[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2024225855A1 - Cathode active material, cathode, and lithium secondary battery - Google Patents

Cathode active material, cathode, and lithium secondary battery Download PDF

Info

Publication number
WO2024225855A1
WO2024225855A1 PCT/KR2024/005819 KR2024005819W WO2024225855A1 WO 2024225855 A1 WO2024225855 A1 WO 2024225855A1 KR 2024005819 W KR2024005819 W KR 2024005819W WO 2024225855 A1 WO2024225855 A1 WO 2024225855A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
active material
positive electrode
electrode active
primary particles
Prior art date
Application number
PCT/KR2024/005819
Other languages
French (fr)
Korean (ko)
Inventor
황주경
정진후
이지영
류현모
허국진
이정욱
박상은
김종혁
조승범
정명기
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority claimed from KR1020240057122A external-priority patent/KR20240159537A/en
Publication of WO2024225855A1 publication Critical patent/WO2024225855A1/en

Links

Images

Definitions

  • the present invention relates to a cathode active material, a cathode including the same, and a lithium secondary battery.
  • the high nickel cathode active material formed by the secondary particle structure in which the primary particles are aggregated undergoes structural degradation during the charging and discharging of the lithium secondary battery, but relatively, the lattice structure constant changes, that is, the volume change within the unit cell occurs significantly. This volume change causes cracks in the cathode active material. In addition, cracks may occur in the cathode active material due to pressure during electrode rolling.
  • the cracks in the high nickel positive electrode active material that occur in this way become more severe during the charging and discharging process of the lithium secondary battery, and as a result, they act as voids that cannot reach the electrolyte or reduce conductivity, which reduces the life characteristics of the lithium secondary battery or acts as a factor in increasing resistance.
  • single-particle cathode active materials In order to minimize the occurrence of cracks in such secondary particle structures, attempts are being made to manufacture single-particle cathode active materials.
  • such single-particle cathode active materials have a problem in that the particle sizes are non-uniform, and thus the particle size distribution of the single-particle cathode active materials obtained after pulverization is large.
  • single-particle cathode active materials have a low specific surface area, and thus are vulnerable to cell resistance characteristics.
  • Patent Document 1 discloses large-diameter secondary particles, which include secondary particles in which primary particles are aggregated, the secondary particles include a nickel-based lithium transition metal oxide, and the average particle diameter of the primary particles is 3 to 5 ⁇ m and the average particle diameter of the secondary particles is 10 to 20 ⁇ m.
  • Such large-diameter secondary particles include primary particles having an average particle diameter on the micron level, thereby improving the rolling density and minimizing cracks caused by rolling, etc., and improving the specific surface area through the secondary particle structure, thereby improving cell characteristics.
  • the problem to be solved in the present invention is to provide a cathode active material capable of simultaneously solving the problems of conventional secondary particles and single particles in a high nickel (High Ni) cathode active material.
  • the present invention has been made to solve the problems of the above-mentioned prior art, and is a high nickel (High Ni) cathode active material having excellent capacity characteristics due to a high content of nickel among the transition metals of the lithium transition metal composite oxide, and by implementing the cathode active material in the form of secondary particles having a primary particle size on the micron level, the present invention provides a cathode active material having excellent density characteristics and thus improving energy density as well as cell characteristics such as improved lifespan and reduced gas generation.
  • High Ni high nickel
  • the present invention aims to provide a positive electrode and a lithium secondary battery including the positive electrode active material.
  • the present invention provides a cathode active material, a cathode including the same, and a lithium secondary battery.
  • the present invention comprises a secondary particle in which a plurality of primary particles are aggregated, wherein the plurality of primary particles have an average particle size of 1.5 ⁇ m or more and 5.0 ⁇ m or less as measured from an SEM image, the particle size of the primary particles is a particle size based on the major axis of the primary particles, the plurality of primary particles include disk-type primary particles, and the disk-type primary particles are an anode in which, when two imaginary tangent lines are drawn with respect to two boundaries of the primary particles existing within an angle of 45° or less with respect to the major axis direction in the primary particles observed from an SEM image of the surface or cross section of the secondary particles, and one imaginary line crossing the two tangent lines is drawn, the coplanar internal angle is 150° or more and 210° or less, the minor axis is 0.3 ⁇ m or more, and the aspect ratio (major axis/minor axis) is 1.5 or more.
  • the aspect ratio major axis/minor axis
  • the present invention provides a positive electrode active material in (1) above, wherein the plurality of primary particles include three or more disk-type primary particles.
  • the present invention provides a positive electrode active material in (1) or (2) above, wherein the disk-shaped primary particles have a short diameter of 0.8 ⁇ m or more.
  • the present invention provides a cathode active material comprising a lithium transition metal composite oxide containing nickel, cobalt, and manganese, in any one of the above (1) to (3).
  • the present invention provides a cathode active material comprising a lithium transition metal composite oxide containing nickel at 60 mol% or more among the total transition metals, in any one of (1) to (4) above.
  • the present invention provides a cathode active material comprising a lithium transition metal composite oxide having an average composition represented by the following chemical formula 1, in any one of (1) to (5) above.
  • the present invention provides a positive electrode active material according to any one of (1) to (6), wherein the plurality of primary particles include single crystal primary particles.
  • the present invention provides a cathode active material according to any one of (1) to (7) above, wherein the secondary particles have an average particle diameter (D 50 ) of 7.0 ⁇ m or more and 20.0 ⁇ m or less according to a volume cumulative distribution measured using a laser diffraction particle size analyzer.
  • D 50 average particle diameter
  • the present invention provides a positive electrode comprising a positive electrode active material according to any one of (1) to (8).
  • the present invention provides a lithium secondary battery including a positive electrode according to (9); a negative electrode; a separator interposed between the positive electrode and the negative electrode; and an electrolyte.
  • the cathode active material of the present invention is a cathode active material that can simultaneously solve the problems of conventional secondary particles and single particles in high nickel (High Ni) cathode active materials, and by implementing a cathode active material in the form of secondary particles whose primary particles are on the micron level in size, not only does it improve cell characteristics such as improved lifespan and reduced gas generation of a lithium secondary battery, but it also has excellent density characteristics so as to improve energy density.
  • Figure 1 is an SEM image of (A) the positive electrode active material of Example 1, and (B) an SEM image of a cross-section of the positive electrode active material.
  • Figure 2 is an SEM image of (A) the positive electrode active material of Example 2, and (B) an SEM image of a cross-section of the positive electrode active material.
  • Figure 3 is an SEM image of (A) the positive electrode active material of Example 3, and (B) an SEM image of a cross-section of the positive electrode active material.
  • Figure 4 is an SEM image of (A) the positive electrode active material of Example 4, and (B) an SEM image of a cross-section of the positive electrode active material.
  • Figure 5 is an SEM image of (A) the positive electrode active material of Example 5, and (B) an SEM image of a cross-section of the positive electrode active material.
  • Figure 6 is an SEM image of (A) the positive electrode active material of Example 6, and (B) an SEM image of a cross-section of the positive electrode active material.
  • Figure 7 is an SEM image of (A) the positive electrode active material of Example 7, and (B) an SEM image of a cross-section of the positive electrode active material.
  • Figure 8 is an SEM image of (A) the positive electrode active material of Example 8, and (B) an SEM image of a cross-section of the positive electrode active material.
  • Figure 9 is an SEM image of (A) the positive electrode active material of Example 9, and (B) an SEM image of a cross-section of the positive electrode active material.
  • Figure 10 is an SEM image of (A) the positive electrode active material of Example 10, and (B) an SEM image of a cross-section of the positive electrode active material.
  • Figure 11 is an SEM image of (A) the positive electrode active material of Example 11, and (B) an SEM image of a cross-section of the positive electrode active material.
  • Figure 12 is an SEM image of (A) the positive electrode active material of Comparative Example 1, and (B) an SEM image of a cross-section of the positive electrode active material.
  • Figure 13 shows an SEM image of (A) the positive electrode active material of Comparative Example 2, and (B) an SEM image of a cross-section of the positive electrode active material.
  • Figure 14 shows an SEM image of (A) the positive electrode active material of Comparative Example 3, and (B) an SEM image of a cross-section of the positive electrode active material.
  • Figure 15 is an SEM image of (A) the positive electrode active material of Comparative Example 4, and (B) an SEM image of a cross-section of the positive electrode active material.
  • Figure 16 is an SEM image of (A) the positive electrode active material of Comparative Example 5, and (B) an SEM image of a cross-section of the positive electrode active material.
  • Figure 17 is a segmentation image showing multiple lithium composite transition metal oxides segmented by performing image analysis based on an artificial intelligence model from the SEM image of the positive electrode active material of Example 1.
  • Figure 18 is a segmentation image showing multiple lithium composite transition metal oxides segmented by performing image analysis based on an artificial intelligence model from the SEM image of the positive electrode active material of Comparative Example 1.
  • Figure 19 is a TEM image of a cross-section of the positive active material of Example 1.
  • Figure 20 is a TEM image of a cross-section of the positive electrode active material of Example 2.
  • Figure 21 is a TEM image of a cross-section of the positive electrode active material of Example 8.
  • Figure 22 is an EBSD pattern image of a cross-section of the positive active material of Example 1.
  • Figure 23 is an EBSD pattern image of a cross-section of the positive active material of Example 2.
  • Figure 24 is an EBSD pattern image of a cross-section of the positive active material of Example 3.
  • Figure 25 is an EBSD pattern image of a cross-section of the positive active material of Example 4.
  • Figure 26 is an EBSD pattern image of a cross-section of the positive active material of Example 8.
  • Figure 27 is an EBSD pattern image of a cross-section of the positive active material of Example 10.
  • Figure 28 is an EBSD pattern image of a cross-section of the positive active material of Example 11.
  • Figure 29 is an EBSD pattern image of a cross-section of the positive electrode active material of Comparative Example 3.
  • Figure 30 is an EPMA analysis image of the positive electrode active material of Example 1.
  • Figure 31 is a graph of the cumulative volume distribution of the positive electrode active material of Example 1 measured using a laser diffraction particle size analyzer, in which the x-axis represents a linear scale for particle diameter in which the x-value increases from left to right, and the y-axis represents a weight distribution in which the y-value increases from bottom to top.
  • Figure 32 is a graph of the cumulative volume distribution of the positive electrode active material of Example 2 measured using a laser diffraction particle size analyzer, in which the x-axis represents a linear scale for particle diameter in which the x-value increases from left to right, and the y-axis represents a weight distribution in which the y-value increases from bottom to top.
  • Figure 33 is a frequency distribution graph showing the volume cumulative distribution measured using a laser diffraction particle size analyzer for the positive electrode active material of Example 3, in which the x-axis represents a linear scale for particle diameter in which the x-value increases from left to right, and the y-axis represents a weight distribution in which the y-value increases from bottom to top.
  • Figure 34 is a graph of the cumulative volume distribution of the positive electrode active material of Example 4 measured using a laser diffraction particle size analyzer, in which the x-axis represents a linear scale for particle diameter in which the x-value increases from left to right, and the y-axis represents a weight distribution in which the y-value increases from bottom to top.
  • Figure 35 is a graph of the cumulative volume distribution of the positive electrode active material of Example 5 measured using a laser diffraction particle size analyzer, in which the x-axis represents a linear scale for particle diameter in which the x-value increases from left to right, and the y-axis represents a weight distribution in which the y-value increases from bottom to top.
  • Figure 36 is a graph of the cumulative volume distribution of the positive electrode active material of Example 6 measured using a laser diffraction particle size analyzer, in which the x-axis represents a linear scale for particle diameter in which the x-value increases from left to right, and the y-axis represents a weight distribution in which the y-value increases from bottom to top.
  • Figure 37 is a graph of the cumulative volume distribution of the positive electrode active material of Example 7 measured using a laser diffraction particle size analyzer, in which the x-axis represents a linear scale for particle diameter in which the x-value increases from left to right, and the y-axis represents a weight distribution in which the y-value increases from bottom to top.
  • Figure 38 is a graph of the cumulative volume distribution of the positive electrode active material of Example 8 measured using a laser diffraction particle size analyzer, in which the x-axis represents a linear scale for particle diameter in which the x-value increases from left to right, and the y-axis represents a weight distribution in which the y-value increases from bottom to top.
  • Figure 39 is a graph of the cumulative volume distribution of the positive electrode active material of Example 9 measured using a laser diffraction particle size analyzer, in which the x-axis represents a linear scale for particle diameter in which the x-value increases from left to right, and the y-axis represents a weight distribution in which the y-value increases from bottom to top.
  • Figure 40 is a graph of the cumulative volume distribution of the positive electrode active material of Example 10 measured using a laser diffraction particle size analyzer, in which the x-axis represents a linear scale for particle diameter in which the x-value increases from left to right, and the y-axis represents a weight distribution in which the y-value increases from bottom to top.
  • Figure 41 is a graph of the cumulative volume distribution of the positive electrode active material of Example 11 measured using a laser diffraction particle size analyzer, in which the x-axis represents a linear scale for particle diameter in which the x-value increases from left to right, and the y-axis represents a weight distribution in which the y-value increases from bottom to top.
  • Figure 42 is a graph of the cumulative volume distribution of the positive electrode active material of Comparative Example 1 measured using a laser diffraction particle size analyzer, in which the x-axis represents a linear scale for particle diameter in which the x-value increases from left to right, and the y-axis represents a weight distribution in which the y-value increases from bottom to top.
  • Figure 43 is a frequency distribution graph showing the volume cumulative distribution measured using a laser diffraction particle size analyzer for the positive electrode active material of Comparative Example 3, in which the x-axis represents a linear scale for particle diameter in which the x-value increases from left to right, and the y-axis represents a weight distribution in which the y-value increases from bottom to top.
  • Figure 44 is a frequency distribution graph showing the volume cumulative distribution measured using a laser diffraction particle size analyzer for the positive electrode active material of Example 1, in which the x-axis represents a log scale for particle diameter in which the x-value increases from left to right, and the y-axis represents a weight distribution in which the y-value increases from bottom to top.
  • Figure 45 is a frequency distribution graph showing the volume cumulative distribution measured using a laser diffraction particle size analyzer for the positive electrode active material of Example 2, in which the x-axis represents a log scale for particle diameter in which the x-value increases from left to right, and the y-axis represents a weight distribution in which the y-value increases from bottom to top.
  • Figure 46 is a frequency distribution graph showing the volume cumulative distribution measured using a laser diffraction particle size analyzer for the positive electrode active material of Example 3, in which the x-axis represents a log scale for particle diameter in which the x-value increases from left to right, and the y-axis represents a weight distribution in which the y-value increases from bottom to top.
  • Figure 47 is a frequency distribution graph showing the volume cumulative distribution measured using a laser diffraction particle size analyzer for the positive electrode active material of Example 4, in which the x-axis represents a log scale for particle diameter in which the x-value increases from left to right, and the y-axis represents a weight distribution in which the y-value increases from bottom to top.
  • Figure 48 is a frequency distribution graph showing the volume cumulative distribution measured using a laser diffraction particle size analyzer for the positive electrode active material of Example 5, in which the x-axis represents a log scale for particle diameter in which the x-value increases from left to right, and the y-axis represents a weight distribution in which the y-value increases from bottom to top.
  • Figure 49 is a frequency distribution graph showing the volume cumulative distribution measured using a laser diffraction particle size analyzer for the positive electrode active material of Example 6, in which the x-axis represents a log scale for particle diameter in which the x-value increases from left to right, and the y-axis represents a weight distribution in which the y-value increases from bottom to top.
  • Figure 50 is a frequency distribution graph showing the volume cumulative distribution measured using a laser diffraction particle size analyzer for the positive electrode active material of Example 7, in which the x-axis represents a log scale for particle diameter in which the x-value increases from left to right, and the y-axis represents a weight distribution in which the y-value increases from bottom to top.
  • Figure 51 is a frequency distribution graph showing the volume cumulative distribution measured using a laser diffraction particle size analyzer for the positive electrode active material of Example 8, in which the x-axis represents a log scale for particle diameter in which the x-value increases from left to right, and the y-axis represents a weight distribution in which the y-value increases from bottom to top.
  • Figure 52 is a frequency distribution graph showing the volume cumulative distribution measured using a laser diffraction particle size analyzer for the positive electrode active material of Example 9, in which the x-axis represents a log scale for particle diameter in which the x-value increases from left to right, and the y-axis represents a weight distribution in which the y-value increases from bottom to top.
  • Figure 53 is a frequency distribution graph showing the volume cumulative distribution measured using a laser diffraction particle size analyzer for the positive electrode active material of Example 10, in which the x-axis represents a log scale for particle diameter in which the x-value increases from left to right, and the y-axis represents a weight distribution in which the y-value increases from bottom to top.
  • Figure 54 is a frequency distribution graph showing the volume cumulative distribution measured using a laser diffraction particle size analyzer for the positive electrode active material of Example 11, in which the x-axis represents a log scale for particle diameter in which the x-value increases from left to right, and the y-axis represents a weight distribution in which the y-value increases from bottom to top.
  • Figure 55 is a frequency distribution graph showing the volume cumulative distribution measured using a laser diffraction particle size analyzer for the positive electrode active material of Comparative Example 1, in which the x-axis represents a log scale for particle diameter in which the x-value increases from left to right, and the y-axis represents a weight distribution in which the y-value increases from bottom to top.
  • Figure 56 is a frequency distribution graph showing the volume cumulative distribution measured using a laser diffraction particle size analyzer for the positive electrode active material of Comparative Example 3, in which the x-axis represents a log scale for particle diameter in which the x-value increases from left to right, and the y-axis represents a weight distribution in which the y-value increases from bottom to top.
  • the term 'primary particle' means the smallest particle unit that can be distinguished as a single lump when observing the cross-section of a positive electrode active material through a scanning electron microscope (SEM), and may be composed of a single crystal or multiple crystal grains.
  • the term 'secondary particle' refers to a secondary structure formed by agglomeration of multiple primary particles.
  • the average particle diameter of the secondary particles can be measured using a particle size analyzer.
  • the term 'average particle diameter ( D50 )' means the particle diameter at the 50% point of the volume cumulative distribution according to particle diameter.
  • the average particle diameter can be measured by dispersing the target powder in a dispersion medium, introducing it into a commercially available laser diffraction particle size measuring device (e.g., S3500 from Microtrac), and measuring the difference in diffraction patterns according to particle size when the particles pass through the laser beam to calculate the particle size distribution, and calculating the particle diameter at the point where it becomes 50% of the volume cumulative distribution according to particle diameter in the measuring device, thereby measuring D50 .
  • a commercially available laser diffraction particle size measuring device e.g., S3500 from Microtrac
  • the term 'major axis of a primary particle' refers to the length of the longest line segment when a line is drawn passing through two points of a primary particle boundary in a primary particle observed from an SEM image of the surface or cross-section of a secondary particle.
  • the term 'shortest diameter of a primary particle' refers to the length of the shortest line segment when a line is drawn passing through two points of a primary particle boundary in a primary particle observed from an SEM image of the surface or cross-section of a secondary particle.
  • the present invention provides a positive electrode active material.
  • a plurality of primary particles may include secondary particles in which the plurality of primary particles are aggregated, and the plurality of primary particles may have an average particle size measured from a SEM image of 1.5 ⁇ m or more and 5.0 ⁇ m or less.
  • the secondary particle may be a secondary particle formed by agglomeration of a plurality of primary particles, and may be a secondary particle formed by agglomeration of at least two, specifically, at least three or more primary particles.
  • the plurality of primary particles may have an average particle size measured from a SEM image of 1.5 ⁇ m or more, 1.6 ⁇ m or more, 1.7 ⁇ m or more, 1.8 ⁇ m or more, 1.9 ⁇ m or more, 2.0 ⁇ m or more, 2.1 ⁇ m or more, 2.2 ⁇ m or more, 2.3 ⁇ m or more, 2.4 ⁇ m or more, or 2.5 ⁇ m or more, and further, 5.0 ⁇ m or less, 4.9 ⁇ m or less, 4.8 ⁇ m or less, 4.7 ⁇ m or less, 4.6 ⁇ m or less, 4.5 ⁇ m or less, 4.4 ⁇ m or less, 4.3 ⁇ m or less, 4.2 ⁇ m or less, 4.1 ⁇ m or less, 4.0 ⁇ m or less, 3.9 ⁇ m or less, 3.8 ⁇ m or less, 3.7 ⁇ m or less, 3.6 ⁇ m or less, 3.5
  • the average particle size of the plurality of primary particles may be 3.4
  • the particle size of each primary particle may be a particle size based on the major diameter of the primary particle.
  • the rolling density of the positive electrode active material can be further improved, while further improving the life of the lithium secondary battery.
  • the positive electrode active material may include a lithium transition metal composite oxide including nickel, cobalt, and manganese.
  • the positive electrode active material may include a lithium transition metal composite oxide including nickel at 60 mol% or more among the total transition metals.
  • the lithium transition metal composite oxide may be a primary particle, a secondary particle, and the positive electrode active material itself including these, and as a specific example, the positive electrode active material may include a secondary particle in which a plurality of primary particles formed of the lithium transition metal composite oxide are aggregated.
  • the positive electrode active material may include a lithium transition metal composite oxide having an average composition represented by the following chemical formula 1.
  • x is a molar ratio of lithium to a transition metal in the lithium-transition metal composite oxide, which may be 0.9 or more, 0.95 or more, or 1.0 or more, and further may be 1.1 or less, 1.07 or less, 1.05 or less, or 1.03 or less.
  • a, b, c, and d may be mole fractions of nickel (Ni), cobalt (Co), manganese (Mn) among transition metals, and a doping element (M 1 ), respectively.
  • a may be a mole fraction of nickel (Ni) among transition metals, which may be 0.6 or more, 0.7 or more, 0.8 or more, 0.85 or more, 0.88 or more, 0.90 or more, 0.91 or more, 0.92 or more, 0.93 or more, 0.94 or more, 0.95 or more, or 0.96 or more, and further may be less than 1.0, 0.99 or less, 0.98 or less, 0.97 or less, or 0.96 or less.
  • the b may be a mole fraction of cobalt (Co) among the transition metals, greater than 0, 0.01, 0.02, or 0.03, and further may be less than 0.4, 0.3 or less, 0.2 or less, 0.1 or less, 0.09 or less, 0.08 or less, 0.07 or less, 0.06 or less, or 0.05 or less.
  • the c may be a mole fraction of manganese (Mn) among the transition metals, greater than 0, 0.01 or more, or 0.05 or more, and further may be less than 0.4, 0.3 or less, 0.2 or less, 0.1 or less, 0.09 or less, 0.08 or less, 0.07 or less, 0.06 or less, or 0.05 or less.
  • the above d is a mole fraction of a doping element (M 1 ) among transition metals and may be 0, 0.01 or more, 0.02 or more, 0.03 or more, 0.04 or more, 0.05 or more, 0.06 or more, 0.07 or more, 0.08 or more, 0.09 or more, 0.10 or more, 0.11 or more, 0.12 or more, 0.13 or more, 0.14 or more, 0.15 or more, 0.16 or more, 0.17 or more, 0.18 or more, or 0.19 or more, and further, less than 0.20, 0.19 or less, 0.18 or less, 0.17 or less, 0.16 or less, 0.15 or less, 0.14 or less, 0.13 or less, 0.12 or less, 0.11 or less, 0.10 or less, It can be 0.09 or less, 0.08 or less, 0.07 or less, 0.06 or less, 0.05 or less, 0.04 or less, 0.03 or less, 0.02 or less, or 0.01 or less. When the composition of the lithium transition metal composite oxide is adjusted as above, the capacity can be further improved.
  • the plurality of primary particles may include single-crystal primary particles, in which case the rolling density of the positive electrode active material can be further improved.
  • the single-crystal primary particles refer to primary particles formed of a single crystal.
  • the secondary particles may have an average particle diameter ( D50 ) of 7.0 ⁇ m or more and 20.0 ⁇ m or less based on a volume cumulative distribution measured using a laser diffraction particle size analyzer.
  • the secondary particles may have an average particle diameter ( D50 ) of 7.0 ⁇ m or more, 7.1 ⁇ m or more, 7.2 ⁇ m or more, 7.3 ⁇ m or more, 7.4 ⁇ m or more, 7.5 ⁇ m or more, 7.6 ⁇ m or more, 7.7 ⁇ m or more, 7.8 ⁇ m or more, 7.9 ⁇ m or more, 8.0 ⁇ m or more, 8.1 ⁇ m or more, 8.2 ⁇ m or more, 8.3 ⁇ m or more, 8.4 ⁇ m or more, 8.5 ⁇ m or more, 8.6 ⁇ m or more, 8.7 ⁇ m or more, 8.8 ⁇ m or more, 8.9 ⁇ m or more, or 9.0 ⁇ m or more, and further, 2
  • the cathode active material may be a high nickel cathode active material including a lithium transition metal composite oxide containing nickel at 60 mol% or more among the total transition metal, wherein a plurality of primary particles may include secondary particles having a large particle size (D50) of 7.0 ⁇ m or more and 20.0 ⁇ m or less, which are formed by agglomeration of primary particles having a particle size of 0.5 ⁇ m or more and 5.0 ⁇ m or less, specifically, micron -level primary particles of 1.0 ⁇ m or more, and more specifically, a plurality of primary particles having an average particle size of 2.0 ⁇ m or more and 3.5 ⁇ m or less as measured from a SEM image, and in the sense that primary particles in the form of single particles agglomerate to form large particles in the form of secondary particles, it may be expressed as a large particle single particle cluster.
  • D50 large particle size
  • the positive electrode active material of the present invention has a high content of nickel among the transition metals of the lithium-transition metal composite oxide, even if the layered structure of the lithium-transition metal composite oxide degenerates into a rock salt structure at a high heat treatment temperature, the rock salt structure is recovered into a layered structure, thereby solving the aforementioned problem.
  • the positive electrode active material of the present invention is a high-nickel positive electrode active material including a lithium-transition metal composite oxide containing nickel at 60 mol% or more of the total transition metal, and while including secondary particles having a primary particle size on the micron level, the rock salt structure formed by the high heat treatment temperature is recovered into a layered structure, so that the crystallinity of the lithium-transition metal composite oxide is excellent, and thus the problems of the conventional secondary particles and the problems of the single particles can be solved at the same time.
