WO2024228281A1 - Chlorinated paraffin measuring method - Google Patents
Chlorinated paraffin measuring method Download PDFInfo
- Publication number
- WO2024228281A1 WO2024228281A1 PCT/JP2024/001827 JP2024001827W WO2024228281A1 WO 2024228281 A1 WO2024228281 A1 WO 2024228281A1 JP 2024001827 W JP2024001827 W JP 2024001827W WO 2024228281 A1 WO2024228281 A1 WO 2024228281A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- organic solvent
- chlorinated paraffins
- chlorinated
- chlorinated paraffin
- ion source
- Prior art date
Links
- 239000012188 paraffin wax Substances 0.000 title claims abstract description 36
- 238000000034 method Methods 0.000 title claims abstract description 26
- 239000003960 organic solvent Substances 0.000 claims abstract description 29
- 238000002290 gas chromatography-mass spectrometry Methods 0.000 claims abstract description 13
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical group OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 23
- 238000000691 measurement method Methods 0.000 claims description 17
- 150000001875 compounds Chemical class 0.000 claims description 2
- 238000004949 mass spectrometry Methods 0.000 abstract description 9
- 150000002500 ions Chemical class 0.000 description 38
- 239000007789 gas Substances 0.000 description 31
- 238000005259 measurement Methods 0.000 description 26
- 239000003153 chemical reaction reagent Substances 0.000 description 22
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 12
- 239000012159 carrier gas Substances 0.000 description 11
- 230000000052 comparative effect Effects 0.000 description 9
- 238000000926 separation method Methods 0.000 description 9
- 239000002904 solvent Substances 0.000 description 9
- 239000000460 chlorine Substances 0.000 description 8
- 230000008016 vaporization Effects 0.000 description 7
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 6
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 6
- 238000013467 fragmentation Methods 0.000 description 6
- 238000006062 fragmentation reaction Methods 0.000 description 6
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 6
- 238000009834 vaporization Methods 0.000 description 6
- 238000000451 chemical ionisation Methods 0.000 description 5
- 238000001514 detection method Methods 0.000 description 5
- 239000011261 inert gas Substances 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000004817 gas chromatography Methods 0.000 description 4
- 239000001307 helium Substances 0.000 description 4
- 229910052734 helium Inorganic materials 0.000 description 4
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 4
- 238000002098 selective ion monitoring Methods 0.000 description 4
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- 208000033962 Fontaine progeroid syndrome Diseases 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 229910052786 argon Inorganic materials 0.000 description 3
- -1 cyanopropyl phenyl Chemical group 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 238000004885 tandem mass spectrometry Methods 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 230000005526 G1 to G0 transition Effects 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000005040 ion trap Methods 0.000 description 2
- 238000000752 ionisation method Methods 0.000 description 2
- NNPPMTNAJDCUHE-UHFFFAOYSA-N isobutane Chemical compound CC(C)C NNPPMTNAJDCUHE-UHFFFAOYSA-N 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 229920001296 polysiloxane Polymers 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 231100000615 substance of very high concern Toxicity 0.000 description 2
- 239000006200 vaporizer Substances 0.000 description 2
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000004205 dimethyl polysiloxane Substances 0.000 description 1
- 235000013870 dimethyl polysiloxane Nutrition 0.000 description 1
- 230000005264 electron capture Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 239000001282 iso-butane Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 239000003879 lubricant additive Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 239000002808 molecular sieve Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000002957 persistent organic pollutant Substances 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- 238000004451 qualitative analysis Methods 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 1
- 125000000725 trifluoropropyl group Chemical group [H]C([H])(*)C([H])([H])C(F)(F)F 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Images
Definitions
- the present invention relates to a method for measuring chlorinated paraffins.
- Chlorinated paraffins are used for a variety of purposes, including as flame retardants and lubricant additives.
- SCCPs short-chain chlorinated paraffins
- MCCPs medium-chain chlorinated paraffins
- GC/MS gas chromatography mass spectrometry
- the measurement sample is separated into various components by gas chromatography, and then the various components are analyzed qualitatively and quantitatively by mass spectrometry.
- the ion source that ionizes the various components generally uses electron ionization, in which the measurement sample is directly irradiated with electrons to ionize it.
- Non-Patent Document 1 negative chemical ionization, a soft ionization method, is used in the mass spectrometry section. Specifically, the ion source is filled with reagent gas together with chlorinated paraffin, and by irradiating it with electrons, reagent ions are generated from the reagent gas, and the chlorinated paraffin is indirectly ionized by collisions between the reagent ions and the chlorinated paraffin.
- negative chemical ionization uses reagent gases such as methane, isobutane, and ammonia. These are flammable gases and difficult to handle, so from the perspective of ensuring safety, only a limited number of facilities can implement this method.
- the present invention aims to provide a method for measuring chlorinated paraffins in a safer manner.
- the method for measuring chlorinated paraffins is a method for measuring a sample containing at least one type of chlorinated paraffin, i.e., short-chain chlorinated paraffin and medium-chain chlorinated paraffin, by gas chromatography mass spectrometry, in which the chlorinated paraffin is ionized in an atmosphere containing vaporized organic solvent in the ion source of the mass spectrometry section.
- the first embodiment of the method for analyzing chlorinated paraffins is safe because it does not require the use of flammable gases.
- FIG. 1 shows a schematic diagram of a GC-MS device used in the measurement method of the first embodiment.
- FIG. 2 shows a schematic diagram of the ion source in FIG.
- FIG. 3 shows a schematic diagram of the solvent inlet section in FIG.
- FIG. 4 is a mass chromatogram of the short-chain chlorinated paraffins measured in Example 1, in which the vertical axis indicates intensity and the horizontal axis indicates retention time.
- FIG. 5 is a mass chromatogram of the short-chain chlorinated paraffins measured in Example 1.
- FIG. 6 is a mass chromatogram of short-chain chlorinated paraffins measured in Comparative Example 1.
- FIG. 7 is a mass chromatogram of short-chain chlorinated paraffins measured in Comparative Example 1.
- FIG. 1 shows a schematic diagram of a GC-MS device used in the measurement method of the first embodiment.
- FIG. 2 shows a schematic diagram of the ion source in FIG.
- FIG. 3 shows a schematic diagram of the solvent in
- FIG. 8 is a mass chromatogram of medium-chain chlorinated paraffins measured in Example 2.
- FIG. 9 is a mass chromatogram of medium-chain chlorinated paraffins measured in Example 2.
- FIG. 10 is a mass chromatogram of medium-chain chlorinated paraffins measured in Comparative Example 2.
- FIG. 11 is a mass chromatogram of medium-chain chlorinated paraffins measured in Comparative Example 2.
- the analysis method of the first embodiment of the present invention is a method for measuring chlorinated paraffins contained in a measurement sample by gas chromatography mass spectrometry. That is, the measurement sample is separated by gas chromatography, and the separated measurement sample is then detected by mass spectrometry.
- the chlorinated paraffins contained in the measurement sample and to be analyzed are short-chain chlorinated paraffins and/or medium-chain chlorinated paraffins.
- Short-chain chlorinated paraffins are chlorinated paraffins having 10 to 13 carbon atoms, and are represented by C 10 + n' H 22 + 2n'-k Cl k (n' is an integer of 0 to 3, and k is an integer of 1 to [22+2n']).
- MCCPs Medium-chain chlorinated paraffins
- Chlorinated paraffins may have a straight-chain structure or a branched-chain structure.
- n is an integer of 0 to 7
- chlorinated paraffins consisting of C10H15Cl7 , C11H17Cl7 , C12H19Cl7 , C13H21Cl7 , C14H23Cl7 , C15H25Cl7 , C16H27Cl7 , and C17H29Cl7 , i.e. , to analyze them all at once .
- a gas chromatograph mass spectrometer is used.
- Schematic diagrams of a gas chromatograph mass spectrometer (GC-MS device) 1 are shown in Figures 1 to 3.
- This GC-MS device 1 includes a gas chromatograph section (GC section) 2 and a mass spectrometry section (MS section) 3.
- the GC section 2 includes a carrier gas flow control section 4, a sample vaporization section 5, a column 6, and a column oven 7.
- a GC carrier gas cylinder 8 is connected upstream of the carrier gas flow control section 4.
- a sample injection port for injecting a sample is formed at the end of the sample vaporization unit 5, and the sample is introduced into the sample vaporization unit 5 from the sample injection port.
- the sample vaporization unit 5 is equipped with a heating device (e.g., a heater; not shown) for vaporizing the sample.
- the stationary phase in the column 6 may be any that can retain chlorinated paraffin, such as methyl silicone, phenyl methyl, cyanopropyl phenyl, trifluoropropyl, and polyethylene glycol, preferably methyl silicone.
