, and in a cut surface when cut at a depth of 0.3 mm from the surface, the maximum area of the cut surface of the ultrafine fiber bundles is 4,500 µm2 or more, and the proportion of the number of the ultrafine fiber bundles having a cut surface area of 500 µm2 or more to the total number of the cut surfaces of the ultrafine fiber bundles is 60% or more.
The above-mentioned artificial leather has a maximum area of the cut surface of the ultrafine fiber bundles that is a predetermined value or more, and the number ratio of the ultrafine fiber bundles that is a predetermined value or more, when cut at a depth of 0.3 mm from the surface, so that the artificial leather has excellent texture, surface abrasion resistance, and pilling resistance.
The artificial leather of the present invention means an artificially produced leather having a texture similar to that of natural leather, and includes raised artificial leather with a raised surface, grained artificial leather, etc. Furthermore, raised artificial leather includes suede-like, velour-like, nubuck-like, etc., as variations depending on the raised surface state.
In this specification, "a cut surface when cut at a depth of 0.3 mm from the surface" means, in the case of napped artificial leather, a cut surface when sliced at a position where the difference between the thickness of the napped artificial leather and the thickness from the surface opposite to the fiber napped surface to the cut surface is 0.3 mm, and in the case of grain-finished artificial leather, means a cut surface when sliced at a position where the difference between the thickness of the fiber layer constituting the grain-finished artificial leather and the thickness from the surface of the fiber layer opposite to the surface in contact with the resin layer to the cut surface is 0.3 mm. Note that this cut surface is a surface parallel to the surface direction of the artificial leather and perpendicular to the thickness direction.
In addition, in this specification, "excellent texture" means that the texture is close to that of natural leather, such as excellent density, flexibility, and a good feel.
本実施形態の人工皮革の厚さは、特に限定されるものではないが、より風合い、表面の耐摩耗性、及び耐ピリング性に優れる人工皮革を得る観点から、好ましくは0.1~2.0mm、より好ましくは0.3~1.5mm、さらに好ましくは0.5~1.2mmである。
なお、上記「厚さ」は、JIS L1096(2010)(A法)に準じて、測定された値である。
The thickness of the artificial leather of the present embodiment is not particularly limited, but from the viewpoint of obtaining an artificial leather having better texture, surface abrasion resistance, and pilling resistance, it is preferably 0.1 to 2.0 mm, more preferably 0.3 to 1.5 mm, and even more preferably 0.5 to 1.2 mm.
The above "thickness" is a value measured in accordance with JIS L1096 (2010) (Method A).
本実施形態の人工皮革の見掛け密度は、特に限定されるものではないが、より風合い、表面の耐摩耗性、及び耐ピリング性に優れる人工皮革を得る観点から、好ましくは0.1~1.0g/cm3、より好ましくは0.2~0.9g/cm3、さらに好ましくは0.3~0.8g/cm3である。
なお、上記「見掛け密度」は、JIS L1096(2010)(A法)に準じて、測定された値である。
The apparent density of the artificial leather of the present embodiment is not particularly limited, but from the viewpoint of obtaining an artificial leather having better texture, surface abrasion resistance, and pilling resistance, it is preferably 0.1 to 1.0 g/cm 3 , more preferably 0.2 to 0.9 g/cm 3 , and even more preferably 0.3 to 0.8 g/cm 3 .
The above "apparent density" is a value measured in accordance with JIS L1096 (2010) (Method A).
本実施形態の人工皮革の目付けは、特に限定されるものではないが、より風合い、表面の耐摩耗性、及び耐ピリング性に優れる人工皮革を得る観点から、好ましくは100~1000g/m2、より好ましくは150~800g/m2、さらに好ましくは200~600g/m2である。
なお、上記「目付け」は、JIS L1096(2010)(A法)に準じて、測定された値である。
The basis weight of the artificial leather of the present embodiment is not particularly limited, but from the viewpoint of obtaining an artificial leather having better texture, surface abrasion resistance, and pilling resistance, it is preferably 100 to 1000 g/m 2 , more preferably 150 to 800 g/m 2 , and even more preferably 200 to 600 g/m 2 .
The above "basis weight" is a value measured in accordance with JIS L1096 (2010) (Method A).
本実施形態の人工皮革は、特に限定されるものではないが、本発明の効果をより得られ易い観点から、立毛面を有する立毛人工皮革であることが好ましい。 The artificial leather of this embodiment is not particularly limited, but from the viewpoint of more easily obtaining the effects of the present invention, it is preferable that the artificial leather is a napped artificial leather having a napped surface.
<極細繊維>
本実施形態の人工皮革に含まれる極細繊維とは、化学的または物理的性質の異なる少なくとも2種類以上の可紡性ポリマーからなる多成分系繊維(複合繊維)から、少なくとも一成分を除去することにより極細化した繊維のことである。また、本発明でいう極細繊維束とは、複数本の極細繊維が集まった束のことであり、極細繊維間距離が6μm以下で近接した極細繊維が3本以上集合してなり、集合した極細繊維の切断面の面積の合計が60μm2以上である極細繊維の集合体のことをいう。
<Ultrafine fibers>
The ultrafine fibers contained in the artificial leather of this embodiment are ultrafine fibers obtained by removing at least one component from a multicomponent fiber (composite fiber) made of at least two or more kinds of spinnable polymers having different chemical or physical properties. The ultrafine fiber bundle in the present invention is a bundle of a plurality of ultrafine fibers, and refers to an assembly of ultrafine fibers in which three or more ultrafine fibers are gathered together and are adjacent to each other with a distance between the ultrafine fibers of 6 μm or less, and the total area of the cut surfaces of the gathered ultrafine fibers is 60 μm2 or more.
本実施形態の極細繊維は、より風合い、表面の耐摩耗性、及び耐ピリング性に優れる人工皮革を得る観点から、長繊維であることが好ましい。
本明細書において、「長繊維」とは、紡糸後に意図的にカットされた短繊維ではない、連続的な繊維であることを意味する。より具体的には、例えば、繊維長が3~80mm程度になるように意図的に切断されたような短繊維ではないフィラメントまたは連続繊維を意味する。後述する、極細繊維化する前の海島型複合繊維の繊維長は、100mm以上であることが好ましく、200mm以上であることがより好ましい。技術的に製造可能であり、かつ、製造工程において不可避的に切断されない限り、上記長繊維は、例えばスパンボンド法により製造され、連続的に紡糸された、数m、数百m、数km、あるいはそれ以上の繊維長の連続繊維であってもよい。なお、絡合時のニードルパンチや、表面のバフィングにより、製造工程において不可避的に長繊維の一部が切断されて短繊維になることもある。
The ultrafine fibers of the present embodiment are preferably long fibers from the viewpoint of obtaining an artificial leather having better texture, surface abrasion resistance, and pilling resistance.
In this specification, "long fibers" means continuous fibers that are not short fibers intentionally cut after spinning. More specifically, it means filaments or continuous fibers that are not short fibers intentionally cut to a fiber length of about 3 to 80 mm. The fiber length of the islands-in-the-sea type composite fiber before being made into ultrafine fibers, which will be described later, is preferably 100 mm or more, and more preferably 200 mm or more. As long as it is technically possible to produce it and it is not unavoidably cut in the production process, the long fibers may be continuous fibers having a fiber length of several meters, several hundred meters, several kilometers, or more that are produced, for example, by a spunbonding method and continuously spun. Note that, in some cases, the long fibers are inevitably cut into short fibers in the production process due to needle punching during entanglement or surface buffing.
本実施形態の極細繊維を構成する樹脂としては、例えば、ポリエチレンテレフタレート(以下、「PET」と称すことがある。)、イソフタル酸変性PET、スルホイソフタル酸変性PET、カチオン染料可染性PET等の変性PETやポリブチレンテレフタレート、ポリヘキサメチレンテレフタレート等の芳香族ポリエステル;ポリ乳酸、ポリエチレンサクシネート、ポリブチレンサクシネート、ポリブチレンサクシネートアジペート、ポリヒドロキシブチレート-ポリヒドロキシバリレート樹脂等の脂肪族ポリエステル;ナイロン6、ナイロン66、ナイロン10、ナイロン11、ナイロン12、ナイロン6-12等のナイロン;ポリプロピレン、ポリエチレン、ポリブテン、ポリメチルペンテン、塩素系ポリオレフィン等の繊維が挙げられる。なお、変性PETは、未変性PETのエステル形成性のジカルボン酸系単量体単位、または、ジオール系単量体単位の少なくとも一部を置換可能な単量体単位で置き換えたPETである。ジカルボン酸系単量体単位を置換する変性単量体単位の具体例としては、例えば、テレフタル酸単位を置換するイソフタル酸、ナトリウムスルホイソフタル酸、ナトリウムスルホナフタレンジカルボン酸、アジピン酸、等に由来する単位が挙げられる。また、ジオール系単量体単位を置換する変性単量体単位の具体例としては、例えば、エチレングリコール単位を置換するブタンジオール、ヘキサンジオール等のジオールに由来する単位が挙げられる。
これらの中でも、着色性、表面の耐摩耗性、及び耐ピリング性に優れる人工皮革を得る観点から、芳香族ポリエステルや脂肪族ポリエステル等のポリエステル系樹脂が好ましい。また、紡糸する際の生産性、機械的強度等の観点から、ポリエチレンテレフタレート(PET)、イソフタル酸変性PET、スルホイソフタル酸変性PET、カチオン染料可染性PET等の変性PETやポリブチレンテレフタレート、ポリヘキサメチレンテレフタレート等の芳香族ポリエステル;ポリ乳酸、ポリエチレンサクシネート、ポリブチレンサクシネート、ポリブチレンサクシネートアジペート、ポリヒドロキシブチレート-ポリヒドロキシバリレート樹脂等の脂肪族ポリエステル;ナイロン6、ナイロン66、ナイロン10、ナイロン11、ナイロン12、ナイロン6-12等のナイロン;ポリプロピレン、ポリエチレン、ポリブテン、ポリメチルペンテン、塩素系ポリオレフィン等のポリオレフィン等が好ましい。
Examples of resins constituting the ultrafine fibers of this embodiment include modified PET such as polyethylene terephthalate (hereinafter sometimes referred to as "PET"), isophthalic acid modified PET, sulfoisophthalic acid modified PET, and cationic dye dyeable PET; aromatic polyesters such as polybutylene terephthalate and polyhexamethylene terephthalate; aliphatic polyesters such as polylactic acid, polyethylene succinate, polybutylene succinate, polybutylene succinate adipate, and polyhydroxybutyrate-polyhydroxyvalerate resin; nylons such as nylon 6, nylon 66, nylon 10, nylon 11, nylon 12, and nylon 6-12; and fibers such as polypropylene, polyethylene, polybutene, polymethylpentene, and chlorine-based polyolefins. The modified PET is a PET in which at least a part of the ester-forming dicarboxylic acid monomer units or diol monomer units of unmodified PET is replaced with a substitutable monomer unit. Specific examples of modified monomer units substituting dicarboxylic acid monomer units include units derived from isophthalic acid, sodium sulfoisophthalic acid, sodium sulfonaphthalenedicarboxylic acid, adipic acid, etc., which substitute terephthalic acid units. Specific examples of modified monomer units substituting diol monomer units include units derived from diols such as butanediol and hexanediol, which substitute ethylene glycol units.
Among these, from the viewpoint of obtaining an artificial leather excellent in colorability, surface abrasion resistance, and pilling resistance, polyester-based resins such as aromatic polyesters and aliphatic polyesters are preferred. Also, from the viewpoint of productivity during spinning, mechanical strength, etc., preferred are modified PET such as polyethylene terephthalate (PET), isophthalic acid-modified PET, sulfoisophthalic acid-modified PET, and cationic dye-dyeable PET, aromatic polyesters such as polybutylene terephthalate and polyhexamethylene terephthalate, aliphatic polyesters such as polylactic acid, polyethylene succinate, polybutylene succinate, polybutylene succinate adipate, and polyhydroxybutyrate-polyhydroxyvalerate resin, nylons such as nylon 6, nylon 66, nylon 10, nylon 11, nylon 12, and nylon 6-12, and polyolefins such as polypropylene, polyethylene, polybutene, polymethylpentene, and chlorine-based polyolefins.
本実施形態の極細繊維を構成する樹脂は、本発明の効果を損なわない範囲で、各種添加剤を含んでもよい。添加剤としては、例えば、触媒、着色剤、耐熱剤、難燃剤、滑剤、防汚剤、蛍光増白剤、艶消剤、光沢改良剤、制電剤、芳香剤、消臭剤、抗菌剤、防ダニ剤、無機微粒子等が挙げられる。 The resin constituting the ultrafine fibers of this embodiment may contain various additives to the extent that the effect of the present invention is not impaired. Examples of additives include catalysts, colorants, heat resistance agents, flame retardants, lubricants, stain-resistant agents, fluorescent brighteners, matting agents, gloss improvers, antistatic agents, fragrances, deodorizers, antibacterial agents, anti-mite agents, inorganic fine particles, etc.
本実施形態の人工皮革は、表面から0.3mmの深さで切断した際の切断面において、極細繊維束の切断面の最大面積が4500μm2以上である。
上記極細繊維束の切断面の最大面積は、より風合い、表面の耐摩耗性、及び耐ピリング性に優れる人工皮革を得る観点から、好ましくは5000μm2以上、より好ましくは5500μm2以上、さらに好ましくは6000μm2以上であり、製造容易性、及び優れた外観を有する人工皮革を得る観点から、好ましくは30000μm2以下、より好ましくは25000μm2以下、さらに好ましくは20000μm2以下である。すなわち、上記極細繊維束の切断面の最大面積は、好ましくは5000~30000μm2、より好ましくは5500~25000μm2、さらに好ましくは6000~20000μm2である。
なお、上記「極細繊維束の切断面の最大面積」は、人工皮革の表面から0.3mmの深さで切断した際の切断面を、走査型電子顕微鏡(SEM)を用いて100倍で撮影した写真をもとに算出した値であり、具体的には実施例に記載の手順で測定される。
In the artificial leather of the present embodiment, the maximum area of the cut surface of the ultrafine fiber bundles when cut at a depth of 0.3 mm from the surface is 4,500 μm2 or more .
