WO2024229346A2 - Methods and platform related to fluorescent protein biosensors - Google Patents
Methods and platform related to fluorescent protein biosensors Download PDFInfo
- Publication number
- WO2024229346A2 WO2024229346A2 PCT/US2024/027661 US2024027661W WO2024229346A2 WO 2024229346 A2 WO2024229346 A2 WO 2024229346A2 US 2024027661 W US2024027661 W US 2024027661W WO 2024229346 A2 WO2024229346 A2 WO 2024229346A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- signal
- protein
- target molecule
- modified
- signal protein
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 87
- 108091006047 fluorescent proteins Proteins 0.000 title description 5
- 102000034287 fluorescent proteins Human genes 0.000 title description 5
- 108090000623 proteins and genes Proteins 0.000 claims abstract description 211
- 102000004169 proteins and genes Human genes 0.000 claims abstract description 207
- PWJFNRJRHXWEPT-AOOZFPJJSA-N [[(2r,3s,4r,5r)-5-(6-aminopurin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl] [(2r,3r,4r)-2,3,4-trihydroxy-5-oxopentyl] hydrogen phosphate Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](COP(O)(=O)OP(O)(=O)OC[C@@H](O)[C@@H](O)[C@@H](O)C=O)[C@@H](O)[C@H]1O PWJFNRJRHXWEPT-AOOZFPJJSA-N 0.000 claims abstract description 6
- 108090000765 processed proteins & peptides Proteins 0.000 claims description 87
- 150000001875 compounds Chemical class 0.000 claims description 54
- 102000004196 processed proteins & peptides Human genes 0.000 claims description 52
- 230000008859 change Effects 0.000 claims description 49
- 229920001184 polypeptide Polymers 0.000 claims description 38
- 230000027455 binding Effects 0.000 claims description 35
- 238000012360 testing method Methods 0.000 claims description 33
- BAWFJGJZGIEFAR-NNYOXOHSSA-O NAD(+) Chemical class NC(=O)C1=CC=C[N+]([C@H]2[C@@H]([C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OC[C@@H]3[C@H]([C@@H](O)[C@@H](O3)N3C4=NC=NC(N)=C4N=C3)O)O2)O)=C1 BAWFJGJZGIEFAR-NNYOXOHSSA-O 0.000 claims description 32
- 230000002103 transcriptional effect Effects 0.000 claims description 28
- SRBFZHDQGSBBOR-UHFFFAOYSA-N beta-D-Pyranose-Lyxose Natural products OC1COC(O)C(O)C1O SRBFZHDQGSBBOR-UHFFFAOYSA-N 0.000 claims description 19
- 230000003993 interaction Effects 0.000 claims description 18
- PYMYPHUHKUWMLA-UHFFFAOYSA-N arabinose Natural products OCC(O)C(O)C(O)C=O PYMYPHUHKUWMLA-UHFFFAOYSA-N 0.000 claims description 17
- 150000007523 nucleic acids Chemical class 0.000 claims description 17
- 102000040945 Transcription factor Human genes 0.000 claims description 15
- 108091023040 Transcription factor Proteins 0.000 claims description 15
- 102000039446 nucleic acids Human genes 0.000 claims description 15
- 108020004707 nucleic acids Proteins 0.000 claims description 15
- 150000001720 carbohydrates Chemical class 0.000 claims description 11
- 150000002632 lipids Chemical class 0.000 claims description 10
- SRBFZHDQGSBBOR-OWMBCFKOSA-N L-ribopyranose Chemical compound O[C@H]1COC(O)[C@@H](O)[C@H]1O SRBFZHDQGSBBOR-OWMBCFKOSA-N 0.000 claims description 9
- 102000035118 modified proteins Human genes 0.000 claims description 9
- 108091005573 modified proteins Proteins 0.000 claims description 9
- YMHOBZXQZVXHBM-UHFFFAOYSA-N 2,5-dimethoxy-4-bromophenethylamine Chemical compound COC1=CC(CCN)=C(OC)C=C1Br YMHOBZXQZVXHBM-UHFFFAOYSA-N 0.000 claims description 8
- SRNWOUGRCWSEMX-UHFFFAOYSA-N Adenosine diphosphate ribose Natural products C1=NC=2C(N)=NC=NC=2N1C(C(C1O)O)OC1COP(O)(=O)OP(O)(=O)OCC1OC(O)C(O)C1O SRNWOUGRCWSEMX-UHFFFAOYSA-N 0.000 claims description 8
- 102100025169 Max-binding protein MNT Human genes 0.000 claims description 8
- 241000545067 Venus Species 0.000 claims description 8
- PYMYPHUHKUWMLA-WDCZJNDASA-N arabinose Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)C=O PYMYPHUHKUWMLA-WDCZJNDASA-N 0.000 claims description 8
- 108091006107 transcriptional repressors Proteins 0.000 claims description 8
- 239000000556 agonist Substances 0.000 claims description 7
- 150000000990 L-arabinose derivatives Chemical class 0.000 claims description 6
- 239000005557 antagonist Substances 0.000 claims description 6
- 150000003384 small molecules Chemical class 0.000 claims description 6
- 230000003247 decreasing effect Effects 0.000 claims description 5
- 239000000816 peptidomimetic Substances 0.000 claims description 5
- 108010028921 Lipopeptides Proteins 0.000 claims description 4
- 229930014626 natural product Natural products 0.000 claims description 4
- 150000002894 organic compounds Chemical class 0.000 claims description 4
- 229910052751 metal Inorganic materials 0.000 claims description 3
- 239000002184 metal Substances 0.000 claims description 3
- 150000002736 metal compounds Chemical class 0.000 claims description 3
- PYMYPHUHKUWMLA-VAYJURFESA-N aldehydo-L-arabinose Chemical class OC[C@H](O)[C@H](O)[C@@H](O)C=O PYMYPHUHKUWMLA-VAYJURFESA-N 0.000 claims description 2
- PYMYPHUHKUWMLA-LMVFSUKVSA-N Ribose Natural products OC[C@@H](O)[C@@H](O)[C@@H](O)C=O PYMYPHUHKUWMLA-LMVFSUKVSA-N 0.000 abstract description 4
- HMFHBZSHGGEWLO-UHFFFAOYSA-N alpha-D-Furanose-Ribose Natural products OCC1OC(O)C(O)C1O HMFHBZSHGGEWLO-UHFFFAOYSA-N 0.000 abstract description 4
- 229930024421 Adenine Natural products 0.000 abstract description 2
- GFFGJBXGBJISGV-UHFFFAOYSA-N Adenine Chemical compound NC1=NC=NC2=C1N=CN2 GFFGJBXGBJISGV-UHFFFAOYSA-N 0.000 abstract description 2
- 229960000643 adenine Drugs 0.000 abstract description 2
- HMFHBZSHGGEWLO-SOOFDHNKSA-N D-ribofuranose Chemical compound OC[C@H]1OC(O)[C@H](O)[C@@H]1O HMFHBZSHGGEWLO-SOOFDHNKSA-N 0.000 abstract 1
- 239000001177 diphosphate Substances 0.000 abstract 1
- XPPKVPWEQAFLFU-UHFFFAOYSA-J diphosphate(4-) Chemical compound [O-]P([O-])(=O)OP([O-])([O-])=O XPPKVPWEQAFLFU-UHFFFAOYSA-J 0.000 abstract 1
- 235000011180 diphosphates Nutrition 0.000 abstract 1
- 235000018102 proteins Nutrition 0.000 description 141
- 210000004027 cell Anatomy 0.000 description 34
- 230000000694 effects Effects 0.000 description 30
- 239000003446 ligand Substances 0.000 description 22
- 235000001014 amino acid Nutrition 0.000 description 21
- 229940024606 amino acid Drugs 0.000 description 19
- 150000001413 amino acids Chemical class 0.000 description 19
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 16
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 16
- BAWFJGJZGIEFAR-NNYOXOHSSA-N NAD zwitterion Chemical compound NC(=O)C1=CC=C[N+]([C@H]2[C@@H]([C@H](O)[C@@H](COP([O-])(=O)OP(O)(=O)OC[C@@H]3[C@H]([C@@H](O)[C@@H](O3)N3C4=NC=NC(N)=C4N=C3)O)O2)O)=C1 BAWFJGJZGIEFAR-NNYOXOHSSA-N 0.000 description 14
- 238000007792 addition Methods 0.000 description 14
- BTCSSZJGUNDROE-UHFFFAOYSA-N gamma-aminobutyric acid Chemical compound NCCCC(O)=O BTCSSZJGUNDROE-UHFFFAOYSA-N 0.000 description 14
- 229930027945 nicotinamide-adenine dinucleotide Natural products 0.000 description 13
- 239000000126 substance Substances 0.000 description 13
- PYWVYCXTNDRMGF-UHFFFAOYSA-N rhodamine B Chemical compound [Cl-].C=12C=CC(=[N+](CC)CC)C=C2OC2=CC(N(CC)CC)=CC=C2C=1C1=CC=CC=C1C(O)=O PYWVYCXTNDRMGF-UHFFFAOYSA-N 0.000 description 12
- 238000011282 treatment Methods 0.000 description 12
- 239000012099 Alexa Fluor family Substances 0.000 description 11
- 125000003275 alpha amino acid group Chemical group 0.000 description 11
- 230000007423 decrease Effects 0.000 description 11
- 201000010099 disease Diseases 0.000 description 11
- -1 phospho Chemical class 0.000 description 11
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 10
- 235000014633 carbohydrates Nutrition 0.000 description 10
- 230000002503 metabolic effect Effects 0.000 description 10
- 229950006238 nadide Drugs 0.000 description 10
- 235000000346 sugar Nutrition 0.000 description 10
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 9
- 239000011575 calcium Substances 0.000 description 9
- 229910052791 calcium Inorganic materials 0.000 description 9
- 239000000203 mixture Substances 0.000 description 9
- 239000002773 nucleotide Substances 0.000 description 9
- 125000003729 nucleotide group Chemical group 0.000 description 9
- 102000040430 polynucleotide Human genes 0.000 description 9
- 108091033319 polynucleotide Proteins 0.000 description 9
- 239000002157 polynucleotide Substances 0.000 description 9
- 230000004044 response Effects 0.000 description 9
- ZKHQWZAMYRWXGA-KQYNXXCUSA-J ATP(4-) Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)[C@H]1O ZKHQWZAMYRWXGA-KQYNXXCUSA-J 0.000 description 8
- ZKHQWZAMYRWXGA-UHFFFAOYSA-N Adenosine triphosphate Natural products C1=NC=2C(N)=NC=NC=2N1C1OC(COP(O)(=O)OP(O)(=O)OP(O)(O)=O)C(O)C1O ZKHQWZAMYRWXGA-UHFFFAOYSA-N 0.000 description 8
- YHIPILPTUVMWQT-UHFFFAOYSA-N Oplophorus luciferin Chemical compound C1=CC(O)=CC=C1CC(C(N1C=C(N2)C=3C=CC(O)=CC=3)=O)=NC1=C2CC1=CC=CC=C1 YHIPILPTUVMWQT-UHFFFAOYSA-N 0.000 description 8
- 239000002253 acid Substances 0.000 description 8
- 238000002869 basic local alignment search tool Methods 0.000 description 8
- 230000008901 benefit Effects 0.000 description 8
- FSYKKLYZXJSNPZ-UHFFFAOYSA-N sarcosine Chemical compound C[NH2+]CC([O-])=O FSYKKLYZXJSNPZ-UHFFFAOYSA-N 0.000 description 8
- 238000012216 screening Methods 0.000 description 8
- QZAYGJVTTNCVMB-UHFFFAOYSA-N serotonin Chemical compound C1=C(O)C=C2C(CCN)=CNC2=C1 QZAYGJVTTNCVMB-UHFFFAOYSA-N 0.000 description 8
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 description 7
- 102000004190 Enzymes Human genes 0.000 description 7
- 108090000790 Enzymes Proteins 0.000 description 7
- 239000003814 drug Substances 0.000 description 7
- 230000004048 modification Effects 0.000 description 7
- 238000012986 modification Methods 0.000 description 7
- 230000035772 mutation Effects 0.000 description 7
- 208000024891 symptom Diseases 0.000 description 7
- OGNSCSPNOLGXSM-UHFFFAOYSA-N 2,4-diaminobutyric acid Chemical compound NCCC(N)C(O)=O OGNSCSPNOLGXSM-UHFFFAOYSA-N 0.000 description 6
- XTWYTFMLZFPYCI-KQYNXXCUSA-N 5'-adenylphosphoric acid Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](COP(O)(=O)OP(O)(O)=O)[C@@H](O)[C@H]1O XTWYTFMLZFPYCI-KQYNXXCUSA-N 0.000 description 6
- XTWYTFMLZFPYCI-UHFFFAOYSA-N Adenosine diphosphate Natural products C1=NC=2C(N)=NC=NC=2N1C1OC(COP(O)(=O)OP(O)(O)=O)C(O)C1O XTWYTFMLZFPYCI-UHFFFAOYSA-N 0.000 description 6
- 208000024172 Cardiovascular disease Diseases 0.000 description 6
- 108020004414 DNA Proteins 0.000 description 6
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 6
- AYFVYJQAPQTCCC-GBXIJSLDSA-N L-threonine Chemical compound C[C@@H](O)[C@H](N)C(O)=O AYFVYJQAPQTCCC-GBXIJSLDSA-N 0.000 description 6
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 6
- VYFYYTLLBUKUHU-UHFFFAOYSA-N dopamine Chemical compound NCCC1=CC=C(O)C(O)=C1 VYFYYTLLBUKUHU-UHFFFAOYSA-N 0.000 description 6
- 229940079593 drug Drugs 0.000 description 6
- 102000037865 fusion proteins Human genes 0.000 description 6
- 108020001507 fusion proteins Proteins 0.000 description 6
- 229960003692 gamma aminobutyric acid Drugs 0.000 description 6
- 238000000338 in vitro Methods 0.000 description 6
- 239000000543 intermediate Substances 0.000 description 6
- 230000003834 intracellular effect Effects 0.000 description 6
- 238000011160 research Methods 0.000 description 6
- 238000013518 transcription Methods 0.000 description 6
- 230000035897 transcription Effects 0.000 description 6
- 102220542300 39S ribosomal protein L15, mitochondrial_R98E_mutation Human genes 0.000 description 5
- IVOMOUWHDPKRLL-KQYNXXCUSA-N Cyclic adenosine monophosphate Chemical compound C([C@H]1O2)OP(O)(=O)O[C@H]1[C@@H](O)[C@@H]2N1C(N=CN=C2N)=C2N=C1 IVOMOUWHDPKRLL-KQYNXXCUSA-N 0.000 description 5
- SRBFZHDQGSBBOR-SOOFDHNKSA-N D-ribopyranose Chemical compound O[C@@H]1COC(O)[C@H](O)[C@@H]1O SRBFZHDQGSBBOR-SOOFDHNKSA-N 0.000 description 5
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 5
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 5
- 108091028043 Nucleic acid sequence Proteins 0.000 description 5
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 5
- 125000000539 amino acid group Chemical group 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 229940095074 cyclic amp Drugs 0.000 description 5
- 238000001514 detection method Methods 0.000 description 5
- 208000035475 disorder Diseases 0.000 description 5
- 239000012634 fragment Substances 0.000 description 5
- 238000003780 insertion Methods 0.000 description 5
- 230000037431 insertion Effects 0.000 description 5
- 239000002207 metabolite Substances 0.000 description 5
- 230000001225 therapeutic effect Effects 0.000 description 5
- OYIFNHCXNCRBQI-UHFFFAOYSA-N 2-aminoadipic acid Chemical compound OC(=O)C(N)CCCC(O)=O OYIFNHCXNCRBQI-UHFFFAOYSA-N 0.000 description 4
- RDFMDVXONNIGBC-UHFFFAOYSA-N 2-aminoheptanoic acid Chemical compound CCCCCC(N)C(O)=O RDFMDVXONNIGBC-UHFFFAOYSA-N 0.000 description 4
- ZOOGRGPOEVQQDX-UUOKFMHZSA-N 3',5'-cyclic GMP Chemical compound C([C@H]1O2)OP(O)(=O)O[C@H]1[C@@H](O)[C@@H]2N1C(N=C(NC2=O)N)=C2N=C1 ZOOGRGPOEVQQDX-UUOKFMHZSA-N 0.000 description 4
- PECYZEOJVXMISF-UHFFFAOYSA-N 3-aminoalanine Chemical compound [NH3+]CC(N)C([O-])=O PECYZEOJVXMISF-UHFFFAOYSA-N 0.000 description 4
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 4
- QGWNDRXFNXRZMB-UUOKFMHZSA-N GDP Chemical compound C1=2NC(N)=NC(=O)C=2N=CN1[C@@H]1O[C@H](COP(O)(=O)OP(O)(O)=O)[C@@H](O)[C@H]1O QGWNDRXFNXRZMB-UUOKFMHZSA-N 0.000 description 4
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 4
- 239000004471 Glycine Substances 0.000 description 4
- XKMLYUALXHKNFT-UUOKFMHZSA-N Guanosine-5'-triphosphate Chemical compound C1=2NC(N)=NC(=O)C=2N=CN1[C@@H]1O[C@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)[C@@H](O)[C@H]1O XKMLYUALXHKNFT-UUOKFMHZSA-N 0.000 description 4
- NTYJJOPFIAHURM-UHFFFAOYSA-N Histamine Chemical compound NCCC1=CN=CN1 NTYJJOPFIAHURM-UHFFFAOYSA-N 0.000 description 4
- 101000685982 Homo sapiens NAD(+) hydrolase SARM1 Proteins 0.000 description 4
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 4
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 4
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 4
- 239000004472 Lysine Substances 0.000 description 4
- KSPIYJQBLVDRRI-UHFFFAOYSA-N N-methylisoleucine Chemical compound CCC(C)C(NC)C(O)=O KSPIYJQBLVDRRI-UHFFFAOYSA-N 0.000 description 4
- 102100023356 NAD(+) hydrolase SARM1 Human genes 0.000 description 4
- 206010028980 Neoplasm Diseases 0.000 description 4
- KPKZJLCSROULON-QKGLWVMZSA-N Phalloidin Chemical compound N1C(=O)[C@@H]([C@@H](O)C)NC(=O)[C@H](C)NC(=O)[C@H](C[C@@](C)(O)CO)NC(=O)[C@H](C2)NC(=O)[C@H](C)NC(=O)[C@@H]3C[C@H](O)CN3C(=O)[C@@H]1CSC1=C2C2=CC=CC=C2N1 KPKZJLCSROULON-QKGLWVMZSA-N 0.000 description 4
- RJKFOVLPORLFTN-LEKSSAKUSA-N Progesterone Chemical compound C1CC2=CC(=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H](C(=O)C)[C@@]1(C)CC2 RJKFOVLPORLFTN-LEKSSAKUSA-N 0.000 description 4
- 108010077895 Sarcosine Proteins 0.000 description 4
- MUMGGOZAMZWBJJ-DYKIIFRCSA-N Testostosterone Chemical compound O=C1CC[C@]2(C)[C@H]3CC[C@](C)([C@H](CC4)O)[C@@H]4[C@@H]3CCC2=C1 MUMGGOZAMZWBJJ-DYKIIFRCSA-N 0.000 description 4
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 4
- 239000004473 Threonine Substances 0.000 description 4
- MMWCIQZXVOZEGG-HOZKJCLWSA-N [(1S,2R,3S,4S,5R,6S)-2,3,5-trihydroxy-4,6-diphosphonooxycyclohexyl] dihydrogen phosphate Chemical compound O[C@H]1[C@@H](O)[C@H](OP(O)(O)=O)[C@@H](OP(O)(O)=O)[C@H](O)[C@H]1OP(O)(O)=O MMWCIQZXVOZEGG-HOZKJCLWSA-N 0.000 description 4
- QWCKQJZIFLGMSD-UHFFFAOYSA-N alpha-aminobutyric acid Chemical compound CCC(N)C(O)=O QWCKQJZIFLGMSD-UHFFFAOYSA-N 0.000 description 4
- 150000001408 amides Chemical class 0.000 description 4
- 239000012491 analyte Substances 0.000 description 4
- DEGAKNSWVGKMLS-UHFFFAOYSA-N calcein Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC(CN(CC(O)=O)CC(O)=O)=C(O)C=C1OC1=C2C=C(CN(CC(O)=O)CC(=O)O)C(O)=C1 DEGAKNSWVGKMLS-UHFFFAOYSA-N 0.000 description 4
- 201000011510 cancer Diseases 0.000 description 4
- 229910002091 carbon monoxide Inorganic materials 0.000 description 4
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 4
- ZOOGRGPOEVQQDX-UHFFFAOYSA-N cyclic GMP Natural products O1C2COP(O)(=O)OC2C(O)C1N1C=NC2=C1NC(N)=NC2=O ZOOGRGPOEVQQDX-UHFFFAOYSA-N 0.000 description 4
- 238000013461 design Methods 0.000 description 4
- 238000011161 development Methods 0.000 description 4
- 230000018109 developmental process Effects 0.000 description 4
- 150000001982 diacylglycerols Chemical class 0.000 description 4
- PMMYEEVYMWASQN-UHFFFAOYSA-N dl-hydroxyproline Natural products OC1C[NH2+]C(C([O-])=O)C1 PMMYEEVYMWASQN-UHFFFAOYSA-N 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- QGWNDRXFNXRZMB-UHFFFAOYSA-N guanidine diphosphate Natural products C1=2NC(N)=NC(=O)C=2N=CN1C1OC(COP(O)(=O)OP(O)(O)=O)C(O)C1O QGWNDRXFNXRZMB-UHFFFAOYSA-N 0.000 description 4
- RQFCJASXJCIDSX-UUOKFMHZSA-N guanosine 5'-monophosphate Chemical compound C1=2NC(N)=NC(=O)C=2N=CN1[C@@H]1O[C@H](COP(O)(O)=O)[C@@H](O)[C@H]1O RQFCJASXJCIDSX-UUOKFMHZSA-N 0.000 description 4
- 235000013928 guanylic acid Nutrition 0.000 description 4
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 4
- 230000010354 integration Effects 0.000 description 4
- 230000000813 microbial effect Effects 0.000 description 4
- 229960002378 oftasceine Drugs 0.000 description 4
- 102000005962 receptors Human genes 0.000 description 4
- 108020003175 receptors Proteins 0.000 description 4
- 230000011664 signaling Effects 0.000 description 4
- 238000006467 substitution reaction Methods 0.000 description 4
- 150000008163 sugars Chemical class 0.000 description 4
- 230000008685 targeting Effects 0.000 description 4
- SFLSHLFXELFNJZ-QMMMGPOBSA-N (-)-norepinephrine Chemical compound NC[C@H](O)C1=CC=C(O)C(O)=C1 SFLSHLFXELFNJZ-QMMMGPOBSA-N 0.000 description 3
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 3
- AZQWKYJCGOJGHM-UHFFFAOYSA-N 1,4-benzoquinone Chemical compound O=C1C=CC(=O)C=C1 AZQWKYJCGOJGHM-UHFFFAOYSA-N 0.000 description 3
- BGWLYQZDNFIFRX-UHFFFAOYSA-N 5-[3-[2-[3-(3,8-diamino-6-phenylphenanthridin-5-ium-5-yl)propylamino]ethylamino]propyl]-6-phenylphenanthridin-5-ium-3,8-diamine;dichloride Chemical compound [Cl-].[Cl-].C=1C(N)=CC=C(C2=CC=C(N)C=C2[N+]=2CCCNCCNCCC[N+]=3C4=CC(N)=CC=C4C4=CC=C(N)C=C4C=3C=3C=CC=CC=3)C=1C=2C1=CC=CC=C1 BGWLYQZDNFIFRX-UHFFFAOYSA-N 0.000 description 3
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 description 3
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 3
- LCWXJXMHJVIJFK-UHFFFAOYSA-N Hydroxylysine Natural products NCC(O)CC(N)CC(O)=O LCWXJXMHJVIJFK-UHFFFAOYSA-N 0.000 description 3
- HNDVDQJCIGZPNO-YFKPBYRVSA-N L-histidine Chemical compound OC(=O)[C@@H](N)CC1=CN=CN1 HNDVDQJCIGZPNO-YFKPBYRVSA-N 0.000 description 3
- 208000012902 Nervous system disease Diseases 0.000 description 3
- 208000025966 Neurological disease Diseases 0.000 description 3
- 108700008625 Reporter Genes Proteins 0.000 description 3
- AUNGANRZJHBGPY-SCRDCRAPSA-N Riboflavin Chemical compound OC[C@@H](O)[C@@H](O)[C@@H](O)CN1C=2C=C(C)C(C)=CC=2N=C2C1=NC(=O)NC2=O AUNGANRZJHBGPY-SCRDCRAPSA-N 0.000 description 3
- PJANXHGTPQOBST-VAWYXSNFSA-N Stilbene Natural products C=1C=CC=CC=1/C=C/C1=CC=CC=C1 PJANXHGTPQOBST-VAWYXSNFSA-N 0.000 description 3
- XJLXINKUBYWONI-DQQFMEOOSA-N [[(2r,3r,4r,5r)-5-(6-aminopurin-9-yl)-3-hydroxy-4-phosphonooxyoxolan-2-yl]methoxy-hydroxyphosphoryl] [(2s,3r,4s,5s)-5-(3-carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxyoxolan-2-yl]methyl phosphate Chemical compound NC(=O)C1=CC=C[N+]([C@@H]2[C@H]([C@@H](O)[C@H](COP([O-])(=O)OP(O)(=O)OC[C@@H]3[C@H]([C@@H](OP(O)(O)=O)[C@@H](O3)N3C4=NC=NC(N)=C4N=C3)O)O2)O)=C1 XJLXINKUBYWONI-DQQFMEOOSA-N 0.000 description 3
- 230000004913 activation Effects 0.000 description 3
- UDMBCSSLTHHNCD-KQYNXXCUSA-N adenosine 5'-monophosphate Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](COP(O)(O)=O)[C@@H](O)[C@H]1O UDMBCSSLTHHNCD-KQYNXXCUSA-N 0.000 description 3
- 230000009435 amidation Effects 0.000 description 3
- 238000007112 amidation reaction Methods 0.000 description 3
- 238000013459 approach Methods 0.000 description 3
- 235000009582 asparagine Nutrition 0.000 description 3
- 229960001230 asparagine Drugs 0.000 description 3
- 239000011324 bead Substances 0.000 description 3
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000003153 chemical reaction reagent Substances 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 230000002596 correlated effect Effects 0.000 description 3
- 108010082025 cyan fluorescent protein Proteins 0.000 description 3
- YSMODUONRAFBET-UHFFFAOYSA-N delta-DL-hydroxylysine Natural products NCC(O)CCC(N)C(O)=O YSMODUONRAFBET-UHFFFAOYSA-N 0.000 description 3
- VEVRNHHLCPGNDU-MUGJNUQGSA-O desmosine Chemical compound OC(=O)[C@@H](N)CCCC[N+]1=CC(CC[C@H](N)C(O)=O)=C(CCC[C@H](N)C(O)=O)C(CC[C@H](N)C(O)=O)=C1 VEVRNHHLCPGNDU-MUGJNUQGSA-O 0.000 description 3
- YJHDFAAFYNRKQE-YHPRVSEPSA-L disodium;5-[[4-anilino-6-[bis(2-hydroxyethyl)amino]-1,3,5-triazin-2-yl]amino]-2-[(e)-2-[4-[[4-anilino-6-[bis(2-hydroxyethyl)amino]-1,3,5-triazin-2-yl]amino]-2-sulfonatophenyl]ethenyl]benzenesulfonate Chemical compound [Na+].[Na+].N=1C(NC=2C=C(C(\C=C\C=3C(=CC(NC=4N=C(N=C(NC=5C=CC=CC=5)N=4)N(CCO)CCO)=CC=3)S([O-])(=O)=O)=CC=2)S([O-])(=O)=O)=NC(N(CCO)CCO)=NC=1NC1=CC=CC=C1 YJHDFAAFYNRKQE-YHPRVSEPSA-L 0.000 description 3
- 229960003638 dopamine Drugs 0.000 description 3
- 239000000975 dye Substances 0.000 description 3
- 230000002255 enzymatic effect Effects 0.000 description 3
- YSMODUONRAFBET-UHNVWZDZSA-N erythro-5-hydroxy-L-lysine Chemical compound NC[C@H](O)CC[C@H](N)C(O)=O YSMODUONRAFBET-UHNVWZDZSA-N 0.000 description 3
- 238000005755 formation reaction Methods 0.000 description 3
- 230000002068 genetic effect Effects 0.000 description 3
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 3
- QJHBJHUKURJDLG-UHFFFAOYSA-N hydroxy-L-lysine Natural products NCCCCC(NO)C(O)=O QJHBJHUKURJDLG-UHFFFAOYSA-N 0.000 description 3
- 208000015181 infectious disease Diseases 0.000 description 3
- 239000003112 inhibitor Substances 0.000 description 3
- 230000002401 inhibitory effect Effects 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 208000030159 metabolic disease Diseases 0.000 description 3
- 229960002748 norepinephrine Drugs 0.000 description 3
- SFLSHLFXELFNJZ-UHFFFAOYSA-N norepinephrine Natural products NCC(O)C1=CC=C(O)C(O)=C1 SFLSHLFXELFNJZ-UHFFFAOYSA-N 0.000 description 3
- 230000001105 regulatory effect Effects 0.000 description 3
- 239000000523 sample Substances 0.000 description 3
- 229920006395 saturated elastomer Polymers 0.000 description 3
- 229940076279 serotonin Drugs 0.000 description 3
- 230000009870 specific binding Effects 0.000 description 3
- PJANXHGTPQOBST-UHFFFAOYSA-N stilbene Chemical compound C=1C=CC=CC=1C=CC1=CC=CC=C1 PJANXHGTPQOBST-UHFFFAOYSA-N 0.000 description 3
- 235000021286 stilbenes Nutrition 0.000 description 3
- 229940036555 thyroid hormone Drugs 0.000 description 3
- 239000005495 thyroid hormone Substances 0.000 description 3
- 230000002463 transducing effect Effects 0.000 description 3
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 3
- BJBUEDPLEOHJGE-UHFFFAOYSA-N (2R,3S)-3-Hydroxy-2-pyrolidinecarboxylic acid Natural products OC1CCNC1C(O)=O BJBUEDPLEOHJGE-UHFFFAOYSA-N 0.000 description 2
- UCTWMZQNUQWSLP-VIFPVBQESA-N (R)-adrenaline Chemical compound CNC[C@H](O)C1=CC=C(O)C(O)=C1 UCTWMZQNUQWSLP-VIFPVBQESA-N 0.000 description 2
- 229930182837 (R)-adrenaline Natural products 0.000 description 2
- JHTPBGFVWWSHDL-UHFFFAOYSA-N 1,4-dichloro-2-isothiocyanatobenzene Chemical compound ClC1=CC=C(Cl)C(N=C=S)=C1 JHTPBGFVWWSHDL-UHFFFAOYSA-N 0.000 description 2
- PRDFBSVERLRRMY-UHFFFAOYSA-N 2'-(4-ethoxyphenyl)-5-(4-methylpiperazin-1-yl)-2,5'-bibenzimidazole Chemical compound C1=CC(OCC)=CC=C1C1=NC2=CC=C(C=3NC4=CC(=CC=C4N=3)N3CCN(C)CC3)C=C2N1 PRDFBSVERLRRMY-UHFFFAOYSA-N 0.000 description 2
- XDFNWJDGWJVGGN-UHFFFAOYSA-N 2-(2,7-dichloro-3,6-dihydroxy-9h-xanthen-9-yl)benzoic acid Chemical compound OC(=O)C1=CC=CC=C1C1C2=CC(Cl)=C(O)C=C2OC2=CC(O)=C(Cl)C=C21 XDFNWJDGWJVGGN-UHFFFAOYSA-N 0.000 description 2
- FUOOLUPWFVMBKG-UHFFFAOYSA-N 2-Aminoisobutyric acid Chemical compound CC(C)(N)C(O)=O FUOOLUPWFVMBKG-UHFFFAOYSA-N 0.000 description 2
- ZVDGOJFPFMINBM-UHFFFAOYSA-N 3-(6-methoxyquinolin-1-ium-1-yl)propane-1-sulfonate Chemical compound [O-]S(=O)(=O)CCC[N+]1=CC=CC2=CC(OC)=CC=C21 ZVDGOJFPFMINBM-UHFFFAOYSA-N 0.000 description 2
- AUUIARVPJHGTSA-UHFFFAOYSA-N 3-(aminomethyl)chromen-2-one Chemical compound C1=CC=C2OC(=O)C(CN)=CC2=C1 AUUIARVPJHGTSA-UHFFFAOYSA-N 0.000 description 2
- NJIRSTSECXKPCO-UHFFFAOYSA-M 3-[n-methyl-4-[2-(1,3,3-trimethylindol-1-ium-2-yl)ethenyl]anilino]propanenitrile;chloride Chemical compound [Cl-].C1=CC(N(CCC#N)C)=CC=C1\C=C\C1=[N+](C)C2=CC=CC=C2C1(C)C NJIRSTSECXKPCO-UHFFFAOYSA-M 0.000 description 2
- XABCFXXGZPWJQP-UHFFFAOYSA-N 3-aminoadipic acid Chemical compound OC(=O)CC(N)CCC(O)=O XABCFXXGZPWJQP-UHFFFAOYSA-N 0.000 description 2