  • the positive electrode active material of the present invention can be manufactured by restoring the rock salt structure formed by the high heat treatment temperature into a layered structure as described above, and the method of restoring the rock salt structure into a layered structure is not limited, but according to one embodiment of the present invention, the method of restoring the rock salt structure into a layered structure may be to perform cobalt (Co) coating on a lithium transition metal composite oxide including the rock salt structure formed by the high heat treatment temperature.
  • Co cobalt
  • the plurality of primary particles may include disk-type primary particles, and as a specific example, may include three or more disk-type primary particles, in which case the cell has excellent lifespan and energy density.
  • the disk-shaped primary particle may mean that, in the primary particle observed from an SEM image of the surface or cross-section of the secondary particle, when two imaginary tangent lines having the largest number of contact points are drawn for each of the two boundaries of the primary particle existing within an angle of 45° or less with respect to the major axis direction, and one imaginary line crossing the two tangent lines is drawn, the coplanar internal angle is 150° or more and 210° or less, the minor axis of the primary particle is 0.3 ⁇ m or more, and the aspect ratio (major axis/minor axis) is 1.5 or more.
  • the disk-shaped primary particle may have a primary particle diameter of 0.3 ⁇ m or more, 0.4 ⁇ m or more, 0.5 ⁇ m or more, 0.6 ⁇ m or more, 0.7 ⁇ m or more, 0.8 ⁇ m or more, 0.9 ⁇ m or more, or 1.0 ⁇ m or more.
  • the disk-shaped primary particle has a primary particle diameter of 0.3 ⁇ m or more and an aspect ratio (major axis/minor axis) of 1.5 or more
  • the area ratio of the (003) plane among the crystal planes on the surface of the primary particle may be the largest.
  • the positive active material may include secondary particles in which a plurality of primary particles are aggregated, and the plurality of primary particles may have an average particle size of 1.5 ⁇ m or more and 5.0 ⁇ m or less as measured from an SEM image, and the plurality of primary particles may include disk-type primary particles, and the disk-type primary particles may have, in the primary particles observed from an SEM image of a surface or cross-section of the secondary particles, when two imaginary tangent lines having the largest number of contact points are drawn for each of two boundaries of the primary particles existing within an angle of 45° or less with respect to the major axis direction, and one imaginary line crossing the two tangent lines is drawn, the coplanar internal angle may be 150° or more and 210° or less, the minor axis of the primary particles may be 0.3 ⁇ m or more, and the aspect ratio (major axis/minor axis) may be 1.5 or more. More specifically, the disk type primary particles may have a minor diameter of 0.8 ⁇ m or more.
  • the disk-shaped primary particle may mean that, in the primary particle observed from the SEM image of the surface or cross-section of the secondary particle, when two imaginary tangent lines having the largest number of contact points are drawn for each of the primary particles existing within an angle of 45° or less with respect to the major axis direction, and one imaginary line crossing the two tangent lines is drawn, the coaxial angle is 150° or more and 210° or less, and the area ratio of the (003) plane among the crystal planes on the surface of the primary particle of the primary particle is the largest.
  • the primary particle may have a minor axis of 0.3 ⁇ m or more and an aspect ratio (major axis/minor axis) of 1.5 or more. That is, the largest area ratio of the (003) plane among the crystal planes on the surface of the primary particle can be confirmed from the fact that the minor axis of the primary particle is 0.3 ⁇ m or more and the aspect ratio (major axis/minor axis) is 1.5 or more.
  • the positive electrode active material may be a frequency distribution graph in which the x-axis represents a volume cumulative distribution measured using a laser diffraction particle size analyzer in a log scale for particle diameters in which the x-value increases from left to right, and the y-axis represents a weight distribution in which the y-value increases from bottom to top, wherein, when a triangle is drawn with a peak point at the uppermost point of the y-axis of a peak appearing in a mode; and two contact points of the frequency distribution curves that touch at the half width at half maximum (FWHM) of the mode, the difference ( ⁇ L - ⁇ R ) between the internal angle ( ⁇ L ) at the left contact point and the internal angle ( ⁇ R ) at the right contact point among the two contact points of the frequency distribution curves that touch at the half width may be 6 or more and 20 or less.
  • the difference ( ⁇ L - ⁇ R ) between the interior angle ( ⁇ L ) at the left contact point and the interior angle ( ⁇ R ) at the right contact point may be 6 or more, 7 or more, 8 or more, 9 or more, 10 or more, 11 or more, 12 or more, 13 or more, or 14 or more, and may also be 20 or less, 19 or less, 18 or less, 17 or less, 16 or less, or 15 or less.
  • the positive active material may have a ratio of the interior angle at the left contact point to the interior angle at the right contact point ( ⁇ L / ⁇ R ) of 1.100 or more and 2.000 or less.
  • the ratio of the interior angle at the left contact point to the interior angle at the right contact point is 1.100 or more, 1.110 or more, 1.120 or more, 1.130 or more, 1.140 or more, 1.150 or more, 1.160 or more, 1.170 or more, 1.180 or more, 1.190 or more, 1.200 or more, 1.210 or more, 1.220 or more, 1.230 or more, 1.240 or more, 1.250 or more, 1.260 or more, 1.270 or more, 1.280 or more, 1.290 or more, 1.300 or more, 1.310 or more, 1.320 or more, 1.330 or more, 1.340 or more, 1.350 or more, 1.360 or more, It may be 1.370 or more, 1.380 or more, 1.390 or more, 1.400 or more, 1.410 or more, 1.420 or more, 1.430 or more, or 1.440 or more, and may also be 1.450 or less, 1.460 or less, 1.470 or less, 1.480 or less, 1.490 or less, 1.500 or less, 1.550
  • the positive active material may exhibit positive skewness in a frequency distribution graph in which the volume cumulative distribution measured using a laser diffraction particle size analyzer is represented by a linear scale for particle diameter in which the x-axis represents the x-value increasing from left to right, and the y-axis represents the weight distribution in which the y-value increasing from bottom to top.
  • the frequency distribution graph may be a unimodal distribution graph.
  • the positive electrode active material may have a ratio (S/P MODE) of a skewness value (S) to a y-value (P MODE ) of a peak point at the uppermost y-axis of a peak appearing in a mode ( Mode ) according to a volume cumulative distribution of 0.037 or more and 0.150 or less.
  • the positive electrode active material has a ratio (S/P MODE ) of the skewness value (S) to the y-value (P MODE ) of the peak point at the top of the y-axis of the peak appearing in the mode (Mode) according to the volume cumulative distribution of 0.037 or more, 0.038 or more, 0.039 or more, 0.040 or more, 0.041 or more, 0.042 or more, 0.043 or more, 0.044 or more, 0.045 or more, 0.046 or more, 0.047 or more, 0.048 or more, 0.049 or more, 0.050 or more, 0.051 or more, 0.052 or more, 0.053 or more, 0.054 or more, 0.055 or more, 0.056 or more, 0.057 or more, 0.058 or more, 0.059 or more, 0.060 or higher, 0.061 or higher, 0.062 or higher, 0.063 or higher, 0.064 or higher, 0.065 or higher, 0.066 or
  • the positive electrode active material may have a BET specific surface area measured through nitrogen adsorption BET specific surface area analysis of 0.20 m 2 /g or more and 0.35 m 2 /g or less.
  • the positive active material may have a BET surface area measured through nitrogen adsorption BET surface area analysis of 0.20 m 2 /g or more, 0.21 m 2 /g or more, 0.22 m 2 /g or more, 0.23 m 2 /g or more, 0.24 m 2 /g or more, 0.25 m 2 /g or more, 0.26 m 2 /g or more, 0.27 m 2 /g or more, 0.28 m 2 /g or more, 0.29 m 2 /g or more, 0.30 m 2 /g or more, or 0.31 m 2 /g or more, and further may have 0.35 m 2 /g or less, or 0.34 m 2 /g or less. Within this range, the positive active material may have 0.35 m 2 /
  • the positive electrode active material may have an average particle diameter ( D50 ) of 7.0 ⁇ m or more and 20.0 ⁇ m or less according to a volume cumulative distribution measured using a laser diffraction particle size analyzer for the secondary particles, and a size of a cross-section of the secondary particles observed from a SEM image of a cross-section of the secondary particles is within a range of the average particle diameter ( D50 ) of the secondary particles, and the number of cross-sections of primary particles confirmed within a unit area of 5 ⁇ m in width x 5 ⁇ m in length within the cross-section of the secondary particles may be 1 or more and 100 or less.
  • the number of cross-sections of primary particles confirmed within a unit area of 5 ⁇ m width * 5 ⁇ m height within the cross-section of the secondary particle means the number of cross-sections of all primary particles that include at least a part of the cross-sections of the primary particles in addition to all cross-sections of the primary particles confirmed within the unit area.
  • the unit area of 5 ⁇ m width * 5 ⁇ m height within the cross-section of the secondary particle is the unit area at any point within the cross-section of the secondary particle, and the location is not limited as long as it is within the cross-section of the secondary particle.
  • the cathode active material has a cross-section of the secondary particle, the size of which is within the range of the average particle diameter (D 50 ) of the secondary particle, as observed from the SEM image of the cross-section of the secondary particle, and the number of primary particle cross-sections confirmed within a unit area of 5 ⁇ m width x 5 ⁇ m length within the cross-section of the secondary particle is It can be 1 or more and 100 or less, and for specific examples, it can be 1 or more, 2 or more, 3 or more, 4 or more, 5 or more, 6 or more, 7 or more, 8 or more, 9 or more, or 10 or more, and also can be 100 or less, 95 or less, 90 or less, 85 or less, 80 or less, 75 or less, 70 or less, 65 or less, 60 or less, 55 or less, 50 or less, 45 or less, 40 or less, 35 or less, 30 or less, or 25 or less.
  • D 50 average particle diameter
  • the positive electrode active material may be represented as including a plurality of primary particles having a particle size of 0.5 ⁇ m or more and 5.0 ⁇ m or less, such as a conventional single particle, specifically a micron-level primary particle of 1.0 ⁇ m or more, and more specifically a secondary particle having a large particle size ( D50 ) of 7.0 ⁇ m or more and 20.0 ⁇ m or less, formed by agglomeration of a plurality of primary particles having an average particle size of 2.0 ⁇ m or more and 3.5 ⁇ m or less as measured from a SEM image.
  • a plurality of primary particles having a particle size of 0.5 ⁇ m or more and 5.0 ⁇ m or less such as a conventional single particle, specifically a micron-level primary particle of 1.0 ⁇ m or more, and more specifically a secondary particle having a large particle size ( D50 ) of 7.0 ⁇ m or more and 20.0 ⁇ m or less, formed by agglomeration of a plurality of primary particles having an average particle
  • the cathode active material may have an average particle diameter ( D50 ) of 7.0 ⁇ m or more and 20.0 ⁇ m or less according to a volume cumulative distribution measured using a laser diffraction particle size analyzer for the secondary particles, and a size of a cross-section of the secondary particles observed from an backscattered electron diffraction (EBSD) pattern of an SEM image of a cross-section of the secondary particles (measured under the conditions of an acceleration voltage of 20 kV, a WD of 16 mm, a measurement magnification of 5,000 times (width 16 ⁇ m * height 16 ⁇ m), and a step size of 0.025 ⁇ m) may be within a range of the average particle diameter ( D50 ) of the secondary particles, and the number of cross-sections of grains confirmed within a unit area of 5 ⁇ m in width * 5 ⁇ m in the cross-section of the secondary particles may be 1 or more and 150 or less.
  • EBSD backscattered electron diffraction
  • the size of the cross-section of the secondary particle observed from an electronic beam spread spectrum (EBSD) pattern of a SEM image is within a range of an average particle diameter (D 50 ) of the secondary particle
  • the number of cross-sections of grains confirmed within a unit area of 5 ⁇ m in width * 5 ⁇ m in length within the cross-section of the secondary particle means the number of cross-sections of all grains that are included in addition to all cross-sections of grains confirmed within the unit area, even if only a part of the cross-sections of the grains is included.
  • the unit area of 5 ⁇ m width x 5 ⁇ m height within the cross-section of the secondary particle is the unit area at any point within
  • the cathode active material may be such that the size of the cross-section of the secondary particle, as observed from the backscattered electron diffraction (EBSD) pattern of the SEM image of the cross-section of the secondary particle (measured under the conditions of acceleration voltage 20 kV, WD 16 mm, measurement magnification 5,000 times (width 16 ⁇ m * height 16 ⁇ m), step size 0.025 ⁇ m), is within the range of the average particle diameter (D 50 ) of the secondary particle, and the number of cross-sections of grains confirmed within a unit area of 5 ⁇ m width * 5 ⁇ m height within the cross-section of the secondary particle may be 1 or more and 150 or less, and as specific examples, may be 1 or more, 2 or more, 3 or more, 4 or more, 5 or more, 6 or more, 7 or more, 8 or more, or 9 or more, and further, 150 or less, It may be 145 or less, 140 or less, 135 or less, 130 or less, 125 or
  • the positive electrode active material may be represented as including a plurality of primary particles having a particle size of 0.5 ⁇ m or more and 5.0 ⁇ m or less, such as a conventional single particle, specifically a micron-level primary particle of 1.0 ⁇ m or more, and more specifically a secondary particle having a large particle size ( D50 ) of 7.0 ⁇ m or more and 20.0 ⁇ m or less, formed by agglomeration of a plurality of primary particles having an average particle size of 2.0 ⁇ m or more and 3.5 ⁇ m or less as measured from a SEM image.
  • a plurality of primary particles having a particle size of 0.5 ⁇ m or more and 5.0 ⁇ m or less such as a conventional single particle, specifically a micron-level primary particle of 1.0 ⁇ m or more, and more specifically a secondary particle having a large particle size ( D50 ) of 7.0 ⁇ m or more and 20.0 ⁇ m or less, formed by agglomeration of a plurality of primary particles having an average particle
  • the positive electrode active material may have a single crystallinity of 0.15 ⁇ m 3 or more as calculated from the following equation 1.
  • radius(grain) is the area of the cross-section of all grains that can be confirmed in the cross-section of the secondary particle having a size within the range of the average particle diameter (D50) of the secondary particle, as observed from the backscattered electron diffraction (EBSD) pattern of the SEM image of the cross-section of the secondary particle (measured under the conditions of acceleration voltage 20 kV, WD 16 mm, measurement magnification 5,000 times (width 16 ⁇ m * height 16 ⁇ m), step size 0.025 ⁇ m).
  • EBSD backscattered electron diffraction
  • the cathode active material may have a single crystallinity calculated from Equation 1 of 0.15 ⁇ m 3 or more and 12.70 ⁇ m 3 or less.
  • the cathode active material may have a single crystallinity calculated from the above formula 1 of 0.15 ⁇ m 3 or more, 0.20 ⁇ m 3 or more, 0.25 ⁇ m 3 or more, 0.30 ⁇ m 3 or more, 0.35 ⁇ m 3 or more, 0.40 ⁇ m 3 or more, 0.45 ⁇ m 3 or more, 0.50 ⁇ m 3 or more, 0.55 ⁇ m 3 or more, 0.60 ⁇ m 3 or more, 0.65 ⁇ m 3 or more, 0.70 ⁇ m 3 or more, 0.75 ⁇ m 3 or more, 0.80 ⁇ m 3 or more, 0.85 ⁇ m 3 or more, 0.90 ⁇ m 3 or more, 0.95 ⁇ m 3 or more, 1.00 ⁇ m 3 or more, or 1.05 ⁇ m 3 or more, and further, the upper
  • it may be 20.00 ⁇ m 3 or less, 19.00 ⁇ m 3 or less, 18.00 ⁇ m 3 or less, 17.00 ⁇ m 3 or less, 16.00 ⁇ m 3 or less, 15.00 ⁇ m 3 or less, 14.00 ⁇ m 3 or less, 13.00 ⁇ m 3 or less, or 12.70 ⁇ m 3 or less.
  • the positive electrode active material may include a lithium transition metal composite oxide including aluminum (Al), yttrium (Y), and zirconium (Zr).
  • the positive electrode active material may include aluminum (Al), yttrium (Y), and zirconium (Zr) as doping elements.
  • the aluminum (Al) may be included in an amount of 500 ppm to 3,000 ppm based on the total weight of the lithium transition metal composite oxide.
  • the aluminum (Al) may be included in an amount of 500 ppm or more, 1,000 ppm or more, or 1,500 ppm or more based on the total weight of the lithium transition metal composite oxide, and further may be included in an amount of 3,000 ppm or less, 2,500 ppm or less, or 2,000 ppm or less.
  • the yttrium (Y) may be included in an amount of 100 ppm to 2,000 ppm based on the total weight of the lithium transition metal composite oxide.
  • the yttrium (Y) may be included in an amount of 100 ppm or more, 200 ppm or more, 300 ppm or more, 400 ppm or more, or 500 ppm or more based on the total weight of the lithium transition metal composite oxide, and further may be included in an amount of 2,000 ppm or less, 1,900 ppm or less, 1,800 ppm or less, 1,700 ppm or less, 1,600 ppm or less, or 1,500 ppm or less.
  • the zirconium (Zr) may be included in an amount of 500 ppm to 5,000 ppm based on the total weight of the lithium transition metal composite oxide.
  • the zirconium (Zr) may be included in an amount of 500 ppm or more, 1,000 ppm or more, or 1,500 ppm or more based on the total weight of the lithium transition metal composite oxide, and further may be included in an amount of 5,000 ppm or less, 4,500 ppm or less, 4,000 ppm or less, 3,500 ppm or less, or 3,000 ppm or less.
  • the positive electrode active material may include a lithium transition metal composite oxide having an average composition represented by the following chemical formula 2.
  • M 2 is at least one selected from the group consisting of B, W, Mo, Cr, Nb, Mg, Hf, Ta, La, Ti, Sr, Ba, Ce, V, F, P, and S
  • x is a molar ratio of lithium to a transition metal in the lithium-transition metal composite oxide, which may be 0.9 or more, 0.95 or more, or 1.0 or more, and further may be 1.1 or less, 1.07 or less, 1.05 or less, or 1.03 or less.
  • a, b, c, d, e, f, and g may be mole fractions of nickel (Ni), cobalt (Co), manganese (Mn), a doping element (M 2 ), aluminum (Al), yttrium (Y), and zirconium (Zr) among transition metals, respectively.
  • a may be a mole fraction of nickel (Ni) among transition metals, which may be 0.6 or more, 0.7 or more, 0.8 or more, 0.85 or more, 0.88 or more, 0.90 or more, 0.91 or more, 0.92 or more, 0.93 or more, 0.94 or more, 0.95 or more, or 0.96 or more, and further may be less than 1.0, 0.99 or less, 0.98 or less, 0.97 or less, or 0.96 or less.
  • Ni nickel
  • the b may be a mole fraction of cobalt (Co) among the transition metals, greater than 0, 0.01, 0.02, or 0.03, and further may be less than 0.4, 0.3 or less, 0.2 or less, 0.1 or less, 0.09 or less, 0.08 or less, 0.07 or less, 0.06 or less, or 0.05 or less.
  • the c may be a mole fraction of manganese (Mn) among the transition metals, greater than 0, 0.01 or more, or 0.05 or more, and further may be less than 0.4, 0.3 or less, 0.2 or less, 0.1 or less, 0.09 or less, 0.08 or less, 0.07 or less, 0.06 or less, or 0.05 or less.
  • the above d is a mole fraction of a doping element (M 2 ) among transition metals and may be 0, 0.01 or more, 0.02 or more, 0.03 or more, 0.04 or more, 0.05 or more, 0.06 or more, 0.07 or more, 0.08 or more, 0.09 or more, 0.10 or more, 0.11 or more, 0.12 or more, 0.13 or more, 0.14 or more, 0.15 or more, 0.16 or more, 0.17 or more, 0.18 or more, or 0.19 or more, and further, less than 0.20, 0.19 or less, 0.18 or less, 0.17 or less, 0.16 or less, 0.15 or less, 0.14 or less, 0.13 or less, 0.12 or less, 0.11 or less, 0.10 or less, It may be 0.09 or less, 0.08 or less, 0.07 or less, 0.06 or less, 0.05 or less, 0.04 or less, 0.03 or less, 0.02 or less, or 0.01 or less.
  • the e is a mole fraction of aluminum (Al) among transition metals, and may be greater than 0, 0.001 or more, 0.002 or more, 0.003 or more, 0.004 or more, or 0.005 or more, and further may be 0.01 or less, 0.009 or less, or 0.008 or less.
  • the above f is a mole fraction of yttrium (Y) among transition metals, and may be greater than 0, 0.0001 or more, 0.0002 or more, or 0.0003 or more, and further may be 0.0006 or less, 0.0005 or less, or 0.0004 or less.
  • the above g is a mole fraction of zirconium (Zr) among transition metals, and may be greater than 0, 0.0001 or more, or 0.0002 or more, and further may be 0.0005 or less, or 0.0004 or less.
  • y is a molar ratio of A element substituted with oxygen in the lithium transition metal composite oxide, which may be 0, more than 0, 0.01 or more, 0.02 or more, or 0.03 or more, and further may be 0.2 or less, 0.15 or less, or 0.1 or less.
  • the positive electrode active material may include a lithium transition metal composite oxide including aluminum (Al), zirconium (Zr), and M 3 .
  • the positive electrode active material may include aluminum (Al), zirconium (Zr), and M 3 as doping elements.
  • the M 3 may be a metal element having an oxidation number of +4 or higher.
  • the M 3 may be at least one selected from the group consisting of titanium (Ti), tantalum (Ta), tungsten (W), vanadium (V), molybdenum (Mo), and niobium (Nb).
  • the aluminum (Al) may be included in an amount of 500 ppm to 3,000 ppm based on the total weight of the lithium transition metal composite oxide.
  • the aluminum (Al) may be included in an amount of 500 ppm or more, 1,000 ppm or more, or 1,500 ppm or more based on the total weight of the lithium transition metal composite oxide, and further may be included in an amount of 3,000 ppm or less, 2,500 ppm or less, or 2,000 ppm or less.
  • the zirconium (Zr) may be included in an amount of 500 ppm to 3,000 ppm based on the total weight of the lithium transition metal composite oxide.
  • the zirconium (Zr) may be included in an amount of 500 ppm or more, 1,000 ppm or more, or 1,500 ppm or more based on the total weight of the lithium transition metal composite oxide, and further may be included in an amount of 3,000 ppm or less, 2,500 ppm or less, or 2,000 ppm or less.
  • the M 3 may be included in an amount of 100 ppm to 2,000 ppm based on the total weight of the lithium transition metal composite oxide.
  • the M 3 may be included in an amount of 100 ppm or more, 200 ppm or more, 300 ppm or more, 400 ppm or more, or 500 ppm or more based on the total weight of the lithium transition metal composite oxide, and further may be included in an amount of 2,000 ppm or less, 1,900 ppm or less, 1,800 ppm or less, 1,700 ppm or less, 1,600 ppm or less, or 1,500 ppm or less.
  • the positive electrode active material includes a coating portion formed on at least one of a primary particle surface, a primary particle interface, and a secondary particle surface, and the coating portion may include at least one coating element selected from the group consisting of cobalt (Co) and boron (B).
  • the coating portion may be an island-shaped coating portion formed on at least a portion of a primary particle surface, a primary particle interface, and a secondary particle surface.
  • the coating portion may be a coating layer formed to surround at least one of a primary particle surface, a primary particle interface, and a secondary particle surface.
  • the coating portion may include at least one of a coating portion including cobalt (Co), a coating portion including cobalt (Co) and boron (B), and a coating portion including boron (B).
  • the coating portion may include a coating portion in which a coating portion including cobalt (Co), a coating portion including cobalt (Co) and boron (B), and a coating portion including boron (B) are sequentially formed.
  • the coating portion may include cobalt-boron oxide.
  • the rolling density calculated by Equation 2 below may be 3.60 g/cm 3 or more.
  • the positive electrode active material may have a rolling density calculated by the above formula 2 of 3.60 g/cm 3 or more, and specific examples thereof include 3.61 g/cm 3 or more, 3.62 g/cm 3 or more, 3.63 g/cm 3 or more, 3.64 g/cm 3 or more, 3.65 g/cm 3 or more, 3.66 g/cm 3 or more, 3.67 g/cm 3 or more, 3.68 g/cm 3 or more, 3.69 g/cm 3 or more, 3.70 g/cm 3 or more, or 3.71 g/cm 3 or more, and the upper limit is not particularly limited, but may be 10.0 g/cm 3 or less.
  • the positive electrode active material may be such that, for a lithium secondary battery including a positive electrode including the positive electrode active material; an anode; and a separator and an electrolyte interposed between the positive electrode and the anode, when the lithium secondary battery is charged with a 0.5 C current and then discharged with a 0.1 C current, a discharge capacity may be 92.0% or more based on the discharge capacity when the lithium secondary battery is charged with a 0.5 C current and then discharged with a 1.0 C current.
  • the lithium secondary battery is to confirm the discharge capacity according to the output characteristics of the positive electrode active material, and components other than the positive electrode active material are not particularly limited as long as they can be used in a lithium secondary battery.
  • the cathode active material may have a discharge capacity of 92.0% or more, 92.1% or more, 92.2% or more, 92.3% or more, 92.4% or more, 92.5% or more, 92.6% or more, 92.7% or more, 92.8% or more, 92.9% or more, 93.0% or more, or 93.1% or more, based on the discharge capacity when the lithium secondary battery is charged with a 0.5 C current and then discharged with a 0.1 C current, and the upper limit is not particularly limited, but may be 100% or less.
  • the positive electrode active material may be such that, for a lithium secondary battery including a positive electrode including the positive electrode active material; an anode; and a separator and an electrolyte interposed between the positive electrode and the anode, when the lithium secondary battery is charged with a 0.5 C current and then discharged with a 0.1 C current, a discharge capacity may be 89.0% or more when the lithium secondary battery is charged with a 0.5 C current and then discharged with a 2.0 C current based on the discharge capacity.
  • the lithium secondary battery is to confirm the discharge capacity according to the output characteristics of the positive electrode active material, and components other than the positive electrode active material are not particularly limited as long as they can be used in a lithium secondary battery.
  • the cathode active material may have a discharge capacity of 89.0% or more, 89.1% or more, 89.2% or more, 89.3% or more, 89.4% or more, 89.5% or more, 89.6% or more, 89.7% or more, 89.8% or more, 89.9% or more, 90.0% or more, 90.1% or more, 90.2% or more, 90.3% or more, or 90.4% or more, based on the discharge capacity when the lithium secondary battery is charged with a 0.5 C current and then discharged with a 0.1 C current, and the upper limit is not particularly limited, but may be 100% or less.
