WO2024232007A1 - Compressor and refrigeration cycle apparatus - Google Patents
Compressor and refrigeration cycle apparatus Download PDFInfo
- Publication number
- WO2024232007A1 WO2024232007A1 PCT/JP2023/017415 JP2023017415W WO2024232007A1 WO 2024232007 A1 WO2024232007 A1 WO 2024232007A1 JP 2023017415 W JP2023017415 W JP 2023017415W WO 2024232007 A1 WO2024232007 A1 WO 2024232007A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cylinder
- compressor
- refrigerant
- cylinder chamber
- rotating shaft
- Prior art date
Links
- 238000005057 refrigeration Methods 0.000 title claims description 62
- 230000006835 compression Effects 0.000 claims abstract description 119
- 238000007906 compression Methods 0.000 claims abstract description 119
- 239000003507 refrigerant Substances 0.000 claims description 233
- 230000000903 blocking effect Effects 0.000 claims description 67
- 238000005192 partition Methods 0.000 claims description 49
- 239000003638 chemical reducing agent Substances 0.000 claims description 18
- 239000003921 oil Substances 0.000 description 51
- 230000002093 peripheral effect Effects 0.000 description 22
- 239000007788 liquid Substances 0.000 description 17
- 238000003825 pressing Methods 0.000 description 16
- 238000010586 diagram Methods 0.000 description 8
- 230000000694 effects Effects 0.000 description 8
- 238000001816 cooling Methods 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- 238000005096 rolling process Methods 0.000 description 4
- 230000003247 decreasing effect Effects 0.000 description 3
- 239000010687 lubricating oil Substances 0.000 description 3
- 238000003466 welding Methods 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- 230000010363 phase shift Effects 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- 238000004378 air conditioning Methods 0.000 description 1
- 150000004996 alkyl benzenes Chemical class 0.000 description 1
- 238000005219 brazing Methods 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 238000005461 lubrication Methods 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 235000010446 mineral oil Nutrition 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 229920001515 polyalkylene glycol Polymers 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- -1 polyol ester Chemical class 0.000 description 1
- 229920001289 polyvinyl ether Polymers 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Definitions
- This disclosure relates to a compressor and a refrigeration cycle device.
- the compression element of this compressor includes a cylinder, an upper end plate and a lower end plate arranged on both end faces of the cylinder, a piston arranged inside the cylinder, and a vane that divides the space formed by the cylinder, the upper end plate, the lower end plate, and the piston into a high pressure chamber and a low pressure chamber.
- the cylinder also has a suction hole formed to extend radially inward from the outer circumferential surface of the cylinder, and a notch formed on the radially inner side of the suction hole to reduce resistance when refrigerant is sucked in.
- the notch is formed to penetrate both end faces of the cylinder to increase the opening area of the passage through which the refrigerant flows from the suction hole to the low pressure chamber, and connects the suction hole to the low pressure chamber.
- the present disclosure aims to solve the problems described above and provide a compressor and a refrigeration cycle device that can increase the strength of the cylinder.
- the compressor according to the present disclosure comprises a sealed container, a rotating electric machine arranged in the sealed container, a rotating shaft arranged in the sealed container and driven to rotate by the rotating electric machine, a compression mechanism arranged in the sealed container and compressing a refrigerant by a driving force transmitted from the rotating electric machine via the rotating shaft, and a suction pipe that penetrates the sealed container and is connected to the compression mechanism and serves as a flow path for the refrigerant.
- the compression mechanism has at least one cylinder formed in a cylindrical shape and forming a cylinder chamber therein, a piston that is fitted to the rotating shaft and stored in the cylinder chamber and rotates eccentrically as the rotating shaft rotates to compress the refrigerant, a vane that is arranged in a vane groove formed to extend radially of the cylinder and that, together with the piston, separates the cylinder chamber into two spaces, and upper and lower bearings that are arranged on the end faces of the cylinder and close the cylinder chamber.
- the cylinder has a cylinder An intake passage is formed that connects the outside of the cylinder with the cylinder chamber, and the intake passage extends radially inward from the outer peripheral surface of the cylinder.
- the intake passage has an intake hole to which the intake pipe is connected on the outer peripheral surface, and a constricted portion formed radially inward of the intake hole to form a space that connects the intake hole with the cylinder chamber.
- the constricted portion has a pair of constricted portion side portions that form both inner surfaces of the constricted portion and are formed so as to approach each other as they move radially inward of the cylinder, a shaft side opening formed by the pair of constricted portion side portions and opening at one end in the axial direction of the rotating shaft, an inner opening formed by the pair of constricted portion side portions that opens on the radially inward side of the cylinder so as to communicate with the cylinder chamber and is formed to connect with the shaft side opening, and a plate-shaped blocking wall portion provided at the other end in the axial direction of the rotating shaft to block the constricted portion.
- the refrigeration cycle device disclosed herein includes a compressor having the above-described configuration, an outdoor heat exchanger that exchanges heat between the outdoor air and the refrigerant flowing inside, a pressure reducer that reduces the pressure of the refrigerant flowing inside, and an indoor heat exchanger that exchanges heat between the indoor air and the refrigerant flowing inside.
- the compressor and refrigeration cycle device have a throttling portion in a refrigerant intake passage formed in a cylinder.
- the throttling portion has a pair of throttling portion side portions that form both inner surfaces of the throttling portion and are formed so as to approach each other as they move radially inward of the cylinder.
- the throttling portion is also formed of a pair of throttling portion side portions and has a shaft side opening that opens at one end in the axial direction of the rotating shaft.
- the throttling portion is also formed of a pair of throttling portion side portions and has an inner opening that opens to the radially inward side of the cylinder so as to communicate with the cylinder chamber and is formed so as to communicate with the shaft side opening.
- the throttling portion has a plate-shaped blocking wall portion provided at the other end in the axial direction of the rotating shaft so as to block the throttling portion.
- the throttling portion can increase the strength of the cylinder by ensuring the rigidity of the cylinder through the blocking wall portion while expanding the opening area of the passage through which the refrigerant passes in the axial direction of the rotating shaft by the shaft side opening and the inner opening.
- FIG. 1 is a schematic vertical cross-sectional view showing an overall configuration of a compressor according to a first embodiment.
- 2 is a schematic cross-sectional view of a first cylinder portion of the compression mechanism according to the first embodiment.
- FIG. 3 is a schematic cross-sectional view of a second cylinder portion of the compression mechanism according to the first embodiment.
- FIG. 1 is a schematic partial vertical cross-sectional view of a compression mechanism according to a first embodiment;
- FIG. 2 is a perspective view of a first cylinder of the compressor according to the first embodiment.
- 2 is a partial enlarged view of a suction passage of the compressor according to the first embodiment.
- FIG. 2 is a conceptual diagram of a suction passage of the compressor according to the first embodiment.
- FIG. 2 is a side view of the first cylinder of the compressor according to the first embodiment, as viewed from the inner circumferential surface side.
- FIG. FIG. 11 is a perspective view of a first cylinder of a modified example of the compressor according to the first embodiment.
- FIG. 4 is a partial enlarged view of an intake passage of a modified example of the compressor according to the first embodiment.
- FIG. 2 is a perspective view of a second cylinder of the compressor according to the first embodiment. 2 is a partial enlarged view of an internal intake passage of the compressor according to the first embodiment.
- FIG. 2 is a conceptual diagram of an internal intake passage of the compressor according to the first embodiment.
- FIG. FIG. 11 is a perspective view of a second cylinder of a modified example of the compressor according to the first embodiment.
- FIG. 4 is a partial enlarged view of an internal intake passage of a modified example of the compressor according to the first embodiment.
- 1 is a schematic configuration diagram of a refrigeration cycle device including a compressor according to a first embodiment.
- FIG. 11 is a schematic vertical cross-sectional view showing the overall configuration of a compressor according to a second embodiment.
- FIG. 11 is a schematic partial vertical cross-sectional view of a compression mechanism according to a second embodiment.
- FIG. 11 is a partial enlarged view of an internal intake passage of a compressor according to a second embodiment.
- FIG. 11 is a partial enlarged view of a suction passage of a compressor according to a second embodiment.
- FIG. 11 is a partial enlarged view of an internal intake passage of a modified example of the compressor according to the second embodiment.
- FIG. 11 is a partial enlarged view of a suction passage of a modified example of the compressor according to the second embodiment.
- FIG. 11 is a schematic vertical cross-sectional view showing the overall configuration of a compressor according to a third embodiment.
- FIG. 11 is a schematic partial vertical cross-sectional view of a compression mechanism according to a third embodiment.
- FIG. 11 is a perspective view of a first cylinder of a compressor according to a third embodiment.
- FIG. 11 is a partial enlarged view of a suction passage of a compressor according to a third embodiment.
- FIG. 11 is a perspective view of a first cylinder of a modified example of the compressor according to the third embodiment.
- FIG. 11 is a partial enlarged view of an intake passage of a modified example of the compressor according to the third embodiment.
- FIG. 11 is a schematic vertical cross-sectional view showing the overall configuration of a compressor according to a fourth embodiment.
- FIG. 11 is a schematic partial vertical cross-sectional view of a compression
- FIG. 1 is a schematic vertical cross-sectional view showing an overall configuration of a compressor 1 according to a first embodiment.
- the compressor 1 which is a hermetic compressor, will be described with reference to Fig. 1.
- the compressor 1 according to the first embodiment is a rolling piston type compressor as an example of a compressor according to the present disclosure.
- the compressor 1 draws in a low-temperature, low-pressure refrigerant, compresses the drawn refrigerant, and discharges a high-temperature, high-pressure refrigerant.
- Compressor 1 is a two-cylinder rotary compressor, and is a fluid machine that draws low-pressure gas refrigerant into compressor 1 and discharges it as high-pressure gas refrigerant. Note that the two-cylinder rotary compressor is just one example, and rotary compressors of other structures, such as a one-cylinder rotary compressor, may also be used.
- the compressor 1 comprises a sealed container 10, a compression mechanism 20, a rotating electric machine 30 arranged in the sealed container 10, and a rotating shaft 40 arranged in the sealed container 10 and driven to rotate by the rotating electric machine 30.
- the compressor 1 also comprises a suction pipe 2, a discharge pipe 4, a suction muffler 3, and a centrifugal pump 45.
- the compressor 1 accommodates, inside the sealed container 10, a compression mechanism 20 that compresses the refrigerant, a rotating electric machine 30 that drives the compression mechanism 20, and a rotating shaft 40 that connects the compression mechanism 20 and the rotating electric machine 30.
- the compressor 1 is arranged such that the compression mechanism 20 is housed in a lower portion of the sealed container 10, and the rotating electric machine 30 is housed in an upper portion of the sealed container 10.
- the sealed container 10 constitutes the outer shell and external appearance of the compressor 1.
- the sealed container 10 that constitutes the outer shell of the compressor 1 accommodates a compression mechanism 20, a rotating electric machine 30, a rotating shaft 40, and the like.
- the sealed container 10 comprises a body 12 having a substantially cylindrical shape, a head 11 having a substantially hemispherical or bottomed cylindrical shape, and a bottom 13 having a substantially hemispherical or bottomed cylindrical shape.
- the body 12 forms the outer shell of the middle part of the compressor 1, with the head 11 attached to the upper part and the bottom 13 attached to the lower part.
- the head 11 forms the outer shell of the upper part of the compressor 1.
- the bottom 13 forms the outer shell of the lower part of the compressor 1.
- the head 11 is welded to the upper part of the body 12, and the bottom 13 is welded to the lower part of the body 12.
- a suction pipe 2 for supplying refrigerant into the sealed container 10 is connected to the body 12 of the sealed container 10.
- a through hole is provided in the body 12 of the sealed container 10, and the suction pipe 2 is inserted into and connected to this through hole.
- the stator 32 of the rotating electric machine 30 is attached to the inner circumferential surface of the body portion 12.
- the compression mechanism 20 is attached to the inner circumferential surface of the body portion 12.
- the compressor 1 of the first embodiment employs a rolling piston type compression mechanism as the compression mechanism 20. When a rolling piston type compression mechanism is employed as the compression mechanism 20, the compressor 1 often has the compression mechanism 20 attached to the inner circumferential surface of the body portion 12, below the position where the stator 32 is attached.
- the head 11 that constitutes the upper part of the sealed container 10 is formed, for example, in a roughly bowl shape, as shown in FIG. 1.
- a discharge pipe 4 that connects the inside and outside of the sealed container 10 is connected to the head 11 of the sealed container 10.
- the fixed portion between the discharge pipe 4 and the head 11 is joined, for example, by brazing or resistance welding.
- the bottom 13 constituting the lower part of the sealed container 10 is formed, for example, in a roughly bowl shape, as shown in FIG. 1.
- the bottom 13 of the sealed container 10 stores refrigeration oil 6, which is a lubricating oil. That is, the inside of the sealed container 10 stores refrigeration oil 6.
- the compressor 1 is provided with a centrifugal pump 45 (described later) that pumps up the refrigeration oil 6 at the bottom of the rotating shaft 40.
- the centrifugal pump 45 pumps up the refrigeration oil 6 stored at the bottom 13 of the sealed container 10 as the rotating shaft 40 rotates, and supplies it to each sliding part of the compression mechanism 20.
- this refrigeration oil 6 is supplied to the compression mechanism 20, etc., and friction at the sliding parts of the compression mechanism 20, etc. is reduced. As a result, the compressor 1 ensures mechanical lubrication of the compression mechanism 20.
- FIG. 2 is a schematic cross-sectional view of a first cylinder 21A portion of the compression mechanism 20 according to the first embodiment.
- Fig. 3 is a schematic cross-sectional view of a second cylinder 21B portion of the compression mechanism 20 according to the first embodiment.
- Fig. 4 is a schematic partial vertical cross-sectional view of the compression mechanism 20 according to the first embodiment. Note that Figs. 2 and 3 are cross-sectional views of the compression mechanism 20 as viewed from the side where the rotating electric machine 30 is disposed.
- the compression mechanism 20 will be described with reference to Figs. 1 to 4.
- the compression mechanism 20 is connected to the suction pipe 2 and compresses the refrigerant.
- the compression mechanism 20 is disposed within the sealed container 10 and compresses the refrigerant using the driving force transmitted from the rotating electric machine 30 via the rotating shaft 40.
- the compression mechanism 20 is connected to the rotating shaft 40 and compresses the refrigerant drawn in from the outside using the power of the rotating electric machine 30 transmitted by the rotating shaft 40.
- the compression mechanism 20 is connected to the rotating electric machine 30 via the rotating shaft 40.
- the compressor 1 of the first embodiment the refrigerant that flows into the suction muffler 3 is supplied to the compression mechanism 20 via the suction pipe 2. That is, the compression mechanism 20 draws in the external refrigerant via the suction pipe 2 and compresses this refrigerant. The refrigerant compressed by the compression mechanism 20 is released into the sealed container 10.
- the compressor 1 of the first embodiment employs a rolling piston type compression mechanism as the compression mechanism 20.
- the compression mechanism 20 has at least one cylinder 21 formed in a cylindrical shape and forming a cylinder chamber 55 therein, and a piston 22 fitted to the rotating shaft 40 and housed in the cylinder chamber 55, rotating eccentrically as the rotating shaft 40 rotates to compress the refrigerant.
- the compression mechanism 20 also has a vane 50 that is disposed in a vane groove 56 formed to extend radially of the cylinder 21 and that, together with the piston 22, separates the cylinder chamber 55 into two spaces.
- the compression mechanism 20 also has an upper bearing 24A and a lower bearing 24B that are disposed on the end face of the cylinder 21 and close the cylinder chamber 55.
- the compression mechanism 20 includes a first cylinder 21A, a first piston 22A, a first vane 50A, a first spring 51A, an upper bearing 24A, a second cylinder 21B, a second piston 22B, a second vane 50B, a second spring 51B, a lower bearing 24B, and a partition plate 25.
- the first cylinder 21A and the second cylinder 21B are collectively referred to as cylinder 21.
- the first piston 22A and the second piston 22B are collectively referred to as piston 22, and the first vane 50A and the second vane 50B are collectively referred to as vane 50.
- the first cylinder 21A is cylindrical and forms a first cylinder chamber 55A.
- the first cylinder 21A is a cylindrical member having the first cylinder chamber 55A inside for compressing the refrigerant and formed into a cylindrical shape with both ends in the axial direction of the rotating shaft 40 open.
- the first cylinder 21A is formed into a hollow cylindrical shape and has a through hole in the center that is concentric with the axis of the rotating shaft 40.
- the through hole of the first cylinder 21A is closed by an upper bearing 24A arranged in contact with the upper end surface of the first cylinder 21A and a partition plate 25 arranged in contact with the lower end surface of the first cylinder 21A, forming the first cylinder chamber 55A.
- the first cylinder 21A is fixed to the sealed container 10.
- the first cylinder chamber 55A contains a first eccentric shaft portion 40A of the rotating shaft 40, which performs eccentric motion inside the first cylinder chamber 55A (described later), and a first piston 22A fitted to the first eccentric shaft portion 40A of the rotating shaft 40.
- the first cylinder chamber 55A also contains a first vane 50A that divides the first cylinder chamber 55A and is formed between an inner peripheral wall 155 of the first cylinder chamber 55A and an outer peripheral wall 122 of the first piston 22A.
- the first cylinder 21A is formed with an intake passage 52A through which the refrigerant is drawn from the intake pipe 2, and a first discharge passage 53A that discharges the refrigerant to the discharge pipe 4 through the internal space of the sealed container 10.
- the first cylinder 21A is formed with a branch passage 52AA that branches off from the intake passage 52A, as shown in Figure 4.
- the intake pipe 2 is press-fitted into the intake passage 52A on the outer circumferential surface of the first cylinder 21A.
- the branch passage 52AA connects the intake passage 52A of the first cylinder 21A to the connection passage 25A of the partition plate 25, which will be described later.
- the branch passage 52AA connects to the connection passage 25A of the partition plate 25.
- the detailed configurations of the intake passage 52A and the branch passage 52AA will be described later.
- a first vane groove 56A is formed in the first cylinder 21A.
- the first vane groove 56A is a groove that extends in the axial and radial directions of the first cylinder 21A.
- One end of the first vane groove 56A in the radial direction of the first cylinder 21A opens into the first cylinder chamber 55A and communicates with the first cylinder chamber 55A, and the other end has a first spring hole 54A.
- the first spring hole 54A is formed at the radially outer end of the first vane groove 56A of the first cylinder 21A, and passes through the first cylinder 21A in the axial direction to communicate with the first vane groove 56A.
- the first vane 50A is housed in the first vane groove 56A, and the first spring 51A is housed in the first spring hole 54A.
- the first piston 22A is fitted to the first eccentric shaft portion 40A of the rotating shaft 40 and rotates eccentrically together with the first eccentric shaft portion 40A to compress the refrigerant.
- the first piston 22A is formed in a cylindrical shape.
- the first piston 22A is attached to the outer periphery of the first eccentric shaft portion 40A of the rotating shaft 40 inside the first cylinder 21A.
- the rotating shaft 40 is rotated by the rotating electric machine 30, the first piston 22A rotates inside the first cylinder 21A along its inner circumferential wall 155.
- the first piston 22A rotates freely inside the first cylinder 21A.
- This first piston 22A is configured to rotate inside the first cylinder 21A eccentrically with respect to the center of rotation of the rotating shaft 40.
- eccentric rotational motion the rotational motion eccentric with respect to the center of rotation of the rotating shaft 40 will be referred to as eccentric rotational motion.
- the first piston 22A rotates eccentrically inside the first cylinder chamber 55A due to the rotation of the rotating shaft 40.
- the first piston 22A is connected to the rotating shaft 40 so that it can rotate inside the first cylinder 21A with a phase shift of 180 degrees relative to the rotational phase when the second piston 22B rotates inside the second cylinder 21B.
- the first vane 50A is inserted into a first vane groove 56A provided in the first cylinder 21A.
- the first vane 50A is arranged so as to reciprocate radially inside the first vane groove 56A.
- the shape of the first vane 50A is a roughly rectangular parallelepiped shape in which the thickness in the circumferential direction of the first cylinder chamber 55A when attached to the first vane groove 56A is smaller than the length in the radial direction of the first cylinder chamber 55A and the axial direction of the first cylinder chamber 55A.
- the first vane 50A is disposed between the intake passage 52A and the first discharge passage 53A in the circumferential direction of the first cylinder 21A.
- the first vane 50A is disposed in a first vane groove 56A formed to extend in the radial direction of the first cylinder 21A, and separates the first cylinder chamber 55A into a first low pressure chamber 57A and a first high pressure chamber 58A.
- the first low pressure chamber 57A is connected to the intake passage 52A
- the first high pressure chamber 58A is connected to the first discharge passage 53A.
- the first high pressure chamber 58A is a compression chamber on the high pressure side relative to the first low pressure chamber 57A
- the first low pressure chamber 57A is a compression chamber on the low pressure side relative to the first high pressure chamber 58A.
- the first spring 51A is housed in the first spring hole 54A and presses the first vane 50A attached to the tip of the first spring 51A against the outer peripheral wall 122 of the first piston 22A.
- the upper bearing 24A is positioned so as to abut against the upper end surface of the first cylinder 21A, and closes the first cylinder chamber 55A.
- the upper bearing 24A rotatably supports the rotating shaft 40.
- the upper bearing 24A is provided with a valve (not shown) that releases the refrigerant compressed by the first cylinder 21A and the first piston 22A. When this valve opens, the compressor 1 can connect the space formed by the first cylinder 21A and the first piston 22A to the internal space of the first muffler 23A, which will be described later.
- the upper bearing 24A is provided with a first muffler 23A that discharges the refrigerant compressed by the first cylinder 21A and the first piston 22A.
- the first muffler 23A is provided with a refrigerant discharge section (not shown) that functions as a valve.
- the compressor 1 the refrigerant compressed by the first cylinder 21A and the first piston 22A is discharged into the internal space of the first muffler 23A, and then released from the refrigerant discharge section into the inside of the sealed container 10.
- the second cylinder 21B is disposed below the first cylinder 21A.
- the second cylinder 21B is cylindrical and forms a second cylinder chamber 55B.
- the second cylinder 21B is fixed to the first cylinder 21A together with, for example, a partition plate 25.
- the second cylinder 21B is a cylindrical member having a second cylinder chamber 55B therein for compressing the refrigerant, and is formed into a cylindrical shape with both ends in the axial direction of the rotating shaft 40 open.
- the second cylinder 21B is formed into a hollow cylindrical shape, and a through hole concentric with the axis of the rotating shaft 40 is formed in the center. This through hole of the second cylinder 21B is closed by a lower bearing 24B arranged in contact with the lower end surface of the second cylinder 21B and a partition plate 25 arranged in contact with the upper end surface of the second cylinder 21B, forming the second cylinder chamber 55B.
- the first cylinder chamber 55A and the second cylinder chamber 55B are collectively referred to as the cylinder chamber 55.
- the second cylinder chamber 55B contains a second eccentric shaft portion 40B of the rotating shaft 40, which performs eccentric motion inside the second cylinder chamber 55B (described later), and a second piston 22B fitted to the second eccentric shaft portion 40B of the rotating shaft 40.
- the second cylinder chamber 55B also contains a second vane 50B that divides the second cylinder chamber 55B and is formed between the inner peripheral wall 155 of the second cylinder chamber 55B and the outer peripheral wall 122 of the second piston 22B.
- the second cylinder 21B is formed with an internal intake passage 52B through which the refrigerant is drawn from the upper surface of the second cylinder 21B, and a second discharge passage 53B through the internal space of the sealed container 10 to the discharge pipe 4.
- the internal intake passage 52B of the second cylinder 21B is connected to the connection passage 25A of the partition plate 25.
- the branch passage 52AA of the first cylinder 21A, the connection passage 25A of the partition plate 25, and the internal intake passage 52B of the second cylinder 21B are connected, and the refrigerant is drawn from the intake pipe 2 to the internal intake passage 52B.
- the detailed configuration of the internal intake passage 52B will be described later.
- a second vane groove 56B is formed in the second cylinder 21B.
- the second vane groove 56B is a groove that extends in the axial and radial directions of the second cylinder 21B.
- One end of the second vane groove 56B in the radial direction of the second cylinder 21B opens into the second cylinder chamber 55B and communicates with the second cylinder chamber 55B, and the other end has a second spring hole 54B.
- the second spring hole 54B is formed at the radially outer end of the second vane groove 56B of the second cylinder 21B, and passes through the second cylinder 21B in the axial direction, communicating with the second vane groove 56B.
- the second vane groove 56B houses the second vane 50B, and the second spring hole 54B houses the second spring 51B.
- the first vane groove 56A and the second vane groove 56B are collectively referred to as the vane groove 56.
- the second piston 22B is fitted to the second eccentric shaft portion 40B of the rotating shaft 40 and rotates eccentrically together with the second eccentric shaft portion 40B to compress the refrigerant.
- the second piston 22B is formed in a cylindrical shape.
- the second piston 22B is attached to the outer periphery of the second eccentric shaft portion 40B of the rotating shaft 40 inside the second cylinder 21B.
- the rotating shaft 40 is rotated by the rotating electric machine 30, the second piston 22B rotates inside the second cylinder 21B along its inner circumferential wall 155.
- the second piston 22B rotates freely within the second cylinder 21B.
- This second piston 22B is configured to perform eccentric rotational motion within the second cylinder 21B.
- the second piston 22B rotates eccentrically within the second cylinder chamber 55B due to the rotation of the rotating shaft 40.
- the second piston 22B is connected to the rotating shaft 40 so that it can rotate inside the second cylinder 21B with a phase shift of -180 degrees relative to the rotational phase when the first piston 22A rotates inside the first cylinder 21A.
- the second vane 50B is inserted into a second vane groove 56B provided in the second cylinder 21B.
- the second vane 50B is arranged so as to reciprocate radially inside the second vane groove 56B.
- the shape of the second vane 50B is a substantially rectangular parallelepiped shape in which the thickness in the circumferential direction of the second cylinder chamber 55B when attached to the second vane groove 56B is smaller than the length in the radial direction of the second cylinder chamber 55B and the axial direction of the second cylinder chamber 55B.
- the second vane 50B is disposed between the internal intake passage 52B and the second discharge passage 53B in the circumferential direction of the second cylinder 21B.
- the second vane 50B is disposed in a second vane groove 56B formed to extend in the radial direction of the second cylinder 21B, and separates the second cylinder chamber 55B into a second low pressure chamber 57B and a second high pressure chamber 58B.
- the second low pressure chamber 57B is connected to the internal intake passage 52B
- the second high pressure chamber 58B is connected to the second discharge passage 53B.
- the second high pressure chamber 58B is a compression chamber on the high pressure side relative to the second low pressure chamber 57B
- the second low pressure chamber 57B is a compression chamber on the low pressure side relative to the second high pressure chamber 58B.
- the second spring 51B is housed in the second spring hole 54B and presses the second vane 50B attached to the tip of the second spring 51B against the outer peripheral wall 122 of the second piston 22B.
- the lower bearing 24B is disposed so as to abut against the lower end surface of the second cylinder 21B, and closes the second cylinder chamber 55B.
- the lower bearing 24B rotatably supports the rotating shaft 40.
- the lower bearing 24B is provided with a valve (not shown) that releases the refrigerant compressed by the second cylinder 21B and the second piston 22B. When this valve opens, the compressor 1 can communicate the space formed by the second cylinder 21B and the second piston 22B with the internal space of the second muffler 23B, which will be described later.
- the lower bearing 24B is provided with a second muffler 23B that discharges the refrigerant compressed by the second cylinder 21B and the second piston 22B.
- the internal space of the second muffler 23B is connected to the internal space of the first muffler 23A through a refrigerant flow path (not shown) formed in the compression mechanism 20.
- the refrigerant compressed by the second cylinder 21B and the second piston 22B is discharged into the internal space of the second muffler 23B, and then flows into the internal space of the first muffler 23A through the refrigerant flow path (not shown) formed in the compression mechanism 20.
- the refrigerant that flows into the internal space of the first muffler 23A is then discharged into the inside of the sealed container 10 from the refrigerant discharge portion (not shown) of the first muffler 23A.
- the partition plate 25 is formed in a plate or column shape.
- the partition plate 25 is disposed between the first cylinder 21A and the second cylinder 21B.
- the partition plate 25 is disposed so as to abut against the lower end surface of the first cylinder 21A and the upper end surface of the second cylinder 21B, and closes the first cylinder chamber 55A and the second cylinder chamber 55B.
- the partition plate 25 is disposed between the first cylinder 21A and the second cylinder 21B, and closes the shaft side opening 59D (see FIG. 6) and the second shaft side opening 60D (see FIG. 12), the first cylinder chamber 55A, and the second cylinder chamber 55B, which will be described later.
- the partition plate 25 is formed with a connection path 25A that communicates with a branched flow path 52AA branching off from the intake flow path 52A of the first cylinder 21A.
- the connection path 25A also communicates with an internal intake flow path 52B formed in the second cylinder 21B.
- the connection path 25A is a through hole formed in the partition plate 25.
- the connection path 25A communicates between the branched flow path 52AA of the first cylinder 21A and the internal intake flow path 52B of the second cylinder 21B.
- the connection path 25A communicates between the intake flow path 52A of the first cylinder 21A and the internal intake flow path 52B of the second cylinder 21B.
- the rotating electric machine 30 is disposed inside the sealed container 10, and is used to drive the compression mechanism 20.
- the rotating electric machine 30 is a motor that generates a rotational driving force in a rotating shaft 40 by using electric power supplied from an external power source, and transmits the rotational driving force to the compression mechanism 20 via the rotating shaft 40.
- a brushless DC motor is used as the rotating electric machine 30.
- the rotating electric machine 30 has a rotor 31 that transmits its own rotation to a rotating shaft 40, and a stator 32 that is configured by attaching multiple phase windings to a laminated core.
- the stator 32 is formed into a hollow cylindrical shape when viewed from above.
- the rotor 31 is rotatably mounted inside the stator 32, and rotates by magnetic action.
- the rotating electric machine 30 power is supplied from an external power source to the stator 32, causing the rotor 31 to rotate inside the stator 32.
- current is supplied from a power source (not shown) to windings provided on the laminated core of the stator 32, causing a rotating magnetic field to form in the stator 32.
- the rotating magnetic field of the stator 32 acts on a permanent magnet provided in the rotor 31, causing the rotor 31 to rotate.
- the rotation of the rotor 31 is transmitted to the first piston 22A and the second piston 22B via the rotating shaft 40, causing the first piston 22A and the second piston 22B to perform eccentric rotational motion.
- the rotating shaft 40 transmits the power of the rotating electric machine 30 to the compression mechanism 20.
- the rotating shaft 40 is connected to the rotating electric machine 30 and rotates by the power of the rotating electric machine 30.
- the rotating shaft 40 is connected to the rotor 31 of the rotating electric machine 30 and rotates together with the rotor 31.
- the upper end side of the rotating shaft 40 is connected to the rotor 31 of the rotating electric machine 30.
- the rotating shaft 40 rotates together with the rotor 31.
- the rotating shaft 40 shown in FIG. 1 rotates about an axis extending in the vertical direction of the page.
- the lower end side of the rotating shaft 40 is connected to the compression mechanism 20. More specifically, the lower end side of the rotating shaft 40 is rotatably supported by the upper bearing 24A and the lower bearing 24B of the compression mechanism 20.
- the rotating shaft 40 has a first eccentric shaft portion 40A and a second eccentric shaft portion 40B between a portion rotatably supported by the upper bearing 24A and a portion rotatably supported by the lower bearing 24B.
- the first eccentric shaft portion 40A and the second eccentric shaft portion 40B are portions that are eccentric with respect to the center of the main portion of the rotating shaft 40.
- the rotating shaft 40 has the first piston 22A connected to the first eccentric shaft portion 40A so as to be capable of eccentric rotational movement, and the second piston 22B connected to the second eccentric shaft portion 40B so as to be capable of eccentric rotational movement.
- the rotating shaft 40 has the first piston 22A and the second piston 22B connected to it so as to be capable of eccentric rotational movement between a portion rotatably supported by the upper bearing 24A and a portion rotatably supported by the lower bearing 24B.
- the rotating shaft 40 rotates in conjunction with the rotation of the rotor 31, and the first piston 22A and the second piston 22B perform eccentric rotational motion.
- the compressor 1 the refrigerant is compressed by the first cylinder 21A and the first piston 22A, and the refrigerant is compressed by the second cylinder 21B and the second piston 22B.
- the compression mechanism 20 compresses the refrigerant sucked in from the outside using the power of the rotating electric machine 30 transmitted by the rotating shaft 40.
- the rotating shaft 40 has an oil supply hole 42 formed at the end 41, which is one end of the rotating shaft 40.
- the oil supply hole 42 opens at the end 41, which is one end of the rotating shaft 40.
- the end 41 corresponds to the first end. In the compressor 1 of this embodiment 1, the end 41 is the lower end of the rotating shaft 40.
- the oil supply hole 42 extends along the center of rotation of the rotating shaft 40.
- the rotating shaft 40 is also formed with a first oil supply port 43 and a second oil supply port 44.
- the first oil supply port 43 and the second oil supply port 44 are flow paths that supply the refrigeration oil 6 sucked into the oil supply hole 42 to the sliding parts of the compression mechanism 20.
- One end of the first oil supply port 43 and the second oil supply port 44 is connected to the oil supply hole 42.
- the other end of the first oil supply port 43 and the second oil supply port 44 opens at a location on the outer circumferential surface of the rotating shaft 40 that faces the compression mechanism 20.
- the other end of the first oil supply port 43 opens at a location that faces the upper bearing 24A of the compression mechanism 20.
- the other end of the second oil supply port 44 opens at a location that faces the lower bearing 24B of the compression mechanism 20.
- suction pipe 2 passes through the sealed container 10 and is connected to the compression mechanism 20, and serves as a refrigerant flow path.
- the suction pipe 2 supplies refrigerant into the sealed container 10.
- the suction pipe 2 is connected to the body 12 of the sealed container 10.
- One end of the suction pipe 2 communicates with the first cylinder 21A of the compression mechanism 20.
- the other end of the suction pipe 2 communicates with the suction muffler 3.
- the suction pipe 2 may be a circular pipe having a circular cross-sectional shape, or may be a non-circular pipe having a cross-sectional shape such as an ellipse or an oval.
- the discharge pipe 4 is a pipe that discharges the refrigerant compressed by the compression mechanism 20 to the outside of the sealed container 10.
- the discharge pipe 4 is a pipe that discharges the high-temperature and high-pressure refrigerant inside the sealed container 10 to the outside of the sealed container 10.
- the suction muffler 3 functions as a muffler that reduces refrigerant noise and the like generated when the refrigerant flows into the compressor 1.
- the suction muffler 3 also functions as an accumulator that can store liquid refrigerant.
- the suction muffler 3 is connected to the suction pipe 2 and communicates with the suction pipe 2.
- the centrifugal pump 45 is provided inside the oil supply hole 42 of the rotating shaft 40.
- the centrifugal pump 45 is formed, for example, by twisting a plate-shaped member.
- the centrifugal pump 45 is a fluid machine that sucks up the refrigeration oil 6 as a lubricant oil stored in the bottom 13 of the sealed container 10 by centrifugal force generated by the rotational motion of the rotating shaft 40.
- the refrigeration oil 6 pumped up to the oil supply hole 42 by the centrifugal pump 45 is supplied to the sliding parts of the compression mechanism 20. Specifically, a portion of the refrigeration oil 6 pumped up to the oil supply hole 42 is supplied to the sliding parts between the upper bearing 24A and the rotating shaft 40 of the compression mechanism 20 through the first oil supply port 43. Also, a portion of the refrigeration oil 6 pumped up to the oil supply hole 42 is supplied to the sliding parts between the lower bearing 24B and the rotating shaft 40 of the compression mechanism 20 through the second oil supply port 44.
- the refrigeration oil 6 for example, mineral oil-based, alkylbenzene-based, polyalkylene glycol-based, polyvinyl ether-based, and polyol ester-based lubricating oils are used.
- a portion of the gaseous refrigerant that flows into the compression mechanism 20 is compressed in the first cylinder 21A and the first piston 22A to become a high-temperature, high-pressure gaseous refrigerant.
- This high-temperature, high-pressure gaseous refrigerant flows into the internal space of the first muffler 23A through the valve of the upper bearing 24A.
- the high-temperature, high-pressure gaseous refrigerant that flows into the internal space of the first muffler 23A is discharged into the internal space of the sealed container 10 from a refrigerant discharge section (not shown) provided in the first muffler 23A.
- the high-temperature, high-pressure gaseous refrigerant that is discharged into the internal space of the sealed container 10 then moves to the upper part of the space inside the sealed container 10 through gaps in the rotating electric machine 30, etc., and is discharged from the discharge pipe 4.
- the remaining gaseous refrigerant that flowed into the compression mechanism 20 is compressed by the second cylinder 21B and the second piston 22B to become a high-temperature, high-pressure gaseous refrigerant.
- This high-temperature, high-pressure gaseous refrigerant flows into the internal space of the second muffler 23B through the valve of the lower bearing 24B.
- the high-temperature, high-pressure gaseous refrigerant that has flowed into the internal space of the second muffler 23B is sent from the internal space of the second muffler 23B through a refrigerant flow path (not shown) to the internal space of the first muffler 23A.
- the high-temperature, high-pressure gaseous refrigerant sent to the first muffler 23A is discharged from a refrigerant discharge section (not shown) provided in the first muffler 23A into the internal space of the sealed container 10.
- the high-temperature, high-pressure gaseous refrigerant discharged into the internal space of the sealed container 10 then moves to the upper part of the space inside the sealed container 10 through gaps in the rotating electric machine 30, etc., and is discharged from the discharge pipe 4.
- the refrigeration oil 6 stored in the bottom 13 of the sealed container 10 is sucked up from the lower end of the oil supply hole 42 by the centrifugal pump 45 that rotates together with the rotating shaft 40.
- the refrigeration oil 6 sucked up from the lower end of the oil supply hole 42 flows from the first oil supply port 43 into the space between the upper bearing 24A and the rotating shaft 40 as lubricating oil.
- the refrigeration oil 6 also flows from the second oil supply port 44 into the space between the lower bearing 24B and the rotating shaft 40.
- the refrigeration oil 6 is used to smoothly rotate the first piston 22A and the second piston 22B, but a portion of the refrigeration oil 6 is compressed together with the low-pressure gaseous refrigerant and is discharged in a state contained in the high-temperature, high-pressure gaseous refrigerant.
- FIG. 5 is a perspective view of the first cylinder 21A of the compressor 1 according to the first embodiment.
- Fig. 6 is a partial enlarged view of the intake passage 52A of the compressor 1 according to the first embodiment.
- Fig. 7 is a conceptual diagram of the intake passage 52A of the compressor 1 according to the first embodiment.
- Fig. 5 is a perspective view of the first cylinder 21A as viewed from the partition plate 25 side.
- Fig. 7 is a conceptual diagram of the intake passage 52A as viewed from the side where the rotating electric machine 30 is disposed.
- the configuration of the intake passage 52A of the first cylinder 21A will be described in detail with reference to Figs. 5 to 7.
- the compressor 1 has an intake passage 52A that connects from the outer circumferential surface 156 of the first cylinder 21A to the first cylinder chamber 55A, and an internal intake passage 52B that is formed in the second cylinder 21B and connects from the top surface of the second cylinder 21B to the second cylinder chamber 55B.
- the compressor 1 also has a connection path 25A that is formed in the partition plate 25 and connects the intake passage 52A and the internal intake passage 52B.
- the first cylinder 21A is formed with an intake passage 52A that connects the outside of the first cylinder 21A to the first cylinder chamber 55A.
- the intake pipe 2 is press-fitted into the intake passage 52A.
- the intake passage 52A extends radially inward from the outer peripheral surface of the first cylinder 21A and has an intake hole 61 to which the intake pipe 2 is connected on the outer peripheral surface, and a constriction 59 that forms a space that connects the intake hole 61 to the first cylinder chamber 55A.
- the intake passage 52A includes an intake hole 61 extending radially inward from the outer peripheral surface 156 of the first cylinder 21A, and a throttling portion 59 formed radially inward of the intake hole 61 and connecting the intake hole 61 to the first low pressure chamber 57A. That is, the intake passage 52A includes an intake hole 61 and a throttling portion 59 formed radially inward of the intake hole 61 and connecting the intake hole 61 to the first cylinder chamber 55A.
- the suction hole 61 is a hole that extends radially inward from the outer peripheral surface 156 of the first cylinder 21A.
- the suction hole 61 is a hole that connects the outside of the first cylinder 21A to the throttling portion 59.
- the tip of the suction pipe 2 is inserted into the suction hole 61.
- the suction hole 61 is a hole that connects the suction pipe 2 to the throttling portion 59.
- the opening shape of the suction hole 61 which is the entrance to the suction flow passage 52A, may be any shape that matches the shape of the suction pipe 2. Even if the opening shape of the suction hole 61 of the suction flow passage 52A is non-circular to match the shape of the suction pipe 2, the shape of the narrowing portion 59 described below can be formed.
- the constricted portion 59 has a pair of constricted portion side portions 59B that form both inner surfaces of the constricted portion 59 and are formed to approach each other as they move radially inward of the first cylinder 21A.
- the constricted portion 59 is also formed of a pair of constricted portion side portions 59B and has a shaft side opening 59D that opens at one end in the axial direction of the rotating shaft 40.
- the constricted portion 59 is also formed of a pair of constricted portion side portions 59B and has an inner opening 59C that opens to communicate with the first cylinder chamber 55A on the radially inner side of the first cylinder 21A and is formed to communicate with the shaft side opening 59D.
- the constricted portion 59 also has a constricted portion top portion 59A that is a plate-shaped blocking wall portion 150 that is provided at the other end in the axial direction of the rotating shaft 40 so as to block the constricted portion 59 in the axial direction of the rotating shaft 40.
- the throttling portion 59 opens to the outer surface of the first cylinder 21A on the lower side and the radially inner side, has a throttling portion top portion 59A on the upper side, and has a pair of throttling portion side portions 59B that approach each other as both inner surfaces move radially inward. That is, the throttling portion 59 opens to the partition plate 25 side of the first cylinder 21A and the inner circumferential wall 155 of the first cylinder chamber 55A, and has the throttling portion top portion 59A on the upper bearing 24A side.
- the throttling portion 59 has a pair of throttling portion side portions 59B that face each other in the circumferential direction.
- the pair of throttling portion side portions 59B are formed so as to approach each other as they move from the radially outer side to the radially inner side.
- the throttling portion top portion 59A forms the blocking wall portion 150 of the throttling portion 59.
- the throttle side portion 59B1 farther from the first vane groove 56A in the circumferential direction of the first cylinder 21A is inclined so as to approach the first vane groove 56A as it moves from the radially outward to the radially inward direction.
- the throttle side portion 59B1 farther from the first vane groove 56A is inclined more with respect to the axis J1 of the intake passage 52A than the throttle side portion 59B2 closer to the first vane groove 56A.
- the constriction portion 59 has an inner opening 59C and an axial side opening 59D.
- a pair of constriction portion side portions 59B constitute the axial side opening 59D and the inner opening 59C.
- the inner opening 59C is an opening formed in the inner circumferential wall 155.
- the inner opening 59C is an opening formed in the inner surface of the first cylinder 21A, and is an opening that connects the internal space of the constriction portion 59 with the first cylinder chamber 55A.
- the first cylinder 21A is formed so that the inner opening 59C is biased toward the first vane groove 56A with respect to the axis J1 of the intake passage 52A.
- the shaft side opening 59D is an opening formed on the outer surface of the first cylinder 21A on the partition plate 25 side.
- the shaft side opening 59D is covered and closed by the plate surface of the partition plate 25 in the compression mechanism 20.
- the throttling portion 59 is formed so that the shaft side opening 59D and the inner opening 59C are connected in the axial and radial directions of the rotating shaft 40.
- the throttling portion 59 is formed so that the shaft side opening 59D and the inner opening 59C are connected at the radial inner end of the first cylinder 21A and the end on the partition plate 25 side.
- the tapered portion top portion 59A is a portion that closes one end of the tapered portion 59 in the axial direction of the rotating shaft 40.
- the tapered portion top portion 59A is formed in a plate shape.
- the tapered portion top portion 59A forms the outer wall surface on the upper bearing 24A side of the first cylinder 21A in the axial direction of the rotating shaft 40.
- the tapered portion top portion 59A is a wall portion that connects between the tapered portion side portion 59B1 on the side farther from the first vane groove 56A and the tapered portion side portion 59B2 on the side closer to the first vane groove 56A at the end of the tapered portion 59 on the upper bearing 24A side in the axial direction of the rotating shaft 40.
- the tapered portion top portion 59A abuts against and faces the upper bearing 24A in the compression mechanism 20.
- the tapered portion top portion 59A contributes to improving the rigidity of the first cylinder 21A regardless of which side of the axial end face the tapered portion 59A is provided on. However, from the standpoint of workability and improved rigidity, it is preferable to provide it on the side opposite the side on which the branch flow path 52AA is formed.
- constriction 59 opens into the shaft side opening 59D in the axial direction of the rotating shaft 40, and the other end is closed by the constriction top 59A.
- One end of the constriction 59 communicates with the suction hole 61 in the radial direction of the rotating shaft 40, and the other end communicates with the first cylinder chamber 55A.
- FIG. 8 is a side view of the first cylinder 21A of the compressor 1 according to the first embodiment, seen from the inner circumferential surface side.
- the dimensions of the intake passage 52A of the first cylinder 21A will be explained using FIG. 6 and FIG. 8.
- the portion between the first vane groove 56A and the inner opening 59C in the circumferential direction of the first cylinder 21A is defined as the intermediate wall portion 155A.
- the length of the intermediate wall portion 155A in the circumferential direction of the first cylinder 21A is defined as the circumferential length A.
- the circumferential length A is the distance between the first vane groove 56A and the inner opening 59C in the circumferential direction of the first cylinder 21A.
- the thickness of the plate of the constriction top portion 59A in the axial direction of the rotating shaft 40 is defined as thickness B.
- the diameter of the suction hole 61 is defined as diameter C.
- the first cylinder 21A is formed so that the circumferential length A, which is the distance between the first vane groove 56A and the inner opening 59C in the circumferential direction of the first cylinder 21A, is greater than the thickness B, which is the plate thickness of the tapered portion top portion 59A in the axial direction of the rotating shaft 40.
- the first cylinder 21A is formed so that the thickness B, which is the plate thickness of the tapered portion top portion 59A in the axial direction of the rotating shaft 40, is smaller than the circumferential length A, which is the distance between the first vane groove 56A and the inner opening 59C in the circumferential direction of the first cylinder 21A.
- the first cylinder 21A is formed so that the relationship of "circumferential length A > thickness B" is satisfied.
- the intermediate wall portion 155A between the first vane groove 56A and the inner opening 59C is a wall of the portion that constitutes the circumferential length A.
- the wall of the first cylinder 21A that constitutes the intermediate wall portion 155A receives a pressing force from the first vane 50A due to the pressure difference between the first low pressure chamber 57A and the first high pressure chamber 58A.
- the constriction top portion 59A constitutes the thickness B as described above.