- the polarity of the stationary phase may be selected from non-polar, slightly polar, medium polar, and highly polar. It may be either a capillary column or a packed column. Specific examples of such columns include the SH-1 series and SH-5 series manufactured by Shimadzu Corporation.
- the MS section 3 includes an ion source 9, a solvent introduction section 10, a mass separation section 11, and a detection section 12.
- a gas cylinder 13 for introducing a solvent is connected to the sample introduction section 10.
- a data processing device 14 is electrically connected to the detection section 12.
- the ion source 9 is a device (ionization section) that ionizes a sample.
- the ion source 9 includes a filament 15 that generates electrons, a reflecting electrode 16 that guides the ionized sample to the mass separation section 11, and a chamber 17.
- the reflecting electrode 16 is negatively charged, and an opening 18 that leads to the mass separation section 11 is formed in the side wall of the chamber 17 that faces the reflecting electrode 16.
- a solvent introduction section 10 for introducing vaporized organic solvent into the ion source 9 is connected to the ion source 9, as shown in FIG. 1.
- the solvent introduction section 10 includes a pressure valve 19, a pressure regulator 20, a pressure gauge 21, a vent valve 22, a filter 23, and a reagent container 24.
- An organic solvent 25 is poured into the reagent container 24, and a head space (gas phase portion) 26 for the organic solvent 25 to evaporate (particularly volatilize) is provided at the top of the inside of the reagent container 24. That is, the bottom of the reagent container 24 is filled with an organic solvent, and the head space 26 is filled with the volatilized organic solvent.
- the pressure in the head space 26 is atmospheric pressure at the start of the measurement.
- an inert gas flows in from the solvent introduction gas cylinder 23, and a predetermined pressure is applied inside the reagent container 24.
- the filter 23 is filled with molecular sieves, which adsorb impurity gases (e.g., oxygen, etc.) contained in the inert gas to suppress contamination of the ion source 9.
- the separation type of the mass separation unit 11 may be, for example, a quadrupole type, a magnetic sector type, a time-of-flight type, an ion trap type, an ion cyclotron resonance type, or the like.
- the mass separation unit 11 may also be a tandem mass spectrometry type consisting of multiple units. That is, in the first embodiment, a gas chromatography tandem mass spectrometry method may be adopted.
- tandem mass spectrometry types include a triple quadrupole type (Q-Q), a tandem time-of-flight type (TOF-TOF), a quadrupole-time-of-flight type (Q-TOF), a quadrupole-ion trap type (Q-IT), a quadrupole-ion cyclotron resonance type (Q-ICR), and an ion trap-time-of-flight type (IT-TOF).
- Q-Q triple quadrupole type
- TOF-TOF tandem time-of-flight type
- Q-TOF quadrupole-time-of-flight type
- Q-IT quadrupole-ion trap type
- Q-ICR quadrupole-ion cyclotron resonance type
- IT-TOF ion trap-time-of-flight type
- GC-MS device 1 Specific examples of such a GC-MS device 1 include the GCMS-QP series and GCMS-TQ series manufactured by Shimadzu Corporation.
- chlorinated paraffins are separated by gas chromatography (GC step), and then the separated chlorinated paraffins are measured by a mass spectrometer (MS step).
- GC step gas chromatography
- MS step mass spectrometer
- the measurement sample chlorinated paraffin
- the vaporized chlorinated paraffin is separated by retention time by passing through the column 6 together with the carrier gas flowing from the GC carrier gas cylinder 8, and is then guided to the MS section 3.
- the temperature of the sample vaporizer 5 may be set so as to reach or exceed the boiling point of the chlorinated paraffin to be measured, for example, 250°C or higher, and preferably 300°C or higher.
- the temperature conditions may be either a temperature rise method or an isothermal method, but for example, in the temperature rise method, the temperature may be raised at a constant rate from an initial temperature of 100°C or lower to a temperature above the boiling point of the measurement sample (for example, 250°C or higher).
- the carrier gas introduced into column 6 may be, for example, helium, nitrogen, hydrogen, argon, etc., preferably helium. These may be used alone or in combination of two or more.
- the flow rate of the carrier gas may be set according to conventional methods.
- the chlorinated paraffins are ionized in the ion source 9, the ionized chlorinated paraffins are separated or selected according to their m/z (mass-to-charge ratio) in the mass separation section 11, and the ionized paraffins are detected in the detection section 12.
- the ion source 9 ionizes the chlorinated paraffin introduced from the GC section 2.
- vaporized organic solvent is introduced into the chamber 17.
- the pressurizing valve 19, vent valve 22, and pressure regulator 20 are adjusted to introduce the inert gas in the sample introduction gas cylinder 13 into the reagent container 24, thereby applying a predetermined pressure to the organic solvent 25 in the reagent container 24.
- the organic solvent to be injected into the reagent container 24 may be, for example, a volatile organic solvent such as methanol, acetonitrile, acetone, hexane, isopropanol, cyclohexane, or toluene. These may be used alone or in combination of two or more. Among these, methanol, acetone, hexane, or isopropanol is preferred because they are efficiently ionized, and methanol is more preferred because it has a relatively high vapor pressure and particularly low proton affinity.
- a volatile organic solvent such as methanol, acetonitrile, acetone, hexane, isopropanol, cyclohexane, or toluene.
- Examples of the inert gas in the sample introduction gas cylinder 13 include argon, helium, nitrogen, etc. These may be used alone or in combination of two or more types.
- the pressure applied to the organic solvent 25 in the reagent container 24, i.e., the pressure indicated by the pressure gauge 21, is, for example, 10 kPa or more, preferably 30 kPa or more, and for example, 100 kPa or less, preferably 80 kPa or less.
- 10 kPa or more the organic solvent can be introduced into the ion source 9, and fragmentation of chlorinated paraffin can be suppressed.
- by making it 30 kPa or more a sufficient amount of organic solvent can be introduced into the ion source 9, and fragmentation of chlorinated paraffin can be more reliably suppressed, thereby improving the signal-to-noise ratio and, therefore, the measurement accuracy.
- the flow rate of the inert gas to the reagent container 24, and therefore to the ion source 9, is, for example, 0.10 mL/min or more, preferably 0.40 mL/min or more, and, for example, 1.00 mL/min or less, preferably 0.70 mL/min or less.
- thermoelectrons generated from the filament 15 and passing through the chamber 17 lose their energy through collisions with the vaporized organic solvent or ionization reactions before colliding with the chlorinated paraffin, and are then captured by the chlorinated paraffin (electron capture reaction). Therefore, the chlorinated paraffin is ionized in a state where fragmentation is suppressed.
- the ionized chlorinated paraffin in the ion source 9 is a negative ion such as, for example, [M-Cl] ⁇ , [M-2Cl] ⁇ , or [M-HCl] ⁇ , and is preferably [M-Cl] ⁇ , where M represents each chlorinated paraffin.
- the ionized chlorinated paraffins are separated or selected by m/z in the mass separation section 11 and detected in the detection section 12.
- m/z (monitoring m/z) observed depending on the type of chlorinated paraffin is the numerical value of the quantitative ion shown in Table 1 of the examples.
- other ions may be observed.
- confirmatory ions are also observed. This makes it possible to reliably identify the type of chlorinated paraffin.
- the confirmatory ion may be an ion equivalent to the chlorine isotope of the quantitative ion.
- chlorinated paraffins can be measured.
- chlorinated paraffins separated in the GC section can be ionized and mass analyzed without using flammable gases such as methane gas, suppressing fragmentation, so that the materials and equipment used in the measurement are easy to handle, i.e., safe.
- the peak height of the obtained mass chromatogram is good, so that highly sensitive measurements are possible.
- the signal-to-noise ratio in the mass chromatogram is good, so that highly accurate measurements are possible. Note that, for the measurement method of the first embodiment, the methods described in Patent No. 7188441, US11482405, and European DE112019001764 can also be referenced.
- the method for measuring chlorinated paraffins is a method for measuring a sample containing at least one type of chlorinated paraffin, which is a short-chain chlorinated paraffin and a medium-chain chlorinated paraffin, by gas chromatography mass spectrometry, and the separated chlorinated paraffins may be ionized in an atmosphere containing a vaporized organic solvent in an ion source of a mass spectrometry unit.
- the chlorinated paraffin may be at least one compound represented by C 10+n H 15+2n Cl 7 (n is an integer of 0 or more and 7 or less).
- the organic solvent may be methanol.
- the organic solvent may be supplied to the ion source by applying a pressure of 10 kPa or more to the organic solvent.
- the organic solvent may be supplied to the ion source by applying a pressure of 30 kPa or more to the organic solvent.
- Example 1 Measurement of short-chain chlorinated paraffins
- a measurement sample for SCCPs was prepared by mixing 533 ⁇ l of the SCCPs standard sample (100 ⁇ g/ml, Cl 55.5%) and 467 ⁇ l of the SCCPs standard sample (100 ⁇ g/ml, Cl 66%).