  • the cathode active material may have a single particle size (Dv 50 ), which corresponds to the diameter of the volume at a point where 50% of the cumulative volume distribution of the primary particles is calculated from Equation 5 below for each of the primary particles observed from a SEM image (measurement magnification 3,000 times ) of the surface of the secondary particles, of 1.2 ⁇ m or more and 3.8 ⁇ m or less.
  • Dv 50 single particle size
  • the radius is the radius of the surface of the primary particle assuming that the surface of the primary particle is circular as observed from the SEM image (measurement magnification 3,000x) of the surface of the secondary particle.
  • the cathode active material may have a particle size (Dv 50 ) of 1.2 ⁇ m or more, 1.3 ⁇ m or more, 1.4 ⁇ m or more, 1.5 ⁇ m or more, 1.6 ⁇ m or more, or 1.65 ⁇ m or more, and may also have a particle size of 3.8 ⁇ m or less, 3.7 ⁇ m or less, 3.6 ⁇ m or less, 3.59 ⁇ m or less, 3.58 ⁇ m or less, 3.57 ⁇ m or less, 3.56 ⁇ m or less, or 3.55 ⁇ m or less.
  • Dv 50 particle size of 1.2 ⁇ m or more, 1.3 ⁇ m or more, 1.4 ⁇ m or more, 1.5 ⁇ m or more, 1.6 ⁇ m or more, or 1.65 ⁇ m or more
  • 3.8 ⁇ m or less 3.7 ⁇ m or less, 3.6 ⁇ m or less, 3.59 ⁇ m or less, 3.58 ⁇ m or less, 3.57 ⁇ m or less, 3.56 ⁇ m or less,
  • the present invention provides a method for manufacturing a positive electrode active material.
  • the method for manufacturing the positive electrode active material may be a method for manufacturing the positive electrode active material described above.
  • the method for manufacturing the cathode active material may be performed including a step (S10) of mixing a cathode active material precursor including nickel, cobalt, and manganese and a lithium raw material, and performing firing to manufacture a sintered product.
  • the step (S10) may be performed by a method such as a method of performing firing by dividing temperature sections within one firing step (one-step method), a method of performing firing by dividing two firing steps (two-step method), and a method of performing plastic firing prior to performing firing by dividing temperature sections within one firing step (plastic firing method).
  • the one-step method is a method of sequentially performing firing at two temperature sections within one firing step, wherein a single-step firing is performed on a mixture of a positive electrode active material precursor and a lithium raw material, and immediately thereafter, a second-step firing is performed by changing the temperature section.
  • the two-step firing can be performed at a lower temperature than the single-step firing, and each firing temperature can be controlled according to the nickel content, and through such temperature control, the shape and size of the primary particles and the average particle diameter of the secondary particles can be controlled.
  • the two-step method is a method that performs the first firing and the second firing separately, and may be performed by performing the first firing on a mixture of a positive electrode active material precursor and a lithium raw material, pulverizing a first fired product manufactured by the first firing, and then performing the second firing on the pulverized product.
  • the second firing may be performed at a lower temperature than the first firing, and each firing temperature may be controlled according to the nickel content, and through such temperature control, the shape and size of the primary particles and the average particle diameter of the secondary particles may be controlled.
  • the plasticizing method is a method of performing plasticizing prior to one-step sintering, wherein plasticizing is performed on a mixture of a positive electrode active material precursor and a lithium raw material, and the one-step method can be performed on the sintered product.
  • the plasticizing can be performed at a lower temperature than the one-step sintering, and each sintering temperature can be controlled according to the nickel content, and through such temperature control, the shape and size of the primary particles and the average particle diameter of the secondary particles can be controlled.
  • the positive electrode active material precursor may contain nickel among the transition metals in an amount of 60 mol% or more.
  • the positive electrode active material precursor may be a transition metal hydroxide containing nickel, cobalt, and manganese, and containing nickel among the transition metals in an amount of 60 mol% or more.
  • the transition metal hydroxide may have an average composition represented by the following chemical formula 3.
  • a', b', and c' may be mole fractions of nickel (Ni), cobalt (Co), and manganese (Mn) among transition metals, respectively.
  • a' may be a mole fraction of nickel (Ni) among transition metals, which may be 0.6 or more, 0.7 or more, 0.8 or more, 0.85 or more, 0.88 or more, 0.90 or more, 0.91 or more, 0.92 or more, 0.93 or more, 0.94 or more, 0.95 or more, or 0.96 or more, and further may be less than 1.0, 0.99 or less, 0.98 or less, 0.97 or less, or 0.96 or less.
  • the b' may be a mole fraction of cobalt (Co) among the transition metals, greater than 0, 0.01, 0.02, or 0.03, and further may be less than 0.4, 0.3 or less, 0.2 or less, 0.1 or less, 0.09 or less, 0.08 or less, 0.07 or less, 0.06 or less, or 0.05 or less.
  • the c' may be a mole fraction of manganese (Mn) among the transition metals, greater than 0, 0.01 or more, or 0.05 or more, and further may be less than 0.4, 0.3 or less, 0.2 or less, 0.1 or less, 0.09 or less, 0.08 or less, 0.07 or less, 0.06 or less, or 0.05 or less.
  • the lithium raw material may be a lithium-containing sulfate, nitrate, acetate, carbonate, oxalate, citrate, halide, hydroxide or oxyhydroxide, and for example, Li 2 CO 3 , LiNO 3 , LiNO 2 , LiOH, LiOH H 2 O, LiH, LiF, LiCl, LiBr, LiI, CH 3 COOLi, Li 2 O, Li 2 SO 4 , CH 3 COOLi, Li 3 C 6 H 5 O 7 or a mixture thereof.
  • the step (S10) may be performed by further including one or more doping raw materials selected from the group consisting of Al, Zr, B, W, Mo, Cr, Nb, Mg, Hf, Ta, La, Ti, Sr, Ba, Ce, F, P, S, and Y.
  • the doping raw material may be an acetate, a nitrate, a sulfate, a halide, a sulfide, a hydroxide, an oxide, or an oxyhydroxide containing the element, and specific examples thereof include Al 2 O 3 , Al(OH) 3 , Al(NO 3 ) 3 ⁇ 9H 2 O, Al 2 (SO 4 ) 3 , Y 2 O 3 , It could be ZrO 2, etc.
  • the doping raw material may include Al, Y, and Zr.
  • the doping raw material may include Al, Zr, and a metal element (M 3 ) having an oxidation number of +4 or higher.
  • the molar ratio (Li/M) of lithium (Li) of the lithium raw material to the transition metal (M) of the positive electrode active material precursor may be 0.9 or more and 1.3 or less.
  • the Li/M may be 0.9 or more, 0.95 or more, or 1.0 or more, and further may be 1.1 or less, 1.07 or less, 1.05 or less, or 1.04 or less, and the Li/M may be adjusted depending on the content of nickel in the transition metal.
  • the method for manufacturing the positive electrode active material may further include a step (S20) of coating the positive electrode active material manufactured in the step (S10).
  • the step (S20) may be performed by including at least one coating raw material selected from the group consisting of Co and B.
  • the step (S20) may be performed by further including an Al coating raw material.
  • the coating of the step (S20) may be performed by coating each coating raw material simultaneously, or may be performed sequentially and separately.
  • the coating of the step (S20) may be performed including a step (S21) of mixing a Co coating raw material and an Al coating raw material into a positive active material and performing heat treatment, and a step (S22) of mixing a B coating raw material into a coating product manufactured in the step (S21) and performing heat treatment.
  • the Co coating raw material may be a cobalt hydroxide such as Co(OH) 2
  • the Al coating raw material may be an aluminum hydroxide such as Al(OH) 3
  • the B coating raw material may be H3BO3 .
  • the method for manufacturing the positive electrode active material may include, when performing steps (S10) and (S20), a step of crushing the sintered product after the firing, if necessary, and the crushing may be performed without particular limitation using a crushing device capable of crushing the positive electrode active material.
  • the doping raw material and the coating raw material can be introduced by adjusting them to satisfy the doping element content and the coating element content of the positive electrode active material described above.
  • the present invention provides a positive electrode comprising the positive electrode active material.
  • the positive electrode may include a positive electrode current collector and a positive electrode active material layer formed on the positive electrode current collector, and the positive electrode active material layer may include the positive electrode active material.
  • the positive electrode current collector may include a highly conductive metal, and is not particularly limited as long as it is easily adhered to a positive electrode active material layer but does not react in the voltage range of the battery.
  • the positive electrode current collector may be, for example, stainless steel, aluminum, nickel, titanium, sintered carbon, or aluminum or stainless steel surface-treated with carbon, nickel, titanium, silver, or the like.
  • the positive electrode current collector may typically have a thickness of 3 ⁇ m to 500 ⁇ m, and fine unevenness may be formed on the surface of the current collector to increase the adhesive strength of the positive electrode active material.
  • the positive electrode current collector may be used in various forms such as a film, a sheet, a foil, a net, a porous body, a foam, a non-woven fabric, etc.
  • the positive electrode active material layer may optionally include a conductive material and a binder, together with the positive electrode active material, as needed.
  • the positive electrode active material may be included in an amount of 80 wt% to 99 wt%, more specifically 85 wt% to 98.5 wt%, based on the total weight of the positive electrode active material layer, and excellent capacity characteristics may be exhibited within this range.
  • the conductive material is used to provide conductivity to the electrode, and in the battery to be formed, any conductive material that does not cause a chemical change and has electronic conductivity can be used without special limitations.
  • any conductive material that does not cause a chemical change and has electronic conductivity can be used without special limitations.
  • Specific examples thereof include graphite such as natural graphite or artificial graphite; carbon-based materials such as carbon black, acetylene black, Ketjen black, channel black, furnace black, lamp black, thermal black, and carbon fiber; metal powders or metal fibers such as copper, nickel, aluminum, and silver; conductive tubes such as carbon nanotubes; conductive whiskers such as zinc oxide or potassium titanate; conductive metal oxides such as titanium oxide; or conductive polymers such as polyphenylene derivatives, and the like, and one of these may be used alone or a mixture of two or more may be used.
  • the conductive material may be included in an amount of 0.1 wt% to 15 wt% with respect to the total weight of the positive
  • the binder serves to improve adhesion between positive electrode active material particles and adhesion between the positive electrode active material and the current collector.
  • specific examples include polyvinylidene fluoride (PVDF), polyvinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP), polyvinylalcohol, polyacrylonitrile, polymethyl methacrylate, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinyl pyrrolidone, polytetrafluoroethylene, polyethylene, polypropylene, ethylene-propylene-diene polymer (EPDM), sulfonated-EPDM, styrene butadiene rubber (SBR), fluoroelastomer, polyacrylic acid, and polymers in which hydrogens of these are substituted with Li, Na, or Ca, or various copolymers thereof, and one of these may be used alone or
  • the positive electrode can be manufactured according to a conventional positive electrode manufacturing method, except that the positive electrode active material described above is used.
  • the positive electrode can be manufactured by applying a composition for forming a positive electrode active material layer, which is manufactured by dissolving or dispersing the positive electrode active material and optionally a binder, a conductive agent, and a dispersant in a solvent as needed, onto a positive electrode current collector, and then drying and rolling, or by casting the composition for forming a positive electrode active material layer onto a separate support, and then peeling off the support to obtain a film and laminating it onto a positive electrode current collector.
  • the solvent may be a solvent generally used in the art, and may include dimethyl sulfoxide (DMSO), isopropyl alcohol, N-methylpyrrolidone (NMP), dimethylformamide (DMF), acetone, or water, and one of these may be used alone or as a mixture of two or more thereof.
  • the amount of the solvent used is sufficient to dissolve or disperse the positive electrode active material, conductive material, binder, and dispersant, taking into account the coating thickness and manufacturing yield of the slurry, and to have a viscosity that can exhibit excellent thickness uniformity during subsequent coating for manufacturing the positive electrode.
  • the present invention provides a lithium secondary battery including the positive electrode.
  • the lithium secondary battery may include the positive electrode; the negative electrode; a separator interposed between the positive electrode and the negative electrode, and an electrolyte.
  • the lithium secondary battery may optionally further include a battery container that accommodates an electrode assembly of the positive electrode, the negative electrode, and the separator, and a sealing member that seals the battery container.
  • the negative electrode may include a negative electrode current collector and a negative electrode active material layer positioned on the negative electrode current collector.
  • the negative electrode current collector is not particularly limited as long as it has high conductivity without causing a chemical change in the battery, and for example, copper, stainless steel, aluminum, nickel, titanium, calcined carbon, copper or stainless steel surface-treated with carbon, nickel, titanium, silver, etc., an aluminum-cadmium alloy, etc. can be used.
  • the negative electrode current collector can typically have a thickness of 3 ⁇ m to 500 ⁇ m, and, like the positive electrode current collector, fine unevenness can be formed on the surface of the current collector to strengthen the bonding strength of the negative electrode active material.
  • it can be used in various forms such as a film, a sheet, a foil, a net, a porous body, a foam, a non-woven fabric, etc.
  • the negative electrode active material layer may optionally include a binder and a conductive material together with the negative electrode active material.
  • a compound capable of reversible intercalation and deintercalation of lithium may be used as the negative electrode active material.
  • specific examples thereof include carbonaceous materials such as artificial graphite, natural graphite, graphitized carbon fiber, and amorphous carbon; metallic compounds capable of alloying with lithium such as Si, Al, Sn, Pb, Zn, Bi, In, Mg, Ga, Cd, Si alloy, Sn alloy, and Al alloy; metallic oxides capable of doping and dedoping lithium such as SiO ⁇ (0 ⁇ 2), SnO2 , vanadium oxide, and lithium vanadium oxide; or composites including the metallic compounds and carbonaceous materials such as Si-C composites or Sn-C composites, and any one or a mixture of two or more of these may be used.
  • a metallic lithium thin film may be used as the negative electrode active material.
  • both low-crystalline carbon and high-crystalline carbon may be used as the carbon material.
  • Representative examples of low-crystallization carbon include soft carbon and hard carbon
  • representative examples of high-crystallization carbon include amorphous, plate-like, flaky, spherical or fibrous natural graphite or artificial graphite, Kish graphite, pyrolytic carbon, mesophase pitch based carbon fiber, mesophase pitches, mesophase pitches, and high-temperature calcined carbon such as petroleum or coal tar pitch derived cokes.
  • the negative electrode active material may be included in an amount of 80 to 99 wt% based on the total weight of the negative electrode active material layer.
  • the binder of the negative electrode active material layer is a component that assists in bonding between the conductive material, the active material, and the current collector, and is typically added in an amount of 0.1 to 10 wt% based on the total weight of the negative electrode active material layer.
  • binders examples include polyvinylidene fluoride (PVDF), polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinyl pyrrolidone, polytetrafluoroethylene, polyethylene, polypropylene, ethylene-propylene-diene polymer (EPDM), sulfonated-EPDM, styrene-butadiene rubber, nitrile-butadiene rubber, fluororubber, various copolymers thereof, and the like.
  • PVDF polyvinylidene fluoride
  • CMC carboxymethyl cellulose
  • EPDM ethylene-propylene-diene polymer
  • EPDM ethylene-propylene-diene polymer
  • sulfonated-EPDM styrene-butadiene rubber
  • fluororubber various copolymers thereof, and the like.
  • the conductive material of the negative electrode active material layer is a component for further improving the conductivity of the negative electrode active material, and may be added in an amount of 10 wt% or less, preferably 5 wt% or less, based on the total weight of the negative electrode active material layer.
  • the conductive material is not particularly limited as long as it has conductivity without causing a chemical change in the battery, and for example, graphite such as natural graphite or artificial graphite; carbon black such as acetylene black, Ketjen black, channel black, furnace black, lamp black, or thermal black; conductive fibers such as carbon fibers or metal fibers; fluorinated carbon; metal powders such as aluminum or nickel powder; conductive whiskers such as zinc oxide or potassium titanate; conductive metal oxides such as titanium oxide; conductive materials such as polyphenylene derivatives, etc. may be used.
  • graphite such as natural graphite or artificial graphite
  • carbon black such as acetylene black, Ketjen black, channel black, furnace black, lamp black, or thermal black
  • conductive fibers such as carbon fibers or metal fibers
  • fluorinated carbon metal powders such as aluminum or nickel powder
  • conductive whiskers such as zinc oxide or potassium titanate
  • conductive metal oxides such as titanium oxide
  • conductive materials
  • the negative electrode can be manufactured by applying and drying a composition for forming a negative electrode active material layer, which is manufactured by dissolving or dispersing a negative electrode active material, and optionally a binder and a conductive material in a solvent, on a negative electrode current collector, or by casting the composition for forming a negative electrode active material layer on a separate support and then laminating the resulting film on a negative electrode current collector by peeling it off from the support.
  • the separator separates the negative electrode and the positive electrode and provides a passage for lithium ions to move. If it is a separator that is usually used as a separator in a lithium secondary battery, it can be used without any special limitation, and in particular, it is preferable that it has low resistance to ion movement of the electrolyte and excellent electrolyte moisture retention capacity.
  • a porous polymer film for example, a porous polymer film made of a polyolefin polymer such as an ethylene homopolymer, a propylene homopolymer, an ethylene/butene copolymer, an ethylene/hexene copolymer, and an ethylene/methacrylate copolymer, or a laminated structure of two or more layers thereof, can be used.
  • a conventional porous nonwoven fabric for example, a nonwoven fabric made of high-melting-point glass fiber, polyethylene terephthalate fiber, etc. can also be used.
  • a coated separator containing a ceramic component or a polymer material to secure heat resistance or mechanical strength can be used, and can be selectively used in a single-layer or multi-layer structure.
  • the electrolyte may include, but is not limited to, an organic liquid electrolyte, an inorganic liquid electrolyte, a solid polymer electrolyte, a gel-type polymer electrolyte, a solid inorganic electrolyte, a molten inorganic electrolyte, etc. that can be used in the manufacture of a lithium secondary battery.
  • the electrolyte may include an organic solvent and a lithium salt.
  • the organic solvent any solvent that can act as a medium through which ions involved in the electrochemical reaction of the battery can move can be used without particular limitation.
  • the organic solvent may include ester solvents such as methyl acetate, ethyl acetate, ⁇ -butyrolactone, and ⁇ -caprolactone; ether solvents such as dibutyl ether or tetrahydrofuran; ketone solvents such as cyclohexanone; aromatic hydrocarbon solvents such as benzene and fluorobenzene;
  • solvents that can be used include carbonate solvents such as dimethylcarbonate (DMC), diethylcarbonate (DEC), ethylmethylcarbonate (EMC), ethylenecarbonate (EC), and propylene carbonate (PC); alcohol solvents such as ethyl alcohol and isopropyl alcohol; nitriles such as R-CN (wherein R represents a linear, branched, or cyclic
  • a carbonate solvent is preferable, and a mixture of a cyclic carbonate (e.g., ethylene carbonate or propylene carbonate, etc.) having high ionic conductivity and high dielectric constant that can improve the charge/discharge performance of the battery and a low-viscosity linear carbonate compound (e.g., ethyl methyl carbonate, dimethyl carbonate, or diethyl carbonate, etc.) is more preferable.
  • a cyclic carbonate e.g., ethylene carbonate or propylene carbonate, etc.
  • a low-viscosity linear carbonate compound e.g., ethyl methyl carbonate, dimethyl carbonate, or diethyl carbonate, etc.
  • the lithium salt may be used without any particular limitation as long as it is a compound capable of providing lithium ions used in a lithium secondary battery.
  • the anion of the lithium salt may be at least one selected from the group consisting of F - , Cl - , Br - , I - , NO 3 - , N(CN) 2 - , BF 4 - , CF 3 CF 2 SO 3 - , (CF 3 SO 2 ) 2 N - , (FSO 2 ) 2 N - , CF 3 CF 2 (CF 3 ) 2 CO - , (CF 3 SO 2 ) 2 CH - , (SF 5 ) 3 C - , (CF 3 SO 2 ) 3 C - , CF 3 (CF 2 ) 7 SO 3 - , CF 3 CO 2 - , CH 3 CO 2 - , SCN - and (CF 3 CF 2 SO 2 ) 2 N - , and the lithium salt may be
  • the concentration of the lithium salt is preferable to use within the range of 0.1 M to 2.0 M.
  • the electrolyte can exhibit excellent electrolyte performance because it has appropriate conductivity and viscosity, and lithium ions can move effectively.
  • the electrolyte may further contain one or more additives, such as, for example, a haloalkylene carbonate compound such as difluoroethylene carbonate, pyridine, triethylphosphite, triethanolamine, a cyclic ether, ethylene diamine, n-glyme, hexaphosphoric acid triamide, a nitrobenzene derivative, sulfur, a quinone imine dye, an N-substituted oxazolidinone, an N,N-substituted imidazolidine, ethylene glycol dialkyl ether, an ammonium salt, pyrrole, 2-methoxy ethanol, or aluminum trichloride, for the purpose of improving the life characteristics of the battery, suppressing battery capacity decrease, and improving the discharge capacity of the battery.
  • the additive may be contained in an amount of 0.1 wt% to 5 wt% with respect to the total weight
  • a lithium secondary battery including a cathode active material according to the present invention stably exhibits excellent capacity characteristics, output characteristics, and life characteristics, and is therefore useful in portable devices such as mobile phones, laptop computers, and digital cameras, and electric vehicles such as hybrid electric vehicles (HEVs) and electric vehicles (EVs).
  • portable devices such as mobile phones, laptop computers, and digital cameras
  • electric vehicles such as hybrid electric vehicles (HEVs) and electric vehicles (EVs).
  • HEVs hybrid electric vehicles
  • EVs electric vehicles
  • the external shape of the lithium secondary battery of the present invention may be in the shape of a cylinder, a square, a pouch, or a coin using a can.
  • the lithium secondary battery according to the present invention can be used not only as a battery cell used as a power source for a small device, but can also be preferably used as a unit battery in a medium- to large-sized battery module including a plurality of battery cells.
  • a battery module including the lithium secondary battery as a unit cell and a battery pack including the same are provided.
  • the battery module or battery pack can be used as a power source for one or more medium- to large-sized devices, such as a power tool; an electric vehicle including an electric vehicle (EV), a hybrid electric vehicle, and a plug-in hybrid electric vehicle (PHEV); or a power storage system.
  • a power tool such as a power tool
  • an electric vehicle including an electric vehicle (EV), a hybrid electric vehicle, and a plug-in hybrid electric vehicle (PHEV); or a power storage system.
  • EV electric vehicle
  • PHEV plug-in hybrid electric vehicle
  • a transition metal composite hydroxide (D 50 : 10.2 ⁇ m) having a composition represented by Ni 0.89 Co 0.03 Mn 0.08 (OH) 2 in the form of secondary particles formed by the agglomeration of tens to hundreds of primary particles and LiOH were mixed such that the molar ratio of lithium (Li) to transition metal (Ni + Co + Mn) (Li / (Ni + Co + Mn)) was 1.04.
  • 1,470 ppm of Al (OH) 3 , 1,000 ppm of Y 2 O 3 , and 1,500 ppm of ZrO 2 were added and mixed relative to the total weight of the transition metal composite hydroxide to prepare a mixture.
  • the above mixture was calcined under an oxygen atmosphere at 850° C. for 6 hours and then at 800° C. for 9 hours to obtain a calcined product.
  • the calcined product was pulverized at room temperature to produce a lithium transition metal oxide having an average particle size (D 50 ) of 9.8 ⁇ m and a composition represented by LiNi 0.8833 Co 0.0298 Mn 0.0794 Al 0.0050 Y 0.0010 Zr 0.0015 O 2 in the form of secondary particles in which primary particles are aggregated.
  • a mixture was prepared by adding the lithium transition metal oxide in the form of secondary particles prepared above and Al(OH) 3 in an amount of 500 ppm based on the total weight of the lithium transition metal oxide in the form of secondary particles prepared above so that the molar ratio of cobalt (Co) to the metal (Ni+Co+Mn+Al+Y+Zr) excluding lithium (Co/(Ni+Co+Mn+Al+Y+Zr)) was 0.02, and mixing them uniformly.
  • the mixture was heat-treated at 740°C for 3 hours and then at 500°C for 3 hours in an oxygen atmosphere to obtain a first coated product.
  • the first coated product was pulverized at room temperature to an average particle size ( D50 ) of 10.2 ⁇ m to prepare a cathode active material in which a coating portion including Co and Al was formed on the lithium transition metal oxide in the form of secondary particles in which the primary particles were aggregated.
  • the overall composition of the cathode active material including the above coating portion was LiNi 0.8641 Co 0.0491 Mn 0.0777 Al 0.0066 Y 0.0010 Zr 0.0015 O 2 .
  • H3BO3 was added in an amount of 500 ppm based on the total weight of the above-mentioned pulverized first coating product, and the mixture was mixed to prepare a mixture.
  • the mixture was heat-treated at 330°C for 5 hours in an air atmosphere to obtain a second coating product.
  • the second coating product was pulverized at room temperature to an average particle diameter ( D50 ) of 10.2 ⁇ m, and a positive electrode active material was prepared in which a coating portion including Co, Al, and B was formed on a lithium transition metal oxide in the form of secondary particles in which primary particles were aggregated.
  • the total composition of the positive electrode active material including the coating portion was LiNi 0.8602 Co 0.0489 Mn 0.0773 Al 0.0066 Y 0.0010 Zr 0.0015 B 0.0045 O 2 .
  • a transition metal composite hydroxide (D 50 : 10.2 ⁇ m) having a composition represented by Ni 0.89 Co 0.03 Mn 0.08 (OH) 2 in the form of secondary particles formed by the agglomeration of tens to hundreds of primary particles and LiOH were mixed such that the molar ratio of lithium (Li) to transition metal (Ni + Co + Mn) (Li / (Ni + Co + Mn)) was 1.00.
  • 1,470 ppm of Al (OH) 3 , 1,000 ppm of Y 2 O 3 , and 1,500 ppm of ZrO 2 were added and mixed relative to the total weight of the transition metal composite hydroxide to prepare a mixture.
  • the above mixture was first fired at 850° C. for 6 hours under an oxygen atmosphere to obtain a first fired product. Thereafter, the first fired product was pulverized at room temperature so that the average particle size (D 50 ) became 9.8 ⁇ m.
  • the above-mentioned pulverized primary sintered product and LiOH were mixed so that the molar ratio of lithium (Li) to transition metal (Ni+Co+Mn) (Li/(Ni+Co+Mn)) was 0.04, and the second sintering was performed at 800° C. for 9 hours in an oxygen atmosphere to obtain a second sintered product.