- the constriction top portion 59A receives a pressing force from the first vane 50A, but receives less pressing force from the first vane 50A than the wall of the portion that constitutes the intermediate wall portion 155A.
- the constriction top portion 59A does not need to be thicker than the wall of the portion that constitutes the circumferential length A.
- the compressor 1 can reduce the weight of the first cylinder 21A by making the constriction top portion 59A thinner than the wall of the portion that constitutes the intermediate wall portion 155A. Also, the constriction top portion 59A does not need to be thicker than the wall of the portion that constitutes the circumferential length A.
- the compressor 1 can increase the diameter of the suction hole 61 formed in the first cylinder 21A compared to a case where this configuration is not included by making the constriction top portion 59A thinner than the wall of the portion that constitutes the intermediate wall portion 155A.
- the first cylinder 21A is formed so that the thickness B, which is the plate thickness of the top portion 59A of the constricted portion in the axial direction of the rotating shaft 40, is smaller than the diameter C, which is the diameter of the suction hole 61.
- the first cylinder 21A is formed so that the diameter C, which is the diameter of the suction hole 61, is larger than the thickness B, which is the plate thickness of the top portion 59A of the constricted portion in the axial direction of the rotating shaft 40.
- the first cylinder 21A is formed so that the relationship is "diameter C > thickness B".
- the first cylinder 21A is formed so that the relationship "diameter C > thickness B" is satisfied, and therefore the range of the suction hole 61 can be made larger than when this relationship does not exist.
- the first cylinder 21A is formed so that the relationship "diameter C > thickness B" is satisfied, and therefore the diameter of the suction hole 61 formed in the first cylinder 21A can be made larger than when this relationship does not exist.
- the refrigerant flowing in from the suction pipe 2 connected to the first cylinder 21A flows through the suction passage 52A into the first high pressure chamber 58A, is compressed inside the first high pressure chamber 58A by the rotation of the first piston 22A, and is discharged as high pressure refrigerant from the first discharge passage 53A.
- the refrigerant moves inside the suction passage 52A of the compressor 1, the larger the pipe diameter of the suction pipe 2 of the compressor 1, the smaller the flow passage pressure loss, so it is desirable for the pipe diameter of the suction pipe 2 to be large.
- the refrigerant moves inside the intake passage 52A of the compressor 1, the larger the flow passage diameter inside the intake passage 52A, the smaller the flow passage pressure loss, so it is desirable that the flow passage diameter inside the intake passage 52A be large.
- the refrigerant moves inside the intake passage 52A of the compressor 1, the larger the flow passage cross-sectional area of the intake passage 52A, the smaller the flow passage pressure loss, so it is desirable that the flow passage cross-sectional area of the intake passage 52A be large.
- the first high pressure chamber 58A repeatedly draws in, compresses, and exhausts the refrigerant, and when the refrigerant is exhausted, the high pressure refrigerant inside the sealed container 10 may flow back from the first discharge passage 53A into the first high pressure chamber 58A, which has been compressed and is now at a low pressure.
- the refrigerant that has flowed back into the first high pressure chamber 58A may enter the intake passage 52A, reducing the amount of refrigerant sucked in from the intake pipe 2 and decreasing the compressor efficiency.
- the inner opening 59C which is the connection between the intake passage 52A and the first cylinder chamber 55A, is close to the first vane groove 56A.
- the compressor 1 it is desirable for the compressor 1 to expand the intake passage 52A in the axial direction of the first cylinder 21A in order to improve the compressor efficiency. Also, in order to improve the compressor efficiency of the compressor 1, it is effective to provide a constriction 59 at the inner end of the intake passage 52A and connect the intake passage 52A to the first cylinder chamber 55A at a position close to the first vane 50A.
- the compressor 1 may increase the risk of distortion of the first cylinder 21A due to external forces such as the pressure of the suction pipe 2 being pressed into the first cylinder 21A.
- the compressor 1 may increase the risk of distortion of the first cylinder 21A due to external forces such as the pressing force of the first vane 50A against the first cylinder 21A caused by the pressure difference between the first low pressure chamber 57A and the first high pressure chamber 58A.
- the compressor 1 has a throttling portion 59 in the intake passage 52A.
- the intake passage 52A is formed in a shape in which the throttling portion 59 penetrates only one side of the first cylinder 21A in the axial direction, and the other side is walled by the throttling portion top portion 59A.
- the throttling portion top portion 59A ensures the rigidity of the first cylinder 21A, and the throttling portion 59 can expand the intake passage 52A in the axial direction while bringing the inner opening 59C, which is the connection portion with the first cylinder chamber 55A, closer to the first vane groove 56A.
- FIG. 9 is a perspective view of the first cylinder 21A of a modified example of the compressor 1 according to the first embodiment.
- FIG. 10 is a partially enlarged view of the intake passage 52A of a modified example of the compressor 1 according to the first embodiment.
- the constriction top portion 59A may have a through portion 63 formed at the radially inner end thereof, penetrating the first cylinder 21A in the axial direction, as shown in FIGS. 9 and 10.
- the through portion 63 is a notch formed at the radially inner end of the constriction top portion 59A.
- the constriction top portion 59A is recessed radially outward at the through portion 63.
- the through-hole 63 is an opening formed on the upper bearing 24A side of the first cylinder 21A.
- the through-hole 63 is covered and closed by the plate surface of the upper bearing 24A in the compression mechanism 20.
- FIG. 11 is a perspective view of the second cylinder 21B of the compressor 1 according to the first embodiment.
- FIG. 12 is a partially enlarged view of the internal intake passage 52B of the compressor 1 according to the first embodiment.
- FIG. 13 is a conceptual diagram of the internal intake passage 52B of the compressor 1 according to the first embodiment.
- FIG. 11 is a perspective view of the second cylinder 21B as viewed from the partition plate 25 side.
- FIG. 13 is a conceptual diagram of the internal intake passage 52B as viewed from the side where the lower bearing 24B is disposed.
- the second cylinder 21B has an internal intake passage 52B that connects from the top surface of the second cylinder 21B to the second cylinder chamber 55B.
- the internal intake passage 52B has a communicating intake hole 62 that extends radially inward from the top surface of the second cylinder 21B through the inside of the second cylinder 21B.
- the internal intake passage 52B also has a second throttling portion 60 that is formed radially inward of the communicating intake hole 62 and forms a space that connects the communicating intake hole 62 to the second cylinder chamber 55B. That is, the internal intake passage 52B has the communicating intake hole 62 and the second throttling portion 60 that is formed radially inward of the communicating intake hole 62 and connects the communicating intake hole 62 to the second cylinder chamber 55B.
- the communicating suction hole 62 is a hole that extends radially inward from the top surface of the second cylinder 21B through the inside of the second cylinder 21B.
- the communicating suction hole 62 extends axially downward from the top surface of the second cylinder 21B and then extends radially inward from there.
- the communicating suction hole 62 is a hole that connects the outside of the second cylinder 21B with the second throttling portion 60.
- the communicating suction hole 62 is a hole that connects the connection path 25A (see Figure 4) of the partition plate 25 with the second throttling portion 60.
- the second throttling portion 60 has a pair of second throttling portion side portions 60B that form both inner surfaces of the second throttling portion 60 and are formed so as to approach each other as they move radially inward of the second cylinder 21B.
- the second throttling portion 60 is also formed of a pair of second throttling portion side portions 60B, has a second shaft side opening 60D that opens at one end in the axial direction of the rotating shaft 40 and is closed by a partition plate 25.
- the second throttling portion 60 is also formed of a pair of second throttling portion side portions 60B, has a second inner opening 60C that opens to communicate with the second cylinder chamber 55B on the radially inner side of the second cylinder 21B and is formed so as to communicate with the second shaft side opening 60D.
- the second throttling portion 60 also has a plate-shaped second closing wall portion 151 that is provided at the other end in the axial direction of the rotating shaft 40 so as to close the second throttling portion 60.
- the second throttling portion 60 has an upper side and a radially inner side that open to the outer surface of the second cylinder 21B, a throttling portion bottom 60A on the lower side, and a pair of second throttling portion side portions 60B that approach each other as both inner surfaces move radially inward. That is, the second throttling portion 60 opens on the partition plate 25 side of the second cylinder 21B and the inner circumferential wall 155 of the second cylinder chamber 55B, and has a throttling portion bottom 60A on the lower bearing 24B side.
- the second throttling portion 60 has a pair of second throttling portion side portions 60B that face each other in the circumferential direction.
- the pair of second throttling portion side portions 60B are formed so as to approach each other as they move from the radially outer side to the radially inner side.
- the second throttle portion side portion 60B1 on the side farther from the second vane groove 56B in the circumferential direction of the second cylinder 21B is inclined so as to approach the second vane groove 56B as it moves from the radially outer side to the radially inner side.
- the second throttle portion side portion 60B1 on the side farther from the second vane groove 56B is inclined with respect to the plane J2 along which the axis of the communicating suction hole 62 extends, more so than the second throttle portion side portion 60B2 on the side closer to the second vane groove 56B.
- the second throttling portion 60 has a second inner opening 60C and a second shaft side opening 60D.
- a pair of second throttling portion side portions 60B constitute the second shaft side opening 60D and the second inner opening 60C.
- the second inner opening 60C is an opening formed in the inner circumferential wall 155.
- the second inner opening 60C is an opening formed in the inner surface of the second cylinder 21B, and is an opening that connects the internal space of the second throttling portion 60 to the second cylinder chamber 55B.
- the second cylinder 21B is formed so that the second inner opening 60C is biased toward the second vane groove 56B with respect to the plane J2 along which the axis of the communicating suction hole 62 extends.
- the second shaft side opening 60D is an opening formed on the outer surface of the second cylinder 21B on the partition plate 25 side.
- the second shaft side opening 60D is covered and closed by the plate surface of the partition plate 25 in the compression mechanism 20.
- the second throttling portion 60 is formed so that the second shaft side opening 60D and the second inner opening 60C are connected in the axial and radial directions of the rotating shaft 40.
- the second throttling portion 60 is formed so that the second shaft side opening 60D and the second inner opening 60C are connected at the radial inner end of the second cylinder 21B and the end on the partition plate 25 side.
- the constriction bottom 60A is a portion that closes one end of the second constriction section 60 in the axial direction of the rotating shaft 40.
- the constriction bottom 60A is formed in a plate shape.
- the constriction bottom 60A forms the outer wall surface on the lower bearing 24B side of the second cylinder 21B in the axial direction of the rotating shaft 40.
- the constriction bottom 60A is a wall portion that connects between the second constriction side portion 60B1 on the side farther from the second vane groove 56B and the second constriction side portion 60B2 on the side closer to the second vane groove 56B at the end of the second constriction section 60 on the lower bearing 24B side in the axial direction of the rotating shaft 40.
- the constriction bottom 60A abuts against and faces the lower bearing 24B in the compression mechanism 20.
- the constriction bottom 60A contributes to improving the rigidity of the second cylinder 21B regardless of which side of the axial end face of the second cylinder 21B it is located on. However, from the standpoint of workability and improved rigidity, it is preferable to locate it on the side opposite the side on which the communicating suction hole 62 is formed.
- the second throttling portion 60 has one end that opens into the second shaft side opening 60D in the axial direction of the rotating shaft 40, and the other end that is closed by the throttling portion bottom portion 60A. In the radial direction of the rotating shaft 40, the second throttling portion 60 has one end that communicates with the communicating suction hole 62, and the other end that communicates with the second cylinder chamber 55B.
- the portion between the second vane groove 56B and the second inner opening 60C in the circumferential direction of the second cylinder 21B is defined as the intermediate wall portion 155B.
- the length of the intermediate wall portion 155B in the circumferential direction of the second cylinder 21B is defined as the circumferential length A2.
- the circumferential length A2 is the distance between the second vane groove 56B and the second inner opening 60C in the circumferential direction of the second cylinder 21B.
- the thickness of the plate of the constriction bottom portion 60A in the axial direction of the rotating shaft 40 is defined as the thickness B2.
- the second cylinder 21B is formed so that the circumferential length A2, which is the distance between the second vane groove 56B and the second inner opening 60C in the circumferential direction of the second cylinder 21B, is greater than the thickness B2, which is the plate thickness of the constricted portion bottom 60A in the axial direction of the rotating shaft 40.
- the second cylinder 21B is formed so that the thickness B2, which is the plate thickness of the constricted portion bottom 60A in the axial direction of the rotating shaft 40, is smaller than the circumferential length A2, which is the distance between the second vane groove 56B and the second inner opening 60C in the circumferential direction of the second cylinder 21B.
- the second cylinder 21B is formed so that the relationship of "circumferential length A2 > thickness B2" is satisfied.
- the intermediate wall portion 155B between the second vane groove 56B and the second inner opening 60C is the wall of the portion that constitutes the circumferential length A2, as described above.
- the wall of the second cylinder 21B that constitutes the intermediate wall portion 155B receives a pressing force from the second vane 50B due to the pressure difference between the second low pressure chamber 57B and the second high pressure chamber 58B.
- the constricted portion bottom portion 60A constitutes the thickness B2, as described above.
- the constricted portion bottom portion 60A receives a pressing force from the second vane 50B, but receives less pressing force from the second vane 50B than the wall of the portion that constitutes the intermediate wall portion 155B.
- the constricted portion bottom portion 60A does not need to be thicker than the walls of the portion that defines the circumferential length A2.
- the compressor 1 can reduce the weight of the second cylinder 21B.
- the constricted portion bottom portion 60A does not need to be thicker than the walls of the portion that defines the circumferential length A2.
- the refrigerant flowing in from the suction pipe 2 connected to the first cylinder 21A flows into the second high-pressure chamber 58B through the connection path 25A of the partition plate 25 and the internal suction passage 52B of the second cylinder 21B.
- the refrigerant that flows into the second high-pressure chamber 58B is compressed inside the second high-pressure chamber 58B by the rotation of the second piston 22B, and is discharged as high-pressure refrigerant from the second discharge passage 53B.
- the second high-pressure chamber 58B repeatedly draws in, compresses, and exhausts the refrigerant, and when the refrigerant is exhausted, the high-pressure refrigerant inside the sealed container 10 may flow back from the second discharge passage 53B into the second high-pressure chamber 58B, which has been compressed and is now at a low pressure.
- the refrigerant that has flowed back into the second high-pressure chamber 58B may enter the internal intake passage 52B, reducing the amount of refrigerant sucked in from the intake pipe 2 and decreasing the compressor efficiency.
- the second inner opening 60C which is the connection between the internal intake passage 52B and the second cylinder chamber 55B, is close to the second vane groove 56B.
- the compressor 1 it is desirable for the compressor 1 to expand the internal intake passage 52B in the axial direction of the second cylinder 21B in order to improve the compressor efficiency. Also, in order to improve the compressor efficiency, it is effective for the compressor 1 to have a second throttling portion 60 at the inner end of the internal intake passage 52B and to connect the internal intake passage 52B to the second cylinder chamber 55B at a position close to the second vane 50B.
- the compressor 1 may increase the risk of distortion of the second cylinder 21B due to external forces such as the pressing force of the second vane 50B against the second cylinder 21B caused by the pressure difference between the second low pressure chamber 57B and the second high pressure chamber 58B.
- the compressor 1 has a second throttling section 60 in the internal intake passage 52B.
- the internal intake passage 52B is formed in a shape in which the second throttling section 60 penetrates only one axial side of the second cylinder 21B, and the other side is walled by the throttling section bottom 60A.
- the compressor 1 ensures the rigidity of the second cylinder 21B by the throttling section bottom 60A, and the second throttling section 60 can expand the internal intake passage 52B in the axial direction while bringing the second inner opening 60C, which is the connection part with the second cylinder chamber 55B, closer to the second vane groove 56B.
- FIG. 14 is a perspective view of the second cylinder 21B of the modified compressor 1 according to the first embodiment.
- FIG. 15 is a partial enlarged view of the internal intake passage 52B of the modified compressor 1 according to the first embodiment.
- the constriction bottom 60A may have a second through-hole 63B at its radially inner end that penetrates the second cylinder 21B in the axial direction as shown in FIGS. 14 and 15.
- the second through-hole 63B is a notch formed at the radially inner end of the constriction bottom 60A.
- the constriction bottom 60A is recessed radially outward at the second through-hole 63B. That is, the constriction bottom 60A, which is the second blocking wall 151, has a radially inner end that has a second through-hole 63B that penetrates the second cylinder 21B in the axial direction.
- the second through-hole 63B is an opening formed on the lower bearing 24B side of the second cylinder 21B.
- the second through-hole 63B is covered and closed by the plate surface of the lower bearing 24B in the compression mechanism 20.
- FIG. 16 is a schematic configuration diagram of a refrigeration cycle apparatus 200 including the compressor 1 according to embodiment 1.
- the refrigeration cycle apparatus 200 includes the compressor 1, a radiator in which the refrigerant compressed by the compressor 1 radiates heat, a pressure reducer 203 such as an electric expansion valve that reduces the pressure of the refrigerant flowing out from the radiator, and an evaporator in which the refrigerant flowing out from the pressure reducer 203 evaporates.
- the refrigeration cycle device 200 is used for various purposes, such as a refrigerator or freezer, a vending machine, an air conditioner, a freezing device, a hot water supply device, etc.
- FIG. 16 shows an example in which the refrigeration cycle device 200 is used as an air conditioner.
- the refrigeration cycle device 200 shown in FIG. 16 is equipped with an indoor heat exchanger 204 that functions as a radiator during heating operation, and an outdoor heat exchanger 202 that functions as an evaporator during heating operation.
- the refrigeration cycle device 200 shown in FIG. 16 is also capable of cooling operation.
- the refrigeration cycle device 200 is equipped with a flow path switching device 201 such as a four-way switching valve.
- the flow path switching device 201 switches the heat exchanger connected to the discharge pipe 4, which is the refrigerant discharge port of the compressor 1, and switches the heat exchanger connected to the suction muffler 3, which is the refrigerant intake port of the compressor 1.
- the indoor heat exchanger 204 functions as an evaporator
- the outdoor heat exchanger 202 functions as a radiator.
- the refrigeration cycle device 200 includes a compressor 1, an outdoor heat exchanger 202 that exchanges heat between the outdoor air and the refrigerant flowing inside, a pressure reducer 203 that reduces the pressure of the refrigerant flowing inside, and an indoor heat exchanger 204 that exchanges heat between the indoor air and the refrigerant flowing inside.
- the refrigeration cycle device 200 includes a compressor 1, a flow path switching device 201, an outdoor heat exchanger 202, a pressure reducer 203, and an indoor heat exchanger 204 connected via refrigerant piping to form a refrigerant circuit 210 through which the refrigerant circulates.
- the indoor heat exchanger 204 is mounted in an indoor device.
- the flow path switching device 201, the outdoor heat exchanger 202, and the pressure reducer 203 are mounted in an outdoor device.
- the refrigeration cycle device 200 uses R407C refrigerant, R410A refrigerant, R32 refrigerant, etc., but the refrigerant used is not limited to these refrigerants. The operation of the refrigeration cycle device 200 during heating operation and cooling operation will be described below.
- the flow path switching device 201 switches to the flow path shown by the solid line in FIG. 16.
- the discharge pipe 4 of the compressor 1 is connected to the indoor heat exchanger 204
- the suction muffler 3 of the compressor 1 is connected to the outdoor heat exchanger 202.
- the indoor heat exchanger 204 functions as a radiator
- the outdoor heat exchanger 202 functions as an evaporator.
- the refrigeration cycle device 200 flows into the indoor heat exchanger 204.
- the high-temperature, high-pressure gaseous refrigerant that flows into the indoor heat exchanger 204 condenses while releasing heat to the indoor air, and flows out of the indoor heat exchanger 204 as a high-pressure liquid refrigerant.
- the air in the room is warmed by the heat released by the refrigerant.
- refrigerant such as carbon dioxide refrigerant
- the radiator may also be called a condenser.
- the high-pressure liquid refrigerant that flowed into the pressure reducer 203 is then depressurized by the pressure reducer 203 to become a low-temperature, low-pressure two-phase gas-liquid refrigerant, which flows out from the pressure reducer 203.
- the low-temperature, low-pressure two-phase gas-liquid refrigerant that flows out from the pressure reducer 203 flows into the outdoor heat exchanger 202.
- the low-temperature, low-pressure two-phase gas-liquid refrigerant that flows into the outdoor heat exchanger 202 absorbs heat from the outdoor air and evaporates, and flows out of the outdoor heat exchanger 202 as a low-pressure gaseous refrigerant or a two-phase gas-liquid refrigerant.
- the low-pressure gaseous refrigerant or gas-liquid two-phase refrigerant flowing out of the outdoor heat exchanger 202 is sucked into the suction muffler 3 of the compressor 1.
- the low-pressure gaseous refrigerant among the refrigerants sucked into the suction muffler 3 of the compressor 1 is compressed by the compression mechanism 20 of the compressor 1 to become a high-temperature, high-pressure gaseous refrigerant.
- This high-temperature, high-pressure gaseous refrigerant is discharged again from the compressor 1. That is, when the refrigeration cycle device 200 is performing heating operation, the refrigerant circulates as shown by the solid arrows in FIG. 16.
- the flow path switching device 201 switches to the flow path shown by the dashed line in FIG. 16.
- the discharge pipe 4 of the compressor 1 is connected to the outdoor heat exchanger 202
- the suction muffler 3 of the compressor 1 is connected to the indoor heat exchanger 204.
- the outdoor heat exchanger 202 functions as a radiator
- the indoor heat exchanger 204 functions as an evaporator.
- the high-pressure liquid refrigerant flowing out of the outdoor heat exchanger 202 flows into the pressure reducer 203.
- the high-pressure liquid refrigerant that flowed into the pressure reducer 203 is then depressurized by the pressure reducer 203 to become a low-temperature, low-pressure two-phase gas-liquid refrigerant, which flows out of the pressure reducer 203.
- the low-temperature, low-pressure two-phase gas-liquid refrigerant that flows out of the pressure reducer 203 flows into the indoor heat exchanger 204.
- the low-temperature, low-pressure two-phase gas-liquid refrigerant that flows into the indoor heat exchanger 204 absorbs heat from the indoor air and evaporates, and flows out of the indoor heat exchanger 204 as a low-pressure gaseous refrigerant or two-phase gas-liquid refrigerant. At this time, the indoor air is cooled by the heat absorbed by the refrigerant.
- the low-pressure gaseous refrigerant or gas-liquid two-phase refrigerant flowing out of the indoor heat exchanger 204 is sucked into the suction muffler 3 of the compressor 1.
- the low-pressure gaseous refrigerant among the refrigerants sucked into the suction muffler 3 of the compressor 1 is compressed by the compression mechanism 20 of the compressor 1 to become a high-temperature, high-pressure gaseous refrigerant.
- This high-temperature, high-pressure gaseous refrigerant is discharged again from the compressor 1.
- the refrigerant circulates as shown by the dashed arrows in FIG. 16.
- the compressor 1 has a throttling portion 59 in the refrigerant intake passage 52A formed in the first cylinder 21A.
- the throttling portion 59 has a pair of throttling portion side portions 59B that form both inner surfaces of the throttling portion 59 and are formed so as to approach each other as they move radially inward of the first cylinder 21A.
- the throttling portion 59 is also formed of the pair of throttling portion side portions 59B and has a shaft side opening 59D that opens at one end in the axial direction of the rotating shaft 40.
- the throttling portion 59 is also formed of the pair of throttling portion side portions 59B and has an inner opening 59C that opens to the radially inward side of the first cylinder 21A so as to communicate with the first cylinder chamber 55A and is formed so as to communicate with the shaft side opening 59D.
- the throttling portion 59 also has a throttling portion top portion 59A that is a plate-shaped blocking wall portion 150 provided at the other end in the axial direction of the rotating shaft 40 so as to block the throttling portion 59.
- the constriction portion 59 expands the opening area of the passage through which the refrigerant passes in the axial direction of the rotating shaft 40 by the shaft side opening 59D and the inner opening 59C, while ensuring the rigidity of the first cylinder 21A by the blocking wall portion 150, thereby increasing the strength of the first cylinder 21A.
- the compressor 1 ensures the rigidity of the first cylinder 21A by the blocking wall portion 150 of the constriction portion 59, and can increase the strength of the first cylinder 21A. Therefore, the compressor 1 can suppress deformation of the first cylinder 21A due to external forces such as the pressing force of the first vane 50A against the first cylinder 21A generated by the pressure difference between the first low pressure chamber 57A and the first high pressure chamber 58A, and can increase the strength of the first cylinder 21A.
- the compressor 1 ensures the rigidity of the first cylinder 21A by the blocking wall portion 150 of the narrowing portion 59, and can increase the strength of the first cylinder 21A. Therefore, the compressor 1 can suppress deformation of the first cylinder 21A even when the intake pipe 2 is inserted into the intake passage 52A of the first cylinder 21A while shaking it.
- the compressor 1 has a shaft side opening 59D at one end of the throttling portion 59 in the axial direction of the rotating shaft 40, and a blocking wall 150 at the other end.
- the compressor 1 can expand the opening area of the passage through which the refrigerant passes in the axial direction of the rotating shaft 40 by using the shaft side opening 59D, while ensuring the rigidity of the first cylinder 21A by using the blocking wall 150, thereby increasing the strength of the first cylinder 21A.
- the first cylinder 21A is formed with an intake passage 52A and a branch passage 52AA branching off from the intake passage 52A.
- the second cylinder 21B is formed with an internal intake passage 52B that leads from the top surface of the second cylinder 21B to the second cylinder chamber 55B, and the partition plate 25 is formed with a connection path 25A that connects the branch passage 52AA to the internal intake passage 52B. Even if a two-cylinder rotary compressor is used for the compressor 1, the compressor 1 can increase the opening area of the passage through which the refrigerant passes in the axial direction of the rotating shaft 40 while ensuring the rigidity of the first cylinder 21A with the blocking wall portion 150, thereby increasing the strength of the first cylinder 21A.
- the compressor 1 also has a second throttling portion 60 in the internal suction passage 52B of the refrigerant formed in the second cylinder 21B.
- the second throttling portion 60 has a pair of second throttling portion side portions 60B that form both inner surfaces of the second throttling portion 60 and are formed so as to approach each other as they move radially inward of the second cylinder 21B.
- the second throttling portion 60 is also formed by a pair of second throttling portion side portions 60B, has a second shaft side opening 60D that opens at one end in the axial direction of the rotating shaft 40 and is closed by the partition plate 25.
- the second throttling portion 60 is also formed by a pair of second throttling portion side portions 60B, has a second inner opening 60C that opens to the radially inner side of the second cylinder 21B so as to communicate with the second cylinder chamber 55B and is formed so as to communicate with the second shaft side opening 60D.
- the second narrowing portion 60 has a narrowing bottom portion 60A, which is a plate-shaped second closing wall portion 151 provided to close the second narrowing portion 60, at the other end in the axial direction of the rotating shaft 40.
- the second throttling portion 60 increases the opening area of the passage through which the refrigerant passes in the axial direction of the rotating shaft 40 by using the second shaft side opening 60D and the second inner opening 60C, while ensuring the rigidity of the second cylinder 21B by using the second blocking wall portion 151, thereby increasing the strength of the second cylinder 21B.
- the compressor 1 ensures the rigidity of the second cylinder 21B by the second blocking wall portion 151 of the second throttling portion 60, and can increase the strength of the second cylinder 21B. Therefore, the compressor 1 can suppress deformation of the second cylinder 21B due to external forces such as the pressing force of the second vane 50B against the second cylinder 21B generated by the pressure difference between the second low pressure chamber 57B and the second high pressure chamber 58B, and can increase the strength of the second cylinder 21B.
- the intake pipe 2 is press-fitted into the intake passage 52A of the first cylinder 21A. Even when the intake pipe 2 is press-fitted into the intake passage 52A of the first cylinder 21A, the compressor 1 can suppress deformation of the first cylinder 21A because the throttle portion 59 has the throttle top portion 59A, which is the blocking wall portion 150.
- the radially inner end of the constriction top portion 59A which is the blocking wall portion 150, has a through portion 63 that penetrates the first cylinder 21A in the axial direction.
- the refrigerant that reaches the through portion 63 tends to flow to both sides of the first cylinder 21A in the axial direction, and flows into the first cylinder chamber 55A along the lower surface of the upper bearing 24A and the upper surface of the partition plate 25.
- the amount of refrigerant sucked in increases due to the refrigerant passing through the through portion 63, so the refrigeration capacity of the compressor 1 is increased and the compression efficiency is improved.
- the through-holes 63 of the compressor 1 do not widen the opening of the intake passage 52A in the circumferential direction, but widen the intake passage 52A in the axial direction. Compared to when the opening of the intake passage 52A is widened in the circumferential direction, the compressor 1 can ensure the time that the piston 22 blocks the intake passage 52A, thereby suppressing the backflow of refrigerant into the intake passage 52A and suppressing a decrease in compression efficiency.
- the constriction bottom 60A which is the second blocking wall 151, has a second through-hole 63B at its radially inner end that penetrates the second cylinder 21B in the axial direction.
- the refrigerant that reaches the second through-hole 63B tends to flow to both sides of the second cylinder 21B in the axial direction, and flows into the second cylinder chamber 55B along the upper surface of the lower bearing 24B and the lower surface of the partition plate 25.
- the compressor 1 does not have the second through-hole 63B, the amount of refrigerant sucked in increases due to the refrigerant passing through the second through-hole 63B, so the refrigeration capacity of the compressor 1 increases and the compression efficiency increases.
- the second through-hole 63B of the compressor 1 does not widen the opening of the intake passage 52A in the circumferential direction, but widens the intake passage 52A in the axial direction. Compared to when the opening of the intake passage 52A is widened in the circumferential direction, the compressor 1 can ensure the time that the piston 22 blocks the intake passage 52A, thereby suppressing the backflow of refrigerant into the intake passage 52A and suppressing a decrease in compression efficiency.
- the refrigeration cycle device 200 according to the first embodiment is equipped with the compressor 1 according to the first embodiment. Therefore, the refrigeration cycle device 200 can obtain the same effects as the compressor 1 according to the first embodiment.
- Fig. 17 is a schematic vertical cross-sectional view showing the overall configuration of compressor 1 according to embodiment 2.
- Fig. 18 is a schematic partial vertical cross-sectional view of compression mechanism 20 according to embodiment 2.
- Fig. 19 is a partial enlarged view of internal intake passage 52B of compressor 1 according to embodiment 2.
- Fig. 20 is a partial enlarged view of intake passage 52A of compressor 1 according to embodiment 2.
- the compression mechanism 20 of the second embodiment will be described using Figures 17 to 20. Note that parts having the same configuration as the compression mechanism 20 of Figures 1 to 16 are given the same reference numerals and their description will be omitted. Below, the configuration of the second embodiment that differs from the first embodiment will be mainly described, and the configuration not described in the second embodiment is the same as the first embodiment. Note that the compressor 1 has the first cylinder 21A fixed to the sealed container 10 and the second cylinder 21B not fixed to the sealed container 10.
- the intake pipe 2 is connected to the first cylinder 21A, whereas in the compressor 1 according to the second embodiment, the intake pipe 2 is connected to the second cylinder 21B. Therefore, in the compressor 1 according to the second embodiment, the structure of the first cylinder 21A and the structure of the second cylinder 21B are reversed from those of the compressor 1 according to the first embodiment. Also, in the second cylinder 21B of the compressor 1 according to the second embodiment, a branch flow path 52AA is formed which branches off from the intake flow path 52A.
- the first cylinder 21A has an internal intake passage 52B that connects the lower surface of the first cylinder 21A to the first cylinder chamber 55A.
- the internal intake passage 52B has a communicating intake hole 62 that extends radially inward from the lower surface of the first cylinder 21A through the inside of the first cylinder 21A.
- the internal intake passage 52B also has a second throttling portion 60 that is formed radially inward of the communicating intake hole 62 and forms a space that connects the communicating intake hole 62 to the first cylinder chamber 55A. That is, the internal intake passage 52B has the communicating intake hole 62 and the second throttling portion 60 that is formed radially inward of the communicating intake hole 62 and connects the communicating intake hole 62 to the first cylinder chamber 55A.
- the communicating suction hole 62 is a hole that extends radially inward from the underside of the first cylinder 21A through the inside of the first cylinder 21A.
- the communicating suction hole 62 extends axially downward from the underside of the first cylinder 21A and then extends radially inward from there.
- the communicating suction hole 62 is a hole that connects the outside of the first cylinder 21A with the second throttling section 60.
- the communicating suction hole 62 is a hole that connects the connection path 25A (see Figure 4) of the partition plate 25 with the second throttling section 60.
- the constriction top portion 160A contributes to improving the rigidity of the first cylinder 21A regardless of which side of the axial end face the constriction top portion 160A is provided on. However, from the standpoint of workability and improved rigidity, it is preferable to provide it on the side opposite the side on which the communicating suction hole 62 is formed.
- the second throttling portion 60 has a pair of second throttling portion side portions 60B that form both inner surfaces of the second throttling portion 60 and are formed to approach each other as they move radially inward of the first cylinder 21A.
- the second throttling portion 60 is also formed of a pair of second throttling portion side portions 60B, has a second shaft side opening 60D that opens at one end in the axial direction of the rotating shaft 40 and is blocked by a partition plate 25.
- the second throttling portion 60 is also formed of a pair of second throttling portion side portions 60B, has a second inner opening 60C that opens to communicate with the first cylinder chamber 55A on the radially inner side of the first cylinder 21A and is formed to communicate with the second shaft side opening 60D.
- the second throttling portion 60 also has a plate-shaped second blocking wall portion 151 that is provided at the other end in the axial direction of the rotating shaft 40 to block the second throttling portion 60.
- the second throttling portion 60 has one end that opens into the second shaft side opening 60D in the axial direction of the rotating shaft 40, and the other end that is closed by the throttling portion top portion 160A. In the radial direction of the rotating shaft 40, the second throttling portion 60 has one end that communicates with the communicating suction hole 62, and the other end that communicates with the first cylinder chamber 55A.
- the second cylinder 21B is formed with an intake passage 52A that connects the outside of the second cylinder 21B to the second cylinder chamber 55B.
- the intake passage 52A extends radially inward from the outer circumferential surface of the second cylinder 21B and has an intake hole 61 to which the intake pipe 2 is connected on the outer circumferential surface, and a constriction 59 formed radially inward of the intake hole 61 and forming a space that connects the intake hole 61 to the second cylinder chamber 55B.
- the intake passage 52A includes an intake hole 61 extending radially inward from the outer peripheral surface 156 of the second cylinder 21B, and a throttling portion 59 formed radially inward of the intake hole 61 and connecting the intake hole 61 to the second low pressure chamber 57B. That is, the intake passage 52A includes an intake hole 61 and a throttling portion 59 formed radially inward of the intake hole 61 and connecting the intake hole 61 to the second cylinder chamber 55B.
- the suction hole 61 is a hole that extends radially inward from the outer circumferential surface 156 of the second cylinder 21B.
- the suction hole 61 is a hole that connects the outside of the second cylinder 21B with the throttling portion 59.
- the tip of the suction pipe 2 is inserted into the suction hole 61.
- the suction hole 61 is a hole that connects the suction pipe 2 with the throttling portion 59.
- the opening shape of the suction hole 61 which is the entrance to the suction flow passage 52A, may be any shape that matches the shape of the suction pipe 2.
- the constricted portion 59 has a pair of constricted portion side portions 59B that form both inner surfaces of the constricted portion 59 and are formed to approach each other as they move radially inward of the second cylinder 21B.
- the constricted portion 59 is also formed of a pair of constricted portion side portions 59B and has a shaft side opening 59D that opens at one end in the axial direction of the rotating shaft 40.
- the constricted portion 59 is also formed of a pair of constricted portion side portions 59B and has an inner opening 59C that opens to communicate with the second cylinder chamber 55B on the radially inner side of the second cylinder 21B and is formed to communicate with the shaft side opening 59D.
- the constricted portion 59 also has a plate-shaped blocking wall portion 150 that is provided at the other end in the axial direction of the rotating shaft 40 so as to block the constricted portion 59 in the axial direction of the rotating shaft 40.
- the constriction portion 59 has one end opened by the shaft side opening 59D in the axial direction of the rotating shaft 40, and the other end closed by the constriction portion bottom 159A.
- the constriction portion bottom 159A contributes to improving the rigidity of the second cylinder 21B regardless of which side of the axial end face it is provided on, but from the standpoint of workability and rigidity improvement, it is preferable to provide it on the side opposite the side on which the branch flow path 52AA is formed.
- the throttling portion 59 has one end communicating with the suction hole 61 in the radial direction of the rotating shaft 40, and the other end communicating with the second cylinder chamber 55B.
- the throttling portion bottom 159A forms the blocking wall portion 150 of the throttling portion 59.
- the intake pipe 2 is press-fitted into the intake passage 52A on the outer circumferential surface of the second cylinder 21B.
- the branch passage 52AA connects the intake passage 52A of the second cylinder 21B to the connection path 25A of the partition plate 25.
- the partition plate 25 is formed with a connection path 25A that communicates with a branch flow path 52AA branching off from the intake flow path 52A of the second cylinder 21B.
- the connection path 25A also communicates with an internal intake flow path 52B formed in the first cylinder 21A.
- the connection path 25A connects the branch flow path 52AA of the second cylinder 21B to the internal intake flow path 52B of the first cylinder 21A.
- the connection path 25A connects the internal intake flow path 52B of the first cylinder 21A to the intake flow path 52A of the second cylinder 21B.
- FIG. 21 is a partial enlarged view of the internal intake passage 52B of a modified example of the compressor 1 according to embodiment 2.
- FIG. 22 is a partial enlarged view of the intake passage 52A of a modified example of the compressor 1 according to embodiment 2.
- the radially inner end of the constriction top portion 160A may form a second through portion 63B that penetrates the first cylinder 21A in the axial direction.
- the radially inner end of the constriction bottom portion 159A may form a through portion 63 that penetrates the second cylinder 21B in the axial direction.
- the constriction top portion 160A which is the second blocking wall portion 151, has a second through portion 63B at its radially inner end that penetrates the first cylinder 21A in the axial direction.
- the second through portion 63B is an opening formed on the upper bearing 24A side of the first cylinder 21A.
- the second through portion 63B is covered and blocked by the plate surface of the upper bearing 24A in the compression mechanism 20.
- the constriction bottom 159A which is the blocking wall 150, has a through-hole 63 at its radially inward end that penetrates the second cylinder 21B in the axial direction.
- the through-hole 63 is an opening formed on the lower bearing 24B side of the second cylinder 21B. The through-hole 63 is covered and blocked by the plate surface of the lower bearing 24B in the compression mechanism 20.
- the refrigerant flowing in from the suction pipe 2 connected to the second cylinder 21B flows through the suction passage 52A into the second high-pressure chamber 58B, is compressed inside the second high-pressure chamber 58B by the rotation of the second piston 22B, and is discharged as high-pressure refrigerant from the second discharge passage 53B.
- the refrigerant flowing in from the suction pipe 2 connected to the second cylinder 21B flows into the first high-pressure chamber 58A through the connection path 25A of the partition plate 25 and the internal suction passage 52B of the first cylinder 21A.
- the refrigerant that flows into the first high-pressure chamber 58A is compressed inside the first high-pressure chamber 58A by the rotation of the first piston 22A, and is discharged as high-pressure refrigerant from the first discharge passage 53A.
- the refrigerant moves inside the intake passage 52A of the compressor 1, the larger the pipe diameter of the intake pipe 2 of the compressor 1, the smaller the flow path pressure loss, so it is desirable to have a larger pipe diameter of the intake pipe 2. Also, since the refrigerant moves inside the intake passage 52A of the compressor 1, the larger the flow path diameter inside the intake passage 52A, the smaller the flow path pressure loss, so it is desirable to have a larger flow path diameter inside the intake passage 52A. In other words, since the refrigerant moves inside the intake passage 52A of the compressor 1, the larger the flow path cross-sectional area of the intake passage 52A, the smaller the flow path pressure loss, so it is desirable to have a larger flow path cross-sectional area of the intake passage 52A.
- the second high-pressure chamber 58B repeatedly draws in, compresses, and exhausts the refrigerant, and when the refrigerant is exhausted, the high-pressure refrigerant inside the sealed container 10 may flow back from the second discharge passage 53B into the second high-pressure chamber 58B, which has been compressed and is now at a low pressure.
- the refrigerant that has flowed back into the second high-pressure chamber 58B may enter the intake passage 52A, reducing the amount of refrigerant sucked in from the intake pipe 2 and decreasing the compressor efficiency.
- the inner opening 59C which is the connection between the intake passage 52A and the second cylinder chamber 55B, is close to the second vane groove 56B.
- the compressor 1 it is desirable for the compressor 1 to expand the intake passage 52A in the axial direction of the second cylinder 21B in order to improve the compressor efficiency. Also, in order to improve the compressor efficiency of the compressor 1, it is effective to provide a constriction 59 at the end of the inner circumference side of the intake passage 52A and connect the intake passage 52A to the second cylinder chamber 55B at a position close to the second vane 50B.
- the compressor 1 may increase the risk of distortion of the second cylinder 21B due to external forces such as the pressure of the suction pipe 2 being pressed into the second cylinder 21B.
- the compressor 1 may increase the risk of distortion of the second cylinder 21B due to external forces such as the pressing force of the second vane 50B against the second cylinder 21B caused by the pressure difference between the second low pressure chamber 57B and the second high pressure chamber 58B.
- the intake passage 52A is therefore formed in a shape such that it penetrates only one axial side of the second cylinder 21B at the constriction 59, with the other side being walled by the constriction bottom 159A.
- the compressor 1 ensures the rigidity of the second cylinder 21B with the constriction bottom 159A, and the constriction 59 expands the intake passage 52A in the axial direction while bringing the inner opening 59C, which is the connection part with the second cylinder chamber 55B, closer to the second vane groove 56B.
- the internal intake passage 52B is formed in a shape in which the second throttling portion 60 penetrates only one axial side of the first cylinder 21A, and the other side is walled by the throttling top portion 160A.
- the compressor 1 ensures the rigidity of the first cylinder 21A by the throttling top portion 160A, and the second throttling portion 60 can expand the internal intake passage 52B in the axial direction while bringing the second inner opening 60C, which is the connection part with the first cylinder chamber 55A, closer to the first vane groove 56A.
- the compressor 1 has a throttling portion 59 in the refrigerant intake passage 52A formed in the second cylinder 21B.
- the throttling portion 59 has a pair of throttling portion side portions 59B that form both inner surfaces of the throttling portion 59 and are formed so as to approach each other as they move radially inward of the second cylinder 21B.
- the throttling portion 59 is also formed of the pair of throttling portion side portions 59B and has a shaft side opening 59D that opens at one end in the axial direction of the rotating shaft 40.
- the throttling portion 59 is also formed of the pair of throttling portion side portions 59B and has an inner opening 59C that opens to the radially inward side of the second cylinder 21B so as to communicate with the second cylinder chamber 55B and is formed so as to communicate with the shaft side opening 59D.
- the throttling portion 59 also has a throttling portion bottom portion 159A that is a plate-shaped blocking wall portion 150 provided at the other end in the axial direction of the rotating shaft 40 so as to block the throttling portion 59.
- the constriction portion 59 expands the opening area of the passage through which the refrigerant passes in the axial direction of the rotating shaft 40 by the shaft side opening 59D and the inner opening 59C, while ensuring the rigidity of the second cylinder 21B by the blocking wall portion 150, thereby increasing the strength of the second cylinder 21B.
- the compressor 1 ensures the rigidity of the second cylinder 21B by the blocking wall portion 150 of the constriction portion 59, and can increase the strength of the second cylinder 21B. Therefore, the compressor 1 can suppress deformation of the second cylinder 21B due to external forces such as the pressing force of the second vane 50B against the second cylinder 21B generated by the pressure difference between the second low pressure chamber 57B and the second high pressure chamber 58B, and can increase the strength of the second cylinder 21B.
- the compressor 1 ensures the rigidity of the second cylinder 21B by the blocking wall portion 150 of the narrowing portion 59, and can increase the strength of the second cylinder 21B. Therefore, the compressor 1 can suppress deformation of the second cylinder 21B even when the intake pipe 2 is inserted into the intake passage 52A of the second cylinder 21B while shaking it.
- the compressor 1 has a shaft side opening 59D at one end of the throttling portion 59 in the axial direction of the rotating shaft 40, and a blocking wall 150 at the other end.
- the compressor 1 can expand the opening area of the passage through which the refrigerant passes in the axial direction of the rotating shaft 40 by using the shaft side opening 59D, while ensuring the rigidity of the second cylinder 21B by using the blocking wall 150, thereby increasing the strength of the second cylinder 21B.
- the second cylinder 21B is formed with an intake passage 52A and a branch passage 52AA branching off from the intake passage 52A.
- the first cylinder 21A is formed with an internal intake passage 52B that connects the underside of the first cylinder 21A to the first cylinder chamber 55A, and the partition plate 25 is formed with a connection path 25A that connects the branch passage 52AA to the internal intake passage 52B. Even if a two-cylinder rotary compressor is used for the compressor 1, the compressor 1 can increase the opening area of the passage through which the refrigerant passes in the axial direction of the rotating shaft 40 while ensuring the rigidity of the second cylinder 21B with the blocking wall portion 150, thereby increasing the strength of the second cylinder 21B.
- the compressor 1 also has a second throttling portion 60 in the internal suction passage 52B of the refrigerant formed in the first cylinder 21A.
- the second throttling portion 60 has a pair of second throttling portion side portions 60B that form both inner surfaces of the second throttling portion 60 and are formed so as to approach each other as they move radially inward of the first cylinder 21A.
- the second throttling portion 60 is also formed by a pair of second throttling portion side portions 60B, has a second shaft side opening 60D that opens at one end in the axial direction of the rotating shaft 40 and is closed by the partition plate 25.
- the second throttling portion 60 is also formed by a pair of second throttling portion side portions 60B, has a second inner opening 60C that opens to the radially inner side of the first cylinder 21A so as to communicate with the first cylinder chamber 55A and is formed so as to communicate with the second shaft side opening 60D.
- the second narrowing portion 60 has a narrowing portion top portion 160A, which is a plate-shaped second closing wall portion 151 provided to close the second narrowing portion 60, at the other end in the axial direction of the rotating shaft 40.
- the second throttling portion 60 expands the opening area of the passage through which the refrigerant passes in the axial direction of the rotating shaft 40 by means of the second shaft side opening 60D and the second inner opening 60C, while ensuring the rigidity of the first cylinder 21A by means of the second blocking wall portion 151, thereby increasing the strength of the first cylinder 21A.
- the compressor 1 ensures the rigidity of the first cylinder 21A by the second blocking wall portion 151 of the second throttling portion 60, and can increase the strength of the first cylinder 21A. Therefore, the compressor 1 can suppress deformation of the first cylinder 21A due to external forces such as the pressing force of the first vane 50A against the first cylinder 21A generated by the pressure difference between the first low pressure chamber 57A and the first high pressure chamber 58A, and can increase the strength of the first cylinder 21A.