From the viewpoint of obtaining an artificial leather having better texture, surface abrasion resistance, and pilling resistance, the maximum area of the cut surface of the ultrafine fiber bundle is preferably 5000 μm 2 or more, more preferably 5500 μm 2 or more, and even more preferably 6000 μm 2 or more, and from the viewpoint of obtaining an artificial leather having ease of production and excellent appearance, the maximum area of the cut surface of the ultrafine fiber bundle is preferably 30000 μm 2 or less, more preferably 25000 μm 2 or less, and even more preferably 20000 μm 2 or less. That is, the maximum area of the cut surface of the ultrafine fiber bundle is preferably 5000 to 30000 μm 2 , more preferably 5500 to 25000 μm 2 , and even more preferably 6000 to 20000 μm 2 .
The "maximum area of the cut surface of the ultrafine fiber bundle" is a value calculated based on a photograph of the cut surface when the artificial leather is cut at a depth of 0.3 mm from the surface thereof, taken with a scanning electron microscope (SEM) at 100 times magnification, and specifically, is measured by the procedure described in the Examples.
本実施形態の人工皮革は、表面から0.3mmの深さで切断した際の切断面において、極細繊維束の切断面の合計個数に対する、切断面の面積が500μm2以上である前記極細繊維束の個数割合が60%以上である。
上記極細繊維束の切断面の合計個数に対する、切断面の面積が500μm2以上である前記極細繊維束の個数割合は、より風合い、表面の耐摩耗性、及び耐ピリング性に優れる人工皮革を得る観点から、好ましくは61%以上、より好ましくは63%以上、さらに好ましくは65%以上であり、人工皮革が繊維立毛面を有している場合、立毛繊維の隙間から下地が見えることによる外観低下の観点から、好ましくは95%以下、より好ましくは93%以下、さらに好ましくは90%以下である。すなわち、上記個数割合は、好ましくは61~95%、より好ましくは63~93%、さらに好ましくは65~90%である。
なお、上記「極細繊維束の切断面の合計個数に対する、切断面の面積が500μm2以上である前記極細繊維束の個数割合」は、人工皮革の表面から0.3mmの深さで切断した際の切断面を、走査型電子顕微鏡(SEM)を用いて100倍で撮影した写真をもとに算出した値であり、具体的には実施例に記載の手順で測定される。
In the artificial leather of this embodiment, in a cut surface when cut at a depth of 0.3 mm from the surface, the ratio of the number of ultrafine fiber bundles having a cut surface area of 500 µm2 or more to the total number of cut surfaces of the ultrafine fiber bundles is 60% or more.
The ratio of the number of the ultrafine fiber bundles having a cut surface area of 500 μm2 or more to the total number of the cut surfaces of the ultrafine fiber bundles is preferably 61% or more, more preferably 63% or more, and even more preferably 65% or more, from the viewpoint of obtaining an artificial leather having better texture, surface abrasion resistance, and pilling resistance, and when the artificial leather has a fiber-raised surface, from the viewpoint of deterioration in appearance due to the base being visible through gaps in the napped fibers, is preferably 95% or less, more preferably 93% or less, and even more preferably 90% or less. That is, the ratio of the number is preferably 61 to 95%, more preferably 63 to 93%, and even more preferably 65 to 90%.
The above-mentioned "proportion of the number of ultrafine fiber bundles having a cut surface area of 500 µm2 or more relative to the total number of cut surfaces of the ultrafine fiber bundles" is a value calculated based on a photograph of a cut surface when the artificial leather is cut at a depth of 0.3 mm from the surface thereof, taken with a scanning electron microscope (SEM) at 100 times magnification, and specifically, is measured by the procedure described in the Examples.
表面から0.3mmの深さで切断した際の切断面における極細繊維束の切断面の総面積(極細繊維束の切断面の面積の合計値を1mm2あたりに換算した値)は、より風合い、表面の耐摩耗性、及び耐ピリング性に優れる人工皮革を得る観点から、好ましくは25000μm2/mm2以上、より好ましくは40000μm2/mm2以上、さらに好ましくは50000μm2/mm2以上であり、製造容易性、及び良好な引裂強度を有する人工皮革を得る観点から、好ましくは200000μm2/mm2以下、より好ましくは180000μm2/mm2以下、さらに好ましくは150000μm2/mm2以下である。すなわち、上記極細繊維束の切断面の総面積は、好ましくは25000~200000μm2/mm2、より好ましくは40000~180000μm2/mm2、さらに好ましくは50000~150000μm2/mm2である。
なお、上記「極細繊維束の切断面の総面積」は、人工皮革の表面から0.3mmの深さで切断した際の切断面を、走査型電子顕微鏡(SEM)を用いて100倍で撮影した写真をもとに算出した値であり、具体的には実施例に記載の手順で測定される。
The total area of the cut surfaces of the ultrafine fiber bundles at a cut surface at a depth of 0.3 mm from the surface (the value obtained by converting the total value of the areas of the cut surfaces of the ultrafine fiber bundles per mm2) is preferably 25,000 μm2 /mm2 or more , more preferably 40,000 μm2 /mm2 or more , and even more preferably 50,000 μm2/mm2 or more, from the viewpoint of obtaining an artificial leather having excellent texture, surface abrasion resistance, and pilling resistance, and is preferably 200,000 μm2 /mm2 or less, more preferably 180,000 μm2 /mm2 or less , and even more preferably 150,000 μm2 / mm2 or less , from the viewpoint of obtaining an artificial leather having ease of production and good tear strength. That is, the total area of the cut surfaces of the ultrafine fiber bundle is preferably 25,000 to 200,000 μm 2 /mm 2 , more preferably 40,000 to 180,000 μm 2 /mm 2 , and even more preferably 50,000 to 150,000 μm 2 /mm 2 .
The "total area of the cut surfaces of the ultrafine fiber bundles" is a value calculated based on a photograph of the cut surfaces when the artificial leather is cut at a depth of 0.3 mm from the surface thereof, taken with a scanning electron microscope (SEM) at 100 times magnification, and specifically, is measured by the procedure described in the Examples.
本実施形態の極細繊維の平均径は、より風合い、表面の耐摩耗性、及び耐ピリング性に優れる人工皮革を得る観点から、好ましくは7.5μm以下、より好ましくは6.0μm以下、さらに好ましくは5.5μm以下、よりさらに好ましくは5.0μm以下である。下限に特に制限はないが、製造容易性及び発色性の観点から、例えば1.0μm以上、あるいは1.5μm以上である。換言すれば、本実施形態の極細繊維の平均径は、好ましくは1.0~7.5μmであり、より好ましくは1.5~6.0μmである。 The average diameter of the ultrafine fibers of this embodiment is preferably 7.5 μm or less, more preferably 6.0 μm or less, even more preferably 5.5 μm or less, and even more preferably 5.0 μm or less, from the viewpoint of obtaining artificial leather with better texture, surface abrasion resistance, and pilling resistance. There is no particular lower limit, but from the viewpoint of ease of production and color development, it is, for example, 1.0 μm or more, or 1.5 μm or more. In other words, the average diameter of the ultrafine fibers of this embodiment is preferably 1.0 to 7.5 μm, and more preferably 1.5 to 6.0 μm.
本実施形態の極細繊維の平均繊度は、より風合い、表面の耐摩耗性、及び耐ピリング性に優れる人工皮革を得る観点から、好ましくは0.50dtex以下、より好ましくは0.40dtex以下、さらに好ましくは0.30dtex以下である。下限に特に制限はないが、製造容易性及び発色性の観点から、例えば0.01dtex以上、あるいは0.02dtex以上である。換言すれば、本実施形態の極細繊維の平均繊度は、好ましくは0.01~0.50dtexであり、より好ましくは0.01~0.40dtexである。
なお、上記「平均径」及び「平均繊度」は、極細繊維の断面の拡大写真において、ランダムに選んだ複数の極細繊維について断面積を測定し、それらに基づいて算出した値であり、具体的には実施例に記載の手順で測定される。
From the viewpoint of obtaining an artificial leather having better texture, surface abrasion resistance, and pilling resistance, the average fineness of the ultrafine fibers of this embodiment is preferably 0.50 dtex or less, more preferably 0.40 dtex or less, and even more preferably 0.30 dtex or less. There is no particular lower limit, but from the viewpoint of ease of production and color development, it is, for example, 0.01 dtex or more, or 0.02 dtex or more. In other words, the average fineness of the ultrafine fibers of this embodiment is preferably 0.01 to 0.50 dtex, and more preferably 0.01 to 0.40 dtex.
The "average diameter" and "average fineness" are values calculated based on the cross-sectional areas of a plurality of ultrafine fibers randomly selected from an enlarged photograph of the cross sections of the ultrafine fibers, and are specifically measured by the procedure described in the Examples.
<高分子弾性体>
本実施形態の人工皮革は、高分子弾性体を含んでもよい。
高分子弾性体は、人工皮革に従来用いられているものであれば何れも採用可能であり、具体例としてはポリウレタンエラストマー、アクリロニトリルエラストマー、オレフィンエラストマー、ポリエステルエラストマー、アクリルエラストマーが挙げられ、好ましくはポリウレタンエラストマー、アクリルエラストマーである。
ポリウレタンエラストマーとしては、ポリエステルジオール、ポリエーテルジオール、ポリエーテルエステルジオール、ポリカーボネートジオール、ポリカーボネートエーテルジオール、ポリカーボネートエステルジオールなどから選ばれた少なくとも1種類の平均分子量500~3000のポリマーポリオールと、4,4’-ジフェニルメタンジイソシアネート、イソホロンジイソシアネート、ヘキサメチレンジイソシアネートなどの、芳香族系、脂環族系、脂肪族系のジイソシアネートなどから選ばれた少なくとも1種のポリイソシアネートとを主成分として組み合わせ、さらにエチレングリコール、エチレンジアミン等の2個以上の活性水素原子を有する少なくとも1種の低分子化合物を所定のモル比で組み合わせて、これらを1段階、あるいは多段階で溶融重合法、塊状重合法、溶液重合法などにより重合反応させて得た各種のポリウレタンエラストマーが挙げられる。
ポリウレタンエラストマーに占めるポリマーポリオール成分の含有量は15~90質量%が好ましい。
<Polymer elastomer>
The artificial leather of the present embodiment may contain a polymer elastomer.
The polymer elastomer may be any that has been conventionally used in artificial leathers. Specific examples include polyurethane elastomers, acrylonitrile elastomers, olefin elastomers, polyester elastomers, and acrylic elastomers, with polyurethane elastomers and acrylic elastomers being preferred.
Examples of the polyurethane elastomer include various polyurethane elastomers obtained by combining, as main components, at least one polymer polyol having an average molecular weight of 500 to 3000 selected from polyester diols, polyether diols, polyether ester diols, polycarbonate diols, polycarbonate ether diols, polycarbonate ester diols, and the like, and at least one polyisocyanate selected from aromatic, alicyclic, and aliphatic diisocyanates, such as 4,4'-diphenylmethane diisocyanate, isophorone diisocyanate, and hexamethylene diisocyanate, and further combining at least one low molecular weight compound having two or more active hydrogen atoms, such as ethylene glycol and ethylenediamine, in a predetermined molar ratio, and polymerizing these in one stage or multiple stages by a melt polymerization method, a bulk polymerization method, a solution polymerization method, or the like.
The content of the polymer polyol component in the polyurethane elastomer is preferably 15 to 90% by mass.
また、アクリルエラストマーとしては、その単独重合体のガラス転移温度が-90~-5℃の範囲であり、好ましくは非架橋性であるようなモノマー、例えば、アクリル酸メチル、アクリル酸n-ブチル、アクリル酸イソブチル、アクリル酸イソプロピル、(メタ)アクリル酸n-ヘキシル、及び(メタ)アクリル酸2-エチルヘキシルからなる群から選ばれる少なくとも1種類の軟質成分と、その単独重合体のガラス転移温度が50~250℃の範囲であり、好ましくは非架橋性であるようなモノマー、例えば、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸イソプロピル、メタクリル酸イソブチル、メタクリル酸シクロヘキシル、(メタ)アクリル酸からなる群から選ばれる少なくとも1種類の硬質成分と、架橋構造を形成し得る単官能または多官能エチレン性不飽和モノマー単位、または、ポリマー鎖に導入されたエチレン製不飽和モノマー単位と反応して架橋構造を形成し得るような化合物、例えば、エチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレートからなる群から選ばれる少なくとも1種類の架橋形成性成分からなるエチレン性不飽和モノマーを重合反応させて得た各種のアクリルエラストマーが挙げられる。 The acrylic elastomer may be a monomer having a homopolymer glass transition temperature in the range of -90 to -5°C, preferably a non-crosslinkable monomer, such as at least one soft component selected from the group consisting of methyl acrylate, n-butyl acrylate, isobutyl acrylate, isopropyl acrylate, n-hexyl (meth)acrylate, and 2-ethylhexyl (meth)acrylate, and a monomer having a homopolymer glass transition temperature in the range of 50 to 250°C, preferably a non-crosslinkable monomer, such as methyl methacrylate, ethyl methacrylate, isopropyl methacrylate, isobutyl methacrylate, cyclohexyl methacrylate, or 2-ethylhexyl methacrylate. Examples of such acrylic elastomers include various acrylic elastomers obtained by polymerizing at least one hard component selected from the group consisting of acrylic acid, (meth)acrylic acid, and a monofunctional or polyfunctional ethylenically unsaturated monomer unit capable of forming a crosslinked structure, or an ethylenically unsaturated monomer unit introduced into a polymer chain that can react to form a crosslinked structure, such as at least one ethylenically unsaturated monomer that is a crosslinkable component selected from the group consisting of ethylene glycol di(meth)acrylate, triethylene glycol di(meth)acrylate, polyethylene glycol di(meth)acrylate, and 1,4-butanediol di(meth)acrylate.