- the measurement sample for SCCPs was measured under the following conditions using a gas chromatograph mass spectrometer ("GCMS-QP2020NX", manufactured by Shimadzu Corporation, see Figures 1 to 3). Just before starting, about half of the reagent container was filled with methanol, and the headspace pressure was set to atmospheric pressure. Mass chromatograms obtained from this measurement are shown in Figures 4 and 5.
- GCMS-QP2020NX gas chromatograph mass spectrometer
- Example 1 The same procedure as in Example 1 was carried out except that the measurement sample for SCCPs was ionized by negative chemical ionization using methane gas in the ion source. The results are shown in Figures 6 to 7.
- the mass chromatogram of the measurement method of Example 1 shows peaks similar to those of the mass chromatogram of the conventional measurement method using methane gas, and therefore the measurement method of Example 1 is capable of measuring short-chain chlorinated paraffins. Furthermore, for all short-chain chlorinated paraffins, the peak heights of the mass chromatogram of Example 1 are higher than the peak heights of the mass chromatogram of Comparative Example 1, and therefore it can be seen that the measurement method of Example 1 has high sensitivity.
- Example 2 Measurement of medium-chain chlorinated paraffins An MCCPs measurement sample was prepared by mixing 400 ⁇ l of the MCCPs standard sample (100 ⁇ g/ml, Cl 52%) and 600 ⁇ l of the MCCPs standard sample (100 ⁇ g/ml, Cl 57%). The same procedure as in Example 1 was carried out except that the MCCPs measurement sample was used as the measurement target. The results are shown in Figures 8 and 9.
- the mass chromatogram of the measurement method of Example 2 shows peaks similar to those of the mass chromatogram of the conventional measurement method using methane gas, and therefore medium-chain chlorinated paraffins can be measured by the measurement method of Example 2. Furthermore, for all medium-chain chlorinated paraffins, the peak heights in the mass chromatogram of Example 2 are higher than the peak heights in the mass chromatogram of Comparative Example 2, and therefore it can be seen that the measurement method of Example 2 has high sensitivity.
- Example 3 Measurements were carried out in the same manner as in Example 1 (short-chain chlorinated paraffin) and Example 2 (medium-chain chlorinated paraffin), except that the pressure of the gas supplied to the reagent container was set to 20 kPa and the flow rate of the gas supplied to the reagent container was set to 0.39 mL/min.
Landscapes
- Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
Abstract
This chlorinated paraffin measuring method is for measuring, by gas chromatography mass spectrometry, a sample containing at least one chlorinated paraffin among short-chain chlorinated paraffins and medium-chain chlorinated paraffins, and comprises ionizing, at an ion source of a mass spectrometry unit, a chlorinated paraffin in an atmosphere containing a vaporized organic solvent.
Description
本発明は、塩素化パラフィンの測定方法に関する。
The present invention relates to a method for measuring chlorinated paraffins.
塩素化パラフィンは、難燃剤、潤滑油添加剤などの種々の用途で使用されている。このうち、短鎖塩素化パラフィン(SCCPs)は、POPs条約で製造および輸出入が禁止されており、中鎖塩素化パラフィン(MCCPs)も、最近に25次SVHC(高懸念物質)の候補物質として登録されたため、今後の規制対象となる可能性がある。
Chlorinated paraffins are used for a variety of purposes, including as flame retardants and lubricant additives. Of these, short-chain chlorinated paraffins (SCCPs) are prohibited from being manufactured and imported/exported under the POPs Convention, and medium-chain chlorinated paraffins (MCCPs) have recently been registered as a candidate for the 25th SVHC (Substances of Very High Concern), and may become subject to future restrictions.
このような短鎖塩素化パラフィンおよび中鎖塩素化パラフィンを検出する方法としては、ガスクロマトグラフィー質量分析法(GC/MS法)が挙げられる。ガスクロマトグラフィー質量分析法は、ガスクロマトグラフィーによって測定試料を各種成分に分離した後に、質量分析法で各種成分の定性・定量を分析する。この質量分析法において、各種成分をイオン化させるイオン源では、測定試料に直接電子を照射しイオン化させる電子イオン化法が用いられることが一般的である。
One method for detecting such short-chain chlorinated paraffins and medium-chain chlorinated paraffins is gas chromatography mass spectrometry (GC/MS). In gas chromatography mass spectrometry, the measurement sample is separated into various components by gas chromatography, and then the various components are analyzed qualitatively and quantitatively by mass spectrometry. In this mass spectrometry, the ion source that ionizes the various components generally uses electron ionization, in which the measurement sample is directly irradiated with electrons to ionize it.
しかしながら、多くの同族体および異性体が存在する塩素化パラフィンに対して、電子イオン化法を用いると、塩素化パラフィンが細かく断片化されるフラグメンテーションが生じ、得られるイオンが、いずれの塩素化パラフィンに起因するものであるかを特定することが困難となる。このようなフラグメンテーションを抑制するためのガスクロマトグラフィー質量分析法が、ISO2281:2021で定められている(非特許文献1)。
However, when electron ionization is used on chlorinated paraffins, which have many homologues and isomers, fragmentation occurs, in which the chlorinated paraffins are broken down into small fragments, making it difficult to identify which chlorinated paraffin the resulting ions are attributable to. A gas chromatography mass spectrometry method for suppressing such fragmentation is specified in ISO2281:2021 (Non-Patent Document 1).
非特許文献1の方法では、質量分析部において、ソフトイオン化法である負化学イオン化法が採用されている。具体的には、イオン源内に、塩素化パラフィンともに試薬ガスを充満させ、電子を照射することにより、試薬ガスから試薬イオンを生成させ、その試薬イオンと塩素化パラフィンとの衝突によって、塩素化パラフィンを間接的にイオン化させている。
In the method of Non-Patent Document 1, negative chemical ionization, a soft ionization method, is used in the mass spectrometry section. Specifically, the ion source is filled with reagent gas together with chlorinated paraffin, and by irradiating it with electrons, reagent ions are generated from the reagent gas, and the chlorinated paraffin is indirectly ionized by collisions between the reagent ions and the chlorinated paraffin.
しかしながら、負化学イオン化法では、試薬ガスとして、メタン、イソブタン、アンモニアなどを用いる。これらは、可燃性ガスであるため、取り扱いが難しく、安全面を担保する観点から、この方法を導入できる施設は限定されている。
However, negative chemical ionization uses reagent gases such as methane, isobutane, and ammonia. These are flammable gases and difficult to handle, so from the perspective of ensuring safety, only a limited number of facilities can implement this method.
本発明は、より安全な方法で、塩素化パラフィンを測定する方法を提供することを目的とする。
The present invention aims to provide a method for measuring chlorinated paraffins in a safer manner.
本発明の第1の態様の塩素化パラフィンの測定方法は、短鎖塩素化パラフィンおよび中鎖塩素化パラフィンの少なくとも1種の塩素化パラフィンを含有する試料をガスクロマトグラフィー質量分析法に測定する方法であって、質量分析部のイオン源において、気化した有機溶媒を含む雰囲気で、前記塩素化パラフィンをイオン化する。
The method for measuring chlorinated paraffins according to the first aspect of the present invention is a method for measuring a sample containing at least one type of chlorinated paraffin, i.e., short-chain chlorinated paraffin and medium-chain chlorinated paraffin, by gas chromatography mass spectrometry, in which the chlorinated paraffin is ionized in an atmosphere containing vaporized organic solvent in the ion source of the mass spectrometry section.
第1の態様の塩素化パラフィンの分析方法によれば、可燃性ガスを用いる必要がないため、安全性が良好である。
The first embodiment of the method for analyzing chlorinated paraffins is safe because it does not require the use of flammable gases.
1.第1の実施形態
本発明の第1の実施形態の解析方法は、測定試料に含まれる塩素化パラフィンをガスクロマトグラフィー質量分析法により測定する方法である。すなわち、測定試料をガスクロマトグラフィーにより分離し、続いて、分離した測定試料を質量分析法により検出する。 1. First embodiment The analysis method of the first embodiment of the present invention is a method for measuring chlorinated paraffins contained in a measurement sample by gas chromatography mass spectrometry. That is, the measurement sample is separated by gas chromatography, and the separated measurement sample is then detected by mass spectrometry.
本発明の第1の実施形態の解析方法は、測定試料に含まれる塩素化パラフィンをガスクロマトグラフィー質量分析法により測定する方法である。すなわち、測定試料をガスクロマトグラフィーにより分離し、続いて、分離した測定試料を質量分析法により検出する。 1. First embodiment The analysis method of the first embodiment of the present invention is a method for measuring chlorinated paraffins contained in a measurement sample by gas chromatography mass spectrometry. That is, the measurement sample is separated by gas chromatography, and the separated measurement sample is then detected by mass spectrometry.