- MJKVTPMWOKAVMS-UHFFFAOYSA-N 3-hydroxy-1-benzopyran-2-one Chemical compound C1=CC=C2OC(=O)C(O)=CC2=C1 MJKVTPMWOKAVMS-UHFFFAOYSA-N 0.000 description 2
- VIIIJFZJKFXOGG-UHFFFAOYSA-N 3-methylchromen-2-one Chemical compound C1=CC=C2OC(=O)C(C)=CC2=C1 VIIIJFZJKFXOGG-UHFFFAOYSA-N 0.000 description 2
- HSHNITRMYYLLCV-UHFFFAOYSA-N 4-methylumbelliferone Chemical compound C1=C(O)C=CC2=C1OC(=O)C=C2C HSHNITRMYYLLCV-UHFFFAOYSA-N 0.000 description 2
- UNGMOMJDNDFGJG-UHFFFAOYSA-N 5-carboxy-X-rhodamine Chemical compound [O-]C(=O)C1=CC(C(=O)O)=CC=C1C1=C(C=C2C3=C4CCCN3CCC2)C4=[O+]C2=C1C=C1CCCN3CCCC2=C13 UNGMOMJDNDFGJG-UHFFFAOYSA-N 0.000 description 2
- YMZMTOFQCVHHFB-UHFFFAOYSA-N 5-carboxytetramethylrhodamine Chemical compound C=12C=CC(N(C)C)=CC2=[O+]C2=CC(N(C)C)=CC=C2C=1C1=CC=C(C(O)=O)C=C1C([O-])=O YMZMTOFQCVHHFB-UHFFFAOYSA-N 0.000 description 2
- SLXKOJJOQWFEFD-UHFFFAOYSA-N 6-aminohexanoic acid Chemical compound NCCCCCC(O)=O SLXKOJJOQWFEFD-UHFFFAOYSA-N 0.000 description 2
- IHHSSHCBRVYGJX-UHFFFAOYSA-N 6-chloro-2-methoxyacridin-9-amine Chemical compound C1=C(Cl)C=CC2=C(N)C3=CC(OC)=CC=C3N=C21 IHHSSHCBRVYGJX-UHFFFAOYSA-N 0.000 description 2
- PWJFNRJRHXWEPT-UHFFFAOYSA-N ADP ribose Natural products C1=NC=2C(N)=NC=NC=2N1C1OC(COP(O)(=O)OP(O)(=O)OCC(O)C(O)C(O)C=O)C(O)C1O PWJFNRJRHXWEPT-UHFFFAOYSA-N 0.000 description 2
- 239000004475 Arginine Substances 0.000 description 2
- 208000023275 Autoimmune disease Diseases 0.000 description 2
- 108090000312 Calcium Channels Proteins 0.000 description 2
- 102000003922 Calcium Channels Human genes 0.000 description 2
- 108091006146 Channels Proteins 0.000 description 2
- FNZLKVNUWIIPSJ-UHNVWZDZSA-N D-ribulose 5-phosphate Chemical compound OCC(=O)[C@H](O)[C@H](O)COP(O)(O)=O FNZLKVNUWIIPSJ-UHNVWZDZSA-N 0.000 description 2
- SRBFZHDQGSBBOR-IOVATXLUSA-N D-xylopyranose Chemical compound O[C@@H]1COC(O)[C@H](O)[C@H]1O SRBFZHDQGSBBOR-IOVATXLUSA-N 0.000 description 2
- 230000004568 DNA-binding Effects 0.000 description 2
- OZLGRUXZXMRXGP-UHFFFAOYSA-N Fluo-3 Chemical compound CC1=CC=C(N(CC(O)=O)CC(O)=O)C(OCCOC=2C(=CC=C(C=2)C2=C3C=C(Cl)C(=O)C=C3OC3=CC(O)=C(Cl)C=C32)N(CC(O)=O)CC(O)=O)=C1 OZLGRUXZXMRXGP-UHFFFAOYSA-N 0.000 description 2
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 2
- 102220566469 GDNF family receptor alpha-1_S65T_mutation Human genes 0.000 description 2
- 102220566451 GDNF family receptor alpha-1_Y66H_mutation Human genes 0.000 description 2
- 102000051325 Glucagon Human genes 0.000 description 2
- 108060003199 Glucagon Proteins 0.000 description 2
- PMMYEEVYMWASQN-DMTCNVIQSA-N Hydroxyproline Chemical compound O[C@H]1CN[C@H](C(O)=O)C1 PMMYEEVYMWASQN-DMTCNVIQSA-N 0.000 description 2
- 102000004877 Insulin Human genes 0.000 description 2
- 108090001061 Insulin Proteins 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- SNDPXSYFESPGGJ-BYPYZUCNSA-N L-2-aminopentanoic acid Chemical compound CCC[C@H](N)C(O)=O SNDPXSYFESPGGJ-BYPYZUCNSA-N 0.000 description 2
- JUQLUIFNNFIIKC-YFKPBYRVSA-N L-2-aminopimelic acid Chemical compound OC(=O)[C@@H](N)CCCCC(O)=O JUQLUIFNNFIIKC-YFKPBYRVSA-N 0.000 description 2
- AHLPHDHHMVZTML-BYPYZUCNSA-N L-Ornithine Chemical compound NCCC[C@H](N)C(O)=O AHLPHDHHMVZTML-BYPYZUCNSA-N 0.000 description 2
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 2
- AGPKZVBTJJNPAG-UHNVWZDZSA-N L-allo-Isoleucine Chemical compound CC[C@@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-UHNVWZDZSA-N 0.000 description 2
- FFFHZYDWPBMWHY-VKHMYHEASA-N L-homocysteine Chemical compound OC(=O)[C@@H](N)CCS FFFHZYDWPBMWHY-VKHMYHEASA-N 0.000 description 2
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 2
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 2
- SNDPXSYFESPGGJ-UHFFFAOYSA-N L-norVal-OH Natural products CCCC(N)C(O)=O SNDPXSYFESPGGJ-UHFFFAOYSA-N 0.000 description 2
- LRQKBLKVPFOOQJ-YFKPBYRVSA-N L-norleucine Chemical compound CCCC[C@H]([NH3+])C([O-])=O LRQKBLKVPFOOQJ-YFKPBYRVSA-N 0.000 description 2
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 2
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 description 2
- FGBAVQUHSKYMTC-UHFFFAOYSA-M LDS 751 dye Chemical compound [O-]Cl(=O)(=O)=O.C1=CC2=CC(N(C)C)=CC=C2[N+](CC)=C1C=CC=CC1=CC=C(N(C)C)C=C1 FGBAVQUHSKYMTC-UHFFFAOYSA-M 0.000 description 2
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 2
- 208000001145 Metabolic Syndrome Diseases 0.000 description 2
- OLNLSTNFRUFTLM-UHFFFAOYSA-N N-ethylasparagine Chemical compound CCNC(C(O)=O)CC(N)=O OLNLSTNFRUFTLM-UHFFFAOYSA-N 0.000 description 2
- YPIGGYHFMKJNKV-UHFFFAOYSA-N N-ethylglycine Chemical compound CC[NH2+]CC([O-])=O YPIGGYHFMKJNKV-UHFFFAOYSA-N 0.000 description 2
- 108010065338 N-ethylglycine Proteins 0.000 description 2
- AKCRVYNORCOYQT-YFKPBYRVSA-N N-methyl-L-valine Chemical compound CN[C@@H](C(C)C)C(O)=O AKCRVYNORCOYQT-YFKPBYRVSA-N 0.000 description 2
- 208000008589 Obesity Diseases 0.000 description 2
- AHLPHDHHMVZTML-UHFFFAOYSA-N Orn-delta-NH2 Natural products NCCCC(N)C(O)=O AHLPHDHHMVZTML-UHFFFAOYSA-N 0.000 description 2
- UTJLXEIPEHZYQJ-UHFFFAOYSA-N Ornithine Natural products OC(=O)C(C)CCCN UTJLXEIPEHZYQJ-UHFFFAOYSA-N 0.000 description 2
- 108010009711 Phalloidine Proteins 0.000 description 2
- 108010004729 Phycoerythrin Proteins 0.000 description 2
- ONIBWKKTOPOVIA-UHFFFAOYSA-N Proline Natural products OC(=O)C1CCCN1 ONIBWKKTOPOVIA-UHFFFAOYSA-N 0.000 description 2
- 206010037660 Pyrexia Diseases 0.000 description 2
- FNZLKVNUWIIPSJ-UHFFFAOYSA-N Rbl5P Natural products OCC(=O)C(O)C(O)COP(O)(O)=O FNZLKVNUWIIPSJ-UHFFFAOYSA-N 0.000 description 2
- 238000012300 Sequence Analysis Methods 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 229920002472 Starch Polymers 0.000 description 2
- 208000006011 Stroke Diseases 0.000 description 2
- AUYYCJSJGJYCDS-LBPRGKRZSA-N Thyrolar Chemical class IC1=CC(C[C@H](N)C(O)=O)=CC(I)=C1OC1=CC=C(O)C(I)=C1 AUYYCJSJGJYCDS-LBPRGKRZSA-N 0.000 description 2
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 2
- ISAKRJDGNUQOIC-UHFFFAOYSA-N Uracil Chemical compound O=C1C=CNC(=O)N1 ISAKRJDGNUQOIC-UHFFFAOYSA-N 0.000 description 2
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Natural products CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 description 2
- 229930003316 Vitamin D Natural products 0.000 description 2
- QYSXJUFSXHHAJI-XFEUOLMDSA-N Vitamin D3 Natural products C1(/[C@@H]2CC[C@@H]([C@]2(CCC1)C)[C@H](C)CCCC(C)C)=C/C=C1\C[C@@H](O)CCC1=C QYSXJUFSXHHAJI-XFEUOLMDSA-N 0.000 description 2
- 108091005971 Wild-type GFP Proteins 0.000 description 2
- ZYVSOIYQKUDENJ-UHFFFAOYSA-N [6-[[6-[4-[4-(5-acetyloxy-4-hydroxy-4,6-dimethyloxan-2-yl)oxy-5-hydroxy-6-methyloxan-2-yl]oxy-5-hydroxy-6-methyloxan-2-yl]oxy-7-(3,4-dihydroxy-1-methoxy-2-oxopentyl)-4,10-dihydroxy-3-methyl-5-oxo-7,8-dihydro-6h-anthracen-2-yl]oxy]-4-(4-hydroxy-5-methoxy-6 Chemical compound CC=1C(O)=C2C(O)=C3C(=O)C(OC4OC(C)C(O)C(OC5OC(C)C(O)C(OC6OC(C)C(OC(C)=O)C(C)(O)C6)C5)C4)C(C(OC)C(=O)C(O)C(C)O)CC3=CC2=CC=1OC(OC(C)C1OC(C)=O)CC1OC1CC(O)C(OC)C(C)O1 ZYVSOIYQKUDENJ-UHFFFAOYSA-N 0.000 description 2
- 201000000690 abdominal obesity-metabolic syndrome Diseases 0.000 description 2
- ZSLZBFCDCINBPY-ZSJPKINUSA-N acetyl-CoA Chemical compound O[C@@H]1[C@H](OP(O)(O)=O)[C@@H](COP(O)(=O)OP(O)(=O)OCC(C)(C)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)C)O[C@H]1N1C2=NC=NC(N)=C2N=C1 ZSLZBFCDCINBPY-ZSJPKINUSA-N 0.000 description 2
- OIPILFWXSMYKGL-UHFFFAOYSA-N acetylcholine Chemical compound CC(=O)OCC[N+](C)(C)C OIPILFWXSMYKGL-UHFFFAOYSA-N 0.000 description 2
- 229960004373 acetylcholine Drugs 0.000 description 2
- PEJLNXHANOHNSU-UHFFFAOYSA-N acridine-3,6-diamine;10-methylacridin-10-ium-3,6-diamine;chloride Chemical compound [Cl-].C1=CC(N)=CC2=NC3=CC(N)=CC=C3C=C21.C1=C(N)C=C2[N+](C)=C(C=C(N)C=C3)C3=CC2=C1 PEJLNXHANOHNSU-UHFFFAOYSA-N 0.000 description 2
- 230000003213 activating effect Effects 0.000 description 2
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 2
- 238000004220 aggregation Methods 0.000 description 2
- 235000004279 alanine Nutrition 0.000 description 2
- 229930013930 alkaloid Natural products 0.000 description 2
- SHGAZHPCJJPHSC-YCNIQYBTSA-N all-trans-retinoic acid Chemical compound OC(=O)\C=C(/C)\C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C SHGAZHPCJJPHSC-YCNIQYBTSA-N 0.000 description 2
- 108010004469 allophycocyanin Proteins 0.000 description 2
- 229960002684 aminocaproic acid Drugs 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 2
- 238000003491 array Methods 0.000 description 2
- 235000003704 aspartic acid Nutrition 0.000 description 2
- 238000003556 assay Methods 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 2
- 238000005842 biochemical reaction Methods 0.000 description 2
- 230000004071 biological effect Effects 0.000 description 2
- 230000033228 biological regulation Effects 0.000 description 2
- 239000000090 biomarker Substances 0.000 description 2
- 230000021523 carboxylation Effects 0.000 description 2
- 238000006473 carboxylation reaction Methods 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 230000030833 cell death Effects 0.000 description 2
- 230000003915 cell function Effects 0.000 description 2
- 239000001913 cellulose Substances 0.000 description 2
- 229920002678 cellulose Polymers 0.000 description 2
- 235000010980 cellulose Nutrition 0.000 description 2
- TUESWZZJYCLFNL-DAFODLJHSA-N chembl1301 Chemical compound C1=CC(C(=N)N)=CC=C1\C=C\C1=CC=C(C(N)=N)C=C1O TUESWZZJYCLFNL-DAFODLJHSA-N 0.000 description 2
- 235000012000 cholesterol Nutrition 0.000 description 2
- 229940107161 cholesterol Drugs 0.000 description 2
- BJBUEDPLEOHJGE-IUYQGCFVSA-N cis-3-hydroxy-D-proline zwitterion Chemical compound O[C@H]1CCN[C@H]1C(O)=O BJBUEDPLEOHJGE-IUYQGCFVSA-N 0.000 description 2
- 238000003776 cleavage reaction Methods 0.000 description 2
- 235000017471 coenzyme Q10 Nutrition 0.000 description 2
- ACTIUHUUMQJHFO-UPTCCGCDSA-N coenzyme Q10 Chemical compound COC1=C(OC)C(=O)C(C\C=C(/C)CC\C=C(/C)CC\C=C(/C)CC\C=C(/C)CC\C=C(/C)CC\C=C(/C)CC\C=C(/C)CC\C=C(/C)CC\C=C(/C)CCC=C(C)C)=C(C)C1=O ACTIUHUUMQJHFO-UPTCCGCDSA-N 0.000 description 2
- 230000001276 controlling effect Effects 0.000 description 2
- 239000003246 corticosteroid Substances 0.000 description 2
- 229960001334 corticosteroids Drugs 0.000 description 2
- ZYGHJZDHTFUPRJ-UHFFFAOYSA-N coumarin Chemical compound C1=CC=C2OC(=O)C=CC2=C1 ZYGHJZDHTFUPRJ-UHFFFAOYSA-N 0.000 description 2
- GLNDAGDHSLMOKX-UHFFFAOYSA-N coumarin 120 Chemical compound C1=C(N)C=CC2=C1OC(=O)C=C2C GLNDAGDHSLMOKX-UHFFFAOYSA-N 0.000 description 2
- 235000018417 cysteine Nutrition 0.000 description 2
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 2
- OPTASPLRGRRNAP-UHFFFAOYSA-N cytosine Chemical compound NC=1C=CNC(=O)N=1 OPTASPLRGRRNAP-UHFFFAOYSA-N 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- GFZPJHFJZGRWMQ-UHFFFAOYSA-M diOC18(3) dye Chemical compound [O-]Cl(=O)(=O)=O.O1C2=CC=CC=C2[N+](CCCCCCCCCCCCCCCCCC)=C1C=CC=C1N(CCCCCCCCCCCCCCCCCC)C2=CC=CC=C2O1 GFZPJHFJZGRWMQ-UHFFFAOYSA-M 0.000 description 2
- DMBHHRLKUKUOEG-UHFFFAOYSA-N diphenylamine Chemical compound C=1C=CC=CC=1NC1=CC=CC=C1 DMBHHRLKUKUOEG-UHFFFAOYSA-N 0.000 description 2
- 150000002016 disaccharides Chemical class 0.000 description 2
- OOYIOIOOWUGAHD-UHFFFAOYSA-L disodium;2',4',5',7'-tetrabromo-4,5,6,7-tetrachloro-3-oxospiro[2-benzofuran-1,9'-xanthene]-3',6'-diolate Chemical compound [Na+].[Na+].O1C(=O)C(C(=C(Cl)C(Cl)=C2Cl)Cl)=C2C21C1=CC(Br)=C([O-])C(Br)=C1OC1=C(Br)C([O-])=C(Br)C=C21 OOYIOIOOWUGAHD-UHFFFAOYSA-L 0.000 description 2
- 238000004146 energy storage Methods 0.000 description 2
- 229960005139 epinephrine Drugs 0.000 description 2
- WTOSNONTQZJEBC-UHFFFAOYSA-N erythrosin Chemical compound OC(=O)C1=CC=CC=C1C(C1C(C(=C(O)C(I)=C1)I)O1)=C2C1=C(I)C(=O)C(I)=C2 WTOSNONTQZJEBC-UHFFFAOYSA-N 0.000 description 2
- 229940011871 estrogen Drugs 0.000 description 2
- 239000000262 estrogen Substances 0.000 description 2
- OGPBJKLSAFTDLK-UHFFFAOYSA-N europium atom Chemical compound [Eu] OGPBJKLSAFTDLK-UHFFFAOYSA-N 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 235000019162 flavin adenine dinucleotide Nutrition 0.000 description 2
- 239000011714 flavin adenine dinucleotide Substances 0.000 description 2
- GNBHRKFJIUUOQI-UHFFFAOYSA-N fluorescein Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 GNBHRKFJIUUOQI-UHFFFAOYSA-N 0.000 description 2
- 238000002866 fluorescence resonance energy transfer Methods 0.000 description 2
- DVGHHMFBFOTGLM-UHFFFAOYSA-L fluorogold Chemical compound F[Au][Au]F DVGHHMFBFOTGLM-UHFFFAOYSA-L 0.000 description 2
- 235000013305 food Nutrition 0.000 description 2
- 230000005714 functional activity Effects 0.000 description 2
- YFHXZQPUBCBNIP-UHFFFAOYSA-N fura-2 Chemical compound CC1=CC=C(N(CC(O)=O)CC(O)=O)C(OCCOC=2C(=CC=3OC(=CC=3C=2)C=2OC(=CN=2)C(O)=O)N(CC(O)=O)CC(O)=O)=C1 YFHXZQPUBCBNIP-UHFFFAOYSA-N 0.000 description 2
- 230000004927 fusion Effects 0.000 description 2
- MASNOZXLGMXCHN-ZLPAWPGGSA-N glucagon Chemical compound C([C@@H](C(=O)N[C@H](C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(O)=O)C(C)C)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](C)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CO)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CO)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@@H](NC(=O)CNC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CC=1NC=NC=1)[C@@H](C)O)[C@@H](C)O)C1=CC=CC=C1 MASNOZXLGMXCHN-ZLPAWPGGSA-N 0.000 description 2
- 229960004666 glucagon Drugs 0.000 description 2
- 239000008103 glucose Substances 0.000 description 2
- 229930195712 glutamate Natural products 0.000 description 2
- 229940049906 glutamate Drugs 0.000 description 2
- 235000013922 glutamic acid Nutrition 0.000 description 2
- 239000004220 glutamic acid Substances 0.000 description 2
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 2
- 150000004676 glycans Chemical class 0.000 description 2
- 229960002449 glycine Drugs 0.000 description 2
- 229930004094 glycosylphosphatidylinositol Natural products 0.000 description 2
- UYTPUPDQBNUYGX-UHFFFAOYSA-N guanine Chemical compound O=C1NC(N)=NC2=C1N=CN2 UYTPUPDQBNUYGX-UHFFFAOYSA-N 0.000 description 2
- 229960001340 histamine Drugs 0.000 description 2
- 229940088597 hormone Drugs 0.000 description 2
- 239000005556 hormone Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 230000002209 hydrophobic effect Effects 0.000 description 2
- 229960002591 hydroxyproline Drugs 0.000 description 2
- 229950005911 hydroxystilbamidine Drugs 0.000 description 2
- FDGQSTZJBFJUBT-UHFFFAOYSA-N hypoxanthine Chemical compound O=C1NC=NC2=C1NC=N2 FDGQSTZJBFJUBT-UHFFFAOYSA-N 0.000 description 2
- PNDZEEPOYCVIIY-UHFFFAOYSA-N indo-1 Chemical compound CC1=CC=C(N(CC(O)=O)CC(O)=O)C(OCCOC=2C(=CC=C(C=2)C=2N=C3[CH]C(=CC=C3C=2)C(O)=O)N(CC(O)=O)CC(O)=O)=C1 PNDZEEPOYCVIIY-UHFFFAOYSA-N 0.000 description 2
- 230000028709 inflammatory response Effects 0.000 description 2
- 230000005764 inhibitory process Effects 0.000 description 2
- 229940125396 insulin Drugs 0.000 description 2
- 230000000302 ischemic effect Effects 0.000 description 2
- RGXCTRIQQODGIZ-UHFFFAOYSA-O isodesmosine Chemical compound OC(=O)C(N)CCCC[N+]1=CC(CCC(N)C(O)=O)=CC(CCC(N)C(O)=O)=C1CCCC(N)C(O)=O RGXCTRIQQODGIZ-UHFFFAOYSA-O 0.000 description 2
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 description 2
- 229960000310 isoleucine Drugs 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- SXQCTESRRZBPHJ-UHFFFAOYSA-M lissamine rhodamine Chemical compound [Na+].C=12C=CC(=[N+](CC)CC)C=C2OC2=CC(N(CC)CC)=CC=C2C=1C1=CC=C(S([O-])(=O)=O)C=C1S([O-])(=O)=O SXQCTESRRZBPHJ-UHFFFAOYSA-M 0.000 description 2
- 239000003550 marker Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 108020004999 messenger RNA Proteins 0.000 description 2
- 230000037353 metabolic pathway Effects 0.000 description 2
- 229930182817 methionine Natural products 0.000 description 2
- HQCYVSPJIOJEGA-UHFFFAOYSA-N methoxycoumarin Chemical compound C1=CC=C2OC(=O)C(OC)=CC2=C1 HQCYVSPJIOJEGA-UHFFFAOYSA-N 0.000 description 2
- 230000003278 mimic effect Effects 0.000 description 2
- 230000002438 mitochondrial effect Effects 0.000 description 2
- AHEWZZJEDQVLOP-UHFFFAOYSA-N monobromobimane Chemical compound BrCC1=C(C)C(=O)N2N1C(C)=C(C)C2=O AHEWZZJEDQVLOP-UHFFFAOYSA-N 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- 150000002772 monosaccharides Chemical class 0.000 description 2
- 230000004770 neurodegeneration Effects 0.000 description 2
- 208000015122 neurodegenerative disease Diseases 0.000 description 2
- 230000000626 neurodegenerative effect Effects 0.000 description 2
- 239000002858 neurotransmitter agent Substances 0.000 description 2
- BOPGDPNILDQYTO-NNYOXOHSSA-N nicotinamide-adenine dinucleotide Chemical compound C1=CCC(C(=O)N)=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OC[C@@H]2[C@H]([C@@H](O)[C@@H](O2)N2C3=NC=NC(N)=C3N=C2)O)O1 BOPGDPNILDQYTO-NNYOXOHSSA-N 0.000 description 2
- 229960003753 nitric oxide Drugs 0.000 description 2
- 235000020824 obesity Nutrition 0.000 description 2
- 229920001542 oligosaccharide Polymers 0.000 description 2
- 150000002482 oligosaccharides Chemical class 0.000 description 2
- 229960003104 ornithine Drugs 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- AFAIELJLZYUNPW-UHFFFAOYSA-N pararosaniline free base Chemical compound C1=CC(N)=CC=C1C(C=1C=CC(N)=CC=1)=C1C=CC(=N)C=C1 AFAIELJLZYUNPW-UHFFFAOYSA-N 0.000 description 2
- 230000006320 pegylation Effects 0.000 description 2
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 description 2
- 125000002467 phosphate group Chemical group [H]OP(=O)(O[H])O[*] 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 229920001282 polysaccharide Polymers 0.000 description 2
- 239000005017 polysaccharide Substances 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- RSRNHSYYBLEMOI-UHFFFAOYSA-M primuline Chemical compound [Na+].S1C2=C(S([O-])(=O)=O)C(C)=CC=C2N=C1C(C=C1S2)=CC=C1N=C2C1=CC=C(N)C=C1 RSRNHSYYBLEMOI-UHFFFAOYSA-M 0.000 description 2
- 229960003387 progesterone Drugs 0.000 description 2
- 239000000186 progesterone Substances 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- BBEAQIROQSPTKN-UHFFFAOYSA-N pyrene Chemical compound C1=CC=C2C=CC3=CC=CC4=CC=C1C2=C43 BBEAQIROQSPTKN-UHFFFAOYSA-N 0.000 description 2
- INCIMLINXXICKS-UHFFFAOYSA-M pyronin Y Chemical compound [Cl-].C1=CC(=[N+](C)C)C=C2OC3=CC(N(C)C)=CC=C3C=C21 INCIMLINXXICKS-UHFFFAOYSA-M 0.000 description 2
- 238000011002 quantification Methods 0.000 description 2
- 239000011541 reaction mixture Substances 0.000 description 2
- NPCOQXAVBJJZBQ-UHFFFAOYSA-N reduced coenzyme Q9 Natural products COC1=C(O)C(C)=C(CC=C(C)CCC=C(C)CCC=C(C)CCC=C(C)CCC=C(C)CCC=C(C)CCC=C(C)CCC=C(C)CCC=C(C)C)C(O)=C1OC NPCOQXAVBJJZBQ-UHFFFAOYSA-N 0.000 description 2
- 230000011506 response to oxidative stress Effects 0.000 description 2
- 229930002330 retinoic acid Natural products 0.000 description 2
- 229940043267 rhodamine b Drugs 0.000 description 2
- 229940043230 sarcosine Drugs 0.000 description 2
- 230000007017 scission Effects 0.000 description 2
- 230000019491 signal transduction Effects 0.000 description 2
- 239000008107 starch Substances 0.000 description 2
- 235000019698 starch Nutrition 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 230000000946 synaptic effect Effects 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 229960003604 testosterone Drugs 0.000 description 2
- JGVWCANSWKRBCS-UHFFFAOYSA-N tetramethylrhodamine thiocyanate Chemical compound [Cl-].C=12C=CC(N(C)C)=CC2=[O+]C2=CC(N(C)C)=CC=C2C=1C1=CC=C(SC#N)C=C1C(O)=O JGVWCANSWKRBCS-UHFFFAOYSA-N 0.000 description 2
- 238000011285 therapeutic regimen Methods 0.000 description 2
- ACOJCCLIDPZYJC-UHFFFAOYSA-M thiazole orange Chemical compound CC1=CC=C(S([O-])(=O)=O)C=C1.C1=CC=C2C(C=C3N(C4=CC=CC=C4S3)C)=CC=[N+](C)C2=C1 ACOJCCLIDPZYJC-UHFFFAOYSA-M 0.000 description 2
- YSMODUONRAFBET-WHFBIAKZSA-N threo-5-hydroxy-L-lysine Chemical compound NC[C@@H](O)CC[C@H](N)C(O)=O YSMODUONRAFBET-WHFBIAKZSA-N 0.000 description 2
- RWQNBRDOKXIBIV-UHFFFAOYSA-N thymine Chemical compound CC1=CNC(=O)NC1=O RWQNBRDOKXIBIV-UHFFFAOYSA-N 0.000 description 2
- 230000001052 transient effect Effects 0.000 description 2
- 229960001727 tretinoin Drugs 0.000 description 2
- 239000004474 valine Substances 0.000 description 2
- 230000035899 viability Effects 0.000 description 2
- 235000019166 vitamin D Nutrition 0.000 description 2
- 239000011710 vitamin D Substances 0.000 description 2
- 150000003710 vitamin D derivatives Chemical class 0.000 description 2
- 229940046008 vitamin d Drugs 0.000 description 2
- HDTRYLNUVZCQOY-UHFFFAOYSA-N α-D-glucopyranosyl-α-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OC1C(O)C(O)C(O)C(CO)O1 HDTRYLNUVZCQOY-UHFFFAOYSA-N 0.000 description 1
- CRDAMVZIKSXKFV-FBXUGWQNSA-N (2-cis,6-cis)-farnesol Chemical compound CC(C)=CCC\C(C)=C/CC\C(C)=C/CO CRDAMVZIKSXKFV-FBXUGWQNSA-N 0.000 description 1
- 239000000260 (2E,6E)-3,7,11-trimethyldodeca-2,6,10-trien-1-ol Substances 0.000 description 1
- LORKUZBPMQEQET-UHFFFAOYSA-M (2e)-1,3,3-trimethyl-2-[(2z)-2-(1-methyl-2-phenylindol-1-ium-3-ylidene)ethylidene]indole;chloride Chemical compound [Cl-].CC1(C)C2=CC=CC=C2N(C)\C1=C/C=C(C1=CC=CC=C1[N+]=1C)/C=1C1=CC=CC=C1 LORKUZBPMQEQET-UHFFFAOYSA-M 0.000 description 1
- VQVUBYASAICPFU-UHFFFAOYSA-N (6'-acetyloxy-2',7'-dichloro-3-oxospiro[2-benzofuran-1,9'-xanthene]-3'-yl) acetate Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC(Cl)=C(OC(C)=O)C=C1OC1=C2C=C(Cl)C(OC(=O)C)=C1 VQVUBYASAICPFU-UHFFFAOYSA-N 0.000 description 1
- CHADEQDQBURGHL-UHFFFAOYSA-N (6'-acetyloxy-3-oxospiro[2-benzofuran-1,9'-xanthene]-3'-yl) acetate Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC=C(OC(C)=O)C=C1OC1=CC(OC(=O)C)=CC=C21 CHADEQDQBURGHL-UHFFFAOYSA-N 0.000 description 1
- OJISWRZIEWCUBN-QIRCYJPOSA-N (E,E,E)-geranylgeraniol Chemical compound CC(C)=CCC\C(C)=C\CC\C(C)=C\CC\C(C)=C\CO OJISWRZIEWCUBN-QIRCYJPOSA-N 0.000 description 1
- 229940005561 1,4-benzoquinone Drugs 0.000 description 1
- CTTVWDKXMPBZMQ-UHFFFAOYSA-N 1-[6-(dimethylamino)naphthalen-2-yl]undecan-1-one Chemical compound CCCCCCCCCCC(=O)c1ccc2cc(ccc2c1)N(C)C CTTVWDKXMPBZMQ-UHFFFAOYSA-N 0.000 description 1
- HJRJRUMKQCMYDL-UHFFFAOYSA-N 1-chloro-2,4,6-trinitrobenzene Chemical compound [O-][N+](=O)C1=CC([N+]([O-])=O)=C(Cl)C([N+]([O-])=O)=C1 HJRJRUMKQCMYDL-UHFFFAOYSA-N 0.000 description 1
- RTBFRGCFXZNCOE-UHFFFAOYSA-N 1-methylsulfonylpiperidin-4-one Chemical compound CS(=O)(=O)N1CCC(=O)CC1 RTBFRGCFXZNCOE-UHFFFAOYSA-N 0.000 description 1
- OWEGMIWEEQEYGQ-UHFFFAOYSA-N 100676-05-9 Natural products OC1C(O)C(O)C(CO)OC1OCC1C(O)C(O)C(O)C(OC2C(OC(O)C(O)C2O)CO)O1 OWEGMIWEEQEYGQ-UHFFFAOYSA-N 0.000 description 1
- BTUDGPVTCYNYLK-UHFFFAOYSA-N 2,2-dimethylglutaric acid Chemical compound OC(=O)C(C)(C)CCC(O)=O BTUDGPVTCYNYLK-UHFFFAOYSA-N 0.000 description 1
- UFBJCMHMOXMLKC-UHFFFAOYSA-N 2,4-dinitrophenol Chemical compound OC1=CC=C([N+]([O-])=O)C=C1[N+]([O-])=O UFBJCMHMOXMLKC-UHFFFAOYSA-N 0.000 description 1
- ADAOOVVYDLASGJ-UHFFFAOYSA-N 2,7,10-trimethylacridin-10-ium-3,6-diamine;chloride Chemical compound [Cl-].CC1=C(N)C=C2[N+](C)=C(C=C(C(C)=C3)N)C3=CC2=C1 ADAOOVVYDLASGJ-UHFFFAOYSA-N 0.000 description 1
- NOFPXGWBWIPSHI-UHFFFAOYSA-N 2,7,9-trimethylacridine-3,6-diamine;hydrochloride Chemical compound Cl.CC1=C(N)C=C2N=C(C=C(C(C)=C3)N)C3=C(C)C2=C1 NOFPXGWBWIPSHI-UHFFFAOYSA-N 0.000 description 1
- JNGRENQDBKMCCR-UHFFFAOYSA-N 2-(3-amino-6-iminoxanthen-9-yl)benzoic acid;hydrochloride Chemical compound [Cl-].C=12C=CC(=[NH2+])C=C2OC2=CC(N)=CC=C2C=1C1=CC=CC=C1C(O)=O JNGRENQDBKMCCR-UHFFFAOYSA-N 0.000 description 1
- IXZONVAEGFOVSF-UHFFFAOYSA-N 2-(5'-chloro-2'-phosphoryloxyphenyl)-6-chloro-4-(3H)-quinazolinone Chemical compound OP(O)(=O)OC1=CC=C(Cl)C=C1C1=NC(=O)C2=CC(Cl)=CC=C2N1 IXZONVAEGFOVSF-UHFFFAOYSA-N 0.000 description 1
- RUVJFMSQTCEAAB-UHFFFAOYSA-M 2-[3-[5,6-dichloro-1,3-bis[[4-(chloromethyl)phenyl]methyl]benzimidazol-2-ylidene]prop-1-enyl]-3-methyl-1,3-benzoxazol-3-ium;chloride Chemical compound [Cl-].O1C2=CC=CC=C2[N+](C)=C1C=CC=C(N(C1=CC(Cl)=C(Cl)C=C11)CC=2C=CC(CCl)=CC=2)N1CC1=CC=C(CCl)C=C1 RUVJFMSQTCEAAB-UHFFFAOYSA-M 0.000 description 1
- ALVZYHNBPIMLFM-UHFFFAOYSA-N 2-[4-[2-(4-carbamimidoylphenoxy)ethoxy]phenyl]-1h-indole-6-carboximidamide;dihydrochloride Chemical compound Cl.Cl.C1=CC(C(=N)N)=CC=C1OCCOC1=CC=C(C=2NC3=CC(=CC=C3C=2)C(N)=N)C=C1 ALVZYHNBPIMLFM-UHFFFAOYSA-N 0.000 description 1
- PDURUKZNVHEHGO-UHFFFAOYSA-N 2-[6-[bis(carboxymethyl)amino]-5-(carboxymethoxy)-1-benzofuran-2-yl]-1,3-oxazole-5-carboxylic acid Chemical compound O1C=2C=C(N(CC(O)=O)CC(O)=O)C(OCC(=O)O)=CC=2C=C1C1=NC=C(C(O)=O)O1 PDURUKZNVHEHGO-UHFFFAOYSA-N 0.000 description 1
- RJPSHDMGSVVHFA-UHFFFAOYSA-N 2-[carboxymethyl-[(7-hydroxy-4-methyl-2-oxochromen-8-yl)methyl]amino]acetic acid Chemical compound OC(=O)CN(CC(O)=O)CC1=C(O)C=CC2=C1OC(=O)C=C2C RJPSHDMGSVVHFA-UHFFFAOYSA-N 0.000 description 1
- ASJSAQIRZKANQN-CRCLSJGQSA-N 2-deoxy-D-ribose Chemical compound OC[C@@H](O)[C@@H](O)CC=O ASJSAQIRZKANQN-CRCLSJGQSA-N 0.000 description 1
- KPGXRSRHYNQIFN-UHFFFAOYSA-L 2-oxoglutarate(2-) Chemical compound [O-]C(=O)CCC(=O)C([O-])=O KPGXRSRHYNQIFN-UHFFFAOYSA-L 0.000 description 1