  • the second sintered product was pulverized at room temperature to produce a lithium transition metal oxide having an average particle size ( D50 ) of 9.8 ⁇ m and a composition represented by LiNi 0.8833 Co 0.0298 Mn 0.0794 Al 0.0050 Y 0.0010 Zr 0.0015 O 2 in the form of secondary particles in which primary particles were aggregated.
  • a mixture was prepared by adding the lithium transition metal oxide in the form of secondary particles prepared above and Al(OH) 3 in an amount of 500 ppm based on the total weight of the lithium transition metal oxide in the form of secondary particles prepared above so that the molar ratio of cobalt (Co) to the metal (Ni+Co+Mn+Al+Y+Zr) excluding lithium (Co/(Ni+Co+Mn+Al+Y+Zr)) was 0.02, and mixing them uniformly.
  • the mixture was heat-treated at 740°C for 3 hours and then at 500°C for 3 hours in an oxygen atmosphere to obtain a first coated product.
  • the first coated product was pulverized at room temperature to an average particle size ( D50 ) of 10.2 ⁇ m to prepare a cathode active material in which a coating portion including Co and Al was formed on the lithium transition metal oxide in the form of secondary particles in which the primary particles were aggregated.
  • the overall composition of the cathode active material including the above coating portion was LiNi 0.8641 Co 0.0491 Mn 0.0777 Al 0.0066 Y 0.0010 Zr 0.0015 O 2 .
  • H3BO3 was added in an amount of 500 ppm based on the total weight of the above-mentioned pulverized first coating product, and the mixture was mixed to prepare a mixture.
  • the mixture was heat-treated at 330°C for 5 hours in an air atmosphere to obtain a second coating product.
  • the second coating product was pulverized at room temperature to an average particle diameter ( D50 ) of 10.2 ⁇ m, and a positive electrode active material was prepared in which a coating portion including Co, Al, and B was formed on a lithium transition metal oxide in the form of secondary particles in which primary particles were aggregated.
  • the total composition of the positive electrode active material including the coating portion was LiNi 0.8602 Co 0.0489 Mn 0.0773 Al 0.0066 Y 0.0010 Zr 0.0015 B 0.0045 O 2 .
  • a transition metal composite hydroxide (D 50 : 10.2 ⁇ m) having a composition represented by Ni 0.89 Co 0.03 Mn 0.08 (OH) 2 in the form of secondary particles formed by the agglomeration of tens to hundreds of primary particles and LiOH were mixed such that the molar ratio of lithium (Li) to transition metal (Ni + Co + Mn) (Li / (Ni + Co + Mn)) was 1.04.
  • 1,470 ppm of Al (OH) 3 , 1,000 ppm of Y 2 O 3 , and 1,500 ppm of ZrO 2 were added and mixed relative to the total weight of the transition metal composite hydroxide to prepare a mixture.
  • the above mixture was calcined at 550°C for 5 hours under an oxygen atmosphere to obtain a calcined product. Thereafter, the calcined product was pulverized at room temperature to an average particle size ( D50 ) of 9.8 ⁇ m.
  • the above-mentioned pulverized sintered product was calcined in an oxygen atmosphere at 850° C. for 6 hours and then at 800° C. for 9 hours to obtain a sintered product.
  • the sintered product was pulverized at room temperature to produce a lithium transition metal oxide having an average particle size (D 50 ) of 9.8 ⁇ m and a composition represented by LiNi 0.8833 Co 0.0298 Mn 0.0794 Al 0.0050 Y 0.0010 Zr 0.0015 O 2 in the form of secondary particles in which primary particles are aggregated.
  • a mixture was prepared by adding the lithium transition metal oxide in the form of secondary particles prepared above and Al(OH) 3 in an amount of 500 ppm based on the total weight of the lithium transition metal oxide in the form of secondary particles prepared above so that the molar ratio of cobalt (Co) to the metal (Ni+Co+Mn+Al+Y+Zr) excluding lithium (Co/(Ni+Co+Mn+Al+Y+Zr)) was 0.02, and mixing them uniformly.
  • the mixture was heat-treated at 740°C for 3 hours and then at 500°C for 3 hours in an oxygen atmosphere to obtain a first coated product.
  • the first coated product was pulverized at room temperature to an average particle size ( D50 ) of 10.2 ⁇ m to prepare a cathode active material in which a coating portion including Co and Al was formed on the lithium transition metal oxide in the form of secondary particles in which the primary particles were aggregated.
  • the overall composition of the cathode active material including the above coating portion was LiNi 0.8641 Co 0.0491 Mn 0.0777 Al 0.0066 Y 0.0010 Zr 0.0015 O 2 .
  • H3BO3 was added in an amount of 500 ppm based on the total weight of the above-mentioned pulverized first coating product, and the mixture was mixed to prepare a mixture.
  • the mixture was heat-treated at 330°C for 5 hours in an air atmosphere to obtain a second coating product.
  • the second coating product was pulverized at room temperature to an average particle diameter ( D50 ) of 10.2 ⁇ m, and a positive electrode active material was prepared in which a coating portion including Co, Al, and B was formed on a lithium transition metal oxide in the form of secondary particles in which primary particles were aggregated.
  • the total composition of the positive electrode active material including the coating portion was LiNi 0.8602 Co 0.0489 Mn 0.0773 Al 0.0066 Y 0.0010 Zr 0.0015 B 0.0045 O 2 .
  • a transition metal composite hydroxide (D 50 : 10.2 ⁇ m) having a composition represented by Ni 0.89 Co 0.03 Mn 0.08 (OH) 2 in the form of secondary particles formed by the agglomeration of tens to hundreds of primary particles and LiOH were mixed such that the molar ratio of lithium (Li) to transition metal (Ni + Co + Mn) (Li / (Ni + Co + Mn)) was 1.04.
  • 1,470 ppm of Al (OH) 3 , 1,000 ppm of Y 2 O 3 , and 1,500 ppm of ZrO 2 were added and mixed relative to the total weight of the transition metal composite hydroxide to prepare a mixture.
  • the above mixture was calcined under an oxygen atmosphere at 880° C. for 6 hours and then at 800° C. for 9 hours to obtain a calcined product.
  • the calcined product was pulverized at room temperature to produce a lithium transition metal oxide having an average particle size (D 50 ) of 9.8 ⁇ m and a composition represented by LiNi 0.8833 Co 0.0298 Mn 0.0794 Al 0.0050 Y 0.0010 Zr 0.0015 O 2 in the form of secondary particles in which primary particles are aggregated.
  • a mixture was prepared by adding the lithium transition metal oxide in the form of secondary particles prepared above and Al(OH) 3 in an amount of 500 ppm based on the total weight of the lithium transition metal oxide in the form of secondary particles prepared above so that the molar ratio of cobalt (Co) to the metal (Ni+Co+Mn+Al+Y+Zr) excluding lithium (Co/(Ni+Co+Mn+Al+Y+Zr)) was 0.02, and mixing them uniformly.
  • the mixture was heat-treated at 740°C for 3 hours and then at 500°C for 3 hours in an oxygen atmosphere to obtain a first coated product.
  • the first coated product was pulverized at room temperature to an average particle size ( D50 ) of 10.2 ⁇ m to prepare a cathode active material in which a coating portion including Co and Al was formed on the lithium transition metal oxide in the form of secondary particles in which the primary particles were aggregated.
  • the overall composition of the cathode active material including the above coating portion was LiNi 0.8641 Co 0.0491 Mn 0.0777 Al 0.0066 Y 0.0010 Zr 0.0015 O 2 .
  • H3BO3 was added in an amount of 500 ppm based on the total weight of the above-mentioned pulverized first coating product, and the mixture was mixed to prepare a mixture.
  • the mixture was heat-treated at 330°C for 5 hours in an air atmosphere to obtain a second coating product.
  • the second coating product was pulverized at room temperature to an average particle diameter ( D50 ) of 10.2 ⁇ m, and a positive electrode active material was prepared in which a coating portion including Co, Al, and B was formed on a lithium transition metal oxide in the form of secondary particles in which primary particles were aggregated.
  • the total composition of the positive electrode active material including the coating portion was LiNi 0.8602 Co 0.0489 Mn 0.0773 Al 0.0066 Y 0.0010 Zr 0.0015 B 0.0045 O 2 .
  • a transition metal composite hydroxide (D 50 : 10.2 ⁇ m) having a composition represented by Ni 0.89 Co 0.03 Mn 0.08 (OH) 2 in the form of secondary particles formed by the agglomeration of tens to hundreds of primary particles and LiOH were mixed such that the molar ratio of lithium (Li) to transition metal (Ni + Co + Mn) (Li / (Ni + Co + Mn)) was 1.04.
  • 1,470 ppm of Al (OH) 3 , 2,000 ppm of Y 2 O 3 , and 1,500 ppm of ZrO 2 were added and mixed relative to the total weight of the transition metal composite hydroxide to prepare a mixture.
  • the above mixture was calcined under an oxygen atmosphere at 850° C. for 6 hours and then at 800° C. for 9 hours to obtain a calcined product.
  • the calcined product was pulverized at room temperature to produce a lithium transition metal oxide having an average particle size (D 50 ) of 9.8 ⁇ m and a composition represented by LiNi 0.8824 Co 0.0297 Mn 0.0793 Al 0.0050 Y 0.0021 Zr 0.0015 O 2 in the form of secondary particles in which primary particles are aggregated.
  • a mixture was prepared by adding the lithium transition metal oxide in the form of secondary particles prepared above and Al(OH) 3 in an amount of 500 ppm based on the total weight of the lithium transition metal oxide in the form of secondary particles prepared above so that the molar ratio of cobalt (Co) to the metal (Ni+Co+Mn+Al+Y+Zr) excluding lithium (Co/(Ni+Co+Mn+Al+Y+Zr)) was 0.02, and mixing them uniformly.
  • the mixture was heat-treated at 740°C for 3 hours and then at 500°C for 3 hours in an oxygen atmosphere to obtain a first coated product.
  • the first coated product was pulverized at room temperature to an average particle size ( D50 ) of 10.2 ⁇ m to prepare a cathode active material in which a coating portion including Co and Al was formed on the lithium transition metal oxide in the form of secondary particles in which the primary particles were aggregated.
  • the overall composition of the cathode active material including the above coating portion was LiNi 0.8632 Co 0.0491 Mn 0.0776 Al 0.0066 Y 0.0020 Zr 0.0015 O 2 .
  • H3BO3 was added in an amount of 500 ppm based on the total weight of the above-mentioned pulverized first coating product, and the mixture was mixed to prepare a mixture.
  • the mixture was heat-treated at 330°C for 5 hours in an air atmosphere to obtain a second coating product.
  • the second coating product was pulverized at room temperature to an average particle diameter ( D50 ) of 10.2 ⁇ m, and a positive electrode active material was prepared in which a coating portion including Co, Al, and B was formed on a lithium transition metal oxide in the form of secondary particles in which primary particles were aggregated.
  • the total composition of the positive electrode active material including the coating portion was LiNi 0.8593 Co 0.0489 Mn 0.0772 Al 0.0066 Y 0.0020 Zr 0.0015 B 0.0045 O 2 .
  • a transition metal composite hydroxide (D 50 : 10.2 ⁇ m) having a composition represented by Ni 0.89 Co 0.03 Mn 0.08 (OH) 2 in the form of secondary particles formed by the agglomeration of tens to hundreds of primary particles and LiOH were mixed such that the molar ratio of lithium (Li) to transition metal (Ni + Co + Mn) (Li / (Ni + Co + Mn)) was 1.04.
  • Al (OH) 3 was added in an amount of 2,940 ppm, Y 2 O 3 in an amount of 1,000 ppm, and ZrO 2 in an amount of 1,500 ppm relative to the total weight of the transition metal composite hydroxide, and then mixed to prepare a mixture.
  • the above mixture was calcined under an oxygen atmosphere at 850° C. for 6 hours and then at 800° C. for 9 hours to obtain a calcined product.
  • the calcined product was pulverized at room temperature to produce a lithium transition metal oxide having an average particle size (D 50 ) of 9.8 ⁇ m and a composition represented by LiNi 0.8789 Co 0.0296 Mn 0.0790 Al 0.0100 Y 0.0010 Zr 0.0015 O 2 in the form of secondary particles in which primary particles are aggregated.
  • a mixture was prepared by adding the lithium transition metal oxide in the form of secondary particles prepared above and Al(OH) 3 in an amount of 500 ppm based on the total weight of the lithium transition metal oxide in the form of secondary particles prepared above so that the molar ratio of cobalt (Co) to the metal (Ni+Co+Mn+Al+Y+Zr) excluding lithium (Co/(Ni+Co+Mn+Al+Y+Zr)) was 0.02, and mixing them uniformly.
  • the mixture was heat-treated at 740°C for 3 hours and then at 500°C for 3 hours in an oxygen atmosphere to obtain a first coated product.
  • the first coated product was pulverized at room temperature to an average particle size ( D50 ) of 10.2 ⁇ m to prepare a cathode active material in which a coating portion including Co and Al was formed on the lithium transition metal oxide in the form of secondary particles in which the primary particles were aggregated.
  • the overall composition of the positive electrode active material including the above coating portion was LiNi 0.8597 Co 0.0490 Mn 0.0773 Al 0.0115 Y 0.0010 Zr 0.0015 O 2 .
  • H3BO3 was added in an amount of 500 ppm based on the total weight of the above-mentioned pulverized first coating product, and the mixture was mixed to prepare a mixture.
  • the mixture was heat-treated at 330°C for 5 hours in an air atmosphere to obtain a second coating product.
  • the second coating product was pulverized at room temperature to an average particle diameter ( D50 ) of 10.2 ⁇ m, and a positive electrode active material was prepared in which a coating portion including Co, Al, and B was formed on a lithium transition metal oxide in the form of secondary particles in which primary particles were aggregated.
  • the total composition of the positive electrode active material including the coating portion was LiNi 0.8559 Co 0.0488 Mn 0.0769 Al 0.0115 Y 0.0010 Zr 0.0014 B 0.0045 O 2 .
  • a transition metal composite hydroxide (D 50 : 10.2 ⁇ m) having a composition represented by Ni 0.89 Co 0.03 Mn 0.08 (OH) 2 in the form of secondary particles formed by the agglomeration of tens to hundreds of primary particles and LiOH were mixed such that the molar ratio of lithium (Li) to transition metal (Ni + Co + Mn) (Li / (Ni + Co + Mn)) was 1.04.
  • 1,470 ppm of Al (OH) 3 , 1,000 ppm of Y 2 O 3 , and 3,500 ppm of ZrO 2 were added and mixed relative to the total weight of the transition metal composite hydroxide to prepare a mixture.
  • the above mixture was calcined under an oxygen atmosphere at 850° C. for 6 hours and then at 800° C. for 9 hours to obtain a calcined product.
  • the calcined product was pulverized at room temperature to produce a lithium transition metal oxide having an average particle size (D 50 ) of 9.8 ⁇ m and a composition represented by LiNi 0.8815 Co 0.0297 Mn 0.0793 Al 0.0050 Y 0.0010 Zr 0.0035 O 2 in the form of secondary particles in which primary particles are aggregated.
  • a mixture was prepared by adding the lithium transition metal oxide in the form of secondary particles prepared above and Al(OH) 3 in an amount of 500 ppm based on the total weight of the lithium transition metal oxide in the form of secondary particles prepared above so that the molar ratio of cobalt (Co) to the metal (Ni+Co+Mn+Al+Y+Zr) excluding lithium (Co/(Ni+Co+Mn+Al+Y+Zr)) was 0.02, and mixing them uniformly.
  • the mixture was heat-treated at 740°C for 3 hours and then at 500°C for 3 hours in an oxygen atmosphere to obtain a first coated product.
  • the first coated product was pulverized at room temperature to an average particle size ( D50 ) of 10.2 ⁇ m to prepare a cathode active material in which a coating portion including Co and Al was formed on the lithium transition metal oxide in the form of secondary particles in which the primary particles were aggregated.
  • the overall composition of the cathode active material including the above coating portion was LiNi 0.8623 Co 0.0491 Mn 0.0775 Al 0.0066 Y 0.0010 Zr 0.0035 O 2 .
  • H3BO3 was added in an amount of 500 ppm based on the total weight of the above-mentioned pulverized first coating product, and the mixture was mixed to prepare a mixture.
  • the mixture was heat-treated at 330°C for 5 hours in an air atmosphere to obtain a second coating product.
  • the second coating product was pulverized at room temperature to an average particle diameter ( D50 ) of 10.2 ⁇ m, and a positive electrode active material was prepared in which a coating portion including Co, Al, and B was formed on a lithium transition metal oxide in the form of secondary particles in which primary particles were aggregated.
  • the total composition of the positive electrode active material including the coating portion was LiNi 0.8584 Co 0.0489 Mn 0.0772 Al 0.0066 Y 0.0010 Zr 0.0034 B 0.0045 O 2 .
  • a transition metal composite hydroxide (D 50 : 14.5 ⁇ m) having a composition represented by Ni 0.96 Co 0.03 Mn 0.01 (OH) 2 in the form of secondary particles formed by the agglomeration of tens to hundreds of primary particles and LiOH were mixed such that the molar ratio of lithium (Li) to transition metal (Ni + Co + Mn) (Li / (Ni + Co + Mn)) was 1.02.
  • 1,470 ppm of Al (OH) 3 , 1,000 ppm of Y 2 O 3 , and 1,500 ppm of ZrO 2 were added and mixed relative to the total weight of the transition metal composite hydroxide to prepare a mixture.
  • the above mixture was calcined under an oxygen atmosphere at 800° C. for 6 hours and then at 760° C. for 9 hours to obtain a calcined product.
  • the calcined product was pulverized at room temperature to produce a lithium transition metal oxide having an average particle size (D 50 ) of 14.2 ⁇ m and a composition represented by LiNi 0.9528 Co 0.0298 Mn 0.0099 Al 0.0050 Y 0.0010 Zr 0.0015 O 2 in the form of secondary particles in which primary particles are aggregated.
  • a mixture was prepared by adding the lithium transition metal oxide in the form of secondary particles prepared above and Al(OH) 3 in an amount of 500 ppm based on the total weight of the lithium transition metal oxide in the form of secondary particles prepared above so that the molar ratio of cobalt (Co) to the metal (Ni+Co+Mn+Al+Y+Zr) excluding lithium (Co/(Ni+Co+Mn+Al+Y+Zr)) was 0.02, and mixing them uniformly.
  • the mixture was heat-treated at 700°C for 3 hours and then at 500°C for 3 hours in an oxygen atmosphere to obtain a first coated product.
  • the first coated product was pulverized at room temperature to an average particle size ( D50 ) of 14.5 ⁇ m to prepare a positive electrode active material in which a coating portion including Co and Al was formed on the lithium transition metal oxide in the form of secondary particles in which the primary particles were aggregated.
  • the overall composition of the positive electrode active material including the above coating portion was LiNi 0.9320 Co 0.0491 Mn 0.0097 Al 0.0067 Y 0.0010 Zr 0.0015 O 2 .
  • H3BO3 was added in an amount of 500 ppm based on the total weight of the above-mentioned pulverized first coating product, and the mixture was mixed to prepare a mixture.
  • the mixture was heat-treated at 330° C. for 5 hours in an air atmosphere to obtain a second coating product.
  • the second coating product was pulverized at room temperature to an average particle diameter ( D50 ) of 14.2 ⁇ m, and a positive electrode active material was prepared in which a coating portion including Co, Al, and B was formed on a lithium transition metal oxide in the form of secondary particles in which primary particles were aggregated.
  • the total composition of the positive electrode active material including the coating portion was LiNi 0.9278 Co 0.0489 Mn 0.0097 Al 0.0066 Y 0.0010 Zr 0.0015 B 0.0045 O 2 .
  • a transition metal composite hydroxide (D 50 : 14.5 ⁇ m) having a composition represented by Ni 0.96 Co 0.03 Mn 0.01 (OH) 2 in the form of secondary particles formed by the agglomeration of tens to hundreds of primary particles and LiOH were mixed such that the molar ratio of lithium (Li) to transition metal (Ni + Co + Mn) (Li / (Ni + Co + Mn)) was 0.98.
  • 1,470 ppm of Al (OH) 3 , 1,000 ppm of Y 2 O 3 , and 1,500 ppm of ZrO 2 were added and mixed relative to the total weight of the transition metal composite hydroxide to prepare a mixture.
  • the above mixture was first fired at 800° C. for 6 hours under an oxygen atmosphere to obtain a first fired product. Thereafter, the first fired product was pulverized at room temperature so that the average particle size (D 50 ) became 14.2 ⁇ m.
  • the above-mentioned pulverized primary sintered product and LiOH were mixed so that the molar ratio of lithium (Li) to transition metal (Ni+Co+Mn) (Li/(Ni+Co+Mn)) was 0.04, and the second sintering was performed at 760 °C for 9 hours in an oxygen atmosphere to obtain a second sintered product.
  • the second sintered product was pulverized at room temperature to produce a lithium transition metal oxide having an average particle size (D 50 ) of 14.2 ⁇ m and a composition represented by LiNi 0.9528 Co 0.0298 Mn 0.0099 Al 0.0050 Y 0.0010 Zr 0.0015 O 2 in the form of secondary particles in which primary particles were aggregated.
  • a mixture was prepared by adding the lithium transition metal oxide in the form of secondary particles prepared above and Al(OH) 3 in an amount of 500 ppm based on the total weight of the lithium transition metal oxide in the form of secondary particles prepared above so that the molar ratio of cobalt (Co) to the metal (Ni+Co+Mn+Al+Y+Zr) excluding lithium (Co/(Ni+Co+Mn+Al+Y+Zr)) was 0.02, and mixing them uniformly.
  • the mixture was heat-treated at 700°C for 3 hours and then at 500°C for 3 hours in an oxygen atmosphere to obtain a first coated product.
  • the first coated product was pulverized at room temperature to an average particle size ( D50 ) of 14.5 ⁇ m to prepare a positive electrode active material in which a coating portion including Co and Al was formed on the lithium transition metal oxide in the form of secondary particles in which the primary particles were aggregated.
  • the overall composition of the positive electrode active material including the above coating portion was LiNi 0.9320 Co 0.0491 Mn 0.0097 Al 0.0067 Y 0.0010 Zr 0.0015 O 2 .
  • H3BO3 was added in an amount of 500 ppm based on the total weight of the above-mentioned pulverized first coating product, and the mixture was mixed to prepare a mixture.
  • the mixture was heat-treated at 330° C. for 5 hours in an air atmosphere to obtain a second coating product.
  • the second coating product was pulverized at room temperature to an average particle diameter ( D50 ) of 14.2 ⁇ m, and a positive electrode active material was prepared in which a coating portion including Co, Al, and B was formed on a lithium transition metal oxide in the form of secondary particles in which primary particles were aggregated.
  • the total composition of the positive electrode active material including the coating portion was LiNi 0.9278 Co 0.0489 Mn 0.0097 Al 0.0066 Y 0.0010 Zr 0.0015 B 0.0045 O 2 .
  • a transition metal composite hydroxide (D 50 : 14.5 ⁇ m) having a composition represented by Ni 0.96 Co 0.03 Mn 0.01 (OH) 2 in the form of secondary particles formed by the agglomeration of tens to hundreds of primary particles and LiOH were mixed such that the molar ratio of lithium (Li) to transition metal (Ni + Co + Mn) (Li / (Ni + Co + Mn)) was 1.02.
  • 1,470 ppm of Al (OH) 3 , 1,000 ppm of Y 2 O 3 , and 1,500 ppm of ZrO 2 were added and mixed relative to the total weight of the transition metal composite hydroxide to prepare a mixture.
  • the above mixture was calcined at 550°C for 5 hours under an oxygen atmosphere to obtain a calcined product. Thereafter, the calcined product was pulverized at room temperature to an average particle size ( D50 ) of 14.2 ⁇ m.
  • the above-mentioned pulverized sintered product was calcined in an oxygen atmosphere at 800° C. for 6 hours and then at 760° C. for 9 hours to obtain a sintered product.
  • the sintered product was pulverized at room temperature to produce a lithium transition metal oxide having an average particle size (D 50 ) of 14.2 ⁇ m and a composition represented by LiNi 0.9528 Co 0.0298 Mn 0.0099 Al 0.0050 Y 0.0010 Zr 0.0015 O 2 in the form of secondary particles in which primary particles are aggregated.
  • a mixture was prepared by adding the lithium transition metal oxide in the form of secondary particles prepared above and Al(OH) 3 in an amount of 500 ppm based on the total weight of the lithium transition metal oxide in the form of secondary particles prepared above so that the molar ratio of cobalt (Co) to the metal (Ni+Co+Mn+Al+Y+Zr) excluding lithium (Co/(Ni+Co+Mn+Al+Y+Zr)) was 0.02, and mixing them uniformly.
  • the mixture was heat-treated at 700°C for 3 hours and then at 500°C for 3 hours in an oxygen atmosphere to obtain a first coated product.
  • the first coated product was pulverized at room temperature to an average particle size ( D50 ) of 14.5 ⁇ m to prepare a positive electrode active material in which a coating portion including Co and Al was formed on the lithium transition metal oxide in the form of secondary particles in which the primary particles were aggregated.
  • the overall composition of the positive electrode active material including the above coating portion was LiNi 0.9320 Co 0.0491 Mn 0.0097 Al 0.0067 Y 0.0010 Zr 0.0015 O 2 .
  • H3BO3 was added in an amount of 500 ppm based on the total weight of the above-mentioned pulverized first coating product, and the mixture was mixed to prepare a mixture.
  • the mixture was heat-treated at 330° C. for 5 hours in an air atmosphere to obtain a second coating product.
  • the second coating product was pulverized at room temperature to an average particle diameter ( D50 ) of 14.2 ⁇ m, and a positive electrode active material was prepared in which a coating portion including Co, Al, and B was formed on a lithium transition metal oxide in the form of secondary particles in which primary particles were aggregated.
  • the total composition of the positive electrode active material including the coating portion was LiNi 0.9278 Co 0.0489 Mn 0.0097 Al 0.0066 Y 0.0010 Zr 0.0015 B 0.0045 O 2 .
  • a transition metal composite hydroxide (D 50 : 14.5 ⁇ m) having a composition represented by Ni 0.96 Co 0.03 Mn 0.01 (OH) 2 in the form of secondary particles formed by the agglomeration of tens to hundreds of primary particles and LiOH were mixed such that the molar ratio of lithium (Li) to transition metal (Ni + Co + Mn) (Li / (Ni + Co + Mn)) was 1.02.