主要な高分子弾性体としてポリウレタンエラストマーを採用して得られた人工皮革は、風合いや力学的物性のバランスが優れており、さらには適宜種類を選択すれば耐久性を含めたバランスにも優れている点で好ましい。また、アクリルエラストマーを採用して得られた人工皮革は、アクリルエラストマーがポリウレタンエラストマーに比べて極細繊維束への接着性が低く、立毛形成時の立毛固定効果に乏しいので立毛人工皮革を形成するには不向きだが、含有量に対する風合いの硬化度合いが抑制されるので銀付調人工皮革を形成する場合には特に好ましい。
高分子弾性体としては、異なる種類を混合して含有させたり、異なる種類を複数回に分けて含有させたりしてもよく、また、上述したポリウレタンエラストマー、アクリロニトリルエラストマー、オレフィンエラストマー、ポリエステルエラストマー、アクリルエラストマー等の主体となる高分子弾性体以外にも、合成ゴムなどの高分子弾性体を必要に応じて添加した高分子弾性体組成物として含有させてもよい。
Artificial leathers obtained by using polyurethane elastomers as the main polymeric elastomers are preferred because they have a good balance of texture and mechanical properties, and if the type is appropriately selected, they also have a good balance including durability. Artificial leathers obtained by using acrylic elastomers are unsuitable for forming napped artificial leathers because the acrylic elastomers have lower adhesion to ultrafine fiber bundles than the polyurethane elastomers and are poor in the nap fixing effect during nap formation, but are particularly preferred for forming grain-finished artificial leathers because the degree of hardening of the texture relative to the content is suppressed.
As the polymer elastomer, different types may be mixed and contained, or different types may be contained in multiple batches. Furthermore, in addition to the above-mentioned polyurethane elastomer, acrylonitrile elastomer, olefin elastomer, polyester elastomer, acrylic elastomer, etc. that serve as the main polymer elastomer, a polymer elastomer such as synthetic rubber may be added as necessary to form a polymer elastomer composition.
人工皮革中の上記高分子弾性体の含有量は、風合いに優れる人工皮革を得る観点から、好ましくは5~45質量%、より好ましくは7~40質量%、さらに好ましくは8~30質量%である。 The content of the polymer elastomer in the artificial leather is preferably 5 to 45% by mass, more preferably 7 to 40% by mass, and even more preferably 8 to 30% by mass, from the viewpoint of obtaining artificial leather with excellent texture.
<他の成分>
本実施形態の人工皮革には、極細繊維及び高分子弾性体以外の成分が含まれていてもよいし、含まれていなくてもよい。このような他の成分としては、上述した極細繊維に含まれる他の成分や後述する工程(4)で説明する、高分子弾性体液に添加し得る各種添加剤と同様のものが挙げられる。上記他の成分は、極細繊維及び高分子弾性体のうち少なくとも一方に内包されていてもよい。
上記他の成分の含有量は、上記他の成分による所期の効果を発現させやすくするとともに、吸水性、撥水性、防汚性等の観点から、人工皮革の質量に対して、好ましくは0.5~10.0質量%、より好ましくは1.0~5.0質量%、さらに好ましくは1.5~3.0質量%である。
<Other Ingredients>
The artificial leather of this embodiment may or may not contain components other than the ultrafine fibers and the polymeric elastomer. Such other components include the other components contained in the ultrafine fibers described above and the same as the various additives that can be added to the polymeric elastomer body fluid described in step (4) below. The other components may be encapsulated in at least one of the ultrafine fibers and the polymeric elastomer.
The content of the other components is preferably 0.5 to 10.0 mass %, more preferably 1.0 to 5.0 mass %, and even more preferably 1.5 to 3.0 mass %, relative to the mass of the artificial leather, from the viewpoints of water absorbency, water repellency, stain resistance, and the like, while making it easier for the other components to exert their intended effects.
[人工皮革の製造方法]
本実施形態に係る人工皮革は、以下の工程(1)~(4)及び(6)を備える製造方法により製造することが好ましい。
工程(1):極細繊維発生型繊維から形成された繊維ウェブを準備する工程
工程(2):前記繊維ウェブに捲縮処理を付与し、捲縮繊維ウェブを形成する工程
工程(3):前記捲縮繊維ウェブを複数枚重ねてウェブ積層体を形成する工程
工程(4):前記ウェブ積層体を絡合して絡合繊維シートを形成する工程
工程(6):前記極細発生型繊維から少なくとも一成分を除去する工程
[Manufacturing method of artificial leather]
The artificial leather according to the present embodiment is preferably produced by a production method including the following steps (1) to (4) and (6).
Step (1): A step of preparing a fiber web formed from ultrafine fiber generating fibers. Step (2): A step of subjecting the fiber web to a crimping treatment to form a crimped fiber web. Step (3): A step of stacking a plurality of the crimped fiber webs to form a web laminate. Step (4): A step of entangling the web laminate to form an entangled fiber sheet. Step (6): A step of removing at least one component from the ultrafine fiber generating fibers.
また、天然皮革に近い風合いや形態安定性等を付与する観点から、下記工程(5)を備えてもよく、より優れた風合いとする観点から、下記工程(7)を備えてもよい。
工程(5):前記絡合繊維シートへ前記高分子弾性体を含浸させる工程
工程(7):人工皮革を染色する工程
当該工程(5)は、工程(4)と工程(6)の間に実施することが好ましく、当該工程(7)は、工程(6)の後に実施することが好ましい。
In addition, from the viewpoint of imparting a texture and shape stability similar to that of natural leather, the method may include the following step (5), and from the viewpoint of providing an even better texture, the method may include the following step (7).
Step (5): A step of impregnating the entangled fiber sheet with the polymer elastomer. Step (7): A step of dyeing the artificial leather. The step (5) is preferably carried out between the step (4) and the step (6), and the step (7) is preferably carried out after the step (6).
本実施形態に係る製造方法が、上記工程(2)を有することで、表面から0.3mmの深さで切断した際の切断面において、極細繊維束の切断面の最大面積が4500μm2以上であり、かつ、前記極細繊維束の切断面の合計個数に対する、切断面の面積が500μm2以上である前記極細繊維束の個数割合が60%以上である人工皮革が得られ易くなる。その結果、風合い、表面の耐摩耗性、及び耐ピリング性に優れる人工皮革が得られ易くなる。
以下、各工程について説明する。
The production method according to the present embodiment, which includes the above-mentioned step (2), makes it easy to obtain an artificial leather in which, when cut at a depth of 0.3 mm from the surface, the maximum area of the cut surface of the ultrafine fiber bundle is 4500 μm2 or more, and the proportion of the number of the ultrafine fiber bundles having a cut surface area of 500 μm2 or more to the total number of the cut surfaces of the ultrafine fiber bundles is 60% or more. As a result, it makes it easy to obtain an artificial leather that is excellent in texture, surface abrasion resistance, and pilling resistance.
Each step will be described below.
<工程(1)>
工程(1)は、極細繊維発生型繊維から形成された繊維ウェブを準備する工程である。
上述のとおり、極細繊維とは、化学的または物理的性質の異なる少なくとも2種類以上の可紡性ポリマーからなる多成分系繊維(複合繊維)から、少なくとも一成分を除去することにより極細化した繊維のことであり、この極細繊維を発生させる多成分系繊維が極細繊維発生型繊維である。極細繊維発生型繊維の代表例としては、チップブレンド(混合紡糸)方式や複合紡糸方式等の方法を用いて得られる海島型複合繊維、多層積層型複合繊維、放射型積層型複合繊維等がある。これらの中でも、海島型複合繊維が、高速紡糸により生産性を高められ、さらに表面の耐摩耗性、及び耐ピリング性に優れる人工皮革を得る観点から好ましく、同様の観点から、海島型複合繊維を溶融紡糸して繊維ウェブを得ることが好ましい。
極細繊維発生型繊維が海島型複合繊維の場合、繊維断面において、マトリクスとなる海成分中に、島成分が分散されており、海成分を除去することにより、繊維束状の極細繊維を発生させる。
以下、極細繊維発生型繊維として、海島型複合繊維を用い、海島型複合繊維を溶融紡糸して繊維ウェブを得る方法についてより詳しく説明する。
<Step (1)>
Step (1) is a step of preparing a fiber web formed from ultrafine fiber generating fibers.
As described above, ultrafine fibers are fibers that are made ultrafine by removing at least one component from a multicomponent fiber (composite fiber) made of at least two or more kinds of spinnable polymers that differ in chemical or physical properties, and the multicomponent fiber that generates ultrafine fibers is an ultrafine fiber-generating fiber. Representative examples of ultrafine fiber-generating fibers include islands-in-the-sea type composite fibers, multilayer laminated composite fibers, radial laminated composite fibers, etc., which are obtained by using a method such as a chip blend (mixed spinning) method or a composite spinning method. Among these, islands-in-the-sea type composite fibers are preferred from the viewpoint of increasing productivity by high-speed spinning and obtaining artificial leather that is excellent in surface abrasion resistance and pilling resistance, and from the same viewpoint, it is preferred to obtain a fiber web by melt spinning islands-in-the-sea type composite fibers.
When the ultrafine fiber-generating fiber is an islands-in-sea type composite fiber, island components are dispersed in a sea component that serves as a matrix in the fiber cross section, and ultrafine fibers in the form of fiber bundles are generated by removing the sea component.
Hereinafter, a method of using islands-in-sea type composite fibers as ultrafine fiber-forming fibers and obtaining a fiber web by melt spinning the islands-in-sea type composite fibers will be described in more detail.
海島型複合繊維に含まれ、後に極細繊維となる島成分の樹脂としては、上述の「極細繊維」における極細繊維を構成する樹脂と同様の樹脂が挙げられる。
海島型複合繊維に含まれ、抽出や分解すること等により除去される海成分の樹脂としては、島成分の樹脂と溶解性または分解性が異なり、かつ、相溶性の低い樹脂を用いることが好ましい。このような樹脂は、島成分の樹脂の種類や製造方法に応じて適宜選択されることが好ましい。
海成分の樹脂としては、例えば、ポリエチレン、ポリプロピレン、エチレンプロピレン共重合体、エチレン酢ビ共重合体等のオレフィン系樹脂やポリスチレン、スチレンアクリル共重合体、スチレンエチレン共重合体等の有機溶剤に溶解性があり、有機溶剤により溶解除去できる樹脂が挙げられる。また、ポリビニルアルコール系樹脂、水溶性ポリエステル樹脂、易アルカリ分解性の変性ポリエステル樹脂、ポリアクリルアミド樹脂、カルボキシメチルセルロース樹脂等の溶剤を用いず水だけで除去処理可能である樹脂が挙げられる。これらの中でも、溶融紡糸性、水溶性、及び繊維物性(繊維の強度)の観点から、ポリエチレン及びポリビニルアルコール系樹脂を用いることが好ましく、より好ましくはポリエチレン及び変性ポリビニルアルコールである。
Examples of the island component resins contained in the islands-in-sea type composite fibers and which later become the ultrafine fibers include the same resins as those constituting the ultrafine fibers in the above-mentioned "ultrafine fibers."
As the sea component resin contained in the islands-in-sea type composite fiber and removed by extraction, decomposition, etc., it is preferable to use a resin that has a different solubility or decomposability from the island component resin and has low compatibility with it. It is preferable to appropriately select such a resin depending on the type of the island component resin and the production method.
Examples of the resin for the sea component include olefin resins such as polyethylene, polypropylene, ethylene-propylene copolymer, and ethylene-vinyl acetate copolymer, and resins that are soluble in organic solvents and can be dissolved and removed by organic solvents, such as polystyrene, styrene-acrylic copolymer, and styrene-ethylene copolymer. Other examples include resins that can be removed with water alone without using a solvent, such as polyvinyl alcohol resins, water-soluble polyester resins, modified polyester resins that are easily decomposable by alkali, polyacrylamide resins, and carboxymethyl cellulose resins. Among these, from the viewpoints of melt spinnability, water solubility, and fiber properties (fiber strength), it is preferable to use polyethylene and polyvinyl alcohol resins, and more preferably polyethylene and modified polyvinyl alcohol.
変性ポリビニルアルコールで用いる共重合単量体の種類としては、共重合性、溶融紡糸性、及び繊維の水溶性の観点からエチレン、プロピレン、1-ブテン、イソブテン等の炭素数4以下のα-オレフィン類;及び、メチルビニルエーテル、エチルビニルエーテル、n-プロピルビニルエーテル、イソプロピルビニルエーテル、n-ブチルビニルエーテル等のビニルエーテル類が好ましい。
ポリビニルアルコール中の共重合単位含有量は、1~20モル%が好ましく、4~15モル%がより好ましく、6~13モル%がさらに好ましい。
さらに、共重合単位がエチレンであると繊維物性が高くなるので、エチレン変性ポリビニルアルコールがより好ましい。エチレン変性ポリビニルアルコール中のエチレン単位含有量は、好ましくは4~15モル%、より好ましくは6~13モル%である。
As the type of copolymerization monomer used in the modified polyvinyl alcohol, from the viewpoints of copolymerizability, melt spinnability, and water solubility of the fiber, preferred are α-olefins having 4 or less carbon atoms, such as ethylene, propylene, 1-butene, and isobutene; and vinyl ethers, such as methyl vinyl ether, ethyl vinyl ether, n-propyl vinyl ether, isopropyl vinyl ether, and n-butyl vinyl ether.