- KPGXRSRHYNQIFN-UHFFFAOYSA-N 2-oxoglutaric acid Chemical compound OC(=O)CCC(=O)C(O)=O KPGXRSRHYNQIFN-UHFFFAOYSA-N 0.000 description 1
- BCHZICNRHXRCHY-UHFFFAOYSA-N 2h-oxazine Chemical compound N1OC=CC=C1 BCHZICNRHXRCHY-UHFFFAOYSA-N 0.000 description 1
- WFOTVGYJMFZMTD-UHFFFAOYSA-N 3',10'-dihydroxyspiro[2-benzofuran-3,7'-benzo[c]xanthene]-1-one Chemical compound O1C(=O)C2=CC=CC=C2C21C(C=CC=1C3=CC=C(O)C=1)=C3OC1=CC(O)=CC=C21 WFOTVGYJMFZMTD-UHFFFAOYSA-N 0.000 description 1
- JRBJSXQPQWSCCF-UHFFFAOYSA-N 3,3'-Dimethoxybenzidine Chemical compound C1=C(N)C(OC)=CC(C=2C=C(OC)C(N)=CC=2)=C1 JRBJSXQPQWSCCF-UHFFFAOYSA-N 0.000 description 1
- KFKRXESVMDBTNQ-UHFFFAOYSA-N 3-[18-(2-carboxylatoethyl)-8,13-bis(1-hydroxyethyl)-3,7,12,17-tetramethyl-22,23-dihydroporphyrin-21,24-diium-2-yl]propanoate Chemical compound N1C2=C(C)C(C(C)O)=C1C=C(N1)C(C)=C(C(O)C)C1=CC(C(C)=C1CCC(O)=O)=NC1=CC(C(CCC(O)=O)=C1C)=NC1=C2 KFKRXESVMDBTNQ-UHFFFAOYSA-N 0.000 description 1
- HAPJROQJVSPKCJ-UHFFFAOYSA-N 3-[4-[2-[6-(dibutylamino)naphthalen-2-yl]ethenyl]pyridin-1-ium-1-yl]propane-1-sulfonate Chemical compound C1=CC2=CC(N(CCCC)CCCC)=CC=C2C=C1C=CC1=CC=[N+](CCCS([O-])(=O)=O)C=C1 HAPJROQJVSPKCJ-UHFFFAOYSA-N 0.000 description 1
- IXFSUSNUALIXLU-UHFFFAOYSA-N 3-[4-[2-[6-(dioctylamino)naphthalen-2-yl]ethenyl]pyridin-1-ium-1-yl]propane-1-sulfonate Chemical compound C1=CC2=CC(N(CCCCCCCC)CCCCCCCC)=CC=C2C=C1C=CC1=CC=[N+](CCCS([O-])(=O)=O)C=C1 IXFSUSNUALIXLU-UHFFFAOYSA-N 0.000 description 1
- QWZHDKGQKYEBKK-UHFFFAOYSA-N 3-aminochromen-2-one Chemical compound C1=CC=C2OC(=O)C(N)=CC2=C1 QWZHDKGQKYEBKK-UHFFFAOYSA-N 0.000 description 1
- PQJVKBUJXQTCGG-UHFFFAOYSA-N 3-n,6-n-dibenzylacridine-3,6-diamine;hydrochloride Chemical compound Cl.C=1C=CC=CC=1CNC(C=C1N=C2C=3)=CC=C1C=C2C=CC=3NCC1=CC=CC=C1 PQJVKBUJXQTCGG-UHFFFAOYSA-N 0.000 description 1
- FWBHETKCLVMNFS-UHFFFAOYSA-N 4',6-Diamino-2-phenylindol Chemical compound C1=CC(C(=N)N)=CC=C1C1=CC2=CC=C(C(N)=N)C=C2N1 FWBHETKCLVMNFS-UHFFFAOYSA-N 0.000 description 1
- YSCNMFDFYJUPEF-OWOJBTEDSA-N 4,4'-diisothiocyano-trans-stilbene-2,2'-disulfonic acid Chemical compound OS(=O)(=O)C1=CC(N=C=S)=CC=C1\C=C\C1=CC=C(N=C=S)C=C1S(O)(=O)=O YSCNMFDFYJUPEF-OWOJBTEDSA-N 0.000 description 1
- LHYQAEFVHIZFLR-UHFFFAOYSA-L 4-(4-diazonio-3-methoxyphenyl)-2-methoxybenzenediazonium;dichloride Chemical compound [Cl-].[Cl-].C1=C([N+]#N)C(OC)=CC(C=2C=C(OC)C([N+]#N)=CC=2)=C1 LHYQAEFVHIZFLR-UHFFFAOYSA-L 0.000 description 1
- BGNGWHSBYQYVRX-UHFFFAOYSA-N 4-(dimethylamino)benzaldehyde Chemical compound CN(C)C1=CC=C(C=O)C=C1 BGNGWHSBYQYVRX-UHFFFAOYSA-N 0.000 description 1
- YOQMJMHTHWYNIO-UHFFFAOYSA-N 4-[6-[16-[2-(2,4-dicarboxyphenyl)-5-methoxy-1-benzofuran-6-yl]-1,4,10,13-tetraoxa-7,16-diazacyclooctadec-7-yl]-5-methoxy-1-benzofuran-2-yl]benzene-1,3-dicarboxylic acid Chemical compound COC1=CC=2C=C(C=3C(=CC(=CC=3)C(O)=O)C(O)=O)OC=2C=C1N(CCOCCOCC1)CCOCCOCCN1C(C(=CC=1C=2)OC)=CC=1OC=2C1=CC=C(C(O)=O)C=C1C(O)=O YOQMJMHTHWYNIO-UHFFFAOYSA-N 0.000 description 1
- NZVGXJAQIQJIOY-UHFFFAOYSA-N 4-[6-[6-(4-methylpiperazin-1-yl)-1h-benzimidazol-2-yl]-1h-benzimidazol-2-yl]benzenesulfonamide;trihydrochloride Chemical compound Cl.Cl.Cl.C1CN(C)CCN1C1=CC=C(N=C(N2)C=3C=C4NC(=NC4=CC=3)C=3C=CC(=CC=3)S(N)(=O)=O)C2=C1 NZVGXJAQIQJIOY-UHFFFAOYSA-N 0.000 description 1
- WCKQPPQRFNHPRJ-UHFFFAOYSA-N 4-[[4-(dimethylamino)phenyl]diazenyl]benzoic acid Chemical compound C1=CC(N(C)C)=CC=C1N=NC1=CC=C(C(O)=O)C=C1 WCKQPPQRFNHPRJ-UHFFFAOYSA-N 0.000 description 1
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 description 1
- NGKANUCFHANCOY-UHFFFAOYSA-N 4-phenyloxadiazol-5-amine Chemical compound O1N=NC(C=2C=CC=CC=2)=C1N NGKANUCFHANCOY-UHFFFAOYSA-N 0.000 description 1
- JMHHECQPPFEVMU-UHFFFAOYSA-N 5-(dimethylamino)naphthalene-1-sulfonyl fluoride Chemical compound C1=CC=C2C(N(C)C)=CC=CC2=C1S(F)(=O)=O JMHHECQPPFEVMU-UHFFFAOYSA-N 0.000 description 1
- PQGCEDQWHSBAJP-TXICZTDVSA-N 5-O-phosphono-alpha-D-ribofuranosyl diphosphate Chemical compound O[C@H]1[C@@H](O)[C@@H](O[P@](O)(=O)OP(O)(O)=O)O[C@@H]1COP(O)(O)=O PQGCEDQWHSBAJP-TXICZTDVSA-N 0.000 description 1
- LQLQRFGHAALLLE-UHFFFAOYSA-N 5-bromouracil Chemical compound BrC1=CNC(=O)NC1=O LQLQRFGHAALLLE-UHFFFAOYSA-N 0.000 description 1
- NJYVEMPWNAYQQN-UHFFFAOYSA-N 5-carboxyfluorescein Chemical compound C12=CC=C(O)C=C2OC2=CC(O)=CC=C2C21OC(=O)C1=CC(C(=O)O)=CC=C21 NJYVEMPWNAYQQN-UHFFFAOYSA-N 0.000 description 1
- IPJDHSYCSQAODE-UHFFFAOYSA-N 5-chloromethylfluorescein diacetate Chemical compound O1C(=O)C2=CC(CCl)=CC=C2C21C1=CC=C(OC(C)=O)C=C1OC1=CC(OC(=O)C)=CC=C21 IPJDHSYCSQAODE-UHFFFAOYSA-N 0.000 description 1
- ZMERMCRYYFRELX-UHFFFAOYSA-N 5-{[2-(iodoacetamido)ethyl]amino}naphthalene-1-sulfonic acid Chemical compound C1=CC=C2C(S(=O)(=O)O)=CC=CC2=C1NCCNC(=O)CI ZMERMCRYYFRELX-UHFFFAOYSA-N 0.000 description 1
- VDBJCDWTNCKRTF-UHFFFAOYSA-N 6'-hydroxyspiro[2-benzofuran-3,9'-9ah-xanthene]-1,3'-dione Chemical compound O1C(=O)C2=CC=CC=C2C21C1C=CC(=O)C=C1OC1=CC(O)=CC=C21 VDBJCDWTNCKRTF-UHFFFAOYSA-N 0.000 description 1
- HWQQCFPHXPNXHC-UHFFFAOYSA-N 6-[(4,6-dichloro-1,3,5-triazin-2-yl)amino]-3',6'-dihydroxyspiro[2-benzofuran-3,9'-xanthene]-1-one Chemical compound C=1C(O)=CC=C2C=1OC1=CC(O)=CC=C1C2(C1=CC=2)OC(=O)C1=CC=2NC1=NC(Cl)=NC(Cl)=N1 HWQQCFPHXPNXHC-UHFFFAOYSA-N 0.000 description 1
- IDLISIVVYLGCKO-UHFFFAOYSA-N 6-carboxy-4',5'-dichloro-2',7'-dimethoxyfluorescein Chemical compound O1C(=O)C2=CC=C(C(O)=O)C=C2C21C1=CC(OC)=C(O)C(Cl)=C1OC1=C2C=C(OC)C(O)=C1Cl IDLISIVVYLGCKO-UHFFFAOYSA-N 0.000 description 1
- VWOLRKMFAJUZGM-UHFFFAOYSA-N 6-carboxyrhodamine 6G Chemical compound [Cl-].C=12C=C(C)C(NCC)=CC2=[O+]C=2C=C(NCC)C(C)=CC=2C=1C1=CC(C(O)=O)=CC=C1C(=O)OCC VWOLRKMFAJUZGM-UHFFFAOYSA-N 0.000 description 1
- YXHLJMWYDTXDHS-IRFLANFNSA-N 7-aminoactinomycin D Chemical compound C[C@H]1OC(=O)[C@H](C(C)C)N(C)C(=O)CN(C)C(=O)[C@@H]2CCCN2C(=O)[C@@H](C(C)C)NC(=O)[C@H]1NC(=O)C1=C(N)C(=O)C(C)=C2OC(C(C)=C(N)C=C3C(=O)N[C@@H]4C(=O)N[C@@H](C(N5CCC[C@H]5C(=O)N(C)CC(=O)N(C)[C@@H](C(C)C)C(=O)O[C@@H]4C)=O)C(C)C)=C3N=C21 YXHLJMWYDTXDHS-IRFLANFNSA-N 0.000 description 1
- 108700012813 7-aminoactinomycin D Proteins 0.000 description 1
- DDGMDTGNGDOUPX-UHFFFAOYSA-N 7-methyliminophenothiazin-3-amine;hydrochloride Chemical compound [Cl-].C1=C(N)C=C2SC3=CC(=[NH+]C)C=CC3=NC2=C1 DDGMDTGNGDOUPX-UHFFFAOYSA-N 0.000 description 1
- WJOLQGAMGUBOFS-UHFFFAOYSA-N 8-(cyclopentylmethyl)-2-[(4-fluorophenyl)methyl]-6-(4-hydroxyphenyl)imidazo[1,2-a]pyrazin-3-ol Chemical compound Oc1c(Cc2ccc(F)cc2)nc2c(CC3CCCC3)nc(cn12)-c1ccc(O)cc1 WJOLQGAMGUBOFS-UHFFFAOYSA-N 0.000 description 1
- YBLMZJSGNQTCLU-UHFFFAOYSA-N 8-(cyclopentylmethyl)-6-(4-hydroxyphenyl)-2-[(4-hydroxyphenyl)methyl]imidazo[1,2-a]pyrazin-3-ol Chemical compound Oc1c(Cc2ccc(O)cc2)nc2c(CC3CCCC3)nc(cn12)-c1ccc(O)cc1 YBLMZJSGNQTCLU-UHFFFAOYSA-N 0.000 description 1
- MEMQQZHHXCOKGG-UHFFFAOYSA-N 8-benzyl-2-[(4-fluorophenyl)methyl]-6-(4-hydroxyphenyl)imidazo[1,2-a]pyrazin-3-ol Chemical compound Oc1c(Cc2ccc(F)cc2)nc2c(Cc3ccccc3)nc(cn12)-c1ccc(O)cc1 MEMQQZHHXCOKGG-UHFFFAOYSA-N 0.000 description 1
- ONVKEAHBFKWZHK-UHFFFAOYSA-N 8-benzyl-6-(4-hydroxyphenyl)-2-(naphthalen-1-ylmethyl)imidazo[1,2-a]pyrazin-3-ol Chemical compound Oc1c(Cc2cccc3ccccc23)nc2c(Cc3ccccc3)nc(cn12)-c1ccc(O)cc1 ONVKEAHBFKWZHK-UHFFFAOYSA-N 0.000 description 1
- SGAOZXGJGQEBHA-UHFFFAOYSA-N 82344-98-7 Chemical compound C1CCN2CCCC(C=C3C4(OC(C5=CC(=CC=C54)N=C=S)=O)C4=C5)=C2C1=C3OC4=C1CCCN2CCCC5=C12 SGAOZXGJGQEBHA-UHFFFAOYSA-N 0.000 description 1
- TUCVPZNBGBRVRL-UHFFFAOYSA-N 9'-chloro-3',10'-dihydroxyspiro[2-benzofuran-3,7'-benzo[c]xanthene]-1-one Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC(Cl)=C(O)C=C1OC1=C2C=CC2=CC(O)=CC=C21 TUCVPZNBGBRVRL-UHFFFAOYSA-N 0.000 description 1
- ICISKFRDNHZCKS-UHFFFAOYSA-N 9-(4-aminophenyl)-2-methylacridin-3-amine;nitric acid Chemical compound O[N+]([O-])=O.C12=CC=CC=C2N=C2C=C(N)C(C)=CC2=C1C1=CC=C(N)C=C1 ICISKFRDNHZCKS-UHFFFAOYSA-N 0.000 description 1
- SRNWOUGRCWSEMX-TYASJMOZSA-N ADP-D-ribose Chemical compound C([C@H]1O[C@H]([C@@H]([C@@H]1O)O)N1C=2N=CN=C(C=2N=C1)N)OP(O)(=O)OP(O)(=O)OC[C@H]1OC(O)[C@H](O)[C@@H]1O SRNWOUGRCWSEMX-TYASJMOZSA-N 0.000 description 1
- SRNWOUGRCWSEMX-KEOHHSTQSA-N ADP-beta-D-ribose Chemical compound C([C@H]1O[C@H]([C@@H]([C@@H]1O)O)N1C=2N=CN=C(C=2N=C1)N)OP(O)(=O)OP(O)(=O)OC[C@H]1O[C@@H](O)[C@H](O)[C@@H]1O SRNWOUGRCWSEMX-KEOHHSTQSA-N 0.000 description 1
- 102000014156 AMP-Activated Protein Kinases Human genes 0.000 description 1
- 108010011376 AMP-Activated Protein Kinases Proteins 0.000 description 1
- 108010000239 Aequorin Proteins 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 description 1
- 208000032116 Autoimmune Experimental Encephalomyelitis Diseases 0.000 description 1
- MWNLTKCQHFZFHN-UHFFFAOYSA-N CBQCA reagent Chemical compound C1=CC(C(=O)O)=CC=C1C(=O)C1=CC2=CC=CC=C2N=C1C=O MWNLTKCQHFZFHN-UHFFFAOYSA-N 0.000 description 1
- 102000019034 Chemokines Human genes 0.000 description 1
- 108010012236 Chemokines Proteins 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 1
- UDMBCSSLTHHNCD-UHFFFAOYSA-N Coenzym Q(11) Natural products C1=NC=2C(N)=NC=NC=2N1C1OC(COP(O)(O)=O)C(O)C1O UDMBCSSLTHHNCD-UHFFFAOYSA-N 0.000 description 1
- ACTIUHUUMQJHFO-UHFFFAOYSA-N Coenzym Q10 Natural products COC1=C(OC)C(=O)C(CC=C(C)CCC=C(C)CCC=C(C)CCC=C(C)CCC=C(C)CCC=C(C)CCC=C(C)CCC=C(C)CCC=C(C)CCC=C(C)C)=C(C)C1=O ACTIUHUUMQJHFO-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 102000004127 Cytokines Human genes 0.000 description 1
- 108090000695 Cytokines Proteins 0.000 description 1
- RGHNJXZEOKUKBD-SQOUGZDYSA-M D-gluconate Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C([O-])=O RGHNJXZEOKUKBD-SQOUGZDYSA-M 0.000 description 1
- SHZGCJCMOBCMKK-UHFFFAOYSA-N D-mannomethylose Natural products CC1OC(O)C(O)C(O)C1O SHZGCJCMOBCMKK-UHFFFAOYSA-N 0.000 description 1
- WQZGKKKJIJFFOK-QTVWNMPRSA-N D-mannopyranose Chemical compound OC[C@H]1OC(O)[C@@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-QTVWNMPRSA-N 0.000 description 1
- ZAQJHHRNXZUBTE-NQXXGFSBSA-N D-ribulose Chemical compound OC[C@@H](O)[C@@H](O)C(=O)CO ZAQJHHRNXZUBTE-NQXXGFSBSA-N 0.000 description 1
- ZAQJHHRNXZUBTE-UHFFFAOYSA-N D-threo-2-Pentulose Natural products OCC(O)C(O)C(=O)CO ZAQJHHRNXZUBTE-UHFFFAOYSA-N 0.000 description 1
- BRDJPCFGLMKJRU-UHFFFAOYSA-N DDAO Chemical compound ClC1=C(O)C(Cl)=C2C(C)(C)C3=CC(=O)C=CC3=NC2=C1 BRDJPCFGLMKJRU-UHFFFAOYSA-N 0.000 description 1
- 102000052510 DNA-Binding Proteins Human genes 0.000 description 1
- 101710096438 DNA-binding protein Proteins 0.000 description 1
- XPDXVDYUQZHFPV-UHFFFAOYSA-N Dansyl Chloride Chemical compound C1=CC=C2C(N(C)C)=CC=CC2=C1S(Cl)(=O)=O XPDXVDYUQZHFPV-UHFFFAOYSA-N 0.000 description 1
- 238000001061 Dunnett's test Methods 0.000 description 1
- 108091005941 EBFP Proteins 0.000 description 1
- 108091005942 ECFP Proteins 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 229910052693 Europium Inorganic materials 0.000 description 1
- YPZRHBJKEMOYQH-UYBVJOGSSA-N FADH2 Chemical compound C1=NC2=C(N)N=CN=C2N1[C@@H]([C@H](O)[C@@H]1O)O[C@@H]1COP(O)(=O)OP(O)(=O)OC[C@@H](O)[C@@H](O)[C@@H](O)CN1C(NC(=O)NC2=O)=C2NC2=C1C=C(C)C(C)=C2 YPZRHBJKEMOYQH-UYBVJOGSSA-N 0.000 description 1
- OUVXYXNWSVIOSJ-UHFFFAOYSA-N Fluo-4 Chemical compound CC1=CC=C(N(CC(O)=O)CC(O)=O)C(OCCOC=2C(=CC=C(C=2)C2=C3C=C(F)C(=O)C=C3OC3=CC(O)=C(F)C=C32)N(CC(O)=O)CC(O)=O)=C1 OUVXYXNWSVIOSJ-UHFFFAOYSA-N 0.000 description 1
- 229930091371 Fructose Natural products 0.000 description 1
- 239000005715 Fructose Substances 0.000 description 1
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 description 1
- PNNNRSAQSRJVSB-SLPGGIOYSA-N Fucose Natural products C[C@H](O)[C@@H](O)[C@H](O)[C@H](O)C=O PNNNRSAQSRJVSB-SLPGGIOYSA-N 0.000 description 1
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 1
- 102220566467 GDNF family receptor alpha-1_S65A_mutation Human genes 0.000 description 1
- 102220566453 GDNF family receptor alpha-1_Y66F_mutation Human genes 0.000 description 1
- 102220566455 GDNF family receptor alpha-1_Y66W_mutation Human genes 0.000 description 1
- 229920002527 Glycogen Polymers 0.000 description 1
- 102000003886 Glycoproteins Human genes 0.000 description 1
- 108090000288 Glycoproteins Proteins 0.000 description 1
- 102000005744 Glycoside Hydrolases Human genes 0.000 description 1
- 108010031186 Glycoside Hydrolases Proteins 0.000 description 1
- SQUHHTBVTRBESD-UHFFFAOYSA-N Hexa-Ac-myo-Inositol Natural products CC(=O)OC1C(OC(C)=O)C(OC(C)=O)C(OC(C)=O)C(OC(C)=O)C1OC(C)=O SQUHHTBVTRBESD-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- UGQMRVRMYYASKQ-UHFFFAOYSA-N Hypoxanthine nucleoside Natural products OC1C(O)C(CO)OC1N1C(NC=NC2=O)=C2N=C1 UGQMRVRMYYASKQ-UHFFFAOYSA-N 0.000 description 1
- 101710123134 Ice-binding protein Proteins 0.000 description 1
- SHZGCJCMOBCMKK-DHVFOXMCSA-N L-fucopyranose Chemical compound C[C@@H]1OC(O)[C@@H](O)[C@H](O)[C@@H]1O SHZGCJCMOBCMKK-DHVFOXMCSA-N 0.000 description 1
- JVTAAEKCZFNVCJ-UHFFFAOYSA-M Lactate Chemical compound CC(O)C([O-])=O JVTAAEKCZFNVCJ-UHFFFAOYSA-M 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- 108010047357 Luminescent Proteins Proteins 0.000 description 1
- 102000006830 Luminescent Proteins Human genes 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 229920002774 Maltodextrin Polymers 0.000 description 1
- 239000005913 Maltodextrin Substances 0.000 description 1
- GUBGYTABKSRVRQ-PICCSMPSSA-N Maltose Natural products O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@@H](CO)OC(O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-PICCSMPSSA-N 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 241000699670 Mus sp. Species 0.000 description 1
- 241000187479 Mycobacterium tuberculosis Species 0.000 description 1
- 230000006181 N-acylation Effects 0.000 description 1
- 108091008099 NLRP3 inflammasome Proteins 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 230000006179 O-acylation Effects 0.000 description 1
- 108091034117 Oligonucleotide Proteins 0.000 description 1
- 229940125941 PARP1/2 inhibitor Drugs 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- QBKMWMZYHZILHF-UHFFFAOYSA-L Po-Pro-1 Chemical compound [I-].[I-].O1C2=CC=CC=C2[N+](C)=C1C=C1C=CN(CCC[N+](C)(C)C)C=C1 QBKMWMZYHZILHF-UHFFFAOYSA-L 0.000 description 1
- BOLJGYHEBJNGBV-UHFFFAOYSA-J PoPo-1 Chemical compound [I-].[I-].[I-].[I-].O1C2=CC=CC=C2[N+](C)=C1C=C1C=CN(CCC[N+](C)(C)CCC[N+](C)(C)CCCN2C=CC(=CC3=[N+](C4=CC=CC=C4O3)C)C=C2)C=C1 BOLJGYHEBJNGBV-UHFFFAOYSA-J 0.000 description 1
- GYPIAQJSRPTNTI-UHFFFAOYSA-J PoPo-3 Chemical compound [I-].[I-].[I-].[I-].O1C2=CC=CC=C2[N+](C)=C1C=CC=C1C=CN(CCC[N+](C)(C)CCC[N+](C)(C)CCCN2C=CC(=CC=CC3=[N+](C4=CC=CC=C4O3)C)C=C2)C=C1 GYPIAQJSRPTNTI-UHFFFAOYSA-J 0.000 description 1
- 108010064218 Poly (ADP-Ribose) Polymerase-1 Proteins 0.000 description 1
- 102100023712 Poly [ADP-ribose] polymerase 1 Human genes 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- LCTONWCANYUPML-UHFFFAOYSA-M Pyruvate Chemical compound CC(=O)C([O-])=O LCTONWCANYUPML-UHFFFAOYSA-M 0.000 description 1
- BDJDTKYGKHEMFF-UHFFFAOYSA-M QSY7 succinimidyl ester Chemical compound [Cl-].C=1C=C2C(C=3C(=CC=CC=3)S(=O)(=O)N3CCC(CC3)C(=O)ON3C(CCC3=O)=O)=C3C=C\C(=[N+](\C)C=4C=CC=CC=4)C=C3OC2=CC=1N(C)C1=CC=CC=C1 BDJDTKYGKHEMFF-UHFFFAOYSA-M 0.000 description 1
- 241000700159 Rattus Species 0.000 description 1
- KAEGGIFPLJZUOZ-UHFFFAOYSA-N Renilla luciferin Chemical compound C1=CC(O)=CC=C1C(N1)=CN2C(=O)C(CC=3C=CC=CC=3)=NC2=C1CC1=CC=CC=C1 KAEGGIFPLJZUOZ-UHFFFAOYSA-N 0.000 description 1
- 230000006191 S-acylation Effects 0.000 description 1
- 241001223867 Shewanella oneidensis Species 0.000 description 1
- 229930182558 Sterol Natural products 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 239000004098 Tetracycline Substances 0.000 description 1
- 229920000398 Thiolyte Polymers 0.000 description 1
- DPXHITFUCHFTKR-UHFFFAOYSA-L To-Pro-1 Chemical compound [I-].[I-].S1C2=CC=CC=C2[N+](C)=C1C=C1C2=CC=CC=C2N(CCC[N+](C)(C)C)C=C1 DPXHITFUCHFTKR-UHFFFAOYSA-L 0.000 description 1
- QHNORJFCVHUPNH-UHFFFAOYSA-L To-Pro-3 Chemical compound [I-].[I-].S1C2=CC=CC=C2[N+](C)=C1C=CC=C1C2=CC=CC=C2N(CCC[N+](C)(C)C)C=C1 QHNORJFCVHUPNH-UHFFFAOYSA-L 0.000 description 1
- MZZINWWGSYUHGU-UHFFFAOYSA-J ToTo-1 Chemical compound [I-].[I-].[I-].[I-].C12=CC=CC=C2C(C=C2N(C3=CC=CC=C3S2)C)=CC=[N+]1CCC[N+](C)(C)CCC[N+](C)(C)CCC[N+](C1=CC=CC=C11)=CC=C1C=C1N(C)C2=CC=CC=C2S1 MZZINWWGSYUHGU-UHFFFAOYSA-J 0.000 description 1
- 102220615016 Transcription elongation regulator 1_S65C_mutation Human genes 0.000 description 1
- HDTRYLNUVZCQOY-WSWWMNSNSA-N Trehalose Natural products O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-WSWWMNSNSA-N 0.000 description 1
- 102100034593 Tripartite motif-containing protein 26 Human genes 0.000 description 1
- APJYDQYYACXCRM-UHFFFAOYSA-N Tryptamine Natural products C1=CC=C2C(CCN)=CNC2=C1 APJYDQYYACXCRM-UHFFFAOYSA-N 0.000 description 1
- 101710107540 Type-2 ice-structuring protein Proteins 0.000 description 1
- IVOMOUWHDPKRLL-UHFFFAOYSA-N UNPD107823 Natural products O1C2COP(O)(=O)OC2C(O)C1N1C(N=CN=C2N)=C2N=C1 IVOMOUWHDPKRLL-UHFFFAOYSA-N 0.000 description 1
- ULHRKLSNHXXJLO-UHFFFAOYSA-L Yo-Pro-1 Chemical compound [I-].[I-].C1=CC=C2C(C=C3N(C4=CC=CC=C4O3)C)=CC=[N+](CCC[N+](C)(C)C)C2=C1 ULHRKLSNHXXJLO-UHFFFAOYSA-L 0.000 description 1
- ZVUUXEGAYWQURQ-UHFFFAOYSA-L Yo-Pro-3 Chemical compound [I-].[I-].O1C2=CC=CC=C2[N+](C)=C1C=CC=C1C2=CC=CC=C2N(CCC[N+](C)(C)C)C=C1 ZVUUXEGAYWQURQ-UHFFFAOYSA-L 0.000 description 1
- GRRMZXFOOGQMFA-UHFFFAOYSA-J YoYo-1 Chemical compound [I-].[I-].[I-].[I-].C12=CC=CC=C2C(C=C2N(C3=CC=CC=C3O2)C)=CC=[N+]1CCC[N+](C)(C)CCC[N+](C)(C)CCC[N+](C1=CC=CC=C11)=CC=C1C=C1N(C)C2=CC=CC=C2O1 GRRMZXFOOGQMFA-UHFFFAOYSA-J 0.000 description 1
- JSBNEYNPYQFYNM-UHFFFAOYSA-J YoYo-3 Chemical compound [I-].[I-].[I-].[I-].C12=CC=CC=C2C(C=CC=C2N(C3=CC=CC=C3O2)C)=CC=[N+]1CCC(=[N+](C)C)CCCC(=[N+](C)C)CC[N+](C1=CC=CC=C11)=CC=C1C=CC=C1N(C)C2=CC=CC=C2O1 JSBNEYNPYQFYNM-UHFFFAOYSA-J 0.000 description 1
- APERIXFHHNDFQV-UHFFFAOYSA-N [2-[2-[2-[bis(carboxymethyl)amino]-5-methylphenoxy]ethoxy]-4-[3,6-bis(dimethylamino)xanthen-9-ylidene]cyclohexa-2,5-dien-1-ylidene]-bis(carboxymethyl)azanium;chloride Chemical compound [Cl-].C12=CC=C(N(C)C)C=C2OC2=CC(N(C)C)=CC=C2C1=C(C=1)C=CC(=[N+](CC(O)=O)CC(O)=O)C=1OCCOC1=CC(C)=CC=C1N(CC(O)=O)CC(O)=O APERIXFHHNDFQV-UHFFFAOYSA-N 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 125000002777 acetyl group Chemical group [H]C([H])([H])C(*)=O 0.000 description 1
- 230000021736 acetylation Effects 0.000 description 1
- 238000006640 acetylation reaction Methods 0.000 description 1
- RZUBARUFLYGOGC-MTHOTQAESA-L acid fuchsin Chemical compound [Na+].[Na+].[O-]S(=O)(=O)C1=C(N)C(C)=CC(C(=C\2C=C(C(=[NH2+])C=C/2)S([O-])(=O)=O)\C=2C=C(C(N)=CC=2)S([O-])(=O)=O)=C1 RZUBARUFLYGOGC-MTHOTQAESA-L 0.000 description 1
- 229940091179 aconitate Drugs 0.000 description 1
- GTZCVFVGUGFEME-UHFFFAOYSA-N aconitic acid Chemical compound OC(=O)CC(C(O)=O)=CC(O)=O GTZCVFVGUGFEME-UHFFFAOYSA-N 0.000 description 1
- DPKHZNPWBDQZCN-UHFFFAOYSA-N acridine orange free base Chemical compound C1=CC(N(C)C)=CC2=NC3=CC(N(C)C)=CC=C3C=C21 DPKHZNPWBDQZCN-UHFFFAOYSA-N 0.000 description 1
- IVHDZUFNZLETBM-IWSIBTJSSA-N acridine red 3B Chemical compound [Cl-].C1=C\C(=[NH+]/C)C=C2OC3=CC(NC)=CC=C3C=C21 IVHDZUFNZLETBM-IWSIBTJSSA-N 0.000 description 1
- BGLGAKMTYHWWKW-UHFFFAOYSA-N acridine yellow Chemical compound [H+].[Cl-].CC1=C(N)C=C2N=C(C=C(C(C)=C3)N)C3=CC2=C1 BGLGAKMTYHWWKW-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 230000010933 acylation Effects 0.000 description 1
- 238000005917 acylation reaction Methods 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- LNQVTSROQXJCDD-UHFFFAOYSA-N adenosine monophosphate Natural products C1=NC=2C(N)=NC=NC=2N1C1OC(CO)C(OP(O)(O)=O)C1O LNQVTSROQXJCDD-UHFFFAOYSA-N 0.000 description 1
- 239000001361 adipic acid Substances 0.000 description 1
- 235000011037 adipic acid Nutrition 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- RGCKGOZRHPZPFP-UHFFFAOYSA-N alizarin Chemical compound C1=CC=C2C(=O)C3=C(O)C(O)=CC=C3C(=O)C2=C1 RGCKGOZRHPZPFP-UHFFFAOYSA-N 0.000 description 1
- PWIGYBONXWGOQE-UHFFFAOYSA-N alizarin complexone Chemical compound O=C1C2=CC=CC=C2C(=O)C2=C1C=C(CN(CC(O)=O)CC(=O)O)C(O)=C2O PWIGYBONXWGOQE-UHFFFAOYSA-N 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 230000029936 alkylation Effects 0.000 description 1
- 238000005804 alkylation reaction Methods 0.000 description 1
- 230000003281 allosteric effect Effects 0.000 description 1
- HDTRYLNUVZCQOY-LIZSDCNHSA-N alpha,alpha-trehalose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-LIZSDCNHSA-N 0.000 description 1
- WQZGKKKJIJFFOK-PHYPRBDBSA-N alpha-D-galactose Chemical compound OC[C@H]1O[C@H](O)[C@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-PHYPRBDBSA-N 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 238000000540 analysis of variance Methods 0.000 description 1
- JFCQEDHGNNZCLN-UHFFFAOYSA-N anhydrous glutaric acid Natural products OC(=O)CCCC(O)=O JFCQEDHGNNZCLN-UHFFFAOYSA-N 0.000 description 1
- 238000010171 animal model Methods 0.000 description 1
- RJGDLRCDCYRQOQ-UHFFFAOYSA-N anthrone Chemical compound C1=CC=C2C(=O)C3=CC=CC=C3CC2=C1 RJGDLRCDCYRQOQ-UHFFFAOYSA-N 0.000 description 1
- 230000000692 anti-sense effect Effects 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 235000006708 antioxidants Nutrition 0.000 description 1
- 125000000637 arginyl group Chemical group N[C@@H](CCCNC(N)=N)C(=O)* 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- JPIYZTWMUGTEHX-UHFFFAOYSA-N auramine O free base Chemical compound C1=CC(N(C)C)=CC=C1C(=N)C1=CC=C(N(C)C)C=C1 JPIYZTWMUGTEHX-UHFFFAOYSA-N 0.000 description 1
- 230000001363 autoimmune Effects 0.000 description 1
- 230000004900 autophagic degradation Effects 0.000 description 1
- PGWTYMLATMNCCZ-UHFFFAOYSA-M azure A Chemical compound [Cl-].C1=CC(N)=CC2=[S+]C3=CC(N(C)C)=CC=C3N=C21 PGWTYMLATMNCCZ-UHFFFAOYSA-M 0.000 description 1
- KFZNPGQYVZZSNV-UHFFFAOYSA-M azure B Chemical compound [Cl-].C1=CC(N(C)C)=CC2=[S+]C3=CC(NC)=CC=C3N=C21 KFZNPGQYVZZSNV-UHFFFAOYSA-M 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- DZBUGLKDJFMEHC-UHFFFAOYSA-N benzoquinolinylidene Natural products C1=CC=CC2=CC3=CC=CC=C3N=C21 DZBUGLKDJFMEHC-UHFFFAOYSA-N 0.000 description 1
- OJVABJMSSDUECT-UHFFFAOYSA-L berberin sulfate Chemical compound [O-]S([O-])(=O)=O.C1=C2CC[N+]3=CC4=C(OC)C(OC)=CC=C4C=C3C2=CC2=C1OCO2.C1=C2CC[N+]3=CC4=C(OC)C(OC)=CC=C4C=C3C2=CC2=C1OCO2 OJVABJMSSDUECT-UHFFFAOYSA-L 0.000 description 1
- GUBGYTABKSRVRQ-QUYVBRFLSA-N beta-maltose Chemical compound OC[C@H]1O[C@H](O[C@H]2[C@H](O)[C@@H](O)[C@H](O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@@H]1O GUBGYTABKSRVRQ-QUYVBRFLSA-N 0.000 description 1
- 230000008436 biogenesis Effects 0.000 description 1
- 230000008827 biological function Effects 0.000 description 1
- 230000009141 biological interaction Effects 0.000 description 1
- 230000008512 biological response Effects 0.000 description 1
- 230000006696 biosynthetic metabolic pathway Effects 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- 108091005948 blue fluorescent proteins Proteins 0.000 description 1
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 1
- 210000004899 c-terminal region Anatomy 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- IDMLRIMDYVWWRJ-UHFFFAOYSA-N calcium crimson Chemical compound CC(=O)OCOC(=O)CN(CC(=O)OCOC(C)=O)C1=CC=CC=C1OCCOC1=CC(NS(=O)(=O)C=2C=C(C(C=3C4=CC=5CCCN6CCCC(C=56)=C4OC4=C5C6=[N+](CCC5)CCCC6=CC4=3)=CC=2)S([O-])(=O)=O)=CC=C1N(CC(=O)OCOC(C)=O)CC(=O)OCOC(C)=O IDMLRIMDYVWWRJ-UHFFFAOYSA-N 0.000 description 1
- AMKVJCBQCWSOLQ-UHFFFAOYSA-H calcium green 1 Chemical compound [K+].[K+].[K+].[K+].[K+].[K+].[O-]C(=O)CN(CC([O-])=O)C1=CC=CC=C1OCCOC1=CC(NC(=O)C=2C=C3C(C4(C5=CC(Cl)=C([O-])C=C5OC5=CC([O-])=C(Cl)C=C54)OC3=O)=CC=2)=CC=C1N(CC([O-])=O)CC([O-])=O AMKVJCBQCWSOLQ-UHFFFAOYSA-H 0.000 description 1
- 230000009460 calcium influx Effects 0.000 description 1
- NMUGYJRMGWBCPU-UHFFFAOYSA-N calcium orange Chemical compound C=12C=CC(=[N+](C)C)C=C2OC2=CC(N(C)C)=CC=C2C=1C(C(=C1)C([O-])=O)=CC=C1NC(=S)NC(C=1)=CC=C(N(CC(=O)OCOC(C)=O)CC(=O)OCOC(C)=O)C=1OCCOC1=CC=CC=C1N(CC(=O)OCOC(C)=O)CC(=O)OCOC(C)=O NMUGYJRMGWBCPU-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 150000003943 catecholamines Chemical class 0.000 description 1
- 238000000423 cell based assay Methods 0.000 description 1
- 230000022131 cell cycle Effects 0.000 description 1
- 238000010822 cell death assay Methods 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 238000001516 cell proliferation assay Methods 0.000 description 1
- 238000003570 cell viability assay Methods 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 230000005754 cellular signaling Effects 0.000 description 1
- 229940106189 ceramide Drugs 0.000 description 1
- NAXWWTPJXAIEJE-UHFFFAOYSA-N chembl1398678 Chemical compound C1=CC=CC2=C(O)C(N=NC3=CC=C(C=C3)C3=NC4=CC=C(C(=C4S3)S(O)(=O)=O)C)=CC(S(O)(=O)=O)=C21 NAXWWTPJXAIEJE-UHFFFAOYSA-N 0.000 description 1