測定試料に含まれ、分析対象となる塩素化パラフィンは、短鎖塩素化パラフィンおよび/または中鎖塩素化パラフィンである。短鎖塩素化パラフィン(SCCPs:Short Chain Chlorinated Paraffins)は、炭素数10~13までの塩素化パラフィンであって、C10+n´H22+2n´-kClk(n´は、0以上3以下の整数を示し、kは、1以上[22+2n´]以下の整数を示す。)で表される。中鎖塩素化パラフィン(MCCPs:Medium Chain Chlorinated Paraffins)は、短素数14~17までの塩素化パラフィンであって、C10+n´´H22+2n´´-mClm(n´´は、4以上7以下の整数を示し、mは、1以上[22+2n´´]以下の整数を示す。)で表される。塩素化パラフィンは、直鎖構造であってもよく、分鎖構造であってもよい。第1の実施形態では、C10+nH15+2nCl7(nは、0以上7以下の整数を示す)で表される塩素化パラフィンの少なくとも1種を分析対象にすることが好ましく、C10H15Cl7、C11H17Cl7、C12H19Cl7、C13H21Cl7、C14H23Cl7、C15H25Cl7、C16H27Cl7およびC17H29Cl7からなる塩素化パラフィンの全てを測定対象とすること、すなわち、これらを一斉分析することが特に好ましい。
The chlorinated paraffins contained in the measurement sample and to be analyzed are short-chain chlorinated paraffins and/or medium-chain chlorinated paraffins. Short-chain chlorinated paraffins (SCCPs) are chlorinated paraffins having 10 to 13 carbon atoms, and are represented by C 10 + n' H 22 + 2n'-k Cl k (n' is an integer of 0 to 3, and k is an integer of 1 to [22+2n']). Medium-chain chlorinated paraffins (MCCPs) are chlorinated paraffins having short prime numbers of 14 to 17, and are represented by C 10 + n ' H 22 + 2n'-m Cl m (n' is an integer of 4 to 7, and m is an integer of 1 to [22+2n']). Chlorinated paraffins may have a straight-chain structure or a branched-chain structure. In the first embodiment, it is preferable to analyze at least one type of chlorinated paraffin represented by C10 + nH15 +2nCl7 ( n is an integer of 0 to 7 ), and it is particularly preferable to analyze all of the chlorinated paraffins consisting of C10H15Cl7 , C11H17Cl7 , C12H19Cl7 , C13H21Cl7 , C14H23Cl7 , C15H25Cl7 , C16H27Cl7 , and C17H29Cl7 , i.e. , to analyze them all at once .
第1の実施形態では、ガスクロマトグラフ質量分析計を用いる。ガスクロマトグラフ質量分析計(GC-MS装置)1の模式図を図1~3に示す。このGC-MS装置1は、ガスクロマトグラフ部(GC部)2、および、質量分析部(MS部)3を備える。
In the first embodiment, a gas chromatograph mass spectrometer is used. Schematic diagrams of a gas chromatograph mass spectrometer (GC-MS device) 1 are shown in Figures 1 to 3. This GC-MS device 1 includes a gas chromatograph section (GC section) 2 and a mass spectrometry section (MS section) 3.
GC部2は、キャリアガス流量制御部4、試料気化部5、カラム6、および、カラムオーブン7を備える。キャリアガス流量制御部4の上流側には、GC用キャリアガスボンベ8が接続されている。
The GC section 2 includes a carrier gas flow control section 4, a sample vaporization section 5, a column 6, and a column oven 7. A GC carrier gas cylinder 8 is connected upstream of the carrier gas flow control section 4.
試料気化部5の端部には、試料を注入するための試料注入口が形成されており、試料注入口から試料気化部5内部へと試料が導入される。試料気化部5には、試料を気化するための加熱装置(例えば、ヒータ;図示せず)が備えられている。
A sample injection port for injecting a sample is formed at the end of the sample vaporization unit 5, and the sample is introduced into the sample vaporization unit 5 from the sample injection port. The sample vaporization unit 5 is equipped with a heating device (e.g., a heater; not shown) for vaporizing the sample.
カラム6内の固定相としては、塩素化パラフィンを保持できるものであればよく、例えば、メチルシリコーン系、フェニルメチル系、シアノプロピルフェニル系、トリフルオロプロピル系、ポリエチレングリコール系などが挙げられ、好ましくは、メチルシリコーン系が挙げられる。固定相の極性については、無極性、微極性、中極性および高極性のいずれの中から好適なものを選択することができる。また、キャピラリーカラムおよびパックドカラムのいずれであってもよい。このようなカラムとしては、具体的には、島津製作所製のSH-1シリーズ、SH-5シリーズなどが挙げられる。
The stationary phase in the column 6 may be any that can retain chlorinated paraffin, such as methyl silicone, phenyl methyl, cyanopropyl phenyl, trifluoropropyl, and polyethylene glycol, preferably methyl silicone. The polarity of the stationary phase may be selected from non-polar, slightly polar, medium polar, and highly polar. It may be either a capillary column or a packed column. Specific examples of such columns include the SH-1 series and SH-5 series manufactured by Shimadzu Corporation.
MS部3は、イオン源9、溶媒導入部10、質量分離部11、および、検出部12を備える。試料導入部10には、溶媒導入用ガスボンベ13が接続されている。検出部12には、データ処理装置14が電気的に接続されている。
The MS section 3 includes an ion source 9, a solvent introduction section 10, a mass separation section 11, and a detection section 12. A gas cylinder 13 for introducing a solvent is connected to the sample introduction section 10. A data processing device 14 is electrically connected to the detection section 12.
イオン源9は、試料をイオン化する装置(イオン化部)である。イオン源9は、電子を発生させるフィラメント15と、イオン化された試料を質量分離部11へと誘導する反射電極16と、チャンバー17とを備える。反射電極16は、マイナスに帯電しており、反射電極16と対向するチャンバー17の側壁には、質量分離部11に通じる開口18が形成されている。また、イオン源9には、図1に示すように、気化した有機溶媒をイオン源9に導入するための溶媒導入部10が接続されている。
The ion source 9 is a device (ionization section) that ionizes a sample. The ion source 9 includes a filament 15 that generates electrons, a reflecting electrode 16 that guides the ionized sample to the mass separation section 11, and a chamber 17. The reflecting electrode 16 is negatively charged, and an opening 18 that leads to the mass separation section 11 is formed in the side wall of the chamber 17 that faces the reflecting electrode 16. In addition, a solvent introduction section 10 for introducing vaporized organic solvent into the ion source 9 is connected to the ion source 9, as shown in FIG. 1.
溶媒導入部10は、図3に示すように、加圧バルブ19、調圧器20、圧力計21、ベントバルブ22、フィルター23、および、試薬容器24を備える。試薬容器24には、有機溶媒25が注入されており、試薬容器24内部の上部には、有機溶媒25が気化(特に、揮発)するためのヘッドスペース(気相部分)26が設けられている。すなわち、試薬容器24の下部には、有機溶媒が充填されており、ヘッドスペース26には、揮発した有機溶媒が充満している。ヘッドスペース26における圧力は、測定開始時では、大気圧である。加圧バルブ19およびベントバルブ22を開口または閉口し、調圧器20を設定することにより、溶媒導入用ガスボンベ23から不活性ガスが流入し、試薬容器24内に所定の圧力が加わる。フィルター23には、モレキュラーシーブが充填されており、不活性ガスに含まれる不純ガス(例えば、酸素など)を吸着して、イオン源9の汚染を抑制する。
As shown in FIG. 3, the solvent introduction section 10 includes a pressure valve 19, a pressure regulator 20, a pressure gauge 21, a vent valve 22, a filter 23, and a reagent container 24. An organic solvent 25 is poured into the reagent container 24, and a head space (gas phase portion) 26 for the organic solvent 25 to evaporate (particularly volatilize) is provided at the top of the inside of the reagent container 24. That is, the bottom of the reagent container 24 is filled with an organic solvent, and the head space 26 is filled with the volatilized organic solvent. The pressure in the head space 26 is atmospheric pressure at the start of the measurement. By opening or closing the pressure valve 19 and the vent valve 22 and setting the pressure regulator 20, an inert gas flows in from the solvent introduction gas cylinder 23, and a predetermined pressure is applied inside the reagent container 24. The filter 23 is filled with molecular sieves, which adsorb impurity gases (e.g., oxygen, etc.) contained in the inert gas to suppress contamination of the ion source 9.