The content of copolymerized units in polyvinyl alcohol is preferably from 1 to 20 mol %, more preferably from 4 to 15 mol %, and even more preferably from 6 to 13 mol %.
Furthermore, since the fiber properties are improved when the copolymerization unit is ethylene, ethylene-modified polyvinyl alcohol is more preferable. The ethylene unit content in the ethylene-modified polyvinyl alcohol is preferably 4 to 15 mol %, more preferably 6 to 13 mol %.
海島型複合繊維の海成分と島成分との質量割合は特に限定されないが、例えば、海成分:島成分=5:95~80:20の範囲であることが好ましい。海島型複合繊維中の海成分ポリマー比率が5質量%以上であれば、海島型繊維の紡糸安定性が低下しづらく工業的生産性を確保しやすい。また、高分子弾性体を付与した場合に、海成分を除去した後で極細繊維束と高分子弾性体との間に必要な大きさの空隙が形成されやすくなり、結果的に、膨らみ感や充実感、緻密な表面感などが得られやすくなる。一方、海成分ポリマー比率が60質量%以下であれば、海島型繊維の断面における島成分の形状や分布状態が安定し、品質安定性の低下を防止しやすい。 The mass ratio of the sea component and the island component in the islands-in-sea composite fiber is not particularly limited, but is preferably in the range of, for example, sea component:island component = 5:95 to 80:20. If the sea component polymer ratio in the islands-in-sea composite fiber is 5 mass% or more, the spinning stability of the islands-in-sea fiber is unlikely to decrease, and industrial productivity is easily ensured. In addition, when a polymer elastomer is added, voids of the required size are likely to be formed between the ultrafine fiber bundles and the polymer elastomer after the sea component is removed, and as a result, a sense of volume, fullness, dense surface, etc. are easily obtained. On the other hand, if the sea component polymer ratio is 60 mass% or less, the shape and distribution state of the island component in the cross section of the islands-in-sea fiber are stable, making it easy to prevent a decrease in quality stability.
繊維ウェブの製造方法としては、いわゆるスパンボンド法を用いて溶融紡糸された極細繊維発生型繊維をカットせずにネット上に捕集して、連続繊維である長繊維の繊維ウェブを形成する方法を採用することが好ましい。 The preferred method for producing a fiber web is to use the so-called spunbond method to collect ultrafine fiber-generating fibers that have been melt-spun onto a net without cutting them, and form a fiber web of long continuous fibers.
具体的には、多数のノズル孔が所定のパターンで配置された複合紡糸用口金を用いて、海島型複合繊維の溶融ストランドを紡糸ノズルから所定の吐出速度で連続的に吐出させ、ノズル孔直下から後述する吸引装置までの間の何れかの段階で冷却風により実質的に冷却固化しながら、エアジェット・ノズルなどの吸引装置を用いて高速気流を作用させ、複合繊維が目的の径または繊度になるよう均一に牽引細化する。
高速気流は、通常の紡糸における機械的な引取り速度に相当する平均紡糸速度が、1000~6000m/分の範囲における何れかの速度となるように作用させる。さらに、得られる繊維ウェブの地合いなどに応じて、複合繊維を衝突板や気流等により開繊させながら、コンベヤベルト状の移動式ネットなどの捕集面上に、ネットの反対面側から吸引しながら、捕集・堆積させることで長繊維ウェブを形成させるようなスパンボンド法により、長繊維の繊維ウェブを製造することができる。また、繊維ウェブは、形態安定性を付与するために熱プレスによる処理がなされてもよいし、それに伴い繊維ウェブに融着が施されてもよい。
Specifically, a conjugate spinning die having a large number of nozzle holes arranged in a predetermined pattern is used to continuously extrude molten strands of islands-in-sea type conjugate fibers from a spinning nozzle at a predetermined extrusion speed, and the strands are substantially cooled and solidified by cooling air at some stage between just below the nozzle holes and the suction device described below. At the same time, a high-velocity air stream is applied to the strands using a suction device such as an air jet nozzle, and the conjugate fibers are uniformly pulled and thinned to a desired diameter or fineness.
The high-speed air stream is applied so that the average spinning speed, which corresponds to the mechanical take-up speed in normal spinning, falls within the range of 1000 to 6000 m/min. Furthermore, a long-fiber fiber web can be produced by a spunbonding method in which the composite fibers are opened by a collision plate, air stream, or the like depending on the texture of the resulting fiber web, and then collected and deposited on a collecting surface such as a conveyor belt-like moving net while being sucked from the opposite side of the net to form a long-fiber web. The fiber web may be subjected to a heat press treatment to impart shape stability, and the fiber web may be fusion-bonded accordingly.
得られた繊維ウェブの目付けや厚さが不足している場合は、所望の目付け、厚さになるようにラッピング(1枚の繊維ウェブを工程の流れ方向に対して直行する方向から供給し、ほぼ幅方向(横方向)に折り畳むか、工程の流れ方向に対して並行方向から供給したウェブをその長さ方向(縦方向)に折り畳むこと)や積重(複数枚の繊維ウェブを重ねること)を行って調整する。形態安定性、繊維の緻密性、海島型繊維の厚さ方向への配向等を調節する場合には、ニードルパンチ法などの公知の方法により機械的な絡合処理を行う。これにより、繊維ウェブを構成する繊維同士、特にラッピングや積重した層状の繊維ウェブの隣接する層間における繊維同士を三次元絡合させる。
ニードルパンチ法により絡合処理する場合は、ニードルの種類(ニードルの形状や番手、バーブの形状や深さ、バーブの数や位置など)、ニードルのパンチ数(ニードルボードに植針されたニードルの密度と該ボードを繊維ウェブの単位面積当たりに作用させるストローク数を掛け合わせた単位面積当たりのニードルパンチ処理密度)、ニードルのパンチ深さ(繊維ウェブに対してニードルを作用させる深さ)等、各種処理条件を適宜選択して実施する。
If the basis weight or thickness of the obtained fiber web is insufficient, it is adjusted by wrapping (supplying one fiber web perpendicular to the flow direction of the process and folding it almost in the width direction (horizontal direction), or folding a web supplied parallel to the flow direction of the process in its length direction (vertical direction)) or stacking (stacking a plurality of fiber webs) to obtain the desired basis weight and thickness. When adjusting the shape stability, fiber density, and orientation of islands-in-the-sea fibers in the thickness direction, a mechanical entanglement treatment is performed by a known method such as a needle punch method. This three-dimensionally entangles the fibers constituting the fiber web, particularly the fibers between adjacent layers of wrapped or stacked layered fiber webs.
When the entanglement process is performed by the needle punching method, various process conditions are appropriately selected, such as the type of needle (needle shape and count, barb shape and depth, number and position of barbs, etc.), the number of needle punches (needle punch processing density per unit area obtained by multiplying the density of needles implanted in a needle board by the number of strokes that the board applies to a unit area of a fiber web), and the needle punch depth (depth at which the needles apply to the fiber web).
絡合処理としては、両面から同時または交互に少なくとも1つ以上のバーブが貫通する条件でニードルパンチや高圧水流処理するような方法が挙げられる。また、ニードルパンチ処理のパンチ密度としては、1500~5500パンチ/cm2、さらには、2000~5000パンチ/cm2であることが、高い耐摩耗性が得られ易い点から好ましい。パンチ密度が上記範囲内であれば、絡合の不足が抑制されて人工皮革表面の繊維のほつれによってラフな表面となることが防止され、また、繊維の切断が抑制されて絡合度が低下することが防止される。 The entanglement treatment may be performed by needle punching or high-pressure water jet treatment under conditions where at least one or more barbs penetrate simultaneously or alternately from both sides. The punch density of the needle punching treatment is preferably 1500 to 5500 punches/ cm2 , more preferably 2000 to 5000 punches/ cm2 , in view of the ease of obtaining high abrasion resistance. If the punch density is within the above range, insufficient entanglement is suppressed, preventing the surface of the artificial leather from becoming rough due to fraying of the fibers on the surface, and also preventing fiber breakage from occurring, preventing a decrease in the degree of entanglement.
<工程(2)>
工程(2)は、前記繊維ウェブに捲縮処理を付与し、捲縮繊維ウェブを形成する工程である。
捲縮処理としては、例えば、2つの歯車間を通過させる方法、押し込みロールを用いる方法(押込捲縮)、ナイフエッジに当て曲げながら擦過させる方法、空気噴射させる方法、撚糸させる方法等の物理的機械的捲縮方法や、熱収縮の異なる多成分繊維や中空繊維等を用いる潜在的捲縮方法、これらを併用する方法等がある。捲縮処理は、繊維に対して広範囲にわたって安定した捲縮を施すことのできる物理的機械的方法が好ましく、繊維に適切な捲縮率を付与する観点から、押込捲縮がより好ましい。押込捲縮の中でも工程通過性がよく、より風合い、表面の耐摩耗性、及び耐ピリング性に優れる人工皮革を得る観点から、凹凸形状が付与されたロールでプレスする押込捲縮が好ましい。凹凸形状としては、より風合い、表面の耐摩耗性、及び耐ピリング性に優れる人工皮革を得る観点から、周期性のある凹凸形状であることが好ましく、凹部と凸部の平均高低差が好ましくは1~30mm、より好ましくは1.5~25mm、さらに好ましくは2~20mmである。凹部間の距離、及び凸部間の距離は、好ましくは1~30mm、より好ましくは1.5~25mm、さらに好ましくは2~20mmである。
<Step (2)>
The step (2) is a step of subjecting the fiber web to a crimping treatment to form a crimped fiber web.
Examples of the crimping process include physical and mechanical crimping methods such as passing between two gears, using a press roll (press crimping), rubbing against a knife edge while bending, air injection, and twisting, as well as latent crimping methods using multicomponent fibers or hollow fibers with different thermal shrinkage, and methods using these in combination. The crimping process is preferably a physical and mechanical method that can apply stable crimping to the fibers over a wide range, and press crimping is more preferable from the viewpoint of imparting an appropriate crimp rate to the fibers. Among the press crimping methods, press crimping with a roll having an uneven shape is preferable from the viewpoint of obtaining an artificial leather that has good processability, texture, surface abrasion resistance, and pilling resistance. From the viewpoint of obtaining an artificial leather having better texture, surface abrasion resistance, and pilling resistance, the uneven shape is preferably a periodic uneven shape, and the average height difference between the recesses and the protrusions is preferably 1 to 30 mm, more preferably 1.5 to 25 mm, and even more preferably 2 to 20 mm. The distance between the recesses and the distance between the protrusions are preferably 1 to 30 mm, more preferably 1.5 to 25 mm, and even more preferably 2 to 20 mm.
繊維ウェブに周期性のある凹凸形状が付与されたロールでプレスすることにより捲縮処理を付与する際の捲縮率は、より風合い、表面の耐摩耗性、及び耐ピリング性に優れる人工皮革を得る観点から、好ましくは120%以上、より好ましくは150%以上、さらに好ましくは170%以上であり、製造容易性の観点から、好ましくは300%以下、より好ましくは250%以下、さらに好ましくは220%以下である。すなわち、捲縮率は、好ましくは120~300%、より好ましくは150~250%、さらに好ましくは170~220%である。
なお、上記「捲縮率」とは、上記凹凸ロールの凹凸形状に沿った長さと捲縮処理前の繊維ウェブの長さとの比(凹凸ロールの凹凸形状に沿った長さ/捲縮処理前の繊維ウェブの長さ×100(%))である。
さらに、捲縮処理の後、悪影響を及ぼさない範囲で、捲縮繊維ウェブに散布油剤及び仕上げ油剤を付与することができる。
The shrinkage ratio when the fiber web is pressed with a roll having a periodic uneven shape to impart a shrinkage treatment is preferably 120% or more, more preferably 150% or more, and even more preferably 170% or more from the viewpoint of obtaining an artificial leather having better texture, surface abrasion resistance, and pilling resistance, and is preferably 300% or less, more preferably 250% or less, and even more preferably 220% or less from the viewpoint of ease of production. That is, the shrinkage ratio is preferably 120 to 300%, more preferably 150 to 250%, and even more preferably 170 to 220%.
The "shrinkage rate" is the ratio of the length along the uneven shape of the uneven roll to the length of the fiber web before the crimping treatment (length along the uneven shape of the uneven roll/length of the fiber web before the crimping treatment x 100 (%)).
Furthermore, after the crimping treatment, a spray oil and a finishing oil can be applied to the crimped fiber web as long as they do not have an adverse effect.
<工程(3)>
工程(3)は、前記捲縮繊維ウェブを複数枚重ねてウェブ積層体を形成する工程である。
捲縮繊維ウェブを複数枚重ねる方法としては、捲縮繊維ウェブの捲縮方向を全て同方向にして重ねてもよく、クロスラッピング方式により捲縮繊維ウェブの搬送方向を90°方向に変えて折り返しながら重ねてもよい。捲縮繊維ウェブを複数枚重ねる方法は、絡合繊維シートの幅を任意に調整しやすく、絡合繊維シートの幅方向の斑の発生を抑制できる、すなわち目付の不均一を抑制できる観点から、クロスラップ積層が好ましい。
重ねる繊維ウェブの層数は特に限定されないが、絡合繊維シートの目付け斑軽減と機械的強度の観点から、好ましくは2層以上、より好ましくは3層以上であり、製造容易性の観点から、好ましくは30層以下、より好ましくは25層以下である。すなわち、重ねる繊維ウェブの層数は、好ましくは2~30層、より好ましくは3~25層である。
<Step (3)>
The step (3) is a step of forming a web laminate by stacking a plurality of the crimped fiber webs.
As a method for stacking a plurality of crimped fiber webs, the crimped fiber webs may be stacked with all the crimp directions in the same direction, or the crimped fiber web may be stacked while changing the conveying direction to a 90° direction and folding back by a cross-wrapping method. As a method for stacking a plurality of crimped fiber webs, cross-wrapping lamination is preferred from the viewpoint of easily adjusting the width of the entangled fiber sheet as desired and suppressing the occurrence of unevenness in the width direction of the entangled fiber sheet, i.e., suppressing unevenness in the basis weight.