- HQKOBNMULFASAN-UHFFFAOYSA-N chembl1991515 Chemical compound OC1=CC=C(Cl)C=C1N=NC1=C(O)C=CC2=CC=CC=C12 HQKOBNMULFASAN-UHFFFAOYSA-N 0.000 description 1
- VYXSBFYARXAAKO-WTKGSRSZSA-N chembl402140 Chemical compound Cl.C1=2C=C(C)C(NCC)=CC=2OC2=C\C(=N/CC)C(C)=CC2=C1C1=CC=CC=C1C(=O)OCC VYXSBFYARXAAKO-WTKGSRSZSA-N 0.000 description 1
- 229910052729 chemical element Inorganic materials 0.000 description 1
- 238000007385 chemical modification Methods 0.000 description 1
- 229930002875 chlorophyll Natural products 0.000 description 1
- 235000019804 chlorophyll Nutrition 0.000 description 1
- ATNHDLDRLWWWCB-AENOIHSZSA-M chlorophyll a Chemical compound C1([C@@H](C(=O)OC)C(=O)C2=C3C)=C2N2C3=CC(C(CC)=C3C)=[N+]4C3=CC3=C(C=C)C(C)=C5N3[Mg-2]42[N+]2=C1[C@@H](CCC(=O)OC\C=C(/C)CCC[C@H](C)CCC[C@H](C)CCCC(C)C)[C@H](C)C2=C5 ATNHDLDRLWWWCB-AENOIHSZSA-M 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 239000013611 chromosomal DNA Substances 0.000 description 1
- 229940001468 citrate Drugs 0.000 description 1
- 238000010226 confocal imaging Methods 0.000 description 1
- 238000004624 confocal microscopy Methods 0.000 description 1
- 230000009133 cooperative interaction Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 229960000956 coumarin Drugs 0.000 description 1
- 235000001671 coumarin Nutrition 0.000 description 1
- AFYCEAFSNDLKSX-UHFFFAOYSA-N coumarin 460 Chemical compound CC1=CC(=O)OC2=CC(N(CC)CC)=CC=C21 AFYCEAFSNDLKSX-UHFFFAOYSA-N 0.000 description 1
- 125000000853 cresyl group Chemical group C1(=CC=C(C=C1)C)* 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 229940104302 cytosine Drugs 0.000 description 1
- 230000001086 cytosolic effect Effects 0.000 description 1
- 231100000135 cytotoxicity Toxicity 0.000 description 1
- 230000003013 cytotoxicity Effects 0.000 description 1
- 238000002784 cytotoxicity assay Methods 0.000 description 1
- 231100000263 cytotoxicity test Toxicity 0.000 description 1
- 125000001295 dansyl group Chemical group [H]C1=C([H])C(N(C([H])([H])[H])C([H])([H])[H])=C2C([H])=C([H])C([H])=C(C2=C1[H])S(*)(=O)=O 0.000 description 1
- SENPVEZBRZQVST-HISDBWNOSA-L deamido-NAD(2-) Chemical compound [N+]1([C@@H]2O[C@@H]([C@H]([C@H]2O)O)COP([O-])(=O)OP([O-])(=O)OC[C@H]2O[C@H]([C@@H]([C@@H]2O)O)N2C=3N=CN=C(C=3N=C2)N)=CC=CC(C([O-])=O)=C1 SENPVEZBRZQVST-HISDBWNOSA-L 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 239000008121 dextrose Substances 0.000 description 1
- 206010012601 diabetes mellitus Diseases 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- JVXZRNYCRFIEGV-UHFFFAOYSA-M dilC18(3) dye Chemical compound [O-]Cl(=O)(=O)=O.CC1(C)C2=CC=CC=C2N(CCCCCCCCCCCCCCCCCC)C1=CC=CC1=[N+](CCCCCCCCCCCCCCCCCC)C2=CC=CC=C2C1(C)C JVXZRNYCRFIEGV-UHFFFAOYSA-M 0.000 description 1
- ZQSBJPAQPRVNHU-UHFFFAOYSA-M dilC18(5) dye Chemical compound [O-]Cl(=O)(=O)=O.CC1(C)C2=CC=CC=C2N(CCCCCCCCCCCCCCCCCC)C1=CC=CC=CC1=[N+](CCCCCCCCCCCCCCCCCC)C2=CC=CC=C2C1(C)C ZQSBJPAQPRVNHU-UHFFFAOYSA-M 0.000 description 1
- 208000037765 diseases and disorders Diseases 0.000 description 1
- BMAUDWDYKLUBPY-UHFFFAOYSA-L disodium;3-[[4-[(4,6-dichloro-1,3,5-triazin-2-yl)amino]-2-methylphenyl]diazenyl]naphthalene-1,5-disulfonate Chemical compound [Na+].[Na+].C=1C=C(N=NC=2C=C3C(=CC=CC3=C(C=2)S([O-])(=O)=O)S([O-])(=O)=O)C(C)=CC=1NC1=NC(Cl)=NC(Cl)=N1 BMAUDWDYKLUBPY-UHFFFAOYSA-L 0.000 description 1
- BDYOOAPDMVGPIQ-QDBORUFSSA-L disodium;5-[(4-anilino-6-methoxy-1,3,5-triazin-2-yl)amino]-2-[(e)-2-[4-[(4-anilino-6-methoxy-1,3,5-triazin-2-yl)amino]-2-sulfonatophenyl]ethenyl]benzenesulfonate Chemical compound [Na+].[Na+].N=1C(NC=2C=C(C(\C=C\C=3C(=CC(NC=4N=C(OC)N=C(NC=5C=CC=CC=5)N=4)=CC=3)S([O-])(=O)=O)=CC=2)S([O-])(=O)=O)=NC(OC)=NC=1NC1=CC=CC=C1 BDYOOAPDMVGPIQ-QDBORUFSSA-L 0.000 description 1
- MWEQTWJABOLLOS-UHFFFAOYSA-L disodium;[[[5-(6-aminopurin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-oxidophosphoryl] hydrogen phosphate;trihydrate Chemical compound O.O.O.[Na+].[Na+].C1=NC=2C(N)=NC=NC=2N1C1OC(COP(O)(=O)OP([O-])(=O)OP(O)([O-])=O)C(O)C1O MWEQTWJABOLLOS-UHFFFAOYSA-L 0.000 description 1
- 231100000673 dose–response relationship Toxicity 0.000 description 1
- 230000000857 drug effect Effects 0.000 description 1
- 230000008482 dysregulation Effects 0.000 description 1
- 230000002526 effect on cardiovascular system Effects 0.000 description 1
- 230000002900 effect on cell Effects 0.000 description 1
- 229910052876 emerald Inorganic materials 0.000 description 1
- 239000010976 emerald Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 108010048367 enhanced green fluorescent protein Proteins 0.000 description 1
- 230000009088 enzymatic function Effects 0.000 description 1
- YQGOJNYOYNNSMM-UHFFFAOYSA-N eosin Chemical compound [Na+].OC(=O)C1=CC=CC=C1C1=C2C=C(Br)C(=O)C(Br)=C2OC2=C(Br)C(O)=C(Br)C=C21 YQGOJNYOYNNSMM-UHFFFAOYSA-N 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- ZMMJGEGLRURXTF-UHFFFAOYSA-N ethidium bromide Chemical compound [Br-].C12=CC(N)=CC=C2C2=CC=C(N)C=C2[N+](CC)=C1C1=CC=CC=C1 ZMMJGEGLRURXTF-UHFFFAOYSA-N 0.000 description 1
- 229960005542 ethidium bromide Drugs 0.000 description 1
- 210000003527 eukaryotic cell Anatomy 0.000 description 1
- 208000012997 experimental autoimmune encephalomyelitis Diseases 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 229940043259 farnesol Drugs 0.000 description 1
- 229930002886 farnesol Natural products 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- VWWQXMAJTJZDQX-UYBVJOGSSA-N flavin adenine dinucleotide Chemical compound C1=NC2=C(N)N=CN=C2N1[C@@H]([C@H](O)[C@@H]1O)O[C@@H]1CO[P@](O)(=O)O[P@@](O)(=O)OC[C@@H](O)[C@@H](O)[C@@H](O)CN1C2=NC(=O)NC(=O)C2=NC2=C1C=C(C)C(C)=C2 VWWQXMAJTJZDQX-UYBVJOGSSA-N 0.000 description 1
- 229940093632 flavin-adenine dinucleotide Drugs 0.000 description 1
- GVEPBJHOBDJJJI-UHFFFAOYSA-N fluoranthrene Natural products C1=CC(C2=CC=CC=C22)=C3C2=CC=CC3=C1 GVEPBJHOBDJJJI-UHFFFAOYSA-N 0.000 description 1
- 239000007850 fluorescent dye Substances 0.000 description 1
- 108010021843 fluorescent protein 583 Proteins 0.000 description 1
- 230000022244 formylation Effects 0.000 description 1
- 238000006170 formylation reaction Methods 0.000 description 1
- 238000013467 fragmentation Methods 0.000 description 1
- 238000006062 fragmentation reaction Methods 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 229930182830 galactose Natural products 0.000 description 1
- 102000034356 gene-regulatory proteins Human genes 0.000 description 1
- 108091006104 gene-regulatory proteins Proteins 0.000 description 1
- XWRJRXQNOHXIOX-UHFFFAOYSA-N geranylgeraniol Natural products CC(C)=CCCC(C)=CCOCC=C(C)CCC=C(C)C XWRJRXQNOHXIOX-UHFFFAOYSA-N 0.000 description 1
- OJISWRZIEWCUBN-UHFFFAOYSA-N geranylnerol Natural products CC(C)=CCCC(C)=CCCC(C)=CCCC(C)=CCO OJISWRZIEWCUBN-UHFFFAOYSA-N 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229940050410 gluconate Drugs 0.000 description 1
- 230000004110 gluconeogenesis Effects 0.000 description 1
- 230000004153 glucose metabolism Effects 0.000 description 1
- 230000036252 glycation Effects 0.000 description 1
- 150000002313 glycerolipids Chemical class 0.000 description 1
- 150000002327 glycerophospholipids Chemical class 0.000 description 1
- 229940096919 glycogen Drugs 0.000 description 1
- 125000003147 glycosyl group Chemical group 0.000 description 1
- 230000013595 glycosylation Effects 0.000 description 1
- 238000006206 glycosylation reaction Methods 0.000 description 1
- 230000006095 glypiation Effects 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 235000012701 green S Nutrition 0.000 description 1
- WDPIZEKLJKBSOZ-UHFFFAOYSA-M green s Chemical compound [Na+].C1=CC(N(C)C)=CC=C1C(C=1C2=CC=C(C=C2C=C(C=1O)S([O-])(=O)=O)S([O-])(=O)=O)=C1C=CC(=[N+](C)C)C=C1 WDPIZEKLJKBSOZ-UHFFFAOYSA-M 0.000 description 1
- 239000003102 growth factor Substances 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- IPCSVZSSVZVIGE-UHFFFAOYSA-M hexadecanoate Chemical compound CCCCCCCCCCCCCCCC([O-])=O IPCSVZSSVZVIGE-UHFFFAOYSA-M 0.000 description 1
- 235000009200 high fat diet Nutrition 0.000 description 1
- 230000013632 homeostatic process Effects 0.000 description 1
- 230000033444 hydroxylation Effects 0.000 description 1
- 238000005805 hydroxylation reaction Methods 0.000 description 1
- 238000012405 in silico analysis Methods 0.000 description 1
- 238000000099 in vitro assay Methods 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 238000005462 in vivo assay Methods 0.000 description 1
- 208000027866 inflammatory disease Diseases 0.000 description 1
- 230000002757 inflammatory effect Effects 0.000 description 1
- 230000004941 influx Effects 0.000 description 1
- CDAISMWEOUEBRE-GPIVLXJGSA-N inositol Chemical compound O[C@H]1[C@H](O)[C@@H](O)[C@H](O)[C@H](O)[C@@H]1O CDAISMWEOUEBRE-GPIVLXJGSA-N 0.000 description 1
- 229960000367 inositol Drugs 0.000 description 1
- 230000026045 iodination Effects 0.000 description 1
- 238000006192 iodination reaction Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- ODBLHEXUDAPZAU-UHFFFAOYSA-N isocitric acid Chemical compound OC(=O)C(O)C(C(O)=O)CC(O)=O ODBLHEXUDAPZAU-UHFFFAOYSA-N 0.000 description 1
- 230000006122 isoprenylation Effects 0.000 description 1
- 229940001447 lactate Drugs 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 239000011133 lead Substances 0.000 description 1
- 108020001756 ligand binding domains Proteins 0.000 description 1
- 230000037356 lipid metabolism Effects 0.000 description 1
- 230000000598 lipoate effect Effects 0.000 description 1
- AGBQKNBQESQNJD-UHFFFAOYSA-N lipoic acid Chemical compound OC(=O)CCCCC1CCSS1 AGBQKNBQESQNJD-UHFFFAOYSA-N 0.000 description 1
- 239000002502 liposome Substances 0.000 description 1
- 230000006144 lipoylation Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- IOOMXAQUNPWDLL-UHFFFAOYSA-M lissamine rhodamine anion Chemical compound C=12C=CC(=[N+](CC)CC)C=C2OC2=CC(N(CC)CC)=CC=C2C=1C1=CC=C(S([O-])(=O)=O)C=C1S([O-])(=O)=O IOOMXAQUNPWDLL-UHFFFAOYSA-M 0.000 description 1
- DLBFLQKQABVKGT-UHFFFAOYSA-L lucifer yellow dye Chemical compound [Li+].[Li+].[O-]S(=O)(=O)C1=CC(C(N(C(=O)NN)C2=O)=O)=C3C2=CC(S([O-])(=O)=O)=CC3=C1N DLBFLQKQABVKGT-UHFFFAOYSA-L 0.000 description 1
- 125000003588 lysine group Chemical group [H]N([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])(N([H])[H])C(*)=O 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- NGCVJRFIBJVSFI-UHFFFAOYSA-I magnesium green Chemical compound [K+].[K+].[K+].[K+].[K+].C1=C(N(CC([O-])=O)CC([O-])=O)C(OCC(=O)[O-])=CC(NC(=O)C=2C=C3C(C4(C5=CC(Cl)=C([O-])C=C5OC5=CC([O-])=C(Cl)C=C54)OC3=O)=CC=2)=C1 NGCVJRFIBJVSFI-UHFFFAOYSA-I 0.000 description 1
- 229940107698 malachite green Drugs 0.000 description 1
- FDZZZRQASAIRJF-UHFFFAOYSA-M malachite green Chemical compound [Cl-].C1=CC(N(C)C)=CC=C1C(C=1C=CC=CC=1)=C1C=CC(=[N+](C)C)C=C1 FDZZZRQASAIRJF-UHFFFAOYSA-M 0.000 description 1
- 229940049920 malate Drugs 0.000 description 1
- BJEPYKJPYRNKOW-UHFFFAOYSA-N malic acid Chemical compound OC(=O)C(O)CC(O)=O BJEPYKJPYRNKOW-UHFFFAOYSA-N 0.000 description 1
- 229940035034 maltodextrin Drugs 0.000 description 1
- 229940041290 mannose Drugs 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229960000901 mepacrine Drugs 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 150000001455 metallic ions Chemical class 0.000 description 1
- 230000031864 metaphase Effects 0.000 description 1
- DWCZIOOZPIDHAB-UHFFFAOYSA-L methyl green Chemical compound [Cl-].[Cl-].C1=CC(N(C)C)=CC=C1C(C=1C=CC(=CC=1)[N+](C)(C)C)=C1C=CC(=[N+](C)C)C=C1 DWCZIOOZPIDHAB-UHFFFAOYSA-L 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- VWKNUUOGGLNRNZ-UHFFFAOYSA-N methylbimane Chemical compound CC1=C(C)C(=O)N2N1C(C)=C(C)C2=O VWKNUUOGGLNRNZ-UHFFFAOYSA-N 0.000 description 1
- CXKWCBBOMKCUKX-UHFFFAOYSA-M methylene blue Chemical compound [Cl-].C1=CC(N(C)C)=CC2=[S+]C3=CC(N(C)C)=CC=C3N=C21 CXKWCBBOMKCUKX-UHFFFAOYSA-M 0.000 description 1
- 229960000907 methylthioninium chloride Drugs 0.000 description 1
- 239000011325 microbead Substances 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- CFCUWKMKBJTWLW-BKHRDMLASA-N mithramycin Chemical compound O([C@@H]1C[C@@H](O[C@H](C)[C@H]1O)OC=1C=C2C=C3C[C@H]([C@@H](C(=O)C3=C(O)C2=C(O)C=1C)O[C@@H]1O[C@H](C)[C@@H](O)[C@H](O[C@@H]2O[C@H](C)[C@H](O)[C@H](O[C@@H]3O[C@H](C)[C@@H](O)[C@@](C)(O)C3)C2)C1)[C@H](OC)C(=O)[C@@H](O)[C@@H](C)O)[C@H]1C[C@@H](O)[C@H](O)[C@@H](C)O1 CFCUWKMKBJTWLW-BKHRDMLASA-N 0.000 description 1
- FZTMEYOUQQFBJR-UHFFFAOYSA-M mitoTracker Orange Chemical compound [Cl-].C=12C=CC(=[N+](C)C)C=C2OC2=CC(N(C)C)=CC=C2C=1C1=CC=C(CCl)C=C1 FZTMEYOUQQFBJR-UHFFFAOYSA-M 0.000 description 1
- IKEOZQLIVHGQLJ-UHFFFAOYSA-M mitoTracker Red Chemical compound [Cl-].C1=CC(CCl)=CC=C1C(C1=CC=2CCCN3CCCC(C=23)=C1O1)=C2C1=C(CCC1)C3=[N+]1CCCC3=C2 IKEOZQLIVHGQLJ-UHFFFAOYSA-M 0.000 description 1
- 238000002712 mitochondrial membrane potential assay Methods 0.000 description 1
- 230000001483 mobilizing effect Effects 0.000 description 1
- 230000009149 molecular binding Effects 0.000 description 1
- 230000004001 molecular interaction Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- SUIPVTCEECPFIB-UHFFFAOYSA-N monochlorobimane Chemical compound ClCC1=C(C)C(=O)N2N1C(C)=C(C)C2=O SUIPVTCEECPFIB-UHFFFAOYSA-N 0.000 description 1
- MLEBFEHOJICQQS-UHFFFAOYSA-N monodansylcadaverine Chemical compound C1=CC=C2C(N(C)C)=CC=CC2=C1S(=O)(=O)NCCCCCN MLEBFEHOJICQQS-UHFFFAOYSA-N 0.000 description 1
- 229940105132 myristate Drugs 0.000 description 1
- 230000007498 myristoylation Effects 0.000 description 1
- VMGAPWLDMVPYIA-HIDZBRGKSA-N n'-amino-n-iminomethanimidamide Chemical compound N\N=C\N=N VMGAPWLDMVPYIA-HIDZBRGKSA-N 0.000 description 1
- SHXOKQKTZJXHHR-UHFFFAOYSA-N n,n-diethyl-5-iminobenzo[a]phenoxazin-9-amine;hydrochloride Chemical compound [Cl-].C1=CC=C2C3=NC4=CC=C(N(CC)CC)C=C4OC3=CC(=[NH2+])C2=C1 SHXOKQKTZJXHHR-UHFFFAOYSA-N 0.000 description 1
- VMCOQLKKSNQANE-UHFFFAOYSA-N n,n-dimethyl-4-[6-[6-(4-methylpiperazin-1-yl)-1h-benzimidazol-2-yl]-1h-benzimidazol-2-yl]aniline Chemical compound C1=CC(N(C)C)=CC=C1C1=NC2=CC=C(C=3NC4=CC(=CC=C4N=3)N3CCN(C)CC3)C=C2N1 VMCOQLKKSNQANE-UHFFFAOYSA-N 0.000 description 1
- CSJXLKVNKAXFSI-UHFFFAOYSA-N n-(2-aminoethyl)-5-(dimethylamino)naphthalene-1-sulfonamide Chemical compound C1=CC=C2C(N(C)C)=CC=CC2=C1S(=O)(=O)NCCN CSJXLKVNKAXFSI-UHFFFAOYSA-N 0.000 description 1
- HSEVJGUFKSTHMH-UHFFFAOYSA-N n-(2-chloroethyl)-n-ethyl-3-methyl-4-[2-(1,3,3-trimethylindol-1-ium-2-yl)ethenyl]aniline Chemical compound CC1=CC(N(CCCl)CC)=CC=C1C=CC1=[N+](C)C2=CC=CC=C2C1(C)C HSEVJGUFKSTHMH-UHFFFAOYSA-N 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 230000000926 neurological effect Effects 0.000 description 1
- 229940101270 nicotinamide adenine dinucleotide (nad) Drugs 0.000 description 1
- VOFUROIFQGPCGE-UHFFFAOYSA-N nile red Chemical compound C1=CC=C2C3=NC4=CC=C(N(CC)CC)C=C4OC3=CC(=O)C2=C1 VOFUROIFQGPCGE-UHFFFAOYSA-N 0.000 description 1
- FEMOMIGRRWSMCU-UHFFFAOYSA-N ninhydrin Chemical compound C1=CC=C2C(=O)C(O)(O)C(=O)C2=C1 FEMOMIGRRWSMCU-UHFFFAOYSA-N 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 239000012454 non-polar solvent Substances 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 102000006040 nudix hydrolase Human genes 0.000 description 1
- 108020003260 nudix hydrolase Proteins 0.000 description 1
- 230000035764 nutrition Effects 0.000 description 1
- 235000016709 nutrition Nutrition 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- FAQDUNYVKQKNLD-UHFFFAOYSA-N olaparib Chemical compound FC1=CC=C(CC2=C3[CH]C=CC=C3C(=O)N=N2)C=C1C(=O)N(CC1)CCN1C(=O)C1CC1 FAQDUNYVKQKNLD-UHFFFAOYSA-N 0.000 description 1
- 229960000572 olaparib Drugs 0.000 description 1
- KHPXUQMNIQBQEV-UHFFFAOYSA-N oxaloacetic acid Chemical compound OC(=O)CC(=O)C(O)=O KHPXUQMNIQBQEV-UHFFFAOYSA-N 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- VYNDHICBIRRPFP-UHFFFAOYSA-N pacific blue Chemical compound FC1=C(O)C(F)=C2OC(=O)C(C(=O)O)=CC2=C1 VYNDHICBIRRPFP-UHFFFAOYSA-N 0.000 description 1
- 230000026792 palmitoylation Effects 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 150000002972 pentoses Chemical class 0.000 description 1
- 230000000144 pharmacologic effect Effects 0.000 description 1
- NTGBUUXKGAZMSE-UHFFFAOYSA-N phenyl n-[4-[4-(4-methoxyphenyl)piperazin-1-yl]phenyl]carbamate Chemical compound C1=CC(OC)=CC=C1N1CCN(C=2C=CC(NC(=O)OC=3C=CC=CC=3)=CC=2)CC1 NTGBUUXKGAZMSE-UHFFFAOYSA-N 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 230000026731 phosphorylation Effects 0.000 description 1
- 238000006366 phosphorylation reaction Methods 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- INAAIJLSXJJHOZ-UHFFFAOYSA-N pibenzimol Chemical compound C1CN(C)CCN1C1=CC=C(N=C(N2)C=3C=C4NC(=NC4=CC=3)C=3C=CC(O)=CC=3)C2=C1 INAAIJLSXJJHOZ-UHFFFAOYSA-N 0.000 description 1
- 229960003171 plicamycin Drugs 0.000 description 1
- 229920000889 poly(m-phenylene isophthalamide) Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229930001119 polyketide Natural products 0.000 description 1
- 125000000830 polyketide group Chemical group 0.000 description 1
- 230000006267 polysialylation Effects 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 231100000683 possible toxicity Toxicity 0.000 description 1
- 150000003135 prenol lipids Chemical class 0.000 description 1
- 230000013823 prenylation Effects 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 210000001236 prokaryotic cell Anatomy 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- XJMOSONTPMZWPB-UHFFFAOYSA-M propidium iodide Chemical compound [I-].[I-].C12=CC(N)=CC=C2C2=CC=C(N)C=C2[N+](CCC[N+](C)(CC)CC)=C1C1=CC=CC=C1 XJMOSONTPMZWPB-UHFFFAOYSA-M 0.000 description 1
- 108020001580 protein domains Proteins 0.000 description 1
- 230000005588 protonation Effects 0.000 description 1
- KXXXUIKPSVVSAW-UHFFFAOYSA-K pyranine Chemical compound [Na+].[Na+].[Na+].C1=C2C(O)=CC(S([O-])(=O)=O)=C(C=C3)C2=C2C3=C(S([O-])(=O)=O)C=C(S([O-])(=O)=O)C2=C1 KXXXUIKPSVVSAW-UHFFFAOYSA-K 0.000 description 1
- CXZRDVVUVDYSCQ-UHFFFAOYSA-M pyronin B Chemical compound [Cl-].C1=CC(=[N+](CC)CC)C=C2OC3=CC(N(CC)CC)=CC=C3C=C21 CXZRDVVUVDYSCQ-UHFFFAOYSA-M 0.000 description 1
- GPKJTRJOBQGKQK-UHFFFAOYSA-N quinacrine Chemical compound C1=C(OC)C=C2C(NC(C)CCCN(CC)CC)=C(C=CC(Cl)=C3)C3=NC2=C1 GPKJTRJOBQGKQK-UHFFFAOYSA-N 0.000 description 1
- UKOBAUFLOGFCMV-UHFFFAOYSA-N quinacrine mustard Chemical compound C1=C(Cl)C=CC2=C(NC(C)CCCN(CCCl)CCCl)C3=CC(OC)=CC=C3N=C21 UKOBAUFLOGFCMV-UHFFFAOYSA-N 0.000 description 1
- 239000000700 radioactive tracer Substances 0.000 description 1
- 230000010282 redox signaling Effects 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 230000022532 regulation of transcription, DNA-dependent Effects 0.000 description 1
- BOLDJAUMGUJJKM-LSDHHAIUSA-N renifolin D Natural products CC(=C)[C@@H]1Cc2c(O)c(O)ccc2[C@H]1CC(=O)c3ccc(O)cc3O BOLDJAUMGUJJKM-LSDHHAIUSA-N 0.000 description 1
- 230000010076 replication Effects 0.000 description 1
- 230000000754 repressing effect Effects 0.000 description 1
- HSSLDCABUXLXKM-UHFFFAOYSA-N resorufin Chemical compound C1=CC(=O)C=C2OC3=CC(O)=CC=C3N=C21 HSSLDCABUXLXKM-UHFFFAOYSA-N 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- MYFATKRONKHHQL-UHFFFAOYSA-N rhodamine 123 Chemical compound [Cl-].COC(=O)C1=CC=CC=C1C1=C2C=CC(=[NH2+])C=C2OC2=CC(N)=CC=C21 MYFATKRONKHHQL-UHFFFAOYSA-N 0.000 description 1
- XFKVYXCRNATCOO-UHFFFAOYSA-M rhodamine 6G Chemical compound [Cl-].C=12C=C(C)C(NCC)=CC2=[O+]C=2C=C(NCC)C(C)=CC=2C=1C1=CC=CC=C1C(=O)OCC XFKVYXCRNATCOO-UHFFFAOYSA-M 0.000 description 1
- 102200089551 rs5030826 Human genes 0.000 description 1
- 239000010979 ruby Substances 0.000 description 1
- 229910001750 ruby Inorganic materials 0.000 description 1
- 150000003313 saccharo lipids Chemical class 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- CDAISMWEOUEBRE-UHFFFAOYSA-N scyllo-inosotol Natural products OC1C(O)C(O)C(O)C(O)C1O CDAISMWEOUEBRE-UHFFFAOYSA-N 0.000 description 1
- DYPYMMHZGRPOCK-UHFFFAOYSA-N seminaphtharhodafluor Chemical compound O1C(=O)C2=CC=CC=C2C21C(C=CC=1C3=CC=C(O)C=1)=C3OC1=CC(N)=CC=C21 DYPYMMHZGRPOCK-UHFFFAOYSA-N 0.000 description 1
- 230000009758 senescence Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000002864 sequence alignment Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000021309 simple sugar Nutrition 0.000 description 1
- 231100000188 sister chromatid exchange Toxicity 0.000 description 1
- ZSOMPVKQDGLTOT-UHFFFAOYSA-J sodium green Chemical compound C[N+](C)(C)C.C[N+](C)(C)C.C[N+](C)(C)C.C[N+](C)(C)C.COC=1C=C(NC(=O)C=2C=C(C(=CC=2)C2=C3C=C(Cl)C(=O)C=C3OC3=CC([O-])=C(Cl)C=C32)C([O-])=O)C(OC)=CC=1N(CCOCC1)CCOCCOCCN1C(C(=C1)OC)=CC(OC)=C1NC(=O)C1=CC=C(C2=C3C=C(Cl)C(=O)C=C3OC3=CC([O-])=C(Cl)C=C32)C(C([O-])=O)=C1 ZSOMPVKQDGLTOT-UHFFFAOYSA-J 0.000 description 1
- UGJCNRLBGKEGEH-UHFFFAOYSA-N sodium-binding benzofuran isophthalate Chemical compound COC1=CC=2C=C(C=3C(=CC(=CC=3)C(O)=O)C(O)=O)OC=2C=C1N(CCOCC1)CCOCCOCCN1C(C(=CC=1C=2)OC)=CC=1OC=2C1=CC=C(C(O)=O)C=C1C(O)=O UGJCNRLBGKEGEH-UHFFFAOYSA-N 0.000 description 1
- SHBDDIJUSNNBLQ-UHFFFAOYSA-M sodium;3-[[4-[(2-chlorophenyl)-[4-[ethyl-[(3-sulfonatophenyl)methyl]azaniumylidene]cyclohexa-2,5-dien-1-ylidene]methyl]-n-ethylanilino]methyl]benzenesulfonate Chemical compound [Na+].C=1C=C(C(=C2C=CC(C=C2)=[N+](CC)CC=2C=C(C=CC=2)S([O-])(=O)=O)C=2C(=CC=CC=2)Cl)C=CC=1N(CC)CC1=CC=CC(S([O-])(=O)=O)=C1 SHBDDIJUSNNBLQ-UHFFFAOYSA-M 0.000 description 1
- GFWRVVCDTLRWPK-KPKJPENVSA-N sofalcone Chemical compound C1=CC(OCC=C(C)C)=CC=C1\C=C\C(=O)C1=CC=C(OCC=C(C)C)C=C1OCC(O)=O GFWRVVCDTLRWPK-KPKJPENVSA-N 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 150000003408 sphingolipids Chemical class 0.000 description 1
- 235000003702 sterols Nutrition 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-L succinate(2-) Chemical compound [O-]C(=O)CCC([O-])=O KDYFGRWQOYBRFD-UHFFFAOYSA-L 0.000 description 1
- VNOYUJKHFWYWIR-ITIYDSSPSA-N succinyl-CoA Chemical compound O[C@@H]1[C@H](OP(O)(O)=O)[C@@H](COP(O)(=O)OP(O)(=O)OCC(C)(C)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)CCC(O)=O)O[C@H]1N1C2=NC=NC(N)=C2N=C1 VNOYUJKHFWYWIR-ITIYDSSPSA-N 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 150000003505 terpenes Chemical group 0.000 description 1
- 229960002180 tetracycline Drugs 0.000 description 1
- 229930101283 tetracycline Natural products 0.000 description 1
- 235000019364 tetracycline Nutrition 0.000 description 1
- 150000003522 tetracyclines Chemical class 0.000 description 1
- TUNFSRHWOTWDNC-UHFFFAOYSA-N tetradecanoic acid Chemical compound CCCCCCCCCCCCCC(O)=O TUNFSRHWOTWDNC-UHFFFAOYSA-N 0.000 description 1
- WGTODYJZXSJIAG-UHFFFAOYSA-N tetramethylrhodamine chloride Chemical compound [Cl-].C=12C=CC(N(C)C)=CC2=[O+]C2=CC(N(C)C)=CC=C2C=1C1=CC=CC=C1C(O)=O WGTODYJZXSJIAG-UHFFFAOYSA-N 0.000 description 1
- QOFZZTBWWJNFCA-UHFFFAOYSA-N texas red-X Chemical compound [O-]S(=O)(=O)C1=CC(S(=O)(=O)NCCCCCC(=O)O)=CC=C1C(C1=CC=2CCCN3CCCC(C=23)=C1O1)=C2C1=C(CCC1)C3=[N+]1CCCC3=C2 QOFZZTBWWJNFCA-UHFFFAOYSA-N 0.000 description 1
- 229910052716 thallium Inorganic materials 0.000 description 1
- BKVIYDNLLOSFOA-UHFFFAOYSA-N thallium Chemical compound [Tl] BKVIYDNLLOSFOA-UHFFFAOYSA-N 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 150000007970 thio esters Chemical class 0.000 description 1
- 229940113082 thymine Drugs 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- CRDAMVZIKSXKFV-UHFFFAOYSA-N trans-Farnesol Natural products CC(C)=CCCC(C)=CCCC(C)=CCO CRDAMVZIKSXKFV-UHFFFAOYSA-N 0.000 description 1
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 1
- 230000026683 transduction Effects 0.000 description 1
- 238000010361 transduction Methods 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 201000008827 tuberculosis Diseases 0.000 description 1
- 208000001072 type 2 diabetes mellitus Diseases 0.000 description 1
- 229940040064 ubiquinol Drugs 0.000 description 1
- QNTNKSLOFHEFPK-UPTCCGCDSA-N ubiquinol-10 Chemical compound COC1=C(O)C(C)=C(C\C=C(/C)CC\C=C(/C)CC\C=C(/C)CC\C=C(/C)CC\C=C(/C)CC\C=C(/C)CC\C=C(/C)CC\C=C(/C)CC\C=C(/C)CCC=C(C)C)C(O)=C1OC QNTNKSLOFHEFPK-UPTCCGCDSA-N 0.000 description 1
- 229940035936 ubiquinone Drugs 0.000 description 1
- 229940035893 uracil Drugs 0.000 description 1
- 210000002700 urine Anatomy 0.000 description 1
- MWOOGOJBHIARFG-UHFFFAOYSA-N vanillin Chemical compound COC1=CC(C=O)=CC=C1O MWOOGOJBHIARFG-UHFFFAOYSA-N 0.000 description 1
- FGQOOHJZONJGDT-UHFFFAOYSA-N vanillin Natural products COC1=CC(O)=CC(C=O)=C1 FGQOOHJZONJGDT-UHFFFAOYSA-N 0.000 description 1
- 235000012141 vanillin Nutrition 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- YTEJSAFVYHDCSN-UHFFFAOYSA-K zinc;benzo[a]phenoxazin-9-ylidene(dimethyl)azanium;trichloride Chemical compound [Cl-].[Cl-].[Cl-].[Zn+2].C1=CC=C2C(N=C3C=CC(C=C3O3)=[N+](C)C)=C3C=CC2=C1 YTEJSAFVYHDCSN-UHFFFAOYSA-K 0.000 description 1
Definitions
- ADPR is derived from the enzymatic cleavage of the metabolite NAD+, or oxidized nicotinamide adenine dinucleotide. Free ADPR concentrations are reported to reflect the activities of NAD+ consuming enzymes, such as pro-neurodegenerative enzyme SARM1 and human immunoenzyme CD-38.