- the intake pipe 2 is press-fitted into the intake passage 52A of the second cylinder 21B. Even when the intake pipe 2 is press-fitted into the intake passage 52A of the second cylinder 21B, the compressor 1 has the restrictor bottom 60A, which is the blocking wall 150, in the restrictor 59, so deformation of the second cylinder 21B can be suppressed.
- the diametrically inner end of the constriction bottom 159A which is the blocking wall 150, has a through-hole 63 that penetrates the second cylinder 21B in the axial direction.
- the refrigerant that reaches the through-hole 63 tends to flow to both sides of the second cylinder 21B in the axial direction, and flows into the second cylinder chamber 55B along the upper surface of the lower bearing 24B and the lower surface of the partition plate 25.
- the amount of refrigerant sucked in increases due to the refrigerant passing through the through-hole 63, so the refrigeration capacity of the compressor 1 is increased and the compression efficiency is improved.
- the through-holes 63 of the compressor 1 do not widen the opening of the intake passage 52A in the circumferential direction, but widen the intake passage 52A in the axial direction. Compared to when the opening of the intake passage 52A is widened in the circumferential direction, the compressor 1 can ensure the time that the piston 22 blocks the intake passage 52A, thereby suppressing the backflow of refrigerant into the intake passage 52A and suppressing a decrease in compression efficiency.
- the radially inner end of the constriction top portion 160A which is the second blocking wall portion 151, has a second through portion 63B that penetrates the first cylinder 21A in the axial direction.
- the refrigerant that reaches the second through portion 63B tends to flow to both sides of the first cylinder 21A in the axial direction, and flows into the first cylinder chamber 55A along the lower surface of the upper bearing 24A and the upper surface of the partition plate 25.
- the amount of refrigerant sucked in increases due to the refrigerant passing through the second through portion 63B, so the refrigeration capacity of the compressor 1 is increased and the compression efficiency is improved.
- the second through-hole 63B of the compressor 1 does not widen the opening of the intake passage 52A in the circumferential direction, but widens the intake passage 52A in the axial direction. Compared to when the opening of the intake passage 52A is widened in the circumferential direction, the compressor 1 can ensure the time that the piston 22 blocks the intake passage 52A, thereby suppressing the backflow of refrigerant into the intake passage 52A and suppressing a decrease in compression efficiency.
- the first cylinder 21A of the compressor 1 is fixed to the sealed container 10.
- the first cylinder 21A of the compressor 1 is fixed to the sealed container 10
- the second cylinder 21B is not fixed to the sealed container 10.
- distortion may occur in the first cylinder 21A.
- the compressor 1 has the intake pipe 2 connected to the second cylinder 21B, which is not connected to the sealed container 10.
- distortion may occur in the second cylinder 21B.
- the compressor 1 joins the suction pipe 2 to the second cylinder 21B and fixes the first cylinder 21A to the sealed container 10.
- the compressor 1 reduces the amount of distortion of the first cylinder 21A and increases the amount of distortion of the second cylinder 21B compared to when the first cylinder 21A is fixed to the sealed container 10 and the suction pipe 2 is joined to the first cylinder 21A.
- the compressor 1 can eliminate the imbalance in distortion between the first cylinder 21A and the second cylinder 21B that occurs when distortion due to assembly is biased toward the first cylinder 21A. Therefore, the compressor 1 can unify the target values of the machining dimensions of the first cylinder 21A and the second cylinder 21B, taking into account the distortion due to assembly.
- the compressor 1 can reduce the variation in distortion during assembly of the first cylinder 21A and reduce the clearance for the engagement between the first vane groove 56A and the first vane 50A. Therefore, the compressor 1 can reduce the amount of compressed refrigerant leaking from the first high pressure chamber 58A and improve compressor efficiency.
- the refrigeration cycle device 200 according to the second embodiment is equipped with the compressor 1 according to the second embodiment. Therefore, the refrigeration cycle device 200 can obtain the same effects as the compressor 1 according to the second embodiment.
- Fig. 23 is a schematic vertical cross-sectional view showing the overall configuration of compressor 1 according to embodiment 3.
- Fig. 24 is a schematic partial vertical cross-sectional view of compression mechanism 20 according to embodiment 3.
- Fig. 25 is a perspective view of first cylinder 21A of compressor 1 according to embodiment 3.
- Fig. 26 is a partial enlarged view of intake passage 52A of compressor 1 according to embodiment 3.
- the compressor 1 in the first and second embodiments is a two-cylinder rotary compressor, whereas the compressor 1 in the third embodiment is a one-cylinder rotary compressor.
- the compressor 1 in the third embodiment has a first cylinder 21A in the compression mechanism 20.
- the compression mechanism 20 includes a first cylinder 21A, a first piston 22A, a first vane 50A, a first spring 51A, an upper bearing 24A, and a lower bearing 24B.
- the upper bearing 24A is positioned so that it abuts against the upper end surface of the first cylinder 21A, and closes the first cylinder chamber 55A.
- the lower bearing 24B is positioned so that it abuts against the lower end surface of the first cylinder 21A, and closes the first cylinder chamber 55A.
- the first cylinder 21A is formed with an intake passage 52A that connects the outside of the first cylinder 21A to the first cylinder chamber 55A.
- the intake passage 52A extends radially inward from the outer peripheral surface of the first cylinder 21A and has an intake hole 61 to which the intake pipe 2 is connected on the outer peripheral surface, and a constriction 59 formed radially inward of the intake hole 61 and forming a space that connects the intake hole 61 to the first cylinder chamber 55A.
- the compressor 1 has an intake passage 52A that connects from the outer peripheral surface 156 of the first cylinder 21A to the first cylinder chamber 55A.
- the intake passage 52A includes an intake hole 61 that extends radially inward from the outer peripheral surface 156 of the first cylinder 21A, and a throttling portion 59 that is formed radially inward of the intake hole 61 and connects the intake hole 61 to the first low pressure chamber 57A. That is, the intake passage 52A includes an intake hole 61 and a throttling portion 59 that is formed radially inward of the intake hole 61 and connects the intake hole 61 to the first cylinder chamber 55A.
- the constricted portion 59 has a pair of constricted portion side portions 59B that form both inner surfaces of the constricted portion 59 and are formed to approach each other as they move radially inward of the first cylinder 21A.
- the constricted portion 59 is also formed of a pair of constricted portion side portions 59B and has a shaft side opening 59D that opens at one end in the axial direction of the rotating shaft 40.
- the constricted portion 59 is also formed of a pair of constricted portion side portions 59B and has an inner opening 59C that opens to communicate with the first cylinder chamber 55A on the radially inner side of the first cylinder 21A and is formed to communicate with the shaft side opening 59D.
- the constricted portion 59 also has a plate-shaped blocking wall portion 150 that is provided at the other end in the axial direction of the rotating shaft 40 so as to block the constricted portion 59 in the axial direction of the rotating shaft 40.
- the throttling portion 59 opens to the outer surface of the first cylinder 21A on the lower side and radially inward side, has a throttling portion top portion 59A on the upper side, and has throttling portion side portions 59B that approach each other as the inner surfaces move radially inward. That is, the throttling portion 59 opens to the lower bearing 24B side of the first cylinder 21A and the inner circumferential wall 155 of the first cylinder chamber 55A, and has the throttling portion top portion 59A on the upper bearing 24A side.
- the throttling portion 59 has throttling portion side portions 59B that face each other in the circumferential direction.
- the throttling portion side portions 59B are formed so as to approach each other as they move from the radially outward to the radially inward.
- the throttling portion top portion 59A forms the blocking wall portion 150 of the throttling portion 59.
- the shaft side opening 59D is an opening formed on the outer surface of the first cylinder 21A on the lower bearing 24B side.
- the shaft side opening 59D is covered and closed by the plate surface of the lower bearing 24B in the compression mechanism 20.
- constriction 59 opens into the shaft side opening 59D in the axial direction of the rotating shaft 40, and the other end is closed by the constriction top 59A.
- One end of the constriction 59 communicates with the suction hole 61 in the radial direction of the rotating shaft 40, and the other end communicates with the first cylinder chamber 55A.
- the upper bearing 24A closes the upper end surface of the first cylinder 21A
- the lower bearing 24B closes the lower end surface of the first cylinder 21A.
- the shaft side opening 59D is closed by the lower bearing 24B
- the constriction top portion 59A which is the closing wall portion 150, is arranged to abut against the upper bearing 24A.
- FIG. 27 is a perspective view of the first cylinder 21A of a modified example of the compressor 1 according to the third embodiment.
- FIG. 28 is a partially enlarged view of the intake passage 52A of a modified example of the compressor 1 according to the third embodiment.
- the radially inner end of the constriction top portion 59A may form a through portion 63 that penetrates the first cylinder 21A in the axial direction, as shown in FIGS. 27 and 28.
- the compressor 1 has a throttling portion 59 in the refrigerant intake passage 52A formed in the first cylinder 21A.
- the throttling portion 59 has a pair of throttling portion side portions 59B that form both inner surfaces of the throttling portion 59 and are formed so as to approach each other as they move radially inward of the first cylinder 21A.
- the throttling portion 59 is also formed of the pair of throttling portion side portions 59B and has a shaft side opening 59D that opens at one end in the axial direction of the rotating shaft 40.
- the throttling portion 59 is also formed of the pair of throttling portion side portions 59B and has an inner opening 59C that opens to the radially inward side of the first cylinder 21A so as to communicate with the first cylinder chamber 55A and is formed so as to communicate with the shaft side opening 59D.
- the throttling portion 59 also has a throttling portion top portion 59A that is a plate-shaped blocking wall portion 150 provided to block the throttling portion 59 at the other end in the axial direction of the rotating shaft 40.
- the constriction portion 59 expands the opening area of the passage through which the refrigerant passes in the axial direction of the rotating shaft 40 by the shaft side opening 59D and the inner opening 59C, while ensuring the rigidity of the first cylinder 21A by the blocking wall portion 150, thereby increasing the strength of the first cylinder 21A.
- the compressor 1 ensures the rigidity of the first cylinder 21A by the blocking wall portion 150 of the constriction portion 59, and can increase the strength of the first cylinder 21A. Therefore, the compressor 1 can suppress deformation of the first cylinder 21A due to external forces such as the pressing force of the first vane 50A against the first cylinder 21A generated by the pressure difference between the first low pressure chamber 57A and the first high pressure chamber 58A, and can increase the strength of the first cylinder 21A.
- the compressor 1 ensures the rigidity of the first cylinder 21A by the blocking wall portion 150 of the narrowing portion 59, and can increase the strength of the first cylinder 21A. Therefore, the compressor 1 can suppress deformation of the first cylinder 21A even when the intake pipe 2 is inserted into the intake passage 52A of the first cylinder 21A while shaking it.
- the compressor 1 has a shaft side opening 59D at one end of the throttling portion 59 in the axial direction of the rotating shaft 40, and a blocking wall 150 at the other end.
- the compressor 1 can expand the opening area of the passage through which the refrigerant passes in the axial direction of the rotating shaft 40 by using the shaft side opening 59D, while ensuring the rigidity of the first cylinder 21A by using the blocking wall 150, thereby increasing the strength of the first cylinder 21A.
- the upper bearing 24A closes the upper end surface of the first cylinder 21A
- the lower bearing 24B closes the lower end surface of the first cylinder 21A.
- the shaft side opening 59D is closed by the lower bearing 24B, and the blocking wall portion 150 is provided to abut against the upper bearing 24A.
- the shaft side opening 59D expands the opening area of the passage through which the refrigerant passes in the axial direction of the rotating shaft 40, while the blocking wall portion 150 ensures the rigidity of the first cylinder 21A, thereby increasing the strength of the first cylinder 21A.
- the intake pipe 2 is press-fitted into the intake passage 52A of the first cylinder 21A. Even when the intake pipe 2 is press-fitted into the intake passage 52A of the first cylinder 21A, the compressor 1 can suppress deformation of the first cylinder 21A because the throttle portion 59 has the throttle top portion 59A, which is the blocking wall portion 150.
- the radially inner end of the constriction top portion 59A which is the blocking wall portion 150, has a through portion 63 that penetrates the first cylinder 21A in the axial direction.
- the refrigerant that reaches the through portion 63 tends to flow to both sides of the first cylinder 21A in the axial direction, and flows into the first cylinder chamber 55A along the lower surface of the upper bearing 24A and the upper surface of the partition plate 25.
- the amount of refrigerant sucked in increases due to the refrigerant passing through the through portion 63, so the refrigeration capacity of the compressor 1 is increased and the compression efficiency is improved.
- the through-holes 63 of the compressor 1 do not widen the opening of the intake passage 52A in the circumferential direction, but widen the intake passage 52A in the axial direction. Compared to when the opening of the intake passage 52A is widened in the circumferential direction, the compressor 1 can ensure the time that the piston 22 blocks the intake passage 52A, thereby suppressing the backflow of refrigerant into the intake passage 52A and suppressing a decrease in compression efficiency.
- the refrigeration cycle device 200 according to the third embodiment is equipped with the compressor 1 according to the third embodiment. Therefore, the refrigeration cycle device 200 can obtain the same effects as the compressor 1 according to the third embodiment.
- Fig. 29 is a schematic vertical cross-sectional view showing the overall configuration of a compressor 1 according to embodiment 4.
- Fig. 30 is a schematic partial vertical cross-sectional view of a compression mechanism 20 according to embodiment 4.
- the compression mechanism 20 according to embodiment 4 will be described with reference to Figs. 29 and 30. Note that parts having the same configuration as those in the compression mechanism 20 of Figs. 1 to 28 are given the same reference numerals and their description will be omitted.
- the following description will focus on the configuration of embodiment 4 that differs from embodiment 3, and the configuration not described in embodiment 4 is the same as embodiments 1 to 3.
- the compressor 1 of embodiment 4 differs from the compressor 1 of embodiment 3 in the structure of the throttling portion 59.
- the throttling portion 59 in the compressor 1 of embodiment 3 has a throttling portion top portion 59A, whereas the throttling portion 59 in the compressor 1 of embodiment 4 has a throttling portion bottom portion 59A1.
- the throttling portion 59 in the fourth embodiment opens to the outer surface of the first cylinder 21A on the upper side and radially inner side, has a throttling portion bottom 59A1 on the lower side, and has throttling portion side portions 59B that approach each other as both inner surfaces move radially inward. That is, the throttling portion 59 opens to the upper bearing 24A side of the first cylinder 21A and the inner circumferential wall 155 of the first cylinder chamber 55A, and has the throttling portion bottom 59A1 on the lower bearing 24B side.
- the throttling portion bottom 59A1 forms the blocking wall portion 150 of the throttling portion 59.
- the shaft side opening 59D is an opening formed on the outer surface of the first cylinder 21A on the upper bearing 24A side.
- the shaft side opening 59D is covered and closed by the plate surface of the upper bearing 24A in the compression mechanism 20.
- the upper bearing 24A closes the upper end surface of the first cylinder 21A
- the lower bearing 24B closes the lower end surface of the first cylinder 21A.
- the shaft side opening 59D is closed by the upper bearing 24A, and the narrowing portion bottom 59A1, which is the closing wall portion 150, is arranged to abut against the lower bearing 24B.
- the constricted portion 59 In the axial direction of the rotating shaft 40, the constricted portion 59 has one end that opens into the shaft side opening 59D and the other end that is closed by the constricted portion bottom 59A1. In the radial direction of the rotating shaft 40, the constricted portion 59 has one end that communicates with the suction hole 61 and the other end that communicates with the first cylinder chamber 55A.
- the constricted portion bottom 59A1 may have a radially inner end that forms a through portion 63 that penetrates the first cylinder 21A in the axial direction.
- the compressor 1 has a throttling portion 59 in the refrigerant intake passage 52A formed in the first cylinder 21A.
- the throttling portion 59 has a pair of throttling portion side portions 59B that form both inner surfaces of the throttling portion 59 and are formed so as to approach each other as they move radially inward of the first cylinder 21A.
- the throttling portion 59 is also formed of the pair of throttling portion side portions 59B and has a shaft side opening 59D that opens at one end in the axial direction of the rotating shaft 40.
- the throttling portion 59 is also formed of the pair of throttling portion side portions 59B and has an inner opening 59C that opens to the radially inward side of the first cylinder 21A so as to communicate with the first cylinder chamber 55A and is formed so as to communicate with the shaft side opening 59D.
- the throttling portion 59 also has a throttling portion bottom portion 59A1 that is a plate-shaped blocking wall portion 150 provided at the other end in the axial direction of the rotating shaft 40 so as to block the throttling portion 59.
- the constriction portion 59 expands the opening area of the passage through which the refrigerant passes in the axial direction of the rotating shaft 40 by the shaft side opening 59D and the inner opening 59C, while ensuring the rigidity of the first cylinder 21A by the blocking wall portion 150, thereby increasing the strength of the first cylinder 21A.
- the compressor 1 ensures the rigidity of the first cylinder 21A by the blocking wall portion 150 of the constriction portion 59, and can increase the strength of the first cylinder 21A. Therefore, the compressor 1 can suppress deformation of the first cylinder 21A due to external forces such as the pressing force of the first vane 50A against the first cylinder 21A generated by the pressure difference between the first low pressure chamber 57A and the first high pressure chamber 58A, and can increase the strength of the first cylinder 21A.
- the compressor 1 ensures the rigidity of the first cylinder 21A by the blocking wall portion 150 of the narrowing portion 59, and can increase the strength of the first cylinder 21A. Therefore, the compressor 1 can suppress deformation of the first cylinder 21A even when the intake pipe 2 is inserted into the intake passage 52A of the first cylinder 21A while shaking it.
- the compressor 1 has a shaft side opening 59D at one end of the throttling portion 59 in the axial direction of the rotating shaft 40, and a blocking wall 150 at the other end.
- the compressor 1 can expand the opening area of the passage through which the refrigerant passes in the axial direction of the rotating shaft 40 by using the shaft side opening 59D, while ensuring the rigidity of the first cylinder 21A by using the blocking wall 150, thereby increasing the strength of the first cylinder 21A.
- the upper bearing 24A closes the upper end surface of the first cylinder 21A
- the lower bearing 24B closes the lower end surface of the first cylinder 21A.
- the shaft side opening 59D is closed by the upper bearing 24A, and the blocking wall portion 150 is provided to abut against the lower bearing 24B.
- the shaft side opening 59D expands the opening area of the passage through which the refrigerant passes in the axial direction of the rotating shaft 40, while the blocking wall portion 150 ensures the rigidity of the first cylinder 21A, thereby increasing the strength of the first cylinder 21A.
- the refrigeration cycle device 200 according to the fourth embodiment is equipped with the compressor 1 according to the fourth embodiment. Therefore, the refrigeration cycle device 200 can obtain the same effects as the compressor 1 according to the fourth embodiment.
- the configurations shown in the above embodiments are merely examples, and may be combined with other known technologies, and parts of the configurations may be omitted or modified without departing from the spirit of the invention.
- the first cylinder 21A is fixed to the sealed container 10
- the second cylinder 21B is not fixed to the sealed container 10
- the first cylinder 21A may not be fixed to the sealed container 10
- the second cylinder 21B may be fixed to the sealed container 10.
- the number of cylinders 21 is one or two in the embodiments, it may be three or more.
Abstract
This compressor includes a sealed container, a rotary electric machine, a rotary shaft, a compression mechanism, and an intake pipe. The compression mechanism has a cylinder, a piston, a vane, an upper bearing, and a lower bearing. The cylinder has an intake flow path formed therein, and the intake flow path has an intake hole to which the intake pipe is connected, and a constricted portion formed radially inward of the intake hole and forming a space that communicates the intake hole with a cylinder chamber. The constricted portion has: a pair of constricted-portion side surfaces that constitute both inner side surfaces of the constricted portion and are formed to approach each other as the pair of constricted-portion side surfaces extend radially inward of the cylinder; a shaft-side opening that is defined by the pair of constricted-portion side surfaces and is open at one end in the axial direction of the rotary shaft; an inner-side opening that is defined by the pair of constricted-portion side surfaces, is open toward the radially inward side of the cylinder so as to communicate with the cylinder chamber, and is formed to be contiguous with the shaft-side opening; and a plate-shaped closing wall provided at the other end in the axial direction of the rotary shaft so as to close the constricted portion.
Description
本開示は、圧縮機及び冷凍サイクル装置に関するものである。
This disclosure relates to a compressor and a refrigeration cycle device.
従来より、圧縮機は、電動機要素と、電動機要素によって駆動される圧縮要素とを密閉して回転式圧縮機を構成しているものが知られている(例えば、特許文献1参照)。この圧縮機の圧縮要素は、シリンダと、シリンダの両端面にそれぞれ配置された上端板及び下端板と、シリンダ内に配置されたピストンと、シリンダと上端板と下端板とピストンとで形成される空間を高圧室と低圧室とに区画するベーンと、を備えている。また、シリンダには、シリンダの外周面から径方向内方へ向けて延びるように形成された吸入穴と、その吸入穴の径方向内方側に冷媒吸入時の抵抗を小さくするために形成された切欠部と、が形成されている。切欠部は、吸入穴から低圧室へ流れる冷媒が通る通路の開口面積を拡大するためにシリンダの両端面を貫くように形成されており、かつ吸入穴と低圧室とを連通させている。
Conventionally, a rotary compressor has been known in which an electric motor element and a compression element driven by the electric motor element are sealed (see, for example, Patent Document 1). The compression element of this compressor includes a cylinder, an upper end plate and a lower end plate arranged on both end faces of the cylinder, a piston arranged inside the cylinder, and a vane that divides the space formed by the cylinder, the upper end plate, the lower end plate, and the piston into a high pressure chamber and a low pressure chamber. The cylinder also has a suction hole formed to extend radially inward from the outer circumferential surface of the cylinder, and a notch formed on the radially inner side of the suction hole to reduce resistance when refrigerant is sucked in. The notch is formed to penetrate both end faces of the cylinder to increase the opening area of the passage through which the refrigerant flows from the suction hole to the low pressure chamber, and connects the suction hole to the low pressure chamber.
しかしながら、特許文献1の圧縮機は、切欠部がシリンダの両端面を貫くように形成されているためこの部分の強度が弱く、シリンダへの高圧室と低圧室との差圧によるベーンの押し付け力によってシリンダが変形する恐れがある。
However, in the compressor of Patent Document 1, the cutouts are formed so as to penetrate both end faces of the cylinder, so the strength of this part is weak, and there is a risk that the cylinder will be deformed by the pressing force of the vanes caused by the pressure difference between the high-pressure chamber and the low-pressure chamber.
本開示は、上記のような課題を解決するものであり、シリンダの強度を高めることができる圧縮機及び冷凍サイクル装置を提供することを目的とするものである。
The present disclosure aims to solve the problems described above and provide a compressor and a refrigeration cycle device that can increase the strength of the cylinder.
本開示に係る圧縮機は、密閉容器と、密閉容器内に配置された回転電機と、密閉容器内に配置され、回転電機により回転駆動される回転軸と、密閉容器内に配置され、回転軸を介して回転電機から伝達される駆動力によって冷媒を圧縮する圧縮機構と、密閉容器を貫通して圧縮機構に接続されており、冷媒の流路となる吸入管と、を備え、圧縮機構は、円筒状に形成されており内部にシリンダ室を形成する少なくとも1つのシリンダと、回転軸に嵌合されてシリンダ室に収納され、回転軸の回転に伴い偏心回転して冷媒を圧縮するピストンと、シリンダの径方向に延びるように形成されたベーン溝に配置され、ピストンと共にシリンダ室を2つの空間に隔てるベーンと、シリンダの端面に配置され、シリンダ室を閉塞する上軸受及び下軸受と、を有し、シリンダには、シリンダの外部とシリンダ室とを連通させる吸入流路が形成されており、吸入流路は、シリンダの外周面から径方向内方に延びており、外周面において吸入管が接続される吸入穴と、吸入穴の径方向内方に形成され、吸入穴とシリンダ室とを連通させる空間を形成する絞部と、を有し、絞部は、絞部の両内側面を構成し、シリンダの径方向内方に向かうにつれて互いに近づくように形成された一対の絞部側面部と、一対の絞部側面部により構成され、回転軸の軸方向における一方の端部において開口する軸側開口部と、一対の絞部側面部により構成され、シリンダの径方向内方側にシリンダ室と連通するように開口し、軸側開口部と連なるように形成された内側開口部と、回転軸の軸方向における他方の端部に、絞部を閉塞するように設けられた板状の閉塞壁部と、を有するものである。
The compressor according to the present disclosure comprises a sealed container, a rotating electric machine arranged in the sealed container, a rotating shaft arranged in the sealed container and driven to rotate by the rotating electric machine, a compression mechanism arranged in the sealed container and compressing a refrigerant by a driving force transmitted from the rotating electric machine via the rotating shaft, and a suction pipe that penetrates the sealed container and is connected to the compression mechanism and serves as a flow path for the refrigerant. The compression mechanism has at least one cylinder formed in a cylindrical shape and forming a cylinder chamber therein, a piston that is fitted to the rotating shaft and stored in the cylinder chamber and rotates eccentrically as the rotating shaft rotates to compress the refrigerant, a vane that is arranged in a vane groove formed to extend radially of the cylinder and that, together with the piston, separates the cylinder chamber into two spaces, and upper and lower bearings that are arranged on the end faces of the cylinder and close the cylinder chamber. The cylinder has a cylinder An intake passage is formed that connects the outside of the cylinder with the cylinder chamber, and the intake passage extends radially inward from the outer peripheral surface of the cylinder. The intake passage has an intake hole to which the intake pipe is connected on the outer peripheral surface, and a constricted portion formed radially inward of the intake hole to form a space that connects the intake hole with the cylinder chamber. The constricted portion has a pair of constricted portion side portions that form both inner surfaces of the constricted portion and are formed so as to approach each other as they move radially inward of the cylinder, a shaft side opening formed by the pair of constricted portion side portions and opening at one end in the axial direction of the rotating shaft, an inner opening formed by the pair of constricted portion side portions that opens on the radially inward side of the cylinder so as to communicate with the cylinder chamber and is formed to connect with the shaft side opening, and a plate-shaped blocking wall portion provided at the other end in the axial direction of the rotating shaft to block the constricted portion.
本開示に係る冷凍サイクル装置は、上記構成の圧縮機と、室外空気と内部を流れる冷媒との間で熱交換を行う室外側熱交換器と、内部を流れる冷媒を減圧する減圧器と、室内空気と内部を流れる冷媒との間で熱交換を行う室内側熱交換器と、を備えたものである。
The refrigeration cycle device disclosed herein includes a compressor having the above-described configuration, an outdoor heat exchanger that exchanges heat between the outdoor air and the refrigerant flowing inside, a pressure reducer that reduces the pressure of the refrigerant flowing inside, and an indoor heat exchanger that exchanges heat between the indoor air and the refrigerant flowing inside.
本開示に係る圧縮機及び冷凍サイクル装置は、シリンダに形成された冷媒の吸入流路に絞部を有している。絞部は、絞部の両内側面を構成し、シリンダの径方向内方に向かうにつれて互いに近づくように形成された一対の絞部側面部を有する。また、絞部は、一対の絞部側面部により構成され、回転軸の軸方向における一方の端部において開口する軸側開口部を有する。また、絞部は、一対の絞部側面部により構成され、シリンダの径方向内方側にシリンダ室と連通するように開口し、軸側開口部と連なるように形成された内側開口部を有する。また、絞部は、回転軸の軸方向における他方の端部に、絞部を閉塞するように設けられた板状の閉塞壁部を有する。絞部は、軸側開口部及び内側開口部により冷媒が通る通路の開口面積を回転軸の軸方向に拡大させつつ、閉塞壁部によりシリンダの剛性を確保し、シリンダの強度を高めることができる。
The compressor and refrigeration cycle device according to the present disclosure have a throttling portion in a refrigerant intake passage formed in a cylinder. The throttling portion has a pair of throttling portion side portions that form both inner surfaces of the throttling portion and are formed so as to approach each other as they move radially inward of the cylinder. The throttling portion is also formed of a pair of throttling portion side portions and has a shaft side opening that opens at one end in the axial direction of the rotating shaft. The throttling portion is also formed of a pair of throttling portion side portions and has an inner opening that opens to the radially inward side of the cylinder so as to communicate with the cylinder chamber and is formed so as to communicate with the shaft side opening. The throttling portion has a plate-shaped blocking wall portion provided at the other end in the axial direction of the rotating shaft so as to block the throttling portion. The throttling portion can increase the strength of the cylinder by ensuring the rigidity of the cylinder through the blocking wall portion while expanding the opening area of the passage through which the refrigerant passes in the axial direction of the rotating shaft by the shaft side opening and the inner opening.
以下、実施の形態に係る圧縮機及び冷凍サイクル装置について図面等を参照しながら説明する。なお、図1を含む以下の図面では、各構成部材の相対的な寸法の関係及び形状等が実際のものとは異なる場合がある。また、以下の図面において、同一の符号を付したものは、同一又はこれに相当するものであり、このことは明細書の全文において共通することとする。また、理解を容易にするために方向を表す用語(例えば「上」、「下」、「右」、「左」、「前」、「後」など)を適宜用いるが、それらの表記は、説明の便宜上、そのように記載しているだけであって、装置あるいは部品の配置及び向きを限定するものではない。
Below, a compressor and a refrigeration cycle device according to an embodiment will be described with reference to the drawings. Note that in the following drawings, including FIG. 1, the relative dimensional relationships and shapes of the components may differ from the actual ones. Furthermore, in the following drawings, the same reference numerals are used to denote the same or equivalent objects, and this applies throughout the entire specification. Furthermore, to facilitate understanding, directional terms (e.g., "up," "down," "right," "left," "front," "rear," etc.) are used as appropriate, but these notations are merely used for the convenience of explanation and do not limit the arrangement or orientation of the device or parts.
実施の形態1.
[圧縮機1の構成]
図1は、実施の形態1に係る圧縮機1の全体構成を示す概略縦断面図である。図1を用いて、密閉型圧縮機である圧縮機1について説明する。図1に示すように、実施の形態1に係る圧縮機1は、本開示に係る圧縮機の一例として、ローリングピストン型の圧縮機を示している。圧縮機1は、低温且つ低圧の冷媒を吸入し、吸入した冷媒を圧縮し、高温且つ高圧の冷媒を吐出する。 Embodiment 1.
[Configuration of Compressor 1]
Fig. 1 is a schematic vertical cross-sectional view showing an overall configuration of a compressor 1 according to a first embodiment. The compressor 1, which is a hermetic compressor, will be described with reference to Fig. 1. As shown in Fig. 1, the compressor 1 according to the first embodiment is a rolling piston type compressor as an example of a compressor according to the present disclosure. The compressor 1 draws in a low-temperature, low-pressure refrigerant, compresses the drawn refrigerant, and discharges a high-temperature, high-pressure refrigerant.
[圧縮機1の構成]
図1は、実施の形態1に係る圧縮機1の全体構成を示す概略縦断面図である。図1を用いて、密閉型圧縮機である圧縮機1について説明する。図1に示すように、実施の形態1に係る圧縮機1は、本開示に係る圧縮機の一例として、ローリングピストン型の圧縮機を示している。圧縮機1は、低温且つ低圧の冷媒を吸入し、吸入した冷媒を圧縮し、高温且つ高圧の冷媒を吐出する。 Embodiment 1.
[Configuration of Compressor 1]
Fig. 1 is a schematic vertical cross-sectional view showing an overall configuration of a compressor 1 according to a first embodiment. The compressor 1, which is a hermetic compressor, will be described with reference to Fig. 1. As shown in Fig. 1, the compressor 1 according to the first embodiment is a rolling piston type compressor as an example of a compressor according to the present disclosure. The compressor 1 draws in a low-temperature, low-pressure refrigerant, compresses the drawn refrigerant, and discharges a high-temperature, high-pressure refrigerant.
圧縮機1は、2シリンダ型ロータリ圧縮機であり、圧縮機1の内部に吸入した低圧のガス冷媒を、高圧のガス冷媒として吐出する流体機械である。なお、2シリンダ型ロータリ圧縮機は、一例であり、1シリンダ型ロータリ圧縮機等、他の構造のロータリ圧縮機でもよい。
Compressor 1 is a two-cylinder rotary compressor, and is a fluid machine that draws low-pressure gas refrigerant into compressor 1 and discharges it as high-pressure gas refrigerant. Note that the two-cylinder rotary compressor is just one example, and rotary compressors of other structures, such as a one-cylinder rotary compressor, may also be used.
圧縮機1は、密閉容器10と、圧縮機構20と、密閉容器10内に配置された回転電機30と、密閉容器10内に配置され、回転電機30により回転駆動される回転軸40と、とを備えている。また、圧縮機1は、吸入管2と、吐出配管4と、吸入マフラー3と、遠心ポンプ45とを備えている。圧縮機1は、密閉容器10の内部に、冷媒を圧縮する圧縮機構20と、この圧縮機構20を駆動させる回転電機30と、圧縮機構20と回転電機30とを接続する回転軸40と、を収容している。圧縮機1は、圧縮機構20が密閉容器10内において下方の部分に収納され、回転電機30が密閉容器10内において上方の部分に収納されている。
The compressor 1 comprises a sealed container 10, a compression mechanism 20, a rotating electric machine 30 arranged in the sealed container 10, and a rotating shaft 40 arranged in the sealed container 10 and driven to rotate by the rotating electric machine 30. The compressor 1 also comprises a suction pipe 2, a discharge pipe 4, a suction muffler 3, and a centrifugal pump 45. The compressor 1 accommodates, inside the sealed container 10, a compression mechanism 20 that compresses the refrigerant, a rotating electric machine 30 that drives the compression mechanism 20, and a rotating shaft 40 that connects the compression mechanism 20 and the rotating electric machine 30. The compressor 1 is arranged such that the compression mechanism 20 is housed in a lower portion of the sealed container 10, and the rotating electric machine 30 is housed in an upper portion of the sealed container 10.
(密閉容器10)
密閉容器10は、圧縮機1の外郭及び外観を構成するものである。圧縮機1の外郭を構成する密閉容器10には、圧縮機構20、回転電機30及び回転軸40等が収容されている。 (Sealed container 10)
The sealedcontainer 10 constitutes the outer shell and external appearance of the compressor 1. The sealed container 10 that constitutes the outer shell of the compressor 1 accommodates a compression mechanism 20, a rotating electric machine 30, a rotating shaft 40, and the like.
密閉容器10は、圧縮機1の外郭及び外観を構成するものである。圧縮機1の外郭を構成する密閉容器10には、圧縮機構20、回転電機30及び回転軸40等が収容されている。 (Sealed container 10)
The sealed
密閉容器10は、略円筒形状の胴体部12と、略半球形状あるいは有底筒状の頭部11と、略半球形状あるいは有底筒状の底部13と、を備えている。胴体部12は、圧縮機1の中間部分の外郭を構成するものであり、上部に頭部11が取り付けられ、下部に底部13が取り付けられている。頭部11は、圧縮機1の上部の外郭を構成するものである。底部13は、圧縮機1の下部の外郭を構成するものである。密閉容器10は、例えば、胴体部12の上部に頭部11が溶接され、胴体部12の下部に底部13が溶接されている。
The sealed container 10 comprises a body 12 having a substantially cylindrical shape, a head 11 having a substantially hemispherical or bottomed cylindrical shape, and a bottom 13 having a substantially hemispherical or bottomed cylindrical shape. The body 12 forms the outer shell of the middle part of the compressor 1, with the head 11 attached to the upper part and the bottom 13 attached to the lower part. The head 11 forms the outer shell of the upper part of the compressor 1. The bottom 13 forms the outer shell of the lower part of the compressor 1. For example, the head 11 is welded to the upper part of the body 12, and the bottom 13 is welded to the lower part of the body 12.
密閉容器10の胴体部12には、密閉容器10内に冷媒を供給するための吸入管2が接続されている。密閉容器10の胴体部12には、貫通孔が設けられており、この貫通孔に吸入管2が挿入されて接続されている。
A suction pipe 2 for supplying refrigerant into the sealed container 10 is connected to the body 12 of the sealed container 10. A through hole is provided in the body 12 of the sealed container 10, and the suction pipe 2 is inserted into and connected to this through hole.
また、胴体部12の内周面には、回転電機30の固定子32が取り付けられている。また、胴体部12の内周面には、圧縮機構20が取り付けられている。実施の形態1の圧縮機1は、圧縮機構20として、ローリングピストン型の圧縮機構を採用している。圧縮機構20として、ローリングピストン型の圧縮機構が採用されている場合、圧縮機1は、胴体部12の内周面であって固定子32が取り付けられる位置の下側に、圧縮機構20が取り付けられることが多い。
The stator 32 of the rotating electric machine 30 is attached to the inner circumferential surface of the body portion 12. The compression mechanism 20 is attached to the inner circumferential surface of the body portion 12. The compressor 1 of the first embodiment employs a rolling piston type compression mechanism as the compression mechanism 20. When a rolling piston type compression mechanism is employed as the compression mechanism 20, the compressor 1 often has the compression mechanism 20 attached to the inner circumferential surface of the body portion 12, below the position where the stator 32 is attached.
密閉容器10の上部を構成する頭部11は、図1に示すように、例えば略お椀形状に形成されている。密閉容器10の頭部11には、密閉容器10の内部と外部とを連通させる吐出配管4が接続されている。吐出配管4と頭部11との固定部分は、例えばろう付け又は抵抗溶接等によって接合されている。
The head 11 that constitutes the upper part of the sealed container 10 is formed, for example, in a roughly bowl shape, as shown in FIG. 1. A discharge pipe 4 that connects the inside and outside of the sealed container 10 is connected to the head 11 of the sealed container 10. The fixed portion between the discharge pipe 4 and the head 11 is joined, for example, by brazing or resistance welding.
密閉容器10の下部を構成する底部13は、図1に示すように、例えば略お椀形状に形成されている。密閉容器10の底部13には、潤滑油である冷凍機油6が貯留されている。すなわち、密閉容器10の内部には、冷凍機油6が貯留されている。圧縮機1は、回転軸40の下部に冷凍機油6を汲み上げる後述する遠心ポンプ45が設けられている。遠心ポンプ45は、回転軸40の回転と共に密閉容器10の底部13に貯留された冷凍機油6を汲み上げ、圧縮機構20の各摺動部へ供給する。圧縮機1は、この冷凍機油6が圧縮機構20等に供給され、圧縮機構20等の摺動部での摩擦が軽減される。これにより、圧縮機1は、圧縮機構20の機械的な潤滑作用が確保される。
The bottom 13 constituting the lower part of the sealed container 10 is formed, for example, in a roughly bowl shape, as shown in FIG. 1. The bottom 13 of the sealed container 10 stores refrigeration oil 6, which is a lubricating oil. That is, the inside of the sealed container 10 stores refrigeration oil 6. The compressor 1 is provided with a centrifugal pump 45 (described later) that pumps up the refrigeration oil 6 at the bottom of the rotating shaft 40. The centrifugal pump 45 pumps up the refrigeration oil 6 stored at the bottom 13 of the sealed container 10 as the rotating shaft 40 rotates, and supplies it to each sliding part of the compression mechanism 20. In the compressor 1, this refrigeration oil 6 is supplied to the compression mechanism 20, etc., and friction at the sliding parts of the compression mechanism 20, etc. is reduced. As a result, the compressor 1 ensures mechanical lubrication of the compression mechanism 20.
(圧縮機構20)
図2は、実施の形態1に係る圧縮機構20の第1シリンダ21A部分の概略横断面図である。図3は、実施の形態1に係る圧縮機構20の第2シリンダ21B部分の概略横断面図である。図4は、実施の形態1に係る圧縮機構20の概略部分縦断面図である。なお、図2及び図3は、回転電機30の配置側から圧縮機構20を見た場合の断面図である。図1~図4を用いて圧縮機構20について説明する。圧縮機構20は、吸入管2に接続され、冷媒を圧縮するものである。 (Compression mechanism 20)
Fig. 2 is a schematic cross-sectional view of afirst cylinder 21A portion of the compression mechanism 20 according to the first embodiment. Fig. 3 is a schematic cross-sectional view of a second cylinder 21B portion of the compression mechanism 20 according to the first embodiment. Fig. 4 is a schematic partial vertical cross-sectional view of the compression mechanism 20 according to the first embodiment. Note that Figs. 2 and 3 are cross-sectional views of the compression mechanism 20 as viewed from the side where the rotating electric machine 30 is disposed. The compression mechanism 20 will be described with reference to Figs. 1 to 4. The compression mechanism 20 is connected to the suction pipe 2 and compresses the refrigerant.
図2は、実施の形態1に係る圧縮機構20の第1シリンダ21A部分の概略横断面図である。図3は、実施の形態1に係る圧縮機構20の第2シリンダ21B部分の概略横断面図である。図4は、実施の形態1に係る圧縮機構20の概略部分縦断面図である。なお、図2及び図3は、回転電機30の配置側から圧縮機構20を見た場合の断面図である。図1~図4を用いて圧縮機構20について説明する。圧縮機構20は、吸入管2に接続され、冷媒を圧縮するものである。 (Compression mechanism 20)
Fig. 2 is a schematic cross-sectional view of a
圧縮機構20は、密閉容器10内に配置され、回転軸40を介して回転電機30から伝達される駆動力によって冷媒を圧縮する。圧縮機構20は、回転軸40に接続され、回転軸40によって伝達された回転電機30の動力で、外部から吸入した冷媒を圧縮する。圧縮機構20は、回転軸40を介して回転電機30と連結されている。
The compression mechanism 20 is disposed within the sealed container 10 and compresses the refrigerant using the driving force transmitted from the rotating electric machine 30 via the rotating shaft 40. The compression mechanism 20 is connected to the rotating shaft 40 and compresses the refrigerant drawn in from the outside using the power of the rotating electric machine 30 transmitted by the rotating shaft 40. The compression mechanism 20 is connected to the rotating electric machine 30 via the rotating shaft 40.
実施の形態1の圧縮機1では、吸入マフラー3に流入した冷媒が、吸入管2を介して、圧縮機構20に供給される。すなわち、圧縮機構20は、吸入管2を介して外部の冷媒を吸入し、この冷媒を圧縮する。圧縮機構20で圧縮された冷媒は、密閉容器10の内部に放出される。上述のように、実施の形態1の圧縮機1では、圧縮機構20として、ローリングピストン型の圧縮機構を採用している。
In the compressor 1 of the first embodiment, the refrigerant that flows into the suction muffler 3 is supplied to the compression mechanism 20 via the suction pipe 2. That is, the compression mechanism 20 draws in the external refrigerant via the suction pipe 2 and compresses this refrigerant. The refrigerant compressed by the compression mechanism 20 is released into the sealed container 10. As described above, the compressor 1 of the first embodiment employs a rolling piston type compression mechanism as the compression mechanism 20.
圧縮機構20は、円筒状に形成されており内部にシリンダ室55を形成する少なくとも1つのシリンダ21と、回転軸40に嵌合されてシリンダ室55に収納され、回転軸40の回転に伴い偏心回転して冷媒を圧縮するピストン22と、を有する。また、圧縮機構20は、シリンダ21の径方向に延びるように形成されたベーン溝56に配置され、ピストン22と共にシリンダ室55を2つの空間に隔てるベーン50を有する。また、圧縮機構20は、シリンダ21の端面に配置され、シリンダ室55を閉塞する上軸受24A及び下軸受24Bを有する。
The compression mechanism 20 has at least one cylinder 21 formed in a cylindrical shape and forming a cylinder chamber 55 therein, and a piston 22 fitted to the rotating shaft 40 and housed in the cylinder chamber 55, rotating eccentrically as the rotating shaft 40 rotates to compress the refrigerant. The compression mechanism 20 also has a vane 50 that is disposed in a vane groove 56 formed to extend radially of the cylinder 21 and that, together with the piston 22, separates the cylinder chamber 55 into two spaces. The compression mechanism 20 also has an upper bearing 24A and a lower bearing 24B that are disposed on the end face of the cylinder 21 and close the cylinder chamber 55.
圧縮機構20は、第1シリンダ21Aと、第1ピストン22Aと、第1ベーン50Aと、第1バネ51Aと、上軸受24Aと、第2シリンダ21Bと、第2ピストン22Bと、第2ベーン50Bと、第2バネ51Bと、下軸受24Bと、仕切板25とを備えている。なお、第1シリンダ21A及び第2シリンダ21Bの総称を、シリンダ21と称する。また、第1ピストン22A及び第2ピストン22Bの総称をピストン22と称し、第1ベーン50A及び第2ベーン50Bの総称をベーン50と称する。
The compression mechanism 20 includes a first cylinder 21A, a first piston 22A, a first vane 50A, a first spring 51A, an upper bearing 24A, a second cylinder 21B, a second piston 22B, a second vane 50B, a second spring 51B, a lower bearing 24B, and a partition plate 25. The first cylinder 21A and the second cylinder 21B are collectively referred to as cylinder 21. The first piston 22A and the second piston 22B are collectively referred to as piston 22, and the first vane 50A and the second vane 50B are collectively referred to as vane 50.
第1シリンダ21Aは、円筒状をなし、第1シリンダ室55Aを形成する。第1シリンダ21Aは、冷媒を圧縮する第1シリンダ室55Aを内部に有し、回転軸40の軸方向の両端が開口した円筒状に形成された筒状部材である。第1シリンダ21Aは、中空の円筒形状に形成されており、中央には回転軸40の軸心と同心の貫通孔が形成されている。第1シリンダ21Aは、この貫通孔が、第1シリンダ21Aの上側端面に接触して配置された上軸受24Aと、第1シリンダ21Aの下側端面に接触して配置された仕切板25とによって閉塞され、第1シリンダ室55Aが形成されている。第1シリンダ21Aは、密閉容器10に固定される。
The first cylinder 21A is cylindrical and forms a first cylinder chamber 55A. The first cylinder 21A is a cylindrical member having the first cylinder chamber 55A inside for compressing the refrigerant and formed into a cylindrical shape with both ends in the axial direction of the rotating shaft 40 open. The first cylinder 21A is formed into a hollow cylindrical shape and has a through hole in the center that is concentric with the axis of the rotating shaft 40. The through hole of the first cylinder 21A is closed by an upper bearing 24A arranged in contact with the upper end surface of the first cylinder 21A and a partition plate 25 arranged in contact with the lower end surface of the first cylinder 21A, forming the first cylinder chamber 55A. The first cylinder 21A is fixed to the sealed container 10.
第1シリンダ室55Aの内部には、第1シリンダ室55Aの内部で偏心運動を行う後述する回転軸40の第1偏心軸部40Aと、回転軸40の第1偏心軸部40Aに嵌合した第1ピストン22Aとが収納されている。また、第1シリンダ室55Aの内部には、第1シリンダ室55Aの内周壁155と第1ピストン22Aの外周壁122との間に形成された第1シリンダ室55Aを仕切る第1ベーン50Aが収納されている。
The first cylinder chamber 55A contains a first eccentric shaft portion 40A of the rotating shaft 40, which performs eccentric motion inside the first cylinder chamber 55A (described later), and a first piston 22A fitted to the first eccentric shaft portion 40A of the rotating shaft 40. The first cylinder chamber 55A also contains a first vane 50A that divides the first cylinder chamber 55A and is formed between an inner peripheral wall 155 of the first cylinder chamber 55A and an outer peripheral wall 122 of the first piston 22A.