  • 1,470 ppm of Al (OH) 3 , 1,000 ppm of Y 2 O 3 , and 1,500 ppm of ZrO 2 were added and mixed relative to the total weight of the transition metal composite hydroxide to prepare a mixture.
  • the above mixture was calcined under an oxygen atmosphere at 830° C. for 6 hours and then at 760° C. for 9 hours to obtain a calcined product.
  • the calcined product was pulverized at room temperature to produce a lithium transition metal oxide having an average particle size (D 50 ) of 14.2 ⁇ m and a composition represented by LiNi 0.9528 Co 0.0298 Mn 0.0099 Al 0.0050 Y 0.0010 Zr 0.0015 O 2 in the form of secondary particles in which primary particles are aggregated.
  • a mixture was prepared by adding the lithium transition metal oxide in the form of secondary particles prepared above and Al(OH) 3 in an amount of 500 ppm based on the total weight of the lithium transition metal oxide in the form of secondary particles prepared above so that the molar ratio of cobalt (Co) to the metal (Ni+Co+Mn+Al+Y+Zr) excluding lithium (Co/(Ni+Co+Mn+Al+Y+Zr)) was 0.02, and mixing them uniformly.
  • the mixture was heat-treated at 700°C for 3 hours and then at 500°C for 3 hours in an oxygen atmosphere to obtain a first coated product.
  • the first coated product was pulverized at room temperature to an average particle size ( D50 ) of 14.5 ⁇ m to prepare a positive electrode active material in which a coating portion including Co and Al was formed on the lithium transition metal oxide in the form of secondary particles in which the primary particles were aggregated.
  • the overall composition of the positive electrode active material including the above coating portion was LiNi 0.9320 Co 0.0491 Mn 0.0097 Al 0.0067 Y 0.0010 Zr 0.0015 O 2 .
  • H3BO3 was added in an amount of 500 ppm based on the total weight of the above-mentioned pulverized first coating product, and the mixture was mixed to prepare a mixture.
  • the mixture was heat-treated at 330° C. for 5 hours in an air atmosphere to obtain a second coating product.
  • the second coating product was pulverized at room temperature to an average particle diameter ( D50 ) of 14.2 ⁇ m, and a positive electrode active material was prepared in which a coating portion including Co, Al, and B was formed on a lithium transition metal oxide in the form of secondary particles in which primary particles were aggregated.
  • the total composition of the positive electrode active material including the coating portion was LiNi 0.9278 Co 0.0489 Mn 0.0097 Al 0.0066 Y 0.0010 Zr 0.0015 B 0.0045 O 2 .
  • a transition metal composite hydroxide (D 50 : 10.2 ⁇ m) having a composition represented by Ni 0.87 Co 0.05 Mn 0.08 (OH) 2 in the form of secondary particles formed by the agglomeration of tens to hundreds of primary particles and LiOH were mixed such that the molar ratio of lithium (Li) to transition metal (Ni + Co + Mn) (Li / (Ni + Co + Mn)) was 1.05.
  • 1,470 ppm of Al (OH) 3 , 1,000 ppm of Y 2 O 3 , and 1,500 ppm of ZrO 2 were added and mixed relative to the total weight of the transition metal composite hydroxide to prepare a mixture.
  • the above mixture was fired at 780° C. for 5 hours under an oxygen atmosphere to obtain a fired product.
  • the fired product was pulverized at room temperature to prepare a lithium transition metal oxide having an average particle size ( D50 ) of 9.8 ⁇ m and a composition represented by LiNi 0.8635 Co 0.0496 Mn 0.0794 Al 0.0050 Y 0.0010 Zr 0.0015 O 2 in the form of secondary particles in which primary particles were aggregated.
  • 100 parts by weight of the above-mentioned lithium transition metal oxide in the form of secondary particles and 100 parts by weight of water were stirred for 5 minutes, and then washed using a filter press.
  • the washed product was dried at 130° C. for 4 hours to prepare a dried product.
  • H 3 BO 3 was added in an amount of 1,000 ppm based on the total weight of the lithium transition metal oxide, and mixed to prepare a mixture.
  • the mixture was heat-treated at 300° C. for 5 hours in an air atmosphere to obtain a coating product.
  • the coating product was pulverized at room temperature to an average particle diameter (D 50 ) of 10.2 ⁇ m, thereby preparing a cathode active material in which a coating portion including B was formed on a lithium transition metal oxide in the form of secondary particles in which primary particles were aggregated.
  • the overall composition of the cathode active material including the coating portion is LiNi 0.8558 Co 0.0492 Mn 0.0787 Al 0.0049 Y 0.0010 Zr 0.0015 B 0.0089 O 2 .
  • a transition metal composite hydroxide (D 50 : 12.2 ⁇ m) having a composition represented by Ni 0.87 Co 0.05 Mn 0.08 (OH) 2 in the form of secondary particles formed by the agglomeration of tens to hundreds of primary particles and LiOH were mixed such that the molar ratio of lithium (Li) to transition metal (Ni + Co + Mn) (Li / (Ni + Co + Mn)) was 1.05.
  • 1,470 ppm of Al (OH) 3 , 1,000 ppm of Y 2 O 3 , and 1,500 ppm of ZrO 2 were added and mixed relative to the total weight of the transition metal composite hydroxide to prepare a mixture.
  • the above mixture was fired at 780° C. for 5 hours under an oxygen atmosphere to obtain a fired product.
  • the fired product was pulverized at room temperature to prepare a lithium transition metal oxide having an average particle size (D 50 ) of 11.8 ⁇ m and a composition represented by LiNi 0.8635 Co 0.0496 Mn 0.0794 Al 0.0050 Y 0.0010 Zr 0.0015 O 2 in the form of secondary particles in which primary particles were aggregated.
  • 100 parts by weight of the above-mentioned lithium transition metal oxide in the form of secondary particles and 100 parts by weight of water were stirred for 5 minutes, and then washed using a filter press.
  • the washed product was dried at 130° C. for 4 hours to prepare a dried product.
  • H 3 BO 3 was added in an amount of 1,000 ppm based on the total weight of the lithium transition metal oxide, and mixed to prepare a mixture.
  • the mixture was heat-treated at 300° C. for 5 hours in an air atmosphere to obtain a coating product.
  • the coating product was pulverized at room temperature to an average particle diameter (D 50 ) of 12.2 ⁇ m, thereby preparing a cathode active material in which a coating portion including B was formed on a lithium transition metal oxide in the form of secondary particles in which primary particles were aggregated.
  • the overall composition of the cathode active material including the coating portion is LiNi 0.8558 Co 0.0492 Mn 0.0787 Al 0.0049 Y 0.0010 Zr 0.0015 B 0.0089 O 2 .
  • a transition metal composite hydroxide (D 50 : 14.5 ⁇ m) having a composition represented by Ni 0.94 Co 0.05 Mn 0.01 (OH) 2 in the form of secondary particles formed by the agglomeration of tens to hundreds of primary particles and LiOH were mixed such that the molar ratio of lithium (Li) to transition metal (Ni + Co + Mn) (Li / (Ni + Co + Mn)) was 1.02.
  • 1,470 ppm of Al (OH) 3 , 1,000 ppm of Y 2 O 3 , and 1,500 ppm of ZrO 2 were added and mixed relative to the total weight of the transition metal composite hydroxide to prepare a mixture.
  • the above mixture was calcined at 730°C for 5 hours under an oxygen atmosphere to obtain a calcined product.
  • the calcined product was pulverized at room temperature to obtain an average particle size ( D50 ) of 14.2 ⁇ m.
  • a lithium transition metal oxide having a composition represented by LiNi 0.9330 Co 0.0496 Mn 0.0099 Al 0.0050 Y 0.0010 Zr 0.0015 O 2 in the form of secondary particles in which primary particles are aggregated was manufactured. Subsequently, 100 parts by weight of the manufactured lithium transition metal oxide in the form of secondary particles and 100 parts by weight of water were stirred for 5 minutes, and then washed using a filter press. The washed product was dried at 130°C for 4 hours to manufacture a dried product.
  • H 3 BO 3 was added in an amount of 1,000 ppm based on the total weight of the lithium transition metal oxide, and the mixture was prepared.
  • the mixture was heat-treated at 300 °C for 5 hours in an air atmosphere to obtain a coating product.
  • the coated product was pulverized at room temperature to have an average particle diameter (D 50 ) of 14.2 ⁇ m, thereby preparing a cathode active material in which a coating portion including B was formed on a lithium transition metal oxide in the form of secondary particles in which primary particles were aggregated.
  • the total composition of the cathode active material including the coating portion was LiNi 0.9246 Co 0.0492 Mn 0.0098 Al 0.0050 Y 0.0010 Zr 0.0015 B 0.0089 O 2 .
  • a transition metal composite hydroxide (D 50 : 10.2 ⁇ m) having a composition represented by Ni 0.94 Co 0.05 Mn 0.01 (OH) 2 in the form of secondary particles formed by the agglomeration of tens to hundreds of primary particles and LiOH were mixed such that the molar ratio of lithium (Li) to transition metal (Ni + Co + Mn) (Li / (Ni + Co + Mn)) was 1.02.
  • 1,470 ppm of Al (OH) 3 , 1,000 ppm of Y 2 O 3 , and 1,500 ppm of ZrO 2 were added and mixed relative to the total weight of the transition metal composite hydroxide to prepare a mixture.
  • the above mixture was fired at 730° C. for 5 hours under an oxygen atmosphere to obtain a fired product.
  • the fired product was pulverized at room temperature to prepare a lithium transition metal oxide having an average particle size (D 50 ) of 9.8 ⁇ m and a composition represented by LiNi 0.9330 Co 0.0496 Mn 0.0099 Al 0.0050 Y 0.0010 Zr 0.0015 O 2 in the form of secondary particles in which primary particles were aggregated.
  • 100 parts by weight of the above-mentioned lithium transition metal oxide in the form of secondary particles and 100 parts by weight of water were stirred for 5 minutes, and then washed using a filter press.
  • the washed product was dried at 130° C. for 4 hours to prepare a dried product.
  • H 3 BO 3 was added in an amount of 1,000 ppm based on the total weight of the lithium transition metal oxide, and mixed to prepare a mixture.
  • the mixture was heat-treated at 300° C. for 5 hours in an air atmosphere to obtain a coating product.
  • the coating product was pulverized at room temperature to an average particle diameter (D 50 ) of 10.2 ⁇ m, thereby preparing a cathode active material in which a coating portion including B was formed on a lithium transition metal oxide in the form of secondary particles in which primary particles were aggregated.
  • the overall composition of the cathode active material including the coating portion is LiNi 0.9246 Co 0.0492 Mn 0.0098 Al 0.0050 Y 0.0010 Zr 0.0015 B 0.0089 O 2 .
  • a transition metal composite hydroxide (D 50 : 4.2 ⁇ m) having a composition represented by Ni 0.89 Co 0.03 Mn 0.08 (OH) 2 in the form of secondary particles formed by the agglomeration of tens to hundreds of primary particles and LiOH were mixed such that the molar ratio of lithium (Li) to transition metal (Ni + Co + Mn) (Li / (Ni + Co + Mn)) was 1.04.
  • 1,470 ppm of Al (OH) 3 , 1,000 ppm of Y 2 O 3 , and 1,500 ppm of ZrO 2 were added and mixed relative to the total weight of the transition metal composite hydroxide to prepare a mixture.
  • the above mixture was calcined under an oxygen atmosphere at 930° C. for 6 hours and then at 830° C. for 9 hours to obtain a sintered product.
  • the sintered product was pulverized at room temperature to produce a lithium transition metal oxide in the form of single particles having an average particle size (D 50 ) of 3.8 ⁇ m and a composition represented by LiNi 0.8833 Co 0.0298 Mn 0.0794 Al 0.0050 Y 0.0010 Zr 0.0015 O 2 .
  • a mixture was prepared by adding the lithium transition metal oxide in the form of single particles prepared above and Al(OH) 3 in an amount of 500 ppm based on the total weight of the lithium transition metal oxide in the form of single particles prepared above so that the molar ratio of cobalt (Co) to the metal (Ni+Co+Mn+Al+Y+Zr) excluding lithium (Co/(Ni+Co+Mn+Al+Y+Zr)) was 0.02, and mixing them uniformly.
  • the mixture was heat-treated at 740°C for 3 hours and then at 500°C for 3 hours in an oxygen atmosphere to obtain a coating product.
  • the coated product was pulverized at room temperature to an average particle size ( D50 ) of 3.8 ⁇ m, thereby preparing a cathode active material in which a coating portion including Co and Al was formed on the lithium transition metal oxide in the form of single particles.
  • the overall composition of the cathode active material including the above coating portion was LiNi 0.8641 Co 0.0491 Mn 0.0777 Al 0.0066 Y 0.0010 Zr 0.0015 O 2 .
  • the positive electrode active materials manufactured in Examples 1 to 11 and Comparative Examples 1 to 5 were photographed using a scanning electron microscope (FEI quanta250 FEG), and the SEM images of Examples 1 to 11 are shown in order in Figs. 1 to 11 (A), and the SEM images of Comparative Examples 1 to 5 are shown in order in Figs. 12 to 16 (A). From the SEM images, the average particle size of the primary particles present in each of the Examples and Comparative Examples was measured, and is shown in Table 1 below.
  • (B) represent SEM images of cross-sections of secondary particles observed from SEM images of cross-sections of secondary particles photographed for cross-sections of the positive electrode active materials, in which the size of the cross-section of the secondary particles is within the range of the average particle diameter (D 50 ) of the secondary particles, by setting a unit area of 5 ⁇ m width x 5 ⁇ m height within the cross-section of the secondary particles, and the number of cross-sections of the primary particles confirmed within the unit area is shown in Table 1 below.
  • FIG. 17 a segmentation image showing multiple lithium composite transition metal oxides segmented by performing image analysis based on an artificial intelligence model from the SEM image of Example 1 of the present invention is shown in FIG. 17, and a segmentation image of Comparative Example 1 is shown in FIG. 18.
  • Example 1 ⁇ 0.5 120 Comparative Example 2 ⁇ 0.5 161 Comparative Example 3 ⁇ 0.5 145 Comparative Example 4 ⁇ 0.5 127 Comparative Example 5 4.0 -
  • the positive electrode active materials manufactured in Examples 1, 2, and 8 were each subjected to ion milling, and then photographed using a transmission electron microscope (FEI Titan cubed G2 60-300). TEM images of cross-sections of primary particles of the positive electrode active materials of Examples 1, 2, and 8 are shown in FIGS. 19 to 21, respectively.
  • a plurality of primary particles include aggregated secondary particles, and that the plurality of primary particles have an average particle size of 1.5 ⁇ m or more and 5.0 ⁇ m or less as measured from an SEM image.
  • the plurality of primary particles include three or more disk-type primary particles.
  • the disk-type primary particle means a primary particle in which, when two imaginary tangent lines are drawn for two boundaries of primary particles existing within an angle of 45° or less with respect to the major axis direction among the primary particles observed from an SEM image of the surface or cross-section of the secondary particle, the imaginary tangent lines having the largest number of contact points are respectively drawn, and one imaginary line crossing the two tangent lines is drawn, and the same internal angle is 150° or more and 210° or less.
  • two virtual yellow tangent lines having the largest number of contact points are drawn for each of the two boundary lines of the primary particles existing within an angle of 45° or less based on the major axis direction in (B) of FIGS.
  • the primary particle corresponding to this case is defined as a disk-shaped primary particle.
  • the disk-shaped primary particle has a minor axis of 0.3 ⁇ m or more and an aspect ratio (major axis/minor axis) of 1.5 or more.
  • the number of cross-sections of the primary particle per unit area is 1 or more and 100 or less. Specifically, it can be confirmed that the number of cross-sections of the primary particle per unit area is 8 or more and 24 or less.
  • the area ratio of the (003) plane among the crystal planes on the surface of the primary particle is the largest.
  • the average particle size of the primary particles measured from the SEM image is small, less than 500 nm.
  • the positive electrode active material of Comparative Example 5 it can be confirmed that it does not include the disk-shaped primary particles.
  • the cathode active material according to one embodiment of the present invention includes single crystal primary particles.
  • the positive electrode active materials manufactured in Examples 1 to 11 and Comparative Examples 1 to 5 were photographed using a scanning electron microscope equipped with EBSD (FEI quanta250 FEG).
  • the cross-sections of the secondary particles are observed from the backscattered electron diffraction (EBSD) patterns (measured under the conditions of an acceleration voltage of 20 kV, a WD of 16 mm, a measurement magnification of 5,000 times (width 16 ⁇ m * height 16 ⁇ m), and a step size of 0.025 ⁇ m) of the SEM images of the cross-sections of the secondary particles, in which the size of the cross-sections of the secondary particles is within the range of the average particle diameter (D 50 ), a unit area of 5 ⁇ m in width * 5 ⁇ m in height is set in the center region and the outer region, respectively, as shown in FIG.
  • EBSD backscattered electron diffraction
  • FIG. 22 (Example 1), FIG. 23 (Example 2), FIG. 24 (Example 3), FIG. 25 (Example 4), and FIG. 26 (Example 8), FIG. 27 (Example 10), FIG. 28 (Example 11), and FIG. 29 (Comparative Example 3), respectively, and the number of cross-sections of grains confirmed within the unit area and the degree of single crystallinity calculated according to the following Equation 1 are also shown in Table 2 below.
  • Example 1 12 14 0.86
  • Example 2 3 6 0.90
  • Example 3 8 9 0.92
  • Example 4 6 6 0.98
  • Example 8 12 19 1.09
  • Example 10 7 9 1.57
  • Example 11 12 13 1.56
  • Comparative Example 1 - - 0.046 Comparative Example 2 - - 0.040 Comparative Example 3 203 180 0.050 Comparative Example 4 - - 0.070 Comparative Example 5 - - 3.1
  • the number of cross-sections of grains per unit area is 1 or more and 150 or less. Specifically, it can be confirmed that the number of cross-sections of grains per unit area is 3 or more and 19 or less.
  • the single crystallinity is 0.15 ⁇ m 3 or more. Specifically, it can be confirmed that the single crystallinity is 0.86 ⁇ m 3 or more and 1.57 ⁇ m 3 or less.
  • the area of each primary particle is measured through the number of pixels corresponding to each of n primary particles observed from an image in which the SEM images of the surfaces of the secondary particles photographed on the surfaces of the positive active materials of Examples 1 to 11 and Comparative Examples 1 to 5 are projected onto a two-dimensional plane.
  • the surfaces of the primary particles are circular, that is, the radius of the surface of the primary particle was derived using the radius of a circle having the same area as the surface area of each of the primary particles.
  • the volume value was calculated according to Equation 5 below, and the single particle size (Dv 50 ) corresponding to the diameter of the volume at a point where the cumulative volume distribution of the primary particles is 50% was calculated, and the results are shown in Table 3 below.
  • the single particle magnetization degree of the positive electrode active materials of Examples 1 to 11 is 1.2 ⁇ m or more and 3.8 ⁇ m or less. Specifically, it can be confirmed that the single particle magnetization degree is 1.65 ⁇ m or more and 3.55 ⁇ m or less.
  • the positive electrode active material of Example 1 EPMA cross-sectional analysis was performed to confirm the surface coating characteristics.
  • the positive electrode active material of Example 1, the carbon black conductive agent, and the PVDF binder were mixed at a weight ratio of 95:2:3 in an N-methylpyrrolidone (NMP) solvent to prepare a positive electrode slurry.
  • NMP N-methylpyrrolidone
  • the prepared positive electrode slurry was applied to one surface of an aluminum current collector, dried at 130°C, and rolled so that the electrode porosity became 20% to prepare a positive electrode.
  • the positive electrode was subjected to Ar-ion milling using a HITACHI IM-5000 equipment under an acceleration voltage of 6 kV to obtain a cross-section of the positive electrode sample. Then, the cross-sectional image of the positive electrode sample was observed using a JEOL JXA-iHP200F equipment under the conditions of an acceleration voltage of 15 kV and a probe current of 50 nA, and the results are shown in Fig. 30.
  • a coating portion including Co and/or B is formed on the surface of the primary particle, the interface of the primary particle and/or the surface of the secondary particle.
  • the coating portion has both an island shape formed on a portion of the surface of the primary particle, the interface of the primary particle and/or the surface of the secondary particle, and a coating layer shape formed to surround the surface of the primary particle, the interface of the primary particle and/or the surface of the secondary particle.
  • a particle size analyzer (PSD, Malvern, martersizer 3500) was used to measure D min , D 50 , and D max , the mode in the cumulative volume distribution according to particle size, the y-value of the peak point at the top of the y-axis of the peak appearing in the mode according to the cumulative volume distribution (P MODE ), ⁇ L , and ⁇ R , and ⁇ L - ⁇ R were calculated, and the results are shown in Table 6.
  • the skewness value (S) is calculated from the following equation 3, and the ratio (S/P MODE) of the skewness value (S) to the y-value (P MODE ) of the peak point at the top of the y-axis of the peak appearing in the mode ( Mode ) according to the cumulative volume distribution is calculated, and these are shown together in Table 6 below.
  • Figs. 31 (Example 1), 32 (Example 2), 33 (Example 3), 34 (Example 4), 35 (Example 5), 36 (Example 6), 37 (Example 7), 38 (Example 8), 39 (Example 9), 40 (Example 10), 41 (Example 11), 42 (Comparative Example 1), and 43 (Comparative Example 3), respectively, in which the x-axis represents a linear scale for particle diameter in which the x-value increases from left to right, and the y-axis represents a weight distribution in which the y-value increases from bottom to top.
  • the volume cumulative distributions of the positive electrode active materials of Examples 1 to 11 and Comparative Examples 1 and 3, which were measured using a laser diffraction particle size analyzer, are plotted in a frequency distribution graph in which the x-axis represents a log scale for particle diameter in which the x-value increases from left to right, and the y-axis represents a weight distribution in which the y-value increases from bottom to top, respectively, in FIGS.
  • Example 1 44 (Example 1), 45 (Example 2), 46 (Example 3), 47 (Example 4), 48 (Example 5), 49 (Example 6), 50 (Example 7), 51 (Example 8), 52 (Example 9), 53 (Example 10), 54 (Example 11), 55 (Comparative Example 1), and 56 (Comparative Example 3).
  • Example 1 2.52 11.47 62.23 12.00 8.51 0.926 0.109 47.980 33.161 1.447 14.819
  • Example 2 5.04 10.32 37.00 10.60 13.72 1.037 0.076 71.684 63.089 1.136 8.595
  • Example 3 4.62 9.87 37.00 9.92 12.98 0.587 0.045 71.215 62.582 1.138 8.633
  • Example 4 3.27 10.06 52.33 10.50 12.75 1.007 0.079 50.345 42.751 1.235 7.594
  • Example 5 5.04 9.95 37.00 10.37 12.25 0.744 0.061 72.135 65.421 1.103 6.714
  • Example 6 5.50 10.62 40.35 10.60 13.32 1.017 0.076 72.842 65.95 1.105 6.892
  • Example 7 5.04 10.29 37.00 10.09 13.06
  • the D 50 is 7.0 ⁇ m or more and 20.0 ⁇ m or less.
  • the ( ⁇ L - ⁇ R ) value is 6 or more and 20 or less.
  • the volume cumulative distribution measured using a laser diffraction particle size analyzer exhibits a positive skewness in a frequency distribution graph in which the x-axis represents a linear scale for particle diameter in which the x-value increases from left to right, and the y-axis represents a weight distribution in which the y-value increases from bottom to top.
  • Pellet volume (cm 3 ) ⁇ (radius of the circular pellet holder) 2 X thickness of the pellet
  • the rolling density of the positive electrode active materials of Examples 1 to 11 is 3.60 g/cm 3 or higher. Specifically, it can be confirmed that the rolling density is 3.66 g/cm 3 or higher.
  • the specific surface area was measured by the nitrogen gas adsorption and desorption method. Specifically, after measuring the weight of an empty cell, 3 g each of the positive electrode active materials manufactured in Examples 1 to 11 and Comparative Examples 1 to 5 were taken and pretreated at 130° C. for 3 hours. After measuring the weight of the cell after the pretreatment process, a dewar containing liquid nitrogen was prepared and the cell was fastened. The BET specific surface area was measured from the nitrogen gas adsorption amount using a gas adsorption analyzer (Micromeritics TriStarr II) under a nitrogen atmosphere, and the results are shown in Table 8 below.
  • a gas adsorption analyzer Mocromeritics TriStarr II
  • Example 1 0.305
  • Example 2 0.294
  • Example 3 0.240
  • Example 4 0.305
  • Example 5 0.312
  • Example 6 0.322
  • Example 7 0.307
  • Example 8 0.332
  • Example 9 0.328
  • Example 10 0.270
  • Example 11 0.338 Comparative Example 1 0.504 Comparative Example 2 0.592 Comparative Example 3 0.631 Comparative Example 4 0.729 Comparative Example 5 0.748
  • the positive electrode active materials of Examples 1 to 11 have a BET specific surface area of 0.20 m 2 /g or more and 0.35 m 2 /g or less. Specifically, it can be confirmed that the BET specific surface area is 0.240 m 2 /g or more and 0.338 m 2 /g or less.
  • a positive electrode slurry was prepared by mixing 95 parts by weight of each of the positive electrode active materials manufactured in Examples 1 to 11 and Comparative Examples 1 to 5, 2 parts by weight of a conductive agent (Denka, FX35), and 3 parts by weight of a binder (KUREHA, KF9709) in an N-methylpyrrolidone (NMP) solvent.
  • the prepared positive electrode slurry was applied to one surface of a 20 ⁇ m thick aluminum current collector, and rolled so that the porosity of the positive electrode active material layer became 24% by volume, thereby preparing a positive electrode.
  • An electrode assembly was manufactured using a lithium metal electrode as the negative electrode and a porous polyethylene separator interposed between the positive and negative electrodes. This was placed inside a battery case and an electrolyte was injected to manufacture a lithium secondary battery. At this time, the electrolyte was manufactured by dissolving 1 M LiPF 6 in an organic solvent mixed with ethylene carbonate (EC): ethyl methyl carbonate (EMC): dimethyl carbonate (DMC) in a volume ratio of 3:3:4.