The number of layers of the fiber web to be laminated is not particularly limited, but from the viewpoints of reducing the basis weight unevenness of the entangled fiber sheet and mechanical strength, it is preferably 2 layers or more, more preferably 3 layers or more, and from the viewpoint of ease of production, it is preferably 30 layers or less, more preferably 25 layers or less. That is, the number of layers of the fiber web to be laminated is preferably 2 to 30 layers, more preferably 3 to 25 layers.
<工程(4)>
工程(4)は、前記ウェブ積層体を絡合して絡合繊維シートを形成する工程である。
工程(4)では、ウェブ積層体にニードルパンチ法や高圧水流処理法等の公知の方法により、機械的な絡合処理を施すことで、繊維ウェブを構成する繊維同士、特にラッピングや積重した層状の繊維ウェブの隣接する層間における繊維同士を三次元絡合させる。
ニードルパンチ法により絡合処理する場合は、ニードルの種類(ニードルの形状や番手、バーブの形状や深さ、バーブの数や位置等)、ニードルのパンチ数(ニードルボードに植針されたニードルの密度と該ボードを繊維ウェブの単位面積当たりに作用させるストローク数を掛け合わせた単位面積当たりのニードルパンチ処理密度)、ニードルのパンチ深さ(繊維ウェブに対してニードルを作用させる深さ)等各種処理条件を適宜選択して実施する。
捲縮繊維ウェブを積層したウェブ積層体を用い、ニードルパンチ法により絡合処理を行うと、捲縮繊維ウェブがバーブに引っ掛かり、移動する繊維が周囲の繊維を多く引き連れて移動し、厚さ方向に配向する繊維量が増え、絡合度が向上する。これにより、表面摩擦時の繊維の素抜けが抑制され、耐摩耗性及び耐ピリング性が向上する。よって、捲縮繊維ウェブを積層したウェブ積層体を用い、ニードルパンチ法により絡合処理を行うことが好ましい。
<Step (4)>
Step (4) is a step of entangling the web laminate to form an entangled fiber sheet.
In step (4), the web laminate is subjected to a mechanical entanglement treatment using a known method such as a needle punching method or a high-pressure water jet treatment method, thereby three-dimensionally entangling the fibers constituting the fiber web, particularly the fibers between adjacent layers of a wrapped or stacked layered fiber web.
When the entanglement process is performed by the needle punching method, various process conditions are appropriately selected, such as the type of needle (needle shape and count, barb shape and depth, number and position of barbs, etc.), the number of needle punches (needle punch processing density per unit area obtained by multiplying the density of needles implanted in a needle board by the number of strokes at which the board acts on the fiber web per unit area), and the needle punch depth (depth at which the needles act on the fiber web).
When a web laminate having a crimped fiber web laminated thereon is used and an entanglement treatment is performed by a needle punching method, the crimped fiber web is caught by the barbs, and the moving fibers move with many surrounding fibers, increasing the amount of fibers oriented in the thickness direction and improving the degree of entanglement. This suppresses the fibers from coming off during surface friction, improving the abrasion resistance and pilling resistance. Therefore, it is preferable to use a web laminate having a crimped fiber web laminated thereon and perform an entanglement treatment by a needle punching method.
ニードルパンチ処理のパンチ密度としては、1500~5500パンチ/cm2、さらには、2000~5000パンチ/cm2であることが、高い耐摩耗性が得られ易い観点から好ましい。パンチ密度が上記範囲内であれば、絡合の不足が抑制されて人工皮革表面の繊維のほつれによってラフな表面となることが防止され、また、繊維の切断が抑制されて絡合度が低下することが防止される。 From the viewpoint of easily obtaining high abrasion resistance, the punch density in the needle punching treatment is preferably 1500 to 5500 punches/cm 2 , and more preferably 2000 to 5000 punches/cm 2. If the punch density is within the above range, insufficient entanglement is suppressed, preventing the surface of the artificial leather from becoming rough due to fraying of the fibers on the surface, and also preventing fiber breakage from causing a decrease in the degree of entanglement.
また、海島型複合繊維の紡糸から絡合処理までのいずれかの段階において、極細繊維発生型繊維、繊維ウェブ、捲縮繊維ウェブ、ウェブ積層体、絡合繊維シート等に、油剤や帯電防止剤を付与してもよい。さらに、必要に応じて、極細繊維発生型繊維、繊維ウェブ、捲縮繊維ウェブ、ウェブ積層体、絡合繊維シート等を70~150℃程度の温水に浸漬する収縮処理を行うことにより、絡合状態を予め緻密にしておいてもよい。 In addition, at any stage from the spinning of the islands-in-the-sea composite fiber to the entanglement treatment, an oil agent or an antistatic agent may be applied to the ultrafine fiber-generating fiber, fiber web, crimped fiber web, web laminate, entangled fiber sheet, etc. Furthermore, if necessary, the ultrafine fiber-generating fiber, fiber web, crimped fiber web, web laminate, entangled fiber sheet, etc. may be immersed in hot water at about 70 to 150°C for shrinkage treatment to make the entanglement dense in advance.
絡合して得られる絡合繊維シートの目付としては、100~2000g/m2程度の範囲であることが好ましい。さらに、絡合繊維シートを必要に応じて熱収縮させることにより繊維密度及び絡合度をさらに高める処理を施してもよい。また、熱収縮処理により緻密化された絡合繊維シートをさらに緻密化するとともに、絡合繊維シートの形態を固定化したり、表面を平滑化したりすること等を目的として、必要に応じて、熱プレス処理を行うことによりさらに、繊維密度を高めてもよい。 The basis weight of the entangled fiber sheet obtained by entanglement is preferably in the range of about 100 to 2000 g/ m2 . Furthermore, the entangled fiber sheet may be subjected to a treatment to further increase the fiber density and the degree of entanglement by heat shrinking as necessary. In addition, the entangled fiber sheet densified by the heat shrinking treatment may be further densified, and the fiber density may be further increased by a heat press treatment as necessary for the purpose of fixing the shape of the entangled fiber sheet and smoothing the surface.
<工程(5)>
工程(5)は、前記絡合繊維シートへ前記高分子弾性体を含浸させる工程である。
工程(5)では、上記海成分の除去前及び海成分の除去後のうち少なくとも一方の段階で、高分子弾性体を絡合繊維シートへ含浸させる。
本実施形態の人工皮革の製造においては、天然皮革に近い風合いや形態安定性を付与すると共に柔軟性を付与するために、海成分を除去する前に、絡合繊維シートへ前記高分子弾性体を含浸させることが好ましい。
このように、海成分を除去する前に高分子弾性体を含浸付与することにより、海成分の除去後に繊維束を形成する極細繊維の間に、海成分を除去して形成される空隙が形成される。その結果、繊維束内部の極細繊維が高分子弾性体に拘束され難くなり、すなわち極細繊束が高分子弾性体の影響を受け難くなり、柔軟性に優れる人工皮革が得られ易くなる。なお、海島型複合繊維から海成分を除去した後の、繊維束を形成している極細繊維に高分子弾性体を含浸付与した場合には、繊維束の空隙に高分子弾性体が侵入することにより、繊維束を形成する極細繊維が高分子弾性体で拘束されて硬い風合いの人工皮革が得られる。
<Step (5)>
The step (5) is a step of impregnating the entangled fiber sheet with the polymeric elastomer.
In the step (5), the entangled fiber sheet is impregnated with a polymeric elastomer at least at one of the stages before and after the removal of the sea component.
In producing the artificial leather of this embodiment, in order to impart a texture and shape stability similar to those of natural leather as well as flexibility, it is preferable to impregnate the entangled fiber sheet with the polymer elastomer before removing the sea component.
In this way, by impregnating the ultrafine fibers with a polymer elastomer before removing the sea part, voids are formed between the ultrafine fibers that form the fiber bundle after the sea part is removed, which are formed by removing the sea part. As a result, the ultrafine fibers inside the fiber bundle are less likely to be restrained by the polymer elastomer, i.e., the ultrafine bundle is less likely to be affected by the polymer elastomer, making it easier to obtain an artificial leather with excellent flexibility. Note that when the ultrafine fibers that form the fiber bundle after the sea part is removed from the islands-in-sea type composite fiber are impregnated with a polymer elastomer, the polymer elastomer penetrates into the voids in the fiber bundle, and the ultrafine fibers that form the fiber bundle are restrained by the polymer elastomer, thereby obtaining an artificial leather with a hard texture.
上記高分子弾性体を上記絡合繊維シートに付与するに当たっては、高分子弾性体を溶剤中に溶解または分散させた非水系の高分子弾性体液を用いてもよいし、高分子弾性体を必要に応じて分散剤とともに水系媒体に分散させた水系の高分子弾性体液を用いてもよい。前者の場合、均一な高分子弾性体液が得られ易く、後者の場合は有機溶剤の使用量を低下させ易くなる。 When applying the polymer elastomer to the entangled fiber sheet, a non-aqueous polymer elastomer liquid in which the polymer elastomer is dissolved or dispersed in a solvent may be used, or an aqueous polymer elastomer liquid in which the polymer elastomer is dispersed in an aqueous medium together with a dispersant as necessary may be used. In the former case, a uniform polymer elastomer liquid is easily obtained, and in the latter case, it is easy to reduce the amount of organic solvent used.
高分子弾性体液の濃度、すなわち高分子弾性体液中の高分子弾性体の含有量は、0.1~60質量%が好ましい。
高分子弾性体液には、最終的に得られる人工皮革の性質を損なわない範囲で、染料や顔料等の着色剤、凝固調節剤、酸化防止剤、紫外線吸収剤、蛍光剤、防黴剤、浸透剤、消泡剤、滑剤、撥水剤、撥油剤、増粘剤、増量剤、硬化促進剤、発泡剤、ポリビニルアルコールやカルボキシルメチルセルロース等の水溶性高分子化合物等、各種添加剤を適宜配合してもよい。
The concentration of the polymeric elastomer body fluid, ie, the content of the polymeric elastomer in the polymeric elastomer body fluid, is preferably 0.1 to 60% by mass.
The polymer elastic body fluid may contain various additives as appropriate, provided that the additives do not impair the properties of the artificial leather that is finally obtained. These additives include colorants such as dyes and pigments, coagulation regulators, antioxidants, ultraviolet absorbers, fluorescent agents, antifungal agents, penetrating agents, defoamers, lubricants, water repellents, oil repellents, thickeners, bulking agents, hardening accelerators, foaming agents, and water-soluble polymer compounds such as polyvinyl alcohol and carboxymethyl cellulose.
工程(5)で使用する高分子弾性体の詳細は、上述の「高分子弾性体」の欄で説明したとおりである。 Details of the polymer elastomer used in step (5) are as explained in the "Polymer elastomer" section above.
高分子弾性体を絡合繊維シートに含浸させ、次いで高分子弾性体を従来公知の乾式法または湿式法により凝固させることで、高分子弾性体を絡合繊維シート内に固定してもよい。ここでいう乾式法とは、溶剤や分散剤等を乾燥等により除去することで、高分子弾性体を繊維シート構造体内に固定させる方法全般を指す。また、ここでいう湿式法とは、高分子弾性体液を含浸した絡合繊維シート構造体を、高分子弾性体の非溶剤や凝固剤で処理したり、感熱ゲル化剤などを添加した水系高分子弾性体液を用いて、含浸後の絡合繊維シートに加熱処理等を施すことにより、分散剤を除去するに先立って絡合繊維シート構造体内に高分子弾性体を仮に固定するか完全に固定させる方法全般を指す。 The polymer elastomer may be impregnated into the entangled fiber sheet, and then solidified by a conventional dry or wet method to fix the polymer elastomer in the entangled fiber sheet. The dry method here refers to any method in which a solvent, dispersant, etc. are removed by drying or the like to fix the polymer elastomer in a fiber sheet structure. The wet method here refers to any method in which a polymer elastomer is temporarily or completely fixed in the entangled fiber sheet structure prior to removing the dispersant by treating the entangled fiber sheet structure impregnated with a polymer elastomer liquid with a non-solvent or coagulant for the polymer elastomer, or by using an aqueous polymer elastomer liquid containing a heat-sensitive gelling agent or the like to heat the impregnated entangled fiber sheet.
<工程(6)>
工程(6)は、前記極細発生型繊維から少なくとも一成分を除去する工程である。上記一成分は、海島型複合繊維に含まれる海成分の樹脂であることが好ましい。海成分を除去することにより、極細発生型繊維を極細繊維の繊維束に変換することができる。
<Step (6)>
Step (6) is a step of removing at least one component from the ultrafine fiber. The one component is preferably a sea component resin contained in the islands-in-sea composite fiber. By removing the sea component, the ultrafine fiber can be converted into a fiber bundle of ultrafine fibers.
海成分の樹脂を除去する方法としては、例えば、海成分の樹脂のみを選択的に除去し得る溶剤または分解剤を用いて除去する方法が挙げられる。
海成分が、ポリビニルアルコール系樹脂、水溶性ポリエステル樹脂、易アルカリ分解性の変性ポリエステル樹脂、ポリアクリルアミド樹脂、カルボキシメチルセルロース樹脂等の水溶性樹脂である場合、海成分は水により除去することが可能である。
海成分が、水に溶解性がなく有機溶剤に溶解性があり、島成分の樹脂がポリアミド系樹脂やポリエステル系樹脂である場合、海成分を溶解除去する有機溶剤としては、トルエン、トリクロロエチレン、テトラクロロエチレン等が挙げられる。
本実施形態においては、環境対応の観点から、水を使用することが好ましく、水に難溶解性である樹脂に対しては、樹脂の溶解力が高いトルエンを使用することが好ましい。
As a method for removing the sea part resin, for example, there can be mentioned a method in which only the sea part resin is removed using a solvent or decomposing agent capable of selectively removing only the sea part resin.