- SARM1 and human immunoenzyme CD-38 The lack of methods to monitor free ADPR concentrations in real-time and in physiological contexts represents a major barrier for screening and testing SARM1 blockers or CD-38 targeting approaches, with relevance to neurodegeneration, cancer, and cardiovascular disease.
- the major challenges for studying free ADPR include that its levels fluctuate and spike very locally within minutes.
- free ADPR is the required agonist for the opening of human calcium channel Transient Receptor Potential Melastatin family member 2 (TRPM2).
- TRPM2 Transient Receptor Potential Melastatin family member 2
- intracellular free ADPR concentrations are expected to play a role in controlling fever responses, synaptic activity, cell death mechanisms, as well as inflammatory and oxidative stress responses.
- the present invention provides a modified signal protein and methods detecting the presence/modulation and quantifying a target molecule using said signal protein.
- a signal protein wherein the signal protein is a modified nudix-related transcriptional regulator (NrtR) family protein, wherein the signal protein is modified such that a conformational change occurs in the signal protein when it binds a target molecule, and further wherein the signal protein comprises an output module, wherein said output module produces a signal upon interaction of the signal protein and the target molecule.
- NrtR nudix-related transcriptional regulator
- a method for determining presence of a target molecule comprising a) providing a signal protein, wherein the signal protein is a modified nudix-related transcriptional regulator (NrtR) family protein, wherein the signal protein is modified such that a conformational change occurs in the signal protein when it binds a target molecule, and further wherein the modified protein comprises an output module, wherein said output module produces a signal upon interaction of the signal protein and its target, b) exposing the signal protein to the target molecule under conditions such that the signal protein is capable of binding the target molecule, wherein said binding produces a signal, and c) detecting the signal, thereby determining the presence of the target molecule.
- NrtR nudix-related transcriptional regulator
- a method for quantifying a target molecule comprising a) providing a signal protein, wherein the signal protein is a modified nudix-related transcriptional regulator (NrtR) family protein, wherein the signal protein is modified such that a conformational change occurs in the signal protein when it binds a target molecule, and further wherein the modified protein comprises an output module, wherein said output module produces a signal upon interaction of the signal protein and its target, b) exposing the signal protein to the target molecule under conditions such that the signal protein is capable of binding the target molecule, wherein said binding produces a signal, and c) detecting the amount of signal produced in step b), thereby determining the amount of the target molecule present.
- NrtR nudix-related transcriptional regulator
- a method for determining modulation of a target molecule by a test compound comprising a) providing a signal protein, wherein the signal protein is a modified nudix-related transcriptional regulator (NrtR) family protein, wherein the signal protein is modified such that a conformational change occurs in the signal protein when it binds a target molecule, and further wherein the modified protein comprises an output module, wherein said output module produces a signal upon interaction of the signal protein and its target, b) exposing the signal protein to the target molecule and the test compound under conditions such that the signal protein is capable of binding the target molecule, wherein said binding produces a signal, c) detecting the amount of signal produced in step b), d) comparing the amount of signal produced in step b) to a control, wherein said control was carried out without the presence of the test compound, and e) determining if a difference exists between the amount of signal produced in the presence of the test compound and the amount of signal produced
- NrtR nudix-related transcriptional regulator
- the signal protein is a modified NrtR protein.
- the target molecule comprises free adenosine diphosphate ribose (free ADPR).
- the signal protein is a modified L-arabinose Nudix-related transcription factor (AraR) protein.
- the target molecule comprises L- or D-Arabinose.
- the said signal protein is a modified NAD-responsive transcriptional repressor (NdnR) of NAD+.
- the target molecule comprises NAD+.
- the output module comprises a peptide linker and a signal transducer.
- the signal transducer is a fluorescent molecule.
- the fluorescent molecule is cpVenus.
- the peptide linker transduces the conformational change to the signal transducer.
- the nudix-related transcriptional regulator has been modified so that it can interact with a non-native target.
- the nudix- related transcriptional regulator has been evolved to change its specificity for the target.
- a significant difference is more than a 5% difference.
- modulation of the target molecule by the test compound results in an increased amount of measurable target molecule compared to the control. In some embodiments, modulation of the target molecule by the test compound results in a decreased amount of measurable target molecule compared to the control.
- the test compound is a small molecule such as a metal or organic compound, a polypeptide, a peptide, a natural product, a peptidomimetic, a nucleic acid, a lipid, lipopeptide, or a carbohydrate.
- the test compound is an agonist or an antagonist of the target molecule.
- FIG 1 shows the apo- (green, PDB 3GZ5) and ligand-bound (yellow, PDB 3GZ8) solved so NrtR structures are superimposed.
- FIGS. 2A, 2B, and 2C show mutated amino acid residues and confocal images of free ADPR.
- FIG. 2A shows the position of mutated residues (lysine and serine, highlighted in cyan) relative to nucleic acid in PDB 3GZ6.
- FIGS. 2B and 2C show the confocal fluorescent images of transiently transfected free ADPR sensor in HEK293T cells before (FIG. 2B) and after (FIG. 2C) introduction of mutations K435A and S436D. Formation of puncta was alleviated with the mutations (FIG. 2C).
- FIG. 3 shows the introduction of D122N (closed circles) improved the brightness of the sensor and reduced its sensitivity to non-ligand changes between pH 7.4 and pH 8.0.
- FIGS. 4A and 4B shows a Coomassie image and fluorescence intensity of response of the sensor to free ADPR.
- FIG. 4A shows the Coomassie of affinity-isolated free ADPR sensor (arrow). The expected molecular weight for the free ADPR sensor is ⁇ 54kDa.
- FIGS. 5A-B show that the sensor responds specifically to free ADPR and modified free ADPR (2’-deoxy ADPR, O-Acetyl ADPR and phospho ADPR) molecules.
- FIG. 5A shows that the sensor responds to free and modified free ADPR but does not respond to similar molecules including 2’ -cyclic ADPR, 3 ’-cyclic ADPR, cyclic ADPR, NAAD + , NAD + , NADH, NaADP + , Ribulose-5-Phosphate (R5P), AMP, ADP and ATP.
- FIG. 5B shows that the control (R98E) does not respond to any tested molecule.
- the bar graph represents the mean ⁇ SD.
- FIGS. 6A and 6B show fluorescence intensity relative to temperature.
- FIG. 6A shows that both sensor and control (R98E) have a moderate but significant change in fluorescence with temperature.
- the bar graph represents the mean ⁇ SD, ANOVA ⁇ 0.05 with post-hoc Dunnett’s Test *p ⁇ 0.05 and **p ⁇ 0.01.
- FIG. 6B shows the change in fluorescence of the sensor can be normalized to the control.
- FIGS. 7 A and 7B show that the free ADPR sensor (7 A) and TRPM2 (7B) respond to increased free cytosolic ADPR following H2O2 treatment as indicated. Fluorescence of the free ADPR sensor responds directly; TRPM2 responds with an influx of intracellular Ca 2+ , which is reported by increased fluorescence of Ca 2+ sensor GCaMP7s. Values are mean (F/Fo) ⁇ SD, analyzed by confocal microscopy.
- FIG. 8A-B shows the Nudix-like transcription factor (TF) members as a platform for engineering sensors based on shared features.
- TF Nudix-like transcription factor
- Ranges can be expressed herein as from “about” one particular value, and/or to “about” another particular value. By “about” is meant within 10% of the value, e.g., within 9, 8, 8, 7, 6, 5, 4, 3, 2, or 1% of the value. When such a range is expressed, another aspect includes from the one particular value and/or to the other particular value. Similarly, when values are expressed as approximations, by use of the antecedent “about,” it will be understood that the particular value forms another aspect. It will be further understood that the endpoints of each of the ranges are significant both in relation to the other endpoint, and independently of the other endpoint. It is also understood that there are a number of values disclosed herein, and that each value is also herein disclosed as “about” that particular value in addition to the value itself. For example, if the value “10” is disclosed, then “about 10” is also disclosed.
- an agent includes a plurality of agents, including mixtures thereof.
- An "increase" can refer to any change that results in a greater amount of a symptom, disease, composition, condition, or activity.
- An increase can be any individual, median, or average increase in a condition, symptom, activity, composition in a statistically significant amount.
- the increase can be a 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, or 100% increase so long as the increase is statistically significant.
- a “decrease” can refer to any change that results in a smaller amount of a symptom, disease, composition, condition, or activity.
- a substance is also understood to decrease the genetic output of a gene when the genetic output of the gene product with the substance is less relative to the output of the gene product without the substance.
- a decrease can be a change in the symptoms of a disorder such that the symptoms are less than previously observed.
- a decrease can be any individual, median, or average decrease in a condition, symptom, activity, composition in a statistically significant amount.
- the decrease can be a 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, or 100% decrease so long as the decrease is statistically significant.
- nucleic acid and nucleic acid sequence refer to a chemical compound that serves as the primary information-carrying molecules in cells and make up the cellular genetic material.
- Nucleic acids comprise nucleotides, which are the monomers made of a 5-carbon sugar (usually ribose or deoxyribose), a phosphate group, and a nitrogenous base. It should be understood that a nucleotide, oligonucleotide, polynucleotide, or fragments thereof can be used interchangeably. These phrases also refer to DNA or RNA of genomic or synthetic origin (which may be singlestranded or double-stranded and may represent the sense or the antisense strand).
- peptides, polypeptides, proteins and compositions comprising peptides, polypeptides, and proteins.
- a polypeptide and/or protein is defined as a polymer of amino acids, typically of length>100 amino acids (Garrett & Grisham, Biochemistry, 2nd edition, 1999, Brooks/Cole, 110).
- a peptide is defined as a short polymer of amino acids, of a length typically of 20 or less amino acids, and more typically of a length of 12 or less amino acids (Garrett & Grisham, Biochemistry, 2nd edition, 1999, Brooks/Cole, 110).
- exemplary peptides, polypeptides, proteins may comprise, consist essentially of, or consist of any reference amino acid sequence disclosed herein, or variants of the peptides, polypeptides, and proteins may comprise, consist essentially of, or consist of an amino acid sequence having at least about 80%, 90%, 95%, 96%, 97%, 98%, or 99% sequence identity to any amino acid sequence disclosed herein.
- Variant peptides, polypeptides, and proteins may include peptides, polypeptides, and proteins having one or more amino acid substitutions, deletions, additions and/or amino acid insertions relative to a reference peptide, polypeptide, or protein.
- nucleic acid molecules that encode the disclosed peptides, polypeptides, and proteins (e.g., polynucleotides that encode any of the peptides, polypeptides, and proteins disclosed herein and variants thereof).
- amino acid includes but is not limited to amino acids contained in the group consisting of alanine (Ala or A), cysteine (Cys or C), aspartic acid (Asp or D), glutamic acid (Glu or E), phenylalanine (Phe or F), glycine (Gly or G), histidine (His or H), isoleucine (He or I), lysine (Lys or K), leucine (Leu or L), methionine (Met or M), asparagine (Asn or N), proline (Pro or P), glutamine (Gin or Q), arginine (Arg or R), serine (Ser or S), threonine (Thr or T), valine (Vai or V), tryptophan (Trp or W), and tyrosine (Tyr or Y) residues.
- amino acid residue also may include amino acid residues contained in the group consisting of homocysteine, 2-Aminoadipic acid, N-Ethylasparagine, 3-Aminoadipic acid, Hydroxylysine, P-alanine, P-Amino-propionic acid, allo-Hydroxylysine acid, 2-Aminobutyric acid, 3-Hydroxyproline, 4-Aminobutyric acid, 4-Hydroxyproline, piperidinic acid, 6- Aminocaproic acid, Isodesmosine, 2-Aminoheptanoic acid, allo-Isoleucine, 2- Aminoisobutyric acid, N-Methylglycine, sarcosine, 3-Aminoisobutyric acid, N- Methylisoleucine, 2-Aminopimelic acid, 6-N-Methyllysine, 2,4-Diaminobutyric acid, N- Methy
- the peptides, polypeptides, and proteins disclosed herein may be modified to include non-amino acid moieties. Modifications may include but are not limited to carboxylation (e.g., N-terminal carboxylation via addition of a di-carboxylic acid having 4-7 straight-chain or branched carbon atoms, such as glutaric acid, succinic acid, adipic acid, and 4,4- dimethylglutaric acid), amidation (e.g., C-terminal amidation via addition of an amide or substituted amide such as alkylamide or dialkylamide), PEGylation (e.g., N-terminal or C- terminal PEGylation via additional of polyethylene glycol), acylation (e.g., O-acylation (esters), N-acylation (amides), S-acylation (thioesters)), acetylation (e.g., the addition of an acetyl group, either at the N-terminus of the protein or at
- glycation Distinct from glycation, which is regarded as a nonenzymatic attachment of sugars, polysialylation (e.g., the addition of polysialic acid), glypiation (e.g., glycosylphosphatidylinositol (GPI) anchor formation, hydroxylation, iodination (e.g., of thyroid hormones), and phosphorylation (e.g., the addition of a phosphate group, usually to serine, tyrosine, threonine, or histidine).
- polysialylation e.g., the addition of polysialic acid
- glypiation e.g., glycosylphosphatidylinositol (GPI) anchor formation
- hydroxylation e.g., hydroxylation
- iodination e.g., of thyroid hormones
- phosphorylation e.g., the addition of a
- variants comprising insertions or additions relative to a reference amino acid sequence are contemplated herein.
- insertion and “addition” refer to changes in an amino acid sequence resulting in the addition of one or more amino acid residues.
- An insertion or addition may refer to 1, 2, 3, 4, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 150, or 200 amino acid residues.
- Fusion proteins are also contemplated herein.
- a “fusion protein” refers to a protein formed by the fusion of at least one peptide, polypeptide, protein, or variant thereof as disclosed herein to at least one molecule of a heterologous peptide, polypeptide, protein, or variant thereof.
- the heterologous protein(s) may be fused at the N-terminus, the C-terminus, or both termini.
- a fusion protein comprises at least a fragment or variant of the heterologous protein(s) that are fused with one another, preferably by genetic fusion (i.e., the fusion protein is generated by translation of a nucleic acid in which a polynucleotide encoding all or a portion of a first heterologous protein is joined in-frame with a polynucleotide encoding all or a portion of a second heterologous protein).
- the heterologous protein(s), once part of the fusion protein may each be referred to herein as a “portion”, “region” or “moiety” of the fusion protein.
- a “signal protein” refers to a peptide or polypeptide sequence bound or fused to a peptide linker and a signal transducing molecule used to convey an interaction between said signal protein and its target molecule.
- the signal protein comprises a transcription regulating protein bound to the signal transducing molecule by the peptide linker.
- a “peptide linker” refers to short (about 4-50 amino acids in length) peptides that serve to connect two or more biomolecules, including, but not limited to proteins, polypeptides, peptides, nucleic acids, lipids, carbohydrates, and derivatives thereof. Peptide linkers are generally used to maintain cooperative interactions between biomolecules or preserve biological activities of the biomolecules.
- a “signal transducer” or a “signal transducing molecule” refers to any biomolecule, such as a probes (e.g., fluorescent probes or fluorescent molecules), peptide, polypeptide, protein, nucleic acid, hormones, neurotransmitters, growth factors, cytokines, and chemokines that bind to a specific protein domain to initiate a series of events, including, but not limited to conformational changes, light emission, biomolecule interactions, and biomolecule synthesis or degradation.
- a “transcription factor” or a “transcription regulator” refers to a protein or family of proteins that control the rate of transcription of genetic material, or the conversion of DNA into messenger RNA (mRNA). Transcription factors or transcription regulators are able to regulate transcription by binding to specific DNA sequences to enhance or repress transcription.
- An “output module” refers to a region or domain within a signal protein that receives input (e.g., an interaction between the signal protein and the target molecule) and thereafter produces a detectable signal.
- a “target molecule” refers to a biomolecule, including, but not limited to carbohydrates, lipids, amino acids, nucleotides, nucleic acids, peptides, polypeptides, that is recognized by a specific signal protein.
- Target molecules generally comprises chemical moieties or domains that can bind or interact with the signal protein to initiate a series of events, including, but not limited to conformational changes, light emission, biomolecule interactions, and biomolecule synthesis or degradation.
- Homology refers to sequence similarity or, interchangeably, sequence identity, between two or more polypeptide sequences or polynucleotide sequences. Homology, sequence similarity, and percentage sequence identity may be determined using methods in the art and described herein.
- percent identity and % identity refer to the percentage of residue matches between at least two polypeptide sequences aligned using a standardized algorithm. Methods of polypeptide sequence alignment are well-known. Some alignment methods consider conservative amino acid substitutions. Such conservative substitutions, explained in more detail above, generally preserve the charge and hydrophobicity at the site of substitution, thus preserving the structure (and therefore function) of the polypeptide. Percent identity for amino acid sequences may be determined as understood in the art. (See, e.g., U.S. Pat. No. 7,396,664, which is incorporated herein by reference in its entirety).
- NCBI National Center for Biotechnology Information
- BLAST Basic Local Alignment Search Tool
- NCBI Basic Local Alignment Search Tool
- the BLAST software suite includes various sequence analysis programs including “blastp,” that is used to align a known amino acid sequence with other amino acids sequences from a variety of databases.
- Percent identity may be measured over the length of an entire defined polypeptide sequence or may be measured over a shorter length, for example, over the length of a fragment taken from a larger, defined polypeptide sequence, for instance, a fragment of at least 15, at least 20, at least 30, at least 40, at least 50, at least 70 or at least 150 contiguous residues. Such lengths are exemplary only, and it is understood that any fragment length may be used to describe a length over which percentage identity may be measured.
- a “variant” of a particular polypeptide sequence may be defined as a polypeptide sequence having at least 50% sequence identity to the particular polypeptide sequence over a certain length of one of the polypeptide sequences using blastp with the “BLAST 2 Sequences” tool available at the National Center for Biotechnology Information's website. (See Tatiana A. Tatusova, Thomas L. Madden (1999), “Blast 2 sequences — a new tool for comparing protein and nucleotide sequences”, FEMS Microbiol Lett. 174:247-250).
- a variant polypeptide may show, for example, at least 60%, at least 70%, at least 80%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% or greater sequence identity over a certain defined length relative to a reference polypeptide.
- a variant polypeptide may have substantially the same functional activity as a reference polypeptide.
- a variant polypeptide may exhibit one or more biological activities associated with binding a ligand and/or binding DNA at a specific binding site.
- percent identity and “% identity,” as applied to polynucleotide sequences, refer to the percentage of residue matches between at least two polynucleotide sequences aligned using a standardized algorithm. Such an algorithm may insert, in a standardized and reproducible way, gaps in the sequences being compared in order to optimize alignment between two sequences, and therefore achieve a more meaningful comparison of the two sequences. Percent identity for a nucleic acid sequence may be determined as understood in the art. (See, e.g., U.S. Pat. No. 7,396,664, which is incorporated herein by reference in its entirety).
- NCBI National Center for Biotechnology Information
- BLAST Basic Local Alignment Search Tool
- the BLAST software suite includes various sequence analysis programs including “blastn,” that is used to align a known polynucleotide sequence with other polynucleotide sequences from a variety of databases.
- blastn a tool that is used to align a known polynucleotide sequence with other polynucleotide sequences from a variety of databases.
- BLAST 2 Sequences also available is a tool called “BLAST 2 Sequences” that is used for direct pairwise comparison of two nucleotide sequences. “BLAST 2 Sequences” can be accessed and used interactively at the NCBI website.
- the “BLAST 2 Sequences” tool can be used for both blastn and blastp (discussed above).
- vitro refers to the performance of a biochemical reaction outside a living cell, including, for example, in a microwell plate, a tube, a flask, a tank, a reactor and the like, for example a reaction to form an alkaloid compound.
- vivo refers to the performance of a biochemical reaction within a living cell, including, for example, a microbial cell, or a plant cell, for example to form an alkaloid compound.
- biosensors are a molecule or a system of molecules that can be used to bind to a ligand (or target molecule) and provide a detectable response based on binding the ligand.
- biosensors may be referred to as “molecular switches.” Biosensors and molecular switches are disclosed in the art. (See, e.g., Ostermeier, Protein Eng. Des. Sei. 2005 August; 18(8):359-64; Wright et al., Curr. Opin. Chem. Biol. 2007 June; l l(3):342-6; Roberts, Chem. Biol.
- Biosensors and molecular switches have been utilized in recombinant microorganisms. (See, e.g., Rogers et al., Curr. Opin. Biotechnol. 2016 Mar. 18; 42:84-91; and U.S. Published Application Nos. 2010/0242345 and 2013/0059295; the contents of which are incorporated herein by reference in their entireties).
- a “substrate-promiscuous regulator” refers to any protein with the ability to bind to and report on the concentration of more than one chemical.
- the naturally occurring promiscuous regulators from which the biosensors disclosed herein are derived has been reported to bind to several different unrelated chemicals (Yamasaki, S., Nikaido, E., Nakashima, R. et al. Nat Commun 2013).
- Another common feature of substrate-promiscuous regulators is that the chemicals they bind are often structurally unrelated, but share some common general feature, such as being hydrophobic.
- the systems, components, and methods disclosed herein may be utilized for sensing a ligand or a substrate or a metabolite in a cell or a reaction mixture.
- the disclosed systems, components, and methods typically include and/or utilize an engineered (non-naturally occurring) biosensor.
- the biosensors disclosed herein bind the ligand and modulate expression of an output signal, such as a reporter gene, which can be operably linked to a promoter that is engineered to include specific binding sites for the input signal.
- the difference in expression of the output signal in the presence of the ligand versus expression of the output signal in the absence of the ligand can be correlated to the concentration of the ligand in a reaction mixture.
- reaction refers to an action that occurs as two or more biomolecules have an effect on one another either with or without physical contact.
- cell, proteins, and other biomolecules can have said effects on one another to impact biological functions, such as cell signaling pathways.
- modulating expression may include “repressing expression” and/or “inhibiting expression,” and “modulating expression may include “de-repressing expression” and/or “activating expression.”
- the biosensor when the biosensor is not bound to a ligand, the biosensor may repress expression and/or inhibit expression from a promoter that is engineered to include specific binding sites for the DNA-binding protein, and when the biosensor is bound to the ligand the biosensor may de-repress and/or activate expression from the promoter. De-repression and/or activation of the expression of the reporter gene then can be correlated with the presence of the ligand.
- the biosensor when the biosensor is bound to a ligand, the biosensor may repress expression and/or inhibit expression, and when the biosensor is not bound to the ligand the biosensor may de-repress expression and/or activate expression.
- a decrease in expression of the reporter gene then can be correlated with the presence of the ligand.
- Suitable cells may include prokaryotic cells and eukaryotic cells.
- Quantify refers to the process of acquiring numerical values to determine, express, or measure an amount of a substance or signal.
- a “control” is an alternative subject or sample used in an experiment for comparison purposes.
- a control can be "positive” or “negative.”
- chemical compound refers to a chemical substance consisting of two or more different types of atoms or chemical elements in a fixed stoichiometric proportion. These compounds have a unique and defined chemical structure held together in a defined spatial arrangement by chemical bonds. Chemical compounds can be held together by covalent bonds, ionic bonds, metallic ions, or coordinate covalent bonds.
- lipid or “lipid-like” refers to a macromolecule that is soluble in nonpolar solvents. These molecules are usually hydrophobic or amphiphilic molecules; the amphiphilic nature of some lipids allows formation of structures such as vesicles, liposomes, membranes, and nanoparticles. Lipids can be categorized into fatty acids, glycerolipids, glycerophospholipids, sphingolipids, saccharolipids, polyketides, sterol lipids, and prenol lipids.
- a “carbohydrate” refers to a large family of organic compounds including, but not limited to sugars, starch, and cellulose, containing hydrogen and oxygen in similar ratios to water (2: 1) and used as structural materials in numerous biomolecules, such as DNA or RNA, and for energy storage with living tissues.
- Carbohydrates can be categorized into four groups including monosaccharides, disaccharides, oligosaccharides, and polysaccharides, wherein monosaccharides and disaccharides are the smallest forms of carbohydrates, commonly referred to as sugars, whereas oligosaccharides and polysaccharides are larger, complex structures used for energy storage of the structural foundation of nucleic acids and nucleotides.
- a “lipopeptide” refers to a biomolecule comprising a lipid bound to an amino acid sequence.
- a “peptidomimetic” refers to a small biomolecule comprising amino acid-like properties and structures designed to mimic a peptide, polypeptide, or protein. Peptidomimetic s can be generated from the modification of an existing peptide, or by designing similar systems that mimic peptides, including, but not limited to peptiods and beta-peptides.
- An “agonist” refers to a chemical composition or compound that activates a receptor protein to produce a biological response.
- Control samples (untreated with agonists) are assigned a relative activity value of 0%. Inhibition of a described target protein is achieved when the activity value relative to the control increases by 1%, 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%, or more percent.
- detect or “detecting” refers to an output signal released for the purpose of sensing of physical phenomenon. An event or change in environment is sensed and signal output released in the form of light.
- Inhibitors or “antagonist” of activity are used to refer to inhibitory molecules, respectively, identified using in vitro and in vivo assays for expression or activity of a described target protein, e.g., ligands, antagonists, and their homologs and mimetics. Inhibitors are agents that, e.g., bind to, partially or totally block stimulation or activity, decrease, prevent, delay activation, inactivate, desensitize, or down regulate the activity of the described target protein, e.g., antagonists. Control samples (untreated with inhibitors) are assigned a relative activity value of 100%. Inhibition of a described target protein is achieved when the activity value relative to the control is about 80%, optionally 50% or 25, 10%, 5%, or 1% or less.
- a “conformational change” refers to a structural event wherein the structure of a protein changes in response to receiving an input signal, such as a ligand or target molecule binding, chemical modification, or a change in environment (e.g., pH, salt, osmolarity, and temperature changes).
- an input signal such as a ligand or target molecule binding, chemical modification, or a change in environment (e.g., pH, salt, osmolarity, and temperature changes).
- the present invention provides a modified signal protein and methods detecting the presence/modulation and quantifying a target molecule using said signal protein.
- NrtR proteins are a family of proteins responsible for regulation of various aspects of nicotinamide adenine dinucleotide (NAD+) biosynthetic pathways as well as other metabolic pathways including sugar pentoses utilization and biogenesis of phosphoribosyl pyrophosphate.
- NrtR proteins comprises binding domains targeting numerous genes for expression.
- the NrtR proteins have been modified to target specific metabolic intermediates, secondary messengers, carbohydrates, and nucleotide molecules, including, but not limited to adenosine diphosphate ribose (free ADPR or ADP ribose), arabinose, and NAD+.
- a signal protein wherein the signal protein is a modified nudix-related transcriptional regulator (NrtR) family protein, wherein the signal protein is modified such that a conformational change occurs in the signal protein when it binds a target molecule, and further wherein the signal protein comprises an output module, wherein said output module produces a signal upon interaction of the signal protein and the target molecule.
- NrtR nudix-related transcriptional regulator
- the signal protein possesses attributes of a biosensor, wherein the signal protein comprises a binding domain that binds to the target molecule.
- the interaction between the signal protein and the target molecule causes conformational change, or a physical/structural change to the signal protein.
- Another domain of the signal protein comprises an output module, which receives an input signal in the form of the conformational change to the signal protein.
- the output module comprising a peptide linker and a signal transducer, emits a detectable signal in the form of light, a change in color, a change in emission intensity, a change in fluorescence lifetime, a change in temperature, or a change in pH.
- the presence of said detectable signal indicates the presence of the target molecule.
- the signal protein is a modified NrtR protein.
- the target molecule comprises free adenosine diphosphate ribose (free ADPR).
- the signal protein is a modified L-arabinose Nudix-related transcription factor (AraR) protein.
- the target molecule comprises L- or D-Arabinose.
- the said signal protein is a modified NAD-responsive transcriptional repressor (NdnR) of NAD+.
- the target molecule comprises NAD+.
- target molecules include, but are not limited to free ADPR, adenosine monophosphate (AMP), adenosine diphosphate (ADP), adenosine triphosphate (ATP), cyclicAMP (cAMP), guanosine monophosphate (GMP), guanosine diphosphate (GDP), guanosine triphosphate (GTP), cyclic GMP (cGMP), inositol triphosphate (IP3), diacylglycerol (DAG), calcium (Ca 2+ ), epinephrine, norepinephrine, acetylcholine, histamine, estrogen, testosterone, progesterone, cholesterol, corticosteroids, thyroid hormone, vitamin D, retinoic acid, nitric oxide (NO), carbon monoxide (CO), glutamate, dopamine, serotonin, glycine, gamma-aminobutyric acid (GABA), insulin, glucagon,
- AMP
- the target molecule comprises a carbohydrate or sugar molecule, or derivatives thereof.
- sugar molecules include, but are not limited to ribose, arabinose, glucose, fructose, sucrose, cellulose, galactose, lactose, maltose, starch, glycogen, dextrose, fucose, inositol, maltodextrin, mannose, ribulose, trehalose, xylose, and derivatives and isomers thereof.
- the target molecule comprises a nucleotide, or derivatives thereof.
- exemplary nucleotides include, but are not limited to adenine, thymine, cytosine, guanine, uracil, 5-bromouracil, hypoxanthine, and derivatives and analogues thereof.
- the target molecule comprises a metabolic intermediate.
- a metabolic intermediate refers to a molecules that are precursors or metabolites of biologically active molecules. It should be noted that metabolic intermediates may have minor importance to cellular function, but they are important regulators for enzyme functions.
- Exemplary metabolic intermediates include, but are not limited to malate, lactate, gluconate, citrate, oxaloacetate, oxoglutarate, acetyl CoA, fumarate, aconitate, isocitrate, ketoglutarate, succinyl CoA, succinate, pyruvate, nicotinamide adenine dinucleotide (NAD+ or NADH), nicotinamide adenine dinucleotide phosphate (NADP+ or NADPH), flavin adenine dinucleotide (FAD+ or FADH), ubiquinol, ubiquinone, and coenzyme Q.
- the output module comprises a peptide linker and a signal transducer.
- the peptide linker comprises one or more amino acid selected from alanine (Ala or A), cysteine (Cys or C), aspartic acid (Asp or D), glutamic acid (Glu or E), phenylalanine (Phe or F), glycine (Gly or G), histidine (His or H), isoleucine (He or I), lysine (Lys or K), leucine (Leu or L), methionine (Met or M), asparagine (Asn or N), proline (Pro or P), glutamine (Gin or Q), arginine (Arg or R), serine (Ser or S), threonine (Thr or T), valine (Vai or V), tryptophan (Trp or W), and tyrosine (Tyr or Y) homocysteine, 2- Aminoa
- the peptide linker comprises 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, or more amino acids.
- the peptide linker is a flexible peptide linker. In some embodiments, the peptide linker is a rigid peptide linker.
- the signal transducer is a fluorescent molecule, or a fluorophore.
- a “fluorescent molecule” or a “fluorophore” refers to a fluorescent chemical compound that absorb energy from an internal or external source, and in response emit energy in the form of light.
- the fluorescent molecule is circular permutation Venus (cpVenus).