  • EC ethylene carbonate
  • EMC ethyl methyl carbonate
  • DMC dimethyl carbonate
  • lithium secondary batteries including the positive electrode active materials of Examples 1 to 11 and Comparative Examples 1 to 5, which were manufactured above
  • charging was performed in CC/CV mode at a constant current of 0.1 C at 25°C up to 4.25 V (end current 0.05 C), and then discharging in CC mode until 2.5 V was reached, and the charge capacity and discharge capacity were measured, which are shown in Table 9 below.
  • 1 C 200 mA/g was set.
  • the manufactured lithium secondary battery was charged in CC/CV mode at 45°C with a constant current of 0.5 C to 4.25 V (end current of 0.05 C), and then discharged in CC mode at a constant current of 1.0 C until 2.5 V, which was considered one cycle, and 50 cycles were repeated.
  • the percentage of the discharge capacity of the 50th cycle to the discharge capacity of the first cycle was defined as the capacity retention rate, which is also shown in Table 9 below.
  • Example 1 233.6 209.0 89.5 18.5 96.17
  • Example 2 233.4 208.4 89.3 20.2 96.30
  • Example 3 233.6 207.1 88.7 20.4 96.93
  • Example 4 231.1 205.8 89.1 19.4 96.57
  • Example 5 232.6 207.7 89.3 18.4 95.80
  • Example 6 231.7 208.7 90.1 18.2 96.20
  • Example 7 232.0 207.9 89.6 13.2 96.50
  • Example 8 247.9 216.5 87.3 29.2 93.67
  • Example 9 247.6 216.3 87.3 30.2 94.00
  • Example 10 247.4 215.1 86.9 30.2 95.45
  • Example 11 245.9 212.4 86.4 30.5 94.92
  • the battery was charged in CC/CV mode at 25°C with a constant current of 0.5 C up to 4.25 V (end current of 0.05 C), and then discharged in CC mode at a constant current of 0.1 C until 2.5 V, and the discharge capacity was measured.
  • the discharge capacity was measured while charging in CC/CV mode at 0.5 C constant current at 25 °C to 4.25 V (end current 0.05 C) and then discharging in CC mode at 1.0 C constant current to 2.5 V
  • the discharge capacity was measured while charging in CC/CV mode at 0.5 C constant current at 25 °C to 4.25 V (end current 0.05 C) and then discharging in CC mode at 2.0 C constant current to 2.5 V
  • the percentage of the discharge capacity at 0.1 C discharge after 0.5 C charge is shown in Table 10 below.
  • Example 1 92.77 90.64
  • Example 2 92.72 90.64
  • Example 3 92.70 90.48
  • Example 4 92.66 90.44
  • Example 5 92.82 90.43
  • Example 6 92.85 90.58
  • Example 7 92.83 90.64
  • Example 8 93.43 91.02
  • Example 9 93.38 90.95
  • Example 10 93.35 90.87
  • Example 11 93.04 89.78 Comparative Example 1 87.47 86.18 Comparative Example 2 87.60 86.28 Comparative Example 3 90.44 87.63
  • Comparative Example 4 90.84 88.74 Comparative Example 5 91.54 89.57
  • the batteries including the positive electrode active materials of Examples 1 to 11 have a large discharge capacity, high efficiency and high temperature capacity retention, low DC resistance, and excellent rate characteristics.
  • the batteries including the positive electrode active materials of Comparative Examples 1 to 4 have a problem of poor rate characteristics, and the batteries including the positive electrode active material of Comparative Example 5 have a small discharge capacity and low efficiency.
  • the cathode active material of the present invention can simultaneously solve the problems of conventional secondary particles and single particles in high nickel (High Ni) cathode active materials, and by implementing the cathode active material in the form of secondary particles whose primary particles are on the micron level in size, it can not only improve cell characteristics such as improved lifespan and reduced gas generation of lithium secondary batteries, but also improve energy density due to excellent density characteristics.

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

The present invention relates to a cathode active material and, to a cathode active material, a cathode comprising same, and a lithium secondary battery, the cathode active material enabling problems of conventional secondary particles and problems of discrete particles to be solved simultaneously, and comprising: as primary particles, particles such as conventional discrete particles; and secondary particles formed by aggregating a plurality of primary particles, and thus the present invention has cell characteristics such as improved lifespan of a lithium secondary battery and reduced gas generation, and also has excellent density characteristics so as to have improved energy density.

Description

양극 활물질, 양극 및 리튬이차전지Cathode active material, cathode and lithium secondary battery
관련출원과의 상호인용Cross-citation with related applications
본 출원은 2023년 4월 28에 출원된 한국 특허 출원 제10-2023-00656231호 및 2024년 4월 29일에 출원된 한국 특허 출원 제10-2024-0057122호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원들의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.This application claims the benefit of priority to Korean Patent Application No. 10-2023-00656231, filed April 28, 2023, and Korean Patent Application No. 10-2024-0057122, filed April 29, 2024, the entire contents of which are incorporated herein by reference.
기술분야Technical field
본 발명은 양극 활물질, 이를 포함하는 양극 및 리튬이차전지에 관한 것이다.The present invention relates to a cathode active material, a cathode including the same, and a lithium secondary battery.
최근 전기 자동차 등의 기술 발전에 따라 고용량 이차 전지에 대한 수요가 증가하고 있으며, 이에 따라 용량 특성이 우수한 하이 니켈(High Ni) 양극 활물질에 대한 연구가 활발하게 진행되고 있다.Recently, with the advancement of technology such as electric vehicles, the demand for high-capacity secondary batteries is increasing, and accordingly, research on high-nickel (High Ni) cathode active materials with excellent capacity characteristics is being actively conducted.
1차 입자가 응집된 2차 입자 구조로 형성된 하이 니켈 양극 활물질은 리튬이차전지의 충방전 시, 구조적인 퇴화도 발생하지만, 상대적으로 격자구조 상수의 변화, 즉, 단위 격자 내의 부피 변화가 많이 발생하게 된다. 이러한 부피 변화는 양극 활물질 내 크랙(crack)을 야기시킨다. 또한, 전극 압연 시에도 압력에 의해 양극 활물질 내 크랙(crack)이 발생할 수 있다.The high nickel cathode active material formed by the secondary particle structure in which the primary particles are aggregated undergoes structural degradation during the charging and discharging of the lithium secondary battery, but relatively, the lattice structure constant changes, that is, the volume change within the unit cell occurs significantly. This volume change causes cracks in the cathode active material. In addition, cracks may occur in the cathode active material due to pressure during electrode rolling.
이렇게 발생된 하이 니켈 양극 활물질 내 크랙들은 리튬이차전지의 충방전이 진행되는 과정에서 크랙이 더욱 심화되고, 이에 따라 전해액이 닿을 수 없거나, 도전성을 저하시키는 보이드(void)로 작용하게 되어 리튬이차전지의 수명 특성을 저하시키거나, 저항 증가의 요인으로 작용하게 된다.The cracks in the high nickel positive electrode active material that occur in this way become more severe during the charging and discharging process of the lithium secondary battery, and as a result, they act as voids that cannot reach the electrolyte or reduce conductivity, which reduces the life characteristics of the lithium secondary battery or acts as a factor in increasing resistance.
이러한 2차 입자 구조의 크랙 발생을 최소화하기 위한 방안으로 단입자 형태의 양극 활물질을 제조하고자 하는 시도가 이루어지고 있다. 그러나, 이와 같은 단입자 형태의 양극 활물질은 입자들의 입경이 불균일하여 분쇄 후 수득된 단입자 형태의 양극 활물질의 입경 분포가 커지는 문제가 있다. 또한, 단입자 형태의 양극 활물질은 비표면적이 낮아 셀 저항 특성에 취약한 문제가 있다.In order to minimize the occurrence of cracks in such secondary particle structures, attempts are being made to manufacture single-particle cathode active materials. However, such single-particle cathode active materials have a problem in that the particle sizes are non-uniform, and thus the particle size distribution of the single-particle cathode active materials obtained after pulverization is large. In addition, single-particle cathode active materials have a low specific surface area, and thus are vulnerable to cell resistance characteristics.
따라서, 종래의 2차 입자의 문제점과, 단입자의 문제점을 동시에 해결할 수 있는 양극 활물질에 대한 개발이 요구되고 있다.Therefore, there is a need for the development of a cathode active material that can simultaneously solve the problems of conventional secondary particles and single particles.
한편, 대한민국 등록특허공보 제10-1785262호(특허문헌 1)은 1차 입자가 응집된 2차 입자를 포함하고, 2차 입자가 니켈계 리튬전이금속 산화물을 포함하며, 1차 입자의 평균 입경이 3 내지 5 ㎛이고, 2차 입자의 평균 입경이 10 내지 20 ㎛인 대입경 2차 입자를 개시하고 있다. 이러한 대입경 2차 입자는 평균 입경이 미크론 수준인 1차 입자를 포함함으로써, 압연 밀도를 향상시켜 압연 등에 의한 크랙을 최소화할 수 있고, 2차 입자 구조를 통해 비표면적을 향상시켜 셀 특성을 향상시킬 수 있다.Meanwhile, Korean Patent Publication No. 10-1785262 (Patent Document 1) discloses large-diameter secondary particles, which include secondary particles in which primary particles are aggregated, the secondary particles include a nickel-based lithium transition metal oxide, and the average particle diameter of the primary particles is 3 to 5 ㎛ and the average particle diameter of the secondary particles is 10 to 20 ㎛. Such large-diameter secondary particles include primary particles having an average particle diameter on the micron level, thereby improving the rolling density and minimizing cracks caused by rolling, etc., and improving the specific surface area through the secondary particle structure, thereby improving cell characteristics.
이와 같은 1차 입자의 크기가 미크론 수준인 2차 입자 형태의 양극 활물질을 제조하기 위해서는, 특허문헌 1에도 개시되어 있는 바와 같이, 1차 입자의 크기가 1 ㎛ 미만의 서브미크론 수준인 2차 입자 대비 더욱 높은 온도에서 열처리를 실시할 필요가 있다. 그러나, 열처리 온도가 높아질수록 리튬 전이금속 복합 산화물의 층형 구조가 암염 구조로 퇴화되어, 결정성 저하의 원인이 되고, 이는 곧 양극 활물질의 성능을 저하시키는 원인이 된다. 특히, 높은 열처리 온도에서의 리튬 전이금속 복합 산화물의 층형 구조의 암염 구조로의 퇴화는 니켈이 가장 취약하기 때문에, 양극 활물질을 구성하는 리튬 전이금속 복합 산화물 내 니켈의 함량이 높아지는 경우, 퇴화는 더욱 심화된다. 따라서, 종래에는 1차 입자의 크기가 미크론 수준인 2차 입자 형태의 양극 활물질로서, 특허문헌 1과 같이, 리튬 전이금속 복합 산화물의 전이금속 중 니켈의 함량이 50 몰% 수준인 미드 니켈(Mid Ni) 양극 활물질에 대해서만 적용할 수 있었고, 리튬 전이금속 복합 산화물의 전이금속 중 니켈의 함량의 함량이 높아 용량 특성이 우수한 하이 니켈(High Ni) 양극 활물질에 대해서는 1차 입자의 크기가 미크론 수준인 2차 입자 형태의 양극 활물질의 제조가 불가하였다.In order to manufacture a cathode active material in the form of secondary particles whose primary particles are on the micron level in size, as disclosed in Patent Document 1, it is necessary to perform heat treatment at a higher temperature than that of secondary particles whose primary particles are on the submicron level of less than 1 ㎛ in size. However, as the heat treatment temperature increases, the layered structure of the lithium-transition metal composite oxide degenerates into a rock salt structure, which causes a decrease in crystallinity and, in turn, causes a decrease in the performance of the cathode active material. In particular, since nickel is most vulnerable to the degeneration of the layered structure of the lithium-transition metal composite oxide into a rock salt structure at high heat treatment temperatures, the degeneration becomes more severe when the content of nickel in the lithium-transition metal composite oxide constituting the cathode active material increases. Therefore, conventionally, it could only be applied to mid-nickel (Mid Ni) cathode active materials in which the nickel content among the transition metals of the lithium-transition metal composite oxide was about 50 mol%, as in Patent Document 1, as a cathode active material in the form of secondary particles in which the primary particles are on the micron level in size, and it was not possible to manufacture secondary particle-type cathode active materials in which the primary particles are on the micron level in size for high-nickel (High Ni) cathode active materials with excellent capacity characteristics due to the high nickel content among the transition metals of the lithium-transition metal composite oxide.
본 발명에서 해결하고자 하는 과제는 하이 니켈(High Ni) 양극 활물질에 있어서, 종래의 2차 입자의 문제점과, 단입자의 문제점을 동시에 해결할 수 있는 양극 활물질을 제공하는 것이다.The problem to be solved in the present invention is to provide a cathode active material capable of simultaneously solving the problems of conventional secondary particles and single particles in a high nickel (High Ni) cathode active material.
즉, 본 발명은 상기 종래기술의 문제점을 해결하기 위하여 안출된 것으로, 리튬 전이금속 복합 산화물의 전이금속 중 니켈의 함량의 함량이 높아 용량 특성이 우수한 하이 니켈(High Ni) 양극 활물질로서, 1차 입자의 크기가 미크론 수준인 2차 입자 형태의 양극 활물질을 구현함으로써, 수명 향상 및 가스 발생량 저감 등의 셀 특성은 물론, 밀도 특성이 우수하여 에너지 밀도를 향상시킬 수 있는 양극 활물질을 제공하는 것을 목적으로 한다.That is, the present invention has been made to solve the problems of the above-mentioned prior art, and is a high nickel (High Ni) cathode active material having excellent capacity characteristics due to a high content of nickel among the transition metals of the lithium transition metal composite oxide, and by implementing the cathode active material in the form of secondary particles having a primary particle size on the micron level, the present invention provides a cathode active material having excellent density characteristics and thus improving energy density as well as cell characteristics such as improved lifespan and reduced gas generation.
또한, 본 발명은 상기 양극 활물질을 포함하는 양극 및 리튬이차전지를 제공하는 것을 목적으로 한다.In addition, the present invention aims to provide a positive electrode and a lithium secondary battery including the positive electrode active material.
상기 과제를 해결하기 위하여, 본 발명은 양극 활물질, 이를 포함하는 양극 및 리튬이차전지를 제공한다.To solve the above problems, the present invention provides a cathode active material, a cathode including the same, and a lithium secondary battery.
(1) 본 발명은 복수 개의 1차 입자가 응집된 2차 입자를 포함하고, 상기 복수 개의 1차 입자는 SEM 이미지로부터 측정한 평균 입자 크기가 1.5 ㎛ 이상, 5.0 ㎛ 이하이며, 상기 1차 입자의 입자 크기는 1차 입자의 장경을 기준으로 한 입자 크기이고, 상기 복수 개의 1차 입자는 디스크 형태(disk type)의 1차 입자를 포함하고, 상기 디스크 형태의 1차 입자는, 2차 입자의 표면 또는 단면에 대한 SEM 이미지로부터 관찰되는 1차 입자에 있어서, 장경 방향을 기준으로 45 ° 이하의 각도 내에서 존재하는 1차 입자의 2개의 경계선에 대하여, 각각 가장 많은 접점이 존재하는 가상의 접선을 긋고, 2개의 접선을 가로지르는 1개의 가상의 선을 그었을 때, 동측내각이 150 ° 이상, 210 ° 이하이고, 단경이 0.3 ㎛ 이상이며, 종횡비(장경/단경)가 1.5 이상인 것인 양극 활물질을 제공한다.(1) The present invention comprises a secondary particle in which a plurality of primary particles are aggregated, wherein the plurality of primary particles have an average particle size of 1.5 ㎛ or more and 5.0 ㎛ or less as measured from an SEM image, the particle size of the primary particles is a particle size based on the major axis of the primary particles, the plurality of primary particles include disk-type primary particles, and the disk-type primary particles are an anode in which, when two imaginary tangent lines are drawn with respect to two boundaries of the primary particles existing within an angle of 45° or less with respect to the major axis direction in the primary particles observed from an SEM image of the surface or cross section of the secondary particles, and one imaginary line crossing the two tangent lines is drawn, the coplanar internal angle is 150° or more and 210° or less, the minor axis is 0.3 ㎛ or more, and the aspect ratio (major axis/minor axis) is 1.5 or more. Provides active material.
(2) 본 발명은 상기 (1)에 있어서, 상기 복수 개의 1차 입자는 디스크 형태(disk type)의 1차 입자를 3개 이상 포함하는 것인 양극 활물질을 제공한다.(2) The present invention provides a positive electrode active material in (1) above, wherein the plurality of primary particles include three or more disk-type primary particles.
(3) 본 발명은 상기 (1) 또는 (2)에 있어서, 상기 디스크 형태의 1차 입자는 단경이 0.8 ㎛ 이상인 것인 양극 활물질을 제공한다.(3) The present invention provides a positive electrode active material in (1) or (2) above, wherein the disk-shaped primary particles have a short diameter of 0.8 ㎛ or more.
(4) 본 발명은 상기 (1) 내지 (3) 중 어느 하나에 있어서, 니켈, 코발트 및 망간을 포함하는 리튬 전이금속 복합 산화물을 포함하는 것인 양극 활물질을 제공한다.(4) The present invention provides a cathode active material comprising a lithium transition metal composite oxide containing nickel, cobalt, and manganese, in any one of the above (1) to (3).
(5) 본 발명은 상기 (1) 내지 (4) 중 어느 하나에 있어서, 전체 전이금속 중 니켈을 60 몰% 이상으로 포함하는 리튬 전이금속 복합 산화물을 포함하는 것인 양극 활물질을 제공한다.(5) The present invention provides a cathode active material comprising a lithium transition metal composite oxide containing nickel at 60 mol% or more among the total transition metals, in any one of (1) to (4) above.
(6) 본 발명은 상기 (1) 내지 (5) 중 어느 하나에 있어서, 하기 화학식 1로 표시되는 평균 조성을 갖는 리튬 전이금속 복합 산화물을 포함하는 것인 양극 활물질을 제공한다.(6) The present invention provides a cathode active material comprising a lithium transition metal composite oxide having an average composition represented by the following chemical formula 1, in any one of (1) to (5) above.
[화학식 1][Chemical Formula 1]
LixNiaCobMncM1 dO2 Li x Ni a Co b Mn c M 1 d O 2
상기 화학식 1에서, M1은 Al, Zr, B, W, Mo, Cr, Nb, Mg, Hf, Ta, La, Ti, Sr, Ba, Ce, V, F, P, S 및 Y로 이루어진 군으로부터 선택되는 1종 이상이며, 0.9≤x≤1.3, 0.6≤a<1.0, 0<b<0.4, 0<c<0.4, 0≤d≤0.2, a+b+c+d=1이다.In the chemical formula 1, M 1 is at least one selected from the group consisting of Al, Zr, B, W, Mo, Cr, Nb, Mg, Hf, Ta, La, Ti, Sr, Ba, Ce, V, F, P, S, and Y, and 0.9≤x≤1.3, 0.6≤a<1.0, 0<b<0.4, 0<c<0.4, 0≤d≤0.2, a+b+c+d=1.
(7) 본 발명은 상기 (1) 내지 (6) 중 어느 하나에 있어서, 상기 복수 개의 1차 입자는 단결정 1차 입자를 포함하는 것인 양극 활물질을 제공한다.(7) The present invention provides a positive electrode active material according to any one of (1) to (6), wherein the plurality of primary particles include single crystal primary particles.
(8) 본 발명은 상기 (1) 내지 (7) 중 어느 하나에 있어서, 상기 2차 입자는 레이저 회절 입도 분석기를 이용하여 측정한 체적 누적 분포에 따른 평균 입경(D50)이 7.0 ㎛ 이상, 20.0 ㎛ 이하인 것인 양극 활물질을 제공한다.(8) The present invention provides a cathode active material according to any one of (1) to (7) above, wherein the secondary particles have an average particle diameter (D 50 ) of 7.0 ㎛ or more and 20.0 ㎛ or less according to a volume cumulative distribution measured using a laser diffraction particle size analyzer.
(9) 본 발명은 상기 (1) 내지 (8) 중 어느 하나에 따른 양극 활물질을 포함하는 양극을 제공한다.(9) The present invention provides a positive electrode comprising a positive electrode active material according to any one of (1) to (8).
(10) 본 발명은 상기 (9)에 따른 양극; 음극; 양극과 음극 사이에 개재된 분리막 및 전해질을 포함하는 리튬이차전지를 제공한다.(10) The present invention provides a lithium secondary battery including a positive electrode according to (9); a negative electrode; a separator interposed between the positive electrode and the negative electrode; and an electrolyte.
본 발명의 양극 활물질은 하이 니켈(High Ni) 양극 활물질에 있어서, 종래의 2차 입자의 문제점과, 단입자의 문제점을 동시에 해결할 수 있는 양극 활물질로, 1차 입자의 크기가 미크론 수준인 2차 입자 형태의 양극 활물질을 구현함으로써, 리튬이차전지의 수명 향상 및 가스 발생량 저감 등의 셀 특성은 물론, 밀도 특성이 우수하여 에너지 밀도를 향상시킬 수 있다.The cathode active material of the present invention is a cathode active material that can simultaneously solve the problems of conventional secondary particles and single particles in high nickel (High Ni) cathode active materials, and by implementing a cathode active material in the form of secondary particles whose primary particles are on the micron level in size, not only does it improve cell characteristics such as improved lifespan and reduced gas generation of a lithium secondary battery, but it also has excellent density characteristics so as to improve energy density.
도 1은 실시예 1의 (A) 양극 활물질의 SEM 이미지, (B) 양극 활물질 단면의 SEM 이미지이다.Figure 1 is an SEM image of (A) the positive electrode active material of Example 1, and (B) an SEM image of a cross-section of the positive electrode active material.
도 2는 실시예 2의 (A) 양극 활물질의 SEM 이미지, (B) 양극 활물질 단면의 SEM 이미지이다.Figure 2 is an SEM image of (A) the positive electrode active material of Example 2, and (B) an SEM image of a cross-section of the positive electrode active material.
도 3은 실시예 3의 (A) 양극 활물질의 SEM 이미지, (B) 양극 활물질 단면의 SEM 이미지이다.Figure 3 is an SEM image of (A) the positive electrode active material of Example 3, and (B) an SEM image of a cross-section of the positive electrode active material.
도 4는 실시예 4의 (A) 양극 활물질의 SEM 이미지, (B) 양극 활물질 단면의 SEM 이미지이다.Figure 4 is an SEM image of (A) the positive electrode active material of Example 4, and (B) an SEM image of a cross-section of the positive electrode active material.
도 5는 실시예 5의 (A) 양극 활물질의 SEM 이미지, (B) 양극 활물질 단면의 SEM 이미지이다.Figure 5 is an SEM image of (A) the positive electrode active material of Example 5, and (B) an SEM image of a cross-section of the positive electrode active material.
도 6은 실시예 6의 (A) 양극 활물질의 SEM 이미지, (B) 양극 활물질 단면의 SEM 이미지이다.Figure 6 is an SEM image of (A) the positive electrode active material of Example 6, and (B) an SEM image of a cross-section of the positive electrode active material.
도 7은 실시예 7의 (A) 양극 활물질의 SEM 이미지, (B) 양극 활물질 단면의 SEM 이미지이다.Figure 7 is an SEM image of (A) the positive electrode active material of Example 7, and (B) an SEM image of a cross-section of the positive electrode active material.
도 8은 실시예 8의 (A) 양극 활물질의 SEM 이미지, (B) 양극 활물질 단면의 SEM 이미지이다.Figure 8 is an SEM image of (A) the positive electrode active material of Example 8, and (B) an SEM image of a cross-section of the positive electrode active material.
도 9는 실시예 9의 (A) 양극 활물질의 SEM 이미지, (B) 양극 활물질 단면의 SEM 이미지이다.Figure 9 is an SEM image of (A) the positive electrode active material of Example 9, and (B) an SEM image of a cross-section of the positive electrode active material.
도 10은 실시예 10의 (A) 양극 활물질의 SEM 이미지, (B) 양극 활물질 단면의 SEM 이미지이다.Figure 10 is an SEM image of (A) the positive electrode active material of Example 10, and (B) an SEM image of a cross-section of the positive electrode active material.
도 11은 실시예 11의 (A) 양극 활물질의 SEM 이미지, (B) 양극 활물질 단면의 SEM 이미지이다.Figure 11 is an SEM image of (A) the positive electrode active material of Example 11, and (B) an SEM image of a cross-section of the positive electrode active material.
도 12는 비교예 1의 (A) 양극 활물질의 SEM 이미지, (B) 양극 활물질 단면의 SEM 이미지이다.Figure 12 is an SEM image of (A) the positive electrode active material of Comparative Example 1, and (B) an SEM image of a cross-section of the positive electrode active material.
도 13은 비교예 2의 (A) 양극 활물질의 SEM 이미지, (B) 양극 활물질 단면의 SEM 이미지이다.Figure 13 shows an SEM image of (A) the positive electrode active material of Comparative Example 2, and (B) an SEM image of a cross-section of the positive electrode active material.
도 14는 비교예 3의 (A) 양극 활물질의 SEM 이미지, (B) 양극 활물질 단면의 SEM 이미지이다.Figure 14 shows an SEM image of (A) the positive electrode active material of Comparative Example 3, and (B) an SEM image of a cross-section of the positive electrode active material.
도 15는 비교예 4의 (A) 양극 활물질의 SEM 이미지, (B) 양극 활물질 단면의 SEM 이미지이다.Figure 15 is an SEM image of (A) the positive electrode active material of Comparative Example 4, and (B) an SEM image of a cross-section of the positive electrode active material.
도 16은 비교예 5의 (A) 양극 활물질의 SEM 이미지, (B) 양극 활물질 단면의 SEM 이미지이다.Figure 16 is an SEM image of (A) the positive electrode active material of Comparative Example 5, and (B) an SEM image of a cross-section of the positive electrode active material.
도 17은 실시예 1의 양극 활물질의 SEM 이미지로부터 인공지능 모델을 기반으로 이미지 분석을 실시하여 복수의 리튬 복합 전이금속 산화물들을 세그멘테이션하여 나타낸 세그멘테이션 이미지이다.Figure 17 is a segmentation image showing multiple lithium composite transition metal oxides segmented by performing image analysis based on an artificial intelligence model from the SEM image of the positive electrode active material of Example 1.
도 18은 비교예 1의 양극 활물질의 SEM 이미지로부터 인공지능 모델을 기반으로 이미지 분석을 실시하여 복수의 리튬 복합 전이금속 산화물들을 세그멘테이션하여 나타낸 세그멘테이션 이미지이다.Figure 18 is a segmentation image showing multiple lithium composite transition metal oxides segmented by performing image analysis based on an artificial intelligence model from the SEM image of the positive electrode active material of Comparative Example 1.