When the sea component is a water-soluble resin such as a polyvinyl alcohol resin, a water-soluble polyester resin, an easily alkali-decomposable modified polyester resin, a polyacrylamide resin, or a carboxymethyl cellulose resin, the sea component can be removed with water.
When the sea component is insoluble in water but soluble in organic solvents and the island component resin is a polyamide resin or a polyester resin, examples of the organic solvent for dissolving and removing the sea component include toluene, trichloroethylene, and tetrachloroethylene.
In this embodiment, from the viewpoint of environmental friendliness, it is preferable to use water, and for resins that are poorly soluble in water, it is preferable to use toluene, which has a high resin dissolving power.
海成分を除去する際、ディップニップ処理を並行して行うことが好ましい。
また、海島型複合繊維を溶融紡糸してウェブを得てから海成分を除去するまでの間に、水蒸気、熱水、乾熱等、熱収縮処理(繊維収縮処理)を施して繊維を緻密化させてもよい。
When removing the sea component, it is preferable to carry out a dip nip treatment in parallel.
In addition, after the islands-in-sea type composite fiber is melt-spun to obtain a web, and before the sea component is removed, the fibers may be densified by subjecting them to a heat shrinkage treatment (fiber shrinkage treatment) using steam, hot water, dry heat, or the like.
<工程(7)>
工程(7)は、人工皮革を染色する工程である。
工程(7)は、海島型繊維を極細繊維束に変成した後の何れの段階で実行することができる。
<Step (7)>
The step (7) is a step of dyeing the artificial leather.
Step (7) can be carried out at any stage after the islands-in-the-sea fibers are converted into ultrafine fiber bundles.
工程(7)においては、繊維の種類に応じて適宜選択される分散染料、反応染料、酸性染料、金属錯塩染料、硫化染料、硫化建染染料等を主体とした染料を用いた、パッダー、ジッガー、サーキュラー、ウィンス等の従来の人工皮革の染色に通常用いられる公知の染色機を使用した染色方法が何れも採用可能である。
また、染色以外にも、必要に応じて、ドライ状態での機械的もみ処理、染色機や洗濯機等を使用したウェット状態でのリラックス処理、柔軟剤処理、防燃剤や抗菌剤、消臭剤、撥水撥油剤等の機能性付与処理、シリコーン系樹脂やシルクプロテイン含有処理剤、グリップ性付与樹脂等の触感改質剤付与処理、着色剤やエナメル調用コーティング樹脂等の、上述した樹脂以外の樹脂を塗布する意匠性付与処理等の仕上げ処理を行ってもよい。
In the step (7), any dyeing method using a known dyeing machine that is usually used for dyeing conventional artificial leathers such as padder, jigger, circular, and wince, can be used, using a dye mainly consisting of a disperse dye, a reactive dye, an acid dye, a metal complex dye, a sulfur dye, or a sulfur vat dye, which is appropriately selected depending on the type of fiber.
In addition to dyeing, finishing treatments such as mechanical kneading in a dry state, relaxation treatment in a wet state using a dyeing machine or washing machine or the like, treatment with a fabric softener, treatment to impart functionality such as a flame retardant, antibacterial agent, deodorant, water repellent or oil repellent, treatment to impart a texture modifier such as a silicone resin, a silk protein-containing treatment agent or a gripping resin, and design imparting treatment by applying a resin other than the above-mentioned resins, such as a colorant or an enamel-like coating resin, may be performed as necessary.
本実施形態の人工皮革は、従来の人工皮革製造と同様に、必要により、厚さ方向に複数枚にスライスし、裏面となる面を研削する等して厚さを調節したり、裏面となる面に、高分子弾性体または極細繊維束を溶解または膨潤させることのできる溶剤を塗布してもよい。 The artificial leather of this embodiment can be sliced into multiple pieces in the thickness direction as required, and the thickness can be adjusted by grinding the back surface, or a solvent capable of dissolving or swelling the polymer elastomer or ultrafine fiber bundles can be applied to the back surface, in the same manner as in conventional artificial leather manufacturing.
本実施形態の人工皮革は、繊維立毛面を有していてもよい。
繊維立毛面の形成には、サンドペーパーや針布等によるバフィング処理や、ブラッシング処理等の公知の方法を何れも用いることができる。また、このような起毛処理の前あるいは後に、高分子弾性体または極細繊維束を溶解または膨潤させることのできる溶剤、例えば、高分子弾性体がポリウレタンエラストマーであればジメチルホルムアミド(DMF)等を含む処理液や、レゾルシン等のフェノール系化合物を含む処理液等を起毛処理する表面に塗布してもよい。これにより、高分子弾性体や極細繊維束の接着による極細繊維束の拘束状態、人工皮革の極細繊維立毛長、表面摩擦耐久性等を微調節することができる。
また、上記起毛処理を行なった後に、上述した工程(7)を行って、染色された人工皮革としてもよい。
The artificial leather of the present embodiment may have a napped surface.
To form a fiber-raised surface, any of the known methods such as buffing with sandpaper or card cloth, brushing, etc. may be used. In addition, before or after such nap raising, a solvent capable of dissolving or swelling the polymeric elastomer or ultrafine fiber bundles, for example, a treatment liquid containing dimethylformamide (DMF) or the like when the polymeric elastomer is a polyurethane elastomer, or a treatment liquid containing a phenolic compound such as resorcinol, may be applied to the surface to be nap-raised. This allows fine adjustment of the restraint state of the ultrafine fiber bundles due to adhesion of the polymeric elastomer or ultrafine fiber bundles, the nap length of the ultrafine fibers of the artificial leather, the surface friction durability, etc.
After the above-mentioned raising treatment, the above-mentioned step (7) may be carried out to produce a dyed artificial leather.
以下、本発明を実施例によりさらに具体的に説明する。なお、本発明の範囲は実施例の内容により何ら限定されるものではない。 The present invention will be explained in more detail below with reference to examples. Note that the scope of the present invention is not limited in any way by the contents of the examples.
はじめに、後述する実施例及び比較例で用いた測定及び評価方法を以下にまとめて説明する。 First, the measurement and evaluation methods used in the examples and comparative examples described below are summarized below.
〈平均径〉
ポリエステル繊維の平均径は、以下のように測定した。
人工皮革の断面の走査型電子顕微鏡(SEM)写真を3000倍で撮影した。そして、SEM写真から繊維の断面をランダムに10個選んで断面積を測定した。その断面積の算術平均値を算出して、以下の式(1)を元に算出したものを繊維の平均径とした。
平均径=(平均断面積/π)1/2×2・・・式(1)
Average diameter
The average diameter of the polyester fibers was measured as follows.
A scanning electron microscope (SEM) photograph of the cross section of the artificial leather was taken at 3000 times. Then, ten cross sections of the fibers were randomly selected from the SEM photograph, and the cross-sectional area was measured. The arithmetic average value of the cross-sectional areas was calculated, and the average diameter of the fibers was calculated based on the following formula (1).
Average diameter = (average cross-sectional area/π) 1/2 ×2...Formula (1)
〈平均繊度〉
ポリエステル繊維の平均繊度は以下のように測定した。
人工皮革の断面の走査型電子顕微鏡(SEM)写真を3000倍で撮影した。そして、SEM写真から繊維の断面をランダムに10個選んで断面積を測定し、その断面積の算術平均値を算出した。そして、断面積の平均値を樹脂の密度を用いて平均繊度に換算した。
Average fineness
The average fineness of the polyester fibers was measured as follows.
A scanning electron microscope (SEM) photograph of the cross section of the artificial leather was taken at 3000 times. Then, ten cross sections of the fibers were randomly selected from the SEM photograph, and the cross-sectional area was measured and the arithmetic average value of the cross-sectional area was calculated. The average value of the cross-sectional area was converted into the average fineness using the density of the resin.
〈高分子弾性体の含有量〉
1g以上の質量となる大きさに切り出した人工皮革の質量Cを測定した。
高分子弾性体がN,N-ジメチルホルムアミド(DMF)に溶解する場合、上記人工皮革を300mLのDMFに常温で5時間浸漬した後、圧搾してDMFを除去し、圧搾して得られるDMFを水に入れ、水が濁らなくなるまで、再び同じ条件でDMFを交換しながらDMFに浸漬して圧搾する工程を繰り返し行い、人工皮革から高分子弾性体を除去した。人工皮革から高分子弾性体を除去した残分であるポリエステル繊維を乾燥してDMFを除去し、乾燥後のポリエステル繊維の質量Dを測定した。そして、以下の式(2)に基づいて、人工皮革中の高分子弾性体の含有量を求めた。
高分子弾性体の含有量(質量%)=(C-D)/C×100・・・式(2)
高分子弾性体がDMFに溶解しない場合、上記人工皮革を300mLのヘキサフルオロ-2-プロパノール(HFIP)に常温(25℃)で12時間浸漬してポリエステル繊維を溶解し、残った固形分を濾過して取り出し、HFIPで洗浄した後、乾燥してHFIPを除去し、得られた固体の質量Eを測定した。そして、以下の式(3)に基づいて、人工皮革中の高分子弾性体の含有量を求めた。
高分子弾性体の含有量(質量%)=E/C×100・・・式(3)
なお、「固形分」とは、溶剤及び液体の分散剤を除く成分を意味する。すなわち、液体を除く成分を意味する。
<Content of polymer elastomer>
The mass C of the artificial leather cut into a size having a mass of 1 g or more was measured.
In the case where the polymeric elastomer is soluble in N,N-dimethylformamide (DMF), the artificial leather was immersed in 300 mL of DMF at room temperature for 5 hours, squeezed to remove the DMF, and the squeezed DMF was poured into water. The process of immersing in DMF and squeezing was repeated under the same conditions while replacing the DMF until the water became clear, thereby removing the polymeric elastomer from the artificial leather. The polyester fiber, which was the residue after removing the polymeric elastomer from the artificial leather, was dried to remove the DMF, and the mass D of the polyester fiber after drying was measured. The content of the polymeric elastomer in the artificial leather was then calculated based on the following formula (2).
Content of polymer elastomer (mass%)=(C−D)/C×100 Equation (2)
When the polymer elastomer was not dissolved in DMF, the artificial leather was immersed in 300 mL of hexafluoro-2-propanol (HFIP) at room temperature (25° C.) for 12 hours to dissolve the polyester fibers, and the remaining solid was filtered out and washed with HFIP, and then dried to remove the HFIP, and the mass E of the obtained solid was measured. Then, the content of the polymer elastomer in the artificial leather was calculated based on the following formula (3).
Content of polymer elastomer (mass%)=E/C×100 Equation (3)
The term "solid content" refers to components excluding solvents and liquid dispersants, i.e., components excluding liquids.
〈厚さ、目付け及び見掛け密度〉
JIS L1096(2010)(A法)に準じて、厚さ測定器(測定子直径:10mm)を用いて、5秒間、23.5kPaの一定圧力の下、得られた人工皮革の厚さ(mm)及び目付け(g/m2)を測定し、これらの値から人工皮革の見掛け密度(g/cm3)を算出した。
<Thickness, basis weight and apparent density>
In accordance with JIS L1096 (2010) (Method A), the thickness (mm) and basis weight (g/ m2 ) of the obtained artificial leather were measured using a thickness gauge (measuring probe diameter: 10 mm) under a constant pressure of 23.5 kPa for 5 seconds, and the apparent density (g/ cm3 ) of the artificial leather was calculated from these values.
〈極細繊維束の面積及び個数測定〉
人工皮革の小片を準備し、裏面(立毛や樹脂層が形成されていない側)を両面粘着テープで土台に固定した。人工皮革の表面から0.3mm深さの位置を片刃カミソリでスライスし、表面側を除去し、残った側の切断面の走査型電子顕微鏡(SEM)写真を100倍で撮影した。それを印刷して(図1参照)、印刷面をフラットパネル照明に置き、印刷面側から光を当てて裏面へ画像を透かし、裏面側から切断面に存在する極細繊維束の切断面部分を黒く塗り(図2参照)、Image-Pro Premier ver.9.1(株式会社日本ローバー製)を用いて、極細繊維束の切断面の面積及び極細繊維束の切断面の個数を測定した。上記極細繊維束の切断面の面積の最大値を、極細繊維束の切断面の最大面積とした。また、極細繊維束の切断面の面積の合計値を1mm2あたりに換算し、極細繊維束総面積とした。さらに、極細繊維束の切断面の合計個数に対する、切断面の面積が500μm2以上である極細繊維束の個数割合を算出した。
<Measurement of area and number of ultrafine fiber bundles>
A small piece of artificial leather was prepared, and the back side (the side on which no nap or resin layer was formed) was fixed to a base with double-sided adhesive tape. The artificial leather was sliced at a depth of 0.3 mm from the surface with a single-edged razor, the front side was removed, and a scanning electron microscope (SEM) photograph of the cut surface of the remaining side was taken at 100 times. It was printed (see FIG. 1), the printed surface was placed on a flat panel light, and light was applied from the printed surface side to make the image transparent to the back side, and the cut surface part of the ultrafine fiber bundle present on the cut surface from the back side was painted black (see FIG. 2), and the area of the cut surface of the ultrafine fiber bundle and the number of cut surfaces of the ultrafine fiber bundle were measured using Image-Pro Premier ver. 9.1 (manufactured by Nippon Rover Co., Ltd.). The maximum value of the area of the cut surfaces of the ultrafine fiber bundle was taken as the maximum area of the cut surfaces of the ultrafine fiber bundle. In addition, the total value of the area of the cut surfaces of the ultrafine fiber bundle was converted to per 1 mm2 to take the total area of the ultrafine fiber bundle. Furthermore, the ratio of the number of ultrafine fiber bundles having a cut surface area of 500 μm2 or more to the total number of cut surfaces of the ultrafine fiber bundles was calculated.