図2及び図4に示すように、第1シリンダ21Aには、吸入管2から冷媒が吸入される吸入流路52Aと、密閉容器10の内部空間を介して吐出配管4へ冷媒を吐出する第1吐出流路53Aとが形成されている。また、第1シリンダ21Aには、図4に示すように、吸入流路52Aから分岐した分岐流路52AAが形成されている。
As shown in Figures 2 and 4, the first cylinder 21A is formed with an intake passage 52A through which the refrigerant is drawn from the intake pipe 2, and a first discharge passage 53A that discharges the refrigerant to the discharge pipe 4 through the internal space of the sealed container 10. In addition, the first cylinder 21A is formed with a branch passage 52AA that branches off from the intake passage 52A, as shown in Figure 4.
圧縮機1は、第1シリンダ21Aの外周面の吸入流路52Aに吸入管2が圧入されている。分岐流路52AAは、第1シリンダ21Aの吸入流路52Aと後述する仕切板25の接続経路25Aとを連通させる。すなわち、分岐流路52AAは、仕切板25の接続経路25Aと連通させる。吸入流路52A及び分岐流路52AAの詳細な構成については後述する。
In the compressor 1, the intake pipe 2 is press-fitted into the intake passage 52A on the outer circumferential surface of the first cylinder 21A. The branch passage 52AA connects the intake passage 52A of the first cylinder 21A to the connection passage 25A of the partition plate 25, which will be described later. In other words, the branch passage 52AA connects to the connection passage 25A of the partition plate 25. The detailed configurations of the intake passage 52A and the branch passage 52AA will be described later.
第1シリンダ21Aには、第1ベーン溝56Aが形成されている。第1ベーン溝56Aは、第1シリンダ21Aの軸方向かつ径方向に延びる溝である。第1ベーン溝56Aは、第1シリンダ21Aの径方向において、一方の端部が第1シリンダ室55Aに開口して第1シリンダ室55Aと連通しており、他方の端部に第1バネ孔54Aが設けられている。
A first vane groove 56A is formed in the first cylinder 21A. The first vane groove 56A is a groove that extends in the axial and radial directions of the first cylinder 21A. One end of the first vane groove 56A in the radial direction of the first cylinder 21A opens into the first cylinder chamber 55A and communicates with the first cylinder chamber 55A, and the other end has a first spring hole 54A.
第1バネ孔54Aは、第1シリンダ21Aの第1ベーン溝56Aの径方向外方端に形成され、かつ、第1シリンダ21Aを軸方向に貫通し、第1ベーン溝56Aと連通している。第1ベーン溝56Aには、第1ベーン50Aが収納されており、第1バネ孔54Aには第1バネ51Aが収納されている。
The first spring hole 54A is formed at the radially outer end of the first vane groove 56A of the first cylinder 21A, and passes through the first cylinder 21A in the axial direction to communicate with the first vane groove 56A. The first vane 50A is housed in the first vane groove 56A, and the first spring 51A is housed in the first spring hole 54A.
第1ピストン22Aは、回転軸40の第1偏心軸部40Aに嵌合されて、第1偏心軸部40Aと共に偏心回転して冷媒を圧縮する。第1ピストン22Aは、円筒状に形成されている。第1ピストン22Aは、第1シリンダ21Aの内部で回転軸40の第1偏心軸部40Aの外周に装着される。第1ピストン22Aは、回転電機30によって回転軸40が回転すると、第1シリンダ21Aの内部をその内周壁155に沿って回転する。
The first piston 22A is fitted to the first eccentric shaft portion 40A of the rotating shaft 40 and rotates eccentrically together with the first eccentric shaft portion 40A to compress the refrigerant. The first piston 22A is formed in a cylindrical shape. The first piston 22A is attached to the outer periphery of the first eccentric shaft portion 40A of the rotating shaft 40 inside the first cylinder 21A. When the rotating shaft 40 is rotated by the rotating electric machine 30, the first piston 22A rotates inside the first cylinder 21A along its inner circumferential wall 155.
第1ピストン22Aは、第1シリンダ21Aの内部を摺動自在に回転する。この第1ピストン22Aは、第1シリンダ21Aの内部を、回転軸40の回転中心に対して偏心して回転するように構成されている。以下、回転軸40の回転中心に対して偏心した回転運動を、偏心回転運動と称する。第1ピストン22Aは、回転軸40の回転により第1シリンダ室55Aの内部で偏心して回転する。
The first piston 22A rotates freely inside the first cylinder 21A. This first piston 22A is configured to rotate inside the first cylinder 21A eccentrically with respect to the center of rotation of the rotating shaft 40. Hereinafter, the rotational motion eccentric with respect to the center of rotation of the rotating shaft 40 will be referred to as eccentric rotational motion. The first piston 22A rotates eccentrically inside the first cylinder chamber 55A due to the rotation of the rotating shaft 40.
第1ピストン22Aは、第2ピストン22Bが第2シリンダ21Bの内部を回転する際の回転位相に対して、180度位相がずれた状態で第1シリンダ21Aの内部を回転することが可能なように、回転軸40に接続されている。
The first piston 22A is connected to the rotating shaft 40 so that it can rotate inside the first cylinder 21A with a phase shift of 180 degrees relative to the rotational phase when the second piston 22B rotates inside the second cylinder 21B.
第1ベーン50Aは、第1シリンダ21Aに設けられた第1ベーン溝56Aに挿入されている。第1ベーン50Aは、第1ベーン溝56Aの内部において、径方向に往復運動するように配置されている。第1ベーン50Aの形状は、第1ベーン溝56Aに取付けられた状態で第1シリンダ室55Aの周方向における厚さが第1シリンダ室55Aの径方向及び第1シリンダ室55Aの軸方向における長さよりも小さいほぼ直方体の形状である。
The first vane 50A is inserted into a first vane groove 56A provided in the first cylinder 21A. The first vane 50A is arranged so as to reciprocate radially inside the first vane groove 56A. The shape of the first vane 50A is a roughly rectangular parallelepiped shape in which the thickness in the circumferential direction of the first cylinder chamber 55A when attached to the first vane groove 56A is smaller than the length in the radial direction of the first cylinder chamber 55A and the axial direction of the first cylinder chamber 55A.
第1ベーン50Aは、第1シリンダ21Aの周方向において、吸入流路52Aと第1吐出流路53Aとの間に配置されている。第1ベーン50Aは、第1シリンダ21Aの径方向に延びるように形成された第1ベーン溝56Aに配置され、第1シリンダ室55Aを第1低圧室57Aと第1高圧室58Aとに隔てる。第1低圧室57Aは、吸入流路52Aに連通し、第1高圧室58Aは、第1吐出流路53Aと連通している。第1高圧室58Aは、第1低圧室57Aに対して高圧側の圧縮室であり、第1低圧室57Aは第1高圧室58Aに対して低圧側の圧縮室である。
The first vane 50A is disposed between the intake passage 52A and the first discharge passage 53A in the circumferential direction of the first cylinder 21A. The first vane 50A is disposed in a first vane groove 56A formed to extend in the radial direction of the first cylinder 21A, and separates the first cylinder chamber 55A into a first low pressure chamber 57A and a first high pressure chamber 58A. The first low pressure chamber 57A is connected to the intake passage 52A, and the first high pressure chamber 58A is connected to the first discharge passage 53A. The first high pressure chamber 58A is a compression chamber on the high pressure side relative to the first low pressure chamber 57A, and the first low pressure chamber 57A is a compression chamber on the low pressure side relative to the first high pressure chamber 58A.
第1バネ51Aは、第1バネ孔54Aに収容され、第1バネ51Aの先端に取り付けられた第1ベーン50Aを第1ピストン22Aの外周壁122に押し付ける。
The first spring 51A is housed in the first spring hole 54A and presses the first vane 50A attached to the tip of the first spring 51A against the outer peripheral wall 122 of the first piston 22A.
上軸受24Aは、第1シリンダ21Aの上端面に当接するように配置され、第1シリンダ室55Aを閉塞する。上軸受24Aは、回転軸40を回転自在に支持する。なお、上軸受24Aには、第1シリンダ21Aと第1ピストン22Aとによって圧縮された冷媒を放出する弁(図示は省略)が設けられている。圧縮機1は、この弁が開くことにより、第1シリンダ21Aと第1ピストン22Aとによって形成される空間と、後述の第1マフラー23Aの内部空間とを連通させることができる。
The upper bearing 24A is positioned so as to abut against the upper end surface of the first cylinder 21A, and closes the first cylinder chamber 55A. The upper bearing 24A rotatably supports the rotating shaft 40. The upper bearing 24A is provided with a valve (not shown) that releases the refrigerant compressed by the first cylinder 21A and the first piston 22A. When this valve opens, the compressor 1 can connect the space formed by the first cylinder 21A and the first piston 22A to the internal space of the first muffler 23A, which will be described later.
上軸受24Aには、第1シリンダ21Aと第1ピストン22Aとによって圧縮された冷媒が吐出される第1マフラー23Aが設けられている。なお、第1マフラー23Aには、弁として機能する冷媒吐出部(図示は省略)が設けられている。これにより、圧縮機1は、第1シリンダ21Aと第1ピストン22Aとによって圧縮された冷媒が、この第1マフラー23Aの内部空間に吐出された後に、冷媒吐出部から密閉容器10の内部に放出される。
The upper bearing 24A is provided with a first muffler 23A that discharges the refrigerant compressed by the first cylinder 21A and the first piston 22A. The first muffler 23A is provided with a refrigerant discharge section (not shown) that functions as a valve. As a result, in the compressor 1, the refrigerant compressed by the first cylinder 21A and the first piston 22A is discharged into the internal space of the first muffler 23A, and then released from the refrigerant discharge section into the inside of the sealed container 10.
第2シリンダ21Bは、第1シリンダ21Aの下方に配置されている。第2シリンダ21Bは、円筒状をなし、第2シリンダ室55Bを形成する。第2シリンダ21Bは、例えば仕切板25と共に第1シリンダ21Aに固定される。
The second cylinder 21B is disposed below the first cylinder 21A. The second cylinder 21B is cylindrical and forms a second cylinder chamber 55B. The second cylinder 21B is fixed to the first cylinder 21A together with, for example, a partition plate 25.
第2シリンダ21Bは、冷媒を圧縮する第2シリンダ室55Bを内部に有し、回転軸40の軸方向の両端が開口した円筒状に形成された筒状部材である。第2シリンダ21Bは、中空の円筒形状に形成されており、中央には回転軸40の軸心と同心の貫通孔が形成されている。第2シリンダ21Bは、この貫通孔が、第2シリンダ21Bの下側端面に接触して配置された下軸受24Bと、第2シリンダ21Bの上側端面に接触して配置された仕切板25とによって閉塞され、第2シリンダ室55Bが形成されている。なお、第1シリンダ室55A及び第2シリンダ室55Bの総称をシリンダ室55と称する。
The second cylinder 21B is a cylindrical member having a second cylinder chamber 55B therein for compressing the refrigerant, and is formed into a cylindrical shape with both ends in the axial direction of the rotating shaft 40 open. The second cylinder 21B is formed into a hollow cylindrical shape, and a through hole concentric with the axis of the rotating shaft 40 is formed in the center. This through hole of the second cylinder 21B is closed by a lower bearing 24B arranged in contact with the lower end surface of the second cylinder 21B and a partition plate 25 arranged in contact with the upper end surface of the second cylinder 21B, forming the second cylinder chamber 55B. The first cylinder chamber 55A and the second cylinder chamber 55B are collectively referred to as the cylinder chamber 55.
第2シリンダ室55Bの内部には、第2シリンダ室55Bの内部で偏心運動を行う後述する回転軸40の第2偏心軸部40Bと、回転軸40の第2偏心軸部40Bに嵌合した第2ピストン22Bとが収納されている。また、第2シリンダ室55Bの内部には、第2シリンダ室55Bの内周壁155と第2ピストン22Bの外周壁122との間に形成された第2シリンダ室55Bを仕切る第2ベーン50Bが収納されている。
The second cylinder chamber 55B contains a second eccentric shaft portion 40B of the rotating shaft 40, which performs eccentric motion inside the second cylinder chamber 55B (described later), and a second piston 22B fitted to the second eccentric shaft portion 40B of the rotating shaft 40. The second cylinder chamber 55B also contains a second vane 50B that divides the second cylinder chamber 55B and is formed between the inner peripheral wall 155 of the second cylinder chamber 55B and the outer peripheral wall 122 of the second piston 22B.
図3及び図4に示すように、第2シリンダ21Bには、第2シリンダ21Bの上面から冷媒が吸入される内部吸入流路52Bと、密閉容器10の内部空間を介して吐出配管4へ冷媒を吐出する第2吐出流路53Bとが形成されている。第2シリンダ21Bの内部吸入流路52Bは、仕切板25の接続経路25Aと連通している。圧縮機構20は、第1シリンダ21Aの分岐流路52AAと、仕切板25の接続経路25Aと、第2シリンダ21Bの内部吸入流路52Bとが連通しており、吸入管2から内部吸入流路52Bへ冷媒が吸入される。内部吸入流路52Bの詳細な構成については後述する。
3 and 4, the second cylinder 21B is formed with an internal intake passage 52B through which the refrigerant is drawn from the upper surface of the second cylinder 21B, and a second discharge passage 53B through the internal space of the sealed container 10 to the discharge pipe 4. The internal intake passage 52B of the second cylinder 21B is connected to the connection passage 25A of the partition plate 25. In the compression mechanism 20, the branch passage 52AA of the first cylinder 21A, the connection passage 25A of the partition plate 25, and the internal intake passage 52B of the second cylinder 21B are connected, and the refrigerant is drawn from the intake pipe 2 to the internal intake passage 52B. The detailed configuration of the internal intake passage 52B will be described later.
第2シリンダ21Bには、第2ベーン溝56Bが形成されている。第2ベーン溝56Bは、第2シリンダ21Bの軸方向かつ径方向に延びる溝である。第2ベーン溝56Bは、第2シリンダ21Bの径方向において、一方の端部が第2シリンダ室55Bに開口して第2シリンダ室55Bと連通しており、他方の端部に第2バネ孔54Bが設けられている。
A second vane groove 56B is formed in the second cylinder 21B. The second vane groove 56B is a groove that extends in the axial and radial directions of the second cylinder 21B. One end of the second vane groove 56B in the radial direction of the second cylinder 21B opens into the second cylinder chamber 55B and communicates with the second cylinder chamber 55B, and the other end has a second spring hole 54B.
第2バネ孔54Bは、第2シリンダ21Bの第2ベーン溝56Bの径方向外方端に形成され、かつ、第2シリンダ21Bを軸方向に貫通し、第2ベーン溝56Bと連通している。第2ベーン溝56Bには、第2ベーン50Bが収納されており、第2バネ孔54Bには第2バネ51Bが収納されている。なお、第1ベーン溝56A及び第2ベーン溝56Bの総称をベーン溝56と称する。
The second spring hole 54B is formed at the radially outer end of the second vane groove 56B of the second cylinder 21B, and passes through the second cylinder 21B in the axial direction, communicating with the second vane groove 56B. The second vane groove 56B houses the second vane 50B, and the second spring hole 54B houses the second spring 51B. The first vane groove 56A and the second vane groove 56B are collectively referred to as the vane groove 56.
第2ピストン22Bは、回転軸40の第2偏心軸部40Bに嵌合されて、第2偏心軸部40Bと共に偏心回転して冷媒を圧縮する。第2ピストン22Bは、円筒状に形成されている。第2ピストン22Bは、第2シリンダ21Bの内部で回転軸40の第2偏心軸部40Bの外周に装着される。第2ピストン22Bは、回転電機30によって回転軸40が回転すると、第2シリンダ21Bの内部をその内周壁155に沿って回転する。
The second piston 22B is fitted to the second eccentric shaft portion 40B of the rotating shaft 40 and rotates eccentrically together with the second eccentric shaft portion 40B to compress the refrigerant. The second piston 22B is formed in a cylindrical shape. The second piston 22B is attached to the outer periphery of the second eccentric shaft portion 40B of the rotating shaft 40 inside the second cylinder 21B. When the rotating shaft 40 is rotated by the rotating electric machine 30, the second piston 22B rotates inside the second cylinder 21B along its inner circumferential wall 155.
第2ピストン22Bは、第2シリンダ21Bの内部を摺動自在に回転する。この第2ピストン22Bは、第2シリンダ21Bの内部において偏心回転運動を行うように構成されている。第2ピストン22Bは、回転軸40の回転により第2シリンダ室55Bの内部で偏心して回転する。
The second piston 22B rotates freely within the second cylinder 21B. This second piston 22B is configured to perform eccentric rotational motion within the second cylinder 21B. The second piston 22B rotates eccentrically within the second cylinder chamber 55B due to the rotation of the rotating shaft 40.
第2ピストン22Bは、第1ピストン22Aが第1シリンダ21Aの内部を回転する際の回転位相に対して、-180度位相がずれた状態で第2シリンダ21Bの内部を回転することが可能なように、回転軸40に接続されている。
The second piston 22B is connected to the rotating shaft 40 so that it can rotate inside the second cylinder 21B with a phase shift of -180 degrees relative to the rotational phase when the first piston 22A rotates inside the first cylinder 21A.
第2ベーン50Bは、第2シリンダ21Bに設けられた第2ベーン溝56Bに挿入されている。第2ベーン50Bは、第2ベーン溝56Bの内部において、径方向に往復運動するように配置されている。第2ベーン50Bの形状は、第2ベーン溝56Bに取付けられた状態で第2シリンダ室55Bの周方向における厚さが第2シリンダ室55Bの径方向及び第2シリンダ室55Bの軸方向における長さよりも小さいほぼ直方体の形状である。
The second vane 50B is inserted into a second vane groove 56B provided in the second cylinder 21B. The second vane 50B is arranged so as to reciprocate radially inside the second vane groove 56B. The shape of the second vane 50B is a substantially rectangular parallelepiped shape in which the thickness in the circumferential direction of the second cylinder chamber 55B when attached to the second vane groove 56B is smaller than the length in the radial direction of the second cylinder chamber 55B and the axial direction of the second cylinder chamber 55B.
第2ベーン50Bは、第2シリンダ21Bの周方向において、内部吸入流路52Bと第2吐出流路53Bとの間に配置されている。第2ベーン50Bは、第2シリンダ21Bの径方向に延びるように形成された第2ベーン溝56Bに配置され、第2シリンダ室55Bを第2低圧室57Bと第2高圧室58Bとに隔てる。第2低圧室57Bは、内部吸入流路52Bに連通し、第2高圧室58Bは、第2吐出流路53Bと連通している。第2高圧室58Bは、第2低圧室57Bに対して高圧側の圧縮室であり、第2低圧室57Bは第2高圧室58Bに対して低圧側の圧縮室である。
The second vane 50B is disposed between the internal intake passage 52B and the second discharge passage 53B in the circumferential direction of the second cylinder 21B. The second vane 50B is disposed in a second vane groove 56B formed to extend in the radial direction of the second cylinder 21B, and separates the second cylinder chamber 55B into a second low pressure chamber 57B and a second high pressure chamber 58B. The second low pressure chamber 57B is connected to the internal intake passage 52B, and the second high pressure chamber 58B is connected to the second discharge passage 53B. The second high pressure chamber 58B is a compression chamber on the high pressure side relative to the second low pressure chamber 57B, and the second low pressure chamber 57B is a compression chamber on the low pressure side relative to the second high pressure chamber 58B.
第2バネ51Bは、第2バネ孔54Bに収容され、第2バネ51Bの先端に取り付けられた第2ベーン50Bを第2ピストン22Bの外周壁122に押し付ける。
The second spring 51B is housed in the second spring hole 54B and presses the second vane 50B attached to the tip of the second spring 51B against the outer peripheral wall 122 of the second piston 22B.
下軸受24Bは、第2シリンダ21Bの下端面に当接するように配置され、第2シリンダ室55Bを閉塞する。下軸受24Bは、回転軸40を回転自在に支持する。なお、下軸受24Bには、第2シリンダ21Bと第2ピストン22Bとによって圧縮された冷媒を放出する弁(図示は省略)が設けられている。圧縮機1は、この弁が開くことにより、第2シリンダ21Bと第2ピストン22Bとによって形成される空間と、後述の第2マフラー23Bの内部空間とを連通させることができる。
The lower bearing 24B is disposed so as to abut against the lower end surface of the second cylinder 21B, and closes the second cylinder chamber 55B. The lower bearing 24B rotatably supports the rotating shaft 40. The lower bearing 24B is provided with a valve (not shown) that releases the refrigerant compressed by the second cylinder 21B and the second piston 22B. When this valve opens, the compressor 1 can communicate the space formed by the second cylinder 21B and the second piston 22B with the internal space of the second muffler 23B, which will be described later.
下軸受24Bには、第2シリンダ21Bと第2ピストン22Bとによって圧縮された冷媒が吐出される第2マフラー23Bが設けられている。なお、この第2マフラー23Bの内部空間は、圧縮機構20に形成された冷媒流路(図示は省略)を介して第1マフラー23Aの内部空間と連通している。これにより、第2シリンダ21Bと第2ピストン22Bとによって圧縮された冷媒は、第2マフラー23Bの内部空間に吐出された後、圧縮機構20に形成された冷媒流路(図示は省略)を介して第1マフラー23Aの内部空間に流入する。そして、第1マフラー23Aの内部空間に流入した冷媒は、第1マフラー23Aの冷媒吐出部(図示は省略)から密閉容器10の内部に放出される。
The lower bearing 24B is provided with a second muffler 23B that discharges the refrigerant compressed by the second cylinder 21B and the second piston 22B. The internal space of the second muffler 23B is connected to the internal space of the first muffler 23A through a refrigerant flow path (not shown) formed in the compression mechanism 20. As a result, the refrigerant compressed by the second cylinder 21B and the second piston 22B is discharged into the internal space of the second muffler 23B, and then flows into the internal space of the first muffler 23A through the refrigerant flow path (not shown) formed in the compression mechanism 20. The refrigerant that flows into the internal space of the first muffler 23A is then discharged into the inside of the sealed container 10 from the refrigerant discharge portion (not shown) of the first muffler 23A.
仕切板25は、板状あるいは柱状に形成されている。仕切板25は、第1シリンダ21Aと第2シリンダ21Bとの間に配置される。仕切板25は、第1シリンダ21Aの下端面に当接するように配置され、かつ、第2シリンダ21Bの上端面に当接するように配置され、第1シリンダ室55A及び第2シリンダ室55Bを閉塞する。仕切板25は、第1シリンダ21Aと第2シリンダ21Bとの間に配置され、後述する軸側開口部59D(図6参照)及び第2軸側開口部60D(図12参照)、第1シリンダ室55A及び第2シリンダ室55Bを閉塞する。
The partition plate 25 is formed in a plate or column shape. The partition plate 25 is disposed between the first cylinder 21A and the second cylinder 21B. The partition plate 25 is disposed so as to abut against the lower end surface of the first cylinder 21A and the upper end surface of the second cylinder 21B, and closes the first cylinder chamber 55A and the second cylinder chamber 55B. The partition plate 25 is disposed between the first cylinder 21A and the second cylinder 21B, and closes the shaft side opening 59D (see FIG. 6) and the second shaft side opening 60D (see FIG. 12), the first cylinder chamber 55A, and the second cylinder chamber 55B, which will be described later.
仕切板25には、第1シリンダ21Aの吸入流路52Aから分岐した分岐流路52AAと連通する接続経路25Aが形成されている。また、接続経路25Aは、第2シリンダ21Bに形成された内部吸入流路52Bと連通する。接続経路25Aは、仕切板25に形成された貫通孔である。接続経路25Aは、第1シリンダ21Aの分岐流路52AAと第2シリンダ21Bの内部吸入流路52Bとを連通させる。接続経路25Aは、第1シリンダ21Aの吸入流路52Aと第2シリンダ21Bの内部吸入流路52Bとを連通させる。
The partition plate 25 is formed with a connection path 25A that communicates with a branched flow path 52AA branching off from the intake flow path 52A of the first cylinder 21A. The connection path 25A also communicates with an internal intake flow path 52B formed in the second cylinder 21B. The connection path 25A is a through hole formed in the partition plate 25. The connection path 25A communicates between the branched flow path 52AA of the first cylinder 21A and the internal intake flow path 52B of the second cylinder 21B. The connection path 25A communicates between the intake flow path 52A of the first cylinder 21A and the internal intake flow path 52B of the second cylinder 21B.
(回転電機30)
回転電機30は、密閉容器10の内部に配置され、圧縮機構20を動かすために用いられる。回転電機30は、外部電源から供給された電力を用いて回転軸40に回転駆動力を発生させ、回転軸40を介して圧縮機構20に回転駆動力を伝達するモータである。回転電機30には、例えば、ブラシレスDCモータが用いられる。 (Rotating electric machine 30)
The rotatingelectric machine 30 is disposed inside the sealed container 10, and is used to drive the compression mechanism 20. The rotating electric machine 30 is a motor that generates a rotational driving force in a rotating shaft 40 by using electric power supplied from an external power source, and transmits the rotational driving force to the compression mechanism 20 via the rotating shaft 40. For example, a brushless DC motor is used as the rotating electric machine 30.
回転電機30は、密閉容器10の内部に配置され、圧縮機構20を動かすために用いられる。回転電機30は、外部電源から供給された電力を用いて回転軸40に回転駆動力を発生させ、回転軸40を介して圧縮機構20に回転駆動力を伝達するモータである。回転電機30には、例えば、ブラシレスDCモータが用いられる。 (Rotating electric machine 30)
The rotating
回転電機30は、自身の回転を回転軸40に伝達する回転子31と、積層鉄心に複数相の巻線を装着して構成される固定子32とを有している。固定子32は、上面視において中空円筒形状に形成されている。回転子31は、固定子32の内側に回転自在に設けられ、磁気作用によって回転する。
The rotating electric machine 30 has a rotor 31 that transmits its own rotation to a rotating shaft 40, and a stator 32 that is configured by attaching multiple phase windings to a laminated core. The stator 32 is formed into a hollow cylindrical shape when viewed from above. The rotor 31 is rotatably mounted inside the stator 32, and rotates by magnetic action.
回転電機30は、外部電源から供給される電力が、固定子32に供給されることにより、固定子32の内側で回転子31が回転する。回転電機30は、固定子32の積層鉄心に設けられた巻線に電源(図示は省略)から電流が供給され、固定子32に回転磁界を形成させる。これより、回転電機30は、例えば固定子32の回転磁界が回転子31に設けられた永久磁石に作用し、回転子31が回転する。回転子31の回転は、回転軸40を介して第1ピストン22A及び第2ピストン22Bに伝達され、第1ピストン22A及び第2ピストン22Bに偏心回転運動を行わせる。
In the rotating electric machine 30, power is supplied from an external power source to the stator 32, causing the rotor 31 to rotate inside the stator 32. In the rotating electric machine 30, current is supplied from a power source (not shown) to windings provided on the laminated core of the stator 32, causing a rotating magnetic field to form in the stator 32. As a result, in the rotating electric machine 30, for example, the rotating magnetic field of the stator 32 acts on a permanent magnet provided in the rotor 31, causing the rotor 31 to rotate. The rotation of the rotor 31 is transmitted to the first piston 22A and the second piston 22B via the rotating shaft 40, causing the first piston 22A and the second piston 22B to perform eccentric rotational motion.
(回転軸40)
回転軸40は、回転電機30の動力を圧縮機構20へ伝達するものである。回転軸40は、回転電機30に接続され、回転電機30の動力によって回転する。回転軸40は、回転電機30の回転子31に接続され、回転子31と共に回転するものである。 (Rotation shaft 40)
The rotatingshaft 40 transmits the power of the rotating electric machine 30 to the compression mechanism 20. The rotating shaft 40 is connected to the rotating electric machine 30 and rotates by the power of the rotating electric machine 30. The rotating shaft 40 is connected to the rotor 31 of the rotating electric machine 30 and rotates together with the rotor 31.
回転軸40は、回転電機30の動力を圧縮機構20へ伝達するものである。回転軸40は、回転電機30に接続され、回転電機30の動力によって回転する。回転軸40は、回転電機30の回転子31に接続され、回転子31と共に回転するものである。 (Rotation shaft 40)
The rotating
実施の形態1の圧縮機1では、回転軸40の上端部側が、回転電機30の回転子31に接続されている。これにより、回転軸40は、回転子31の回転と共に回転する。なお、図1に示す回転軸40は、紙面上下方向に延びる軸を回転中心として回転する。また、回転軸40の下端部側は、圧縮機構20に接続されている。より詳細には、回転軸40の下端部側は、圧縮機構20の上軸受24A及び下軸受24Bに回転自在に支持されている。
In the compressor 1 of the first embodiment, the upper end side of the rotating shaft 40 is connected to the rotor 31 of the rotating electric machine 30. As a result, the rotating shaft 40 rotates together with the rotor 31. The rotating shaft 40 shown in FIG. 1 rotates about an axis extending in the vertical direction of the page. The lower end side of the rotating shaft 40 is connected to the compression mechanism 20. More specifically, the lower end side of the rotating shaft 40 is rotatably supported by the upper bearing 24A and the lower bearing 24B of the compression mechanism 20.
図1に示すように、実施の形態1の圧縮機1では、回転軸40は、上軸受24Aに回転自在に支持されている箇所と下軸受24Bに回転自在に支持されている箇所との間に、第1偏心軸部40Aと第2偏心軸部40Bとを有している。第1偏心軸部40Aと第2偏心軸部40Bは、回転軸40の主たる部分の中心に対して偏心している部分である。
As shown in FIG. 1, in the compressor 1 of the first embodiment, the rotating shaft 40 has a first eccentric shaft portion 40A and a second eccentric shaft portion 40B between a portion rotatably supported by the upper bearing 24A and a portion rotatably supported by the lower bearing 24B. The first eccentric shaft portion 40A and the second eccentric shaft portion 40B are portions that are eccentric with respect to the center of the main portion of the rotating shaft 40.
回転軸40は、第1偏心軸部40Aに第1ピストン22Aが偏心回転運動可能なように接続されており、第2偏心軸部40Bに第2ピストン22Bが偏心回転運動可能なように接続されている。すなわち、回転軸40は、上軸受24Aに回転自在に支持されている箇所と下軸受24Bに回転自在に支持されている箇所との間に、第1ピストン22A及び第2ピストン22Bが偏心回転運動可能なように接続されている。
The rotating shaft 40 has the first piston 22A connected to the first eccentric shaft portion 40A so as to be capable of eccentric rotational movement, and the second piston 22B connected to the second eccentric shaft portion 40B so as to be capable of eccentric rotational movement. In other words, the rotating shaft 40 has the first piston 22A and the second piston 22B connected to it so as to be capable of eccentric rotational movement between a portion rotatably supported by the upper bearing 24A and a portion rotatably supported by the lower bearing 24B.
これにより、圧縮機1は、回転子31の回転に伴って回転軸40も回転し、第1ピストン22A及び第2ピストン22Bが偏心回転運動する。そして、圧縮機1は、第1シリンダ21Aと第1ピストン22Aとによって冷媒が圧縮され、第2シリンダ21Bと第2ピストン22Bとによって冷媒が圧縮される。すなわち、圧縮機構20は、回転軸40によって伝達された回転電機30の動力で、外部から吸入した冷媒を圧縮する。
As a result, in the compressor 1, the rotating shaft 40 rotates in conjunction with the rotation of the rotor 31, and the first piston 22A and the second piston 22B perform eccentric rotational motion. In the compressor 1, the refrigerant is compressed by the first cylinder 21A and the first piston 22A, and the refrigerant is compressed by the second cylinder 21B and the second piston 22B. In other words, the compression mechanism 20 compresses the refrigerant sucked in from the outside using the power of the rotating electric machine 30 transmitted by the rotating shaft 40.
回転軸40には、回転軸40の一方の端部である端部41に給油穴42が形成されている。給油穴42は、回転軸40の一方の端部である端部41に開口している。端部41は、第1端部に相当するものである。本実施の形態1の圧縮機1では、端部41は、回転軸40の下端部となっている。給油穴42は、回転軸40の回転中心に沿って延びている。
The rotating shaft 40 has an oil supply hole 42 formed at the end 41, which is one end of the rotating shaft 40. The oil supply hole 42 opens at the end 41, which is one end of the rotating shaft 40. The end 41 corresponds to the first end. In the compressor 1 of this embodiment 1, the end 41 is the lower end of the rotating shaft 40. The oil supply hole 42 extends along the center of rotation of the rotating shaft 40.
また、回転軸40には、第1の給油口43及び第2の給油口44が形成されている。第1の給油口43及び第2の給油口44は、給油穴42に吸い込まれた冷凍機油6を圧縮機構20の摺動部へ供給する流路となるものである。第1の給油口43及び第2の給油口44の一方の端部は、給油穴42に連通している。また、第1の給油口43及び第2の給油口44の他方の端部は、回転軸40の外周面における圧縮機構20と対向する箇所に開口している。なお、本実施の形態1の圧縮機1では、第1の給油口43の他方の端部は、圧縮機構20の上軸受24Aと対向する箇所に開口している。また、第2の給油口44の他方の端部は、圧縮機構20の下軸受24Bと対向する箇所に開口している。
The rotating shaft 40 is also formed with a first oil supply port 43 and a second oil supply port 44. The first oil supply port 43 and the second oil supply port 44 are flow paths that supply the refrigeration oil 6 sucked into the oil supply hole 42 to the sliding parts of the compression mechanism 20. One end of the first oil supply port 43 and the second oil supply port 44 is connected to the oil supply hole 42. The other end of the first oil supply port 43 and the second oil supply port 44 opens at a location on the outer circumferential surface of the rotating shaft 40 that faces the compression mechanism 20. In the compressor 1 of the first embodiment, the other end of the first oil supply port 43 opens at a location that faces the upper bearing 24A of the compression mechanism 20. The other end of the second oil supply port 44 opens at a location that faces the lower bearing 24B of the compression mechanism 20.
(吸入管2)
吸入管2は、密閉容器10を貫通して圧縮機構20に接続されており、冷媒の流路となる。吸入管2は、密閉容器10内に冷媒を供給するものである。吸入管2は、上述のように、密閉容器10の胴体部12に接続されている。吸入管2の一方の端部は、圧縮機構20の第1シリンダ21Aと連通している。また、吸入管2の他方の端部は、吸入マフラー3に連通している。吸入管2は、断面形状が円形の円管でもよく、断面形状が楕円あるいは長円等の非円形な管でもよい。 (Suction pipe 2)
Thesuction pipe 2 passes through the sealed container 10 and is connected to the compression mechanism 20, and serves as a refrigerant flow path. The suction pipe 2 supplies refrigerant into the sealed container 10. As described above, the suction pipe 2 is connected to the body 12 of the sealed container 10. One end of the suction pipe 2 communicates with the first cylinder 21A of the compression mechanism 20. The other end of the suction pipe 2 communicates with the suction muffler 3. The suction pipe 2 may be a circular pipe having a circular cross-sectional shape, or may be a non-circular pipe having a cross-sectional shape such as an ellipse or an oval.
吸入管2は、密閉容器10を貫通して圧縮機構20に接続されており、冷媒の流路となる。吸入管2は、密閉容器10内に冷媒を供給するものである。吸入管2は、上述のように、密閉容器10の胴体部12に接続されている。吸入管2の一方の端部は、圧縮機構20の第1シリンダ21Aと連通している。また、吸入管2の他方の端部は、吸入マフラー3に連通している。吸入管2は、断面形状が円形の円管でもよく、断面形状が楕円あるいは長円等の非円形な管でもよい。 (Suction pipe 2)
The
(吐出配管4)
吐出配管4は、圧縮機構20で圧縮された冷媒を密閉容器10の外部へ吐出する配管である。吐出配管4は、密閉容器10の内部の高温で高圧な冷媒を密閉容器10の外部へ吐出する配管である。 (Discharge pipe 4)
Thedischarge pipe 4 is a pipe that discharges the refrigerant compressed by the compression mechanism 20 to the outside of the sealed container 10. The discharge pipe 4 is a pipe that discharges the high-temperature and high-pressure refrigerant inside the sealed container 10 to the outside of the sealed container 10.
吐出配管4は、圧縮機構20で圧縮された冷媒を密閉容器10の外部へ吐出する配管である。吐出配管4は、密閉容器10の内部の高温で高圧な冷媒を密閉容器10の外部へ吐出する配管である。 (Discharge pipe 4)
The
(吸入マフラー3)
吸入マフラー3は、圧縮機1に冷媒が流入する際に発生する冷媒音等を低減するマフラーとしての機能を有するものである。また、吸入マフラー3は、液冷媒を貯留可能なアキュムレータとしての機能も有している。吸入マフラー3は、吸入管2に接続されており、吸入管2と連通している。 (Intake muffler 3)
Thesuction muffler 3 functions as a muffler that reduces refrigerant noise and the like generated when the refrigerant flows into the compressor 1. The suction muffler 3 also functions as an accumulator that can store liquid refrigerant. The suction muffler 3 is connected to the suction pipe 2 and communicates with the suction pipe 2.
吸入マフラー3は、圧縮機1に冷媒が流入する際に発生する冷媒音等を低減するマフラーとしての機能を有するものである。また、吸入マフラー3は、液冷媒を貯留可能なアキュムレータとしての機能も有している。吸入マフラー3は、吸入管2に接続されており、吸入管2と連通している。 (Intake muffler 3)
The
(遠心ポンプ45)
遠心ポンプ45は、回転軸40の給油穴42の内部に設けられている。遠心ポンプ45は、例えば、板状部材が捻られて形成されたものである。遠心ポンプ45は、回転軸40の回転運動によって発生する遠心力により、密閉容器10の底部13に貯留された潤滑油としての冷凍機油6を吸い上げる流体機械である。 (Centrifugal pump 45)
Thecentrifugal pump 45 is provided inside the oil supply hole 42 of the rotating shaft 40. The centrifugal pump 45 is formed, for example, by twisting a plate-shaped member. The centrifugal pump 45 is a fluid machine that sucks up the refrigeration oil 6 as a lubricant oil stored in the bottom 13 of the sealed container 10 by centrifugal force generated by the rotational motion of the rotating shaft 40.
遠心ポンプ45は、回転軸40の給油穴42の内部に設けられている。遠心ポンプ45は、例えば、板状部材が捻られて形成されたものである。遠心ポンプ45は、回転軸40の回転運動によって発生する遠心力により、密閉容器10の底部13に貯留された潤滑油としての冷凍機油6を吸い上げる流体機械である。 (Centrifugal pump 45)
The
遠心ポンプ45で給油穴42に吸い上げられた冷凍機油6は、圧縮機構20の摺動部に供給される。具体的には、給油穴42に吸い上げられた冷凍機油6の一部は、第1の給油口43を通って、圧縮機構20の上軸受24Aと回転軸40との摺動部分に供給される。また、給油穴42に吸い上げられた冷凍機油6の一部は、第2の給油口44を通って、圧縮機構20の下軸受24Bと回転軸40との摺動部分に供給される。冷凍機油6としては、例えば、鉱油系、アルキルベンゼン系、ポリアルキレングリコール系、ポリビニルエーテル系、及びポリオールエステル系の潤滑油等が用いられる。
The refrigeration oil 6 pumped up to the oil supply hole 42 by the centrifugal pump 45 is supplied to the sliding parts of the compression mechanism 20. Specifically, a portion of the refrigeration oil 6 pumped up to the oil supply hole 42 is supplied to the sliding parts between the upper bearing 24A and the rotating shaft 40 of the compression mechanism 20 through the first oil supply port 43. Also, a portion of the refrigeration oil 6 pumped up to the oil supply hole 42 is supplied to the sliding parts between the lower bearing 24B and the rotating shaft 40 of the compression mechanism 20 through the second oil supply port 44. As the refrigeration oil 6, for example, mineral oil-based, alkylbenzene-based, polyalkylene glycol-based, polyvinyl ether-based, and polyol ester-based lubricating oils are used.
[圧縮機1の動作]
圧縮機1は、第1ピストン22A及び第2ピストン22Bが偏心回転運動をすることにより、圧縮機1の内部に冷媒が引き込まれる。具体的には、圧縮機1は、第1ピストン22A及び第2ピストン22Bが偏心回転運動をすることにより、圧縮機1の外部の低圧の冷媒が、吸入マフラー3に流入する。そして、圧縮機1は、吸入マフラー3に流入した低圧の冷媒のうち、低圧のガス状冷媒が、吸入管2を介して、圧縮機1の圧縮機構20に流入する。 [Operation of Compressor 1]
In the compressor 1, thefirst piston 22A and the second piston 22B perform an eccentric rotational motion, whereby the refrigerant is drawn into the inside of the compressor 1. Specifically, in the compressor 1, the first piston 22A and the second piston 22B perform an eccentric rotational motion, whereby the low-pressure refrigerant outside the compressor 1 flows into the suction muffler 3. Then, in the compressor 1, the low-pressure gaseous refrigerant out of the low-pressure refrigerant that has flowed into the suction muffler 3 flows into the compression mechanism 20 of the compressor 1 via the suction pipe 2.
圧縮機1は、第1ピストン22A及び第2ピストン22Bが偏心回転運動をすることにより、圧縮機1の内部に冷媒が引き込まれる。具体的には、圧縮機1は、第1ピストン22A及び第2ピストン22Bが偏心回転運動をすることにより、圧縮機1の外部の低圧の冷媒が、吸入マフラー3に流入する。そして、圧縮機1は、吸入マフラー3に流入した低圧の冷媒のうち、低圧のガス状冷媒が、吸入管2を介して、圧縮機1の圧縮機構20に流入する。 [Operation of Compressor 1]
In the compressor 1, the
圧縮機構20に流入したガス状冷媒の一部は、第1シリンダ21A及び第1ピストン22Aにおいて圧縮されて、高温で高圧なガス状冷媒となる。この高温で高圧なガス状冷媒は、上軸受24Aの弁を介して第1マフラー23Aの内部空間に流入する。第1マフラー23Aの内部空間に流入した高温で高圧なガス状冷媒は、第1マフラー23Aに設けられた冷媒吐出部(図示は省略)から密閉容器10の内部空間に放出される。そして、この密閉容器10の内部空間に放出された高温で高圧なガス状冷媒は、回転電機30等の隙間等を介して密閉容器10内の空間上部に移動し、吐出配管4より吐出される。
A portion of the gaseous refrigerant that flows into the compression mechanism 20 is compressed in the first cylinder 21A and the first piston 22A to become a high-temperature, high-pressure gaseous refrigerant. This high-temperature, high-pressure gaseous refrigerant flows into the internal space of the first muffler 23A through the valve of the upper bearing 24A. The high-temperature, high-pressure gaseous refrigerant that flows into the internal space of the first muffler 23A is discharged into the internal space of the sealed container 10 from a refrigerant discharge section (not shown) provided in the first muffler 23A. The high-temperature, high-pressure gaseous refrigerant that is discharged into the internal space of the sealed container 10 then moves to the upper part of the space inside the sealed container 10 through gaps in the rotating electric machine 30, etc., and is discharged from the discharge pipe 4.
圧縮機構20に流入したガス状冷媒の残りの冷媒は、第2シリンダ21B及び第2ピストン22Bによって圧縮されて高温で高圧なガス状冷媒となる。この高温で高圧なガス状冷媒は、下軸受24Bの弁を介して第2マフラー23Bの内部空間に流入する。第2マフラー23Bの内部空間に流入した高温で高圧なガス状冷媒は、第2マフラー23Bの内部空間から冷媒流路(図示は省略)を通って第1マフラー23Aの内部空間に送り込まれる。
The remaining gaseous refrigerant that flowed into the compression mechanism 20 is compressed by the second cylinder 21B and the second piston 22B to become a high-temperature, high-pressure gaseous refrigerant. This high-temperature, high-pressure gaseous refrigerant flows into the internal space of the second muffler 23B through the valve of the lower bearing 24B. The high-temperature, high-pressure gaseous refrigerant that has flowed into the internal space of the second muffler 23B is sent from the internal space of the second muffler 23B through a refrigerant flow path (not shown) to the internal space of the first muffler 23A.
この第1マフラー23Aに送り込まれた高温で高圧なガス状冷媒は、第1マフラー23Aに設けられた冷媒吐出部(図示は省略)から密閉容器10の内部空間に放出される。そして、この密閉容器10の内部空間に放出された高温で高圧なガス状冷媒は、回転電機30等の隙間等を介して密閉容器10内の空間上部に移動し、吐出配管4より吐出される。
The high-temperature, high-pressure gaseous refrigerant sent to the first muffler 23A is discharged from a refrigerant discharge section (not shown) provided in the first muffler 23A into the internal space of the sealed container 10. The high-temperature, high-pressure gaseous refrigerant discharged into the internal space of the sealed container 10 then moves to the upper part of the space inside the sealed container 10 through gaps in the rotating electric machine 30, etc., and is discharged from the discharge pipe 4.
また、密閉容器10内の底部13に貯留された冷凍機油6は、回転軸40と共に回転する遠心ポンプ45により、給油穴42の下端部から吸い上げられる。給油穴42の下端部から吸い上げられた冷凍機油6は、潤滑油として第1の給油口43から上軸受24Aと回転軸40との間に流入する。また、冷凍機油6は、第2の給油口44から下軸受24Bと回転軸40との間に流入する。冷凍機油6がこれらの間に流入することにより、回転軸40は、回転駆動力を円滑に第1ピストン22A及び第2ピストン22Bに伝達することができる。
Furthermore, the refrigeration oil 6 stored in the bottom 13 of the sealed container 10 is sucked up from the lower end of the oil supply hole 42 by the centrifugal pump 45 that rotates together with the rotating shaft 40. The refrigeration oil 6 sucked up from the lower end of the oil supply hole 42 flows from the first oil supply port 43 into the space between the upper bearing 24A and the rotating shaft 40 as lubricating oil. The refrigeration oil 6 also flows from the second oil supply port 44 into the space between the lower bearing 24B and the rotating shaft 40. By the refrigeration oil 6 flowing between these, the rotating shaft 40 can smoothly transmit the rotational driving force to the first piston 22A and the second piston 22B.
また、第1の給油口43から上軸受24Aと回転軸40との間に流入した冷凍機油6の一部は、上軸受24Aと第1ピストン22Aの上面との間に流入する。また、第2の給油口44から下軸受24Bと回転軸40との間に流入した冷凍機油6の一部は、下軸受24Bと第2ピストン22Bの下面との間に流入する。冷凍機油6は、第1ピストン22A及び第2ピストン22Bを円滑に回転させるために用いられるが、冷凍機油6の一部は、低圧のガス状冷媒と共に圧縮され、高温で高圧なガス状冷媒に含まれた状態で吐出されることとなる。
Furthermore, a portion of the refrigeration oil 6 that flows from the first oil supply port 43 between the upper bearing 24A and the rotating shaft 40 flows between the upper bearing 24A and the upper surface of the first piston 22A. Further, a portion of the refrigeration oil 6 that flows from the second oil supply port 44 between the lower bearing 24B and the rotating shaft 40 flows between the lower bearing 24B and the lower surface of the second piston 22B. The refrigeration oil 6 is used to smoothly rotate the first piston 22A and the second piston 22B, but a portion of the refrigeration oil 6 is compressed together with the low-pressure gaseous refrigerant and is discharged in a state contained in the high-temperature, high-pressure gaseous refrigerant.