- Representative fluorophores include, but are not limited to, 1,5 IAEDANS; 1,8- ANS; 4- Methylumbelliferone; 5-carboxy-2,7-dichlorofluorescein; 5-Carboxyfluorescein (5- FAM); 5-Carboxynapthofluorescein; 5-Carboxytetramethylrhodamine (5-TAMRA); 5- Hydroxy Tryptamine (5-HAT); 5-ROX (carboxy-X-rhodamine); 6-Carboxyrhodamine 6G; 6- CR 6G; 6-JOE; 7-Amino-4-methylcoumarin; 7- Aminoactinomycin D (7-AAD); 7-Hydroxy-4- I methylcoumarin; 9-Amino-6-chloro-2-methoxyacridine (ACMA); ABQ; Acid Fuchsin; Acridine Orange; Acridine
- the signal transducer is a colorimetric reagent.
- a “colorimetric reagent” refers to a molecule or probe capable of changing color (e.g., from blue to green, from red to yellow, from clear (or colorless) to blue) upon a reaction or conformation change from a signal protein.
- Exemplary colorimetric reagent include, but are not limited to oxazine dyes, servon blue 5G, p-dimethylaminobenzaldehyde, 1,4-benzoquinone, ninhydrin, picryl chloride, p- quinone, vanillin, nile blue, azure A, azure B, azure C, brilliant cresyl blue, anthrone, anilic acid diphenylamine, eriogreen, m-cresol-indophenol, methylene blue, meldola blue, lissamine green B, o-dianisidine, viologen, and metal ions complexes including, but not limited to thallium, cadmium, lead, gold, iron, copper, bismuth, and aluminum.
- the peptide linker transduces the conformational change to the signal transducer.
- the nudix-related transcriptional regulator has been modified so that it can interact with a non-native target.
- a “native target” refers to target molecule that a signal protein naturally recognizes and binds to without prior modification to the structure of the signal protein.
- a “non-native target” refers to an induced or forced recognition and/or binding of the signal protein, usually requiring modification to the structure of the signal protein.
- a native target of the nudix-related transcriptional regulator protein is a sequence of nucleotides.
- nudix-related transcriptional regulator has been modified to target other molecules, including, but not limited to metabolic intermediates, carbohydrates, peptide, polypeptides, proteins, lipids, hormones, neurotransmitters, secondary messengers, nucleic acids, amino acids, and other derivatives thereof.
- the nudix-related transcriptional regulator has been evolved to change its specificity for the target.
- a method for determining presence of a target molecule comprising a) providing a signal protein, wherein the signal protein is a modified nudix-related transcriptional regulator (NrtR) family protein, wherein the signal protein is modified such that a conformational change occurs in the signal protein when it binds a target molecule, and further wherein the modified protein comprises an output module, wherein said output module produces a signal upon interaction of the signal protein and its target, b) exposing the signal protein to the target molecule under conditions such that the signal protein is capable of binding the target molecule, wherein said binding produces a signal, and c) detecting the signal, thereby determining the presence of the target molecule.
- NrtR nudix-related transcriptional regulator
- a method for quantifying a target molecule comprising a) providing a signal protein, wherein the signal protein is a modified nudix-related transcriptional regulator (NrtR) family protein, wherein the signal protein is modified such that a conformational change occurs in the signal protein when it binds a target molecule, and further wherein the modified protein comprises an output module, wherein said output module produces a signal upon interaction of the signal protein and its target, b) exposing the signal protein to the target molecule under conditions such that the signal protein is capable of binding the target molecule, wherein said binding produces a signal, and c) detecting the amount of signal produced in step b), thereby determining the amount of the target molecule present.
- NrtR nudix-related transcriptional regulator
- a method for determining modulation of a target molecule by a test compound comprising a) providing a signal protein, wherein the signal protein is a modified nudix-related transcriptional regulator (NrtR) family protein, wherein the signal protein is modified such that a conformational change occurs in the signal protein when it binds a target molecule, and further wherein the modified protein comprises an output module, wherein said output module produces a signal upon interaction of the signal protein and its target, b) exposing the signal protein to the target molecule and the test compound under conditions such that the signal protein is capable of binding the target molecule, wherein said binding produces a signal, c) detecting the amount of signal produced in step b), d) comparing the amount of signal produced in step b) to a control, wherein said control was carried out without the presence of the test compound, and e) determining if a difference exists between the amount of signal produced in the presence of the test compound and the amount of signal produced
- NrtR nudix-related transcriptional regulator
- the signal protein is a modified NrtR protein.
- the target molecule comprises free adenosine diphosphate ribose (free ADPR).
- the signal protein is a modified L-arabinose Nudix-related transcription factor (AraR) protein.
- the target molecule comprises L- or D-Arabinose.
- the said signal protein is a modified NAD-responsive transcriptional repressor (NdnR) of NAD+.
- the target molecule comprises NAD+.
- target molecules which can be detected with the methods disclosed herein include, but are not limited to free ADPR, adenosine monophosphate (AMP), adenosine diphosphate (ADP), adenosine triphosphate (ATP), cyclicAMP (cAMP), guanosine monophosphate (GMP), guanosine diphosphate (GDP), guanosine triphosphate (GTP), cyclic GMP (cGMP), inositol triphosphate (IP3), diacylglycerol (DAG), calcium (Ca 2+ ), epinephrine, norepinephrine, acetylcholine, histamine, estrogen, testosterone, progesterone, cholesterol, corticosteroids, thyroid hormone, vitamin D, retinoic acid, nitric oxide (NO), carbon monoxide (CO), glutamate, dopamine, serotonin, glycine, gamma-aminobutyric
- Detection of a target molecule, or detection of quantification and/or modulation of a target molecule can lead to the detection, and treatment, of diseases or disorders. It can also lead to a better understanding of appropriate drug dosages, the discovery of new compounds, and/or the discovery of new uses for known compounds.
- ADPR Alzheimer's disease
- disorders such as several neurological disorders and in cancer.
- the therapeutic manipulation of free ADPR has been shown to ameliorate several disorders in both human and animal models.
- cardiovascular, inflammatory, autoimmune, and neurological disorders examples of such diseases and disorders can be found in Kulikova, V.A., Nikiforov, A.A. Role of NUDIX Hydrolases in NAD and ADP-Ribose Metabolism in Mammals. Biochemistry Moscow 85, 883-894 (2020), as well as in Guse AH, Calcium mobilizing second messengers derived from NAD. Biochim Biophys Acta. 2015 Sep;1854(9):1132-7, both of which are herein incorporated by reference in their entirety for its teaching concerning ADPR- associated disease.
- Detection and/or therapies of NAD+ allows for monitoring and treatment of numerous energetic metabolic pathways, transcriptional regulation, DNA repairing systems, and reduction-oxidation status of numerous enzymes. Alterations of NAD+ homeostasis can impact disease conditions, including, but not limited to age-related disease, cardiovascular diseases, neurological or neurodegenerative disorders, cancer, microbial infections, ischemic conditions, and autoimmune diseases. Examples of diseases and treatments thereof using NAD+ can be found in Arenas- Jal et at. Therapeutic potential of nicotinamide adenine dinucleotide (NAD). Euro J of Pharm. 2020 July; 879: 173158, Wang et al.
- NAD nicotinamide adenine dinucleotide
- Nicotinamide adenine dinucleotide treatment alleviates the symptoms of experimental autoimmune encephalomyelitis by activating autophagy and inhibiting the NLRP3 inflammasome. Inter Immuno. 2021 January; 90: 107092, Braidy et al. Role of Nicotinamide adenine dinucleotide and related precursors as therapeutic targets for age-related degenerative diseases: rationale, biochemistry, pharmacokinetics, and outcomes. Antioxidants and Redox Signaling. 2018 November 30; 251- 294, and Hosseini et al. Nicotinamide adenine dinucleotide emerges as a therapeutic target in ageing and ischemic conditions. Biogerontology.
- L- or D-arabinose are simple sugars linked to glucose and lipid metabolism, and shown to effect metabolic disorders or diseases including, but not limited to diabetes (Type I or Type II), cardiovascular disease, obesity, stroke, or combinations thereof.
- Treatment with L- arabinose demonstrate protective effects against metabolic syndrome, which is a combination of metabolic deficiencies that increase the risk of type II diabetes, cardiovascular diseases, obesity, or stroke. Examples of using L- or D- arabinose treatment can be found in Hao et al. Protective effects of L-arabinose in high-carbohydrate, high fat diet induced metabolic syndrome in rats. Food & Nutrition Research.
- L- or D- arabinose has also been linked to diseases, such as microbial infections.
- L- or D-arabinose has been shown to be biomarkers for active microbial infections, including, but not limited to tuberculosis caused by Mycobacterium tuberculosis (Mtb).
- Mcb Mycobacterium tuberculosis
- De et al. Estimation of D-arabinose by Chromatography /Mass Spectrometry as Surrogate for Mycobacterial Lipoarabinomannan in Human Urine. PLOS ONE. 2015 Dec 3; 10(12): e0144088, herein incorporated by reference in its entirety for its teaching concerning arabinose sugars detected as biomarkers of diseases or disorders.
- the methods disclosed herein can be used in a variety of applications.
- the methods can be used in a cell-based assay, such as multiplexed or high-throughput cell arrays.
- the methods disclosed herein can be used to assess viability, toxicity, mitochondrial or energetics activity, nuclear activity, or other cellular functions. Examples include cell viability assays, cell proliferation assays, cytotoxicity assays, cell senescence assays, cell death assays, cell membrane or mitochondrial membrane potential assays, and nuclear or mitochondrial fragmentation assays.
- a high-throughput array such as a positional array comprising small chips, or glass surfaces, bound by the signal protein, or a suspension arrays comprising a suspension of beads bound by the signal protein in a liquid medium.
- exemplary beads include, but are not limited to silica microbeads or polystyrene beads.
- Small molecule test compounds can initially be members of an organic or inorganic chemical library.
- small molecules refers to small organic or inorganic molecules of molecular weight below about 3,000 Daltons.
- the small molecules can be natural products or members of a combinatorial chemistry library.
- a set of diverse molecules should be used to cover a variety of functions such as charge, aromaticity, hydrogen bonding, flexibility, size, length of side chain, hydrophobicity, and rigidity.
- Particular screening applications disclosed herein relate to the testing of pharmaceutical compounds in drug research (In Vitro Methods in Pharmaceutical Research”, Academic Press, 1997, and U.S. Pat. No. 5,030,015).
- Assessment of the activity of candidate pharmaceutical compounds generally involves administering a candidate compound, determining any change in the morphology, marker phenotype and expression, or metabolic activity of the cells and function of the cells that is attributable to the compound (compared with untreated cells or cells treated with an inert compound), and then correlating the effect of the compound with the observed change.
- the screening may be done, for example, either because the compound is designed to have a pharmacological effect on certain cell types, or because a compound designed to have effects elsewhere may have unintended side effects.
- Two or more drugs can be tested in combination (by combining with the cells either simultaneously or sequentially), to detect possible molecular interaction effects.
- compounds are screened initially for potential toxicity (Castell et al., pp. 375-410 in “In vitro Methods in Pharmaceutical Research,” Academic Press, 1997). Cytotoxicity can be determined in the first instance by the effect on cell viability, survival, morphology, and expression or release of certain markers, receptors, or enzymes.
- Effects of a drug on chromosomal DNA can be especially at unscheduled times in the cell cycle, or above the level required for cell replication, is consistent with a drug effect. Unwanted effects can also include unusual rates of sister chromatid exchange, determined by metaphase spread. The reader is referred to A. Vickers (PP 375-410 in “In vitro Methods in Pharmaceutical Research,” Academic Press, 1997) for further elaboration.
- assessments of the activity of candidate pharmaceutical compounds generally involves combining the cells with the candidate compound, either alone or in combination with other drugs.
- the investigator determines any change in the morphology, marker phenotype, or functional activity of the cells that is attributable to the compound (compared with untreated cells or cells treated with an inert compound), and then correlates the effect of the compound with the observed change.
- the methods disclosed herein have important implications for patient treatment and also for clinical development of new therapeutics.
- Physicians select therapeutic regimens for patient treatment based upon the expected net benefit to the patient.
- the net benefit is derived from the risk to benefit ratio.
- the present invention permits selection of subjects who are more likely to benefit by intervention, thereby aiding the physician in selecting a therapeutic regimen. This might include using drugs with a higher risk profile where the likelihood of expected benefit has increased.
- clinical investigators desire to select for clinical trials a population with a high likelihood of obtaining a net benefit.
- the present invention can help clinical investigators select such subjects or for determining entry criteria for clinical trials.
- a significant difference is more than a 5% difference.
- a significant difference is 5%, 6%, 7%, 8%, 9%, 10%, 11%, 12%, 13%, 14%, 15%, 16%, 17%, 18%, 19%, 20%, 21%, 22%, 23%, 24%, 25%, 26%, 27%, 28%, 29%, 30%, 31%, 32%, 33%, 34%, 35%, 36%, 37%, 38%, 39%, 40%, 41%, 42%, 43%, 44%, 45%, 46%, 47%, 48%, 49%, 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 81%, 8
- modulation of the target molecule by the test compound results in an increased amount of measurable target molecule compared to the control. In some embodiments, modulation of the target molecule by the test compound results in a 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32,
- modulation of the target molecule by the test compound results in a decreased amount of measurable target molecule compared to the control. In some embodiments, modulation of the target molecule by the test compound results in a 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32,
- the test compound is a small molecule such as a metal or organic compound, a polypeptide, a peptide, a natural product, a peptidomimetic, a nucleic acid, a lipid, lipopeptide, a carbohydrate, or any variant thereof.
- the test compound is an agonist or an antagonist of the target molecule.
- fluorescent biosensors can be used to monitor intracellular metabolites with high spatial and temporal resolution in cells. In addition to facilitating the discovery of new biology, they have enabled precise, cell-based screening for modulators of specific metabolic activities.
- a fluorescent biosensor was developed which responds to the NAD + derived signaling molecule free Adenosine 5 ’Di-Phosphate Ribose (ADPR).
- Intracellular concentrations of free ADPR can reflect enzymatic activities and control TRPM2 channel opening.
- ADPR is derived from the enzymatic cleavage of the metabolite NAD + , or oxidized nicotinamide adenine dinucleotide. Free ADPR concentrations are reported to reflect the activities of NAD + consuming enzymes, such as pro-neurodegenerative enzyme SARM1 and human immunoenzyme CD-38.
- SARM1 and human immunoenzyme CD-38 The lack of methods to monitor free ADPR concentrations in real-time and in physiological contexts represents a major barrier for screening and testing SARM1 blockers or CD-38 targeting approaches, with relevance to neurodegeneration, cancer, and cardiovascular disease.
- the major challenges for studying ADPR include that its levels fluctuate and spike very locally within minutes.
- free ADPR is the required agonist for the opening of human calcium channel Transient Receptor Potential Melastatin family member 2 (TRPM2).
- TRPM2 Transient Receptor Potential Melastatin family member 2
- sensors for free ADPR concentrations can be used in different parts of live cells for dynamic measurements. These sensors are genetically encoded, and so they can be localized to different subcellular compartments using targeting sequences, are further amenable to restricted expression among cell types, and can be engineered into in vivo models.
- the sensor is based on a circularly-permutated single fluorescent protein design (Baird et al, 1999 PNAS and reviewed in Nasu et al, 2021 Nat Chem Biol).
- the GFP-derived fluorescent protein, Venus was used.
- Venus was circularly permutated and reforms to its fluorescent beta barrel fold by introducing a cut between amino acids 144 and 145 and connecting its original N- and C- termini with a 5 amino acid GGSGG linker sequence (circularly permutated Venus now referred to as cp Venus or cpV). Circular permutation permits attachment of an analyte binding domain in close proximity to the chromophore of Venus.
- the analyte binding domain confers selectivity of ligand binding to the sensor.
- the Nudix-like bacterial transcription factor NrtR from Shewanella oneidensis was used that is an ADPR-dependent transcriptional repressor (Rodionov et al, 2008 Nucleic Acids Res; Gao et al, 2019 eLlFE).
- the cpV protein was integrated between amino acids 118 and 119 in the sequence of NrtR (Uniprot Q8EFJ3).
- the integration site for cpV was determined through a combination of in silico analyses using solved crystal structure states of NrtR (PDB files: 3GZ5, 3GZ6, and 3GZ8; Huang et al 2009 Structure) to identify regions that underwent structural changes upon ligand binding.
- cpVenus was then cloned into identified sites without linkers and performed an in vitro screen with 15 potential candidates to identify chimeras that retained cpV fluorescence and that would exhibit fluctuations in their fluorescence in the presence of free ADPR ligand.
- cpV integrated into site 118/119 in NrtR was chosen for further analyses. This site is adjacent to the hinge region of the ligand-binding site, and it is within an alpha-helix that undergoes a disruptive loss of secondary structure when free ADPR binds (FIG. 1).
- the model is that this structural change is transduced to the nearby chromophore 1 of cpV to cause a change in fluorescence intensity. This may occur through disruption of the chromophore or shifting the pKa of the chromophore.
- the mutation D122N was also incorporated to reduce the number of polar and charged side-chains in proximity to the sensor’s chromophore.
- the rationale was that charged residues could shift the local pKa of the chromophore promoting in its protonation.
- Introduction of D122N improved the brightness of the sensor and stabilized its pH-sensitivity between pH 7.4 - 8.0 (FIG. 3)
- the purified sensor (FIG. 4) decreased in fluorescence intensity with addition of free ADPR. At high concentrations, it saturated with - 80% diminishment of sensor brightness that represented an ⁇ 4-fold dose-dependent response (FIG.4B, red). As a control a binding pocket mutant (R98E) was generated that did not respond to free ADPR (FIG. 4B, black). It was determined that the sensor responds to free ADPR with a Kd ⁇ 2 pM ⁇ 1 p M and is thus poised to detect intracellular free ADPR concentrations (Heiner, et al, 2006 Biochem J Gasser and Guse, 2005 J Chromatogr B Analyt Technol Biomed.
- the sensor had minimal responsivity to structurally related molecules such as ADP and ATP (FIG. 5). Although fluorescence of the sensor is moderately affected by temperature and large fluctuations in pH, the non-binding control is similarly affected under parallel conditions. Thus, a parallel normalization of the sensor to its non-binding control may be possible to distinguish free ADPR-dependent changes from independent effects (FIG. 6).
- SEQ ID NO: 1 free ADPR Sensor
Landscapes
- Investigating Or Analysing Biological Materials (AREA)
Abstract
The present disclosure provides a signal protein for detecting free adenine diphosphate ribose (free ADPR) and methods of use thereof.
Description
METHODS AND PLATFORM RELATED TO FLUORESCENT PROTEIN BIOSENSORS
CROSS-REFERENCE TO RELATED APPLICATIONS
[0001] This application claims benefit of U.S. Provisional Application No. 63/463,771, filed May 3, 2023, incorporated herein by reference in its entirety.
REFERENCE TO SEQUENCE LISTING
[0002] The Sequence Listing conforming to the rules of WIPO Standard ST.26 is hereby incorporated by reference. Said Sequence Listing has been filed as an electronic document via Patent Center encoded as XML in UTF-8 text. The electronic document, created on May 3, 2024, is entitled “10046-512W01_ST26.xml”, and is 7,830 bytes in size.
GOVERNMENT SUPPORT CLAUSE
[0003] This invention was made with government support under Grant no. GM126897 awarded by the National Institutes of Health. The government has certain rights in the invention.
BACKGROUND OF THE INVENTION
[0004] ADPR is derived from the enzymatic cleavage of the metabolite NAD+, or oxidized nicotinamide adenine dinucleotide. Free ADPR concentrations are reported to reflect the activities of NAD+ consuming enzymes, such as pro-neurodegenerative enzyme SARM1 and human immunoenzyme CD-38. The lack of methods to monitor free ADPR concentrations in real-time and in physiological contexts represents a major barrier for screening and testing SARM1 blockers or CD-38 targeting approaches, with relevance to neurodegeneration, cancer, and cardiovascular disease. The major challenges for studying free ADPR include that its levels fluctuate and spike very locally within minutes. The sources and concentrations of free ADPR in cells are unknown; how free ADPR concentrations are regulated in cells is also unknown. Additionally, as an intermediary in signaling pathways, free ADPR is the required agonist for the opening of human calcium channel Transient Receptor Potential Melastatin family member 2 (TRPM2). As such, intracellular free ADPR concentrations are expected to play a role in controlling fever responses, synaptic activity, cell death mechanisms, as well as inflammatory and oxidative stress responses.
[0005] What is needed in the art is a modified nudix-related transcriptional regulator signal protein which can detect various target molecules such as free ADPR.
SUMMARY OF THE INVENTION
[0006] The present invention provides a modified signal protein and methods detecting the presence/modulation and quantifying a target molecule using said signal protein.
[0007] In one aspect, disclosed herein is a signal protein, wherein the signal protein is a modified nudix-related transcriptional regulator (NrtR) family protein, wherein the signal protein is modified such that a conformational change occurs in the signal protein when it binds a target molecule, and further wherein the signal protein comprises an output module, wherein said output module produces a signal upon interaction of the signal protein and the target molecule.
[0008] In one aspect disclosed herein is a method for determining presence of a target molecule, the method comprising a) providing a signal protein, wherein the signal protein is a modified nudix-related transcriptional regulator (NrtR) family protein, wherein the signal protein is modified such that a conformational change occurs in the signal protein when it binds a target molecule, and further wherein the modified protein comprises an output module, wherein said output module produces a signal upon interaction of the signal protein and its target, b) exposing the signal protein to the target molecule under conditions such that the signal protein is capable of binding the target molecule, wherein said binding produces a signal, and c) detecting the signal, thereby determining the presence of the target molecule.
[0009] In one aspect, disclosed herein is a method for quantifying a target molecule, the method comprising a) providing a signal protein, wherein the signal protein is a modified nudix-related transcriptional regulator (NrtR) family protein, wherein the signal protein is modified such that a conformational change occurs in the signal protein when it binds a target molecule, and further wherein the modified protein comprises an output module, wherein said output module produces a signal upon interaction of the signal protein and its target, b) exposing the signal protein to the target molecule under conditions such that the signal protein is capable of binding the target molecule, wherein said binding produces a signal, and c) detecting the amount of signal produced in step b), thereby determining the amount of the target molecule present.
[0010] In one aspect disclosed herein is a method for determining modulation of a target molecule by a test compound, the method comprising a) providing a signal protein, wherein the signal protein is a modified nudix-related transcriptional regulator (NrtR) family protein,
wherein the signal protein is modified such that a conformational change occurs in the signal protein when it binds a target molecule, and further wherein the modified protein comprises an output module, wherein said output module produces a signal upon interaction of the signal protein and its target, b) exposing the signal protein to the target molecule and the test compound under conditions such that the signal protein is capable of binding the target molecule, wherein said binding produces a signal, c) detecting the amount of signal produced in step b), d) comparing the amount of signal produced in step b) to a control, wherein said control was carried out without the presence of the test compound, and e) determining if a difference exists between the amount of signal produced in the presence of the test compound and the amount of signal produced in the control, wherein a significant difference indicates that the test compound modulated the target molecule.
[0011] In some embodiments, the signal protein is a modified NrtR protein. In some embodiments, the target molecule comprises free adenosine diphosphate ribose (free ADPR). In some embodiments, the signal protein is a modified L-arabinose Nudix-related transcription factor (AraR) protein. In some embodiments, the target molecule comprises L- or D-Arabinose. In some embodiments, the said signal protein is a modified NAD-responsive transcriptional repressor (NdnR) of NAD+. In some embodiments, the target molecule comprises NAD+.
[0012] In some embodiments, the output module comprises a peptide linker and a signal transducer. In some embodiments, the signal transducer is a fluorescent molecule. In some embodiments, the fluorescent molecule is cpVenus.
[0013] In some embodiments, the peptide linker transduces the conformational change to the signal transducer. In some embodiments, the nudix-related transcriptional regulator has been modified so that it can interact with a non-native target. In some embodiments, the nudix- related transcriptional regulator has been evolved to change its specificity for the target.
[0014] In some embodiments, a significant difference is more than a 5% difference. In some embodiments, modulation of the target molecule by the test compound results in an increased amount of measurable target molecule compared to the control. In some embodiments, modulation of the target molecule by the test compound results in a decreased amount of measurable target molecule compared to the control.
[0015] In some embodiments, the test compound is a small molecule such as a metal or organic compound, a polypeptide, a peptide, a natural product, a peptidomimetic, a nucleic acid, a lipid, lipopeptide, or a carbohydrate. In some embodiments, the test compound is an agonist or an antagonist of the target molecule.
BRIEF DESCRIPTION OF FIGURES
[0016] The accompanying figures, which are incorporated in and constitute a part of this specification, illustrate several aspects described below.
[0017] FIG 1 shows the apo- (green, PDB 3GZ5) and ligand-bound (yellow, PDB 3GZ8) solved so NrtR structures are superimposed. Inset, enlarged view of the lost helical secondary structure when free ADPR is bound (yellow).
[0018] FIGS. 2A, 2B, and 2C show mutated amino acid residues and confocal images of free ADPR. FIG. 2A shows the position of mutated residues (lysine and serine, highlighted in cyan) relative to nucleic acid in PDB 3GZ6. FIGS. 2B and 2C show the confocal fluorescent images of transiently transfected free ADPR sensor in HEK293T cells before (FIG. 2B) and after (FIG. 2C) introduction of mutations K435A and S436D. Formation of puncta was alleviated with the mutations (FIG. 2C).
[0019] FIG. 3 shows the introduction of D122N (closed circles) improved the brightness of the sensor and reduced its sensitivity to non-ligand changes between pH 7.4 and pH 8.0.
[0020] FIGS. 4A and 4B shows a Coomassie image and fluorescence intensity of response of the sensor to free ADPR. FIG. 4A shows the Coomassie of affinity-isolated free ADPR sensor (arrow). The expected molecular weight for the free ADPR sensor is ~54kDa. FIG. 4B shows the free ADPR sensor’s fluorescence intensity decreases with increasing free ADPR concentrations. The control is a binding mutant (R98E). Values are mean of n=3 and error bars represent SD.
[0021] FIGS. 5A-B show that the sensor responds specifically to free ADPR and modified free ADPR (2’-deoxy ADPR, O-Acetyl ADPR and phospho ADPR) molecules. FIG. 5A shows that the sensor responds to free and modified free ADPR but does not respond to similar molecules including 2’ -cyclic ADPR, 3 ’-cyclic ADPR, cyclic ADPR, NAAD+, NAD+, NADH, NaADP+, Ribulose-5-Phosphate (R5P), AMP, ADP and ATP. FIG. 5B shows that the control (R98E) does not respond to any tested molecule. The bar graph represents the mean ± SD.
[0022] FIGS. 6A and 6B show fluorescence intensity relative to temperature. FIG. 6A shows that both sensor and control (R98E) have a moderate but significant change in fluorescence with temperature. The bar graph represents the mean ± SD, ANOVA < 0.05 with post-hoc Dunnett’s Test *p < 0.05 and **p < 0.01. FIG. 6B shows the change in fluorescence of the sensor can be normalized to the control.
[0023] FIGS. 7 A and 7B show that the free ADPR sensor (7 A) and TRPM2 (7B) respond to increased free cytosolic ADPR following H2O2 treatment as indicated. Fluorescence of the free ADPR sensor responds directly; TRPM2 responds with an influx of intracellular Ca2+, which
is reported by increased fluorescence of Ca2+ sensor GCaMP7s. Values are mean (F/Fo) ± SD, analyzed by confocal microscopy.
[0024] FIG. 8A-B shows the Nudix-like transcription factor (TF) members as a platform for engineering sensors based on shared features. (A) shows arabinose sensor; (B) shows nudix- based NAD sensor.
DETAILED DESCRIPTION
[0025] The following description of the disclosure is provided as an enabling teaching of the disclosure in its best, currently known embodiment(s). To this end, those skilled in the relevant art will recognize and appreciate that many changes can be made to the various embodiments of the invention described herein, while still obtaining the beneficial results of the present disclosure. It will also be apparent that some of the desired benefits of the present disclosure can be obtained by selecting some of the features of the present disclosure without utilizing other features. Accordingly, those who work in the art will recognize that many modifications and adaptations to the present disclosure are possible and can even be desirable in certain circumstances and are a part of the present disclosure. Thus, the following description is provided as illustrative of the principles of the present disclosure and not in limitation thereof. [0026] Reference will now be made in detail to the embodiments of the invention, examples of which are illustrated in the drawings and the examples. This invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein.
Terminology
[0027] Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood to one of ordinary skill in the art to which this disclosure belongs.
[0028] Ranges can be expressed herein as from “about” one particular value, and/or to “about” another particular value. By “about” is meant within 10% of the value, e.g., within 9, 8, 8, 7, 6, 5, 4, 3, 2, or 1% of the value. When such a range is expressed, another aspect includes from the one particular value and/or to the other particular value. Similarly, when values are expressed as approximations, by use of the antecedent “about,” it will be understood that the particular value forms another aspect. It will be further understood that the endpoints of each of the ranges are significant both in relation to the other endpoint, and independently of the other endpoint. It is also understood that there are a number of values disclosed herein, and
that each value is also herein disclosed as “about” that particular value in addition to the value itself. For example, if the value “10” is disclosed, then “about 10” is also disclosed.
[0029] The term “comprising”, and variations thereof as used herein is used synonymously with the term “including” and variations thereof and are open, non-limiting terms. Although the terms “comprising” and “including” have been used herein to describe various embodiments, the terms “consisting essentially of’ and “consisting of’ can be used in place of “comprising” and “including” to provide for more specific embodiments and are also disclosed. Throughout the description and claims of this specification the word “comprise” and other forms of the word, such as “comprising” and “comprises,” means including but not limited to, and is not intended to exclude, for example, other additives, components, integers, or steps.
[0030] As used in the specification and claims, the singular form “a”, “an”, and “the” include plural references unless the context clearly dictates otherwise. For example, the term “an agent” includes a plurality of agents, including mixtures thereof.
[0031] As used herein, the terms "may," "optionally," and "may optionally" are used interchangeably and are meant to include cases in which the condition occurs as well as cases in which the condition does not occur.
[0032] An "increase" can refer to any change that results in a greater amount of a symptom, disease, composition, condition, or activity. An increase can be any individual, median, or average increase in a condition, symptom, activity, composition in a statistically significant amount. Thus, the increase can be a 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, or 100% increase so long as the increase is statistically significant.
[0033] A "decrease" can refer to any change that results in a smaller amount of a symptom, disease, composition, condition, or activity. A substance is also understood to decrease the genetic output of a gene when the genetic output of the gene product with the substance is less relative to the output of the gene product without the substance. Also, for example, a decrease can be a change in the symptoms of a disorder such that the symptoms are less than previously observed. A decrease can be any individual, median, or average decrease in a condition, symptom, activity, composition in a statistically significant amount. Thus, the decrease can be a 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, or 100% decrease so long as the decrease is statistically significant.
[0034] Reference is made herein to nucleic acid and nucleic acid sequences. The terms “nucleic acid” and “nucleic acid sequence” refer to a chemical compound that serves as the primary information-carrying molecules in cells and make up the cellular genetic material. Nucleic
acids comprise nucleotides, which are the monomers made of a 5-carbon sugar (usually ribose or deoxyribose), a phosphate group, and a nitrogenous base. It should be understood that a nucleotide, oligonucleotide, polynucleotide, or fragments thereof can be used interchangeably. These phrases also refer to DNA or RNA of genomic or synthetic origin (which may be singlestranded or double-stranded and may represent the sense or the antisense strand).
[0035] Reference also is made herein to peptides, polypeptides, proteins and compositions comprising peptides, polypeptides, and proteins. As used herein, a polypeptide and/or protein is defined as a polymer of amino acids, typically of length>100 amino acids (Garrett & Grisham, Biochemistry, 2nd edition, 1999, Brooks/Cole, 110). A peptide is defined as a short polymer of amino acids, of a length typically of 20 or less amino acids, and more typically of a length of 12 or less amino acids (Garrett & Grisham, Biochemistry, 2nd edition, 1999, Brooks/Cole, 110).
[0036] As disclosed herein, exemplary peptides, polypeptides, proteins may comprise, consist essentially of, or consist of any reference amino acid sequence disclosed herein, or variants of the peptides, polypeptides, and proteins may comprise, consist essentially of, or consist of an amino acid sequence having at least about 80%, 90%, 95%, 96%, 97%, 98%, or 99% sequence identity to any amino acid sequence disclosed herein. Variant peptides, polypeptides, and proteins may include peptides, polypeptides, and proteins having one or more amino acid substitutions, deletions, additions and/or amino acid insertions relative to a reference peptide, polypeptide, or protein. Also disclosed are nucleic acid molecules that encode the disclosed peptides, polypeptides, and proteins (e.g., polynucleotides that encode any of the peptides, polypeptides, and proteins disclosed herein and variants thereof).
[0037] The term “amino acid,” includes but is not limited to amino acids contained in the group consisting of alanine (Ala or A), cysteine (Cys or C), aspartic acid (Asp or D), glutamic acid (Glu or E), phenylalanine (Phe or F), glycine (Gly or G), histidine (His or H), isoleucine (He or I), lysine (Lys or K), leucine (Leu or L), methionine (Met or M), asparagine (Asn or N), proline (Pro or P), glutamine (Gin or Q), arginine (Arg or R), serine (Ser or S), threonine (Thr or T), valine (Vai or V), tryptophan (Trp or W), and tyrosine (Tyr or Y) residues. The term “amino acid residue” also may include amino acid residues contained in the group consisting of homocysteine, 2-Aminoadipic acid, N-Ethylasparagine, 3-Aminoadipic acid, Hydroxylysine, P-alanine, P-Amino-propionic acid, allo-Hydroxylysine acid, 2-Aminobutyric acid, 3-Hydroxyproline, 4-Aminobutyric acid, 4-Hydroxyproline, piperidinic acid, 6- Aminocaproic acid, Isodesmosine, 2-Aminoheptanoic acid, allo-Isoleucine, 2- Aminoisobutyric acid, N-Methylglycine, sarcosine, 3-Aminoisobutyric acid, N-
Methylisoleucine, 2-Aminopimelic acid, 6-N-Methyllysine, 2,4-Diaminobutyric acid, N- Methylvaline, Desmosine, Norvaline, 2,2'-Diaminopimelic acid, Norleucine, 2,3- Diaminopropionic acid, Ornithine, and N-Ethylglycine. Typically, the amide linkages of the peptides are formed from an amino group of the backbone of one amino acid and a carboxyl group of the backbone of another amino acid.
[0038] The peptides, polypeptides, and proteins disclosed herein may be modified to include non-amino acid moieties. Modifications may include but are not limited to carboxylation (e.g., N-terminal carboxylation via addition of a di-carboxylic acid having 4-7 straight-chain or branched carbon atoms, such as glutaric acid, succinic acid, adipic acid, and 4,4- dimethylglutaric acid), amidation (e.g., C-terminal amidation via addition of an amide or substituted amide such as alkylamide or dialkylamide), PEGylation (e.g., N-terminal or C- terminal PEGylation via additional of polyethylene glycol), acylation (e.g., O-acylation (esters), N-acylation (amides), S-acylation (thioesters)), acetylation (e.g., the addition of an acetyl group, either at the N-terminus of the protein or at lysine residues), formylation lipoylation (e.g., attachment of a lipoate, a C8 functional group), myristoylation (e.g., attachment of myristate, a C14 saturated acid), palmitoylation (e.g., attachment of palmitate, a C16 saturated acid), alkylation (e.g., the addition of an alkyl group, such as an methyl at a lysine or arginine residue), isoprenylation or prenylation (e.g., the addition of an isoprenoid group such as farnesol or geranylgeraniol), amidation at C-terminus, glycosylation (e.g., the addition of a glycosyl group to either asparagine, hydroxylysine, serine, or threonine, resulting in a glycoprotein). Distinct from glycation, which is regarded as a nonenzymatic attachment of sugars, polysialylation (e.g., the addition of polysialic acid), glypiation (e.g., glycosylphosphatidylinositol (GPI) anchor formation, hydroxylation, iodination (e.g., of thyroid hormones), and phosphorylation (e.g., the addition of a phosphate group, usually to serine, tyrosine, threonine, or histidine).