質量分離部11の分離形式としては、例えば、四重極型、磁場セクター型、飛行時間型、イオントラップ型、イオンサイクロトロン共鳴型などが挙げられる。また、質量分離部11は、複数からなるタンデム質量分析型であってもよい。すなわち、第1の実施形態では、ガスクロマトグラフィータンデム質量分析法を採用してもよい。タンデム質量分析型としては、例えば、トリプル四重極型(Q-Q)、タンデム飛行時間型(TOF-TOF)、四重極-飛行時間型(Q-TOF)、四重極-イオントラップ型(Q-IT)、四重極-イオンサイクロトロン共鳴型(Q-ICR)、イオントラップ-飛行時間型(IT-TOF)などが挙げられる。
The separation type of the mass separation unit 11 may be, for example, a quadrupole type, a magnetic sector type, a time-of-flight type, an ion trap type, an ion cyclotron resonance type, or the like. The mass separation unit 11 may also be a tandem mass spectrometry type consisting of multiple units. That is, in the first embodiment, a gas chromatography tandem mass spectrometry method may be adopted. Examples of tandem mass spectrometry types include a triple quadrupole type (Q-Q), a tandem time-of-flight type (TOF-TOF), a quadrupole-time-of-flight type (Q-TOF), a quadrupole-ion trap type (Q-IT), a quadrupole-ion cyclotron resonance type (Q-ICR), and an ion trap-time-of-flight type (IT-TOF).
このようなGC-MS装置1の具体例としては、島津製作所社製のGCMS-QPシリーズ、GCMS-TQシリーズなどが挙げられる。
Specific examples of such a GC-MS device 1 include the GCMS-QP series and GCMS-TQ series manufactured by Shimadzu Corporation.
第1の実施形態では、ガスクロマトグラフィーにより、塩素化パラフィンを分離し(GC工程)、次いで、質量分析計により、その分離した塩素化パラフィンを測定する(MS工程)。以下、各工程を説明する。
In the first embodiment, chlorinated paraffins are separated by gas chromatography (GC step), and then the separated chlorinated paraffins are measured by a mass spectrometer (MS step). Each step is explained below.
GC工程では、測定試料である塩素化パラフィンは、試料気化部5で気化される。気化された塩素化パラフィンは、GC用キャリアガスボンベ8から流れるキャリアガスとともにカラム6を通過することにより保持時間ごとに分離され、その後、MS部3へと誘導される。
In the GC process, the measurement sample, chlorinated paraffin, is vaporized in the sample vaporization section 5. The vaporized chlorinated paraffin is separated by retention time by passing through the column 6 together with the carrier gas flowing from the GC carrier gas cylinder 8, and is then guided to the MS section 3.
試料気化部5の温度としては、測定対象である塩素化パラフィンの沸点以上に達するように設定すればよく、例えば、250℃以上、好ましくは、300℃以上である。温度条件としては、昇温法および等温法のいずれであってもよいが、例えば、昇温法では、100℃以下の初期温度から、測定試料の沸点以上(例えば、250℃以上)まで一定の昇温速度で昇温すればよい。
The temperature of the sample vaporizer 5 may be set so as to reach or exceed the boiling point of the chlorinated paraffin to be measured, for example, 250°C or higher, and preferably 300°C or higher. The temperature conditions may be either a temperature rise method or an isothermal method, but for example, in the temperature rise method, the temperature may be raised at a constant rate from an initial temperature of 100°C or lower to a temperature above the boiling point of the measurement sample (for example, 250°C or higher).
カラム6に導入するキャリアガスとしては、例えば、ヘリウム、窒素、水素、アルゴンなどが挙げられ、好ましくは、ヘリウムが挙げられる。これらは、1種単独または2種以上を併用してもよい。キャリアガスの流量は、従来の方法に従い設定すればよい。
The carrier gas introduced into column 6 may be, for example, helium, nitrogen, hydrogen, argon, etc., preferably helium. These may be used alone or in combination of two or more. The flow rate of the carrier gas may be set according to conventional methods.
MS工程では、イオン源9で、塩素化パラフィンはイオン化され、質量分離部11で、イオン化された塩素化パラフィンが、m/z(質量電荷比)に応じて分離ないし選択され、検出部12で、そのイオン化パラフィンが検出される。
In the MS process, the chlorinated paraffins are ionized in the ion source 9, the ionized chlorinated paraffins are separated or selected according to their m/z (mass-to-charge ratio) in the mass separation section 11, and the ionized paraffins are detected in the detection section 12.
まず、イオン源9では、GC部2から導入された塩素化パラフィンをイオン化させる。この際に、チャンバー17内に、塩素化パラフィンに加えて、気化された有機溶媒を導入する。具体的には、加圧バルブ19、ベントバルブ22および調圧器20を調整して、試料導入用ガスボンベ13内の不活性ガスを試薬容器24に導入することにより、所定の圧力を試薬容器24内の有機溶媒25に加える。
First, the ion source 9 ionizes the chlorinated paraffin introduced from the GC section 2. At this time, in addition to the chlorinated paraffin, vaporized organic solvent is introduced into the chamber 17. Specifically, the pressurizing valve 19, vent valve 22, and pressure regulator 20 are adjusted to introduce the inert gas in the sample introduction gas cylinder 13 into the reagent container 24, thereby applying a predetermined pressure to the organic solvent 25 in the reagent container 24.
試薬容器24内に注入される有機溶媒としては、例えば、メタノール、アセトニトリル、アセトン、ヘキサン、イソプロパノール、シクロヘキサン、トルエンなどの揮発性有機溶媒が挙げられる。これらは、1種単独または2種以上を併用してもよい。これらの中でも、効率よくイオン化されるため、好ましくは、メタノール、アセトン、ヘキサンまたはイソプロパノールが挙げられ、比較的蒸気圧が高く、かつ特にプロトン親和性が低いため、より好ましくは、メタノールが挙げられる。
The organic solvent to be injected into the reagent container 24 may be, for example, a volatile organic solvent such as methanol, acetonitrile, acetone, hexane, isopropanol, cyclohexane, or toluene. These may be used alone or in combination of two or more. Among these, methanol, acetone, hexane, or isopropanol is preferred because they are efficiently ionized, and methanol is more preferred because it has a relatively high vapor pressure and particularly low proton affinity.
試料導入用ガスボンベ13内の不活性ガスとしては、例えば、アルゴン、ヘリウム、窒素などが挙げられる。これらは、1種単独または2種以上を併用してもよい。
Examples of the inert gas in the sample introduction gas cylinder 13 include argon, helium, nitrogen, etc. These may be used alone or in combination of two or more types.
試薬容器24内の有機溶媒25へ印加する圧力、すなわち、圧力計21が示す圧力は、例えば、10kPa以上、好ましくは、30kPa以上であり、また、例えば、100kPa以下、好ましくは、80kPa以下である。10kPa以上とすることにより、有機溶媒をイオン源9内に導入することができ、塩素化パラフィンのフラグメンテーションを抑制することができる。また、30kPa以上とすることにより、充分な量の有機溶媒をイオン源9内に導入することができ、より確実に塩素化パラフィンのフラグメンテーションを抑制できるため、SN比、ひいては、測定精度を良好にすることができる。
The pressure applied to the organic solvent 25 in the reagent container 24, i.e., the pressure indicated by the pressure gauge 21, is, for example, 10 kPa or more, preferably 30 kPa or more, and for example, 100 kPa or less, preferably 80 kPa or less. By making it 10 kPa or more, the organic solvent can be introduced into the ion source 9, and fragmentation of chlorinated paraffin can be suppressed. Furthermore, by making it 30 kPa or more, a sufficient amount of organic solvent can be introduced into the ion source 9, and fragmentation of chlorinated paraffin can be more reliably suppressed, thereby improving the signal-to-noise ratio and, therefore, the measurement accuracy.
不活性ガスの試薬容器24への流量、ひいては、イオン源9への流量は、例えば、0.10mL/分以上、好ましくは、0.40mL/分以上であり、また、例えば、1.00mL/分以下、好ましくは、0.70mL/分以下である。
The flow rate of the inert gas to the reagent container 24, and therefore to the ion source 9, is, for example, 0.10 mL/min or more, preferably 0.40 mL/min or more, and, for example, 1.00 mL/min or less, preferably 0.70 mL/min or less.
これにより、フィラメント15から発生してチャンバー17を通過する熱電子は、塩素化パラフィンに衝突する前に、気化した有機溶媒との衝突またはイオン化反応により、エネルギーを失活して、その後、塩素化パラフィンに捕獲される(電子捕獲反応)。そのため、塩素化パラフィンは、フラグメンテーションが抑制された状態で、イオン化される。
As a result, the thermoelectrons generated from the filament 15 and passing through the chamber 17 lose their energy through collisions with the vaporized organic solvent or ionization reactions before colliding with the chlorinated paraffin, and are then captured by the chlorinated paraffin (electron capture reaction). Therefore, the chlorinated paraffin is ionized in a state where fragmentation is suppressed.