도 19는 실시예 1의 양극 활물질 단면의 TEM 이미지이다.Figure 19 is a TEM image of a cross-section of the positive active material of Example 1.
도 20은 실시예 2의 양극 활물질 단면의 TEM 이미지이다.Figure 20 is a TEM image of a cross-section of the positive electrode active material of Example 2.
도 21은 실시예 8의 양극 활물질 단면의 TEM 이미지이다.Figure 21 is a TEM image of a cross-section of the positive electrode active material of Example 8.
도 22는 실시예 1의 양극 활물질 단면의 EBSD 패턴 이미지이다.Figure 22 is an EBSD pattern image of a cross-section of the positive active material of Example 1.
도 23은 실시예 2의 양극 활물질 단면의 EBSD 패턴 이미지이다.Figure 23 is an EBSD pattern image of a cross-section of the positive active material of Example 2.
도 24는 실시예 3의 양극 활물질 단면의 EBSD 패턴 이미지이다.Figure 24 is an EBSD pattern image of a cross-section of the positive active material of Example 3.
도 25는 실시예 4의 양극 활물질 단면의 EBSD 패턴 이미지이다.Figure 25 is an EBSD pattern image of a cross-section of the positive active material of Example 4.
도 26은 실시예 8의 양극 활물질 단면의 EBSD 패턴 이미지이다.Figure 26 is an EBSD pattern image of a cross-section of the positive active material of Example 8.
도 27은 실시예 10의 양극 활물질 단면의 EBSD 패턴 이미지이다.Figure 27 is an EBSD pattern image of a cross-section of the positive active material of Example 10.
도 28은 실시예 11의 양극 활물질 단면의 EBSD 패턴 이미지이다.Figure 28 is an EBSD pattern image of a cross-section of the positive active material of Example 11.
도 29는 비교예 3의 양극 활물질 단면의 EBSD 패턴 이미지이다.Figure 29 is an EBSD pattern image of a cross-section of the positive electrode active material of Comparative Example 3.
도 30은 실시예 1의 양극 활물질의 EPMA 분석 이미지이다.Figure 30 is an EPMA analysis image of the positive electrode active material of Example 1.
도 31은 실시예 1의 양극 활물질을 레이저 회절 입도 분석기를 이용하여 측정한 체적 누적 분포를, x축을 x값이 좌에서 우로 증가하는 입자 직경에 대한 선형 스케일(linear scale)로 나타내고, y축을 y값이 하에서 상으로 증가하는 중량 분포를 나타낸 도수 분포 그래프이다.Figure 31 is a graph of the cumulative volume distribution of the positive electrode active material of Example 1 measured using a laser diffraction particle size analyzer, in which the x-axis represents a linear scale for particle diameter in which the x-value increases from left to right, and the y-axis represents a weight distribution in which the y-value increases from bottom to top.
도 32는 실시예 2의 양극 활물질을 레이저 회절 입도 분석기를 이용하여 측정한 체적 누적 분포를, x축을 x값이 좌에서 우로 증가하는 입자 직경에 대한 선형 스케일(linear scale)로 나타내고, y축을 y값이 하에서 상으로 증가하는 중량 분포를 나타낸 도수 분포 그래프이다.Figure 32 is a graph of the cumulative volume distribution of the positive electrode active material of Example 2 measured using a laser diffraction particle size analyzer, in which the x-axis represents a linear scale for particle diameter in which the x-value increases from left to right, and the y-axis represents a weight distribution in which the y-value increases from bottom to top.
도 33은 실시예 3의 양극 활물질을 레이저 회절 입도 분석기를 이용하여 측정한 체적 누적 분포를, x축을 x값이 좌에서 우로 증가하는 입자 직경에 대한 선형 스케일(linear scale)로 나타내고, y축을 y값이 하에서 상으로 증가하는 중량 분포를 나타낸 도수 분포 그래프이다.Figure 33 is a frequency distribution graph showing the volume cumulative distribution measured using a laser diffraction particle size analyzer for the positive electrode active material of Example 3, in which the x-axis represents a linear scale for particle diameter in which the x-value increases from left to right, and the y-axis represents a weight distribution in which the y-value increases from bottom to top.
도 34는 실시예 4의 양극 활물질을 레이저 회절 입도 분석기를 이용하여 측정한 체적 누적 분포를, x축을 x값이 좌에서 우로 증가하는 입자 직경에 대한 선형 스케일(linear scale)로 나타내고, y축을 y값이 하에서 상으로 증가하는 중량 분포를 나타낸 도수 분포 그래프이다.Figure 34 is a graph of the cumulative volume distribution of the positive electrode active material of Example 4 measured using a laser diffraction particle size analyzer, in which the x-axis represents a linear scale for particle diameter in which the x-value increases from left to right, and the y-axis represents a weight distribution in which the y-value increases from bottom to top.
도 35는 실시예 5의 양극 활물질을 레이저 회절 입도 분석기를 이용하여 측정한 체적 누적 분포를, x축을 x값이 좌에서 우로 증가하는 입자 직경에 대한 선형 스케일(linear scale)로 나타내고, y축을 y값이 하에서 상으로 증가하는 중량 분포를 나타낸 도수 분포 그래프이다.Figure 35 is a graph of the cumulative volume distribution of the positive electrode active material of Example 5 measured using a laser diffraction particle size analyzer, in which the x-axis represents a linear scale for particle diameter in which the x-value increases from left to right, and the y-axis represents a weight distribution in which the y-value increases from bottom to top.
도 36은 실시예 6의 양극 활물질을 레이저 회절 입도 분석기를 이용하여 측정한 체적 누적 분포를, x축을 x값이 좌에서 우로 증가하는 입자 직경에 대한 선형 스케일(linear scale)로 나타내고, y축을 y값이 하에서 상으로 증가하는 중량 분포를 나타낸 도수 분포 그래프이다.Figure 36 is a graph of the cumulative volume distribution of the positive electrode active material of Example 6 measured using a laser diffraction particle size analyzer, in which the x-axis represents a linear scale for particle diameter in which the x-value increases from left to right, and the y-axis represents a weight distribution in which the y-value increases from bottom to top.
도 37은 실시예 7의 양극 활물질을 레이저 회절 입도 분석기를 이용하여 측정한 체적 누적 분포를, x축을 x값이 좌에서 우로 증가하는 입자 직경에 대한 선형 스케일(linear scale)로 나타내고, y축을 y값이 하에서 상으로 증가하는 중량 분포를 나타낸 도수 분포 그래프이다.Figure 37 is a graph of the cumulative volume distribution of the positive electrode active material of Example 7 measured using a laser diffraction particle size analyzer, in which the x-axis represents a linear scale for particle diameter in which the x-value increases from left to right, and the y-axis represents a weight distribution in which the y-value increases from bottom to top.
도 38은 실시예 8의 양극 활물질을 레이저 회절 입도 분석기를 이용하여 측정한 체적 누적 분포를, x축을 x값이 좌에서 우로 증가하는 입자 직경에 대한 선형 스케일(linear scale)로 나타내고, y축을 y값이 하에서 상으로 증가하는 중량 분포를 나타낸 도수 분포 그래프이다.Figure 38 is a graph of the cumulative volume distribution of the positive electrode active material of Example 8 measured using a laser diffraction particle size analyzer, in which the x-axis represents a linear scale for particle diameter in which the x-value increases from left to right, and the y-axis represents a weight distribution in which the y-value increases from bottom to top.
도 39는 실시예 9의 양극 활물질을 레이저 회절 입도 분석기를 이용하여 측정한 체적 누적 분포를, x축을 x값이 좌에서 우로 증가하는 입자 직경에 대한 선형 스케일(linear scale)로 나타내고, y축을 y값이 하에서 상으로 증가하는 중량 분포를 나타낸 도수 분포 그래프이다.Figure 39 is a graph of the cumulative volume distribution of the positive electrode active material of Example 9 measured using a laser diffraction particle size analyzer, in which the x-axis represents a linear scale for particle diameter in which the x-value increases from left to right, and the y-axis represents a weight distribution in which the y-value increases from bottom to top.
도 40은 실시예 10의 양극 활물질을 레이저 회절 입도 분석기를 이용하여 측정한 체적 누적 분포를, x축을 x값이 좌에서 우로 증가하는 입자 직경에 대한 선형 스케일(linear scale)로 나타내고, y축을 y값이 하에서 상으로 증가하는 중량 분포를 나타낸 도수 분포 그래프이다.Figure 40 is a graph of the cumulative volume distribution of the positive electrode active material of Example 10 measured using a laser diffraction particle size analyzer, in which the x-axis represents a linear scale for particle diameter in which the x-value increases from left to right, and the y-axis represents a weight distribution in which the y-value increases from bottom to top.
도 41은 실시예 11의 양극 활물질을 레이저 회절 입도 분석기를 이용하여 측정한 체적 누적 분포를, x축을 x값이 좌에서 우로 증가하는 입자 직경에 대한 선형 스케일(linear scale)로 나타내고, y축을 y값이 하에서 상으로 증가하는 중량 분포를 나타낸 도수 분포 그래프이다.Figure 41 is a graph of the cumulative volume distribution of the positive electrode active material of Example 11 measured using a laser diffraction particle size analyzer, in which the x-axis represents a linear scale for particle diameter in which the x-value increases from left to right, and the y-axis represents a weight distribution in which the y-value increases from bottom to top.
도 42는 비교예 1의 양극 활물질을 레이저 회절 입도 분석기를 이용하여 측정한 체적 누적 분포를, x축을 x값이 좌에서 우로 증가하는 입자 직경에 대한 선형 스케일(linear scale)로 나타내고, y축을 y값이 하에서 상으로 증가하는 중량 분포를 나타낸 도수 분포 그래프이다.Figure 42 is a graph of the cumulative volume distribution of the positive electrode active material of Comparative Example 1 measured using a laser diffraction particle size analyzer, in which the x-axis represents a linear scale for particle diameter in which the x-value increases from left to right, and the y-axis represents a weight distribution in which the y-value increases from bottom to top.
도 43은 비교예 3의 양극 활물질을 레이저 회절 입도 분석기를 이용하여 측정한 체적 누적 분포를, x축을 x값이 좌에서 우로 증가하는 입자 직경에 대한 선형 스케일(linear scale)로 나타내고, y축을 y값이 하에서 상으로 증가하는 중량 분포를 나타낸 도수 분포 그래프이다.Figure 43 is a frequency distribution graph showing the volume cumulative distribution measured using a laser diffraction particle size analyzer for the positive electrode active material of Comparative Example 3, in which the x-axis represents a linear scale for particle diameter in which the x-value increases from left to right, and the y-axis represents a weight distribution in which the y-value increases from bottom to top.
도 44는 실시예 1의 양극 활물질을 레이저 회절 입도 분석기를 이용하여 측정한 체적 누적 분포를, x축을 x값이 좌에서 우로 증가하는 입자 직경에 대한 로그 스케일(log scale)로 나타내고, y축을 y값이 하에서 상으로 증가하는 중량 분포를 나타낸 도수 분포 그래프이다.Figure 44 is a frequency distribution graph showing the volume cumulative distribution measured using a laser diffraction particle size analyzer for the positive electrode active material of Example 1, in which the x-axis represents a log scale for particle diameter in which the x-value increases from left to right, and the y-axis represents a weight distribution in which the y-value increases from bottom to top.
도 45는 실시예 2의 양극 활물질을 레이저 회절 입도 분석기를 이용하여 측정한 체적 누적 분포를, x축을 x값이 좌에서 우로 증가하는 입자 직경에 대한 로그 스케일(log scale)로 나타내고, y축을 y값이 하에서 상으로 증가하는 중량 분포를 나타낸 도수 분포 그래프이다.Figure 45 is a frequency distribution graph showing the volume cumulative distribution measured using a laser diffraction particle size analyzer for the positive electrode active material of Example 2, in which the x-axis represents a log scale for particle diameter in which the x-value increases from left to right, and the y-axis represents a weight distribution in which the y-value increases from bottom to top.
도 46은 실시예 3의 양극 활물질을 레이저 회절 입도 분석기를 이용하여 측정한 체적 누적 분포를, x축을 x값이 좌에서 우로 증가하는 입자 직경에 대한 로그 스케일(log scale)로 나타내고, y축을 y값이 하에서 상으로 증가하는 중량 분포를 나타낸 도수 분포 그래프이다.Figure 46 is a frequency distribution graph showing the volume cumulative distribution measured using a laser diffraction particle size analyzer for the positive electrode active material of Example 3, in which the x-axis represents a log scale for particle diameter in which the x-value increases from left to right, and the y-axis represents a weight distribution in which the y-value increases from bottom to top.
도 47은 실시예 4의 양극 활물질을 레이저 회절 입도 분석기를 이용하여 측정한 체적 누적 분포를, x축을 x값이 좌에서 우로 증가하는 입자 직경에 대한 로그 스케일(log scale)로 나타내고, y축을 y값이 하에서 상으로 증가하는 중량 분포를 나타낸 도수 분포 그래프이다.Figure 47 is a frequency distribution graph showing the volume cumulative distribution measured using a laser diffraction particle size analyzer for the positive electrode active material of Example 4, in which the x-axis represents a log scale for particle diameter in which the x-value increases from left to right, and the y-axis represents a weight distribution in which the y-value increases from bottom to top.
도 48은 실시예 5의 양극 활물질을 레이저 회절 입도 분석기를 이용하여 측정한 체적 누적 분포를, x축을 x값이 좌에서 우로 증가하는 입자 직경에 대한 로그 스케일(log scale)로 나타내고, y축을 y값이 하에서 상으로 증가하는 중량 분포를 나타낸 도수 분포 그래프이다.Figure 48 is a frequency distribution graph showing the volume cumulative distribution measured using a laser diffraction particle size analyzer for the positive electrode active material of Example 5, in which the x-axis represents a log scale for particle diameter in which the x-value increases from left to right, and the y-axis represents a weight distribution in which the y-value increases from bottom to top.
도 49는 실시예 6의 양극 활물질을 레이저 회절 입도 분석기를 이용하여 측정한 체적 누적 분포를, x축을 x값이 좌에서 우로 증가하는 입자 직경에 대한 로그 스케일(log scale)로 나타내고, y축을 y값이 하에서 상으로 증가하는 중량 분포를 나타낸 도수 분포 그래프이다.Figure 49 is a frequency distribution graph showing the volume cumulative distribution measured using a laser diffraction particle size analyzer for the positive electrode active material of Example 6, in which the x-axis represents a log scale for particle diameter in which the x-value increases from left to right, and the y-axis represents a weight distribution in which the y-value increases from bottom to top.
도 50은 실시예 7의 양극 활물질을 레이저 회절 입도 분석기를 이용하여 측정한 체적 누적 분포를, x축을 x값이 좌에서 우로 증가하는 입자 직경에 대한 로그 스케일(log scale)로 나타내고, y축을 y값이 하에서 상으로 증가하는 중량 분포를 나타낸 도수 분포 그래프이다.Figure 50 is a frequency distribution graph showing the volume cumulative distribution measured using a laser diffraction particle size analyzer for the positive electrode active material of Example 7, in which the x-axis represents a log scale for particle diameter in which the x-value increases from left to right, and the y-axis represents a weight distribution in which the y-value increases from bottom to top.
도 51은 실시예 8의 양극 활물질을 레이저 회절 입도 분석기를 이용하여 측정한 체적 누적 분포를, x축을 x값이 좌에서 우로 증가하는 입자 직경에 대한 로그 스케일(log scale)로 나타내고, y축을 y값이 하에서 상으로 증가하는 중량 분포를 나타낸 도수 분포 그래프이다.Figure 51 is a frequency distribution graph showing the volume cumulative distribution measured using a laser diffraction particle size analyzer for the positive electrode active material of Example 8, in which the x-axis represents a log scale for particle diameter in which the x-value increases from left to right, and the y-axis represents a weight distribution in which the y-value increases from bottom to top.
도 52는 실시예 9의 양극 활물질을 레이저 회절 입도 분석기를 이용하여 측정한 체적 누적 분포를, x축을 x값이 좌에서 우로 증가하는 입자 직경에 대한 로그 스케일(log scale)로 나타내고, y축을 y값이 하에서 상으로 증가하는 중량 분포를 나타낸 도수 분포 그래프이다.Figure 52 is a frequency distribution graph showing the volume cumulative distribution measured using a laser diffraction particle size analyzer for the positive electrode active material of Example 9, in which the x-axis represents a log scale for particle diameter in which the x-value increases from left to right, and the y-axis represents a weight distribution in which the y-value increases from bottom to top.
도 53은 실시예 10의 양극 활물질을 레이저 회절 입도 분석기를 이용하여 측정한 체적 누적 분포를, x축을 x값이 좌에서 우로 증가하는 입자 직경에 대한 로그 스케일(log scale)로 나타내고, y축을 y값이 하에서 상으로 증가하는 중량 분포를 나타낸 도수 분포 그래프이다.Figure 53 is a frequency distribution graph showing the volume cumulative distribution measured using a laser diffraction particle size analyzer for the positive electrode active material of Example 10, in which the x-axis represents a log scale for particle diameter in which the x-value increases from left to right, and the y-axis represents a weight distribution in which the y-value increases from bottom to top.
도 54는 실시예 11의 양극 활물질을 레이저 회절 입도 분석기를 이용하여 측정한 체적 누적 분포를, x축을 x값이 좌에서 우로 증가하는 입자 직경에 대한 로그 스케일(log scale)로 나타내고, y축을 y값이 하에서 상으로 증가하는 중량 분포를 나타낸 도수 분포 그래프이다.Figure 54 is a frequency distribution graph showing the volume cumulative distribution measured using a laser diffraction particle size analyzer for the positive electrode active material of Example 11, in which the x-axis represents a log scale for particle diameter in which the x-value increases from left to right, and the y-axis represents a weight distribution in which the y-value increases from bottom to top.
도 55는 비교예 1의 양극 활물질을 레이저 회절 입도 분석기를 이용하여 측정한 체적 누적 분포를, x축을 x값이 좌에서 우로 증가하는 입자 직경에 대한 로그 스케일(log scale)로 나타내고, y축을 y값이 하에서 상으로 증가하는 중량 분포를 나타낸 도수 분포 그래프이다.Figure 55 is a frequency distribution graph showing the volume cumulative distribution measured using a laser diffraction particle size analyzer for the positive electrode active material of Comparative Example 1, in which the x-axis represents a log scale for particle diameter in which the x-value increases from left to right, and the y-axis represents a weight distribution in which the y-value increases from bottom to top.
도 56은 비교예 3의 양극 활물질을 레이저 회절 입도 분석기를 이용하여 측정한 체적 누적 분포를, x축을 x값이 좌에서 우로 증가하는 입자 직경에 대한 로그 스케일(log scale)로 나타내고, y축을 y값이 하에서 상으로 증가하는 중량 분포를 나타낸 도수 분포 그래프이다.Figure 56 is a frequency distribution graph showing the volume cumulative distribution measured using a laser diffraction particle size analyzer for the positive electrode active material of Comparative Example 3, in which the x-axis represents a log scale for particle diameter in which the x-value increases from left to right, and the y-axis represents a weight distribution in which the y-value increases from bottom to top.
이하, 본 발명에 대한 이해를 돕기 위하여 본 발명을 더욱 상세하게 설명한다.Hereinafter, the present invention will be described in more detail to help understand the present invention.
본 발명의 설명 및 청구범위에서 사용된 용어나 단어는, 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여, 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.The terms or words used in the description and claims of the present invention should not be interpreted as limited to their usual or dictionary meanings, but should be interpreted as meanings and concepts that conform to the technical idea of the present invention, based on the principle that the inventor can appropriately define the concept of the term in order to explain his or her own invention in the best manner.
본 발명에서 용어 '1차 입자'는 주사전자현미경(SEM)을 통해 양극 활물질의 단면을 관찰하였을 때 1개의 덩어리로 구별되는 최소 입자 단위를 의미하는 것으로, 단결정 또는 복수개의 결정립으로 이루어질 수 있다.In the present invention, the term 'primary particle' means the smallest particle unit that can be distinguished as a single lump when observing the cross-section of a positive electrode active material through a scanning electron microscope (SEM), and may be composed of a single crystal or multiple crystal grains.
본 발명에서 용어 '2차 입자'는 복수 개의 1차 입자가 응집되어 형성되는 2차 구조체를 의미한다. 상기 2차 입자의 평균 입경은 입도 분석기를 이용하여 측정될 수 있다.In the present invention, the term 'secondary particle' refers to a secondary structure formed by agglomeration of multiple primary particles. The average particle diameter of the secondary particles can be measured using a particle size analyzer.
본 발명에서 용어 '평균 입경(D50)'은 입경에 따른 체적 누적 분포의 50 % 지점에서의 입경을 의미한다. 상기 평균 입경은 측정 대상 분말을 분산매 중에 분산시킨 후, 시판되는 레이저 회절 입도 측정 장치(예를 들어 Microtrac社의 S3500)에 도입하여 입자들이 레이저 빔을 통과할 때 입자 크기에 따른 회절패턴 차이를 측정하여 입도 분포를 산출하고, 측정 장치에 있어서의 입경에 따른 체적 누적 분포의 50%가 되는 지점에서의 입자 직경을 산출함으로써, D50을 측정할 수 있다.In the present invention, the term 'average particle diameter ( D50 )' means the particle diameter at the 50% point of the volume cumulative distribution according to particle diameter. The average particle diameter can be measured by dispersing the target powder in a dispersion medium, introducing it into a commercially available laser diffraction particle size measuring device (e.g., S3500 from Microtrac), and measuring the difference in diffraction patterns according to particle size when the particles pass through the laser beam to calculate the particle size distribution, and calculating the particle diameter at the point where it becomes 50% of the volume cumulative distribution according to particle diameter in the measuring device, thereby measuring D50 .
본 발명에서 용어 '1차 입자의 장경'은 2차 입자의 표면 또는 단면에 대한 SEM 이미지로부터 관찰되는 1차 입자에 있어서, 1차 입자 경계의 두 지점을 지나는 선을 그었을 때, 가장 긴 선분의 길이이다.In the present invention, the term 'major axis of a primary particle' refers to the length of the longest line segment when a line is drawn passing through two points of a primary particle boundary in a primary particle observed from an SEM image of the surface or cross-section of a secondary particle.
본 발명에서 용어 '1차 입자의 단경'은 2차 입자의 표면 또는 단면에 대한 SEM 이미지로부터 관찰되는 1차 입자에 있어서, 1차 입자 경계의 두 지점을 지나는 선을 그었을 때, 가장 짧은 선분의 길이이다.In the present invention, the term 'shortest diameter of a primary particle' refers to the length of the shortest line segment when a line is drawn passing through two points of a primary particle boundary in a primary particle observed from an SEM image of the surface or cross-section of a secondary particle.
양극 활물질Bipolar active material
본 발명은 양극 활물질을 제공한다.The present invention provides a positive electrode active material.
본 발명의 일 실시예에 따르면, 복수 개의 1차 입자가 응집된 2차 입자를 포함하고, 상기 복수 개의 1차 입자는 SEM 이미지로부터 측정한 평균 입자 크기가 1.5 ㎛ 이상, 5.0 ㎛ 이하인 것일 수 있다.According to one embodiment of the present invention, a plurality of primary particles may include secondary particles in which the plurality of primary particles are aggregated, and the plurality of primary particles may have an average particle size measured from a SEM image of 1.5 ㎛ or more and 5.0 ㎛ or less.
본 발명의 일 실시예에 따르면, 상기 2차 입자는 복수 개의 1차 입자가 응집된 2차 입자로서, 적어도 2개, 구체적인 예로 적어도 3개 이상의 1차 입자가 응집된 것일 수 있다.According to one embodiment of the present invention, the secondary particle may be a secondary particle formed by agglomeration of a plurality of primary particles, and may be a secondary particle formed by agglomeration of at least two, specifically, at least three or more primary particles.
본 발명의 일 실시예에 따르면, 상기 복수 개의 1차 입자는 SEM 이미지로부터 측정한 평균 입자 크기가 1.5 ㎛ 이상, 1.6 ㎛ 이상, 1.7 ㎛ 이상, 1.8 ㎛ 이상, 1.9 ㎛ 이상, 2.0 ㎛ 이상, 2.1 ㎛ 이상, 2.2 ㎛ 이상, 2.3 ㎛ 이상, 2.4 ㎛ 이상, 또는 2.5 ㎛ 이상인 것일 수 있고, 또한, 5.0 ㎛ 이하, 4.9 ㎛ 이하, 4.8 ㎛ 이하, 4.7 ㎛ 이하, 4.6 ㎛ 이하, 4.5 ㎛ 이하, 4.4 ㎛ 이하, 4.3 ㎛ 이하, 4.2 ㎛ 이하, 4.1 ㎛ 이하, 4.0 ㎛ 이하, 3.9 ㎛ 이하, 3.8 ㎛ 이하, 3.7 ㎛ 이하, 3.6 ㎛ 이하, 3.5 ㎛ 이하, 3.4 ㎛ 이하, 3.3 ㎛ 이하, 3.2 ㎛ 이하, 3.1 ㎛ 이하, 또는 3.0 ㎛ 이하인 것일 수 있다. 여기서, 상기 복수 개의 1차 입자에 대한 평균 입자 크기를 SEM 이미지로부터 측정할 때, 각각의 1차 입자의 입자 크기는 1차 입자의 장경을 기준으로 한 입자 크기일 수 있다. 이 범위 내에서 양극 활물질의 압연 밀도를 더욱 향상시키면서, 리튬이차전지의 수명을 더욱 향상시킬 수 있다.According to one embodiment of the present invention, the plurality of primary particles may have an average particle size measured from a SEM image of 1.5 ㎛ or more, 1.6 ㎛ or more, 1.7 ㎛ or more, 1.8 ㎛ or more, 1.9 ㎛ or more, 2.0 ㎛ or more, 2.1 ㎛ or more, 2.2 ㎛ or more, 2.3 ㎛ or more, 2.4 ㎛ or more, or 2.5 ㎛ or more, and further, 5.0 ㎛ or less, 4.9 ㎛ or less, 4.8 ㎛ or less, 4.7 ㎛ or less, 4.6 ㎛ or less, 4.5 ㎛ or less, 4.4 ㎛ or less, 4.3 ㎛ or less, 4.2 ㎛ or less, 4.1 ㎛ or less, 4.0 ㎛ or less, 3.9 ㎛ or less, 3.8 ㎛ or less, 3.7 ㎛ or less, 3.6 ㎛ or less, 3.5 The average particle size of the plurality of primary particles may be 3.4 ㎛ or less, 3.3 ㎛ or less, 3.2 ㎛ or less, 3.1 ㎛ or less, or 3.0 ㎛ or less. Here, when the average particle size of the plurality of primary particles is measured from the SEM image, the particle size of each primary particle may be a particle size based on the major diameter of the primary particle. Within this range, the rolling density of the positive electrode active material can be further improved, while further improving the life of the lithium secondary battery.