[第1シリンダ21Aの吸入流路52Aの詳細な構成]
図5は、実施の形態1に係る圧縮機1の第1シリンダ21Aの斜視図である。図6は、実施の形態1に係る圧縮機1の吸入流路52Aの部分拡大図である。図7は、実施の形態1に係る圧縮機1の吸入流路52Aの概念図である。なお、図5は、仕切板25側から第1シリンダ21Aを見た場合の斜視図である。また、図7は、回転電機30の配置側から吸入流路52Aを見た場合の概念図である。次に、第1シリンダ21Aの吸入流路52Aの構成について図5~図7を用いて詳述する。 [Detailed configuration ofintake passage 52A of first cylinder 21A]
Fig. 5 is a perspective view of thefirst cylinder 21A of the compressor 1 according to the first embodiment. Fig. 6 is a partial enlarged view of the intake passage 52A of the compressor 1 according to the first embodiment. Fig. 7 is a conceptual diagram of the intake passage 52A of the compressor 1 according to the first embodiment. Fig. 5 is a perspective view of the first cylinder 21A as viewed from the partition plate 25 side. Fig. 7 is a conceptual diagram of the intake passage 52A as viewed from the side where the rotating electric machine 30 is disposed. Next, the configuration of the intake passage 52A of the first cylinder 21A will be described in detail with reference to Figs. 5 to 7.
図5は、実施の形態1に係る圧縮機1の第1シリンダ21Aの斜視図である。図6は、実施の形態1に係る圧縮機1の吸入流路52Aの部分拡大図である。図7は、実施の形態1に係る圧縮機1の吸入流路52Aの概念図である。なお、図5は、仕切板25側から第1シリンダ21Aを見た場合の斜視図である。また、図7は、回転電機30の配置側から吸入流路52Aを見た場合の概念図である。次に、第1シリンダ21Aの吸入流路52Aの構成について図5~図7を用いて詳述する。 [Detailed configuration of
Fig. 5 is a perspective view of the
圧縮機1は、第1シリンダ21Aの外周面156から第1シリンダ室55Aに通じる吸入流路52Aと、第2シリンダ21Bに形成され、第2シリンダ21Bの上面から第2シリンダ室55Bに通じる内部吸入流路52Bと、を有する。また、圧縮機1は、仕切板25に形成され、吸入流路52Aと内部吸入流路52Bとを繋ぐ接続経路25Aを有する。
The compressor 1 has an intake passage 52A that connects from the outer circumferential surface 156 of the first cylinder 21A to the first cylinder chamber 55A, and an internal intake passage 52B that is formed in the second cylinder 21B and connects from the top surface of the second cylinder 21B to the second cylinder chamber 55B. The compressor 1 also has a connection path 25A that is formed in the partition plate 25 and connects the intake passage 52A and the internal intake passage 52B.
第1シリンダ21Aには、第1シリンダ21Aの外部と第1シリンダ室55Aとを連通させる吸入流路52Aが形成されている。吸入流路52Aには、吸入管2が圧入されている。吸入流路52Aは、第1シリンダ21Aの外周面から径方向内方に延びており、外周面において吸入管2が接続される吸入穴61と、吸入穴61と第1シリンダ室55Aとを連通させる空間を形成する絞部59とを有する。
The first cylinder 21A is formed with an intake passage 52A that connects the outside of the first cylinder 21A to the first cylinder chamber 55A. The intake pipe 2 is press-fitted into the intake passage 52A. The intake passage 52A extends radially inward from the outer peripheral surface of the first cylinder 21A and has an intake hole 61 to which the intake pipe 2 is connected on the outer peripheral surface, and a constriction 59 that forms a space that connects the intake hole 61 to the first cylinder chamber 55A.
吸入流路52Aは、図6及び図7に示すように、第1シリンダ21Aの外周面156から径方向内方に延びる吸入穴61と、吸入穴61の径方向内方に形成され、吸入穴61と第1低圧室57Aとを連通させる絞部59とを備える。すなわち、吸入流路52Aは、吸入穴61と、吸入穴61の径方向内方に形成され、吸入穴61と第1シリンダ室55Aとを連通させる絞部59とを備える。
6 and 7, the intake passage 52A includes an intake hole 61 extending radially inward from the outer peripheral surface 156 of the first cylinder 21A, and a throttling portion 59 formed radially inward of the intake hole 61 and connecting the intake hole 61 to the first low pressure chamber 57A. That is, the intake passage 52A includes an intake hole 61 and a throttling portion 59 formed radially inward of the intake hole 61 and connecting the intake hole 61 to the first cylinder chamber 55A.
吸入穴61は、第1シリンダ21Aの外周面156から径方向内方に延びる穴である。吸入穴61は、第1シリンダ21Aの外部と絞部59とを連通させる穴である。吸入穴61には、吸入管2の先端部が挿入されている。吸入穴61は、吸入管2と絞部59とを連通させる穴である。
The suction hole 61 is a hole that extends radially inward from the outer peripheral surface 156 of the first cylinder 21A. The suction hole 61 is a hole that connects the outside of the first cylinder 21A to the throttling portion 59. The tip of the suction pipe 2 is inserted into the suction hole 61. The suction hole 61 is a hole that connects the suction pipe 2 to the throttling portion 59.
なお、吸入流路52Aの入口となる吸入穴61の開口形状は、吸入管2の形状に合うものであればよい。吸入流路52Aは、吸入管2の形状に合わせて吸入穴61の開口形状が非円形であっても、後述する絞部59の形状は形成可能である。
The opening shape of the suction hole 61, which is the entrance to the suction flow passage 52A, may be any shape that matches the shape of the suction pipe 2. Even if the opening shape of the suction hole 61 of the suction flow passage 52A is non-circular to match the shape of the suction pipe 2, the shape of the narrowing portion 59 described below can be formed.
絞部59は、絞部59の両内側面を構成し、第1シリンダ21Aの径方向内方に向かうにつれて互いに近づくように形成された一対の絞部側面部59Bを有する。また、絞部59は、一対の絞部側面部59Bにより構成され、回転軸40の軸方向における一方の端部において開口する軸側開口部59Dを有する。また、絞部59は、一対の絞部側面部59Bにより構成され、第1シリンダ21Aの径方向内方側に第1シリンダ室55Aと連通するように開口し、軸側開口部59Dと連なるように形成された内側開口部59Cを有する。また、絞部59は、回転軸40の軸方向における他方の端部に回転軸40の軸方向において、絞部59を閉塞するように設けられた板状の閉塞壁部150である絞部天部59Aを有する。
The constricted portion 59 has a pair of constricted portion side portions 59B that form both inner surfaces of the constricted portion 59 and are formed to approach each other as they move radially inward of the first cylinder 21A. The constricted portion 59 is also formed of a pair of constricted portion side portions 59B and has a shaft side opening 59D that opens at one end in the axial direction of the rotating shaft 40. The constricted portion 59 is also formed of a pair of constricted portion side portions 59B and has an inner opening 59C that opens to communicate with the first cylinder chamber 55A on the radially inner side of the first cylinder 21A and is formed to communicate with the shaft side opening 59D. The constricted portion 59 also has a constricted portion top portion 59A that is a plate-shaped blocking wall portion 150 that is provided at the other end in the axial direction of the rotating shaft 40 so as to block the constricted portion 59 in the axial direction of the rotating shaft 40.
絞部59は、第1シリンダ21Aの下側及び径方向内方側が第1シリンダ21Aの外表面に開口し、上側に絞部天部59Aを有し、両内側面が径方向内方に向かうにつれて互いに近づく一対の絞部側面部59Bを有している。すなわち、絞部59は、第1シリンダ21Aの仕切板25側及び第1シリンダ室55Aの内周壁155が開口し、上軸受24A側に絞部天部59Aを有している。絞部59は、周方向に向き合う一対の絞部側面部59Bを有している。一対の絞部側面部59Bは、径方向外方から内方に向かうにつれて互いに近づくように形成されている。実施の形態1の圧縮機1において、絞部天部59Aが絞部59の閉塞壁部150を構成する。
The throttling portion 59 opens to the outer surface of the first cylinder 21A on the lower side and the radially inner side, has a throttling portion top portion 59A on the upper side, and has a pair of throttling portion side portions 59B that approach each other as both inner surfaces move radially inward. That is, the throttling portion 59 opens to the partition plate 25 side of the first cylinder 21A and the inner circumferential wall 155 of the first cylinder chamber 55A, and has the throttling portion top portion 59A on the upper bearing 24A side. The throttling portion 59 has a pair of throttling portion side portions 59B that face each other in the circumferential direction. The pair of throttling portion side portions 59B are formed so as to approach each other as they move from the radially outer side to the radially inner side. In the compressor 1 of embodiment 1, the throttling portion top portion 59A forms the blocking wall portion 150 of the throttling portion 59.
第1シリンダ21Aを軸方向に見た場合に、一対の絞部側面部59Bの内、第1シリンダ21Aの周方向において第1ベーン溝56Aから遠い側の絞部側面部59B1は、径方向外方から内方に向かうにつれて第1ベーン溝56Aに近づくように傾斜している。図7に示すように、第1シリンダ21Aを平面視した場合に、一対の絞部側面部59Bの内、第1ベーン溝56Aから遠い側の絞部側面部59B1は、第1ベーン溝56Aに近い側の絞部側面部59B2よりも吸入流路52Aの軸心J1に対して傾斜している。
When the first cylinder 21A is viewed in the axial direction, of the pair of throttle side portions 59B, the throttle side portion 59B1 farther from the first vane groove 56A in the circumferential direction of the first cylinder 21A is inclined so as to approach the first vane groove 56A as it moves from the radially outward to the radially inward direction. As shown in FIG. 7, when the first cylinder 21A is viewed in a plan view, of the pair of throttle side portions 59B, the throttle side portion 59B1 farther from the first vane groove 56A is inclined more with respect to the axis J1 of the intake passage 52A than the throttle side portion 59B2 closer to the first vane groove 56A.
絞部59は、内側開口部59Cと、軸側開口部59Dとを有する。一対の絞部側面部59Bは、軸側開口部59D及び内側開口部59Cを構成する。内側開口部59Cは、内周壁155に形成された開口部である。内側開口部59Cは、第1シリンダ21Aの内表面に形成された開口部であり、絞部59の内部空間と第1シリンダ室55Aとを連通させる開口部である。図7に示すように、第1シリンダ21Aは、内側開口部59Cが吸入流路52Aの軸心J1に対して第1ベーン溝56A側に偏るように形成されている。
The constriction portion 59 has an inner opening 59C and an axial side opening 59D. A pair of constriction portion side portions 59B constitute the axial side opening 59D and the inner opening 59C. The inner opening 59C is an opening formed in the inner circumferential wall 155. The inner opening 59C is an opening formed in the inner surface of the first cylinder 21A, and is an opening that connects the internal space of the constriction portion 59 with the first cylinder chamber 55A. As shown in FIG. 7, the first cylinder 21A is formed so that the inner opening 59C is biased toward the first vane groove 56A with respect to the axis J1 of the intake passage 52A.
軸側開口部59Dは、第1シリンダ21Aの仕切板25側の外表面に形成された開口部である。軸側開口部59Dは、圧縮機構20において、仕切板25の板面によって覆われて閉塞される。絞部59は、回転軸40の軸方向かつ径方向において、軸側開口部59Dと内側開口部59Cとが連なるように形成されている。すなわち、絞部59は、第1シリンダ21Aの径方向の内周端及び仕切板25側の端部において、軸側開口部59Dと内側開口部59Cとが連なるように形成されている。
The shaft side opening 59D is an opening formed on the outer surface of the first cylinder 21A on the partition plate 25 side. The shaft side opening 59D is covered and closed by the plate surface of the partition plate 25 in the compression mechanism 20. The throttling portion 59 is formed so that the shaft side opening 59D and the inner opening 59C are connected in the axial and radial directions of the rotating shaft 40. In other words, the throttling portion 59 is formed so that the shaft side opening 59D and the inner opening 59C are connected at the radial inner end of the first cylinder 21A and the end on the partition plate 25 side.
絞部天部59Aは、回転軸40の軸方向において、絞部59の一方の端部を閉塞する部分である。絞部天部59Aは、板状に形成されている。絞部天部59Aは、回転軸40の軸方向において、第1シリンダ21Aの上軸受24A側の外壁面を形成する。絞部天部59Aは、回転軸40の軸方向における絞部59の上軸受24A側の端部において、第1ベーン溝56Aから遠い側の絞部側面部59B1と第1ベーン溝56Aに近い側の絞部側面部59B2との間を繋ぐ壁部である。絞部天部59Aは、圧縮機構20において、上軸受24Aと対向して当接する。
The tapered portion top portion 59A is a portion that closes one end of the tapered portion 59 in the axial direction of the rotating shaft 40. The tapered portion top portion 59A is formed in a plate shape. The tapered portion top portion 59A forms the outer wall surface on the upper bearing 24A side of the first cylinder 21A in the axial direction of the rotating shaft 40. The tapered portion top portion 59A is a wall portion that connects between the tapered portion side portion 59B1 on the side farther from the first vane groove 56A and the tapered portion side portion 59B2 on the side closer to the first vane groove 56A at the end of the tapered portion 59 on the upper bearing 24A side in the axial direction of the rotating shaft 40. The tapered portion top portion 59A abuts against and faces the upper bearing 24A in the compression mechanism 20.
なお、絞部天部59Aは、第1シリンダ21Aの軸方向端面どちらの面に設けられても第1シリンダ21Aの剛性向上に寄与するが、加工性及び剛性向上の観点から分岐流路52AAの形成側とは逆の面に設けることが好ましい。
The tapered portion top portion 59A contributes to improving the rigidity of the first cylinder 21A regardless of which side of the axial end face the tapered portion 59A is provided on. However, from the standpoint of workability and improved rigidity, it is preferable to provide it on the side opposite the side on which the branch flow path 52AA is formed.
絞部59は、回転軸40の軸方向において、一方の端部が軸側開口部59Dによって開口し、他方の端部が絞部天部59Aによって閉塞している。絞部59は、回転軸40の径方向において、一方の端部が吸入穴61と連通し、他方の端部が第1シリンダ室55Aと連通している。
One end of the constriction 59 opens into the shaft side opening 59D in the axial direction of the rotating shaft 40, and the other end is closed by the constriction top 59A. One end of the constriction 59 communicates with the suction hole 61 in the radial direction of the rotating shaft 40, and the other end communicates with the first cylinder chamber 55A.
図8は、実施の形態1に係る圧縮機1の第1シリンダ21Aの内周面側から見た側面図である。図6及び図8を用いて、第1シリンダ21Aの吸入流路52Aに関する寸法について説明する。
FIG. 8 is a side view of the first cylinder 21A of the compressor 1 according to the first embodiment, seen from the inner circumferential surface side. The dimensions of the intake passage 52A of the first cylinder 21A will be explained using FIG. 6 and FIG. 8.
第1シリンダ21Aの内周壁155において、第1シリンダ21Aの周方向における第1ベーン溝56Aと内側開口部59Cとの間の部分を中間壁部155Aとする。第1シリンダ21Aの周方向における中間壁部155Aの長さを周方向長Aとする。周方向長Aは、第1シリンダ21Aの周方向における第1ベーン溝56Aと内側開口部59Cとの間の距離である。また、第1シリンダ21Aにおいて、回転軸40の軸方向における絞部天部59Aの板の厚さを厚さBとする。第1シリンダ21Aにおいて、吸入穴61の直径を直径Cとする。
In the inner peripheral wall 155 of the first cylinder 21A, the portion between the first vane groove 56A and the inner opening 59C in the circumferential direction of the first cylinder 21A is defined as the intermediate wall portion 155A. The length of the intermediate wall portion 155A in the circumferential direction of the first cylinder 21A is defined as the circumferential length A. The circumferential length A is the distance between the first vane groove 56A and the inner opening 59C in the circumferential direction of the first cylinder 21A. In addition, in the first cylinder 21A, the thickness of the plate of the constriction top portion 59A in the axial direction of the rotating shaft 40 is defined as thickness B. In the first cylinder 21A, the diameter of the suction hole 61 is defined as diameter C.
第1シリンダ21Aは、第1シリンダ21Aの周方向における第1ベーン溝56Aと内側開口部59Cとの間の距離である周方向長Aが、回転軸40の軸方向における絞部天部59Aの板の厚さである厚さBよりも大きくなるように形成されている。すなわち、第1シリンダ21Aは、回転軸40の軸方向における絞部天部59Aの板の厚さである厚さBが、第1シリンダ21Aの周方向における第1ベーン溝56Aと内側開口部59Cとの間の距離である周方向長Aよりも小さくなるように形成されている。第1シリンダ21Aは、「周方向長A>厚さB」の関係となるように形成されている。
The first cylinder 21A is formed so that the circumferential length A, which is the distance between the first vane groove 56A and the inner opening 59C in the circumferential direction of the first cylinder 21A, is greater than the thickness B, which is the plate thickness of the tapered portion top portion 59A in the axial direction of the rotating shaft 40. In other words, the first cylinder 21A is formed so that the thickness B, which is the plate thickness of the tapered portion top portion 59A in the axial direction of the rotating shaft 40, is smaller than the circumferential length A, which is the distance between the first vane groove 56A and the inner opening 59C in the circumferential direction of the first cylinder 21A. The first cylinder 21A is formed so that the relationship of "circumferential length A > thickness B" is satisfied.
第1ベーン溝56Aと内側開口部59Cとの間の中間壁部155Aは、上述したように、周方向長Aを構成する部分の壁である。中間壁部155Aを構成する第1シリンダ21Aの壁は、第1低圧室57Aと第1高圧室58Aとの差圧により第1ベーン50Aによる押圧力を受ける。絞部天部59Aは、上述したように厚さBを構成する。絞部天部59Aは、第1ベーン50Aからの押圧力を受けるが、中間壁部155Aを構成する部分の壁よりも、第1ベーン50Aからの押圧力を受けない。
As described above, the intermediate wall portion 155A between the first vane groove 56A and the inner opening 59C is a wall of the portion that constitutes the circumferential length A. The wall of the first cylinder 21A that constitutes the intermediate wall portion 155A receives a pressing force from the first vane 50A due to the pressure difference between the first low pressure chamber 57A and the first high pressure chamber 58A. The constriction top portion 59A constitutes the thickness B as described above. The constriction top portion 59A receives a pressing force from the first vane 50A, but receives less pressing force from the first vane 50A than the wall of the portion that constitutes the intermediate wall portion 155A.
そのため、絞部天部59Aは、周方向長Aを構成する部分の壁よりも、壁の厚さが必要ではない。圧縮機1は、絞部天部59Aを、中間壁部155Aを構成する部分の壁よりも薄くすることにより、第1シリンダ21Aを軽量化できる。また、絞部天部59Aは、周方向長Aを構成する部分の壁よりも、壁の厚さが必要ではない。圧縮機1は、絞部天部59Aを、中間壁部155Aを構成する部分の壁よりも薄くすることにより、当該構成を有していない場合と比較して、第1シリンダ21Aに形成する吸入穴61の直径を大きくすることができる。
Therefore, the constriction top portion 59A does not need to be thicker than the wall of the portion that constitutes the circumferential length A. The compressor 1 can reduce the weight of the first cylinder 21A by making the constriction top portion 59A thinner than the wall of the portion that constitutes the intermediate wall portion 155A. Also, the constriction top portion 59A does not need to be thicker than the wall of the portion that constitutes the circumferential length A. The compressor 1 can increase the diameter of the suction hole 61 formed in the first cylinder 21A compared to a case where this configuration is not included by making the constriction top portion 59A thinner than the wall of the portion that constitutes the intermediate wall portion 155A.
また、第1シリンダ21Aは、回転軸40の軸方向における絞部天部59Aの板の厚さである厚さBが、吸入穴61の直径である直径Cよりも小さくなるように形成されている。第1シリンダ21Aは、吸入穴61の直径である直径Cが回転軸40の軸方向における絞部天部59Aの板の厚さである厚さBよりも大きくなるように形成されている。すなわち、第1シリンダ21Aは、「直径C>厚さB」の関係となるように形成されている。
Furthermore, the first cylinder 21A is formed so that the thickness B, which is the plate thickness of the top portion 59A of the constricted portion in the axial direction of the rotating shaft 40, is smaller than the diameter C, which is the diameter of the suction hole 61. The first cylinder 21A is formed so that the diameter C, which is the diameter of the suction hole 61, is larger than the thickness B, which is the plate thickness of the top portion 59A of the constricted portion in the axial direction of the rotating shaft 40. In other words, the first cylinder 21A is formed so that the relationship is "diameter C > thickness B".
第1シリンダ21Aは、「直径C>厚さB」の関係となるように形成されていることで、当該関係を有していない場合と比較して、吸入穴61の形成範囲を大きくとることができる。すなわち、第1シリンダ21Aは、「直径C>厚さB」の関係となるように形成されていることで、当該関係を有していない場合と比較して、第1シリンダ21Aに形成する吸入穴61の直径を大きくすることができる。
The first cylinder 21A is formed so that the relationship "diameter C > thickness B" is satisfied, and therefore the range of the suction hole 61 can be made larger than when this relationship does not exist. In other words, the first cylinder 21A is formed so that the relationship "diameter C > thickness B" is satisfied, and therefore the diameter of the suction hole 61 formed in the first cylinder 21A can be made larger than when this relationship does not exist.
第1シリンダ21Aに接合された吸入管2から流入された冷媒は、吸入流路52Aを通じて第1高圧室58Aへ流入し、第1高圧室58A内部で第1ピストン22Aの回転によって圧縮され、第1吐出流路53Aから高圧冷媒として排出される。このように、圧縮機1は、吸入流路52Aの内部を冷媒が移動することから、圧縮機1の吸入管2の管径が大きいほど流路圧損が小さくなるため、吸入管2の管径が大きいほうが望ましい。
The refrigerant flowing in from the suction pipe 2 connected to the first cylinder 21A flows through the suction passage 52A into the first high pressure chamber 58A, is compressed inside the first high pressure chamber 58A by the rotation of the first piston 22A, and is discharged as high pressure refrigerant from the first discharge passage 53A. In this way, since the refrigerant moves inside the suction passage 52A of the compressor 1, the larger the pipe diameter of the suction pipe 2 of the compressor 1, the smaller the flow passage pressure loss, so it is desirable for the pipe diameter of the suction pipe 2 to be large.
また、圧縮機1は、吸入流路52Aの内部を冷媒が移動することから、吸入流路52Aの内部の流路径が大きいほど流路圧損が小さくなるため、吸入流路52Aの内部の流路径が大きいほうが望ましい。すなわち、圧縮機1は、吸入流路52Aの内部を冷媒が移動することから、吸入流路52Aの流路断面積が大きいほど流路圧損が小さくなるため、吸入流路52Aの流路断面積が大きいほうが望ましい。
In addition, since the refrigerant moves inside the intake passage 52A of the compressor 1, the larger the flow passage diameter inside the intake passage 52A, the smaller the flow passage pressure loss, so it is desirable that the flow passage diameter inside the intake passage 52A be large. In other words, since the refrigerant moves inside the intake passage 52A of the compressor 1, the larger the flow passage cross-sectional area of the intake passage 52A, the smaller the flow passage pressure loss, so it is desirable that the flow passage cross-sectional area of the intake passage 52A be large.
また、第1高圧室58Aでは冷媒の吸気、圧縮、排気が繰り返し行われており、圧縮機1は、冷媒の排気時に密閉容器10の内部の高圧冷媒が第1吐出流路53Aから圧縮を終え低圧となった第1高圧室58A内へ逆流する恐れがある。この場合、圧縮機1は、第1高圧室58A内へ逆流した冷媒が吸入流路52Aへ侵入することで吸入管2からの冷媒吸入量が減少し圧縮機効率が低下する恐れがある。そのため、圧縮機1は、冷媒の排気時における第1高圧室58Aの内部への冷媒の逆流を抑制するために、吸入流路52Aと第1シリンダ室55Aとの連結部となる内側開口部59Cが第1ベーン溝56Aに近いほうが望ましい。
In addition, the first high pressure chamber 58A repeatedly draws in, compresses, and exhausts the refrigerant, and when the refrigerant is exhausted, the high pressure refrigerant inside the sealed container 10 may flow back from the first discharge passage 53A into the first high pressure chamber 58A, which has been compressed and is now at a low pressure. In this case, the refrigerant that has flowed back into the first high pressure chamber 58A may enter the intake passage 52A, reducing the amount of refrigerant sucked in from the intake pipe 2 and decreasing the compressor efficiency. Therefore, in order to prevent the refrigerant from flowing back into the first high pressure chamber 58A when the refrigerant is exhausted, it is preferable that the inner opening 59C, which is the connection between the intake passage 52A and the first cylinder chamber 55A, is close to the first vane groove 56A.
以上から、圧縮機1は、圧縮機効率を向上させるために、吸入流路52Aを第1シリンダ21Aの軸方向に拡大することが望ましい。また、圧縮機1は、圧縮機効率を向上させるために、吸入流路52Aの内周側の端部に絞部59を有し、第1ベーン50Aに近い位置で吸入流路52Aを第1シリンダ室55Aに連結させる手法が有効である。
In view of the above, it is desirable for the compressor 1 to expand the intake passage 52A in the axial direction of the first cylinder 21A in order to improve the compressor efficiency. Also, in order to improve the compressor efficiency of the compressor 1, it is effective to provide a constriction 59 at the inner end of the intake passage 52A and connect the intake passage 52A to the first cylinder chamber 55A at a position close to the first vane 50A.
一方、吸入穴61を拡大させた場合及び吸入穴61を第1ベーン溝56Aに接近させた場合、圧縮機1は、第1シリンダ21Aの吸入穴61と第1ベーン溝56Aとの間の壁の厚さが薄くなる。このような場合、圧縮機1は、第1シリンダ21Aへの吸入管2の圧入等の外力によって第1シリンダ21Aの歪リスクを増大させる恐れがある。また、このような場合、圧縮機1は、第1低圧室57Aと第1高圧室58Aとの差圧により生じる第1ベーン50Aの第1シリンダ21Aへの押し付け力等の外力によって、第1シリンダ21Aの歪リスクを増大させる恐れがある。
On the other hand, when the suction hole 61 is enlarged and when the suction hole 61 is brought closer to the first vane groove 56A, the thickness of the wall between the suction hole 61 of the first cylinder 21A and the first vane groove 56A of the compressor 1 becomes thinner. In such a case, the compressor 1 may increase the risk of distortion of the first cylinder 21A due to external forces such as the pressure of the suction pipe 2 being pressed into the first cylinder 21A. In addition, in such a case, the compressor 1 may increase the risk of distortion of the first cylinder 21A due to external forces such as the pressing force of the first vane 50A against the first cylinder 21A caused by the pressure difference between the first low pressure chamber 57A and the first high pressure chamber 58A.
そこで、実施の形態1に係る圧縮機1は、吸入流路52Aに絞部59を有している。吸入流路52Aは、絞部59において、第1シリンダ21Aの軸方向の片面のみ貫通させ、他方は絞部天部59Aにより壁を設けた形状に形成されている。圧縮機1は、絞部天部59Aにより第1シリンダ21Aの剛性を確保し、絞部59により吸入流路52Aを軸方向に拡大しながら第1シリンダ室55Aとの連結部となる内側開口部59Cを第1ベーン溝56Aに近づけることができる。
The compressor 1 according to the first embodiment has a throttling portion 59 in the intake passage 52A. The intake passage 52A is formed in a shape in which the throttling portion 59 penetrates only one side of the first cylinder 21A in the axial direction, and the other side is walled by the throttling portion top portion 59A. The throttling portion top portion 59A ensures the rigidity of the first cylinder 21A, and the throttling portion 59 can expand the intake passage 52A in the axial direction while bringing the inner opening 59C, which is the connection portion with the first cylinder chamber 55A, closer to the first vane groove 56A.
図9は、実施の形態1に係る圧縮機1の変形例の第1シリンダ21Aの斜視図である。図10は、実施の形態1に係る圧縮機1の変形例の吸入流路52Aの部分拡大図である。絞部天部59Aは、径方向内方側の端部が、図9及び図10に示すように、第1シリンダ21Aの軸方向に貫通した貫通部63を形成してもよい。貫通部63は、絞部天部59Aの径方向内方側の端部に形成された切欠き部分である。絞部天部59Aは、貫通部63において径方向外方側に凹んでいる。
FIG. 9 is a perspective view of the first cylinder 21A of a modified example of the compressor 1 according to the first embodiment. FIG. 10 is a partially enlarged view of the intake passage 52A of a modified example of the compressor 1 according to the first embodiment. The constriction top portion 59A may have a through portion 63 formed at the radially inner end thereof, penetrating the first cylinder 21A in the axial direction, as shown in FIGS. 9 and 10. The through portion 63 is a notch formed at the radially inner end of the constriction top portion 59A. The constriction top portion 59A is recessed radially outward at the through portion 63.
貫通部63は、第1シリンダ21Aの上軸受24A側に形成された開口部である。貫通部63は、圧縮機構20において、上軸受24Aの板面によって覆われて閉塞される。
The through-hole 63 is an opening formed on the upper bearing 24A side of the first cylinder 21A. The through-hole 63 is covered and closed by the plate surface of the upper bearing 24A in the compression mechanism 20.
[第2シリンダ21Bの内部吸入流路52Bの詳細な構成]
図11は、実施の形態1に係る圧縮機1の第2シリンダ21Bの斜視図である。図12は、実施の形態1に係る圧縮機1の内部吸入流路52Bの部分拡大図である。図13は、実施の形態1に係る圧縮機1の内部吸入流路52Bの概念図である。なお、図11は、仕切板25側から第2シリンダ21Bを見た場合の斜視図である。また、図13は、下軸受24Bの配置側から内部吸入流路52Bを見た場合の概念図である。次に、第2シリンダ21Bの内部吸入流路52Bの構成について図11~図13を用いて詳述する。 [Detailed configuration of theinternal intake passage 52B of the second cylinder 21B]
FIG. 11 is a perspective view of thesecond cylinder 21B of the compressor 1 according to the first embodiment. FIG. 12 is a partially enlarged view of the internal intake passage 52B of the compressor 1 according to the first embodiment. FIG. 13 is a conceptual diagram of the internal intake passage 52B of the compressor 1 according to the first embodiment. FIG. 11 is a perspective view of the second cylinder 21B as viewed from the partition plate 25 side. FIG. 13 is a conceptual diagram of the internal intake passage 52B as viewed from the side where the lower bearing 24B is disposed. Next, the configuration of the internal intake passage 52B of the second cylinder 21B will be described in detail with reference to FIGS. 11 to 13.
図11は、実施の形態1に係る圧縮機1の第2シリンダ21Bの斜視図である。図12は、実施の形態1に係る圧縮機1の内部吸入流路52Bの部分拡大図である。図13は、実施の形態1に係る圧縮機1の内部吸入流路52Bの概念図である。なお、図11は、仕切板25側から第2シリンダ21Bを見た場合の斜視図である。また、図13は、下軸受24Bの配置側から内部吸入流路52Bを見た場合の概念図である。次に、第2シリンダ21Bの内部吸入流路52Bの構成について図11~図13を用いて詳述する。 [Detailed configuration of the
FIG. 11 is a perspective view of the
第2シリンダ21Bには、第2シリンダ21Bの上面から第2シリンダ室55Bに通じる内部吸入流路52Bが形成されている。内部吸入流路52Bは、第2シリンダ21Bの上面から第2シリンダ21Bの内部を経由して径方向内方に延びる連通吸入穴62を有する。また、内部吸入流路52Bは、連通吸入穴62の径方向内方に形成され、連通吸入穴62と第2シリンダ室55Bとを連通させる空間を形成する第2絞部60を有する。すなわち、内部吸入流路52Bは、連通吸入穴62と、連通吸入穴62の径方向内方に形成され、連通吸入穴62と第2シリンダ室55Bとを連通させる第2絞部60とを備える。
The second cylinder 21B has an internal intake passage 52B that connects from the top surface of the second cylinder 21B to the second cylinder chamber 55B. The internal intake passage 52B has a communicating intake hole 62 that extends radially inward from the top surface of the second cylinder 21B through the inside of the second cylinder 21B. The internal intake passage 52B also has a second throttling portion 60 that is formed radially inward of the communicating intake hole 62 and forms a space that connects the communicating intake hole 62 to the second cylinder chamber 55B. That is, the internal intake passage 52B has the communicating intake hole 62 and the second throttling portion 60 that is formed radially inward of the communicating intake hole 62 and connects the communicating intake hole 62 to the second cylinder chamber 55B.
連通吸入穴62は、第2シリンダ21Bの上面から第2シリンダ21Bの内部を経由して径方向内方に延びる穴である。連通吸入穴62は、第2シリンダ21Bの上面から軸方向の下方に延びて、さらにそこから径方向内方に延びている。連通吸入穴62は、第2シリンダ21Bの外部と第2絞部60とを連通させる穴である。連通吸入穴62は、仕切板25の接続経路25A(図4参照)と第2絞部60とを連通させる穴である。
The communicating suction hole 62 is a hole that extends radially inward from the top surface of the second cylinder 21B through the inside of the second cylinder 21B. The communicating suction hole 62 extends axially downward from the top surface of the second cylinder 21B and then extends radially inward from there. The communicating suction hole 62 is a hole that connects the outside of the second cylinder 21B with the second throttling portion 60. The communicating suction hole 62 is a hole that connects the connection path 25A (see Figure 4) of the partition plate 25 with the second throttling portion 60.
第2絞部60は、第2絞部60の両内側面を構成し、第2シリンダ21Bの径方向内方に向かうにつれて互いに近づくように形成された一対の第2絞部側面部60Bを有する。また、第2絞部60は、一対の第2絞部側面部60Bにより構成され、回転軸40の軸方向における一方の端部において開口し、仕切板25によって閉塞される第2軸側開口部60Dを有する。また、第2絞部60は、一対の第2絞部側面部60Bにより構成され、第2シリンダ21Bの径方向内方側に第2シリンダ室55Bと連通するように開口し、第2軸側開口部60Dと連なるように形成された第2内側開口部60Cを有する。また、第2絞部60は、回転軸40の軸方向における他方の端部において、第2絞部60を閉塞するように設けられた板状の第2閉塞壁部151を有する。
The second throttling portion 60 has a pair of second throttling portion side portions 60B that form both inner surfaces of the second throttling portion 60 and are formed so as to approach each other as they move radially inward of the second cylinder 21B. The second throttling portion 60 is also formed of a pair of second throttling portion side portions 60B, has a second shaft side opening 60D that opens at one end in the axial direction of the rotating shaft 40 and is closed by a partition plate 25. The second throttling portion 60 is also formed of a pair of second throttling portion side portions 60B, has a second inner opening 60C that opens to communicate with the second cylinder chamber 55B on the radially inner side of the second cylinder 21B and is formed so as to communicate with the second shaft side opening 60D. The second throttling portion 60 also has a plate-shaped second closing wall portion 151 that is provided at the other end in the axial direction of the rotating shaft 40 so as to close the second throttling portion 60.
第2絞部60は、第2シリンダ21Bの上側及び径方向内方側が第2シリンダ21Bの外表面に開口し、下側に絞部底部60Aを有し、両内側面が径方向内方に向かうにつれて互いに近づく一対の第2絞部側面部60Bを有している。すなわち、第2絞部60は、第2シリンダ21Bの仕切板25側及び第2シリンダ室55Bの内周壁155が開口し、下軸受24B側に絞部底部60Aを有している。第2絞部60は、周方向に向き合う一対の第2絞部側面部60Bを有している。一対の第2絞部側面部60Bは、径方向外方から内方に向かうにつれて互いに近づくように形成されている。
The second throttling portion 60 has an upper side and a radially inner side that open to the outer surface of the second cylinder 21B, a throttling portion bottom 60A on the lower side, and a pair of second throttling portion side portions 60B that approach each other as both inner surfaces move radially inward. That is, the second throttling portion 60 opens on the partition plate 25 side of the second cylinder 21B and the inner circumferential wall 155 of the second cylinder chamber 55B, and has a throttling portion bottom 60A on the lower bearing 24B side. The second throttling portion 60 has a pair of second throttling portion side portions 60B that face each other in the circumferential direction. The pair of second throttling portion side portions 60B are formed so as to approach each other as they move from the radially outer side to the radially inner side.
第2シリンダ21Bを軸方向に見た場合、一対の第2絞部側面部60Bの内、第2シリンダ21Bの周方向において第2ベーン溝56Bから遠い側の第2絞部側面部60B1は、径方向外方から内方に向かうにつれて第2ベーン溝56Bに近づくように傾斜している。第2シリンダ21Bを平面視した場合に、一対の第2絞部側面部60Bの内、第2ベーン溝56Bから遠い側の第2絞部側面部60B1は、第2ベーン溝56Bに近い側の第2絞部側面部60B2よりも連通吸入穴62の軸心が延びる面J2に対して傾斜している。
When the second cylinder 21B is viewed in the axial direction, of the pair of second throttle portion side portions 60B, the second throttle portion side portion 60B1 on the side farther from the second vane groove 56B in the circumferential direction of the second cylinder 21B is inclined so as to approach the second vane groove 56B as it moves from the radially outer side to the radially inner side. When the second cylinder 21B is viewed in a plan view, of the pair of second throttle portion side portions 60B, the second throttle portion side portion 60B1 on the side farther from the second vane groove 56B is inclined with respect to the plane J2 along which the axis of the communicating suction hole 62 extends, more so than the second throttle portion side portion 60B2 on the side closer to the second vane groove 56B.
第2絞部60は、第2内側開口部60Cと、第2軸側開口部60Dとを有する。一対の第2絞部側面部60Bは、第2軸側開口部60D及び第2内側開口部60Cを構成する。第2内側開口部60Cは、内周壁155に形成された開口部である。第2内側開口部60Cは、第2シリンダ21Bの内表面に形成された開口部であり、第2絞部60の内部空間と第2シリンダ室55Bとを連通させる開口部である。図13に示すように、第2シリンダ21Bは、第2内側開口部60Cが連通吸入穴62の軸心が延びる面J2に対して第2ベーン溝56B側に偏るように形成されている。
The second throttling portion 60 has a second inner opening 60C and a second shaft side opening 60D. A pair of second throttling portion side portions 60B constitute the second shaft side opening 60D and the second inner opening 60C. The second inner opening 60C is an opening formed in the inner circumferential wall 155. The second inner opening 60C is an opening formed in the inner surface of the second cylinder 21B, and is an opening that connects the internal space of the second throttling portion 60 to the second cylinder chamber 55B. As shown in FIG. 13, the second cylinder 21B is formed so that the second inner opening 60C is biased toward the second vane groove 56B with respect to the plane J2 along which the axis of the communicating suction hole 62 extends.
第2軸側開口部60Dは、第2シリンダ21Bの仕切板25側の外表面に形成された開口部である。第2軸側開口部60Dは、圧縮機構20において、仕切板25の板面によって覆われて閉塞される。第2絞部60は、回転軸40の軸方向かつ径方向において、第2軸側開口部60Dと第2内側開口部60Cとが連なるように形成されている。すなわち、第2絞部60は、第2シリンダ21Bの径方向の内周端及び仕切板25側の端部において、第2軸側開口部60Dと第2内側開口部60Cとが連なるように形成されている。
The second shaft side opening 60D is an opening formed on the outer surface of the second cylinder 21B on the partition plate 25 side. The second shaft side opening 60D is covered and closed by the plate surface of the partition plate 25 in the compression mechanism 20. The second throttling portion 60 is formed so that the second shaft side opening 60D and the second inner opening 60C are connected in the axial and radial directions of the rotating shaft 40. In other words, the second throttling portion 60 is formed so that the second shaft side opening 60D and the second inner opening 60C are connected at the radial inner end of the second cylinder 21B and the end on the partition plate 25 side.
絞部底部60Aは、回転軸40の軸方向において、第2絞部60の一方の端部を閉塞する部分である。絞部底部60Aは、板状に形成されている。絞部底部60Aは、回転軸40の軸方向において、第2シリンダ21Bの下軸受24B側の外壁面を形成する。絞部底部60Aは、回転軸40の軸方向における第2絞部60の下軸受24B側の端部において、第2ベーン溝56Bから遠い側の第2絞部側面部60B1と第2ベーン溝56Bに近い側の第2絞部側面部60B2との間を繋ぐ壁部である。絞部底部60Aは、圧縮機構20において、下軸受24Bと対向して当接する。
The constriction bottom 60A is a portion that closes one end of the second constriction section 60 in the axial direction of the rotating shaft 40. The constriction bottom 60A is formed in a plate shape. The constriction bottom 60A forms the outer wall surface on the lower bearing 24B side of the second cylinder 21B in the axial direction of the rotating shaft 40. The constriction bottom 60A is a wall portion that connects between the second constriction side portion 60B1 on the side farther from the second vane groove 56B and the second constriction side portion 60B2 on the side closer to the second vane groove 56B at the end of the second constriction section 60 on the lower bearing 24B side in the axial direction of the rotating shaft 40. The constriction bottom 60A abuts against and faces the lower bearing 24B in the compression mechanism 20.
なお、絞部底部60Aは、第2シリンダ21Bの軸方向端面どちらの面に設けられても第2シリンダ21Bの剛性向上に寄与するが、加工性及び剛性向上の観点から連通吸入穴62の形成側とは逆の面に設けることが好ましい。
The constriction bottom 60A contributes to improving the rigidity of the second cylinder 21B regardless of which side of the axial end face of the second cylinder 21B it is located on. However, from the standpoint of workability and improved rigidity, it is preferable to locate it on the side opposite the side on which the communicating suction hole 62 is formed.
第2絞部60は、回転軸40の軸方向において、一方の端部が第2軸側開口部60Dによって開口し、他方の端部が絞部底部60Aによって閉塞している。第2絞部60は、回転軸40の径方向において、一方の端部が連通吸入穴62と連通し、他方の端部が第2シリンダ室55Bと連通している。
The second throttling portion 60 has one end that opens into the second shaft side opening 60D in the axial direction of the rotating shaft 40, and the other end that is closed by the throttling portion bottom portion 60A. In the radial direction of the rotating shaft 40, the second throttling portion 60 has one end that communicates with the communicating suction hole 62, and the other end that communicates with the second cylinder chamber 55B.
第2シリンダ21Bの内周壁155において、第2シリンダ21Bの周方向における第2ベーン溝56Bと第2内側開口部60Cとの間の部分を中間壁部155Bとする。第2シリンダ21Bの周方向における中間壁部155Bの長さを周方向長A2とする。周方向長A2は、第2シリンダ21Bの周方向における第2ベーン溝56Bと第2内側開口部60Cとの間の距離である。また、第2シリンダ21Bにおいて、回転軸40の軸方向における絞部底部60Aの板の厚さを厚さB2とする。
In the inner peripheral wall 155 of the second cylinder 21B, the portion between the second vane groove 56B and the second inner opening 60C in the circumferential direction of the second cylinder 21B is defined as the intermediate wall portion 155B. The length of the intermediate wall portion 155B in the circumferential direction of the second cylinder 21B is defined as the circumferential length A2. The circumferential length A2 is the distance between the second vane groove 56B and the second inner opening 60C in the circumferential direction of the second cylinder 21B. In addition, in the second cylinder 21B, the thickness of the plate of the constriction bottom portion 60A in the axial direction of the rotating shaft 40 is defined as the thickness B2.
第2シリンダ21Bは、第2シリンダ21Bの周方向における第2ベーン溝56Bと第2内側開口部60Cとの間の距離である周方向長A2が、回転軸40の軸方向における絞部底部60Aの板の厚さである厚さB2よりも大きくなるように形成されている。第2シリンダ21Bは、回転軸40の軸方向における絞部底部60Aの板の厚さである厚さB2が、第2シリンダ21Bの周方向における第2ベーン溝56Bと第2内側開口部60Cとの間の距離である周方向長A2よりも小さくなるように形成されている。第2シリンダ21Bは、「周方向長A2>厚さB2」の関係となるように形成されている。
The second cylinder 21B is formed so that the circumferential length A2, which is the distance between the second vane groove 56B and the second inner opening 60C in the circumferential direction of the second cylinder 21B, is greater than the thickness B2, which is the plate thickness of the constricted portion bottom 60A in the axial direction of the rotating shaft 40. The second cylinder 21B is formed so that the thickness B2, which is the plate thickness of the constricted portion bottom 60A in the axial direction of the rotating shaft 40, is smaller than the circumferential length A2, which is the distance between the second vane groove 56B and the second inner opening 60C in the circumferential direction of the second cylinder 21B. The second cylinder 21B is formed so that the relationship of "circumferential length A2 > thickness B2" is satisfied.
第2ベーン溝56Bと第2内側開口部60Cとの間の中間壁部155Bは、上述したように、周方向長A2を構成する部分の壁である。中間壁部155Bを構成する第2シリンダ21Bの壁は、第2低圧室57Bと第2高圧室58Bとの差圧により第2ベーン50Bによる押圧力を受ける。絞部底部60Aは、上述したように厚さB2を構成する。絞部底部60Aは、第2ベーン50Bからの押圧力を受けるが、中間壁部155Bを構成する部分の壁よりも、第2ベーン50Bからの押圧力を受けない。
The intermediate wall portion 155B between the second vane groove 56B and the second inner opening 60C is the wall of the portion that constitutes the circumferential length A2, as described above. The wall of the second cylinder 21B that constitutes the intermediate wall portion 155B receives a pressing force from the second vane 50B due to the pressure difference between the second low pressure chamber 57B and the second high pressure chamber 58B. The constricted portion bottom portion 60A constitutes the thickness B2, as described above. The constricted portion bottom portion 60A receives a pressing force from the second vane 50B, but receives less pressing force from the second vane 50B than the wall of the portion that constitutes the intermediate wall portion 155B.
そのため、絞部底部60Aは、周方向長A2を構成する部分の壁よりも、壁の厚さが必要ではない。圧縮機1は、絞部底部60Aを、中間壁部155Bを構成する部分の壁よりも薄くすることにより、第2シリンダ21Bを軽量化できる。また、絞部底部60Aは、周方向長A2を構成する部分の壁よりも、壁の厚さが必要ではない。
Therefore, the constricted portion bottom portion 60A does not need to be thicker than the walls of the portion that defines the circumferential length A2. By making the constricted portion bottom portion 60A thinner than the walls of the portion that defines the intermediate wall portion 155B, the compressor 1 can reduce the weight of the second cylinder 21B. Also, the constricted portion bottom portion 60A does not need to be thicker than the walls of the portion that defines the circumferential length A2.
第1シリンダ21Aに接合された吸入管2から流入された冷媒は、仕切板25の接続経路25A及び第2シリンダ21Bの内部吸入流路52Bを通じて第2高圧室58Bへ流入する。第2高圧室58Bへ流入した冷媒は、第2高圧室58Bの内部で第2ピストン22Bの回転によって圧縮され、第2吐出流路53Bから高圧冷媒として排出される。
The refrigerant flowing in from the suction pipe 2 connected to the first cylinder 21A flows into the second high-pressure chamber 58B through the connection path 25A of the partition plate 25 and the internal suction passage 52B of the second cylinder 21B. The refrigerant that flows into the second high-pressure chamber 58B is compressed inside the second high-pressure chamber 58B by the rotation of the second piston 22B, and is discharged as high-pressure refrigerant from the second discharge passage 53B.