[0039] Variants comprising insertions or additions relative to a reference amino acid sequence are contemplated herein. The words “insertion” and “addition” refer to changes in an amino acid sequence resulting in the addition of one or more amino acid residues. An insertion or addition may refer to 1, 2, 3, 4, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 150, or 200 amino acid residues.
[0040] Fusion proteins are also contemplated herein. A “fusion protein” refers to a protein formed by the fusion of at least one peptide, polypeptide, protein, or variant thereof as disclosed herein to at least one molecule of a heterologous peptide, polypeptide, protein, or variant thereof. The heterologous protein(s) may be fused at the N-terminus, the C-terminus, or both
termini. A fusion protein comprises at least a fragment or variant of the heterologous protein(s) that are fused with one another, preferably by genetic fusion (i.e., the fusion protein is generated by translation of a nucleic acid in which a polynucleotide encoding all or a portion of a first heterologous protein is joined in-frame with a polynucleotide encoding all or a portion of a second heterologous protein). The heterologous protein(s), once part of the fusion protein, may each be referred to herein as a “portion”, “region” or “moiety” of the fusion protein.
[0041] As used herein, a “signal protein” refers to a peptide or polypeptide sequence bound or fused to a peptide linker and a signal transducing molecule used to convey an interaction between said signal protein and its target molecule. Herein, the signal protein comprises a transcription regulating protein bound to the signal transducing molecule by the peptide linker. [0042] A “peptide linker” refers to short (about 4-50 amino acids in length) peptides that serve to connect two or more biomolecules, including, but not limited to proteins, polypeptides, peptides, nucleic acids, lipids, carbohydrates, and derivatives thereof. Peptide linkers are generally used to maintain cooperative interactions between biomolecules or preserve biological activities of the biomolecules.
[0043] As used herein, a “signal transducer” or a “signal transducing molecule” refers to any biomolecule, such as a probes (e.g., fluorescent probes or fluorescent molecules), peptide, polypeptide, protein, nucleic acid, hormones, neurotransmitters, growth factors, cytokines, and chemokines that bind to a specific protein domain to initiate a series of events, including, but not limited to conformational changes, light emission, biomolecule interactions, and biomolecule synthesis or degradation.
[0044] As used herein, a “transcription factor” or a “transcription regulator” refers to a protein or family of proteins that control the rate of transcription of genetic material, or the conversion of DNA into messenger RNA (mRNA). Transcription factors or transcription regulators are able to regulate transcription by binding to specific DNA sequences to enhance or repress transcription.
[0045] An “output module” refers to a region or domain within a signal protein that receives input (e.g., an interaction between the signal protein and the target molecule) and thereafter produces a detectable signal.
[0046] A “target molecule” refers to a biomolecule, including, but not limited to carbohydrates, lipids, amino acids, nucleotides, nucleic acids, peptides, polypeptides, that is recognized by a specific signal protein. Target molecules generally comprises chemical moieties or domains that can bind or interact with the signal protein to initiate a series of events, including, but not
limited to conformational changes, light emission, biomolecule interactions, and biomolecule synthesis or degradation.
[0047] “Homology” refers to sequence similarity or, interchangeably, sequence identity, between two or more polypeptide sequences or polynucleotide sequences. Homology, sequence similarity, and percentage sequence identity may be determined using methods in the art and described herein.
[0048] The phrases “percent identity” and “% identity,” as applied to polypeptide sequences, refer to the percentage of residue matches between at least two polypeptide sequences aligned using a standardized algorithm. Methods of polypeptide sequence alignment are well-known. Some alignment methods consider conservative amino acid substitutions. Such conservative substitutions, explained in more detail above, generally preserve the charge and hydrophobicity at the site of substitution, thus preserving the structure (and therefore function) of the polypeptide. Percent identity for amino acid sequences may be determined as understood in the art. (See, e.g., U.S. Pat. No. 7,396,664, which is incorporated herein by reference in its entirety). A suite of commonly used and freely available sequence comparison algorithms is provided by the National Center for Biotechnology Information (NCBI) Basic Local Alignment Search Tool (BLAST) (Altschul, S. F. et al. (1990) J. Mol. Biol. 215:403 410), which is available from several sources, including the NCBI, Bethesda, Md., at its website. The BLAST software suite includes various sequence analysis programs including “blastp,” that is used to align a known amino acid sequence with other amino acids sequences from a variety of databases.
[0049] Percent identity may be measured over the length of an entire defined polypeptide sequence or may be measured over a shorter length, for example, over the length of a fragment taken from a larger, defined polypeptide sequence, for instance, a fragment of at least 15, at least 20, at least 30, at least 40, at least 50, at least 70 or at least 150 contiguous residues. Such lengths are exemplary only, and it is understood that any fragment length may be used to describe a length over which percentage identity may be measured.
[0050] A “variant” of a particular polypeptide sequence may be defined as a polypeptide sequence having at least 50% sequence identity to the particular polypeptide sequence over a certain length of one of the polypeptide sequences using blastp with the “BLAST 2 Sequences” tool available at the National Center for Biotechnology Information's website. (See Tatiana A. Tatusova, Thomas L. Madden (1999), “Blast 2 sequences — a new tool for comparing protein and nucleotide sequences”, FEMS Microbiol Lett. 174:247-250). In some embodiments a variant polypeptide may show, for example, at least 60%, at least 70%, at least 80%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least
97%, at least 98%, or at least 99% or greater sequence identity over a certain defined length relative to a reference polypeptide.
[0051] A variant polypeptide may have substantially the same functional activity as a reference polypeptide. For example, a variant polypeptide may exhibit one or more biological activities associated with binding a ligand and/or binding DNA at a specific binding site.
[0052] The terms “percent identity” and “% identity,” as applied to polynucleotide sequences, refer to the percentage of residue matches between at least two polynucleotide sequences aligned using a standardized algorithm. Such an algorithm may insert, in a standardized and reproducible way, gaps in the sequences being compared in order to optimize alignment between two sequences, and therefore achieve a more meaningful comparison of the two sequences. Percent identity for a nucleic acid sequence may be determined as understood in the art. (See, e.g., U.S. Pat. No. 7,396,664, which is incorporated herein by reference in its entirety). A suite of commonly used and freely available sequence comparison algorithms is provided by the National Center for Biotechnology Information (NCBI) Basic Local Alignment Search Tool (BLAST) (Altschul, S. F. et al. (1990) J. Mol. Biol. 215:403 410), which is available from several sources, including the NCBI, Bethesda, Md., at its website. The BLAST software suite includes various sequence analysis programs including “blastn,” that is used to align a known polynucleotide sequence with other polynucleotide sequences from a variety of databases. Also available is a tool called “BLAST 2 Sequences” that is used for direct pairwise comparison of two nucleotide sequences. “BLAST 2 Sequences” can be accessed and used interactively at the NCBI website. The “BLAST 2 Sequences” tool can be used for both blastn and blastp (discussed above).
[0053] The term “ vitro” as used herein refers to the performance of a biochemical reaction outside a living cell, including, for example, in a microwell plate, a tube, a flask, a tank, a reactor and the like, for example a reaction to form an alkaloid compound.
[0054] The term “ vivo” as used herein refers to the performance of a biochemical reaction within a living cell, including, for example, a microbial cell, or a plant cell, for example to form an alkaloid compound.
[0055] The disclosed technology relates to “biosensors.” As disclosed herein, a “biosensor” is a molecule or a system of molecules that can be used to bind to a ligand (or target molecule) and provide a detectable response based on binding the ligand. In some cases, “biosensors” may be referred to as “molecular switches.” Biosensors and molecular switches are disclosed in the art. (See, e.g., Ostermeier, Protein Eng. Des. Sei. 2005 August; 18(8):359-64; Wright et al., Curr. Opin. Chem. Biol. 2007 June; l l(3):342-6; Roberts, Chem. Biol. 2004 November;
11(11): 1475-6; and U.S. Pat. Nos. 8,771,679; 8,679,753; and 8,338,138; the contents of which are incorporated herein by reference in their entireties). Biosensors and molecular switches have been utilized in recombinant microorganisms. (See, e.g., Rogers et al., Curr. Opin. Biotechnol. 2016 Mar. 18; 42:84-91; and U.S. Published Application Nos. 2010/0242345 and 2013/0059295; the contents of which are incorporated herein by reference in their entireties). [0056] A “substrate-promiscuous regulator” refers to any protein with the ability to bind to and report on the concentration of more than one chemical. For instance, the naturally occurring promiscuous regulators from which the biosensors disclosed herein are derived has been reported to bind to several different unrelated chemicals (Yamasaki, S., Nikaido, E., Nakashima, R. et al. Nat Commun 2013). Another common feature of substrate-promiscuous regulators is that the chemicals they bind are often structurally unrelated, but share some common general feature, such as being hydrophobic.
[0057] The systems, components, and methods disclosed herein may be utilized for sensing a ligand or a substrate or a metabolite in a cell or a reaction mixture. The disclosed systems, components, and methods typically include and/or utilize an engineered (non-naturally occurring) biosensor. The biosensors disclosed herein bind the ligand and modulate expression of an output signal, such as a reporter gene, which can be operably linked to a promoter that is engineered to include specific binding sites for the input signal. The difference in expression of the output signal in the presence of the ligand versus expression of the output signal in the absence of the ligand can be correlated to the concentration of the ligand in a reaction mixture. [0058] The term “interaction” refers to an action that occurs as two or more biomolecules have an effect on one another either with or without physical contact. In terms of biological interactions, cell, proteins, and other biomolecules can have said effects on one another to impact biological functions, such as cell signaling pathways.
[0059] As used herein, “modulating expression” may include “repressing expression” and/or “inhibiting expression,” and “modulating expression may include “de-repressing expression” and/or “activating expression.” As such, in some embodiments, when the biosensor is not bound to a ligand, the biosensor may repress expression and/or inhibit expression from a promoter that is engineered to include specific binding sites for the DNA-binding protein, and when the biosensor is bound to the ligand the biosensor may de-repress and/or activate expression from the promoter. De-repression and/or activation of the expression of the reporter gene then can be correlated with the presence of the ligand. In other embodiments, when the biosensor is bound to a ligand, the biosensor may repress expression and/or inhibit expression, and when the biosensor is not bound to the ligand the biosensor may de-repress expression
and/or activate expression. A decrease in expression of the reporter gene then can be correlated with the presence of the ligand.
[0060] The disclosed biosensors, systems, and methods may be utilized and/or performed using any suitable cell. Suitable cells may include prokaryotic cells and eukaryotic cells.
[0061] “Quantify”, “quantifying”, “quantification”, and any other grammatical variations thereof refer to the process of acquiring numerical values to determine, express, or measure an amount of a substance or signal.
[0062] A “control” is an alternative subject or sample used in an experiment for comparison purposes. A control can be "positive" or "negative."
[0063] As used herein, the term “chemical compound” and “compound”, refers to a chemical substance consisting of two or more different types of atoms or chemical elements in a fixed stoichiometric proportion. These compounds have a unique and defined chemical structure held together in a defined spatial arrangement by chemical bonds. Chemical compounds can be held together by covalent bonds, ionic bonds, metallic ions, or coordinate covalent bonds.
[0064] As used herein, the term “lipid” or “lipid-like” refers to a macromolecule that is soluble in nonpolar solvents. These molecules are usually hydrophobic or amphiphilic molecules; the amphiphilic nature of some lipids allows formation of structures such as vesicles, liposomes, membranes, and nanoparticles. Lipids can be categorized into fatty acids, glycerolipids, glycerophospholipids, sphingolipids, saccharolipids, polyketides, sterol lipids, and prenol lipids.
[0065] As used herein, a “carbohydrate” refers to a large family of organic compounds including, but not limited to sugars, starch, and cellulose, containing hydrogen and oxygen in similar ratios to water (2: 1) and used as structural materials in numerous biomolecules, such as DNA or RNA, and for energy storage with living tissues. Carbohydrates can be categorized into four groups including monosaccharides, disaccharides, oligosaccharides, and polysaccharides, wherein monosaccharides and disaccharides are the smallest forms of carbohydrates, commonly referred to as sugars, whereas oligosaccharides and polysaccharides are larger, complex structures used for energy storage of the structural foundation of nucleic acids and nucleotides.
[0066] As used herein, a “lipopeptide” refers to a biomolecule comprising a lipid bound to an amino acid sequence.
[0067] As used herein, a “peptidomimetic” refers to a small biomolecule comprising amino acid-like properties and structures designed to mimic a peptide, polypeptide, or protein. Peptidomimetic s can be generated from the modification of an existing peptide,
or by designing similar systems that mimic peptides, including, but not limited to peptiods and beta-peptides.
[0068] An “agonist” refers to a chemical composition or compound that activates a receptor protein to produce a biological response. Control samples (untreated with agonists) are assigned a relative activity value of 0%. Inhibition of a described target protein is achieved when the activity value relative to the control increases by 1%, 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%, or more percent.
[0069] The term “detect” or “detecting” refers to an output signal released for the purpose of sensing of physical phenomenon. An event or change in environment is sensed and signal output released in the form of light.
[0070] ‘ ‘Inhibitors” or “antagonist” of activity are used to refer to inhibitory molecules, respectively, identified using in vitro and in vivo assays for expression or activity of a described target protein, e.g., ligands, antagonists, and their homologs and mimetics. Inhibitors are agents that, e.g., bind to, partially or totally block stimulation or activity, decrease, prevent, delay activation, inactivate, desensitize, or down regulate the activity of the described target protein, e.g., antagonists. Control samples (untreated with inhibitors) are assigned a relative activity value of 100%. Inhibition of a described target protein is achieved when the activity value relative to the control is about 80%, optionally 50% or 25, 10%, 5%, or 1% or less.
[0071] A “conformational change” refers to a structural event wherein the structure of a protein changes in response to receiving an input signal, such as a ligand or target molecule binding, chemical modification, or a change in environment (e.g., pH, salt, osmolarity, and temperature changes).
Compositions and Compounds
[0072] The present invention provides a modified signal protein and methods detecting the presence/modulation and quantifying a target molecule using said signal protein.
[0073] The nudix-related transcriptional regulator (NrtR) proteins are a family of proteins responsible for regulation of various aspects of nicotinamide adenine dinucleotide (NAD+) biosynthetic pathways as well as other metabolic pathways including sugar pentoses utilization and biogenesis of phosphoribosyl pyrophosphate. NrtR proteins comprises binding domains targeting numerous genes for expression. Herein, the NrtR proteins have been modified to target specific metabolic intermediates, secondary messengers, carbohydrates, and nucleotide molecules, including, but not limited to adenosine diphosphate ribose (free ADPR or ADP ribose), arabinose, and NAD+.
[0074] Thus in one aspect, disclosed herein is a signal protein, wherein the signal protein is a modified nudix-related transcriptional regulator (NrtR) family protein, wherein the signal protein is modified such that a conformational change occurs in the signal protein when it binds a target molecule, and further wherein the signal protein comprises an output module, wherein said output module produces a signal upon interaction of the signal protein and the target molecule.
[0075] It should be noted that the signal protein possesses attributes of a biosensor, wherein the signal protein comprises a binding domain that binds to the target molecule. The interaction between the signal protein and the target molecule causes conformational change, or a physical/structural change to the signal protein. Another domain of the signal protein comprises an output module, which receives an input signal in the form of the conformational change to the signal protein. Following the conformational change, the output module comprising a peptide linker and a signal transducer, emits a detectable signal in the form of light, a change in color, a change in emission intensity, a change in fluorescence lifetime, a change in temperature, or a change in pH. The presence of said detectable signal indicates the presence of the target molecule.
[0076] In some embodiments, the signal protein is a modified NrtR protein. In some embodiments, the target molecule comprises free adenosine diphosphate ribose (free ADPR). In some embodiments, the signal protein is a modified L-arabinose Nudix-related transcription factor (AraR) protein. In some embodiments, the target molecule comprises L- or D-Arabinose. In some embodiments, the said signal protein is a modified NAD-responsive transcriptional repressor (NdnR) of NAD+. In some embodiments, the target molecule comprises NAD+.
[0077] Exemplary target molecules include, but are not limited to free ADPR, adenosine monophosphate (AMP), adenosine diphosphate (ADP), adenosine triphosphate (ATP), cyclicAMP (cAMP), guanosine monophosphate (GMP), guanosine diphosphate (GDP), guanosine triphosphate (GTP), cyclic GMP (cGMP), inositol triphosphate (IP3), diacylglycerol (DAG), calcium (Ca2+), epinephrine, norepinephrine, acetylcholine, histamine, estrogen, testosterone, progesterone, cholesterol, corticosteroids, thyroid hormone, vitamin D, retinoic acid, nitric oxide (NO), carbon monoxide (CO), glutamate, dopamine, serotonin, glycine, gamma-aminobutyric acid (GABA), insulin, glucagon, and other signaling molecules. In some embodiments, the target molecule comprises a carbohydrate or sugar molecule, or derivatives thereof. Exemplary sugar molecules include, but are not limited to ribose, arabinose, glucose, fructose, sucrose, cellulose, galactose, lactose, maltose, starch, glycogen, dextrose, fucose,
inositol, maltodextrin, mannose, ribulose, trehalose, xylose, and derivatives and isomers thereof.
[0078] In some embodiments, the target molecule comprises a nucleotide, or derivatives thereof. Exemplary nucleotides include, but are not limited to adenine, thymine, cytosine, guanine, uracil, 5-bromouracil, hypoxanthine, and derivatives and analogues thereof.
[0079] In some embodiments, the target molecule comprises a metabolic intermediate. As used herein, a metabolic intermediate refers to a molecules that are precursors or metabolites of biologically active molecules. It should be noted that metabolic intermediates may have minor importance to cellular function, but they are important regulators for enzyme functions. Exemplary metabolic intermediates include, but are not limited to malate, lactate, gluconate, citrate, oxaloacetate, oxoglutarate, acetyl CoA, fumarate, aconitate, isocitrate, ketoglutarate, succinyl CoA, succinate, pyruvate, nicotinamide adenine dinucleotide (NAD+ or NADH), nicotinamide adenine dinucleotide phosphate (NADP+ or NADPH), flavin adenine dinucleotide (FAD+ or FADH), ubiquinol, ubiquinone, and coenzyme Q.
[0080] In some embodiments, the output module comprises a peptide linker and a signal transducer. In some embodiments, the peptide linker comprises one or more amino acid selected from alanine (Ala or A), cysteine (Cys or C), aspartic acid (Asp or D), glutamic acid (Glu or E), phenylalanine (Phe or F), glycine (Gly or G), histidine (His or H), isoleucine (He or I), lysine (Lys or K), leucine (Leu or L), methionine (Met or M), asparagine (Asn or N), proline (Pro or P), glutamine (Gin or Q), arginine (Arg or R), serine (Ser or S), threonine (Thr or T), valine (Vai or V), tryptophan (Trp or W), and tyrosine (Tyr or Y) homocysteine, 2- Aminoadipic acid, N-Ethylasparagine, 3-Aminoadipic acid, Hydroxylysine, P-alanine, P- Amino-propionic acid, allo-Hydroxylysine acid, 2-Aminobutyric acid, 3 -Hydroxyproline, 4- Aminobutyric acid, 4-Hydroxyproline, piperidinic acid, 6-Aminocaproic acid, Isodesmosine,
2-Aminoheptanoic acid, allo-Isoleucine, 2- Aminoisobutyric acid, N-Methylglycine, sarcosine,
3-Aminoisobutyric acid, N-Methylisoleucine, 2-Aminopimelic acid, 6-N-Methyllysine, 2,4- Diaminobutyric acid, N-Methylv aline, Desmosine, Norvaline, 2,2'-Diaminopimelic acid, Norleucine, 2,3-Diaminopropionic acid, Ornithine, and N-Ethylglycine, in any combination. In some embodiments, the peptide linker comprises 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, or more amino acids. In some embodiments, the peptide linker is a flexible peptide linker. In some embodiments, the peptide linker is a rigid peptide linker.
[0081] In some embodiments, the signal transducer is a fluorescent molecule, or a fluorophore.
As used here, a “fluorescent molecule” or a “fluorophore” refers to a fluorescent chemical compound that absorb energy from an internal or external source, and in response emit energy in the form of light.
[0082] In some embodiments, the fluorescent molecule is circular permutation Venus (cpVenus). Representative fluorophores include, but are not limited to, 1,5 IAEDANS; 1,8- ANS; 4- Methylumbelliferone; 5-carboxy-2,7-dichlorofluorescein; 5-Carboxyfluorescein (5- FAM); 5-Carboxynapthofluorescein; 5-Carboxytetramethylrhodamine (5-TAMRA); 5- Hydroxy Tryptamine (5-HAT); 5-ROX (carboxy-X-rhodamine); 6-Carboxyrhodamine 6G; 6- CR 6G; 6-JOE; 7-Amino-4-methylcoumarin; 7- Aminoactinomycin D (7-AAD); 7-Hydroxy-4- I methylcoumarin; 9-Amino-6-chloro-2-methoxyacridine (ACMA); ABQ; Acid Fuchsin; Acridine Orange; Acridine Red; Acridine Yellow; Acriflavin; Acriflavin Feulgen SITSA; Aequorin (Photoprotein); AFPs - AutoFluorescent Protein - (Quantum Biotechnologies) sgGFP, sgBFP; Alexa Fluor 350™; Alexa Fluor 430™; Alexa Fluor 488™; Alexa Fluor 532™; Alexa Fluor 546™; Alexa Fluor 568™; Alexa Fluor 594™; Alexa Fluor 633™; Alexa Fluor 647™; Alexa Fluor 660™; Alexa Fluor 680™; Alizarin Complexon; Alizarin Red; Allophycocyanin (APC); AMC, AMCA-S; Aminomethylcoumarin (AMCA); AMCA-X; Aminoactinomycin D; Aminocoumarin; Anilin Blue; Anthrocyl stearate; APC-Cy7; APTRA- BTC; APTS; Astrazon Brilliant Red 4G; Astrazon Orange R; Astrazon Red 6B; Astrazon Yellow 7 GEE; Atabrine; ATTO- TAG™ CBQCA; ATTO-TAG™ FQ; Auramine; Aurophosphine G; Aurophosphine; BAO 9 (Bis aminophenyloxadiazole); BCECF (high pH); BCECF (low pH); Berberine Sulphate; Beta Eactamase; BFP blue shifted GFP (Y66H); Blue Fluorescent Protein; BFP/GFP FRET; Bimane; Bisbenzemide; Bisbenzimide (Hoechst); bisBTC; Blancophor FFG; Blancophor SV; BOBO™ -1; BOBO™-3; Bodipy 492/515; Bodipy493/503; Bodipy500/510; Bodipy; 505/515; Bodipy 530/550; Bodipy 542/563; Bodipy 558/568; Bodipy 564/570; Bodipy 576/589; Bodipy 581/591; Bodipy 630/650-X; Bodipy 650/665-X; Bodipy 665/676; Bodipy Fl; Bodipy FE ATP; Bodipy Fl-Ceramide; Bodipy R6G SE; Bodipy TMR; Bodipy TMR-X conjugate; Bodipy TMR-X, SE; Bodipy TR; Bodipy TR ATP; Bodipy TR-X SE; BO-PRO™ -1; BO-PRO™ -3; Brilliant Sulphoflavin FF; BTC; BTC- 5N; Calcein; Calcein Blue; Calcium Crimson - ; Calcium Green; Calcium Green- 1 Ca2+ Dye; Calcium Green-2 Ca2+; Calcium Green-5N Ca2+; Calcium Green-C18 Ca2+; Calcium Orange; Calcofluor White; Carboxy-X-rhodamine (5-ROX); Cascade Blue™; Cascade Yellow; Catecholamine; CCF2 (GeneBlazer); CFDA; CFP (Cyan Fluorescent Protein); CFP/YFP FRET; Chlorophyll; Chromomycin A; Chromomycin A; CE-NERF; CMFDA; Coelenterazine;
Coelenterazine cp; Coelenterazine f; Coelenterazine fcp; Coelenterazine h; Coelenterazine hep; Coelenterazine ip; Coelenterazine n; Coelenterazine O; Coumarin Phalloidin; C-phycocyanine; CPM I Methylcoumarin; CTC; CTC Formazan; Cy2™; Cy3.1 8; Cy3.5™; Cy3™; Cy5.1 8; Cy5.5™; Cy5™; Cy7™; Cyan GFP; cyclic AMP Fluorosensor (FiCRhR); Dabcyl; Dansyl; Dansyl Amine; Dansyl Cadaverine; Dansyl Chloride; Dansyl DHPE; Dansyl fluoride; DAPI; Dapoxyl; Dapoxyl 2; Dapoxyl 3’DCFDA; DCFH (Dichlorodihydrofluorescein Diacetate); DDAO; DHR (Dihydorhodamine 123); Di-4-ANEPPS; Di-8-ANEPPS (non-ratio); DiA (4-Di 16- ASP); Dichlorodihydrofluorescein Diacetate (DCFH); DiD- Lipophilic Tracer; DiD (DilC18(5)); DIDS; Dihydorhodamine 123 (DHR); Dil (DilC18(3)); I Dinitrophenol; DiO (DiOC18(3)); DiR; DiR (DilC18(7)); DM-NERF (high pH); DNP; Dopamine; DsRed; DTAF; DY-630-NHS; DY-635-NHS; EBFP; ECFP; EGFP; ELF 97; Eosin; Erythrosin; Erythrosin ITC; Ethidium Bromide; Ethidium homodimer- 1 (EthD-1); Euchrysin; EukoLight; Europium (111) chloride; EYFP; Fast Blue; FDA; Feulgen (Pararosaniline); FIF (Formaldehyd Induced Fluorescence); FITC; Flazo Orange; Fluo-3; Fluo-4; Fluorescein (FITC); Fluorescein Diacetate; Fluoro-Emerald; Fluoro-Gold (Hydroxystilbamidine); Fluor-Ruby; FluorX; FM 1- 43™; FM 4-46; Fura Red™ (high pH); Fura Red™/Fluo-3; Fura-2; Fura-2/BCECF; Genacryl Brilliant Red B; Genacryl Brilliant Yellow 10GF; Genacryl Pink 3G; Genacryl Yellow 5GF; GeneBlazer; (CCF2); GFP (S65T); GFP red shifted (rsGFP); GFP wild type’ non-UV excitation (wtGFP); GFP wild type, UV excitation (wtGFP); GFPuv; Gloxalic Acid; Granular blue; Haematoporphyrin; Hoechst 33258; Hoechst 33342; Hoechst 34580; HPTS; Hydroxy coumarin; Hydroxystilbamidine (FluoroGold); Hydroxy tryptamine; Indo-1, high calcium; Indo-1 low calcium; Indodicarbocyanine (DiD); Indotricarbocyanine (DiR); Intrawhite Cf; JC-1; JO JO-1; JO-PRO-1; LaserPro; Laurodan; LDS 751 (DNA); LDS 751 (RNA); Leucophor PAF; Leucophor SF; Leucophor WS; Lissamine Rhodamine; Lissamine Rhodamine B; Calcein/Ethidium homodimer; LOLO-1; LO-PRO-1; ; Lucifer Yellow; Lyso Tracker Blue; Lyso Tracker Blue- White; Lyso Tracker Green; Lyso Tracker Red; Lyso Tracker Yellow; LysoSensor Blue; LysoSensor Green; LysoSensor Yellow/Blue; Mag Green; Magdala Red (Phloxin B); Mag-Fura Red; Mag-Fura-2; Mag-Fura-5; Mag-lndo-1; Magnesium Green; Magnesium Orange; Malachite Green; Marina Blue; I Maxiion Brilliant Flavin 10 GFF; Maxiion Brilliant Flavin 8 GFF; Merocyanin; Methoxy coumarin; Mitotracker Green FM; Mitotracker Orange; Mitotracker Red; Mitramycin; Monobromobimane; Monobromobimane (mBBr-GSH); Monochlorobimane; MPS (Methyl Green Pyronine Stilbene); NBD; NBD Amine; Nile Red; Nitrobenzoxedidole; Noradrenaline; Nuclear Fast Red; i Nuclear Yellow;
Nylosan Brilliant lavin E8G; Oregon Green™; Oregon Green™ 488; Oregon Green™ 500; Oregon Green™ 514; Pacific Blue; Pararosaniline (Feulgen); PBFI; PE-Cy5; PE-Cy7; PerCP; PerCP-Cy5.5; PE-TexasRed (Red 613); Phloxin B (Magdala Red); Phorwite AR; Phorwite BKL; Phorwite Rev; Phorwite RPA; Phosphine 3R; PhotoResist; Phycoerythrin B [PE]; Phycoerythrin R [PE]; PKH26 (Sigma); PKH67; PMIA; Pontochrome Blue Black; POPO-1; POPO-3; PO-PRO-1; PO- 1 PRO-3; Primuline; Procion Yellow; Propidium lodid (Pl); PyMPO; Pyrene; Pyronine; Pyronine B; Pyrozal Brilliant Flavin 7GF; QSY 7; Quinacrine Mustard; Resorufin; RH 414; Rhod-2; Rhodamine; Rhodamine 110; Rhodamine 123; Rhodamine 5 GLD; Rhodamine 6G; Rhodamine B; Rhodamine B 200; Rhodamine B extra; Rhodamine BB; Rhodamine BG; Rhodamine Green; Rhodamine Phallicidine; Rhodamine: Phalloidine; Rhodamine Red; Rhodamine WT; Rose Bengal; R-phycocyanine; R-phycoerythrin (PE); rsGFP; S65A; S65C; S65L; S65T; Sapphire GFP; SBFI; Serotonin; Sevron Brilliant Red 2B; Sevron Brilliant Red 4G; Sevron I Brilliant Red B; Sevron Orange; Sevron Yellow L; sgBFP™ (super glow BFP); sgGFP™ (super glow GFP); SITS (Primuline; Stilbene Isothiosulphonic Acid); SNAFL calcein; SNAFL-1; SNAFL-2; SNARF calcein; SNARF1; Sodium Green; SpectrumAqua; SpectrumGreen; SpectrumOrange; Spectrum Red; SPQ (6-methoxy- N-(3 sulfopropyl) quinolinium); Stilbene; Sulphorhodamine B and C; Sulphorhodamine Extra; SYTO 11; SYTO 12; SYTO 13; SYTO 14; SYTO 15; SYTO 16; SYTO 17; SYTO 18; SYTO 20; SYTO 21; SYTO 22; SYTO 23; SYTO 24; SYTO 25; SYTO 40; SYTO 41; SYTO 42; SYTO 43; SYTO 44; SYTO 45; SYTO 59; SYTO 60; SYTO 61; SYTO 62; SYTO 63; SYTO 64; SYTO 80; SYTO 81; SYTO 82; SYTO 83; SYTO 84; SYTO 85; SYTOX Blue; SYTOX Green; SYTOX Orange; Tetracycline; Tetramethylrhodamine (TRITC); Texas Red™; Texas Red-X™ conjugate; Thiadicarbocyanine (DiSC3); Thiazine Red R; Thiazole Orange; Thioflavin 5; Thioflavin S; Thioflavin TON; Thiolyte; Thiozole Orange; Tinopol CBS (Calcofluor White); TIER; TO-PRO-1; TO-PRO-3; TO-PRO-5; TOTO-1; TOTO-3; TriColor (PE-Cy5); TRITC TetramethylRodaminelsoThioCyanate; True Blue; Tru Red; Ultralite; Uranine B; Uvitex SFC; wt GFP; WW 781; X-Rhodamine; XRITC; Xylene Orange; Y66F; Y66H; Y66W; Yellow GFP; YFP; YO-PRO-1; YO- PRO 3; YOYO- 1; YOYO-3; Sybr Green; Thiazole orange (interchelating dyes); or a combination thereof.
[0083] In some embodiments, the signal transducer is a colorimetric reagent. As used herein, a “colorimetric reagent” refers to a molecule or probe capable of changing color (e.g., from blue to green, from red to yellow, from clear (or colorless) to blue) upon a reaction or conformation change from a signal protein.
[0084] Exemplary colorimetric reagent include, but are not limited to oxazine dyes, servon blue 5G, p-dimethylaminobenzaldehyde, 1,4-benzoquinone, ninhydrin, picryl chloride, p- quinone, vanillin, nile blue, azure A, azure B, azure C, brilliant cresyl blue, anthrone, anilic acid diphenylamine, eriogreen, m-cresol-indophenol, methylene blue, meldola blue, lissamine green B, o-dianisidine, viologen, and metal ions complexes including, but not limited to thallium, cadmium, lead, gold, iron, copper, bismuth, and aluminum.
[0085] In some embodiments, the peptide linker transduces the conformational change to the signal transducer. In some embodiments, the nudix-related transcriptional regulator has been modified so that it can interact with a non-native target. As used herein, a “native target” refers to target molecule that a signal protein naturally recognizes and binds to without prior modification to the structure of the signal protein. A “non-native target” refers to an induced or forced recognition and/or binding of the signal protein, usually requiring modification to the structure of the signal protein. In general, a native target of the nudix-related transcriptional regulator protein is a sequence of nucleotides. Herein, the nudix-related transcriptional regulator has been modified to target other molecules, including, but not limited to metabolic intermediates, carbohydrates, peptide, polypeptides, proteins, lipids, hormones, neurotransmitters, secondary messengers, nucleic acids, amino acids, and other derivatives thereof.
[0086] In some embodiments, the nudix-related transcriptional regulator has been evolved to change its specificity for the target.
Methods
[0087] In one aspect disclosed herein is a method for determining presence of a target molecule, the method comprising a) providing a signal protein, wherein the signal protein is a modified nudix-related transcriptional regulator (NrtR) family protein, wherein the signal protein is modified such that a conformational change occurs in the signal protein when it binds a target molecule, and further wherein the modified protein comprises an output module, wherein said output module produces a signal upon interaction of the signal protein and its target, b) exposing the signal protein to the target molecule under conditions such that the signal protein is capable of binding the target molecule, wherein said binding produces a signal, and c) detecting the signal, thereby determining the presence of the target molecule.
[0088] In one aspect, disclosed herein is a method for quantifying a target molecule, the method comprising a) providing a signal protein, wherein the signal protein is a modified nudix-related transcriptional regulator (NrtR) family protein, wherein the signal protein is
modified such that a conformational change occurs in the signal protein when it binds a target molecule, and further wherein the modified protein comprises an output module, wherein said output module produces a signal upon interaction of the signal protein and its target, b) exposing the signal protein to the target molecule under conditions such that the signal protein is capable of binding the target molecule, wherein said binding produces a signal, and c) detecting the amount of signal produced in step b), thereby determining the amount of the target molecule present.