〈20%強度〉
得られた人工皮革から、縦16cm×横2.5cmのサイズで切り出し、試験片とした。試験片を、10cm間隔に調整された引張試験機のチャックに、人工皮革の縦方向(工程(3)における工程の流れ方向)が伸びるように挟み、オートグラフを用いて引張速度100mm/分でS-S曲線を測定した。上記作業を3回実施した。得られたS-S曲線において、伸度が20%時の強度を読み取り、3回測定した際の平均値を、縦方向の20%強度(kgf/2.5cm)とした。
また、引張試験機のチャックに、人工皮革の縦方向に垂直な横方向(工程(3)における工程の流れ方向から90°向きをかえた方向)が伸びるように挟んだこと以外は上記と同様にして、横方向の20%強度(kgf/2.5cm)を算出した。
<20% Strength>
A test piece measuring 16 cm length x 2.5 cm width was cut out from the obtained artificial leather. The test piece was clamped between the chucks of a tensile tester adjusted to 10 cm intervals so that the artificial leather was stretched in the longitudinal direction (the flow direction of the process in step (3)), and an S-S curve was measured using an autograph at a tensile speed of 100 mm/min. The above procedure was carried out three times. In the obtained S-S curve, the strength at an elongation of 20% was read, and the average value of the three measurements was taken as the 20% strength in the longitudinal direction (kgf/2.5 cm).
In addition, the 20% strength (kgf/2.5 cm) in the horizontal direction was calculated in the same manner as above, except that the artificial leather was clamped in the chuck of the tensile tester so that it was stretched in the horizontal direction perpendicular to the longitudinal direction of the artificial leather (the direction rotated 90° from the flow direction of the process in step (3)).
〈摩耗減量〉
JIS L 1096(2020)(8.19.5 E法 マーチンデール法)に準じ、マーチンデール摩耗試験機を用いて、押圧荷重12kPa(gf/cm2)、摩耗回数35000万回の条件で試験を行い、人工皮革の表面の摩耗減量を算出した。
<Wear loss>
In accordance with JIS L 1096 (2020) (8.19.5 E Method, Martindale Method), a test was conducted using a Martindale abrasion tester under conditions of a pressure load of 12 kPa (gf/cm2) and 350 million abrasion cycles, and the abrasion loss on the surface of the artificial leather was calculated.
〈ピリング〉
JIS L 1096(2020)(8.19.5 E法 マーチンデール法)に準じ、押圧荷重12kPa(gf/cm2)、表1に記載の摩耗回数にて、マーチンデール摩耗試験機を用いて試験を行い、目視及び触感にて試験後の人工皮革表面のピリングを以下の基準で判定した。
A:集毛した毛玉を全く確認できず、触感もスムースで滑らかである。
B:若干集毛した感じが見受けられるものの、毛玉は感じられず、少しざらついた触感である。
C:集毛した毛玉が見受けられ、ざらついた触感である。
<pilling>
The test was conducted using a Martindale abrasion tester in accordance with JIS L 1096 (2020) (8.19.5 E Method, Martindale Method) with a pressure load of 12 kPa (gf/ cm2 ) and the number of abrasion cycles shown in Table 1. The pilling on the artificial leather surface after the test was judged visually and by touch according to the following criteria.
A: No collected hairballs were visible, and the texture was smooth and silky.
B: Although there is some feeling of hair gathering, no pilling is noticeable and the texture is a little rough.
C: Hair balls were observed and the texture was rough.
〈風合い〉
得られた人工皮革の折り曲げた後の風合いを、目視及び触感にて以下の基準で判定した。
A:充実感があり、ボキ折れする(座屈シワが発生する)ことなく、柔軟性に優れた風合いである。
B:充実感に欠ける、ボキ折れする(座屈シワが発生する)、及び硬いのいずれか1つ以上に該当する風合いである。
Texture
The texture of the resulting artificial leather after bending was judged visually and by touch according to the following criteria.
A: It has a rich feel, is not easily broken (does not buckle or wrinkle), and has excellent flexibility.
B: The texture falls into one or more of the following categories: lacking in solidity, easily breaking (creases due to buckling), and hard.
〈外観〉
目視により、得られた人工皮革の外観を目視にて以下の基準で判定した。
A:繊維が集毛して固まっておらず、細かくばらけており、均一な長さを有している。
B:繊維が集毛して粗くばらけており、不均一な長さを有している。
<exterior>
The appearance of the resulting artificial leather was visually observed and judged according to the following criteria.
A: The fibers are not clumped together, but are finely separated and have a uniform length.
B: The fibers are loosely packed and have uneven lengths.
[実施例1]
海成分として水溶性熱可塑性ポリビニルアルコール系樹脂、島成分としてイソフタル酸変性ポリエチレンテレフタレート(イソフタル酸で6mol%変性させたポリエチレンフタレート)とを、海成分/島成分が25/75(質量比)となるように270℃で溶融複合紡糸用口金(島数:25島/繊維)より吐出し、紡糸速度3500m/minで紡糸を行い、平均繊度2.95dtexの海島型複合繊維を含む繊維ウェブを得た。
次に、カレンダーロールで熱プレスした後、凹凸形状が付与されたロールでプレスし、捲縮率が200%となるように繊維ウェブの幅方向へ凹凸形状を付与(捲縮処理を付与)した。
次に、捲縮処理が付与された繊維ウェブを長さ方向に折りたたみ、7枚分の繊維ウェブが重なるようにしながらクロスラップ積層して積層ウェブを形成した。そして、積層ウェブに対して1バーブと6バーブのニードルを用いてパンチ密度3500パンチ/cm2でニードルパンチ処理を行うことにより、目付け385g/m2の縦方向に捲縮処理された絡合繊維シートを形成した。
次に、絡合繊維シートを110℃、23.5%RHの条件でスチーム処理した。そして、90~110℃のオーブン中で乾燥させた後、さらに、120℃で熱プレスすることにより、目付755g/m2、比重0.65g/cm3、厚さ1.16mmの熱プレス繊維シートを得た。
次に、熱プレス繊維シートに、高分子弾性体としてポリカーボネート系無黄変ポリウレタン(ポリウレタン(1))のエマルジョンに、高分子弾性体100質量部に対してカルボジイミド系架橋剤1.5質量部と硫酸アンモニウム2.7質量部とを添加し、高分子弾性体の固形分を16質量%としたエマルジョンをpick up52%で含浸させ、高分子弾性体の固形分が熱収縮繊維シート中のポリエステル繊維と高分子弾性体の合計に対して10質量%となるよう調整した。そして、エマルジョンを含浸させた熱プレス繊維シートを110℃、29%RH雰囲気下で湿熱処理し、さらに、150℃で乾燥処理し、高分子弾性体を付与された熱プレス繊維シートを得た。
そして、高分子弾性体を付与された熱プレス繊維シートを、ディップニップ処理、及び高圧水流処理しながら95℃の熱水中に10分間浸漬することにより、海島型複合繊維の海成分である水溶性熱可塑性ポリビニルアルコール系樹脂を溶解除去し、平均径3.02μm、平均繊度0.1dtexのイソフタル酸変性ポリエチレンテレフタレートの極細繊維を形成させた。そして、乾燥した後、裏面を♯320ペーパーを用いて研削し、主面を♯320及び♯400ペーパーを用いて研削することにより繊維立毛面を形成させ、繊維立毛面を有する人工皮革を得た。
得られた人工皮革を、分散染料を用いて、120℃で染色を行うことにより、目付439g/m2、見掛け密度0.499g/cm3、厚さ0.88mmの染色された人工皮革を得た。得られた人工皮革の測定及び評価結果を表1に示す。
[Example 1]
A water-soluble thermoplastic polyvinyl alcohol-based resin as the sea component and an isophthalic acid-modified polyethylene terephthalate (polyethylene phthalate modified with isophthalic acid by 6 mol %) as the island component were extruded from a melt conjugate spinning die (number of islands: 25 islands/fiber) at 270° C. so that the sea component/island component ratio was 25/75 (mass ratio), and spun at a spinning speed of 3,500 m/min to obtain a fiber web containing islands-in-sea type conjugate fibers having an average fineness of 2.95 dtex.
Next, the fiber web was hot-pressed with a calendar roll, and then pressed with a roll having an uneven shape to impart an uneven shape to the width direction of the fiber web (to impart a crimping treatment) so that the crimping rate was 200%.
Next, the crimped fiber web was folded in the length direction, and seven sheets of the fiber web were cross-lapped and laminated to form a laminated web. The laminated web was then needle-punched using 1-barb and 6-barb needles at a punch density of 3500 punches/ cm2 to form a longitudinally crimped entangled fiber sheet with a basis weight of 385 g/ m2 .
Next, the entangled fiber sheet was subjected to steam treatment under conditions of 110° C. and 23.5% RH, and then dried in an oven at 90 to 110° C., and then further heat-pressed at 120° C. to obtain a heat-pressed fiber sheet having a basis weight of 755 g/m 2 , a specific gravity of 0.65 g/cm 3 , and a thickness of 1.16 mm.
Next, the heat-pressed fiber sheet was impregnated with an emulsion of a polycarbonate-based non-yellowing polyurethane (polyurethane (1)) as a polymeric elastomer, in which 1.5 parts by mass of a carbodiimide-based crosslinking agent and 2.7 parts by mass of ammonium sulfate were added to 100 parts by mass of the polymeric elastomer, and the solid content of the polymeric elastomer was 16% by mass. The solid content of the polymeric elastomer was adjusted to 10% by mass relative to the total of the polyester fiber and the polymeric elastomer in the heat-shrinkable fiber sheet. The heat-pressed fiber sheet impregnated with the emulsion was subjected to a wet heat treatment at 110°C and 29% RH atmosphere, and further dried at 150°C to obtain a heat-pressed fiber sheet impregnated with a polymeric elastomer.
The hot-pressed fiber sheet to which the polymer elastomer had been applied was then immersed in hot water at 95°C for 10 minutes while being subjected to a dip nip treatment and a high-pressure water jet treatment, thereby dissolving and removing the water-soluble thermoplastic polyvinyl alcohol resin, which is the sea component of the islands-in-sea type composite fiber, and forming ultrafine fibers of isophthalic acid-modified polyethylene terephthalate having an average diameter of 3.02 µm and an average fineness of 0.1 dtex. After drying, the back surface was ground with #320 paper, and the main surface was ground with #320 and #400 papers to form a fiber-raised surface, thereby obtaining an artificial leather having a fiber-raised surface.
The obtained artificial leather was dyed with a disperse dye at 120° C. to obtain a dyed artificial leather having a basis weight of 439 g/m 2 , an apparent density of 0.499 g/cm 3 and a thickness of 0.88 mm. The measurement and evaluation results of the obtained artificial leather are shown in Table 1.
[実施例2]
表実施例1において、捲縮率が175%となるように捲縮処理を行ったこと以外は同様にして、染色された人工皮革を得た。得られた人工皮革の測定及び評価結果を表1に示す。
[Example 2]
A dyed artificial leather was obtained in the same manner as in Example 1 in Table 1, except that the shrink treatment was carried out so that the shrink rate became 175%. The measurement and evaluation results of the obtained artificial leather are shown in Table 1.
[実施例3]
実施例1において、人工皮革の厚さを0.68mmとなるように製造したこと以外は同様にして、染色された人工皮革を得た。得られた人工皮革の測定及び評価結果を表1に示す。
[Example 3]
A dyed artificial leather was obtained in the same manner as in Example 1, except that the thickness of the artificial leather was 0.68 mm. The measurement and evaluation results of the obtained artificial leather are shown in Table 1.
[実施例4]
実施例3において、捲縮率が175%となるように捲縮処理を行ったこと以外は同様にして、染色された人工皮革を得た。得られた人工皮革の測定及び評価結果を表1に示す。
[Example 4]
A dyed artificial leather was obtained in the same manner as in Example 3, except that the shrink treatment was carried out so that the shrink rate became 175%. The measurement and evaluation results of the obtained artificial leather are shown in Table 1.
[実施例5]
実施例3において、幅方向へ捲縮処理が付与された繊維ウェブを、絡合繊維シートの進行方向(工程の流れ方向)に積層して積層ウェブを形成し、横方向に捲縮処理された絡合繊維シートを形成したこと以外は同様にして、染色された人工皮革を得た。得られた人工皮革の測定及び評価結果を表1に示す。
[Example 5]
A dyed artificial leather was obtained in the same manner as in Example 3, except that the fiber webs crimped in the width direction were laminated in the traveling direction of the entangled fiber sheet (the flow direction of the process) to form a laminated web, and an entangled fiber sheet crimped in the transverse direction was formed. The measurement and evaluation results of the obtained artificial leather are shown in Table 1.
[実施例6]
実施例1において、海成分としてポリエチレンを用い、繊維絡合シートを90℃の熱水中で収縮させ、冷却したロールでプレスすることにより熱収縮処理されたウェブ絡合シートを得て、高分子弾性体としてポリカーボネート系ポリウレタン(ポリウレタン(2))のDMF溶液(固形分18.5質量%)を用い、高分子弾性体の固形分が熱プレス繊維シート中のポリエチレンテレフタレート繊維と高分子弾性体の合計に対して30質量%となるように調整し、海成分であるポリエチレンを溶解除去するのにトルエンを用い、厚さを0.78mmに調整したこと以外は同様にして、染色された人工皮革を得た。得られた人工皮革の測定及び評価結果1を表に示す。
[Example 6]
A dyed artificial leather was obtained in the same manner as in Example 1, except that polyethylene was used as the sea component, the fiber-entangled sheet was shrunk in hot water at 90°C and pressed with a cooled roll to obtain a heat-shrunk web entangled sheet, a DMF solution (solid content 18.5 mass%) of polycarbonate-based polyurethane (polyurethane (2)) was used as the polymer elastomer, the solid content of the polymer elastomer was adjusted to 30 mass% relative to the total of the polyethylene terephthalate fiber and the polymer elastomer in the heat-pressed fiber sheet, toluene was used to dissolve and remove the polyethylene as the sea component, and the thickness was adjusted to 0.78 mm. Measurement and evaluation results 1 of the obtained artificial leather are shown in Table 1.