また、第2高圧室58Bでは冷媒の吸気、圧縮、排気が繰り返し行われており、圧縮機1は、冷媒の排気時に密閉容器10の内部の高圧冷媒が第2吐出流路53Bから圧縮を終え低圧となった第2高圧室58B内へ逆流する恐れがある。この場合、圧縮機1は、第2高圧室58B内へ逆流した冷媒が内部吸入流路52Bへ侵入することで吸入管2からの冷媒吸入量が減少し圧縮機効率が低下する恐れがある。そのため、圧縮機1は、冷媒の排気時における第2高圧室58Bの内部への冷媒の逆流を抑制するために、内部吸入流路52Bと第2シリンダ室55Bとの連結部となる第2内側開口部60Cが第2ベーン溝56Bに近いほうが望ましい。
In addition, the second high-pressure chamber 58B repeatedly draws in, compresses, and exhausts the refrigerant, and when the refrigerant is exhausted, the high-pressure refrigerant inside the sealed container 10 may flow back from the second discharge passage 53B into the second high-pressure chamber 58B, which has been compressed and is now at a low pressure. In this case, the refrigerant that has flowed back into the second high-pressure chamber 58B may enter the internal intake passage 52B, reducing the amount of refrigerant sucked in from the intake pipe 2 and decreasing the compressor efficiency. Therefore, in order to prevent the refrigerant from flowing back into the second high-pressure chamber 58B when the refrigerant is exhausted, it is preferable that the second inner opening 60C, which is the connection between the internal intake passage 52B and the second cylinder chamber 55B, is close to the second vane groove 56B.
以上から、圧縮機1は、圧縮機効率を向上させるために、内部吸入流路52Bを第2シリンダ21Bの軸方向に拡大することが望ましい。また、圧縮機1は、圧縮機効率を向上させるために、内部吸入流路52Bの内周側の端部に第2絞部60を有し、第2ベーン50Bに近い位置で内部吸入流路52Bを第2シリンダ室55Bに連結させる手法が有効である。
In view of the above, it is desirable for the compressor 1 to expand the internal intake passage 52B in the axial direction of the second cylinder 21B in order to improve the compressor efficiency. Also, in order to improve the compressor efficiency, it is effective for the compressor 1 to have a second throttling portion 60 at the inner end of the internal intake passage 52B and to connect the internal intake passage 52B to the second cylinder chamber 55B at a position close to the second vane 50B.
一方、連通吸入穴62を拡大させた場合及び連通吸入穴62を第2ベーン溝56Bに接近させた場合、圧縮機1は、第2シリンダ21Bの連通吸入穴62と第2ベーン溝56Bとの間の壁の厚さが薄くなる。このような場合、圧縮機1は、第2低圧室57Bと第2高圧室58Bとの差圧により生じる第2ベーン50Bの第2シリンダ21Bへの押し付け力等の外力によって、第2シリンダ21Bの歪リスクを増大させる恐れがある。
On the other hand, when the communicating suction hole 62 is enlarged and when the communicating suction hole 62 is brought closer to the second vane groove 56B, the thickness of the wall between the communicating suction hole 62 of the second cylinder 21B and the second vane groove 56B of the compressor 1 becomes thinner. In such a case, the compressor 1 may increase the risk of distortion of the second cylinder 21B due to external forces such as the pressing force of the second vane 50B against the second cylinder 21B caused by the pressure difference between the second low pressure chamber 57B and the second high pressure chamber 58B.
そこで、実施の形態1に係る圧縮機1は、内部吸入流路52Bに第2絞部60を有している。内部吸入流路52Bは、第2絞部60において、第2シリンダ21Bの軸方向の片面のみ貫通させ、他方は絞部底部60Aにより壁を設けた形状に形成されている。圧縮機1は、絞部底部60Aにより第2シリンダ21Bの剛性を確保し、第2絞部60により内部吸入流路52Bを軸方向に拡大しながら第2シリンダ室55Bとの連結部となる第2内側開口部60Cを第2ベーン溝56Bに近づけることができる。
The compressor 1 according to the first embodiment has a second throttling section 60 in the internal intake passage 52B. The internal intake passage 52B is formed in a shape in which the second throttling section 60 penetrates only one axial side of the second cylinder 21B, and the other side is walled by the throttling section bottom 60A. The compressor 1 ensures the rigidity of the second cylinder 21B by the throttling section bottom 60A, and the second throttling section 60 can expand the internal intake passage 52B in the axial direction while bringing the second inner opening 60C, which is the connection part with the second cylinder chamber 55B, closer to the second vane groove 56B.
図14は、実施の形態1に係る圧縮機1の変形例の第2シリンダ21Bの斜視図である。図15は、実施の形態1に係る圧縮機1の変形例の内部吸入流路52Bの部分拡大図である。絞部底部60Aは、径方向内方側の端部が、図14及び図15に示すように、第2シリンダ21Bの軸方向に貫通した第2貫通部63Bを形成してもよい。第2貫通部63Bは、絞部底部60Aの径方向内方側の端部に形成された切欠き部分である。絞部底部60Aは、第2貫通部63Bにおいて径方向外方側に凹んでいる。すなわち、第2閉塞壁部151である絞部底部60Aは、径方向内方側の端部が、第2シリンダ21Bの軸方向に貫通した第2貫通部63Bを有している。
FIG. 14 is a perspective view of the second cylinder 21B of the modified compressor 1 according to the first embodiment. FIG. 15 is a partial enlarged view of the internal intake passage 52B of the modified compressor 1 according to the first embodiment. The constriction bottom 60A may have a second through-hole 63B at its radially inner end that penetrates the second cylinder 21B in the axial direction as shown in FIGS. 14 and 15. The second through-hole 63B is a notch formed at the radially inner end of the constriction bottom 60A. The constriction bottom 60A is recessed radially outward at the second through-hole 63B. That is, the constriction bottom 60A, which is the second blocking wall 151, has a radially inner end that has a second through-hole 63B that penetrates the second cylinder 21B in the axial direction.
第2貫通部63Bは、第2シリンダ21Bの下軸受24B側に形成された開口部である。第2貫通部63Bは、圧縮機構20において、下軸受24Bの板面によって覆われて閉塞される。
The second through-hole 63B is an opening formed on the lower bearing 24B side of the second cylinder 21B. The second through-hole 63B is covered and closed by the plate surface of the lower bearing 24B in the compression mechanism 20.
[冷凍サイクル装置200の構成]
図16は、実施の形態1に係る圧縮機1を含む冷凍サイクル装置200の概略構成図である。冷凍サイクル装置200は、圧縮機1と、圧縮機1で圧縮された冷媒が放熱する放熱器と、放熱器から流出した冷媒を減圧する電動膨張弁等の減圧器203と、減圧器203から流出した冷媒が蒸発する蒸発器とを備えている。 [Configuration of refrigeration cycle device 200]
16 is a schematic configuration diagram of arefrigeration cycle apparatus 200 including the compressor 1 according to embodiment 1. The refrigeration cycle apparatus 200 includes the compressor 1, a radiator in which the refrigerant compressed by the compressor 1 radiates heat, a pressure reducer 203 such as an electric expansion valve that reduces the pressure of the refrigerant flowing out from the radiator, and an evaporator in which the refrigerant flowing out from the pressure reducer 203 evaporates.
図16は、実施の形態1に係る圧縮機1を含む冷凍サイクル装置200の概略構成図である。冷凍サイクル装置200は、圧縮機1と、圧縮機1で圧縮された冷媒が放熱する放熱器と、放熱器から流出した冷媒を減圧する電動膨張弁等の減圧器203と、減圧器203から流出した冷媒が蒸発する蒸発器とを備えている。 [Configuration of refrigeration cycle device 200]
16 is a schematic configuration diagram of a
冷凍サイクル装置200は、例えば、冷蔵庫あるいは冷凍庫、自動販売機、空気調和装置、冷凍装置、給湯装置等の、種々の用途に使用される。図16では、冷凍サイクル装置200が空気調和装置として用いられている例を示している。このため、図16に示す冷凍サイクル装置200は、暖房運転時に放熱器として機能する室内側熱交換器204と、暖房運転時に蒸発器として機能する室外側熱交換器202とを備えている。
The refrigeration cycle device 200 is used for various purposes, such as a refrigerator or freezer, a vending machine, an air conditioner, a freezing device, a hot water supply device, etc. FIG. 16 shows an example in which the refrigeration cycle device 200 is used as an air conditioner. For this reason, the refrigeration cycle device 200 shown in FIG. 16 is equipped with an indoor heat exchanger 204 that functions as a radiator during heating operation, and an outdoor heat exchanger 202 that functions as an evaporator during heating operation.
また、図16に示す冷凍サイクル装置200は、冷房運転も可能となっている。このため、冷凍サイクル装置200は、四方切換弁等の流路切替装置201を備えている。流路切替装置201は、圧縮機1の冷媒の吐出口である吐出配管4に接続される熱交換器を切り換え、圧縮機1の冷媒の吸入口である吸入マフラー3に接続される熱交換器を切り換えるものである。冷房運転時、室内側熱交換器204は蒸発器として機能し、室外側熱交換器202は放熱器として機能する。
The refrigeration cycle device 200 shown in FIG. 16 is also capable of cooling operation. For this reason, the refrigeration cycle device 200 is equipped with a flow path switching device 201 such as a four-way switching valve. The flow path switching device 201 switches the heat exchanger connected to the discharge pipe 4, which is the refrigerant discharge port of the compressor 1, and switches the heat exchanger connected to the suction muffler 3, which is the refrigerant intake port of the compressor 1. During cooling operation, the indoor heat exchanger 204 functions as an evaporator, and the outdoor heat exchanger 202 functions as a radiator.
冷凍サイクル装置200は、圧縮機1と、室外空気と内部を流れる冷媒との間で熱交換を行う室外側熱交換器202と、内部を流れる冷媒を減圧する減圧器203と、室内空気と内部を流れる冷媒との間で熱交換を行う室内側熱交換器204と、を備えている。
The refrigeration cycle device 200 includes a compressor 1, an outdoor heat exchanger 202 that exchanges heat between the outdoor air and the refrigerant flowing inside, a pressure reducer 203 that reduces the pressure of the refrigerant flowing inside, and an indoor heat exchanger 204 that exchanges heat between the indoor air and the refrigerant flowing inside.
冷凍サイクル装置200は、圧縮機1、流路切替装置201、室外側熱交換器202、減圧器203、及び、室内側熱交換器204が冷媒配管を介して接続され、冷媒が循環する冷媒回路210を形成している。
The refrigeration cycle device 200 includes a compressor 1, a flow path switching device 201, an outdoor heat exchanger 202, a pressure reducer 203, and an indoor heat exchanger 204 connected via refrigerant piping to form a refrigerant circuit 210 through which the refrigerant circulates.
冷凍サイクル装置200を空気調和装置として用いる場合、例えば、室内側熱交換器204は屋内の装置に搭載される。また、例えば、流路切替装置201、室外側熱交換器202及び減圧器203は、屋外の装置に搭載される。また、例えば、冷凍サイクル装置200には、R407C冷媒、R410A冷媒又はR32冷媒等が用いられるが、使用される冷媒は当該冷媒に限定されるものではない。以下、冷凍サイクル装置200の暖房運転時及び冷房運転時の動作について説明する。
When the refrigeration cycle device 200 is used as an air conditioning device, for example, the indoor heat exchanger 204 is mounted in an indoor device. Also, for example, the flow path switching device 201, the outdoor heat exchanger 202, and the pressure reducer 203 are mounted in an outdoor device. Also, for example, the refrigeration cycle device 200 uses R407C refrigerant, R410A refrigerant, R32 refrigerant, etc., but the refrigerant used is not limited to these refrigerants. The operation of the refrigeration cycle device 200 during heating operation and cooling operation will be described below.
冷凍サイクル装置200が暖房運転を行う際、流路切替装置201は、図16に実線で示す流路に切り換わる。これにより、冷凍サイクル装置200は、圧縮機1の吐出配管4が室内側熱交換器204と接続され、圧縮機1の吸入マフラー3が室外側熱交換器202と接続される。すなわち、室内側熱交換器204が放熱器として機能する状態となり、室外側熱交換器202が蒸発器として機能する状態となる。
When the refrigeration cycle device 200 performs heating operation, the flow path switching device 201 switches to the flow path shown by the solid line in FIG. 16. As a result, in the refrigeration cycle device 200, the discharge pipe 4 of the compressor 1 is connected to the indoor heat exchanger 204, and the suction muffler 3 of the compressor 1 is connected to the outdoor heat exchanger 202. In other words, the indoor heat exchanger 204 functions as a radiator, and the outdoor heat exchanger 202 functions as an evaporator.
この状態において、冷凍サイクル装置200は、圧縮機1で圧縮された高温で高圧なガス状冷媒が圧縮機1から吐出されると、この高温で高圧なガス状冷媒が室内側熱交換器204に流入する。室内側熱交換器204に流入した高温で高圧なガス状冷媒は、室内の空気に放熱しながら凝縮し、高圧な液状冷媒となって室内側熱交換器204から流出する。この際、室内の空気は、冷媒の放熱によって暖められることとなる。なお、二酸化炭素冷媒等、冷媒の種類によっては、放熱する際に凝縮しない冷媒も存在する。放熱する際に凝縮する冷媒が用いられる場合、放熱器は凝縮器と称される場合もある。
In this state, when the high-temperature, high-pressure gaseous refrigerant compressed by compressor 1 is discharged from compressor 1, the refrigeration cycle device 200 flows into the indoor heat exchanger 204. The high-temperature, high-pressure gaseous refrigerant that flows into the indoor heat exchanger 204 condenses while releasing heat to the indoor air, and flows out of the indoor heat exchanger 204 as a high-pressure liquid refrigerant. At this time, the air in the room is warmed by the heat released by the refrigerant. Note that, depending on the type of refrigerant, such as carbon dioxide refrigerant, there are refrigerants that do not condense when releasing heat. When a refrigerant that condenses when releasing heat is used, the radiator may also be called a condenser.
室内側熱交換器204から流出した高圧な液状冷媒は、減圧器203に流入する。そして、減圧器203に流入した高圧な液状冷媒は、減圧器203で減圧されて低温で低圧な気液二相冷媒となり、減圧器203から流出する。減圧器203から流出した低温で低圧な気液二相冷媒は、室外側熱交換器202へ流入する。室外側熱交換器202へ流入した低温で低圧な気液二相冷媒は、室外の空気から吸熱して蒸発し、低圧なガス状冷媒又は気液二相冷媒として室外側熱交換器202から流出する。
The high-pressure liquid refrigerant flowing out from the indoor heat exchanger 204 flows into the pressure reducer 203. The high-pressure liquid refrigerant that flowed into the pressure reducer 203 is then depressurized by the pressure reducer 203 to become a low-temperature, low-pressure two-phase gas-liquid refrigerant, which flows out from the pressure reducer 203. The low-temperature, low-pressure two-phase gas-liquid refrigerant that flows out from the pressure reducer 203 flows into the outdoor heat exchanger 202. The low-temperature, low-pressure two-phase gas-liquid refrigerant that flows into the outdoor heat exchanger 202 absorbs heat from the outdoor air and evaporates, and flows out of the outdoor heat exchanger 202 as a low-pressure gaseous refrigerant or a two-phase gas-liquid refrigerant.
室外側熱交換器202から流出した低圧なガス状冷媒又は気液二相冷媒は、圧縮機1の吸入マフラー3に吸入される。そして、圧縮機1の吸入マフラー3に吸入された冷媒のうちの低圧なガス状冷媒が、圧縮機1の圧縮機構20で圧縮され、高温で高圧なガス状冷媒となる。この高温で高圧なガス状冷媒は、圧縮機1から再び吐出される。すなわち、冷凍サイクル装置200は、暖房運転を行う際、図16の実線矢印に示すように冷媒が循環する。
The low-pressure gaseous refrigerant or gas-liquid two-phase refrigerant flowing out of the outdoor heat exchanger 202 is sucked into the suction muffler 3 of the compressor 1. The low-pressure gaseous refrigerant among the refrigerants sucked into the suction muffler 3 of the compressor 1 is compressed by the compression mechanism 20 of the compressor 1 to become a high-temperature, high-pressure gaseous refrigerant. This high-temperature, high-pressure gaseous refrigerant is discharged again from the compressor 1. That is, when the refrigeration cycle device 200 is performing heating operation, the refrigerant circulates as shown by the solid arrows in FIG. 16.
冷凍サイクル装置200が冷房運転を行う際、流路切替装置201は、図16に破線で示す流路に切り換わる。これにより、冷凍サイクル装置200は、圧縮機1の吐出配管4が室外側熱交換器202と接続され、圧縮機1の吸入マフラー3が室内側熱交換器204と接続される。すなわち、室外側熱交換器202が放熱器として機能する状態となり、室内側熱交換器204が蒸発器として機能する状態となる。
When the refrigeration cycle device 200 performs cooling operation, the flow path switching device 201 switches to the flow path shown by the dashed line in FIG. 16. As a result, in the refrigeration cycle device 200, the discharge pipe 4 of the compressor 1 is connected to the outdoor heat exchanger 202, and the suction muffler 3 of the compressor 1 is connected to the indoor heat exchanger 204. In other words, the outdoor heat exchanger 202 functions as a radiator, and the indoor heat exchanger 204 functions as an evaporator.
この状態において、冷凍サイクル装置200は、圧縮機1で圧縮された高温で高圧なガス状冷媒が圧縮機1から吐出されると、この高温で高圧なガス状冷媒が室外側熱交換器202に流入する。室外側熱交換器202に流入した高温で高圧なガス状冷媒は、室外の空気に放熱しながら凝縮し、高圧な液状冷媒となって室外側熱交換器202から流出する。
In this state, when the high-temperature, high-pressure gaseous refrigerant compressed by compressor 1 is discharged from compressor 1, the high-temperature, high-pressure gaseous refrigerant flows into the outdoor heat exchanger 202. The high-temperature, high-pressure gaseous refrigerant that flows into the outdoor heat exchanger 202 condenses while releasing heat to the outdoor air, and flows out of the outdoor heat exchanger 202 as a high-pressure liquid refrigerant.
室外側熱交換器202から流出した高圧な液状冷媒は、減圧器203に流入する。そして、減圧器203に流入した高圧な液状冷媒は、減圧器203で減圧されて低温で低圧な気液二相冷媒となり、減圧器203から流出する。減圧器203から流出した低温で低圧な気液二相冷媒は、室内側熱交換器204へ流入する。室内側熱交換器204へ流入した低温で低圧な気液二相冷媒は、室内の空気から吸熱して蒸発し、低圧なガス状冷媒又は気液二相冷媒として室内側熱交換器204から流出する。この際、室内の空気は、冷媒の吸熱により冷やされることとなる。
The high-pressure liquid refrigerant flowing out of the outdoor heat exchanger 202 flows into the pressure reducer 203. The high-pressure liquid refrigerant that flowed into the pressure reducer 203 is then depressurized by the pressure reducer 203 to become a low-temperature, low-pressure two-phase gas-liquid refrigerant, which flows out of the pressure reducer 203. The low-temperature, low-pressure two-phase gas-liquid refrigerant that flows out of the pressure reducer 203 flows into the indoor heat exchanger 204. The low-temperature, low-pressure two-phase gas-liquid refrigerant that flows into the indoor heat exchanger 204 absorbs heat from the indoor air and evaporates, and flows out of the indoor heat exchanger 204 as a low-pressure gaseous refrigerant or two-phase gas-liquid refrigerant. At this time, the indoor air is cooled by the heat absorbed by the refrigerant.
室内側熱交換器204から流出した低圧なガス状冷媒又は気液二相冷媒は、圧縮機1の吸入マフラー3に吸入される。そして、圧縮機1の吸入マフラー3に吸入された冷媒のうちの低圧なガス状冷媒が、圧縮機1の圧縮機構20で圧縮され、高温で高圧なガス状冷媒となる。この高温で高圧なガス状冷媒は、圧縮機1から再び吐出される。すなわち、冷凍サイクル装置200は、冷房運転を行う際、図16の破線矢印に示すように冷媒は循環する。
The low-pressure gaseous refrigerant or gas-liquid two-phase refrigerant flowing out of the indoor heat exchanger 204 is sucked into the suction muffler 3 of the compressor 1. The low-pressure gaseous refrigerant among the refrigerants sucked into the suction muffler 3 of the compressor 1 is compressed by the compression mechanism 20 of the compressor 1 to become a high-temperature, high-pressure gaseous refrigerant. This high-temperature, high-pressure gaseous refrigerant is discharged again from the compressor 1. In other words, when the refrigeration cycle device 200 performs cooling operation, the refrigerant circulates as shown by the dashed arrows in FIG. 16.
[圧縮機1の作用効果]
圧縮機1は、第1シリンダ21Aに形成された冷媒の吸入流路52Aに絞部59を有している。絞部59は、絞部59の両内側面を構成し、第1シリンダ21Aの径方向内方に向かうにつれて互いに近づくように形成された一対の絞部側面部59Bを有する。また、絞部59は、一対の絞部側面部59Bにより構成され、回転軸40の軸方向における一方の端部において開口する軸側開口部59Dを有する。また、絞部59は、一対の絞部側面部59Bにより構成され、第1シリンダ21Aの径方向内方側に第1シリンダ室55Aと連通するように開口し、軸側開口部59Dと連なるように形成された内側開口部59Cを有する。また、絞部59は、回転軸40の軸方向における他方の端部に絞部59を閉塞するように設けられた板状の閉塞壁部150である絞部天部59Aを有する。絞部59は、軸側開口部59D及び内側開口部59Cにより冷媒が通る通路の開口面積を回転軸40の軸方向に拡大させつつ、閉塞壁部150により第1シリンダ21Aの剛性を確保し、第1シリンダ21Aの強度を高めることができる。 [Function and effect of compressor 1]
The compressor 1 has a throttlingportion 59 in the refrigerant intake passage 52A formed in the first cylinder 21A. The throttling portion 59 has a pair of throttling portion side portions 59B that form both inner surfaces of the throttling portion 59 and are formed so as to approach each other as they move radially inward of the first cylinder 21A. The throttling portion 59 is also formed of the pair of throttling portion side portions 59B and has a shaft side opening 59D that opens at one end in the axial direction of the rotating shaft 40. The throttling portion 59 is also formed of the pair of throttling portion side portions 59B and has an inner opening 59C that opens to the radially inward side of the first cylinder 21A so as to communicate with the first cylinder chamber 55A and is formed so as to communicate with the shaft side opening 59D. The throttling portion 59 also has a throttling portion top portion 59A that is a plate-shaped blocking wall portion 150 provided at the other end in the axial direction of the rotating shaft 40 so as to block the throttling portion 59. The constriction portion 59 expands the opening area of the passage through which the refrigerant passes in the axial direction of the rotating shaft 40 by the shaft side opening 59D and the inner opening 59C, while ensuring the rigidity of the first cylinder 21A by the blocking wall portion 150, thereby increasing the strength of the first cylinder 21A.
圧縮機1は、第1シリンダ21Aに形成された冷媒の吸入流路52Aに絞部59を有している。絞部59は、絞部59の両内側面を構成し、第1シリンダ21Aの径方向内方に向かうにつれて互いに近づくように形成された一対の絞部側面部59Bを有する。また、絞部59は、一対の絞部側面部59Bにより構成され、回転軸40の軸方向における一方の端部において開口する軸側開口部59Dを有する。また、絞部59は、一対の絞部側面部59Bにより構成され、第1シリンダ21Aの径方向内方側に第1シリンダ室55Aと連通するように開口し、軸側開口部59Dと連なるように形成された内側開口部59Cを有する。また、絞部59は、回転軸40の軸方向における他方の端部に絞部59を閉塞するように設けられた板状の閉塞壁部150である絞部天部59Aを有する。絞部59は、軸側開口部59D及び内側開口部59Cにより冷媒が通る通路の開口面積を回転軸40の軸方向に拡大させつつ、閉塞壁部150により第1シリンダ21Aの剛性を確保し、第1シリンダ21Aの強度を高めることができる。 [Function and effect of compressor 1]
The compressor 1 has a throttling
圧縮機1は、絞部59の閉塞壁部150により第1シリンダ21Aの剛性を確保し、第1シリンダ21Aの強度を高めることができる。そのため、圧縮機1は、第1低圧室57Aと第1高圧室58Aとの差圧により生じる第1ベーン50Aの第1シリンダ21Aへの押し付け力等の外力によって第1シリンダ21Aが変形することを抑制し、第1シリンダ21Aの強度を高めることができる。
The compressor 1 ensures the rigidity of the first cylinder 21A by the blocking wall portion 150 of the constriction portion 59, and can increase the strength of the first cylinder 21A. Therefore, the compressor 1 can suppress deformation of the first cylinder 21A due to external forces such as the pressing force of the first vane 50A against the first cylinder 21A generated by the pressure difference between the first low pressure chamber 57A and the first high pressure chamber 58A, and can increase the strength of the first cylinder 21A.
圧縮機1は、絞部59の閉塞壁部150により第1シリンダ21Aの剛性を確保し、第1シリンダ21Aの強度を高めることができる。そのため、圧縮機1は、第1シリンダ21Aの吸入流路52Aに対して、吸入管2を揺らしながら挿入した場合でも、第1シリンダ21Aの変形を抑えることができる。
The compressor 1 ensures the rigidity of the first cylinder 21A by the blocking wall portion 150 of the narrowing portion 59, and can increase the strength of the first cylinder 21A. Therefore, the compressor 1 can suppress deformation of the first cylinder 21A even when the intake pipe 2 is inserted into the intake passage 52A of the first cylinder 21A while shaking it.
絞部59において、回転軸40の軸方向における両端部に閉塞壁部150を設けた場合、絞部59の開口面積及び絞部59の体積が小さくなるため、圧縮機1は、圧損が大きくなり、冷媒が第1シリンダ室55Aに入りにくくなる。圧縮機1は、回転軸40の軸方向において、絞部59の一方の端部に軸側開口部59Dを有し、他方の端部に閉塞壁部150を有している。そのため、圧縮機1は、軸側開口部59Dにより冷媒が通る通路の開口面積を回転軸40の軸方向に拡大させつつ、閉塞壁部150により第1シリンダ21Aの剛性を確保し、第1シリンダ21Aの強度を高めることができる。
If blocking walls 150 are provided at both ends of the throttling portion 59 in the axial direction of the rotating shaft 40, the opening area and volume of the throttling portion 59 become smaller, so the compressor 1 experiences greater pressure loss and the refrigerant is less likely to enter the first cylinder chamber 55A. The compressor 1 has a shaft side opening 59D at one end of the throttling portion 59 in the axial direction of the rotating shaft 40, and a blocking wall 150 at the other end. Therefore, the compressor 1 can expand the opening area of the passage through which the refrigerant passes in the axial direction of the rotating shaft 40 by using the shaft side opening 59D, while ensuring the rigidity of the first cylinder 21A by using the blocking wall 150, thereby increasing the strength of the first cylinder 21A.
また、第1シリンダ21Aには、吸入流路52Aと、吸入流路52Aから分岐する分岐流路52AAと、が形成されている。そして、第2シリンダ21Bには、第2シリンダ21Bの上面から第2シリンダ室55Bに通じる内部吸入流路52Bが形成されており、仕切板25には、分岐流路52AAと内部吸入流路52Bとを連通させる接続経路25Aが形成されている。圧縮機1に2シリンダ型ロータリ圧縮機を用いても、圧縮機1は、冷媒が通る通路の開口面積を回転軸40の軸方向に拡大させつつ、閉塞壁部150により第1シリンダ21Aの剛性を確保し、第1シリンダ21Aの強度を高めることができる。
The first cylinder 21A is formed with an intake passage 52A and a branch passage 52AA branching off from the intake passage 52A. The second cylinder 21B is formed with an internal intake passage 52B that leads from the top surface of the second cylinder 21B to the second cylinder chamber 55B, and the partition plate 25 is formed with a connection path 25A that connects the branch passage 52AA to the internal intake passage 52B. Even if a two-cylinder rotary compressor is used for the compressor 1, the compressor 1 can increase the opening area of the passage through which the refrigerant passes in the axial direction of the rotating shaft 40 while ensuring the rigidity of the first cylinder 21A with the blocking wall portion 150, thereby increasing the strength of the first cylinder 21A.
また、圧縮機1は、第2シリンダ21Bに形成された冷媒の内部吸入流路52Bに第2絞部60を有している。第2絞部60は、第2絞部60の両内側面を構成し、第2シリンダ21Bの径方向内方に向かうにつれて互いに近づくように形成された一対の第2絞部側面部60Bを有する。また、第2絞部60は、一対の第2絞部側面部60Bにより構成され、回転軸40の軸方向における一方の端部において開口し、仕切板25によって閉塞される第2軸側開口部60Dを有する。また、第2絞部60は、一対の第2絞部側面部60Bにより構成され、第2シリンダ21Bの径方向内方側に第2シリンダ室55Bと連通するように開口し、第2軸側開口部60Dと連なるように形成された第2内側開口部60Cを有する。また、第2絞部60は、回転軸40の軸方向における他方の端部において、第2絞部60を閉塞するように設けられた板状の第2閉塞壁部151である絞部底部60Aを有する。
The compressor 1 also has a second throttling portion 60 in the internal suction passage 52B of the refrigerant formed in the second cylinder 21B. The second throttling portion 60 has a pair of second throttling portion side portions 60B that form both inner surfaces of the second throttling portion 60 and are formed so as to approach each other as they move radially inward of the second cylinder 21B. The second throttling portion 60 is also formed by a pair of second throttling portion side portions 60B, has a second shaft side opening 60D that opens at one end in the axial direction of the rotating shaft 40 and is closed by the partition plate 25. The second throttling portion 60 is also formed by a pair of second throttling portion side portions 60B, has a second inner opening 60C that opens to the radially inner side of the second cylinder 21B so as to communicate with the second cylinder chamber 55B and is formed so as to communicate with the second shaft side opening 60D. In addition, the second narrowing portion 60 has a narrowing bottom portion 60A, which is a plate-shaped second closing wall portion 151 provided to close the second narrowing portion 60, at the other end in the axial direction of the rotating shaft 40.
第2絞部60は、第2軸側開口部60D及び第2内側開口部60Cにより冷媒が通る通路の開口面積を回転軸40の軸方向に拡大させつつ、第2閉塞壁部151により第2シリンダ21Bの剛性を確保し、第2シリンダ21Bの強度を高めることができる。
The second throttling portion 60 increases the opening area of the passage through which the refrigerant passes in the axial direction of the rotating shaft 40 by using the second shaft side opening 60D and the second inner opening 60C, while ensuring the rigidity of the second cylinder 21B by using the second blocking wall portion 151, thereby increasing the strength of the second cylinder 21B.
圧縮機1は、第2絞部60の第2閉塞壁部151により第2シリンダ21Bの剛性を確保し、第2シリンダ21Bの強度を高めることができる。そのため、圧縮機1は、第2低圧室57Bと第2高圧室58Bとの差圧により生じる第2ベーン50Bの第2シリンダ21Bへの押し付け力等の外力によって第2シリンダ21Bが変形することを抑制し、第2シリンダ21Bの強度を高めることができる。
The compressor 1 ensures the rigidity of the second cylinder 21B by the second blocking wall portion 151 of the second throttling portion 60, and can increase the strength of the second cylinder 21B. Therefore, the compressor 1 can suppress deformation of the second cylinder 21B due to external forces such as the pressing force of the second vane 50B against the second cylinder 21B generated by the pressure difference between the second low pressure chamber 57B and the second high pressure chamber 58B, and can increase the strength of the second cylinder 21B.
また、第1シリンダ21Aの吸入流路52Aには、吸入管2が圧入されている。圧縮機1は、第1シリンダ21Aの吸入流路52Aに対して、吸入管2を圧入した場合でも、絞部59には閉塞壁部150である絞部天部59Aを備えているため、第1シリンダ21Aの変形を抑えることができる。
The intake pipe 2 is press-fitted into the intake passage 52A of the first cylinder 21A. Even when the intake pipe 2 is press-fitted into the intake passage 52A of the first cylinder 21A, the compressor 1 can suppress deformation of the first cylinder 21A because the throttle portion 59 has the throttle top portion 59A, which is the blocking wall portion 150.
また、閉塞壁部150である絞部天部59Aは、径方向内方側の端部が、第1シリンダ21Aの軸方向に貫通した貫通部63を有している。第1シリンダ21Aにおいて、貫通部63に到達した冷媒は、第1シリンダ21Aの軸方向の両側に流れやすくなり、その冷媒は、上軸受24Aの下面と仕切板25の上面とを伝って第1シリンダ室55Aに流入する。圧縮機1は、貫通部63を有していない場合と比較して、貫通部63を通過する冷媒によって吸入冷媒の冷媒量が増加するため、冷凍能力が増加し、圧縮効率が増加する。
The radially inner end of the constriction top portion 59A, which is the blocking wall portion 150, has a through portion 63 that penetrates the first cylinder 21A in the axial direction. In the first cylinder 21A, the refrigerant that reaches the through portion 63 tends to flow to both sides of the first cylinder 21A in the axial direction, and flows into the first cylinder chamber 55A along the lower surface of the upper bearing 24A and the upper surface of the partition plate 25. Compared to a compressor 1 that does not have the through portion 63, the amount of refrigerant sucked in increases due to the refrigerant passing through the through portion 63, so the refrigeration capacity of the compressor 1 is increased and the compression efficiency is improved.
なお、圧縮機は、第1シリンダ室で圧縮された冷媒が吐出された後に、低圧となった第1シリンダ室に向かって第1吐出流路の外側から高圧冷媒が逆流した場合に、吸入流路が円周方向に広いとピストンによる吸入流路の閉塞時間が短くなる。その場合、圧縮機は、逆流した高圧冷媒が吸入流路に入り込みやすくなり、吸入管から圧縮機構に流入する低圧冷媒の吸入量が減少し圧縮効率が低下してしまう恐れがある。
In addition, when high-pressure refrigerant flows back from the outside of the first discharge passage toward the first cylinder chamber, which is now at low pressure, after the refrigerant compressed in the first cylinder chamber is discharged, if the suction passage is wide in the circumferential direction, the time that the piston blocks the suction passage will be short. In that case, the compressor is more likely to allow the backflowing high-pressure refrigerant to enter the suction passage, reducing the amount of low-pressure refrigerant suctioned into the compression mechanism from the suction pipe, which could result in reduced compression efficiency.
圧縮機1の貫通部63は、吸入流路52Aを円周方向に開口を広げるのではなく、吸入流路52Aを軸方向に広げるものである。圧縮機1は、吸入流路52Aを円周方向に開口を広げた場合と比較して、ピストン22による吸入流路52Aの閉塞時間を確保できるため、吸入流路52Aへの冷媒の逆流を抑制し、圧縮効率の低下を抑制できる。
The through-holes 63 of the compressor 1 do not widen the opening of the intake passage 52A in the circumferential direction, but widen the intake passage 52A in the axial direction. Compared to when the opening of the intake passage 52A is widened in the circumferential direction, the compressor 1 can ensure the time that the piston 22 blocks the intake passage 52A, thereby suppressing the backflow of refrigerant into the intake passage 52A and suppressing a decrease in compression efficiency.
また、第2閉塞壁部151である絞部底部60Aは、径方向内方側の端部が、第2シリンダ21Bの軸方向に貫通した第2貫通部63Bを有している。第2シリンダ21Bにおいて、第2貫通部63Bに到達した冷媒は、第2シリンダ21Bの軸方向の両側に流れやすくなり、その冷媒は、下軸受24Bの上面と仕切板25の下面とを伝って第2シリンダ室55Bに流入する。圧縮機1は、第2貫通部63Bを有していない場合と比較して、第2貫通部63Bを通過する冷媒によって吸入冷媒の冷媒量が増加するため、冷凍能力が増加し、圧縮効率が増加する。
The constriction bottom 60A, which is the second blocking wall 151, has a second through-hole 63B at its radially inner end that penetrates the second cylinder 21B in the axial direction. In the second cylinder 21B, the refrigerant that reaches the second through-hole 63B tends to flow to both sides of the second cylinder 21B in the axial direction, and flows into the second cylinder chamber 55B along the upper surface of the lower bearing 24B and the lower surface of the partition plate 25. Compared to when the compressor 1 does not have the second through-hole 63B, the amount of refrigerant sucked in increases due to the refrigerant passing through the second through-hole 63B, so the refrigeration capacity of the compressor 1 increases and the compression efficiency increases.
また、圧縮機1の第2貫通部63Bは、吸入流路52Aを円周方向に開口を広げるのではなく、吸入流路52Aを軸方向に広げるものである。圧縮機1は、吸入流路52Aを円周方向に開口を広げた場合と比較して、ピストン22による吸入流路52Aの閉塞時間を確保できるため、吸入流路52Aへの冷媒の逆流を抑制し、圧縮効率の低下を抑制できる。
Furthermore, the second through-hole 63B of the compressor 1 does not widen the opening of the intake passage 52A in the circumferential direction, but widens the intake passage 52A in the axial direction. Compared to when the opening of the intake passage 52A is widened in the circumferential direction, the compressor 1 can ensure the time that the piston 22 blocks the intake passage 52A, thereby suppressing the backflow of refrigerant into the intake passage 52A and suppressing a decrease in compression efficiency.
実施の形態1に係る冷凍サイクル装置200は、実施の形態1に係る圧縮機1を備えたものである。そのため、冷凍サイクル装置200は、実施の形態1に係る圧縮機1と同様の効果を得ることができる。
The refrigeration cycle device 200 according to the first embodiment is equipped with the compressor 1 according to the first embodiment. Therefore, the refrigeration cycle device 200 can obtain the same effects as the compressor 1 according to the first embodiment.
実施の形態2.
図17は、実施の形態2に係る圧縮機1の全体構成を示す概略縦断面図である。図18は、実施の形態2に係る圧縮機構20の概略部分縦断面図である。図19は、実施の形態2に係る圧縮機1の内部吸入流路52Bの部分拡大図である。図20は、実施の形態2に係る圧縮機1の吸入流路52Aの部分拡大図である。Embodiment 2.
Fig. 17 is a schematic vertical cross-sectional view showing the overall configuration of compressor 1 according toembodiment 2. Fig. 18 is a schematic partial vertical cross-sectional view of compression mechanism 20 according to embodiment 2. Fig. 19 is a partial enlarged view of internal intake passage 52B of compressor 1 according to embodiment 2. Fig. 20 is a partial enlarged view of intake passage 52A of compressor 1 according to embodiment 2.
図17は、実施の形態2に係る圧縮機1の全体構成を示す概略縦断面図である。図18は、実施の形態2に係る圧縮機構20の概略部分縦断面図である。図19は、実施の形態2に係る圧縮機1の内部吸入流路52Bの部分拡大図である。図20は、実施の形態2に係る圧縮機1の吸入流路52Aの部分拡大図である。
Fig. 17 is a schematic vertical cross-sectional view showing the overall configuration of compressor 1 according to
図17~図20を用いて実施の形態2の圧縮機構20について説明する。なお、図1~図16の圧縮機構20と同一の構成を有する部位には同一の符号を付してその説明を省略する。以下、実施の形態2が実施の形態1と異なる構成を中心に説明するものとし、実施の形態2で説明されていない構成は実施の形態1と同様である。なお、圧縮機1は、第1シリンダ21Aが密閉容器10に固定され、第2シリンダ21Bが密閉容器10に固定されていないものとする。
The compression mechanism 20 of the second embodiment will be described using Figures 17 to 20. Note that parts having the same configuration as the compression mechanism 20 of Figures 1 to 16 are given the same reference numerals and their description will be omitted. Below, the configuration of the second embodiment that differs from the first embodiment will be mainly described, and the configuration not described in the second embodiment is the same as the first embodiment. Note that the compressor 1 has the first cylinder 21A fixed to the sealed container 10 and the second cylinder 21B not fixed to the sealed container 10.
実施の形態1に係る圧縮機1は、第1シリンダ21Aに吸入管2が接続されていたのに対し、実施の形態2に係る圧縮機1は、第2シリンダ21Bに吸入管2が接続されている。そのため、実施の形態2に係る圧縮機1は、第1シリンダ21Aの構造と、第2シリンダ21Bの構造とが、実施の形態1に係る圧縮機1とは逆の構造である。また、実施の形態2に係る圧縮機1の第2シリンダ21Bには、吸入流路52Aから分岐した分岐流路52AAが形成されている。
In the compressor 1 according to the first embodiment, the intake pipe 2 is connected to the first cylinder 21A, whereas in the compressor 1 according to the second embodiment, the intake pipe 2 is connected to the second cylinder 21B. Therefore, in the compressor 1 according to the second embodiment, the structure of the first cylinder 21A and the structure of the second cylinder 21B are reversed from those of the compressor 1 according to the first embodiment. Also, in the second cylinder 21B of the compressor 1 according to the second embodiment, a branch flow path 52AA is formed which branches off from the intake flow path 52A.
第1シリンダ21Aには、第1シリンダ21Aの下面から第1シリンダ室55Aに通じる内部吸入流路52Bが形成されている。内部吸入流路52Bは、第1シリンダ21Aの下面から第1シリンダ21Aの内部を経由して径方向内方に延びる連通吸入穴62を有する。また、内部吸入流路52Bは、連通吸入穴62の径方向内方に形成され、連通吸入穴62と第1シリンダ室55Aとを連通させる空間を形成する第2絞部60を有する。すなわち、内部吸入流路52Bは、連通吸入穴62と、連通吸入穴62の径方向内方に形成され、連通吸入穴62と第1シリンダ室55Aとを連通させる第2絞部60とを備える。
The first cylinder 21A has an internal intake passage 52B that connects the lower surface of the first cylinder 21A to the first cylinder chamber 55A. The internal intake passage 52B has a communicating intake hole 62 that extends radially inward from the lower surface of the first cylinder 21A through the inside of the first cylinder 21A. The internal intake passage 52B also has a second throttling portion 60 that is formed radially inward of the communicating intake hole 62 and forms a space that connects the communicating intake hole 62 to the first cylinder chamber 55A. That is, the internal intake passage 52B has the communicating intake hole 62 and the second throttling portion 60 that is formed radially inward of the communicating intake hole 62 and connects the communicating intake hole 62 to the first cylinder chamber 55A.
連通吸入穴62は、第1シリンダ21Aの下面から第1シリンダ21Aの内部を経由して径方向内方に延びる穴である。連通吸入穴62は、第1シリンダ21Aの下面から軸方向の下方に延びて、さらにそこから径方向内方に延びている。連通吸入穴62は、第1シリンダ21Aの外部と第2絞部60とを連通させる穴である。連通吸入穴62は、仕切板25の接続経路25A(図4参照)と第2絞部60とを連通させる穴である。
The communicating suction hole 62 is a hole that extends radially inward from the underside of the first cylinder 21A through the inside of the first cylinder 21A. The communicating suction hole 62 extends axially downward from the underside of the first cylinder 21A and then extends radially inward from there. The communicating suction hole 62 is a hole that connects the outside of the first cylinder 21A with the second throttling section 60. The communicating suction hole 62 is a hole that connects the connection path 25A (see Figure 4) of the partition plate 25 with the second throttling section 60.
絞部天部160Aは、第1シリンダ21Aの軸方向端面どちらの面に設けられても第1シリンダ21Aの剛性向上に寄与するが、加工性及び剛性向上の観点から連通吸入穴62の形成側とは逆の面に設けることが好ましい。
The constriction top portion 160A contributes to improving the rigidity of the first cylinder 21A regardless of which side of the axial end face the constriction top portion 160A is provided on. However, from the standpoint of workability and improved rigidity, it is preferable to provide it on the side opposite the side on which the communicating suction hole 62 is formed.
第2絞部60は、第2絞部60の両内側面を構成し、第1シリンダ21Aの径方向内方に向かうにつれて互いに近づくように形成された一対の第2絞部側面部60Bを有する。また、第2絞部60は、一対の第2絞部側面部60Bにより構成され、回転軸40の軸方向における一方の端部において開口し、仕切板25によって閉塞される第2軸側開口部60Dを有する。また、第2絞部60は、一対の第2絞部側面部60Bにより構成され、第1シリンダ21Aの径方向内方側に第1シリンダ室55Aと連通するように開口し、第2軸側開口部60Dと連なるように形成された第2内側開口部60Cを有する。また、第2絞部60は、回転軸40の軸方向における他方の端部において、第2絞部60を閉塞するように設けられた板状の第2閉塞壁部151を有する。
The second throttling portion 60 has a pair of second throttling portion side portions 60B that form both inner surfaces of the second throttling portion 60 and are formed to approach each other as they move radially inward of the first cylinder 21A. The second throttling portion 60 is also formed of a pair of second throttling portion side portions 60B, has a second shaft side opening 60D that opens at one end in the axial direction of the rotating shaft 40 and is blocked by a partition plate 25. The second throttling portion 60 is also formed of a pair of second throttling portion side portions 60B, has a second inner opening 60C that opens to communicate with the first cylinder chamber 55A on the radially inner side of the first cylinder 21A and is formed to communicate with the second shaft side opening 60D. The second throttling portion 60 also has a plate-shaped second blocking wall portion 151 that is provided at the other end in the axial direction of the rotating shaft 40 to block the second throttling portion 60.
第2絞部60は、回転軸40の軸方向において、一方の端部が第2軸側開口部60Dによって開口し、他方の端部が絞部天部160Aによって閉塞している。第2絞部60は、回転軸40の径方向において、一方の端部が連通吸入穴62と連通し、他方の端部が第1シリンダ室55Aと連通している。
The second throttling portion 60 has one end that opens into the second shaft side opening 60D in the axial direction of the rotating shaft 40, and the other end that is closed by the throttling portion top portion 160A. In the radial direction of the rotating shaft 40, the second throttling portion 60 has one end that communicates with the communicating suction hole 62, and the other end that communicates with the first cylinder chamber 55A.
第2シリンダ21Bには、第2シリンダ21Bの外部と第2シリンダ室55Bとを連通させる吸入流路52Aが形成されている。吸入流路52Aは、第2シリンダ21Bの外周面から径方向内方に延びており、外周面において吸入管2が接続される吸入穴61と、吸入穴61の径方向内方に形成され、吸入穴61と第2シリンダ室55Bとを連通させる空間を形成する絞部59とを有する。
The second cylinder 21B is formed with an intake passage 52A that connects the outside of the second cylinder 21B to the second cylinder chamber 55B. The intake passage 52A extends radially inward from the outer circumferential surface of the second cylinder 21B and has an intake hole 61 to which the intake pipe 2 is connected on the outer circumferential surface, and a constriction 59 formed radially inward of the intake hole 61 and forming a space that connects the intake hole 61 to the second cylinder chamber 55B.