イオン源9にて、イオン化された塩素化パラフィンは、例えば、[M-Cl]-、[M-2Cl]-、[M-HCl]-などの負イオンであり、好ましくは、[M-Cl]-である。Mは、各塩素化パラフィンを示す。
The ionized chlorinated paraffin in the ion source 9 is a negative ion such as, for example, [M-Cl] − , [M-2Cl] − , or [M-HCl] − , and is preferably [M-Cl] − , where M represents each chlorinated paraffin.
その後、イオン化された塩素化パラフィンは、質量分離部11において、m/zごとに分離または選択され、検出部12において検出される。
Then, the ionized chlorinated paraffins are separated or selected by m/z in the mass separation section 11 and detected in the detection section 12.
塩素化パラフィンの種類に応じて観測するm/z(モニタリングm/z)の一例として、実施例の表1に記載の定量用イオンの数値が挙げられる。この際、観測するイオンとして、主のイオン(表1においては、定量用イオン)に加えて、他のイオンを確認してもよい。すなわち、定量用イオンに加えて、確認用イオンも観測する。これにより、塩素化パラフィンの種類の同定を確実にすることできる。確認用イオンは、定量用イオンの塩素同位体に相当するイオンが挙げられる。
An example of the m/z (monitoring m/z) observed depending on the type of chlorinated paraffin is the numerical value of the quantitative ion shown in Table 1 of the examples. In this case, in addition to the main ion (quantitative ion in Table 1), other ions may be observed. In other words, in addition to the quantitative ion, confirmatory ions are also observed. This makes it possible to reliably identify the type of chlorinated paraffin. The confirmatory ion may be an ion equivalent to the chlorine isotope of the quantitative ion.
これにより、m/zごとにおけるマスクロマトグラムが得られ、これらのマスクロマトグラムを観察することにより試料に含まれる各種塩素化パラフィンの定性および定量の分析が可能となる。
This allows mass chromatograms to be obtained for each m/z, and by observing these mass chromatograms, it becomes possible to perform qualitative and quantitative analysis of the various chlorinated paraffins contained in the sample.
第1の実施形態では、塩素化パラフィンを測定することができる。特に、メタンガスなどの可燃性ガスを使わずに、GC部にて分離した塩素化パラフィンを、フラグメンテーションを抑制して、イオン化して質量分析することができるため、測定に用いる材料および装置の取り扱いが容易である、すなあち、安全性が高い。また、得られるマスクロマトグラムのピーク高さが良好であるため、感度が高い測定が可能となる。さらには、マスクロマトグラムにおけるSN比が良好であるため、精度が高い測定が可能となる。なお、第1の実施形態の測定方法において、特許第7188441号、米国US11482405、欧州DE112019001764などに記載の方法も参照することができる。
In the first embodiment, chlorinated paraffins can be measured. In particular, chlorinated paraffins separated in the GC section can be ionized and mass analyzed without using flammable gases such as methane gas, suppressing fragmentation, so that the materials and equipment used in the measurement are easy to handle, i.e., safe. In addition, the peak height of the obtained mass chromatogram is good, so that highly sensitive measurements are possible. Furthermore, the signal-to-noise ratio in the mass chromatogram is good, so that highly accurate measurements are possible. Note that, for the measurement method of the first embodiment, the methods described in Patent No. 7188441, US11482405, and European DE112019001764 can also be referenced.
2.態様
上述した例示的な実施形態は、以下の態様の具体例であることが当業者により理解される。 2. Aspects It will be appreciated by those skilled in the art that the exemplary embodiments described above are illustrative of the following aspects.
上述した例示的な実施形態は、以下の態様の具体例であることが当業者により理解される。 2. Aspects It will be appreciated by those skilled in the art that the exemplary embodiments described above are illustrative of the following aspects.
(第1項)一態様に係る塩素化パラフィンの測定方法は、短鎖塩素化パラフィンおよび中鎖塩素化パラフィンの少なくとも1種の塩素化パラフィンを含有する試料をガスクロマトグラフィー質量分析法に測定する方法であって、質量分析部のイオン源において、気化した有機溶媒を含む雰囲気で、前記分離した塩素化パラフィンをイオン化してもよい。
(1) In one embodiment, the method for measuring chlorinated paraffins is a method for measuring a sample containing at least one type of chlorinated paraffin, which is a short-chain chlorinated paraffin and a medium-chain chlorinated paraffin, by gas chromatography mass spectrometry, and the separated chlorinated paraffins may be ionized in an atmosphere containing a vaporized organic solvent in an ion source of a mass spectrometry unit.
(第2項)第1項の記載の測定方法において、前記塩素化パラフィンが、C10+nH15+2nCl7(nは、0以上7以下の整数を示す)で表される化合物の少なくとも1種であってもよい。
(Item 2) In the measurement method according to item 1, the chlorinated paraffin may be at least one compound represented by C 10+n H 15+2n Cl 7 (n is an integer of 0 or more and 7 or less).
(第3項)第1または2項の記載の測定方法において、前記有機溶媒が、メタノールであってもよい。
(3) In the measurement method described in 1 or 2, the organic solvent may be methanol.
(第4項)第1~3項のいずれか一項に記載の測定方法において、前記有機溶媒に対して、10kPa以上の圧力を加えることにより、前記イオン源に前記有機溶媒を供給してもよい。
(4) In the measurement method described in any one of paragraphs 1 to 3, the organic solvent may be supplied to the ion source by applying a pressure of 10 kPa or more to the organic solvent.
(第5項)第1~4項のいずれか一項に記載の測定方法において、前記有機溶媒に対して、30kPa以上の圧力を加えることにより、前記イオン源に前記有機溶媒を供給してもよい。
(5) In the measurement method described in any one of paragraphs 1 to 4, the organic solvent may be supplied to the ion source by applying a pressure of 30 kPa or more to the organic solvent.
次に実施例および比較例を挙げて本発明を詳細に説明するが、本発明の範囲はこれらによって限定されない。
The present invention will now be described in detail with reference to examples and comparative examples, but the scope of the present invention is not limited to these.
<実施例1:短鎖塩素化パラフィンの測定>
SCCPs標準試料(100μg/ml、Cl55.5%)533μlおよびSCCPs標準試料(100μg/ml、Cl66%)467μlを混合して、SCCPs用測定試料を調製した。ガスクロマトグラフ質量分析計(「GCMS-QP2020NX」、島津製作所製、図1~3参照)を用い、下記の条件でSCCPs用測定試料を測定した。なお、開始直前において、試薬容器にメタノールを半分ほど注入し、ヘッドスペースの圧力は大気圧とした。この測定結果により得られたマスクロマトグラムを図4~5に示す。 Example 1: Measurement of short-chain chlorinated paraffins
A measurement sample for SCCPs was prepared by mixing 533 μl of the SCCPs standard sample (100 μg/ml, Cl 55.5%) and 467 μl of the SCCPs standard sample (100 μg/ml, Cl 66%). The measurement sample for SCCPs was measured under the following conditions using a gas chromatograph mass spectrometer ("GCMS-QP2020NX", manufactured by Shimadzu Corporation, see Figures 1 to 3). Just before starting, about half of the reagent container was filled with methanol, and the headspace pressure was set to atmospheric pressure. Mass chromatograms obtained from this measurement are shown in Figures 4 and 5.
SCCPs標準試料(100μg/ml、Cl55.5%)533μlおよびSCCPs標準試料(100μg/ml、Cl66%)467μlを混合して、SCCPs用測定試料を調製した。ガスクロマトグラフ質量分析計(「GCMS-QP2020NX」、島津製作所製、図1~3参照)を用い、下記の条件でSCCPs用測定試料を測定した。なお、開始直前において、試薬容器にメタノールを半分ほど注入し、ヘッドスペースの圧力は大気圧とした。この測定結果により得られたマスクロマトグラムを図4~5に示す。 Example 1: Measurement of short-chain chlorinated paraffins
A measurement sample for SCCPs was prepared by mixing 533 μl of the SCCPs standard sample (100 μg/ml, Cl 55.5%) and 467 μl of the SCCPs standard sample (100 μg/ml, Cl 66%). The measurement sample for SCCPs was measured under the following conditions using a gas chromatograph mass spectrometer ("GCMS-QP2020NX", manufactured by Shimadzu Corporation, see Figures 1 to 3). Just before starting, about half of the reagent container was filled with methanol, and the headspace pressure was set to atmospheric pressure. Mass chromatograms obtained from this measurement are shown in Figures 4 and 5.