[実施例7]
実施例6において、捲縮率が175%となるように捲縮処理を行ったこと以外は同様にして、染色された人工皮革を得た。得られた人工皮革の測定及び評価結果を表1に示す。
[Example 7]
A dyed artificial leather was obtained in the same manner as in Example 6, except that the shrink treatment was carried out so that the shrink rate became 175%. The measurement and evaluation results of the obtained artificial leather are shown in Table 1.
[実施例8]
実施例7において、高分子弾性体としてエーテル系ポリウレタン(ポリウレタン(3))のDMF溶液(固形分18.5質量%)を用いたこと以外は同様にして、染色された人工皮革を得た。得られた人工皮革の測定及び評価結果を表1に示す。
[Example 8]
A dyed artificial leather was obtained in the same manner as in Example 7, except that a DMF solution (solid content 18.5% by mass) of an ether-based polyurethane (polyurethane (3)) was used as the polymer elastomer. The measurement and evaluation results of the obtained artificial leather are shown in Table 1.
[比較例1]
実施例1において、捲縮処理を付与しなかったこと以外は同様にして、染色された人工皮革を得た。得られた人工皮革の測定及び評価結果を表2に示す。
[Comparative Example 1]
A dyed artificial leather was obtained in the same manner as in Example 1, except that the shrink treatment was not carried out. The measurement and evaluation results of the obtained artificial leather are shown in Table 2.
[比較例2]
実施例3において、捲縮処理を付与しなかったこと以外は同様にして、染色された人工皮革を得た。得られた人工皮革の測定及び評価結果を表2に示す。
[Comparative Example 2]
A dyed artificial leather was obtained in the same manner as in Example 3, except that the shrink treatment was not carried out. The measurement and evaluation results of the obtained artificial leather are shown in Table 2.
[比較例3]
実施例5において、捲縮処理を付与しなかったこと、及び厚さを0.80mmとしたこと以外は同様にして、染色された人工皮革を得た。得られた人工皮革の測定及び評価結果を表2に示す。
[Comparative Example 3]
A dyed artificial leather was obtained in the same manner as in Example 5, except that the shrink treatment was not performed and the thickness was set to 0.80 mm. The measurement and evaluation results of the obtained artificial leather are shown in Table 2.
[比較例4]
実施例6において、捲縮処理を付与しなかったこと以外は同様にして、染色された人工皮革を得た。得られた人工皮革の測定及び評価結果を表2に示す。
[Comparative Example 4]
A dyed artificial leather was obtained in the same manner as in Example 6, except that the shrink treatment was not carried out. The measurement and evaluation results of the obtained artificial leather are shown in Table 2.
[比較例5]
実施例6において、紡糸速度800m/minで紡糸を行ったこと以外は同様にして海島型複合繊維を得た後、該海島型複合繊維を温水浴中で延伸倍率2.7倍に延伸することにより、4.0dtexの海島型複合繊維を得た。続いて、4.0dtexの海島型複合繊維に、クリンパーを用いて、捲縮率が9.0%となるように凹凸形状を付与(捲縮処理を付与)した後、カード機を用いて捲縮処理を付与した海島型複合繊維からなる繊維ウェブを作成した。
次に、繊維ウェブを長さ方向に折り畳み、7枚分の繊維ウェブが重なるようにしながらクロスラップ積層して積層ウェブを作成した。そして、積層ウェブに対して1バーブのニードルを用いてパンチ密度2500パンチ/cm2でニードルパンチ処理を行うことにより、目付け1128g/cm2の絡合繊維シートを形成した。
続いて、実施例6と同様の方法にて、熱プレス繊維シートを得て、熱プレス繊維シートへの高分子弾性体の付与、海島型複合繊維の海成分の溶解除去、繊維立毛面の形成を行い、繊維立毛面を有する人工皮革を得た。得られた人工皮革の測定及び評価結果を表2に示す。
[Comparative Example 5]
An islands-in-sea type composite fiber was obtained in the same manner as in Example 6, except that spinning was performed at a spinning speed of 800 m/min, and then the islands-in-sea type composite fiber was drawn in a warm water bath at a draw ratio of 2.7 times to obtain an islands-in-sea type composite fiber of 4.0 dtex. Next, an uneven shape was imparted to the 4.0 dtex islands-in-sea type composite fiber using a crimper so that the crimp rate was 9.0% (crimping treatment was imparted), and then a fiber web was produced from the islands-in-sea type composite fiber that had been crimped using a carding machine.
Next, the fiber web was folded in the length direction, and seven sheets of the fiber web were cross-lapped and laminated to form a laminated web. The laminated web was then subjected to needle punching treatment using a 1-barb needle at a punch density of 2500 punches/ cm2 to form an entangled fiber sheet with a basis weight of 1128 g/ cm2 .
Subsequently, a heat-pressed fiber sheet was obtained in the same manner as in Example 6, and a polymeric elastomer was imparted to the heat-pressed fiber sheet, the sea component of the islands-in-sea type composite fiber was dissolved and removed, and a fiber napped surface was formed, thereby obtaining an artificial leather having a fiber napped surface. The measurement and evaluation results of the obtained artificial leather are shown in Table 2.
[比較例6]
比較例5において、得られた短繊維からなる繊維ウェブへカレンダーロールで熱プレスした後、凹凸形状が付与されたロールでプレスし、捲縮率が200%となるように繊維ウェブの幅方向へ凹凸形状を付与(捲縮処理を付与)すると、短繊維ウェブが破れ、これ以降の処理を行うことができなかった。
[Comparative Example 6]
In Comparative Example 5, when the fiber web made of the obtained short fibers was hot-pressed with a calendar roll and then pressed with a roll having an uneven shape to impart an uneven shape in the width direction of the fiber web so that the crimp rate was 200% (i.e., crimping treatment was performed), the short fiber web broke and subsequent processing could not be performed.
[比較例7]
比較例3において、ニードルパンチ処理をパンチ密度5900パンチ/cm2まで大きくしたこと以外は同様にして、染色された人工皮革を得た。得られた人工皮革の測定及び評価結果を表2に示す。
[Comparative Example 7]
A dyed artificial leather was obtained in the same manner as in Comparative Example 3, except that the needle punching treatment was performed at a punch density of 5,900 punches/ cm2 . The measurement and evaluation results of the obtained artificial leather are shown in Table 2.
表1から、実施例1~8で得られた人工皮革は、風合い、表面の耐摩耗性、及び耐ピリング性に優れることが分かる。
一方、表面から0.3mmの深さで切断した際の切断面における極細繊維束の切断面の最大面積が4500μm2以上ではない人工皮革(比較例1、2及び4)は、優れた風合い、優れた表面の耐摩耗性、及び耐ピリング性を兼ね備えたものではないことが分かる。
また、上記最大面積が4500μm2以上であっても、極細繊維束の切断面の合計個数に対する、切断面の面積が500μm2以上である極細繊維束の個数割合が60%未満である人工皮革(比較例3)は、風合いに劣るものであることが分かる。
また、繊維ウェブに捲縮処理を付与せずニードルパンチ処理をパンチ密度5900パンチ/cm2まで大きくすることで繊維ウェブの絡合を高めた人工皮革(比較例7)は、切断面の面積が500μm2以上である極細繊維束の個数割合が60%未満であり、風合いと外観品位に劣るものであることが分かる。
It can be seen from Table 1 that the artificial leathers obtained in Examples 1 to 8 are excellent in texture, surface abrasion resistance, and pilling resistance.
On the other hand, it is clear that the artificial leathers (Comparative Examples 1, 2, and 4) in which the maximum area of the cut surface of the ultrafine fiber bundles when cut at a depth of 0.3 mm from the surface is not 4,500 µm2 or more do not have excellent texture, excellent surface abrasion resistance, and excellent pilling resistance.
In addition, it is also found that the artificial leather (Comparative Example 3 ) in which the ratio of the number of ultrafine fiber bundles having a cut surface area of 500 μm2 or more to the total number of cut surfaces of the ultrafine fiber bundles is less than 60% even when the maximum area is 4,500 μm2 or more is inferior in texture.
In addition, in the artificial leather (Comparative Example 7) in which the fiber web was not subjected to a crimping treatment and the needle punching treatment was performed to increase the punch density to 5,900 punches/ cm2 to increase the entanglement of the fiber web, the proportion of ultrafine fiber bundles having a cut surface area of 500 μm2 or more was less than 60%, and it is clear that the artificial leather was inferior in texture and appearance quality.
Claims (8)
表面から0.3mmの深さで切断した際の切断面において、極細繊維束の切断面の最大面積が4500μm2以上であり、かつ、前記極細繊維束の切断面の合計個数に対する、切断面の面積が500μm2以上である前記極細繊維束の個数割合が60%以上である、人工皮革。 An artificial leather containing ultrafine fibers,
An artificial leather, wherein, in a cut surface when cut at a depth of 0.3 mm from the surface, the maximum area of the cut surface of the ultrafine fiber bundle is 4,500 µm2 or more, and the proportion of the number of the ultrafine fiber bundles having a cut surface area of 500 µm2 or more to the total number of the cut surfaces of the ultrafine fiber bundles is 60% or more.
極細繊維発生型繊維から形成された繊維ウェブを準備する工程と、
前記繊維ウェブに捲縮処理を付与し、捲縮繊維ウェブを形成する工程と、
前記捲縮繊維ウェブを複数枚重ねてウェブ積層体を形成する工程と、
前記ウェブ積層体を絡合して絡合繊維シートを形成する工程と、
前記極細発生型繊維から少なくとも一成分を除去する工程とを備える、人工皮革の製造方法。 A method for producing an artificial leather according to any one of claims 1 to 6,
Providing a fibrous web formed from microfiber-generating fibers;
A step of subjecting the fiber web to a crimping treatment to form a crimped fiber web;
forming a web laminate by stacking a plurality of the crimped fiber webs;
entangling the web laminate to form an entangled fiber sheet;
and removing at least one component from the ultrafine fibers.
The method for producing an artificial leather according to claim 7 , further comprising a step of impregnating the entangled fiber sheet with a polymeric elastomer.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023119108 | 2023-07-21 | ||
JP2023-119108 | 2023-07-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2025023132A1 true WO2025023132A1 (en) | 2025-01-30 |
Family
ID=94374456
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2024/025721 WO2025023132A1 (en) | 2023-07-21 | 2024-07-18 | Artificial leather and method for producing artificial leather |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2025023132A1 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007040144A1 (en) * | 2005-09-30 | 2007-04-12 | Kuraray Co., Ltd. | Leather-like sheet and method of manufacturing the same |
WO2007069628A1 (en) * | 2005-12-14 | 2007-06-21 | Kuraray Co., Ltd. | Base for synthetic leather and synthetic leathers made by using the same |
JP2008308784A (en) * | 2007-06-14 | 2008-12-25 | Kuraray Co Ltd | Substrate for artificial leather and method for producing the same |
-
2024
- 2024-07-18 WO PCT/JP2024/025721 patent/WO2025023132A1/en unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007040144A1 (en) * | 2005-09-30 | 2007-04-12 | Kuraray Co., Ltd. | Leather-like sheet and method of manufacturing the same |
WO2007069628A1 (en) * | 2005-12-14 | 2007-06-21 | Kuraray Co., Ltd. | Base for synthetic leather and synthetic leathers made by using the same |
JP2008308784A (en) * | 2007-06-14 | 2008-12-25 | Kuraray Co Ltd | Substrate for artificial leather and method for producing the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9752260B2 (en) | Base material for artificial leather and process for producing the same | |
JP5555468B2 (en) | Brushed artificial leather with good pilling resistance | |
KR102444372B1 (en) | Suede-like sheet and method for producing same | |
JP6698066B2 (en) | Peeled artificial leather dyed with a cationic dye and method for producing the same | |
WO2011121940A1 (en) | Leather-like sheet | |
KR101644209B1 (en) | Artificial leather, entangled web of long fibers, and processes for producing these | |
KR102337556B1 (en) | Sheet-like article and manufacturing method thereof | |
WO2021049413A1 (en) | Napped artificial leather | |
JP7249352B2 (en) | Artificial leather base material, method for producing the same, and napped artificial leather | |
WO2025023132A1 (en) | Artificial leather and method for producing artificial leather | |
JP2012211414A (en) | Method for manufacturing suede touch leather-like sheet | |
JP7211956B2 (en) | Raised artificial leather | |
JP2012046849A (en) | Method for producing suede tone leather like sheet | |
JP2011058107A (en) | Base material of artificial leather, and method of producing the same | |
JP2011058108A (en) | Base material of artificial leather, and method of producing the same | |
JP2011058109A (en) | Base material of artificial leather, and method of producing the same | |
WO2020116110A1 (en) | Napped artificial leather | |
JP2022034525A (en) | Artificial leather substrate, artificial piloerection leather substrate, and method of producing artificial leather substrate | |
WO2024009907A1 (en) | Napped artificial leather and manufacturing method therefor | |
WO2024166917A1 (en) | Artificial leather base material, and method for producing artificial leather base material | |
WO2024166916A1 (en) | Artificial leather base material, and artificial leather base material manufacturing method | |
JP2024139908A (en) | Artificial leather and its manufacturing method | |
TW202449260A (en) | Artificial leather substrate, and method for producing the same | |
JP2003336177A (en) | Suede-like leather-like sheet and method for producing the same | |
JP2008223162A (en) | Raised leather-like sheet and method for producing the same |