吸入流路52Aは、第2シリンダ21Bの外周面156から径方向内方に延びる吸入穴61と、吸入穴61の径方向内方に形成され、吸入穴61と第2低圧室57Bとを連通させる絞部59とを備える。すなわち、吸入流路52Aは、吸入穴61と、吸入穴61の径方向内方に形成され、吸入穴61と第2シリンダ室55Bとを連通させる絞部59とを備える。
The intake passage 52A includes an intake hole 61 extending radially inward from the outer peripheral surface 156 of the second cylinder 21B, and a throttling portion 59 formed radially inward of the intake hole 61 and connecting the intake hole 61 to the second low pressure chamber 57B. That is, the intake passage 52A includes an intake hole 61 and a throttling portion 59 formed radially inward of the intake hole 61 and connecting the intake hole 61 to the second cylinder chamber 55B.
吸入穴61は、第2シリンダ21Bの外周面156から径方向内方に延びる穴である。吸入穴61は、第2シリンダ21Bの外部と絞部59とを連通させる穴である。吸入穴61には、吸入管2の先端部が挿入されている。吸入穴61は、吸入管2と絞部59とを連通させる穴である。吸入流路52Aの入口となる吸入穴61の開口形状は、吸入管2の形状に合うものであればよい。
The suction hole 61 is a hole that extends radially inward from the outer circumferential surface 156 of the second cylinder 21B. The suction hole 61 is a hole that connects the outside of the second cylinder 21B with the throttling portion 59. The tip of the suction pipe 2 is inserted into the suction hole 61. The suction hole 61 is a hole that connects the suction pipe 2 with the throttling portion 59. The opening shape of the suction hole 61, which is the entrance to the suction flow passage 52A, may be any shape that matches the shape of the suction pipe 2.
絞部59は、絞部59の両内側面を構成し、第2シリンダ21Bの径方向内方に向かうにつれて互いに近づくように形成された一対の絞部側面部59Bを有する。また、絞部59は、一対の絞部側面部59Bにより構成され、回転軸40の軸方向における一方の端部において開口する軸側開口部59Dを有する。また、絞部59は、一対の絞部側面部59Bにより構成され、第2シリンダ21Bの径方向内方側に第2シリンダ室55Bと連通するように開口し、軸側開口部59Dと連なるように形成された内側開口部59Cを有する。また、絞部59は、回転軸40の軸方向における他方の端部に回転軸40の軸方向において、絞部59を閉塞するように設けられた板状の閉塞壁部150を有する。
The constricted portion 59 has a pair of constricted portion side portions 59B that form both inner surfaces of the constricted portion 59 and are formed to approach each other as they move radially inward of the second cylinder 21B. The constricted portion 59 is also formed of a pair of constricted portion side portions 59B and has a shaft side opening 59D that opens at one end in the axial direction of the rotating shaft 40. The constricted portion 59 is also formed of a pair of constricted portion side portions 59B and has an inner opening 59C that opens to communicate with the second cylinder chamber 55B on the radially inner side of the second cylinder 21B and is formed to communicate with the shaft side opening 59D. The constricted portion 59 also has a plate-shaped blocking wall portion 150 that is provided at the other end in the axial direction of the rotating shaft 40 so as to block the constricted portion 59 in the axial direction of the rotating shaft 40.
絞部59は、回転軸40の軸方向において、一方の端部が軸側開口部59Dによって開口し、他方の端部が絞部底部159Aによって閉塞している。絞部底部159Aは、第2シリンダ21Bの軸方向端面どちらの面に設けられても第2シリンダ21Bの剛性向上に寄与するが、加工性及び剛性向上の観点から分岐流路52AAの形成側とは逆の面に設けることが好ましい。
The constriction portion 59 has one end opened by the shaft side opening 59D in the axial direction of the rotating shaft 40, and the other end closed by the constriction portion bottom 159A. The constriction portion bottom 159A contributes to improving the rigidity of the second cylinder 21B regardless of which side of the axial end face it is provided on, but from the standpoint of workability and rigidity improvement, it is preferable to provide it on the side opposite the side on which the branch flow path 52AA is formed.
絞部59は、回転軸40の径方向において、一方の端部が吸入穴61と連通し、他方の端部が第2シリンダ室55Bと連通している。実施の形態2の圧縮機1において、絞部底部159Aが絞部59の閉塞壁部150を構成する。
The throttling portion 59 has one end communicating with the suction hole 61 in the radial direction of the rotating shaft 40, and the other end communicating with the second cylinder chamber 55B. In the compressor 1 of embodiment 2, the throttling portion bottom 159A forms the blocking wall portion 150 of the throttling portion 59.
圧縮機1は、第2シリンダ21Bの外周面の吸入流路52Aに吸入管2が圧入されている。分岐流路52AAは、第2シリンダ21Bの吸入流路52Aと仕切板25の接続経路25Aとを連通させる。
In the compressor 1, the intake pipe 2 is press-fitted into the intake passage 52A on the outer circumferential surface of the second cylinder 21B. The branch passage 52AA connects the intake passage 52A of the second cylinder 21B to the connection path 25A of the partition plate 25.
仕切板25には、第2シリンダ21Bの吸入流路52Aから分岐した分岐流路52AAと連通する接続経路25Aが形成されている。また、接続経路25Aは、第1シリンダ21Aに形成された内部吸入流路52Bと連通する。接続経路25Aは、第2シリンダ21Bの分岐流路52AAと第1シリンダ21Aの内部吸入流路52Bとを連通させる。接続経路25Aは、第1シリンダ21Aの内部吸入流路52Bと第2シリンダ21Bの吸入流路52Aとを連通させる。
The partition plate 25 is formed with a connection path 25A that communicates with a branch flow path 52AA branching off from the intake flow path 52A of the second cylinder 21B. The connection path 25A also communicates with an internal intake flow path 52B formed in the first cylinder 21A. The connection path 25A connects the branch flow path 52AA of the second cylinder 21B to the internal intake flow path 52B of the first cylinder 21A. The connection path 25A connects the internal intake flow path 52B of the first cylinder 21A to the intake flow path 52A of the second cylinder 21B.
図21は、実施の形態2に係る圧縮機1の変形例の内部吸入流路52Bの部分拡大図である。図22は、実施の形態2に係る圧縮機1の変形例の吸入流路52Aの部分拡大図である。図21に示すように、絞部天部160Aは、径方向内方側の端部が、第1シリンダ21Aの軸方向に貫通した第2貫通部63Bを形成してもよい。また、図22に示すように、絞部底部159Aは、径方向内方側の端部が、第2シリンダ21Bの軸方向に貫通した貫通部63を形成してもよい。
FIG. 21 is a partial enlarged view of the internal intake passage 52B of a modified example of the compressor 1 according to embodiment 2. FIG. 22 is a partial enlarged view of the intake passage 52A of a modified example of the compressor 1 according to embodiment 2. As shown in FIG. 21, the radially inner end of the constriction top portion 160A may form a second through portion 63B that penetrates the first cylinder 21A in the axial direction. Also, as shown in FIG. 22, the radially inner end of the constriction bottom portion 159A may form a through portion 63 that penetrates the second cylinder 21B in the axial direction.
第2閉塞壁部151である絞部天部160Aは、径方向内方側の端部が、第1シリンダ21Aの軸方向に貫通した第2貫通部63Bを有している。実施の形態2では、第2貫通部63Bは、第1シリンダ21Aの上軸受24A側に形成された開口部である。第2貫通部63Bは、圧縮機構20において、上軸受24Aの板面によって覆われて閉塞される。
The constriction top portion 160A, which is the second blocking wall portion 151, has a second through portion 63B at its radially inner end that penetrates the first cylinder 21A in the axial direction. In the second embodiment, the second through portion 63B is an opening formed on the upper bearing 24A side of the first cylinder 21A. The second through portion 63B is covered and blocked by the plate surface of the upper bearing 24A in the compression mechanism 20.
閉塞壁部150である絞部底部159Aは、径方向内方側の端部が、第2シリンダ21Bの軸方向に貫通した貫通部63を有している。実施の形態2では、貫通部63は、第2シリンダ21Bの下軸受24B側に形成された開口部である。貫通部63は、圧縮機構20において、下軸受24Bの板面によって覆われて閉塞される。
The constriction bottom 159A, which is the blocking wall 150, has a through-hole 63 at its radially inward end that penetrates the second cylinder 21B in the axial direction. In the second embodiment, the through-hole 63 is an opening formed on the lower bearing 24B side of the second cylinder 21B. The through-hole 63 is covered and blocked by the plate surface of the lower bearing 24B in the compression mechanism 20.
第2シリンダ21Bに接合された吸入管2から流入された冷媒は、吸入流路52Aを通じて第2高圧室58Bへ流入し、第2高圧室58Bの内部で第2ピストン22Bの回転によって圧縮され、第2吐出流路53Bから高圧冷媒として排出される。
The refrigerant flowing in from the suction pipe 2 connected to the second cylinder 21B flows through the suction passage 52A into the second high-pressure chamber 58B, is compressed inside the second high-pressure chamber 58B by the rotation of the second piston 22B, and is discharged as high-pressure refrigerant from the second discharge passage 53B.
同様に、第2シリンダ21Bに接合された吸入管2から流入された冷媒は、仕切板25の接続経路25A及び第1シリンダ21Aの内部吸入流路52Bを通じて第1高圧室58Aへ流入する。第1高圧室58Aへ流入した冷媒は、第1高圧室58Aの内部で第1ピストン22Aの回転によって圧縮され、第1吐出流路53Aから高圧冷媒として排出される。
Similarly, the refrigerant flowing in from the suction pipe 2 connected to the second cylinder 21B flows into the first high-pressure chamber 58A through the connection path 25A of the partition plate 25 and the internal suction passage 52B of the first cylinder 21A. The refrigerant that flows into the first high-pressure chamber 58A is compressed inside the first high-pressure chamber 58A by the rotation of the first piston 22A, and is discharged as high-pressure refrigerant from the first discharge passage 53A.
このように、圧縮機1は、吸入流路52Aの内部を冷媒が移動することから、圧縮機1の吸入管2の管径が大きいほど流路圧損が小さくなるため、吸入管2の管径が大きいほうが望ましい。また、圧縮機1は、吸入流路52Aの内部を冷媒が移動することから、吸入流路52Aの内部の流路径が大きいほど流路圧損が小さくなるため、吸入流路52Aの内部の流路径が大きいほうが望ましい。すなわち、圧縮機1は、吸入流路52Aの内部を冷媒が移動することから、吸入流路52Aの流路断面積が大きいほど流路圧損が小さくなるため、吸入流路52Aの流路断面積が大きいほうが望ましい。
As described above, since the refrigerant moves inside the intake passage 52A of the compressor 1, the larger the pipe diameter of the intake pipe 2 of the compressor 1, the smaller the flow path pressure loss, so it is desirable to have a larger pipe diameter of the intake pipe 2. Also, since the refrigerant moves inside the intake passage 52A of the compressor 1, the larger the flow path diameter inside the intake passage 52A, the smaller the flow path pressure loss, so it is desirable to have a larger flow path diameter inside the intake passage 52A. In other words, since the refrigerant moves inside the intake passage 52A of the compressor 1, the larger the flow path cross-sectional area of the intake passage 52A, the smaller the flow path pressure loss, so it is desirable to have a larger flow path cross-sectional area of the intake passage 52A.
また、第2高圧室58Bでは冷媒の吸気、圧縮、排気が繰り返し行われており、圧縮機1は、冷媒の排気時に密閉容器10の内部の高圧冷媒が第2吐出流路53Bから圧縮を終え低圧となった第2高圧室58B内へ逆流する恐れがある。この場合、圧縮機1は、第2高圧室58B内へ逆流した冷媒が吸入流路52Aへ侵入することで吸入管2からの冷媒吸入量が減少し圧縮機効率が低下する恐れがある。そのため、圧縮機1は、冷媒の排気時における第2高圧室58Bの内部への冷媒の逆流を抑制するために、吸入流路52Aと第2シリンダ室55Bとの連結部となる内側開口部59Cが第2ベーン溝56Bに近いほうが望ましい。
In addition, the second high-pressure chamber 58B repeatedly draws in, compresses, and exhausts the refrigerant, and when the refrigerant is exhausted, the high-pressure refrigerant inside the sealed container 10 may flow back from the second discharge passage 53B into the second high-pressure chamber 58B, which has been compressed and is now at a low pressure. In this case, the refrigerant that has flowed back into the second high-pressure chamber 58B may enter the intake passage 52A, reducing the amount of refrigerant sucked in from the intake pipe 2 and decreasing the compressor efficiency. Therefore, in order to prevent the refrigerant from flowing back into the second high-pressure chamber 58B when the refrigerant is exhausted, it is preferable that the inner opening 59C, which is the connection between the intake passage 52A and the second cylinder chamber 55B, is close to the second vane groove 56B.
以上から、圧縮機1は、圧縮機効率を向上させるために、吸入流路52Aを第2シリンダ21Bの軸方向に拡大することが望ましい。また、圧縮機1は、圧縮機効率を向上させるために、吸入流路52Aの内周側の端部に絞部59を有し、第2ベーン50Bに近い位置で吸入流路52Aを第2シリンダ室55Bに連結させる手法が有効である。
In view of the above, it is desirable for the compressor 1 to expand the intake passage 52A in the axial direction of the second cylinder 21B in order to improve the compressor efficiency. Also, in order to improve the compressor efficiency of the compressor 1, it is effective to provide a constriction 59 at the end of the inner circumference side of the intake passage 52A and connect the intake passage 52A to the second cylinder chamber 55B at a position close to the second vane 50B.
一方、吸入穴61を拡大させた場合及び吸入穴61を第2ベーン溝56Bに接近させた場合、圧縮機1は、第2シリンダ21Bの吸入穴61と第2ベーン溝56Bとの間の壁の厚さが薄くなる。このような場合、圧縮機1は、第2シリンダ21Bへの吸入管2の圧入等の外力によって第2シリンダ21Bの歪リスクを増大させる恐れがある。また、圧縮機1は、第2低圧室57Bと第2高圧室58Bとの差圧により生じる第2ベーン50Bの第2シリンダ21Bへの押し付け力等の外力によって、第2シリンダ21Bの歪リスクを増大させる恐れがある。
On the other hand, when the suction hole 61 is enlarged and when the suction hole 61 is brought closer to the second vane groove 56B, the thickness of the wall between the suction hole 61 of the second cylinder 21B and the second vane groove 56B of the compressor 1 becomes thinner. In such a case, the compressor 1 may increase the risk of distortion of the second cylinder 21B due to external forces such as the pressure of the suction pipe 2 being pressed into the second cylinder 21B. In addition, the compressor 1 may increase the risk of distortion of the second cylinder 21B due to external forces such as the pressing force of the second vane 50B against the second cylinder 21B caused by the pressure difference between the second low pressure chamber 57B and the second high pressure chamber 58B.
そこで、吸入流路52Aは、絞部59において、第2シリンダ21Bの軸方向の片面のみ貫通させ、他方は絞部底部159Aにより壁を設けた形状に形成されている。圧縮機1は、絞部底部159Aにより第2シリンダ21Bの剛性を確保し、絞部59により吸入流路52Aを軸方向に拡大しながら第2シリンダ室55Bとの連結部となる内側開口部59Cを第2ベーン溝56Bに近づけることができる。
The intake passage 52A is therefore formed in a shape such that it penetrates only one axial side of the second cylinder 21B at the constriction 59, with the other side being walled by the constriction bottom 159A. The compressor 1 ensures the rigidity of the second cylinder 21B with the constriction bottom 159A, and the constriction 59 expands the intake passage 52A in the axial direction while bringing the inner opening 59C, which is the connection part with the second cylinder chamber 55B, closer to the second vane groove 56B.
吸入流路52Aと同様に、内部吸入流路52Bは、第2絞部60において、第1シリンダ21Aの軸方向の片面のみ貫通させ、他方は絞部天部160Aにより壁を設けた形状に形成されている。圧縮機1は、絞部天部160Aにより第1シリンダ21Aの剛性を確保し、第2絞部60により内部吸入流路52Bを軸方向に拡大しながら第1シリンダ室55Aとの連結部となる第2内側開口部60Cを第1ベーン溝56Aに近づけることができる。
Similar to the intake passage 52A, the internal intake passage 52B is formed in a shape in which the second throttling portion 60 penetrates only one axial side of the first cylinder 21A, and the other side is walled by the throttling top portion 160A. The compressor 1 ensures the rigidity of the first cylinder 21A by the throttling top portion 160A, and the second throttling portion 60 can expand the internal intake passage 52B in the axial direction while bringing the second inner opening 60C, which is the connection part with the first cylinder chamber 55A, closer to the first vane groove 56A.
[圧縮機1の作用効果]
圧縮機1は、第2シリンダ21Bに形成された冷媒の吸入流路52Aに絞部59を有している。絞部59は、絞部59の両内側面を構成し、第2シリンダ21Bの径方向内方に向かうにつれて互いに近づくように形成された一対の絞部側面部59Bを有する。また、絞部59は、一対の絞部側面部59Bにより構成され、回転軸40の軸方向における一方の端部において開口する軸側開口部59Dを有する。また、絞部59は、一対の絞部側面部59Bにより構成され、第2シリンダ21Bの径方向内方側に第2シリンダ室55Bと連通するように開口し、軸側開口部59Dと連なるように形成された内側開口部59Cを有する。また、絞部59は、回転軸40の軸方向における他方の端部に絞部59を閉塞するように設けられた板状の閉塞壁部150である絞部底部159Aを有する。絞部59は、軸側開口部59D及び内側開口部59Cにより冷媒が通る通路の開口面積を回転軸40の軸方向に拡大させつつ、閉塞壁部150により第2シリンダ21Bの剛性を確保し、第2シリンダ21Bの強度を高めることができる。 [Function and effect of compressor 1]
The compressor 1 has a throttlingportion 59 in the refrigerant intake passage 52A formed in the second cylinder 21B. The throttling portion 59 has a pair of throttling portion side portions 59B that form both inner surfaces of the throttling portion 59 and are formed so as to approach each other as they move radially inward of the second cylinder 21B. The throttling portion 59 is also formed of the pair of throttling portion side portions 59B and has a shaft side opening 59D that opens at one end in the axial direction of the rotating shaft 40. The throttling portion 59 is also formed of the pair of throttling portion side portions 59B and has an inner opening 59C that opens to the radially inward side of the second cylinder 21B so as to communicate with the second cylinder chamber 55B and is formed so as to communicate with the shaft side opening 59D. The throttling portion 59 also has a throttling portion bottom portion 159A that is a plate-shaped blocking wall portion 150 provided at the other end in the axial direction of the rotating shaft 40 so as to block the throttling portion 59. The constriction portion 59 expands the opening area of the passage through which the refrigerant passes in the axial direction of the rotating shaft 40 by the shaft side opening 59D and the inner opening 59C, while ensuring the rigidity of the second cylinder 21B by the blocking wall portion 150, thereby increasing the strength of the second cylinder 21B.
圧縮機1は、第2シリンダ21Bに形成された冷媒の吸入流路52Aに絞部59を有している。絞部59は、絞部59の両内側面を構成し、第2シリンダ21Bの径方向内方に向かうにつれて互いに近づくように形成された一対の絞部側面部59Bを有する。また、絞部59は、一対の絞部側面部59Bにより構成され、回転軸40の軸方向における一方の端部において開口する軸側開口部59Dを有する。また、絞部59は、一対の絞部側面部59Bにより構成され、第2シリンダ21Bの径方向内方側に第2シリンダ室55Bと連通するように開口し、軸側開口部59Dと連なるように形成された内側開口部59Cを有する。また、絞部59は、回転軸40の軸方向における他方の端部に絞部59を閉塞するように設けられた板状の閉塞壁部150である絞部底部159Aを有する。絞部59は、軸側開口部59D及び内側開口部59Cにより冷媒が通る通路の開口面積を回転軸40の軸方向に拡大させつつ、閉塞壁部150により第2シリンダ21Bの剛性を確保し、第2シリンダ21Bの強度を高めることができる。 [Function and effect of compressor 1]
The compressor 1 has a throttling
圧縮機1は、絞部59の閉塞壁部150により第2シリンダ21Bの剛性を確保し、第2シリンダ21Bの強度を高めることができる。そのため、圧縮機1は、第2低圧室57Bと第2高圧室58Bとの差圧により生じる第2ベーン50Bの第2シリンダ21Bへの押し付け力等の外力によって第2シリンダ21Bが変形することを抑制し、第2シリンダ21Bの強度を高めることができる。
The compressor 1 ensures the rigidity of the second cylinder 21B by the blocking wall portion 150 of the constriction portion 59, and can increase the strength of the second cylinder 21B. Therefore, the compressor 1 can suppress deformation of the second cylinder 21B due to external forces such as the pressing force of the second vane 50B against the second cylinder 21B generated by the pressure difference between the second low pressure chamber 57B and the second high pressure chamber 58B, and can increase the strength of the second cylinder 21B.
圧縮機1は、絞部59の閉塞壁部150により第2シリンダ21Bの剛性を確保し、第2シリンダ21Bの強度を高めることができる。そのため、圧縮機1は、第2シリンダ21Bの吸入流路52Aに対して、吸入管2を揺らしながら挿入した場合でも、第2シリンダ21Bの変形を抑えることができる。
The compressor 1 ensures the rigidity of the second cylinder 21B by the blocking wall portion 150 of the narrowing portion 59, and can increase the strength of the second cylinder 21B. Therefore, the compressor 1 can suppress deformation of the second cylinder 21B even when the intake pipe 2 is inserted into the intake passage 52A of the second cylinder 21B while shaking it.
絞部59において、回転軸40の軸方向における両端部に閉塞壁部150を設けた場合、絞部59の開口面積及び絞部59の体積が小さくなるため、圧縮機1は、圧損が大きくなり、冷媒が第1シリンダ室55Aに入りにくくなる。圧縮機1は、回転軸40の軸方向において、絞部59の一方の端部に軸側開口部59Dを有し、他方の端部に閉塞壁部150を有している。そのため、圧縮機1は、軸側開口部59Dにより冷媒が通る通路の開口面積を回転軸40の軸方向に拡大させつつ、閉塞壁部150により第2シリンダ21Bの剛性を確保し、第2シリンダ21Bの強度を高めることができる。
If blocking walls 150 are provided at both ends of the throttling portion 59 in the axial direction of the rotating shaft 40, the opening area and volume of the throttling portion 59 become smaller, so the compressor 1 experiences greater pressure loss and the refrigerant is less likely to enter the first cylinder chamber 55A. The compressor 1 has a shaft side opening 59D at one end of the throttling portion 59 in the axial direction of the rotating shaft 40, and a blocking wall 150 at the other end. Therefore, the compressor 1 can expand the opening area of the passage through which the refrigerant passes in the axial direction of the rotating shaft 40 by using the shaft side opening 59D, while ensuring the rigidity of the second cylinder 21B by using the blocking wall 150, thereby increasing the strength of the second cylinder 21B.
また、第2シリンダ21Bには、吸入流路52Aと、吸入流路52Aから分岐する分岐流路52AAと、が形成されている。そして、第1シリンダ21Aには、第1シリンダ21Aの下面から第1シリンダ室55Aに通じる内部吸入流路52Bが形成されており、仕切板25には、分岐流路52AAと内部吸入流路52Bとを連通させる接続経路25Aが形成されている。圧縮機1に2シリンダ型ロータリ圧縮機を用いても、圧縮機1は、冷媒が通る通路の開口面積を回転軸40の軸方向に拡大させつつ、閉塞壁部150により第2シリンダ21Bの剛性を確保し、第2シリンダ21Bの強度を高めることができる。
The second cylinder 21B is formed with an intake passage 52A and a branch passage 52AA branching off from the intake passage 52A. The first cylinder 21A is formed with an internal intake passage 52B that connects the underside of the first cylinder 21A to the first cylinder chamber 55A, and the partition plate 25 is formed with a connection path 25A that connects the branch passage 52AA to the internal intake passage 52B. Even if a two-cylinder rotary compressor is used for the compressor 1, the compressor 1 can increase the opening area of the passage through which the refrigerant passes in the axial direction of the rotating shaft 40 while ensuring the rigidity of the second cylinder 21B with the blocking wall portion 150, thereby increasing the strength of the second cylinder 21B.
また、圧縮機1は、第1シリンダ21Aに形成された冷媒の内部吸入流路52Bに第2絞部60を有している。第2絞部60は、第2絞部60の両内側面を構成し、第1シリンダ21Aの径方向内方に向かうにつれて互いに近づくように形成された一対の第2絞部側面部60Bを有する。また、第2絞部60は、一対の第2絞部側面部60Bにより構成され、回転軸40の軸方向における一方の端部において開口し、仕切板25によって閉塞される第2軸側開口部60Dを有する。また、第2絞部60は、一対の第2絞部側面部60Bにより構成され、第1シリンダ21Aの径方向内方側に第1シリンダ室55Aと連通するように開口し、第2軸側開口部60Dと連なるように形成された第2内側開口部60Cを有する。また、第2絞部60は、回転軸40の軸方向における他方の端部において、第2絞部60を閉塞するように設けられた板状の第2閉塞壁部151である絞部天部160Aを有する。
The compressor 1 also has a second throttling portion 60 in the internal suction passage 52B of the refrigerant formed in the first cylinder 21A. The second throttling portion 60 has a pair of second throttling portion side portions 60B that form both inner surfaces of the second throttling portion 60 and are formed so as to approach each other as they move radially inward of the first cylinder 21A. The second throttling portion 60 is also formed by a pair of second throttling portion side portions 60B, has a second shaft side opening 60D that opens at one end in the axial direction of the rotating shaft 40 and is closed by the partition plate 25. The second throttling portion 60 is also formed by a pair of second throttling portion side portions 60B, has a second inner opening 60C that opens to the radially inner side of the first cylinder 21A so as to communicate with the first cylinder chamber 55A and is formed so as to communicate with the second shaft side opening 60D. In addition, the second narrowing portion 60 has a narrowing portion top portion 160A, which is a plate-shaped second closing wall portion 151 provided to close the second narrowing portion 60, at the other end in the axial direction of the rotating shaft 40.
第2絞部60は、第2軸側開口部60D及び第2内側開口部60Cにより冷媒が通る通路の開口面積を回転軸40の軸方向に拡大させつつ、第2閉塞壁部151により第1シリンダ21Aの剛性を確保し、第1シリンダ21Aの強度を高めることができる。
The second throttling portion 60 expands the opening area of the passage through which the refrigerant passes in the axial direction of the rotating shaft 40 by means of the second shaft side opening 60D and the second inner opening 60C, while ensuring the rigidity of the first cylinder 21A by means of the second blocking wall portion 151, thereby increasing the strength of the first cylinder 21A.
圧縮機1は、第2絞部60の第2閉塞壁部151により第1シリンダ21Aの剛性を確保し、第1シリンダ21Aの強度を高めることができる。そのため、圧縮機1は、第1低圧室57Aと第1高圧室58Aとの差圧により生じる第1ベーン50Aの第1シリンダ21Aへの押し付け力等の外力によって第1シリンダ21Aが変形することを抑制し、第1シリンダ21Aの強度を高めることができる。
The compressor 1 ensures the rigidity of the first cylinder 21A by the second blocking wall portion 151 of the second throttling portion 60, and can increase the strength of the first cylinder 21A. Therefore, the compressor 1 can suppress deformation of the first cylinder 21A due to external forces such as the pressing force of the first vane 50A against the first cylinder 21A generated by the pressure difference between the first low pressure chamber 57A and the first high pressure chamber 58A, and can increase the strength of the first cylinder 21A.
また、第2シリンダ21Bの吸入流路52Aには、吸入管2が圧入されている。圧縮機1は、第2シリンダ21Bの吸入流路52Aに対して、吸入管2を圧入した場合でも、絞部59には閉塞壁部150である絞部底部60Aを備えているため、第2シリンダ21Bの変形を抑えることができる。
The intake pipe 2 is press-fitted into the intake passage 52A of the second cylinder 21B. Even when the intake pipe 2 is press-fitted into the intake passage 52A of the second cylinder 21B, the compressor 1 has the restrictor bottom 60A, which is the blocking wall 150, in the restrictor 59, so deformation of the second cylinder 21B can be suppressed.
また、閉塞壁部150である絞部底部159Aは、径方向内方側の端部が、第2シリンダ21Bの軸方向に貫通した貫通部63を有している。第2シリンダ21Bにおいて、貫通部63に到達した冷媒は、第2シリンダ21Bの軸方向の両側に流れやすくなり、その冷媒は、下軸受24Bの上面と仕切板25の下面とを伝って第2シリンダ室55Bに流入する。圧縮機1は、貫通部63を有していない場合と比較して、貫通部63を通過する冷媒によって吸入冷媒の冷媒量が増加するため、冷凍能力が増加し、圧縮効率が増加する。
The diametrically inner end of the constriction bottom 159A, which is the blocking wall 150, has a through-hole 63 that penetrates the second cylinder 21B in the axial direction. In the second cylinder 21B, the refrigerant that reaches the through-hole 63 tends to flow to both sides of the second cylinder 21B in the axial direction, and flows into the second cylinder chamber 55B along the upper surface of the lower bearing 24B and the lower surface of the partition plate 25. Compared to a compressor 1 that does not have the through-hole 63, the amount of refrigerant sucked in increases due to the refrigerant passing through the through-hole 63, so the refrigeration capacity of the compressor 1 is increased and the compression efficiency is improved.
なお、圧縮機は、第2シリンダ室で圧縮された冷媒が吐出された後に、低圧となった第2シリンダ室に向かって第2吐出流路の外側から高圧冷媒が入り込んだ場合に、吸入流路が円周方向に広いとピストンによる吸入流路の閉塞時間が短くなる。その場合、圧縮機は、吸入流路に逆流した高圧冷媒が入り込みやすくなり、吸入管から圧縮機構に流入する低圧冷媒の吸入量が減少し圧縮効率が低下してしまう恐れがある。
In addition, when high-pressure refrigerant flows into the low-pressure second cylinder chamber from the outside of the second discharge passage after the refrigerant compressed in the second cylinder chamber is discharged, if the suction passage is wide in the circumferential direction, the time that the piston blocks the suction passage will be short. In that case, the compressor is more likely to allow high-pressure refrigerant that has flowed back into the suction passage to flow in, reducing the amount of low-pressure refrigerant suctioned into the compression mechanism from the suction pipe, which may result in reduced compression efficiency.
圧縮機1の貫通部63は、吸入流路52Aを円周方向に開口を広げるのではなく、吸入流路52Aを軸方向に広げるものである。圧縮機1は、吸入流路52Aを円周方向に開口を広げた場合と比較して、ピストン22による吸入流路52Aの閉塞時間を確保できるため、吸入流路52Aへの冷媒の逆流を抑制し、圧縮効率の低下を抑制できる。
The through-holes 63 of the compressor 1 do not widen the opening of the intake passage 52A in the circumferential direction, but widen the intake passage 52A in the axial direction. Compared to when the opening of the intake passage 52A is widened in the circumferential direction, the compressor 1 can ensure the time that the piston 22 blocks the intake passage 52A, thereby suppressing the backflow of refrigerant into the intake passage 52A and suppressing a decrease in compression efficiency.
また、第2閉塞壁部151である絞部天部160Aは、径方向内方側の端部が、第1シリンダ21Aの軸方向に貫通した第2貫通部63Bを有している。第1シリンダ21Aにおいて、第2貫通部63Bに到達した冷媒は、第1シリンダ21Aの軸方向の両側に流れやすくなり、その冷媒は、上軸受24Aの下面と仕切板25の上面とを伝って第1シリンダ室55Aに流入する。圧縮機1は、第2貫通部63Bを有していない場合と比較して、第2貫通部63Bを通過する冷媒によって吸入冷媒の冷媒量が増加するため、冷凍能力が増加し、圧縮効率が増加する。
The radially inner end of the constriction top portion 160A, which is the second blocking wall portion 151, has a second through portion 63B that penetrates the first cylinder 21A in the axial direction. In the first cylinder 21A, the refrigerant that reaches the second through portion 63B tends to flow to both sides of the first cylinder 21A in the axial direction, and flows into the first cylinder chamber 55A along the lower surface of the upper bearing 24A and the upper surface of the partition plate 25. Compared to when the compressor 1 does not have the second through portion 63B, the amount of refrigerant sucked in increases due to the refrigerant passing through the second through portion 63B, so the refrigeration capacity of the compressor 1 is increased and the compression efficiency is improved.
また、圧縮機1の第2貫通部63Bは、吸入流路52Aを円周方向に開口を広げるのではなく、吸入流路52Aを軸方向に広げるものである。圧縮機1は、吸入流路52Aを円周方向に開口を広げた場合と比較して、ピストン22による吸入流路52Aの閉塞時間を確保できるため、吸入流路52Aへの冷媒の逆流を抑制し、圧縮効率の低下を抑制できる。
Furthermore, the second through-hole 63B of the compressor 1 does not widen the opening of the intake passage 52A in the circumferential direction, but widens the intake passage 52A in the axial direction. Compared to when the opening of the intake passage 52A is widened in the circumferential direction, the compressor 1 can ensure the time that the piston 22 blocks the intake passage 52A, thereby suppressing the backflow of refrigerant into the intake passage 52A and suppressing a decrease in compression efficiency.
また、圧縮機1は、第1シリンダ21Aが密閉容器10に固定されている。例えば、圧縮機1は、上述したように、第1シリンダ21Aが密閉容器10に固定され、第2シリンダ21Bが密閉容器10に固定されていない。第1シリンダ21Aを密閉容器10に固定する場合、例えば、溶接によって第1シリンダ21Aを密閉容器10に固定するため第1シリンダ21Aに歪みが生じる場合がある。
Furthermore, the first cylinder 21A of the compressor 1 is fixed to the sealed container 10. For example, as described above, the first cylinder 21A of the compressor 1 is fixed to the sealed container 10, and the second cylinder 21B is not fixed to the sealed container 10. When the first cylinder 21A is fixed to the sealed container 10, for example, by welding, distortion may occur in the first cylinder 21A.
圧縮機1は、吸入管2を密閉容器10に接合されていない第2シリンダ21Bに接合している。圧縮機1は、吸入管2を密閉容器10に接合することにより第2シリンダ21Bに歪みが生じる場合がある。
The compressor 1 has the intake pipe 2 connected to the second cylinder 21B, which is not connected to the sealed container 10. When the intake pipe 2 of the compressor 1 is connected to the sealed container 10, distortion may occur in the second cylinder 21B.
圧縮機1は、吸入管2を第2シリンダ21Bに接合し、第1シリンダ21Aを密閉容器10に固定する。圧縮機1は、当該構成を有することによって、第1シリンダ21Aを密閉容器10に固定し、第1シリンダ21Aに吸入管2を接合する場合と比較して第1シリンダ21Aの歪量を低減し、第2シリンダ21Bの歪量を増加させる。
The compressor 1 joins the suction pipe 2 to the second cylinder 21B and fixes the first cylinder 21A to the sealed container 10. By having this configuration, the compressor 1 reduces the amount of distortion of the first cylinder 21A and increases the amount of distortion of the second cylinder 21B compared to when the first cylinder 21A is fixed to the sealed container 10 and the suction pipe 2 is joined to the first cylinder 21A.
圧縮機1は、第1シリンダ21Aを密閉容器10に固定し、第1シリンダ21Aに吸入管2を接合する場合と比較して、組立による歪みが第1シリンダ21Aに偏ることで発生していた第1シリンダ21Aと第2シリンダ21Bとの歪みのアンバランスが解消できる。そのため、圧縮機1は、組立の歪みを考慮した第1シリンダ21Aと第2シリンダ21Bとの加工寸法の狙い値の統一化を図ることができる。
Compared to fixing the first cylinder 21A to the sealed container 10 and joining the suction pipe 2 to the first cylinder 21A, the compressor 1 can eliminate the imbalance in distortion between the first cylinder 21A and the second cylinder 21B that occurs when distortion due to assembly is biased toward the first cylinder 21A. Therefore, the compressor 1 can unify the target values of the machining dimensions of the first cylinder 21A and the second cylinder 21B, taking into account the distortion due to assembly.
また同時に、シリンダ21への吸入管2の打ち込みを、第1シリンダ21Aから第2シリンダ21Bに代えることで、第1シリンダ21Aに対する組立工数を減少させることができる。なお、第1シリンダ21Aは、密閉容器10に固定される際に溶接等により歪みが生じる場合がある。圧縮機1は、第1シリンダ21Aに偏っていた組立工数を減少させることで第1シリンダ21Aの組立の歪みのバラツキを減少させ、第1ベーン溝56Aと第1ベーン50Aとの嵌合のためのクリアランスを小さくすることができる。そのため、圧縮機1は、第1高圧室58Aからの圧縮冷媒の漏れ量を減少させることができ、圧縮機効率を向上させることができる。
At the same time, by changing the insertion of the suction pipe 2 into the cylinder 21 from the first cylinder 21A to the second cylinder 21B, the number of assembly steps for the first cylinder 21A can be reduced. Note that the first cylinder 21A may be distorted due to welding or the like when it is fixed to the sealed container 10. By reducing the number of assembly steps that were biased toward the first cylinder 21A, the compressor 1 can reduce the variation in distortion during assembly of the first cylinder 21A and reduce the clearance for the engagement between the first vane groove 56A and the first vane 50A. Therefore, the compressor 1 can reduce the amount of compressed refrigerant leaking from the first high pressure chamber 58A and improve compressor efficiency.
実施の形態2に係る冷凍サイクル装置200は、実施の形態2に係る圧縮機1を備えたものである。そのため、冷凍サイクル装置200は、実施の形態2に係る圧縮機1と同様の効果を得ることができる。
The refrigeration cycle device 200 according to the second embodiment is equipped with the compressor 1 according to the second embodiment. Therefore, the refrigeration cycle device 200 can obtain the same effects as the compressor 1 according to the second embodiment.
実施の形態3.
図23は、実施の形態3に係る圧縮機1の全体構成を示す概略縦断面図である。図24は、実施の形態3に係る圧縮機構20の概略部分縦断面図である。図25は、実施の形態3に係る圧縮機1の第1シリンダ21Aの斜視図である。図26は、実施の形態3に係る圧縮機1の吸入流路52Aの部分拡大図である。Embodiment 3.
Fig. 23 is a schematic vertical cross-sectional view showing the overall configuration of compressor 1 according toembodiment 3. Fig. 24 is a schematic partial vertical cross-sectional view of compression mechanism 20 according to embodiment 3. Fig. 25 is a perspective view of first cylinder 21A of compressor 1 according to embodiment 3. Fig. 26 is a partial enlarged view of intake passage 52A of compressor 1 according to embodiment 3.
図23は、実施の形態3に係る圧縮機1の全体構成を示す概略縦断面図である。図24は、実施の形態3に係る圧縮機構20の概略部分縦断面図である。図25は、実施の形態3に係る圧縮機1の第1シリンダ21Aの斜視図である。図26は、実施の形態3に係る圧縮機1の吸入流路52Aの部分拡大図である。
Fig. 23 is a schematic vertical cross-sectional view showing the overall configuration of compressor 1 according to
図23~図26を用いて実施の形態3の圧縮機構20について説明する。なお、図1~図22の圧縮機構20と同一の構成を有する部位には同一の符号を付してその説明を省略する。以下、実施の形態3が実施の形態1及び実施の形態2と異なる構成を中心に説明するものとし、実施の形態3で説明されていない構成は実施の形態1又は実施の形態2と同様である。
The compression mechanism 20 of embodiment 3 will be described using Figures 23 to 26. Note that parts having the same configuration as the compression mechanism 20 of Figures 1 to 22 are given the same reference numerals and their description will be omitted. The following description will focus on the configuration of embodiment 3 that differs from embodiments 1 and 2, and the configuration not described in embodiment 3 is the same as embodiment 1 or 2.
実施の形態1及び実施の形態2の圧縮機1は、2シリンダ型ロータリ圧縮機であるのに対し、実施の形態3に係る圧縮機1は、1シリンダ型ロータリ圧縮機である。実施の形態3に係る圧縮機1は、圧縮機構20において第1シリンダ21Aを有する。
The compressor 1 in the first and second embodiments is a two-cylinder rotary compressor, whereas the compressor 1 in the third embodiment is a one-cylinder rotary compressor. The compressor 1 in the third embodiment has a first cylinder 21A in the compression mechanism 20.
圧縮機構20は、第1シリンダ21Aと、第1ピストン22Aと、第1ベーン50Aと、第1バネ51Aと、上軸受24Aと、下軸受24Bとを備えている。
The compression mechanism 20 includes a first cylinder 21A, a first piston 22A, a first vane 50A, a first spring 51A, an upper bearing 24A, and a lower bearing 24B.
上軸受24Aは、第1シリンダ21Aの上端面に当接するように配置され、第1シリンダ室55Aを閉塞する。下軸受24Bは、第1シリンダ21Aの下端面に当接するように配置され、第1シリンダ室55Aを閉塞する。
The upper bearing 24A is positioned so that it abuts against the upper end surface of the first cylinder 21A, and closes the first cylinder chamber 55A. The lower bearing 24B is positioned so that it abuts against the lower end surface of the first cylinder 21A, and closes the first cylinder chamber 55A.
第1シリンダ21Aには、第1シリンダ21Aの外部と第1シリンダ室55Aとを連通させる吸入流路52Aが形成されている。吸入流路52Aは、第1シリンダ21Aの外周面から径方向内方に延びており、外周面において吸入管2が接続される吸入穴61と、吸入穴61の径方向内方に形成され、吸入穴61と第1シリンダ室55Aとを連通させる空間を形成する絞部59とを有する。
The first cylinder 21A is formed with an intake passage 52A that connects the outside of the first cylinder 21A to the first cylinder chamber 55A. The intake passage 52A extends radially inward from the outer peripheral surface of the first cylinder 21A and has an intake hole 61 to which the intake pipe 2 is connected on the outer peripheral surface, and a constriction 59 formed radially inward of the intake hole 61 and forming a space that connects the intake hole 61 to the first cylinder chamber 55A.
圧縮機1は、第1シリンダ21Aの外周面156から第1シリンダ室55Aに通じる吸入流路52Aを有する。吸入流路52Aは、第1シリンダ21Aの外周面156から径方向内方に延びる吸入穴61と、吸入穴61の径方向内方に形成され、吸入穴61と第1低圧室57Aとを連通させる絞部59とを備える。すなわち、吸入流路52Aは、吸入穴61と、吸入穴61の径方向内方に形成され、吸入穴61と第1シリンダ室55Aとを連通させる絞部59とを備える。
The compressor 1 has an intake passage 52A that connects from the outer peripheral surface 156 of the first cylinder 21A to the first cylinder chamber 55A. The intake passage 52A includes an intake hole 61 that extends radially inward from the outer peripheral surface 156 of the first cylinder 21A, and a throttling portion 59 that is formed radially inward of the intake hole 61 and connects the intake hole 61 to the first low pressure chamber 57A. That is, the intake passage 52A includes an intake hole 61 and a throttling portion 59 that is formed radially inward of the intake hole 61 and connects the intake hole 61 to the first cylinder chamber 55A.
絞部59は、絞部59の両内側面を構成し、第1シリンダ21Aの径方向内方に向かうにつれて互いに近づくように形成された一対の絞部側面部59Bを有する。また、絞部59は、一対の絞部側面部59Bにより構成され、回転軸40の軸方向における一方の端部において開口する軸側開口部59Dを有する。また、絞部59は、一対の絞部側面部59Bにより構成され、第1シリンダ21Aの径方向内方側に第1シリンダ室55Aと連通するように開口し、軸側開口部59Dと連なるように形成された内側開口部59Cを有する。また、絞部59は、回転軸40の軸方向における他方の端部に回転軸40の軸方向において、絞部59を閉塞するように設けられた板状の閉塞壁部150を有する。
The constricted portion 59 has a pair of constricted portion side portions 59B that form both inner surfaces of the constricted portion 59 and are formed to approach each other as they move radially inward of the first cylinder 21A. The constricted portion 59 is also formed of a pair of constricted portion side portions 59B and has a shaft side opening 59D that opens at one end in the axial direction of the rotating shaft 40. The constricted portion 59 is also formed of a pair of constricted portion side portions 59B and has an inner opening 59C that opens to communicate with the first cylinder chamber 55A on the radially inner side of the first cylinder 21A and is formed to communicate with the shaft side opening 59D. The constricted portion 59 also has a plate-shaped blocking wall portion 150 that is provided at the other end in the axial direction of the rotating shaft 40 so as to block the constricted portion 59 in the axial direction of the rotating shaft 40.
絞部59は、第1シリンダ21Aの下側及び径方向内方側が第1シリンダ21Aの外表面に開口し、上側に絞部天部59Aを有し、両内側面が径方向内方に向かうにつれて互いに近づく絞部側面部59Bを有している。すなわち、絞部59は、第1シリンダ21Aの下軸受24B側及び第1シリンダ室55Aの内周壁155が開口し、上軸受24A側に絞部天部59Aを有している。絞部59は、周方向に向き合う絞部側面部59Bを有している。絞部側面部59Bは、径方向外方から内方に向かうにつれて互いに近づくように形成されている。実施の形態3の圧縮機1において、絞部天部59Aが絞部59の閉塞壁部150を構成する。
The throttling portion 59 opens to the outer surface of the first cylinder 21A on the lower side and radially inward side, has a throttling portion top portion 59A on the upper side, and has throttling portion side portions 59B that approach each other as the inner surfaces move radially inward. That is, the throttling portion 59 opens to the lower bearing 24B side of the first cylinder 21A and the inner circumferential wall 155 of the first cylinder chamber 55A, and has the throttling portion top portion 59A on the upper bearing 24A side. The throttling portion 59 has throttling portion side portions 59B that face each other in the circumferential direction. The throttling portion side portions 59B are formed so as to approach each other as they move from the radially outward to the radially inward. In the compressor 1 of embodiment 3, the throttling portion top portion 59A forms the blocking wall portion 150 of the throttling portion 59.
軸側開口部59Dは、第1シリンダ21Aの下軸受24B側の外表面に形成された開口部である。軸側開口部59Dは、圧縮機構20において、下軸受24Bの板面によって覆われて閉塞される。
The shaft side opening 59D is an opening formed on the outer surface of the first cylinder 21A on the lower bearing 24B side. The shaft side opening 59D is covered and closed by the plate surface of the lower bearing 24B in the compression mechanism 20.
絞部59は、回転軸40の軸方向において、一方の端部が軸側開口部59Dによって開口し、他方の端部が絞部天部59Aによって閉塞している。絞部59は、回転軸40の径方向において、一方の端部が吸入穴61と連通し、他方の端部が第1シリンダ室55Aと連通している。
One end of the constriction 59 opens into the shaft side opening 59D in the axial direction of the rotating shaft 40, and the other end is closed by the constriction top 59A. One end of the constriction 59 communicates with the suction hole 61 in the radial direction of the rotating shaft 40, and the other end communicates with the first cylinder chamber 55A.
実施の形態3の圧縮機1は、上軸受24Aが第1シリンダ21Aの上端面を閉塞しており、下軸受24Bが第1シリンダ21Aの下端面を閉塞している。実施の形態3の圧縮機1は、軸側開口部59Dが下軸受24Bによって閉塞されており、閉塞壁部150である絞部天部59Aが、上軸受24Aと当接するように設けられている。
In the compressor 1 of the third embodiment, the upper bearing 24A closes the upper end surface of the first cylinder 21A, and the lower bearing 24B closes the lower end surface of the first cylinder 21A. In the compressor 1 of the third embodiment, the shaft side opening 59D is closed by the lower bearing 24B, and the constriction top portion 59A, which is the closing wall portion 150, is arranged to abut against the upper bearing 24A.