[0089] In one aspect disclosed herein is a method for determining modulation of a target molecule by a test compound, the method comprising a) providing a signal protein, wherein the signal protein is a modified nudix-related transcriptional regulator (NrtR) family protein, wherein the signal protein is modified such that a conformational change occurs in the signal protein when it binds a target molecule, and further wherein the modified protein comprises an output module, wherein said output module produces a signal upon interaction of the signal protein and its target, b) exposing the signal protein to the target molecule and the test compound under conditions such that the signal protein is capable of binding the target molecule, wherein said binding produces a signal, c) detecting the amount of signal produced in step b), d) comparing the amount of signal produced in step b) to a control, wherein said control was carried out without the presence of the test compound, and e) determining if a difference exists between the amount of signal produced in the presence of the test compound and the amount of signal produced in the control, wherein a significant difference indicates that the test compound modulated the target molecule.
[0090] In some embodiments, the signal protein is a modified NrtR protein. In some embodiments, the target molecule comprises free adenosine diphosphate ribose (free ADPR). In some embodiments, the signal protein is a modified L-arabinose Nudix-related transcription factor (AraR) protein. In some embodiments, the target molecule comprises L- or D-Arabinose. In some embodiments, the said signal protein is a modified NAD-responsive transcriptional repressor (NdnR) of NAD+. In some embodiments, the target molecule comprises NAD+.
[0091] As discussed above, target molecules which can be detected with the methods disclosed herein include, but are not limited to free ADPR, adenosine monophosphate (AMP), adenosine diphosphate (ADP), adenosine triphosphate (ATP), cyclicAMP (cAMP), guanosine monophosphate (GMP), guanosine diphosphate (GDP), guanosine triphosphate (GTP), cyclic GMP (cGMP), inositol triphosphate (IP3), diacylglycerol (DAG), calcium (Ca2+), epinephrine, norepinephrine, acetylcholine, histamine, estrogen, testosterone, progesterone, cholesterol, corticosteroids, thyroid hormone, vitamin D, retinoic acid, nitric oxide (NO), carbon monoxide
(CO), glutamate, dopamine, serotonin, glycine, gamma-aminobutyric acid (GABA), insulin, glucagon, and other signaling molecules.
[0092] Detection of a target molecule, or detection of quantification and/or modulation of a target molecule, can lead to the detection, and treatment, of diseases or disorders. It can also lead to a better understanding of appropriate drug dosages, the discovery of new compounds, and/or the discovery of new uses for known compounds.
[0093] Regarding the detection of free ADPR, dysregulation of enzymes involved in the regulation of ADPR signaling has been linked to a number of inherited and acquired human diseases, such as several neurological disorders and in cancer. Conversely, the therapeutic manipulation of free ADPR has been shown to ameliorate several disorders in both human and animal models. These include cardiovascular, inflammatory, autoimmune, and neurological disorders. Examples of such diseases and disorders can be found in Kulikova, V.A., Nikiforov, A.A. Role of NUDIX Hydrolases in NAD and ADP-Ribose Metabolism in Mammals. Biochemistry Moscow 85, 883-894 (2020), as well as in Guse AH, Calcium mobilizing second messengers derived from NAD. Biochim Biophys Acta. 2015 Sep;1854(9):1132-7, both of which are herein incorporated by reference in their entirety for its teaching concerning ADPR- associated disease.
[0094] Detection and/or therapies of NAD+ allows for monitoring and treatment of numerous energetic metabolic pathways, transcriptional regulation, DNA repairing systems, and reduction-oxidation status of numerous enzymes. Alterations of NAD+ homeostasis can impact disease conditions, including, but not limited to age-related disease, cardiovascular diseases, neurological or neurodegenerative disorders, cancer, microbial infections, ischemic conditions, and autoimmune diseases. Examples of diseases and treatments thereof using NAD+ can be found in Arenas- Jal et at. Therapeutic potential of nicotinamide adenine dinucleotide (NAD). Euro J of Pharm. 2020 July; 879: 173158, Wang et al. Nicotinamide adenine dinucleotide treatment alleviates the symptoms of experimental autoimmune encephalomyelitis by activating autophagy and inhibiting the NLRP3 inflammasome. Inter Immuno. 2021 January; 90: 107092, Braidy et al. Role of Nicotinamide adenine dinucleotide and related precursors as therapeutic targets for age-related degenerative diseases: rationale, biochemistry, pharmacokinetics, and outcomes. Antioxidants and Redox Signaling. 2018 November 30; 251- 294, and Hosseini et al. Nicotinamide adenine dinucleotide emerges as a therapeutic target in ageing and ischemic conditions. Biogerontology. 2019 March 5; 20: 381-395 are incorporated by reference in their entirety for teaching of detecting NAD and its use as a therapeutic target.
[0095] L- or D-arabinose are simple sugars linked to glucose and lipid metabolism, and shown to effect metabolic disorders or diseases including, but not limited to diabetes (Type I or Type II), cardiovascular disease, obesity, stroke, or combinations thereof. Treatment with L- arabinose demonstrate protective effects against metabolic syndrome, which is a combination of metabolic deficiencies that increase the risk of type II diabetes, cardiovascular diseases, obesity, or stroke. Examples of using L- or D- arabinose treatment can be found in Hao et al. Protective effects of L-arabinose in high-carbohydrate, high fat diet induced metabolic syndrome in rats. Food & Nutrition Research. 2015 Dec 10; 59(1) and Wang et al. L-arabinose suppresses gluconeogenesis through AMP-activated protein kinase in metabolic disorder mice. Food & Function. 2020 Dec 22; 12: 1745-1756, herein incorporated by reference in its entirety for its teaching of administering arabinose sugars to treatment metabolic related disorders or diseases.
[0096] L- or D- arabinose has also been linked to diseases, such as microbial infections. L- or D-arabinose has been shown to be biomarkers for active microbial infections, including, but not limited to tuberculosis caused by Mycobacterium tuberculosis (Mtb). De et al. Estimation of D-arabinose by Chromatography /Mass Spectrometry as Surrogate for Mycobacterial Lipoarabinomannan in Human Urine. PLOS ONE. 2015 Dec 3; 10(12): e0144088, herein incorporated by reference in its entirety for its teaching concerning arabinose sugars detected as biomarkers of diseases or disorders.
[0097] The methods disclosed herein can be used in a variety of applications. For example, the methods can be used in a cell-based assay, such as multiplexed or high-throughput cell arrays. Thus, the methods disclosed herein can be used to assess viability, toxicity, mitochondrial or energetics activity, nuclear activity, or other cellular functions. Examples include cell viability assays, cell proliferation assays, cytotoxicity assays, cell senescence assays, cell death assays, cell membrane or mitochondrial membrane potential assays, and nuclear or mitochondrial fragmentation assays. It can also be used in a high-throughput array, such as a positional array comprising small chips, or glass surfaces, bound by the signal protein, or a suspension arrays comprising a suspension of beads bound by the signal protein in a liquid medium. Exemplary beads include, but are not limited to silica microbeads or polystyrene beads.
[0098] Small molecule test compounds can initially be members of an organic or inorganic chemical library. As used herein, “small molecules” refers to small organic or inorganic molecules of molecular weight below about 3,000 Daltons. The small molecules can be natural products or members of a combinatorial chemistry library. A set of diverse molecules should
be used to cover a variety of functions such as charge, aromaticity, hydrogen bonding, flexibility, size, length of side chain, hydrophobicity, and rigidity.
[0099] Particular screening applications disclosed herein relate to the testing of pharmaceutical compounds in drug research (In Vitro Methods in Pharmaceutical Research”, Academic Press, 1997, and U.S. Pat. No. 5,030,015). Assessment of the activity of candidate pharmaceutical compounds generally involves administering a candidate compound, determining any change in the morphology, marker phenotype and expression, or metabolic activity of the cells and function of the cells that is attributable to the compound (compared with untreated cells or cells treated with an inert compound), and then correlating the effect of the compound with the observed change.
[0100] The screening may be done, for example, either because the compound is designed to have a pharmacological effect on certain cell types, or because a compound designed to have effects elsewhere may have unintended side effects. Two or more drugs can be tested in combination (by combining with the cells either simultaneously or sequentially), to detect possible molecular interaction effects. In some applications, compounds are screened initially for potential toxicity (Castell et al., pp. 375-410 in “In vitro Methods in Pharmaceutical Research,” Academic Press, 1997). Cytotoxicity can be determined in the first instance by the effect on cell viability, survival, morphology, and expression or release of certain markers, receptors, or enzymes. Effects of a drug on chromosomal DNA can be especially at unscheduled times in the cell cycle, or above the level required for cell replication, is consistent with a drug effect. Unwanted effects can also include unusual rates of sister chromatid exchange, determined by metaphase spread. The reader is referred to A. Vickers (PP 375-410 in “In vitro Methods in Pharmaceutical Research,” Academic Press, 1997) for further elaboration.
[0101] Examples of methods include, but are not limited to, the standard textbook In vitro Methods in Pharmaceutical Research, Academic Press, 1997 and U.S. Pat. No. 5,030,015. Assessment of the activity of candidate pharmaceutical compounds generally involves combining the cells with the candidate compound, either alone or in combination with other drugs. The investigator determines any change in the morphology, marker phenotype, or functional activity of the cells that is attributable to the compound (compared with untreated cells or cells treated with an inert compound), and then correlates the effect of the compound with the observed change.
[0102] The methods disclosed herein have important implications for patient treatment and also for clinical development of new therapeutics. Physicians select therapeutic regimens for
patient treatment based upon the expected net benefit to the patient. The net benefit is derived from the risk to benefit ratio. The present invention permits selection of subjects who are more likely to benefit by intervention, thereby aiding the physician in selecting a therapeutic regimen. This might include using drugs with a higher risk profile where the likelihood of expected benefit has increased. Likewise, clinical investigators desire to select for clinical trials a population with a high likelihood of obtaining a net benefit. The present invention can help clinical investigators select such subjects or for determining entry criteria for clinical trials.
[0103] In some embodiments, a significant difference is more than a 5% difference. In some embodiments, a significant difference is 5%, 6%, 7%, 8%, 9%, 10%, 11%, 12%, 13%, 14%, 15%, 16%, 17%, 18%, 19%, 20%, 21%, 22%, 23%, 24%, 25%, 26%, 27%, 28%, 29%, 30%, 31%, 32%, 33%, 34%, 35%, 36%, 37%, 38%, 39%, 40%, 41%, 42%, 43%, 44%, 45%, 46%, 47%, 48%, 49%, 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 100%, or more difference.
[0104] In some embodiments, modulation of the target molecule by the test compound results in an increased amount of measurable target molecule compared to the control. In some embodiments, modulation of the target molecule by the test compound results in a 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32,
33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57,
58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82,
83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100 times or more increased amount of measurable target molecule compared to the control.
[0105] In some embodiments, modulation of the target molecule by the test compound results in a decreased amount of measurable target molecule compared to the control. In some embodiments, modulation of the target molecule by the test compound results in a 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32,
33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57,
58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82,
83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100 times or more decreased amount of measurable target molecule compared to the control.
[0106] In some embodiments, the test compound is a small molecule such as a metal or organic compound, a polypeptide, a peptide, a natural product, a peptidomimetic, a nucleic acid, a lipid,
lipopeptide, a carbohydrate, or any variant thereof. In some embodiments, the test compound is an agonist or an antagonist of the target molecule.
[0107] A number of embodiments of the disclosure have been described. Nevertheless, it will be understood that various modifications may be made without departing from the spirit and scope of the invention. Accordingly, other embodiments are within the scope of the following claims.
[0108] By way of non-limiting illustration, examples of certain embodiments of the present disclosure are given below.
EXAMPLES
[0109] The following examples are set forth below to illustrate the compositions, devices, methods, and results according to the disclosed subject matter. These examples are not intended to be inclusive of all aspects of the subject matter disclosed herein, but rather to illustrate representative methods and results. These examples are not intended to exclude equivalents and variations of the present invention which are apparent to one skilled in the art.
Example 1: Fluorescent Biosensors using Nudix- related Transcription Factors
[0110] Genetically encoded fluorescent biosensors can be used to monitor intracellular metabolites with high spatial and temporal resolution in cells. In addition to facilitating the discovery of new biology, they have enabled precise, cell-based screening for modulators of specific metabolic activities. Herein, a fluorescent biosensor was developed which responds to the NAD+ derived signaling molecule free Adenosine 5 ’Di-Phosphate Ribose (ADPR).
Intracellular concentrations of free ADPR can reflect enzymatic activities and control TRPM2 channel opening.
[0111] ADPR is derived from the enzymatic cleavage of the metabolite NAD+, or oxidized nicotinamide adenine dinucleotide. Free ADPR concentrations are reported to reflect the activities of NAD+ consuming enzymes, such as pro-neurodegenerative enzyme SARM1 and human immunoenzyme CD-38. The lack of methods to monitor free ADPR concentrations in real-time and in physiological contexts represents a major barrier for screening and testing SARM1 blockers or CD-38 targeting approaches, with relevance to neurodegeneration, cancer, and cardiovascular disease. The major challenges for studying ADPR include that its levels fluctuate and spike very locally within minutes. The sources and concentrations of free ADPR in cells are unknown; how free ADPR concentrations are regulated in cells is also unknown.
Additionally, as an intermediary in signaling pathways, free ADPR is the required agonist for the opening of human calcium channel Transient Receptor Potential Melastatin family member 2 (TRPM2). As such, intracellular free ADPR concentrations play a role in controlling fever responses, synaptic activity, cell death mechanisms, as well as inflammatory and oxidative stress responses.
Design of the free ADPR sensors.
[0112] These sensors for free ADPR concentrations can be used in different parts of live cells for dynamic measurements. These sensors are genetically encoded, and so they can be localized to different subcellular compartments using targeting sequences, are further amenable to restricted expression among cell types, and can be engineered into in vivo models.
[0113] The sensor is based on a circularly-permutated single fluorescent protein design (Baird et al, 1999 PNAS and reviewed in Nasu et al, 2021 Nat Chem Biol). For the fluorescence readout, the GFP-derived fluorescent protein, Venus, was used. Venus was circularly permutated and reforms to its fluorescent beta barrel fold by introducing a cut between amino acids 144 and 145 and connecting its original N- and C- termini with a 5 amino acid GGSGG linker sequence (circularly permutated Venus now referred to as cp Venus or cpV). Circular permutation permits attachment of an analyte binding domain in close proximity to the chromophore of Venus. The analyte binding domain confers selectivity of ligand binding to the sensor. The Nudix-like bacterial transcription factor NrtR from Shewanella oneidensis was used that is an ADPR-dependent transcriptional repressor (Rodionov et al, 2008 Nucleic Acids Res; Gao et al, 2019 eLlFE). The cpV protein was integrated between amino acids 118 and 119 in the sequence of NrtR (Uniprot Q8EFJ3). The integration site for cpV was determined through a combination of in silico analyses using solved crystal structure states of NrtR (PDB files: 3GZ5, 3GZ6, and 3GZ8; Huang et al 2009 Structure) to identify regions that underwent structural changes upon ligand binding. cpVenus was then cloned into identified sites without linkers and performed an in vitro screen with 15 potential candidates to identify chimeras that retained cpV fluorescence and that would exhibit fluctuations in their fluorescence in the presence of free ADPR ligand.
[0114] Based on these analyses, cpV integrated into site 118/119 in NrtR was chosen for further analyses. This site is adjacent to the hinge region of the ligand-binding site, and it is within an alpha-helix that undergoes a disruptive loss of secondary structure when free ADPR binds (FIG. 1). The model is that this structural change is transduced to the nearby chromophore 1
of cpV to cause a change in fluorescence intensity. This may occur through disruption of the chromophore or shifting the pKa of the chromophore.
[0115] Mutations in the DNA-binding domain of the sensor were further screened; historically this domain aberrantly caused issues including mis-localization and aggregation of sensors when expressed in cells. Due to the compact nature of NrtR, attempts to use truncation to eliminate the DNA-binding domain appeared to destabilize the whole protein and thus could not be used. Instead, three point mutations were identified and used to ablate the outward facing overall positive change on this domain. These point mutations are distinct from the ligand-binding domain. The specific sites and their mutations (K435A and S436D) were identified through empirical screening and it was determined that in combination they alleviated aggregation of the sensor when it was ectopically expressed (FIG. 2).
[0116] The mutation D122N was also incorporated to reduce the number of polar and charged side-chains in proximity to the sensor’s chromophore. The rationale was that charged residues could shift the local pKa of the chromophore promoting in its protonation. Introduction of D122N improved the brightness of the sensor and stabilized its pH-sensitivity between pH 7.4 - 8.0 (FIG. 3)
[0117] The sequence of the free ADPR sensor is shown in SEQ ID NO: 1.
In vitro.
[0118] The purified sensor (FIG. 4) decreased in fluorescence intensity with addition of free ADPR. At high concentrations, it saturated with - 80% diminishment of sensor brightness that represented an ~4-fold dose-dependent response (FIG.4B, red). As a control a binding pocket mutant (R98E) was generated that did not respond to free ADPR (FIG. 4B, black). It was determined that the sensor responds to free ADPR with a Kd ~ 2 pM ± 1 p M and is thus poised to detect intracellular free ADPR concentrations (Heiner, et al, 2006 Biochem J Gasser and Guse, 2005 J Chromatogr B Analyt Technol Biomed. Life Sci; Gasser et al, 2006 J Biol Chem). [0119] The sensor had minimal responsivity to structurally related molecules such as ADP and ATP (FIG. 5). Although fluorescence of the sensor is moderately affected by temperature and large fluctuations in pH, the non-binding control is similarly affected under parallel conditions. Thus, a parallel normalization of the sensor to its non-binding control may be possible to distinguish free ADPR-dependent changes from independent effects (FIG. 6).
In cells
[0120] With confocal imaging, it was determined that the free ADPR sensor responded in live cells to an accumulation of free ADPR upon oxidation stress by acute H2O2 treatment (FIG. 7). In this experimental paradigm, H2O2 induces PARP1/2 to generate poly-ADPR chains, and due to the activities of glycohydrolases, this in turn leads to increased levels of free ADPR monomers. Accordingly, treatment with olaparib, a PARP1/2 inhibitor, eliminated sensor responses (FIG. 7). The generation of free ADPR was confirmed by a GCaMP7s sensor that monitored the resulting Ca2+ influx from activation of co-expressed TRPM2 (FIG. 7B). Interestingly, the data from the ADPR sensor indicated that free ADPR accumulated prior to TRPM2 channel opening. The data further indicated that the sensor’s appKd was appropriately tuned for in-cell measurements.
Structurally similar folds to instruct sensor design.
[0121] It was found that successful designs from the free ADPR sensor could be used to create a series of prototypes for new sensors using other Nudix-like TF family members. A major hinderance for the development for these sensors is that there is no clear rule for identifying the site of cpV integration. Each sensor has historically required an empirical screen to identify an integration site that results in transduction of the desired analyte response, and neither destabilizes the overall structure nor chromophore. Common insertional positions for cpV were found to exist across Nudix-like TF family members that can be used for sensor development. This is based on their similarities in fold and allosteric mechanism. Thus a new way to bypass screening for cpV integration among this family was identified. The identification and insertion of the fluorescent protein into analogous sites without screening immediately yielded new responsive sensor prototypes. Nudix-like TFs recognize a range of molecules, including sugars and nucleotides. Additional sensor prototypes include arabinose (using AraR, Uniprot Q8AAV8) and NAD+ (using NdnR, Uniprot A4QD34) (FIG. 8). Additionally, with homology prediction approaches and increased annotation of diverse prokaryotic genomes this finding can lead to the rapid development of new sensors.
[0122] It will be apparent to those skilled in the art that various modifications and variations can be made in the present disclosure without departing from the scope or spirit of the invention. Other embodiments of the disclosure will be apparent to those skilled in the art from consideration of the specification and practice of the methods disclosed herein. It is intended that the specification and examples be considered as exemplary only, with a true scope and spirit of the invention being indicated by the following claims.
SEQUENCE LISTINGS
1. SEQ ID NO: 1 (free ADPR Sensor)
MTEAEYLANYDPKAFKAQLLTVDAVLFTYHDQQLKVLLVQRSNHPFLGLWGLPGG
FIDETCDESLEQTVLRKLAEKTAVVPPYIEQLCTVGNNSRDARGWSVTVCYTALMSY QACQIQYNSNNVYITADKQKNGIKANFKIRHNIEDGGVQLADHYQQNTPIGDGPVLL PDNHYLSFQSKLSKDPNEKRDHMVLLEFVTAAGITLGMDELYKGGSGGMVSKGEEL FTGVVPILVELDGDVNGHKFSVSGEGEGDATYGKLTLKLICTTGKLPVPWPTLVTTL
GYGLQCFARYPDHMKQHDFFKSAMPEGYVQERTIFFKDDGNYKTRAEVKFEGDTL VNRIELKGIDFKEDGNILGHKLEYNIASVSDVKWWPLADVLQMPLAFDHLQLIEQAR
ERLTQKALYSLVPGFALSEPFTLPELQHVHEVLLGKPIQGADFRRRVEQADLLIDTGL KRTERGRPANLYCLKPDTASYRFLRNLEC
2. SEQ ID NO: 2 (free ADPR Sensor no binding control R98E)
MTEAEYLANYDPKAFKAQLLTVDAVLFTYHDQQLKVLLVQRSNHPFLGLWGLPGG
FIDETCDESLEQTVLRKLAEKTAVVPPYIEQLCTVGNNSRDAEGWSVTVCYTALMSY QACQIQYNSNNVYITADKQKNGIKANFKIRHNIEDGGVQLADHYQQNTPIGDGPVLL PDNHYLSFQSKLSKDPNEKRDHMVLLEFVTAAGITLGMDELYKGGSGGMVSKGEEL FTGVVPILVELDGDVNGHKFSVSGEGEGDATYGKLTLKLICTTGKLPVPWPTLVTTL
GYGLQCFARYPDHMKQHDFFKSAMPEGYVQERTIFFKDDGNYKTRAEVKFEGDTL VNRIELKGIDFKEDGNILGHKLEYNIASVSDVKWWPLADVLQMPLAFDHLQLIEQAR
ERLTQKALYSLVPGFALSEPFTLPELQHVHEVLLGKPIQGADFRRRVEQADLLIDTGL KRTERGRPANLYCLKPDTASYRFLRNLEC
3. SEQ ID NO: 3 (NAD+ sensor based on NdnR)
MPASPEIQMAVSTIIFALRPGPQDLPSLWAPFVPRTREPHLNKWALPGGWLPPHEELE
DAAARTLAETTGLHPSYLEQLYTFGKVDRSPTGRVISVVYWALVRADEALKAIPGY NSDNVYITADKQKNGIKANFKIRHNIEDGGVQLADHYQQNTPIGDGPVLLPDNHYLS FQSKLSKDPNEKRDHMVLLEFVTAAGITLGMDELYKGGSGGMVSKGEELFTGVVPI LVELDGDVNGHKFSVSGEGEGDATYGKLTLKLICTTGKLPVPWPTLVTTLGYGLQC
FARYPDHMKQHDFFKSAMPEGYVQERTIFFKDDGNYKTRAEVKFEGDTLVNRIELK GIDFKEDGNILGHKLEYNENVQWFPADHLPELAFDHNDIVKYALERLRTKVEYSEIA HSFLGETFTIAQLRSVHEAVLGHKLDAANFRRSVATSPDLIDTGEVLAGTPHRPPKLF RFQR
4. SEQ ID NO: 4 (Arabinose sensor based on AraR)
MKNYYSSNPTFYLGIDCIIFGFNEGEISLLLLKRNFEPAMGEWSLMGGFVQKDESVD
DAAKRVLAELTGLENVYMEQVGAFGAIDRDPGERVVSIAYYALININEYDRYNSDN
VYITADKQKNGIKANFKIRHNIEDGGVQLADHYQQNTPIGDGPVLLPDNHYLSFQSK
LSKDPNEKRDHMVLLEFVTAAGITLGMDELYKGGSGGMVSKGEELFTGVVPILVEL
DGDVNGHKFSVSGEGEGDATYGKLTLKLICTTGKLPVPWPTLVTTLGYGLQCFARY
PDHMKQHDFFKSAMPEGYVQERTIFFKDDGNYKTRAEVKFEGDTLVNRIELKGIDFK
EDGNILGHKLEYNELVQKHNAYWVNINELPALIFDHPEMVDKAREMMKQKASVEPI
GFNLLPKLFTLSQLQSLYEAIYGEPMDKRNFRKRVAEMDFIEKTDKIDKLGSKRGAA
LYKFNGKAYRKDPKFKLGSAGLC
Claims
1. A signal protein comprising a modified nudix-related transcriptional regulator (NrtR) family protein, wherein the signal protein is modified such that a conformational change occurs in the signal protein when it binds a target molecule, and further wherein the signal protein comprises an output module, wherein said output module produces a signal upon interaction of the signal protein and the target molecule.
2. The signal protein of claim 1, wherein said signal protein is a modified NrtR protein.
3. The signal protein of claim 1, wherein the target molecule comprises free adenosine diphosphate ribose (free ADPR).
4. The signal protein of claim 1, wherein said signal protein is a modified L-arabinose Nudix-related transcription factor (AraR) protein.
5. The signal protein of claim 1, wherein the target molecule comprises L- or D- Arabinose.
6. The signal protein of claim 1 , wherein said signal protein is a modified NAD-responsive transcriptional repressor (NdnR) of NAD+.
7. The signal protein of claim 1, wherein the target molecule comprises NAD+.
8. The signal protein of any one of claims 1-7, wherein the output module comprises a peptide linker and a signal transducer.
9. The signal protein of claim 8, wherein the signal transducer is a fluorescent molecule.
10. The signal protein of claim 9, wherein the fluorescent molecule is cpVenus.
11. The signal protein of any one of claims 8-10, wherein the peptide linker transduces the conformational change to the signal transducer.
12. The signal protein of any one of claims 1-11, wherein the nudix-related transcriptional regulator has been modified so that it can interact with a non-native target.
13. The signal protein of claim 12, wherein the nudix-related transcriptional regulator has been evolved to change its specificity for the target.
14. A method for determining presence of a target molecule, the method comprising: a) providing a signal protein comprising a modified nudix-related transcriptional regulator (NrtR) family protein, wherein the signal protein is modified such that a conformational change occurs in the signal protein when it binds a target molecule, and further wherein the modified protein comprises an output module, wherein said output module produces a signal upon interaction of the signal protein and its target; b) exposing the signal protein to the target molecule under conditions such that the signal protein is capable of binding the target molecule, wherein said binding produces a signal; and c) detecting the signal, thereby determining the presence of the target molecule.
15. The method of claim 14, wherein said signal protein is a modified NrtR protein.
16. The method of claim 14, wherein the target molecule comprises free adenosine diphosphate ribose (free ADPR).
17. The method of claim 14, wherein said signal protein is a modified L-arabinose Nudix- related transcription factor (AraR) protein.
18. The method of claim 14, wherein the target molecule comprises L- or D-Arabinose.
19. The method of claim 14, wherein said signal protein is a modified NAD-responsive transcriptional repressor (NdnR) of NAD+.
20. The method of claim 14, wherein the target molecule comprises NAD+.
21. The method of any one of claims 14-20, wherein the output module comprises a peptide linker and a signal transducer.
22. The method of claim 14-21, wherein the signal transducer is a fluorescent molecule.
23. The method of claim 22, wherein the fluorescent molecule is cp Venus.
24. The method of any one of claims 21-23, wherein the peptide linker transduces the conformational change to the signal transducer.
25. The method of any one of claims 14-24, wherein the nudix-related transcriptional regulator has been modified so that it can interact with a non-native target.
26. The method of claim 25, wherein the nudix-related transcriptional regulator has been evolved to change its specificity for the target.
27. A method for quantifying a target molecule, the method comprising: a) providing a signal protein comprising a modified nudix-related transcriptional regulator (NrtR) family protein, wherein the signal protein is modified such that a conformational change occurs in the signal protein when it binds a target molecule, and further wherein the modified protein comprises an output module, wherein said output module produces a signal upon interaction of the signal protein and its target; b) exposing the signal protein to the target molecule under conditions such that the signal protein is capable of binding the target molecule, wherein said binding produces a signal; and c) detecting the amount of signal produced in step b), thereby determining the amount of the target molecule present.
28. The method of claim 27, wherein said signal protein is a modified NrtR protein.
29. The method of claim 27, wherein the target molecule comprises free adenosine diphosphate ribose (free ADPR).
30. The method of claim 27, wherein said signal protein is a modified L-arabinose Nudix- related transcription factor (AraR) protein.
31. The method of claim 27, wherein the target molecule comprises L- or D-Arabinose.
32. The method of claim 27, wherein said signal protein is a modified NAD-responsive transcriptional repressor (NdnR) of NAD+.
33. The method of claim 27, wherein the target molecule comprises NAD+.
34. The method of any one of claims 27-33, wherein the output module comprises a peptide linker and a signal transducer.
35. The method of claim 27-34, wherein the signal transducer is a fluorescent molecule.
36. The method of claim 35, wherein the fluorescent molecule is cpVenus.
37. The method of any one of claims 34-36, wherein the peptide linker transduces the conformational change to the signal transducer.
38. The method of any one of claims 27-37, wherein the nudix-related transcriptional regulator has been modified so that it can interact with a non-native target.
39. The method of claim 38, wherein the nudix-related transcriptional regulator has been evolved to change its specificity for the target.
40. A method for determining modulation of a target molecule by a test compound, the method comprising: a) providing a signal protein comprising a modified nudix-related transcriptional regulator (NrtR) family protein, wherein the signal protein is modified such that a conformational change occurs in the signal protein when it binds a target molecule, and further wherein the modified protein comprises an output module, wherein said output module produces a signal upon interaction of the signal protein and its target; b) exposing the signal protein to the target molecule and the test compound under conditions such that the signal protein is capable of binding the target molecule, wherein said binding produces a signal; and
c) detecting the amount of signal produced in step b); d) comparing the amount of signal produced in step b) to a control, wherein said control was carried out without the presence of the test compound; and e) determining if a difference exists between the amount of signal produced in the presence of the test compound and the amount of signal produced in the control, wherein a significant difference indicates that the test compound modulated the target molecule.
41. The method of claim 40, wherein said signal protein is a modified NrtR protein.
42. The method of claim 40, wherein the target molecule comprises free adenosine diphosphate ribose (free ADPR).
43. The method of claim 40, wherein said signal protein is a modified L- arabinose Nudix- related transcription factor (AraR) protein.
44. The method of claim 40, wherein the target molecule comprises L- or D-Arabinose.
45. The method of claim 40, wherein said signal protein is a modified NAD-responsive transcriptional repressor (NdnR) of NAD+.
46. The method of claim 40, wherein the target molecule comprises NAD+.
47. The method of any one of claims 40-46, wherein the output module comprises a peptide linker and a signal transducer.
48. The method of any one of claims 40-47, wherein the signal transducer is a fluorescent molecule.
49. The method of claim 48, wherein the fluorescent molecule is cp Venus.
50. The method of any one of claims 47-49, wherein the peptide linker transduces the conformational change to the signal transducer.
51. The method of any one of claims 40-50, wherein the nudix-related transcriptional regulator has been modified so that it can interact with a non-native target.
52. The method of claim 51, wherein the nudix-related transcriptional regulator has been evolved to change its specificity for the target.
53. The method of any one of claims 40-52, wherein a significant difference is more than a 5% difference.
54. The method of any one of claims 40-53, wherein modulation of the target molecule by the test compound results in an increased amount of measurable target molecule compared to the control.
55. The method of any one of claims 40-53, wherein modulation of the target molecule by the test compound results in a decreased amount of measurable target molecule compared to the control.
56. The method of any of claims 40-55, wherein the test compound is a small molecule such as a metal or organic compound, a polypeptide, a peptide, a natural product, a peptidomimetic, a nucleic acid, a lipid, lipopeptide, or a carbohydrate.
57. The method of any one of claims 40-56, wherein the test compound is an agonist or an antagonist of the target molecule.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US202363463771P | 2023-05-03 | 2023-05-03 | |
US63/463,771 | 2023-05-03 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024229346A2 true WO2024229346A2 (en) | 2024-11-07 |
Family
ID=93333379
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2024/027661 WO2024229346A2 (en) | 2023-05-03 | 2024-05-03 | Methods and platform related to fluorescent protein biosensors |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2024229346A2 (en) |
-
2024
- 2024-05-03 WO PCT/US2024/027661 patent/WO2024229346A2/en unknown
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Xu et al. | Determination of three major catecholamines in human urine by capillary zone electrophoresis with chemiluminescence detection | |
Zhang et al. | Determination of rivaroxaban, apixaban and edoxaban in rat plasma by UPLC–MS/MS method | |
Thompson et al. | Tandem mass tags: a novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS | |
Issaq et al. | Utility of separation science in metabolomic studies | |
US7585643B2 (en) | Method for detecting kinase activity with thiol reactive fluorescent reagents | |
Medina et al. | Dihomo-isoprostanes—nonenzymatic metabolites of AdA—are higher in epileptic patients compared to healthy individuals by a new ultrahigh pressure liquid chromatography–triple quadrupole–tandem mass spectrometry method | |
Qian et al. | Large-scale multiplexed quantitative discovery proteomics enabled by the use of an 18O-labeled “universal” reference sample | |
Shen et al. | Rapid method for the determination of amino acids in serum by capillary electrophoresis | |
Freed et al. | Investigation of the metabolism of substance P in rat striatum by microdialysis sampling and capillary electrophoresis with laser-induced fluorescence detection | |
Xu et al. | A new quantification method using electrochemical mass spectrometry | |
KR101376471B1 (en) | Diagnosis and prognosis of dipeptidyl peptidase-associated disease states | |
WO2016131832A1 (en) | Novel voltage-dependent ion channel fusions and method of use thereof | |
WO2024229346A2 (en) | Methods and platform related to fluorescent protein biosensors | |
Szultka-Młyńska et al. | Structural characterization of electrochemically and in vivo generated potential metabolites of selected cardiovascular drugs by EC-UHPLC/ESI-MS using an experimental design approach | |
Nydahl et al. | In vivo processing of LVV‐hemorphin‐7 in rat brain and blood utilizing microdialysis combined with electrospray mass spectrometry | |
EP3697934B1 (en) | Systems and methods for the assessment of g-protein activation | |
Hadidi | Development of a screening method for the most commonly abused anticholinergic drugs in Jordan; trihexyphenidyl, procyclidine and biperiden | |
Inoue et al. | On‐line solid‐phase extraction LC‐MS/MS for the determination of Ac‐SDKP peptide in human plasma from hemodialysis patients | |
US20230201357A1 (en) | D-dimer-specific aptamers and methods of use in diagnostics, therapeutic and theranostic purposes | |
Jacob et al. | Determination of 4-Hydroxy-3-methoxyphenylethylene Glycol 4-Sulfate in Human Urine Using Liquid Chromatography− Tandem Mass Spectrometry | |
JP2005530132A (en) | Improved pharmaceutical discovery and development | |
US10139419B2 (en) | Methods for detecting Aβ oligomers | |
EP3882632A1 (en) | Novel ion conducting channel fusion subunits and methods of use thereof | |
Martens-Lobenhoffer et al. | Determination of 1-methylhistamine and 1-methylimidazoleacetic acid in human urine as a tool for the diagnosis of mastocytosis | |
EP3433263A1 (en) | Quantitative flagellar fluorescent markers and standards |