[ガスクロマトグラフ部]
注入モード:スプリットレス
気化室温度:300℃
カラムオーブン温度:80℃から20℃/minで昇温後、320℃(4min)
カラム:SH-1MSガードカラム付き(無極性液相:ジメチルポリシロキサン、膜厚0.1μm、長さ19m、内径0.25mm、ガードカラム2m)
キャリアガス:ヘリウム
キャリアガス制御モード:線速度一定(52.1cm/sec)
パージ流量:3.0mL/min [Gas chromatograph section]
Injection mode: splitless Vaporizer temperature: 300°C
Column oven temperature: 80° C. to 320° C. (4 min) after heating at 20° C./min
Column: SH-1MS with guard column (non-polar liquid phase: dimethylpolysiloxane, film thickness 0.1 μm, length 19 m, inner diameter 0.25 mm, guard column 2 m)
Carrier gas: Helium Carrier gas control mode: Constant linear velocity (52.1 cm/sec)
Purge flow rate: 3.0 mL/min
注入モード:スプリットレス
気化室温度:300℃
カラムオーブン温度:80℃から20℃/minで昇温後、320℃(4min)
カラム:SH-1MSガードカラム付き(無極性液相:ジメチルポリシロキサン、膜厚0.1μm、長さ19m、内径0.25mm、ガードカラム2m)
キャリアガス:ヘリウム
キャリアガス制御モード:線速度一定(52.1cm/sec)
パージ流量:3.0mL/min [Gas chromatograph section]
Injection mode: splitless Vaporizer temperature: 300°C
Column oven temperature: 80° C. to 320° C. (4 min) after heating at 20° C./min
Column: SH-1MS with guard column (non-polar liquid phase: dimethylpolysiloxane, film thickness 0.1 μm, length 19 m, inner diameter 0.25 mm, guard column 2 m)
Carrier gas: Helium Carrier gas control mode: Constant linear velocity (52.1 cm/sec)
Purge flow rate: 3.0 mL/min
[質量分析部]
イオン源への導入有機溶媒:メタノール
イオン化法:メタノールを用いた溶媒媒介化学イオン化
イオン源温度:230℃
インターフェース温度:320℃
イオン化電圧:70eV
試薬容器への供給ガスの種類:アルゴン
試薬容器への供給ガスの圧力:40kPa
試薬容器への供給ガスの流量:0.45mL/min
質量分析計:シングル四重極型
測定モード:スキャン/SIM(選択イオンモニタリング)同時測定
スキャンイベント時間:0.15sec
スキャン走査質量範囲:m/z50~1000
SIMイベント時間:0.30sec
SIMモニタリングm/z:下記表1 [Mass spectrometry section]
Organic solvent introduced into ion source: Methanol Ionization method: Solvent-mediated chemical ionization using methanol Ion source temperature: 230° C.
Interface temperature: 320°C
Ionization voltage: 70 eV
Type of gas supplied to the reagent container: Argon Pressure of gas supplied to the reagent container: 40 kPa
Flow rate of gas supplied to reagent container: 0.45 mL/min
Mass spectrometer: Single quadrupole type Measurement mode: Scan/SIM (selected ion monitoring) simultaneous measurement Scan event time: 0.15 sec
Scanning mass range: m/z 50-1000
SIM event time: 0.30 sec
SIM monitoring m/z: Table 1 below
イオン源への導入有機溶媒:メタノール
イオン化法:メタノールを用いた溶媒媒介化学イオン化
イオン源温度:230℃
インターフェース温度:320℃
イオン化電圧:70eV
試薬容器への供給ガスの種類:アルゴン
試薬容器への供給ガスの圧力:40kPa
試薬容器への供給ガスの流量:0.45mL/min
質量分析計:シングル四重極型
測定モード:スキャン/SIM(選択イオンモニタリング)同時測定
スキャンイベント時間:0.15sec
スキャン走査質量範囲:m/z50~1000
SIMイベント時間:0.30sec
SIMモニタリングm/z:下記表1 [Mass spectrometry section]
Organic solvent introduced into ion source: Methanol Ionization method: Solvent-mediated chemical ionization using methanol Ion source temperature: 230° C.
Interface temperature: 320°C
Ionization voltage: 70 eV
Type of gas supplied to the reagent container: Argon Pressure of gas supplied to the reagent container: 40 kPa
Flow rate of gas supplied to reagent container: 0.45 mL/min
Mass spectrometer: Single quadrupole type Measurement mode: Scan/SIM (selected ion monitoring) simultaneous measurement Scan event time: 0.15 sec
Scanning mass range: m/z 50-1000
SIM event time: 0.30 sec
SIM monitoring m/z: Table 1 below
<比較例1>
イオン源において、メタンガスを用いた負化学イオン化法によってSCCPs用測定試料をイオン化した以外は、実施例1と同様に実施した。この結果を図6~7に示す。 <Comparative Example 1>
The same procedure as in Example 1 was carried out except that the measurement sample for SCCPs was ionized by negative chemical ionization using methane gas in the ion source. The results are shown in Figures 6 to 7.
イオン源において、メタンガスを用いた負化学イオン化法によってSCCPs用測定試料をイオン化した以外は、実施例1と同様に実施した。この結果を図6~7に示す。 <Comparative Example 1>
The same procedure as in Example 1 was carried out except that the measurement sample for SCCPs was ionized by negative chemical ionization using methane gas in the ion source. The results are shown in Figures 6 to 7.
図4~5および図6~7から、実施例1による測定方法のマスクロマトグラムは、従来のメタンガスを用いた測定方法のマスクロマトグラムと同様のピークが観察されているため、実施例1の測定方法で、短鎖塩素化パラフィンを測定できていることが分かる。また、いずれの短鎖塩素化パラフィンにおいても、実施例1のマスクロマトグラムのピーク高さが、比較例1のマスクロマトグラムのピーク高さよりも高いため、実施例1の測定方法は、感度が高いことが分かる。
From Figures 4-5 and Figures 6-7, it can be seen that the mass chromatogram of the measurement method of Example 1 shows peaks similar to those of the mass chromatogram of the conventional measurement method using methane gas, and therefore the measurement method of Example 1 is capable of measuring short-chain chlorinated paraffins. Furthermore, for all short-chain chlorinated paraffins, the peak heights of the mass chromatogram of Example 1 are higher than the peak heights of the mass chromatogram of Comparative Example 1, and therefore it can be seen that the measurement method of Example 1 has high sensitivity.
<実施例2:中鎖塩素化パラフィンの測定>
MCCPs標準試料(100μg/ml、Cl52%)400μlおよびMCCPs標準試料(100μg/ml、Cl57%)600μlを混合して、MCCPs用測定試料を調製した。MCCPs用測定試料を測定対象とした以外は、実施例1と同様に実施した。この結果を図8~9に示す。 Example 2: Measurement of medium-chain chlorinated paraffins
An MCCPs measurement sample was prepared by mixing 400 μl of the MCCPs standard sample (100 μg/ml, Cl 52%) and 600 μl of the MCCPs standard sample (100 μg/ml, Cl 57%). The same procedure as in Example 1 was carried out except that the MCCPs measurement sample was used as the measurement target. The results are shown in Figures 8 and 9.
MCCPs標準試料(100μg/ml、Cl52%)400μlおよびMCCPs標準試料(100μg/ml、Cl57%)600μlを混合して、MCCPs用測定試料を調製した。MCCPs用測定試料を測定対象とした以外は、実施例1と同様に実施した。この結果を図8~9に示す。 Example 2: Measurement of medium-chain chlorinated paraffins
An MCCPs measurement sample was prepared by mixing 400 μl of the MCCPs standard sample (100 μg/ml, Cl 52%) and 600 μl of the MCCPs standard sample (100 μg/ml, Cl 57%). The same procedure as in Example 1 was carried out except that the MCCPs measurement sample was used as the measurement target. The results are shown in Figures 8 and 9.
<比較例2>
イオン源において、メタンガスを用いた負化学イオン化法によって試料をイオン化した以外は、実施例2と同様に実施した。この結果を図10~11に示す。 <Comparative Example 2>
The experiment was carried out in the same manner as in Example 2, except that the sample was ionized in the ion source by negative chemical ionization using methane gas. The results are shown in Figures 10 and 11.
イオン源において、メタンガスを用いた負化学イオン化法によって試料をイオン化した以外は、実施例2と同様に実施した。この結果を図10~11に示す。 <Comparative Example 2>
The experiment was carried out in the same manner as in Example 2, except that the sample was ionized in the ion source by negative chemical ionization using methane gas. The results are shown in Figures 10 and 11.
図8~9および図10~11から、実施例2による測定方法のマスクロマトグラムは、従来のメタンガスを用いた測定方法のマスクロマトグラムと同様のピークが観察されているため、実施例2の測定方法で、中鎖塩素化パラフィンを測定できていることが分かる。また、いずれの中鎖塩素化パラフィンにおいても、実施例2のマスクロマトグラムのピーク高さが、比較例2のマスクロマトグラムのピーク高さよりも高いため、実施例2の測定方法は、感度が高いことが分かる。
From Figures 8-9 and 10-11, it can be seen that the mass chromatogram of the measurement method of Example 2 shows peaks similar to those of the mass chromatogram of the conventional measurement method using methane gas, and therefore medium-chain chlorinated paraffins can be measured by the measurement method of Example 2. Furthermore, for all medium-chain chlorinated paraffins, the peak heights in the mass chromatogram of Example 2 are higher than the peak heights in the mass chromatogram of Comparative Example 2, and therefore it can be seen that the measurement method of Example 2 has high sensitivity.