図27は、実施の形態3に係る圧縮機1の変形例の第1シリンダ21Aの斜視図である。図28は、実施の形態3に係る圧縮機1の変形例の吸入流路52Aの部分拡大図である。絞部天部59Aは、径方向内方側の端部が、図27及び図28に示すように、第1シリンダ21Aの軸方向に貫通した貫通部63を形成してもよい。
FIG. 27 is a perspective view of the first cylinder 21A of a modified example of the compressor 1 according to the third embodiment. FIG. 28 is a partially enlarged view of the intake passage 52A of a modified example of the compressor 1 according to the third embodiment. The radially inner end of the constriction top portion 59A may form a through portion 63 that penetrates the first cylinder 21A in the axial direction, as shown in FIGS. 27 and 28.
[圧縮機1の作用効果]
圧縮機1は、第1シリンダ21Aに形成された冷媒の吸入流路52Aに絞部59を有している。絞部59は、絞部59の両内側面を構成し、第1シリンダ21Aの径方向内方に向かうにつれて互いに近づくように形成された一対の絞部側面部59Bを有する。また、絞部59は、一対の絞部側面部59Bにより構成され、回転軸40の軸方向における一方の端部において開口する軸側開口部59Dを有する。また、絞部59は、一対の絞部側面部59Bにより構成され、第1シリンダ21Aの径方向内方側に第1シリンダ室55Aと連通するように開口し、軸側開口部59Dと連なるように形成された内側開口部59Cを有する。また、絞部59は、回転軸40の軸方向における他方の端部に、絞部59を閉塞するように設けられた板状の閉塞壁部150である絞部天部59Aを有する。絞部59は、軸側開口部59D及び内側開口部59Cにより冷媒が通る通路の開口面積を回転軸40の軸方向に拡大させつつ、閉塞壁部150により第1シリンダ21Aの剛性を確保し、第1シリンダ21Aの強度を高めることができる。 [Function and effect of compressor 1]
The compressor 1 has a throttlingportion 59 in the refrigerant intake passage 52A formed in the first cylinder 21A. The throttling portion 59 has a pair of throttling portion side portions 59B that form both inner surfaces of the throttling portion 59 and are formed so as to approach each other as they move radially inward of the first cylinder 21A. The throttling portion 59 is also formed of the pair of throttling portion side portions 59B and has a shaft side opening 59D that opens at one end in the axial direction of the rotating shaft 40. The throttling portion 59 is also formed of the pair of throttling portion side portions 59B and has an inner opening 59C that opens to the radially inward side of the first cylinder 21A so as to communicate with the first cylinder chamber 55A and is formed so as to communicate with the shaft side opening 59D. The throttling portion 59 also has a throttling portion top portion 59A that is a plate-shaped blocking wall portion 150 provided to block the throttling portion 59 at the other end in the axial direction of the rotating shaft 40. The constriction portion 59 expands the opening area of the passage through which the refrigerant passes in the axial direction of the rotating shaft 40 by the shaft side opening 59D and the inner opening 59C, while ensuring the rigidity of the first cylinder 21A by the blocking wall portion 150, thereby increasing the strength of the first cylinder 21A.
圧縮機1は、第1シリンダ21Aに形成された冷媒の吸入流路52Aに絞部59を有している。絞部59は、絞部59の両内側面を構成し、第1シリンダ21Aの径方向内方に向かうにつれて互いに近づくように形成された一対の絞部側面部59Bを有する。また、絞部59は、一対の絞部側面部59Bにより構成され、回転軸40の軸方向における一方の端部において開口する軸側開口部59Dを有する。また、絞部59は、一対の絞部側面部59Bにより構成され、第1シリンダ21Aの径方向内方側に第1シリンダ室55Aと連通するように開口し、軸側開口部59Dと連なるように形成された内側開口部59Cを有する。また、絞部59は、回転軸40の軸方向における他方の端部に、絞部59を閉塞するように設けられた板状の閉塞壁部150である絞部天部59Aを有する。絞部59は、軸側開口部59D及び内側開口部59Cにより冷媒が通る通路の開口面積を回転軸40の軸方向に拡大させつつ、閉塞壁部150により第1シリンダ21Aの剛性を確保し、第1シリンダ21Aの強度を高めることができる。 [Function and effect of compressor 1]
The compressor 1 has a throttling
圧縮機1は、絞部59の閉塞壁部150により第1シリンダ21Aの剛性を確保し、第1シリンダ21Aの強度を高めることができる。そのため、圧縮機1は、第1低圧室57Aと第1高圧室58Aとの差圧により生じる第1ベーン50Aの第1シリンダ21Aへの押し付け力等の外力によって第1シリンダ21Aが変形することを抑制し、第1シリンダ21Aの強度を高めることができる。
The compressor 1 ensures the rigidity of the first cylinder 21A by the blocking wall portion 150 of the constriction portion 59, and can increase the strength of the first cylinder 21A. Therefore, the compressor 1 can suppress deformation of the first cylinder 21A due to external forces such as the pressing force of the first vane 50A against the first cylinder 21A generated by the pressure difference between the first low pressure chamber 57A and the first high pressure chamber 58A, and can increase the strength of the first cylinder 21A.
圧縮機1は、絞部59の閉塞壁部150により第1シリンダ21Aの剛性を確保し、第1シリンダ21Aの強度を高めることができる。そのため、圧縮機1は、第1シリンダ21Aの吸入流路52Aに対して、吸入管2を揺らしながら挿入した場合でも、第1シリンダ21Aの変形を抑えることができる。
The compressor 1 ensures the rigidity of the first cylinder 21A by the blocking wall portion 150 of the narrowing portion 59, and can increase the strength of the first cylinder 21A. Therefore, the compressor 1 can suppress deformation of the first cylinder 21A even when the intake pipe 2 is inserted into the intake passage 52A of the first cylinder 21A while shaking it.
絞部59において、回転軸40の軸方向における両端部に閉塞壁部150を設けた場合、絞部59の開口面積及び絞部59の体積が小さくなるため、圧縮機1は、圧損が大きくなり、冷媒が第1シリンダ室55Aに入りにくくなる。圧縮機1は、回転軸40の軸方向において、絞部59の一方の端部に軸側開口部59Dを有し、他方の端部に閉塞壁部150を有している。そのため、圧縮機1は、軸側開口部59Dにより冷媒が通る通路の開口面積を回転軸40の軸方向に拡大させつつ、閉塞壁部150により第1シリンダ21Aの剛性を確保し、第1シリンダ21Aの強度を高めることができる。
If blocking walls 150 are provided at both ends of the throttling portion 59 in the axial direction of the rotating shaft 40, the opening area and volume of the throttling portion 59 become smaller, so the compressor 1 experiences greater pressure loss and the refrigerant is less likely to enter the first cylinder chamber 55A. The compressor 1 has a shaft side opening 59D at one end of the throttling portion 59 in the axial direction of the rotating shaft 40, and a blocking wall 150 at the other end. Therefore, the compressor 1 can expand the opening area of the passage through which the refrigerant passes in the axial direction of the rotating shaft 40 by using the shaft side opening 59D, while ensuring the rigidity of the first cylinder 21A by using the blocking wall 150, thereby increasing the strength of the first cylinder 21A.
また、圧縮機1は、上軸受24Aが第1シリンダ21Aの上端面を閉塞しており、下軸受24Bが第1シリンダ21Aの下端面を閉塞している。また、圧縮機1は、軸側開口部59Dが下軸受24Bによって閉塞されており、閉塞壁部150が上軸受24Aと当接するように設けられている。圧縮機1は、軸側開口部59Dにより冷媒が通る通路の開口面積を回転軸40の軸方向に拡大させつつ、閉塞壁部150により第1シリンダ21Aの剛性を確保し、第1シリンダ21Aの強度を高めることができる。
In addition, in the compressor 1, the upper bearing 24A closes the upper end surface of the first cylinder 21A, and the lower bearing 24B closes the lower end surface of the first cylinder 21A. In addition, in the compressor 1, the shaft side opening 59D is closed by the lower bearing 24B, and the blocking wall portion 150 is provided to abut against the upper bearing 24A. In the compressor 1, the shaft side opening 59D expands the opening area of the passage through which the refrigerant passes in the axial direction of the rotating shaft 40, while the blocking wall portion 150 ensures the rigidity of the first cylinder 21A, thereby increasing the strength of the first cylinder 21A.
また、第1シリンダ21Aの吸入流路52Aには、吸入管2が圧入されている。圧縮機1は、第1シリンダ21Aの吸入流路52Aに対して、吸入管2を圧入した場合でも、絞部59には閉塞壁部150である絞部天部59Aを備えているため、第1シリンダ21Aの変形を抑えることができる。
The intake pipe 2 is press-fitted into the intake passage 52A of the first cylinder 21A. Even when the intake pipe 2 is press-fitted into the intake passage 52A of the first cylinder 21A, the compressor 1 can suppress deformation of the first cylinder 21A because the throttle portion 59 has the throttle top portion 59A, which is the blocking wall portion 150.
また、閉塞壁部150である絞部天部59Aは、径方向内方側の端部が、第1シリンダ21Aの軸方向に貫通した貫通部63を有している。第1シリンダ21Aにおいて、貫通部63に到達した冷媒は、第1シリンダ21Aの軸方向の両側に流れやすくなり、その冷媒は、上軸受24Aの下面と仕切板25の上面とを伝って第1シリンダ室55Aに流入する。圧縮機1は、貫通部63を有していない場合と比較して、貫通部63を通過する冷媒によって吸入冷媒の冷媒量が増加するため、冷凍能力が増加し、圧縮効率が増加する。
The radially inner end of the constriction top portion 59A, which is the blocking wall portion 150, has a through portion 63 that penetrates the first cylinder 21A in the axial direction. In the first cylinder 21A, the refrigerant that reaches the through portion 63 tends to flow to both sides of the first cylinder 21A in the axial direction, and flows into the first cylinder chamber 55A along the lower surface of the upper bearing 24A and the upper surface of the partition plate 25. Compared to a compressor 1 that does not have the through portion 63, the amount of refrigerant sucked in increases due to the refrigerant passing through the through portion 63, so the refrigeration capacity of the compressor 1 is increased and the compression efficiency is improved.
なお、圧縮機は、第1シリンダ室で圧縮された冷媒が吐出された後に、低圧となった第1シリンダ室に向かって第1吐出流路の外側から高圧冷媒が入り込んだ場合に、吸入流路が円周方向に広いとピストンによる吸入流路の閉塞時間が短くなる。その場合、圧縮機は、吸入流路に逆流した高圧冷媒が入り込みやすくなり、吸入管から圧縮機構に流入する低圧冷媒の吸入量が減少し圧縮効率が低下してしまう恐れがある。
In addition, when high-pressure refrigerant flows into the low-pressure first cylinder chamber from the outside of the first discharge passage after the refrigerant compressed in the first cylinder chamber is discharged, if the suction passage is wide in the circumferential direction, the time that the piston blocks the suction passage will be short. In that case, the compressor is more likely to allow high-pressure refrigerant that has flowed back into the suction passage to flow in, reducing the amount of low-pressure refrigerant suctioned into the compression mechanism from the suction pipe, which may result in reduced compression efficiency.
圧縮機1の貫通部63は、吸入流路52Aを円周方向に開口を広げるのではなく、吸入流路52Aを軸方向に広げるものである。圧縮機1は、吸入流路52Aを円周方向に開口を広げた場合と比較して、ピストン22による吸入流路52Aの閉塞時間を確保できるため、吸入流路52Aへの冷媒の逆流を抑制し、圧縮効率の低下を抑制できる。
The through-holes 63 of the compressor 1 do not widen the opening of the intake passage 52A in the circumferential direction, but widen the intake passage 52A in the axial direction. Compared to when the opening of the intake passage 52A is widened in the circumferential direction, the compressor 1 can ensure the time that the piston 22 blocks the intake passage 52A, thereby suppressing the backflow of refrigerant into the intake passage 52A and suppressing a decrease in compression efficiency.
実施の形態3に係る冷凍サイクル装置200は、実施の形態3に係る圧縮機1を備えたものである。そのため、冷凍サイクル装置200は、実施の形態3に係る圧縮機1と同様の効果を得ることができる。
The refrigeration cycle device 200 according to the third embodiment is equipped with the compressor 1 according to the third embodiment. Therefore, the refrigeration cycle device 200 can obtain the same effects as the compressor 1 according to the third embodiment.
実施の形態4.
図29は、実施の形態4に係る圧縮機1の全体構成を示す概略縦断面図である。図30は、実施の形態4に係る圧縮機構20の概略部分縦断面図である。図29~図30を用いて実施の形態4の圧縮機構20について説明する。なお、図1~図28の圧縮機構20と同一の構成を有する部位には同一の符号を付してその説明を省略する。以下、実施の形態4が実施の形態3と異なる構成を中心に説明するものとし、実施の形態4で説明されていない構成は実施の形態1~実施の形態3と同様である。Embodiment 4.
Fig. 29 is a schematic vertical cross-sectional view showing the overall configuration of a compressor 1 according toembodiment 4. Fig. 30 is a schematic partial vertical cross-sectional view of a compression mechanism 20 according to embodiment 4. The compression mechanism 20 according to embodiment 4 will be described with reference to Figs. 29 and 30. Note that parts having the same configuration as those in the compression mechanism 20 of Figs. 1 to 28 are given the same reference numerals and their description will be omitted. The following description will focus on the configuration of embodiment 4 that differs from embodiment 3, and the configuration not described in embodiment 4 is the same as embodiments 1 to 3.
図29は、実施の形態4に係る圧縮機1の全体構成を示す概略縦断面図である。図30は、実施の形態4に係る圧縮機構20の概略部分縦断面図である。図29~図30を用いて実施の形態4の圧縮機構20について説明する。なお、図1~図28の圧縮機構20と同一の構成を有する部位には同一の符号を付してその説明を省略する。以下、実施の形態4が実施の形態3と異なる構成を中心に説明するものとし、実施の形態4で説明されていない構成は実施の形態1~実施の形態3と同様である。
Fig. 29 is a schematic vertical cross-sectional view showing the overall configuration of a compressor 1 according to
実施の形態4の圧縮機1は、絞部59の構造が実施の形態3の圧縮機1と異なる。実施の形態3の圧縮機1における絞部59は、絞部天部59Aを有しているのに対し、実施の形態4の圧縮機1における絞部59は、絞部底部59A1を有している。
The compressor 1 of embodiment 4 differs from the compressor 1 of embodiment 3 in the structure of the throttling portion 59. The throttling portion 59 in the compressor 1 of embodiment 3 has a throttling portion top portion 59A, whereas the throttling portion 59 in the compressor 1 of embodiment 4 has a throttling portion bottom portion 59A1.
実施の形態4の絞部59は、第1シリンダ21Aの上側及び径方向内方側が第1シリンダ21Aの外表面に開口し、下側に絞部底部59A1を有し、両内側面が径方向内方に向かうにつれて互いに近づく絞部側面部59Bを有している。すなわち、絞部59は、第1シリンダ21Aの上軸受24A側及び第1シリンダ室55Aの内周壁155が開口し、下軸受24B側に絞部底部59A1を有している。実施の形態3の圧縮機1において、絞部底部59A1が絞部59の閉塞壁部150を構成する。
The throttling portion 59 in the fourth embodiment opens to the outer surface of the first cylinder 21A on the upper side and radially inner side, has a throttling portion bottom 59A1 on the lower side, and has throttling portion side portions 59B that approach each other as both inner surfaces move radially inward. That is, the throttling portion 59 opens to the upper bearing 24A side of the first cylinder 21A and the inner circumferential wall 155 of the first cylinder chamber 55A, and has the throttling portion bottom 59A1 on the lower bearing 24B side. In the compressor 1 in the third embodiment, the throttling portion bottom 59A1 forms the blocking wall portion 150 of the throttling portion 59.
軸側開口部59Dは、第1シリンダ21Aの上軸受24A側の外表面に形成された開口部である。軸側開口部59Dは、圧縮機構20において、上軸受24Aの板面によって覆われて閉塞される。
The shaft side opening 59D is an opening formed on the outer surface of the first cylinder 21A on the upper bearing 24A side. The shaft side opening 59D is covered and closed by the plate surface of the upper bearing 24A in the compression mechanism 20.
実施の形態4の圧縮機1は、上軸受24Aが第1シリンダ21Aの上端面を閉塞しており、下軸受24Bが第1シリンダ21Aの下端面を閉塞している。実施の形態4の圧縮機1は、軸側開口部59Dが上軸受24Aによって閉塞されており、閉塞壁部150である絞部底部59A1が、下軸受24Bと当接するように設けられている。
In the compressor 1 of the fourth embodiment, the upper bearing 24A closes the upper end surface of the first cylinder 21A, and the lower bearing 24B closes the lower end surface of the first cylinder 21A. In the compressor 1 of the fourth embodiment, the shaft side opening 59D is closed by the upper bearing 24A, and the narrowing portion bottom 59A1, which is the closing wall portion 150, is arranged to abut against the lower bearing 24B.
絞部59は、回転軸40の軸方向において、一方の端部が軸側開口部59Dによって開口し、他方の端部が絞部底部59A1によって閉塞している。絞部59は、回転軸40の径方向において、一方の端部が吸入穴61と連通し、他方の端部が第1シリンダ室55Aと連通している。絞部底部59A1は、径方向内方側の端部が、第1シリンダ21Aの軸方向に貫通した貫通部63を形成してもよい。
In the axial direction of the rotating shaft 40, the constricted portion 59 has one end that opens into the shaft side opening 59D and the other end that is closed by the constricted portion bottom 59A1. In the radial direction of the rotating shaft 40, the constricted portion 59 has one end that communicates with the suction hole 61 and the other end that communicates with the first cylinder chamber 55A. The constricted portion bottom 59A1 may have a radially inner end that forms a through portion 63 that penetrates the first cylinder 21A in the axial direction.
[圧縮機1の作用効果]
圧縮機1は、第1シリンダ21Aに形成された冷媒の吸入流路52Aに絞部59を有している。絞部59は、絞部59の両内側面を構成し、第1シリンダ21Aの径方向内方に向かうにつれて互いに近づくように形成された一対の絞部側面部59Bを有する。また、絞部59は、一対の絞部側面部59Bにより構成され、回転軸40の軸方向における一方の端部において開口する軸側開口部59Dを有する。また、絞部59は、一対の絞部側面部59Bにより構成され、第1シリンダ21Aの径方向内方側に第1シリンダ室55Aと連通するように開口し、軸側開口部59Dと連なるように形成された内側開口部59Cを有する。また、絞部59は、回転軸40の軸方向における他方の端部に絞部59を閉塞するように設けられた板状の閉塞壁部150である絞部底部59A1を有する。絞部59は、軸側開口部59D及び内側開口部59Cにより冷媒が通る通路の開口面積を回転軸40の軸方向に拡大させつつ、閉塞壁部150により第1シリンダ21Aの剛性を確保し、第1シリンダ21Aの強度を高めることができる。 [Function and effect of compressor 1]
The compressor 1 has a throttlingportion 59 in the refrigerant intake passage 52A formed in the first cylinder 21A. The throttling portion 59 has a pair of throttling portion side portions 59B that form both inner surfaces of the throttling portion 59 and are formed so as to approach each other as they move radially inward of the first cylinder 21A. The throttling portion 59 is also formed of the pair of throttling portion side portions 59B and has a shaft side opening 59D that opens at one end in the axial direction of the rotating shaft 40. The throttling portion 59 is also formed of the pair of throttling portion side portions 59B and has an inner opening 59C that opens to the radially inward side of the first cylinder 21A so as to communicate with the first cylinder chamber 55A and is formed so as to communicate with the shaft side opening 59D. The throttling portion 59 also has a throttling portion bottom portion 59A1 that is a plate-shaped blocking wall portion 150 provided at the other end in the axial direction of the rotating shaft 40 so as to block the throttling portion 59. The constriction portion 59 expands the opening area of the passage through which the refrigerant passes in the axial direction of the rotating shaft 40 by the shaft side opening 59D and the inner opening 59C, while ensuring the rigidity of the first cylinder 21A by the blocking wall portion 150, thereby increasing the strength of the first cylinder 21A.
圧縮機1は、第1シリンダ21Aに形成された冷媒の吸入流路52Aに絞部59を有している。絞部59は、絞部59の両内側面を構成し、第1シリンダ21Aの径方向内方に向かうにつれて互いに近づくように形成された一対の絞部側面部59Bを有する。また、絞部59は、一対の絞部側面部59Bにより構成され、回転軸40の軸方向における一方の端部において開口する軸側開口部59Dを有する。また、絞部59は、一対の絞部側面部59Bにより構成され、第1シリンダ21Aの径方向内方側に第1シリンダ室55Aと連通するように開口し、軸側開口部59Dと連なるように形成された内側開口部59Cを有する。また、絞部59は、回転軸40の軸方向における他方の端部に絞部59を閉塞するように設けられた板状の閉塞壁部150である絞部底部59A1を有する。絞部59は、軸側開口部59D及び内側開口部59Cにより冷媒が通る通路の開口面積を回転軸40の軸方向に拡大させつつ、閉塞壁部150により第1シリンダ21Aの剛性を確保し、第1シリンダ21Aの強度を高めることができる。 [Function and effect of compressor 1]
The compressor 1 has a throttling
圧縮機1は、絞部59の閉塞壁部150により第1シリンダ21Aの剛性を確保し、第1シリンダ21Aの強度を高めることができる。そのため、圧縮機1は、第1低圧室57Aと第1高圧室58Aとの差圧により生じる第1ベーン50Aの第1シリンダ21Aへの押し付け力等の外力によって第1シリンダ21Aが変形することを抑制し、第1シリンダ21Aの強度を高めることができる。
The compressor 1 ensures the rigidity of the first cylinder 21A by the blocking wall portion 150 of the constriction portion 59, and can increase the strength of the first cylinder 21A. Therefore, the compressor 1 can suppress deformation of the first cylinder 21A due to external forces such as the pressing force of the first vane 50A against the first cylinder 21A generated by the pressure difference between the first low pressure chamber 57A and the first high pressure chamber 58A, and can increase the strength of the first cylinder 21A.
圧縮機1は、絞部59の閉塞壁部150により第1シリンダ21Aの剛性を確保し、第1シリンダ21Aの強度を高めることができる。そのため、圧縮機1は、第1シリンダ21Aの吸入流路52Aに対して、吸入管2を揺らしながら挿入した場合でも、第1シリンダ21Aの変形を抑えることができる。
The compressor 1 ensures the rigidity of the first cylinder 21A by the blocking wall portion 150 of the narrowing portion 59, and can increase the strength of the first cylinder 21A. Therefore, the compressor 1 can suppress deformation of the first cylinder 21A even when the intake pipe 2 is inserted into the intake passage 52A of the first cylinder 21A while shaking it.
絞部59において、回転軸40の軸方向における両端部に閉塞壁部150を設けた場合、絞部59の開口面積及び絞部59の体積が小さくなるため、圧縮機1は、圧損が大きくなり、冷媒が第1シリンダ室55Aに入りにくくなる。圧縮機1は、回転軸40の軸方向において、絞部59の一方の端部に軸側開口部59Dを有し、他方の端部に閉塞壁部150を有している。そのため、圧縮機1は、軸側開口部59Dにより冷媒が通る通路の開口面積を回転軸40の軸方向に拡大させつつ、閉塞壁部150により第1シリンダ21Aの剛性を確保し、第1シリンダ21Aの強度を高めることができる。
If blocking walls 150 are provided at both ends of the throttling portion 59 in the axial direction of the rotating shaft 40, the opening area and volume of the throttling portion 59 become smaller, so the compressor 1 experiences greater pressure loss and the refrigerant is less likely to enter the first cylinder chamber 55A. The compressor 1 has a shaft side opening 59D at one end of the throttling portion 59 in the axial direction of the rotating shaft 40, and a blocking wall 150 at the other end. Therefore, the compressor 1 can expand the opening area of the passage through which the refrigerant passes in the axial direction of the rotating shaft 40 by using the shaft side opening 59D, while ensuring the rigidity of the first cylinder 21A by using the blocking wall 150, thereby increasing the strength of the first cylinder 21A.
また、圧縮機1は、上軸受24Aが第1シリンダ21Aの上端面を閉塞しており、下軸受24Bが第1シリンダ21Aの下端面を閉塞している。また、圧縮機1は、軸側開口部59Dが上軸受24Aによって閉塞されており、閉塞壁部150が下軸受24Bと当接するように設けられている。圧縮機1は、軸側開口部59Dにより冷媒が通る通路の開口面積を回転軸40の軸方向に拡大させつつ、閉塞壁部150により第1シリンダ21Aの剛性を確保し、第1シリンダ21Aの強度を高めることができる。
In addition, in the compressor 1, the upper bearing 24A closes the upper end surface of the first cylinder 21A, and the lower bearing 24B closes the lower end surface of the first cylinder 21A. In addition, in the compressor 1, the shaft side opening 59D is closed by the upper bearing 24A, and the blocking wall portion 150 is provided to abut against the lower bearing 24B. In the compressor 1, the shaft side opening 59D expands the opening area of the passage through which the refrigerant passes in the axial direction of the rotating shaft 40, while the blocking wall portion 150 ensures the rigidity of the first cylinder 21A, thereby increasing the strength of the first cylinder 21A.
実施の形態4に係る冷凍サイクル装置200は、実施の形態4に係る圧縮機1を備えたものである。そのため、冷凍サイクル装置200は、実施の形態4に係る圧縮機1と同様の効果を得ることができる。
The refrigeration cycle device 200 according to the fourth embodiment is equipped with the compressor 1 according to the fourth embodiment. Therefore, the refrigeration cycle device 200 can obtain the same effects as the compressor 1 according to the fourth embodiment.
以上の実施の形態に示した構成は、一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。例えば、実施の形態では、第1シリンダ21Aが密閉容器10に固定され、第2シリンダ21Bが密閉容器10に固定されていないが、第1シリンダ21Aが密閉容器10に固定されておらず、第2シリンダ21Bが密閉容器10に固定されてもよい。また、実施の形態ではシリンダ21の数は、1又は2つであるが、3つ以上でもよい。
The configurations shown in the above embodiments are merely examples, and may be combined with other known technologies, and parts of the configurations may be omitted or modified without departing from the spirit of the invention. For example, in the embodiments, the first cylinder 21A is fixed to the sealed container 10, and the second cylinder 21B is not fixed to the sealed container 10, but the first cylinder 21A may not be fixed to the sealed container 10, and the second cylinder 21B may be fixed to the sealed container 10. Also, while the number of cylinders 21 is one or two in the embodiments, it may be three or more.
1 圧縮機、2 吸入管、3 吸入マフラー、4 吐出配管、6 冷凍機油、10 密閉容器、11 頭部、12 胴体部、13 底部、20 圧縮機構、21 シリンダ、21A 第1シリンダ、21B 第2シリンダ、22 ピストン、22A 第1ピストン、22B 第2ピストン、23A 第1マフラー、23B 第2マフラー、24A 上軸受、24B 下軸受、25 仕切板、25A 接続経路、30 回転電機、31 回転子、32 固定子、40 回転軸、40A 第1偏心軸部、40B 第2偏心軸部、41 端部、42 給油穴、43 第1の給油口、44 第2の給油口、45 遠心ポンプ、50 ベーン、50A 第1ベーン、50B 第2ベーン、51A 第1バネ、51B 第2バネ、52A 吸入流路、52AA 分岐流路、52B 内部吸入流路、53A 第1吐出流路、53B 第2吐出流路、54A 第1バネ孔、54B 第2バネ孔、55 シリンダ室、55A 第1シリンダ室、55B 第2シリンダ室、56 ベーン溝、56A 第1ベーン溝、56B 第2ベーン溝、57A 第1低圧室、57B 第2低圧室、58A 第1高圧室、58B 第2高圧室、59 絞部、59A 絞部天部、59A1 絞部底部、59B 絞部側面部、59B1 絞部側面部、59B2 絞部側面部、59C 内側開口部、59D 軸側開口部、60 第2絞部、60A 絞部底部、60B 第2絞部側面部、60B1 第2絞部側面部、60B2 第2絞部側面部、60C 第2内側開口部、60D 第2軸側開口部、61 吸入穴、62 連通吸入穴、63 貫通部、63B 第2貫通部、122 外周壁、150 閉塞壁部、151 第2閉塞壁部、155 内周壁、155A 中間壁部、155B 中間壁部、156 外周面、159A 絞部底部、160A 絞部天部、200 冷凍サイクル装置、201 流路切替装置、202 室外側熱交換器、203 減圧器、204 室内側熱交換器、210 冷媒回路。
1 compressor, 2 suction pipe, 3 suction muffler, 4 discharge pipe, 6 refrigeration oil, 10 sealed container, 11 head, 12 body, 13 bottom, 20 compression mechanism, 21 cylinder, 21A first cylinder, 21B second cylinder, 22 piston, 22A first piston, 22B second piston, 23A first muffler, 23B second muffler, 24A upper bearing, 24B lower bearing, 25 partition plate, 25A connection path, 30 rotating electric machine, 31 rotor, 32 stator, 4 0 Rotating shaft, 40A First eccentric shaft portion, 40B Second eccentric shaft portion, 41 End portion, 42 Oil supply hole, 43 First oil supply port, 44 Second oil supply port, 45 Centrifugal pump, 50 Vane, 50A First vane, 50B Second vane, 51A First spring, 51B Second spring, 52A Intake passage, 52AA Branch passage, 52B Internal intake passage, 53A First discharge passage, 53B Second discharge passage, 54A First spring hole, 54B Second spring hole, 55 Cylinder chamber, 55A First cylinder chamber, 55 B second cylinder chamber, 56 vane groove, 56A first vane groove, 56B second vane groove, 57A first low pressure chamber, 57B second low pressure chamber, 58A first high pressure chamber, 58B second high pressure chamber, 59 constricted portion, 59A top of constricted portion, 59A1 bottom of constricted portion, 59B side portion of constricted portion, 59B1 side portion of constricted portion, 59B2 side portion of constricted portion, 59C inner opening, 59D shaft side opening, 60 second constricted portion, 60A bottom of constricted portion, 60B side portion of second constricted portion, 60B1 side portion of second constricted portion, 60B2 side of second constricted portion Surface portion, 60C second inner opening, 60D second shaft side opening, 61 suction hole, 62 connecting suction hole, 63 penetration portion, 63B second penetration portion, 122 outer peripheral wall, 150 blocking wall portion, 151 second blocking wall portion, 155 inner peripheral wall, 155A intermediate wall portion, 155B intermediate wall portion, 156 outer peripheral surface, 159A bottom of constriction portion, 160A top of constriction portion, 200 refrigeration cycle device, 201 flow path switching device, 202 outdoor heat exchanger, 203 pressure reducer, 204 indoor heat exchanger, 210 refrigerant circuit.
Claims (11)
- 密閉容器と、
前記密閉容器内に配置された回転電機と、
前記密閉容器内に配置され、前記回転電機により回転駆動される回転軸と、
前記密閉容器内に配置され、前記回転軸を介して前記回転電機から伝達される駆動力によって冷媒を圧縮する圧縮機構と、
前記密閉容器を貫通して前記圧縮機構に接続されており、前記冷媒の流路となる吸入管と、
を備え、
前記圧縮機構は、
円筒状に形成されており内部にシリンダ室を形成する少なくとも1つのシリンダと、
前記回転軸に嵌合されて前記シリンダ室に収納され、前記回転軸の回転に伴い偏心回転して前記冷媒を圧縮するピストンと、
前記シリンダの径方向に延びるように形成されたベーン溝に配置され、前記ピストンと共に前記シリンダ室を2つの空間に隔てるベーンと、
前記シリンダの端面に配置され、前記シリンダ室を閉塞する上軸受及び下軸受と、
を有し、
前記シリンダには、
前記シリンダの外部と前記シリンダ室とを連通させる吸入流路が形成されており、
前記吸入流路は、
前記シリンダの外周面から径方向内方に延びており、前記外周面において前記吸入管が接続される吸入穴と、
前記吸入穴の径方向内方に形成され、前記吸入穴と前記シリンダ室とを連通させる空間を形成する絞部と、
を有し、
前記絞部は、
前記絞部の両内側面を構成し、前記シリンダの径方向内方に向かうにつれて互いに近づくように形成された一対の絞部側面部と、
前記一対の絞部側面部により構成され、前記回転軸の軸方向における一方の端部において開口する軸側開口部と、
前記一対の絞部側面部により構成され、前記シリンダの径方向内方側に前記シリンダ室と連通するように開口し、前記軸側開口部と連なるように形成された内側開口部と、
前記回転軸の軸方向における他方の端部に、前記絞部を閉塞するように設けられた板状の閉塞壁部と、
を有する圧縮機。 A sealed container;
a rotating electric machine disposed in the sealed container;
a rotating shaft that is disposed in the sealed container and is rotated by the rotating electric machine;
a compression mechanism that is disposed in the sealed container and compresses a refrigerant by a driving force transmitted from the rotating electric machine via the rotating shaft;
a suction pipe that penetrates the sealed container and is connected to the compression mechanism and serves as a flow path for the refrigerant;
Equipped with
The compression mechanism includes:
At least one cylinder formed in a cylindrical shape and defining a cylinder chamber therein;
a piston that is fitted to the rotary shaft and accommodated in the cylinder chamber and rotates eccentrically in association with the rotation of the rotary shaft to compress the refrigerant;
a vane disposed in a vane groove formed to extend in a radial direction of the cylinder, the vane dividing the cylinder chamber into two spaces together with the piston;
an upper bearing and a lower bearing disposed on an end surface of the cylinder and closing the cylinder chamber;
having
The cylinder includes:
An intake passage is formed to communicate the outside of the cylinder with the cylinder chamber,
The intake passage is
a suction hole extending radially inward from an outer circumferential surface of the cylinder, the suction pipe being connected to the outer circumferential surface;
a throttle portion formed radially inward of the suction hole and defining a space that communicates between the suction hole and the cylinder chamber;
having
The narrowed portion is
a pair of narrowed portion side portions that constitute both inner surfaces of the narrowed portion and are formed so as to approach each other as they move radially inward of the cylinder;
a shaft side opening portion formed by the pair of tapered portion side portions and opening at one end portion in the axial direction of the rotating shaft;
an inner opening formed by the pair of tapered portion side surfaces, the inner opening being open radially inwardly to communicate with the cylinder chamber and connected to the shaft side opening;
a plate-shaped blocking wall portion provided at the other end of the rotating shaft in the axial direction so as to block the tapered portion;
A compressor having - 前記少なくとも1つのシリンダは、
前記密閉容器に固定され、前記シリンダ室の一部を構成する第1シリンダ室を形成する円筒状の第1シリンダと、
前記第1シリンダの下方に配置され、前記シリンダ室の一部を構成する第2シリンダ室を形成する円筒状の第2シリンダと、
を含み、
前記上軸受は、
前記第1シリンダの上端面に配置され前記第1シリンダ室を閉塞しており、
前記下軸受は、
前記第2シリンダの下端面に配置され前記第2シリンダ室を閉塞しており、
前記圧縮機構は、
前記第1シリンダと前記第2シリンダとの間に配置され、前記軸側開口部、前記第1シリンダ室及び前記第2シリンダ室を閉塞する仕切板を備え、
前記第1シリンダには、
前記吸入流路と、
前記吸入流路から分岐する分岐流路と、
が形成されており、
前記第2シリンダには、
前記第2シリンダの上面から前記第2シリンダ室に通じる内部吸入流路が形成されており、
前記仕切板には、
前記分岐流路と前記内部吸入流路とを連通させる接続経路が形成されている請求項1に記載の圧縮機。 The at least one cylinder comprises:
a first cylinder fixed to the sealed container and forming a first cylinder chamber that constitutes a part of the cylinder chamber;
a cylindrical second cylinder disposed below the first cylinder and defining a second cylinder chamber that constitutes a part of the cylinder chamber;
Including,
The upper bearing is
a first cylinder chamber is closed by a first recess,
The lower bearing is
a second cylinder chamber is closed by the second piston.
The compression mechanism includes:
a partition plate disposed between the first cylinder and the second cylinder and closing the shaft side opening, the first cylinder chamber, and the second cylinder chamber;
The first cylinder includes:
The intake passage;
A branch flow path branching from the intake flow path;
is formed,
The second cylinder has:
an internal intake passage is formed that communicates from an upper surface of the second cylinder to the second cylinder chamber,
The partition plate has:
The compressor according to claim 1 , further comprising a connection path that connects the branch passage and the internal suction passage. - 前記内部吸入流路は、
前記第2シリンダの上面から前記第2シリンダの内部を経由して径方向内方に延びる連通吸入穴と、
前記連通吸入穴の径方向内方に形成され、前記連通吸入穴と前記第2シリンダ室とを連通させる空間を形成する第2絞部と、
を備え、
前記第2絞部は、
前記第2絞部の両内側面を構成し、前記第2シリンダの径方向内方に向かうにつれて互いに近づくように形成された一対の第2絞部側面部と、
前記一対の第2絞部側面部により構成され、前記回転軸の軸方向における一方の端部において開口し、前記仕切板によって閉塞される第2軸側開口部と、
前記一対の第2絞部側面部により構成され、前記第2シリンダの径方向内方側に前記第2シリンダ室と連通するように開口し、前記第2軸側開口部と連なるように形成された第2内側開口部と、
前記回転軸の軸方向における他方の端部において、前記第2絞部を閉塞するように設けられた板状の第2閉塞壁部と、
を有する請求項2に記載の圧縮機。 The internal intake passage is
a communicating suction hole extending radially inward from an upper surface of the second cylinder through an interior of the second cylinder;
a second throttle portion that is formed radially inward of the communicating suction hole and defines a space that communicates between the communicating suction hole and the second cylinder chamber;
Equipped with
The second narrowing portion is
a pair of second reduced portion side portions that constitute both inner surfaces of the second reduced portion and are formed so as to approach each other toward the inside in the radial direction of the second cylinder;
a second shaft side opening portion formed by the pair of second tapered portion side portions, opening at one end portion in the axial direction of the rotating shaft, and closed by the partition plate;
a second inner opening formed by the pair of second tapered portion side surfaces, opening toward a radially inner side of the second cylinder so as to communicate with the second cylinder chamber and formed so as to communicate with the second shaft side opening;
a plate-shaped second closing wall portion provided at the other end portion in the axial direction of the rotating shaft so as to close the second narrowed portion;
3. The compressor of claim 2, further comprising: - 前記少なくとも1つのシリンダは、
前記密閉容器に固定され、前記シリンダ室である第1シリンダ室を形成する円筒状の第1シリンダと、
前記第1シリンダの下方に配置され、前記シリンダ室である第2シリンダ室を形成する円筒状の第2シリンダと、
を含み、
前記上軸受は、
前記第1シリンダの上端面に配置され前記第1シリンダ室を閉塞しており、
前記下軸受は、
前記第2シリンダの下端面に配置され前記第2シリンダ室を閉塞しており、
前記圧縮機構は、
前記第1シリンダと前記第2シリンダとの間に配置され、前記軸側開口部、前記第1シリンダ室及び前記第2シリンダ室を閉塞する仕切板を備え、
前記第2シリンダには、
前記吸入流路と、
前記吸入流路から分岐する分岐流路と、
が形成されており、
前記第1シリンダには、
前記第1シリンダの下面から前記第1シリンダ室に通じる内部吸入流路が形成されており、
前記仕切板には、
前記分岐流路と前記内部吸入流路とを連通させる接続経路が形成されている請求項1に記載の圧縮機。 The at least one cylinder comprises:
A cylindrical first cylinder that is fixed to the sealed container and forms a first cylinder chamber that is the cylinder chamber;
a cylindrical second cylinder disposed below the first cylinder and defining a second cylinder chamber that is the cylinder chamber;
Including,
The upper bearing is
a first cylinder chamber is closed by a first recess,
The lower bearing is
a second cylinder chamber is closed by the second piston.
The compression mechanism includes:
a partition plate disposed between the first cylinder and the second cylinder and closing the shaft side opening, the first cylinder chamber, and the second cylinder chamber;
The second cylinder has:
The intake passage;
A branch flow path branching from the intake flow path;
is formed,
The first cylinder includes:
an internal intake passage is formed that communicates from a lower surface of the first cylinder to the first cylinder chamber,
The partition plate has:
The compressor according to claim 1 , further comprising a connection path that connects the branch passage and the internal suction passage. - 前記内部吸入流路は、
前記第1シリンダの下面から前記第1シリンダの内部を経由して径方向内方に延びる連通吸入穴と、
前記連通吸入穴の径方向内方に形成され、前記連通吸入穴と前記第1シリンダ室とを連通させる空間を形成する第2絞部と、
を備え、
前記第2絞部は、
前記第2絞部の両内側面を構成し、前記第1シリンダの径方向内方に向かうにつれて互いに近づくように形成された一対の第2絞部側面部と、
前記一対の第2絞部側面部により構成され、前記回転軸の軸方向における一方の端部において開口し、前記仕切板によって閉塞される第2軸側開口部と、
前記一対の第2絞部側面部により構成され、前記第1シリンダの径方向内方側に前記第1シリンダ室と連通するように開口し、前記第2軸側開口部と連なるように形成された第2内側開口部と、
前記回転軸の軸方向における他方の端部において、前記第2絞部を閉塞するように設けられた板状の第2閉塞壁部と、
を有する請求項4に記載の圧縮機。 The internal intake passage is
a communicating suction hole extending radially inward from a lower surface of the first cylinder through an interior of the first cylinder;
a second throttle portion that is formed radially inward of the communicating suction hole and defines a space that communicates between the communicating suction hole and the first cylinder chamber;
Equipped with
The second narrowing portion is
a pair of second reduced portion side portions that constitute both inner surfaces of the second reduced portion and are formed so as to approach each other as they proceed radially inward of the first cylinder;
a second shaft side opening portion formed by the pair of second tapered portion side portions, opening at one end portion in the axial direction of the rotating shaft, and closed by the partition plate;
a second inner opening formed by the pair of second throttle portion side surfaces, opening toward a radially inner side of the first cylinder so as to communicate with the first cylinder chamber and formed so as to communicate with the second shaft side opening;
a plate-shaped second closing wall portion provided at the other end portion in the axial direction of the rotating shaft so as to close the second narrowed portion;
5. The compressor according to claim 4, further comprising: - 前記上軸受は
前記シリンダの上端面を閉塞しており、
前記下軸受は、
前記シリンダの下端面を閉塞しており、
前記軸側開口部は、
前記下軸受によって閉塞されており、
前記閉塞壁部は、
前記上軸受と当接するように設けられている請求項1に記載の圧縮機。 The upper bearing closes the upper end surface of the cylinder,
The lower bearing is
The lower end surface of the cylinder is closed,
The shaft side opening is
The lower bearing is closed,
The blocking wall portion is
The compressor according to claim 1 , wherein the upper bearing is provided so as to abut against the upper bearing. - 前記上軸受は
前記シリンダの上端面を閉塞しており、
前記下軸受は、
前記シリンダの下端面を閉塞しており、
前記軸側開口部は、
前記上軸受によって閉塞されており、
前記閉塞壁部は、
前記下軸受と当接するように設けられている請求項1に記載の圧縮機。 The upper bearing closes the upper end surface of the cylinder,
The lower bearing is
The lower end surface of the cylinder is closed,
The shaft side opening is
The upper bearing is closed,
The blocking wall portion is
The compressor according to claim 1 , wherein the lower bearing is provided so as to abut against the lower bearing. - 前記吸入流路には、前記吸入管が圧入されている請求項1~7のいずれか1項に記載の圧縮機。 The compressor according to any one of claims 1 to 7, in which the suction pipe is press-fitted into the suction passage.
- 前記閉塞壁部は、径方向内方側の端部が、前記シリンダの軸方向に貫通した貫通部を有している請求項1~8のいずれか1項に記載の圧縮機。 The compressor according to any one of claims 1 to 8, wherein the blocking wall has a through-hole at its radially inner end that penetrates the cylinder in the axial direction.
- 前記第2閉塞壁部は、径方向内方側の端部が、前記シリンダの軸方向に貫通した第2貫通部を有している請求項3又は5に記載の圧縮機。 The compressor according to claim 3 or 5, wherein the second blocking wall portion has a second through-portion at its radially inner end that penetrates the cylinder in the axial direction.
- 請求項1~10のいずれか1項に記載の圧縮機と、
室外空気と内部を流れる前記冷媒との間で熱交換を行う室外側熱交換器と、
内部を流れる前記冷媒を減圧する減圧器と、
室内空気と内部を流れる前記冷媒との間で熱交換を行う室内側熱交換器と、
を備えた冷凍サイクル装置。 A compressor according to any one of claims 1 to 10;
an outdoor heat exchanger for exchanging heat between outdoor air and the refrigerant flowing therein;
A pressure reducer that reduces the pressure of the refrigerant flowing therethrough;
an indoor heat exchanger for exchanging heat between indoor air and the refrigerant flowing therein;
A refrigeration cycle device comprising:
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024232007A1 true WO2024232007A1 (en) | 2024-11-14 |
Family
ID=
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4875484B2 (en) | Multistage compressor | |
AU2005240929B2 (en) | Rotary compressor | |
JP4306240B2 (en) | Rotary expander and fluid machine | |
WO2023084722A1 (en) | Compressor and refrigeration cycle device | |
KR100861651B1 (en) | Fluid machine | |
WO2024232007A1 (en) | Compressor and refrigeration cycle apparatus | |
JP6057535B2 (en) | Refrigerant compressor | |
CN218816980U (en) | Rotor type compressor and air conditioner | |
WO2021106198A1 (en) | Compressor and refrigeration cycle device | |
CN111954761B (en) | Rotary compressor and refrigeration cycle device | |
WO2023187909A1 (en) | Hermetic compressor and refrigeration cycle device | |
WO2024201573A1 (en) | Compressor and refrigeration cycle device | |
JP6969012B2 (en) | Rotary compressor and refrigeration cycle equipment | |
WO2023152799A1 (en) | Compressor and refrigeration cycle device with said compressor | |
JP2017172346A (en) | Scroll compressor and air conditioner | |
WO2024209552A1 (en) | Rotor, electric motor, hermetic compressor, and refrigeration cycle device | |
CN218816979U (en) | Compressor and air conditioner | |
WO2023012852A1 (en) | Hermetic compressor and refrigeration cycle device | |
JP2015028313A (en) | Axial vane type compressor | |
WO2023100345A1 (en) | Oil feed component, compressor, and refrigeration cycle device | |
CN221568841U (en) | Compressor and air conditioner | |
WO2024127536A1 (en) | Gas-liquid separator, compressor, and refrigeration cycle device | |
JP7161139B1 (en) | Scroll compressor and refrigeration cycle device | |
JP6710348B1 (en) | Compressor and air conditioner equipped with this compressor | |
CN112412789B (en) | Compressor and refrigeration cycle device |