<実施例3>
試薬容器への供給ガスの圧力を20kPaにし、かつ試薬容器への供給ガスの流量を0.39mL/minにした以外は、実施例1(短鎖塩素化パラフィン)および実施例2(中鎖塩素化パラフィン)と同様にして、測定を実施した。 Example 3
Measurements were carried out in the same manner as in Example 1 (short-chain chlorinated paraffin) and Example 2 (medium-chain chlorinated paraffin), except that the pressure of the gas supplied to the reagent container was set to 20 kPa and the flow rate of the gas supplied to the reagent container was set to 0.39 mL/min.
試薬容器への供給ガスの圧力を20kPaにし、かつ試薬容器への供給ガスの流量を0.39mL/minにした以外は、実施例1(短鎖塩素化パラフィン)および実施例2(中鎖塩素化パラフィン)と同様にして、測定を実施した。 Example 3
Measurements were carried out in the same manner as in Example 1 (short-chain chlorinated paraffin) and Example 2 (medium-chain chlorinated paraffin), except that the pressure of the gas supplied to the reagent container was set to 20 kPa and the flow rate of the gas supplied to the reagent container was set to 0.39 mL/min.
このときの実施例1~2およびSN比を、ASTMの規定に準じて算出した。この結果を表2に示す。表2から、実施例1~2の測定条件の方がS/N比が高いため、精度が良好であることが分かる。
The S/N ratios for Examples 1 and 2 were calculated in accordance with ASTM regulations. The results are shown in Table 2. From Table 2, it can be seen that the measurement conditions for Examples 1 and 2 have a higher S/N ratio and therefore better accuracy.
1 ガスクロマトグラフ質量分析計 2 ガスクロマトグラフ部
3 質量分析部 4 キャリアガス流量制御部
5 試料気化部 6 カラム
7 カラムオーブン 8 ガスクロマトグラフ用キャリアガスボンベ
9 イオン源 10 溶媒導入部
11 質量分離部 12 検出部
13 溶媒導入用ガスボンベ 14 データ処理装置
15 フィラメント 16 反射電極
17 チャンバー 18 開口
19 加圧バルブ 20 調圧器
21 圧力計 22 ベントバルブ
23 フィルター 24 試薬容器
25 有機溶媒 26 ヘッドスペース
REFERENCE SIGNSLIST 1 Gas chromatograph mass spectrometer 2 Gas chromatograph section 3 Mass analysis section 4 Carrier gas flow rate control section 5 Sample vaporization section 6 Column 7 Column oven 8 Carrier gas cylinder for gas chromatograph 9 Ion source 10 Solvent introduction section 11 Mass separation section 12 Detection section 13 Gas cylinder for introducing solvent 14 Data processing device 15 Filament 16 Reflecting electrode 17 Chamber 18 Opening 19 Pressurization valve 20 Pressure regulator
21Pressure gauge 22 Vent valve
23filter 24 reagent container 25 organic solvent 26 head space
3 質量分析部 4 キャリアガス流量制御部
5 試料気化部 6 カラム
7 カラムオーブン 8 ガスクロマトグラフ用キャリアガスボンベ
9 イオン源 10 溶媒導入部
11 質量分離部 12 検出部
13 溶媒導入用ガスボンベ 14 データ処理装置
15 フィラメント 16 反射電極
17 チャンバー 18 開口
19 加圧バルブ 20 調圧器
21 圧力計 22 ベントバルブ
23 フィルター 24 試薬容器
25 有機溶媒 26 ヘッドスペース
REFERENCE SIGNS
21
23
Claims (5)
- 短鎖塩素化パラフィンおよび中鎖塩素化パラフィンの少なくとも1種の塩素化パラフィンを含有する試料をガスクロマトグラフィー質量分析法に測定する方法であって、
質量分析部のイオン源において、気化した有機溶媒を含む雰囲気で、前記塩素化パラフィンをイオン化する、塩素化パラフィンの測定方法。 A method for measuring a sample containing at least one chlorinated paraffin selected from short-chain chlorinated paraffins and medium-chain chlorinated paraffins by gas chromatography-mass spectrometry, comprising the steps of:
A method for measuring chlorinated paraffins, comprising ionizing the chlorinated paraffins in an atmosphere containing a vaporized organic solvent in an ion source of a mass spectrometer. - 前記塩素化パラフィンが、C10+nH15+2nCl7(nは、0以上7以下の整数を示す)で表される化合物の少なくとも1種である、請求項1に記載の測定方法。 The measurement method according to claim 1, wherein the chlorinated paraffin is at least one compound represented by C10 + nH15+2nCl7 ( n is an integer of 0 or more and 7 or less).
- 前記有機溶媒が、メタノールである、請求項1に記載の測定方法。 The measurement method according to claim 1, wherein the organic solvent is methanol.
- 前記有機溶媒に対して、10kPa以上の圧力を加えることにより、前記イオン源に前記有機溶媒を供給する、請求項1に記載の測定方法。 The measurement method according to claim 1, wherein the organic solvent is supplied to the ion source by applying a pressure of 10 kPa or more to the organic solvent.
- 前記有機溶媒に対して、30kPa以上の圧力を加えることにより、前記イオン源に前記有機溶媒を供給する、請求項1に記載の測定方法。
The method according to claim 1 , wherein the organic solvent is supplied to the ion source by applying a pressure of 30 kPa or more to the organic solvent.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023-076228 | 2023-05-02 | ||
JP2023076228 | 2023-05-02 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024228281A1 true WO2024228281A1 (en) | 2024-11-07 |
Family
ID=93332957
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2024/001827 WO2024228281A1 (en) | 2023-05-02 | 2024-01-23 | Chlorinated paraffin measuring method |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2024228281A1 (en) |
-
2024
- 2024-01-23 WO PCT/JP2024/001827 patent/WO2024228281A1/en unknown
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10373814B2 (en) | Soft ionization based on conditioned glow discharge for quantitative analysis | |
Niessen | Interpretation of MS-MS mass spectra of drugs and pesticides | |
Chapman | Practical organic mass spectrometry: a guide for chemical and biochemical analysis | |
Mirabelli et al. | Atmospheric pressure soft ionization for gas chromatography with dielectric barrier discharge ionization-mass spectrometry (GC-DBDI-MS) | |
JP5711372B2 (en) | Mass spectrometer with soft ionization glow discharge and regulator | |
Mirabelli et al. | Pesticide analysis at ppt concentration levels: coupling nano-liquid chromatography with dielectric barrier discharge ionization-mass spectrometry | |
Cappiello et al. | Direct‐EI in LC–MS: Towards a universal detector for small‐molecule applications | |
JP2017098267A (en) | Electron impact ion source with fast response | |
EP2951853B1 (en) | Apparatus and methods for plasma-assisted reaction chemical ionization (parci) mass spectrometry | |
Yang et al. | Aliphatic hydrocarbon spectra by helium ionization mass spectrometry (HIMS) on a modified atmospheric-pressure source designed for electrospray ionization | |
US7737395B2 (en) | Apparatuses, methods and compositions for ionization of samples and mass calibrants | |
Ayala-Cabrera et al. | Review on atmospheric pressure ionization sources for gas chromatography-mass spectrometry. Part I: Current ion source developments and improvements in ionization strategies | |
US8431889B2 (en) | Method and device for repetitive chemical analysis of a gas flow | |
Medhe | Ionization techniques in mass spectrometry: a review | |
JPH09231938A (en) | Three-dimensional quadrupole ion trap mass spectrometer | |
JP4782796B2 (en) | Ion source for mass spectrometer | |
WO2024228281A1 (en) | Chlorinated paraffin measuring method | |
US20080067356A1 (en) | Ionization of neutral gas-phase molecules and mass calibrants | |
WO2013072565A1 (en) | Method and device for determining properties of gas phase bases or acids | |
Niessen | Principles and instrumentation of gas chromatography-mass spectrometry | |
Suelter et al. | Biomedical applications of mass spectrometry | |
Horning et al. | Development and use of bioanalytical systems based on mass spectrometry with ionization at atmospheric pressure | |
Saito et al. | Development of a tabletop time‐of‐flight mass spectrometer with an ion attachment ionization technique | |
WO2015145176A1 (en) | Synchronised variation of source conditions of an atmospheric pressure chemical ionisation mass spectrometer coupled to a gas chromatograph to improve stability during analysis | |
Bräkling | Development of a Dual Ionization Source Time-of-Flight Mass Spectrometer for Gas Chromatography |