본 발명의 일 실시예에 따르면, 상기 양극 활물질은 니켈, 코발트 및 망간을 포함하는 리튬 전이금속 복합 산화물을 포함하는 것일 수 있다. 구체적인 예로, 상기 양극 활물질은 전체 전이금속 중 니켈을 60 몰% 이상으로 포함하는 리튬 전이금속 복합 산화물을 포함하는 것일 수 있다. 상기 리튬 전이금속 복합 산화물은 1차 입자, 2차 입자 및 이들을 포함하는 양극 활물질 자체일 수 있고, 구체적인 예로, 상기 양극 활물질은 리튬 전이금속 복합 산화물로 이루어진 복수 개의 1차 입자가 응집된 2차 입자를 포함하는 것일 수 있다.According to one embodiment of the present invention, the positive electrode active material may include a lithium transition metal composite oxide including nickel, cobalt, and manganese. As a specific example, the positive electrode active material may include a lithium transition metal composite oxide including nickel at 60 mol% or more among the total transition metals. The lithium transition metal composite oxide may be a primary particle, a secondary particle, and the positive electrode active material itself including these, and as a specific example, the positive electrode active material may include a secondary particle in which a plurality of primary particles formed of the lithium transition metal composite oxide are aggregated.
본 발명의 일 실시예에 따르면, 상기 양극 활물질은 하기 화학식 1로 표시되는 평균 조성을 갖는 리튬 전이금속 복합 산화물을 포함하는 것일 수 있다.According to one embodiment of the present invention, the positive electrode active material may include a lithium transition metal composite oxide having an average composition represented by the following chemical formula 1.
[화학식 1][Chemical Formula 1]
LixNiaCobMncM1 dO2 Li x Ni a Co b Mn c M 1 d O 2
*52상기 화학식 1에서, M1은 Al, Zr, B, W, Mo, Cr, Nb, Mg, Hf, Ta, La, Ti, Sr, Ba, Ce, V, F, P, S 및 Y로 이루어진 군으로부터 선택되는 1종 이상이며, 0.9≤x≤1.3, 0.6≤a<1.0, 0<b<0.4, 0<c<0.4, 0≤d≤0.2, a+b+c+d=1이다.*52 In the above chemical formula 1, M 1 is at least one selected from the group consisting of Al, Zr, B, W, Mo, Cr, Nb, Mg, Hf, Ta, La, Ti, Sr, Ba, Ce, V, F, P, S, and Y, and 0.9≤x≤1.3, 0.6≤a<1.0, 0<b<0.4, 0<c<0.4, 0≤d≤0.2, a+b+c+d=1.
본 발명의 일 실시예에 따르면, 상기 화학식 1에서, x는 리튬 전이금속 복합 산화물 내 전이금속에 대한 리튬의 몰비로서, 0.9 이상, 0.95 이상, 또는 1.0 이상일 수 있고, 또한, 1.1 이하, 1.07 이하, 1.05 이하, 또는 1.03 이하일 수 있다.According to one embodiment of the present invention, in the chemical formula 1, x is a molar ratio of lithium to a transition metal in the lithium-transition metal composite oxide, which may be 0.9 or more, 0.95 or more, or 1.0 or more, and further may be 1.1 or less, 1.07 or less, 1.05 or less, or 1.03 or less.
본 발명의 일 실시예에 따르면, 상기 화학식 1에서, a, b, c 및 d는 각각 전이금속 중 니켈(Ni), 코발트(Co), 망간(Mn) 및 도핑 원소(M1)에 대한 몰 분율일 수 있다. 구체적인 예로, 상기 a는 전이금속 중 니켈(Ni)에 대한 몰 분율로서 0.6 이상, 0.7 이상, 0.8 이상, 0.85 이상, 0.88 이상, 0.90 이상, 0.91 이상, 0.92 이상, 0.93 이상, 0.94 이상, 0.95 이상, 또는 0.96 이상일 수 있고, 또한, 1.0 미만, 0.99 이하, 0.98 이하, 0.97 이하, 또는 0.96 이하일 수 있다. 또한, 상기 b는 전이금속 중 코발트(Co)에 대한 몰 분율로서 0 초과, 0.01 이상, 0.02 이상, 또는 0.03 이상일 수 있고, 또한, 0.4 미만, 0.3 이하, 0.2 이하, 0.1 이하, 0.09 이하, 0.08 이하, 0.07 이하, 0.06 이하, 또는 0.05 이하일 수 있다. 상기 c는 전이금속 중 망간(Mn)에 대한 몰 분율로서 0 초과, 0.01 이상, 또는 0.05 이상일 수 있고, 또한, 0.4 미만, 0.3 이하, 0.2 이하, 0.1 이하, 0.09 이하, 0.08 이하, 0.07 이하, 0.06 이하, 또는 0.05 이하일 수 있다. 상기 d는 전이금속 중 도핑 원소(M1)에 대한 몰 분율로서 0, 0.01 이상, 0.02 이상, 0.03 이상, 0.04 이상, 0.05 이상, 0.06 이상, 0.07 이상, 0.08 이상, 0.09 이상, 0.10 이상, 0.11 이상, 0.12 이상, 0.13 이상, 0.14 이상, 0.15 이상, 0.16 이상, 0.17 이상, 0.18 이상, 또는 0.19 이상일 수 있고, 또한, 0.20 미만, 0.19 이하, 0.18 이하, 0.17 이하, 0.16 이하, 0.15 이하, 0.14 이하, 0.13 이하, 0.12 이하, 0.11 이하, 0.10 이하, 0.09 이하, 0.08 이하, 0.07 이하, 0.06 이하, 0.05 이하, 0.04 이하, 0.03 이하, 0.02 이하, 또는 0.01 이하일 수 있다. 리튬 전이금속 복합 산화물의 조성을 위와 같이 조절하는 경우, 용량을 더욱 향상시킬 수 있다.According to one embodiment of the present invention, in the chemical formula 1, a, b, c, and d may be mole fractions of nickel (Ni), cobalt (Co), manganese (Mn) among transition metals, and a doping element (M 1 ), respectively. As a specific example, a may be a mole fraction of nickel (Ni) among transition metals, which may be 0.6 or more, 0.7 or more, 0.8 or more, 0.85 or more, 0.88 or more, 0.90 or more, 0.91 or more, 0.92 or more, 0.93 or more, 0.94 or more, 0.95 or more, or 0.96 or more, and further may be less than 1.0, 0.99 or less, 0.98 or less, 0.97 or less, or 0.96 or less. In addition, the b may be a mole fraction of cobalt (Co) among the transition metals, greater than 0, 0.01, 0.02, or 0.03, and further may be less than 0.4, 0.3 or less, 0.2 or less, 0.1 or less, 0.09 or less, 0.08 or less, 0.07 or less, 0.06 or less, or 0.05 or less. The c may be a mole fraction of manganese (Mn) among the transition metals, greater than 0, 0.01 or more, or 0.05 or more, and further may be less than 0.4, 0.3 or less, 0.2 or less, 0.1 or less, 0.09 or less, 0.08 or less, 0.07 or less, 0.06 or less, or 0.05 or less. The above d is a mole fraction of a doping element (M 1 ) among transition metals and may be 0, 0.01 or more, 0.02 or more, 0.03 or more, 0.04 or more, 0.05 or more, 0.06 or more, 0.07 or more, 0.08 or more, 0.09 or more, 0.10 or more, 0.11 or more, 0.12 or more, 0.13 or more, 0.14 or more, 0.15 or more, 0.16 or more, 0.17 or more, 0.18 or more, or 0.19 or more, and further, less than 0.20, 0.19 or less, 0.18 or less, 0.17 or less, 0.16 or less, 0.15 or less, 0.14 or less, 0.13 or less, 0.12 or less, 0.11 or less, 0.10 or less, It can be 0.09 or less, 0.08 or less, 0.07 or less, 0.06 or less, 0.05 or less, 0.04 or less, 0.03 or less, 0.02 or less, or 0.01 or less. When the composition of the lithium transition metal composite oxide is adjusted as above, the capacity can be further improved.
본 발명의 일 실시예에 따르면, 상기 복수 개의 1차 입자는 단결정 1차 입자를 포함하는 것일 수 있고, 이 경우, 양극 활물질의 압연 밀도를 더욱 향상시킬 수 있다. 상기 단결정 1차 입자는 단일 결정(single crystal)으로 이루어진 1차 입자를 의미한다.According to one embodiment of the present invention, the plurality of primary particles may include single-crystal primary particles, in which case the rolling density of the positive electrode active material can be further improved. The single-crystal primary particles refer to primary particles formed of a single crystal.
본 발명의 일 실시예에 따르면, 상기 2차 입자는 레이저 회절 입도 분석기를 이용하여 측정한 체적 누적 분포에 따른 평균 입경(D50)이 7.0 ㎛ 이상, 20.0 ㎛ 이하인 것일 수 있다. 구체적인 예로, 상기 2차 입자는 평균 입경(D50)이 7.0 ㎛ 이상, 7.1 ㎛ 이상, 7.2 ㎛ 이상, 7.3 ㎛ 이상, 7.4 ㎛ 이상, 7.5 ㎛ 이상, 7.6 ㎛ 이상, 7.7 ㎛ 이상, 7.8 ㎛ 이상, 7.9 ㎛ 이상, 8.0 ㎛ 이상, 8.1 ㎛ 이상, 8.2 ㎛ 이상, 8.3 ㎛ 이상, 8.4 ㎛ 이상, 8.5 ㎛ 이상, 8.6 ㎛ 이상, 8.7 ㎛ 이상, 8.8 ㎛ 이상, 8.9 ㎛ 이상, 또는 9.0 ㎛ 이상인 것일 수 있고, 또한, 20.0 ㎛ 이하, 19.9 ㎛ 이하, 19.8 ㎛ 이하, 19.7 ㎛ 이하, 19.6 ㎛ 이하, 19.5 ㎛ 이하, 19.4 ㎛ 이하, 19.3 ㎛ 이하, 19.2 ㎛ 이하, 19.1 ㎛ 이하, 19.0 ㎛ 이하, 18.9 ㎛ 이하, 18.8 ㎛ 이하, 18.7 ㎛ 이하, 18.6 ㎛ 이하, 18.5 ㎛ 이하, 18.4 ㎛ 이하, 18.3 ㎛ 이하, 18.2 ㎛ 이하, 18.1 ㎛ 이하, 18.0 ㎛ 이하, 17.9 ㎛ 이하, 17.8 ㎛ 이하, 17.7 ㎛ 이하, 17.6 ㎛ 이하, 17.5 ㎛ 이하, 17.4 ㎛ 이하, 17.3 ㎛ 이하, 17.2 ㎛ 이하, 17.1 ㎛ 이하, 17.0 ㎛ 이하, 16.9 ㎛ 이하, 16.8 ㎛ 이하, 16.7 ㎛ 이하, 16.6 ㎛ 이하, 16.5 ㎛ 이하, 16.4 ㎛ 이하, 16.3 ㎛ 이하, 16.2 ㎛ 이하, 16.1 ㎛ 이하, 16.0 ㎛ 이하, 15.9 ㎛ 이하, 15.8 ㎛ 이하, 15.7 ㎛ 이하, 15.6 ㎛ 이하, 15.5 ㎛ 이하, 15.4 ㎛ 이하, 15.3 ㎛ 이하, 15.2 ㎛ 이하, 15.1 ㎛ 이하, 또는 15.0 ㎛ 이하인 것일 수 있다. 이 범위 내에서 양극 활물질의 압연 밀도를 더욱 향상시킬 수 있고, 수명을 더욱 향상시킬 수 있다.According to one embodiment of the present invention, the secondary particles may have an average particle diameter ( D50 ) of 7.0 ㎛ or more and 20.0 ㎛ or less based on a volume cumulative distribution measured using a laser diffraction particle size analyzer. As a specific example, the secondary particles may have an average particle diameter ( D50 ) of 7.0 ㎛ or more, 7.1 ㎛ or more, 7.2 ㎛ or more, 7.3 ㎛ or more, 7.4 ㎛ or more, 7.5 ㎛ or more, 7.6 ㎛ or more, 7.7 ㎛ or more, 7.8 ㎛ or more, 7.9 ㎛ or more, 8.0 ㎛ or more, 8.1 ㎛ or more, 8.2 ㎛ or more, 8.3 ㎛ or more, 8.4 ㎛ or more, 8.5 ㎛ or more, 8.6 ㎛ or more, 8.7 ㎛ or more, 8.8 ㎛ or more, 8.9 ㎛ or more, or 9.0 ㎛ or more, and further, 20.0 ㎛ or less, 19.9 ㎛ or less, 19.8 ㎛ or less, 19.7 ㎛ or less, 19.6 ㎛ or less, 19.5 ㎛ or less, 19.4 ㎛ or less, 19.3 ㎛ or less, 19.2 ㎛ or less, 19.1 ㎛ or less, 19.0 ㎛ or less, 18.9 ㎛ or less, 18.8 ㎛ or less, 18.7 ㎛ or less, 18.6 ㎛ or less, 18.5 ㎛ or less, 18.4 ㎛ or less, 18.3 ㎛ or less, 18.2 ㎛ or less, 18.1 ㎛ or less, 18.0 ㎛ or less, 17.9 ㎛ or less, 17.8 ㎛ or less, 17.7 ㎛ or less, 17.6 ㎛ or less, 17.5 ㎛ or less, 17.4 ㎛ or less, 17.3 ㎛ or less, 17.2 ㎛ or less, 17.1 ㎛ or less, 17.0 ㎛ or less, 16.9 ㎛ or less, It may be 16.8 ㎛ or less, 16.7 ㎛ or less, 16.6 ㎛ or less, 16.5 ㎛ or less, 16.4 ㎛ or less, 16.3 ㎛ or less, 16.2 ㎛ or less, 16.1 ㎛ or less, 16.0 ㎛ or less, 15.9 ㎛ or less, 15.8 ㎛ or less, 15.7 ㎛ or less, 15.6 ㎛ or less, 15.5 ㎛ or less, 15.4 ㎛ or less, 15.3 ㎛ or less, 15.2 ㎛ or less, 15.1 ㎛ or less, or 15.0 ㎛ or less. Within this range, the rolling density of the positive electrode active material can be further improved, and the lifespan can be further improved.
구체적인 예로, 상기 양극 활물질은 전체 전이금속 중 니켈을 60 몰% 이상으로 포함하는 리튬 전이금속 복합 산화물을 포함하는 하이 니켈 양극 활물질이면서, 복수 개의 1차 입자가 종래의 단입자와 같은 입자 크기가 0.5 ㎛ 이상, 5.0 ㎛ 이하인 1차 입자, 구체적으로 1.0 ㎛ 이상인 미크론 수준의 1차 입자, 더욱 구체적으로 SEM 이미지로부터 측정한 평균 입자 크기가 2.0 ㎛ 이상, 3.5 ㎛ 이하인 복수 개의 1차 입자가 응집되어 형성된 평균 입경(D50)이 7.0 ㎛ 이상, 20.0 ㎛ 이하인 대입경의 2차 입자를 포함하는 것일 수 있고, 단입자 형태의 1차 입자가 응집되어 2차 입자 형태의 대입자를 형성하였다는 의미에서, 대입 단입자 클러스터로 표현될 수 있다.As a specific example, the cathode active material may be a high nickel cathode active material including a lithium transition metal composite oxide containing nickel at 60 mol% or more among the total transition metal, wherein a plurality of primary particles may include secondary particles having a large particle size (D50) of 7.0 ㎛ or more and 20.0 ㎛ or less, which are formed by agglomeration of primary particles having a particle size of 0.5 ㎛ or more and 5.0 ㎛ or less, specifically, micron -level primary particles of 1.0 ㎛ or more, and more specifically, a plurality of primary particles having an average particle size of 2.0 ㎛ or more and 3.5 ㎛ or less as measured from a SEM image, and in the sense that primary particles in the form of single particles agglomerate to form large particles in the form of secondary particles, it may be expressed as a large particle single particle cluster.
앞서 본 발명의 배경이 되는 기술에서 기재한 것과 같이, 1차 입자의 크기가 미크론 수준인 2차 입자 형태의 양극 활물질을 제조하기 위해서는, 1차 입자의 크기가 1 ㎛ 미만의 서브미크론 수준인 2차 입자 대비 더욱 높은 온도에서 열처리를 실시할 필요가 있다. 그러나, 열처리 온도가 높아질수록 리튬 전이금속 복합 산화물의 층형 구조가 암염 구조로 퇴화되어, 결정성 저하의 원인이 되고, 이는 곧 양극 활물질의 성능을 저하시키는 원인이 된다. 특히, 높은 열처리 온도에서의 리튬 전이금속 복합 산화물의 층형 구조의 암염 구조로의 퇴화는 니켈이 가장 취약하기 때문에, 양극 활물질을 구성하는 리튬 전이금속 복합 산화물 내 니켈의 함량이 높아지는 경우, 퇴화는 더욱 심화된다. 따라서, 종래에는 1차 입자의 크기가 미크론 수준인 2차 입자 형태의 양극 활물질로서, 리튬 전이금속 복합 산화물의 전이금속 중 니켈의 함량이 50 몰% 수준인 미드 니켈 양극 활물질에 대해서만 적용할 수 있었고, 리튬 전이금속 복합 산화물의 전이금속 중 니켈의 함량의 함량이 높아 용량 특성이 우수한 하이 니켈 양극 활물질에 대해서는 1차 입자의 크기가 미크론 수준인 2차 입자 형태의 양극 활물질의 제조가 불가하였다.As described above in the background technology of the present invention, in order to manufacture a cathode active material in the form of secondary particles having a primary particle size of micron-level, it is necessary to perform heat treatment at a higher temperature than that of secondary particles having a primary particle size of less than 1 ㎛ in submicron-level. However, as the heat treatment temperature increases, the layered structure of the lithium-transition metal composite oxide degenerates into a rock salt structure, which causes a decrease in crystallinity and, in turn, causes a decrease in the performance of the cathode active material. In particular, since nickel is most vulnerable to the degeneration of the layered structure of the lithium-transition metal composite oxide into a rock salt structure at high heat treatment temperatures, the degeneration is further aggravated when the content of nickel in the lithium-transition metal composite oxide constituting the cathode active material increases. Therefore, in the past, it was only possible to apply the method to a mid-nickel cathode active material in which the nickel content of the transition metal of the lithium-transition metal composite oxide was about 50 mol%, as a cathode active material in the form of secondary particles in which the primary particles are on the micron level in size, and it was impossible to manufacture a cathode active material in the form of secondary particles in which the primary particles are on the micron level in size for a high-nickel cathode active material in which the nickel content of the transition metal of the lithium-transition metal composite oxide is high and thus has excellent capacity characteristics.
그러나, 본 발명의 양극 활물질은 리튬 전이금속 복합 산화물의 전이금속 중 니켈의 함량의 함량이 높아, 높은 열처리 온도에서의 리튬 전이금속 복합 산화물의 층형 구조가 암염 구조로 퇴화되더라도, 암염 구조를 층형 구조로 회복(recovery)시켜, 앞서 언급한 문제를 해결하였다. 구체적으로, 본 발명의 양극 활물질은 종래의 미드 니켈 양극 활물질과는 달리, 전체 전이금속 중 니켈을 60 몰% 이상으로 포함하는 리튬 전이금속 복합 산화물을 포함하는 하이 니켈 양극 활물질로서, 1차 입자의 크기가 미크론 수준인 2차 입자를 포함하면서도, 높은 열처리 온도에 의해 형성된 암염 구조를 층형 구조로 회복시켜, 리튬 전이금속 복합 산화물의 결정성이 우수하여, 종래의 2차 입자의 문제점과, 단입자의 문제점을 동시에 해결할 수 있다. 본 발명의 양극 활물질은 위와 같이 높은 열처리 온도에 의해 형성된 암염 구조를 층형 구조로 회복시킴으로써 제조될 수 있고, 상기 암염 구조를 층형 구조로 회복시키는 방법이 제한되는 것은 아니나, 본 발명의 일 실시예에 따르면, 상기 암염 구조를 층형 구조로 회복시키는 방법은 높은 열처리 온도에 의해 형성된 암염 구조를 포함하는 리튬 전이금속 복합 산화물에 대해, 코발트(Co) 코팅을 실시하는 것일 수 있다.However, since the positive electrode active material of the present invention has a high content of nickel among the transition metals of the lithium-transition metal composite oxide, even if the layered structure of the lithium-transition metal composite oxide degenerates into a rock salt structure at a high heat treatment temperature, the rock salt structure is recovered into a layered structure, thereby solving the aforementioned problem. Specifically, unlike a conventional mid-nickel positive electrode active material, the positive electrode active material of the present invention is a high-nickel positive electrode active material including a lithium-transition metal composite oxide containing nickel at 60 mol% or more of the total transition metal, and while including secondary particles having a primary particle size on the micron level, the rock salt structure formed by the high heat treatment temperature is recovered into a layered structure, so that the crystallinity of the lithium-transition metal composite oxide is excellent, and thus the problems of the conventional secondary particles and the problems of the single particles can be solved at the same time. The positive electrode active material of the present invention can be manufactured by restoring the rock salt structure formed by the high heat treatment temperature into a layered structure as described above, and the method of restoring the rock salt structure into a layered structure is not limited, but according to one embodiment of the present invention, the method of restoring the rock salt structure into a layered structure may be to perform cobalt (Co) coating on a lithium transition metal composite oxide including the rock salt structure formed by the high heat treatment temperature.
본 발명의 일 실시예에 따르면, 상기 복수 개의 1차 입자는 디스크 형태(disk type)의 1차 입자를 포함하는 것일 수 있고, 구체적인 예로, 상기 디스크 형태(disk type)의 1차 입자를 3개 이상 포함하는 것일 수 있으며, 이 경우, 셀의 수명 및 에너지 밀도가 우수하다.According to one embodiment of the present invention, the plurality of primary particles may include disk-type primary particles, and as a specific example, may include three or more disk-type primary particles, in which case the cell has excellent lifespan and energy density.
본 발명의 일 실시예에 따르면, 상기 디스크 형태의 1차 입자는, 2차 입자의 표면 또는 단면에 대한 SEM 이미지로부터 관찰되는 1차 입자에 있어서, 장경 방향을 기준으로 45 ° 이하의 각도 내에서 존재하는 1차 입자의 2개의 경계선에 대하여, 각각 가장 많은 접점이 존재하는 가상의 접선을 긋고, 2개의 접선을 가로지르는 1개의 가상의 선을 그었을 때, 동측내각이 150 ° 이상, 210 ° 이하이고, 1차 입자의 단경이 0.3 ㎛ 이상이며, 종횡비(장경/단경)가 1.5 이상인 것을 의미할 수 있다. 구체적인 예로, 상기 디스크 형태의 1차 입자는, 1차 입자의 단경이 0.3 ㎛ 이상, 0.4 ㎛ 이상, 0.5 ㎛ 이상, 0.6 ㎛ 이상, 0.7 ㎛ 이상, 0.8 ㎛ 이상, 0.9 ㎛ 이상, 또는 1.0 ㎛ 이상인 것일 수 있다. 여기서, 상기 디스크 형태의 1차 입자의 단경이 0.3 ㎛ 이상이며, 종횡비(장경/단경)가 1.5 이상인 경우, 1차 입자 표면부의 결정면 중 (003)면의 면적 비율이 가장 클 수 있다.According to one embodiment of the present invention, the disk-shaped primary particle may mean that, in the primary particle observed from an SEM image of the surface or cross-section of the secondary particle, when two imaginary tangent lines having the largest number of contact points are drawn for each of the two boundaries of the primary particle existing within an angle of 45° or less with respect to the major axis direction, and one imaginary line crossing the two tangent lines is drawn, the coplanar internal angle is 150° or more and 210° or less, the minor axis of the primary particle is 0.3 ㎛ or more, and the aspect ratio (major axis/minor axis) is 1.5 or more. As a specific example, the disk-shaped primary particle may have a primary particle diameter of 0.3 ㎛ or more, 0.4 ㎛ or more, 0.5 ㎛ or more, 0.6 ㎛ or more, 0.7 ㎛ or more, 0.8 ㎛ or more, 0.9 ㎛ or more, or 1.0 ㎛ or more. Here, when the disk-shaped primary particle has a primary particle diameter of 0.3 ㎛ or more and an aspect ratio (major axis/minor axis) of 1.5 or more, the area ratio of the (003) plane among the crystal planes on the surface of the primary particle may be the largest.
구체적인 예로, 상기 양극 활물질은 복수 개의 1차 입자가 응집된 2차 입자를 포함하고, 상기 복수 개의 1차 입자는 SEM 이미지로부터 측정한 평균 입자 크기가 1.5 ㎛ 이상, 5.0 ㎛ 이하인 것이고, 상기 복수 개의 1차 입자는 디스크 형태(disk type)의 1차 입자를 포함하고, 상기 디스크 형태의 1차 입자는, 2차 입자의 표면 또는 단면에 대한 SEM 이미지로부터 관찰되는 1차 입자에 있어서, 장경 방향을 기준으로 45 ° 이하의 각도 내에서 존재하는 1차 입자의 2개의 경계선에 대하여, 각각 가장 많은 접점이 존재하는 가상의 접선을 긋고, 2개의 접선을 가로지르는 1개의 가상의 선을 그었을 때, 동측내각이 150 ° 이상, 210 ° 이하이고, 1차 입자의 단경이 0.3 ㎛ 이상이며, 종횡비(장경/단경)가 1.5 이상인 것일 수 있다. 더욱 구체적으로는 상기 디스크 형태(disk type)의 1차 입자는 단경이 0.8 ㎛ 이상인 것일 수 있다.As a specific example, the positive active material may include secondary particles in which a plurality of primary particles are aggregated, and the plurality of primary particles may have an average particle size of 1.5 ㎛ or more and 5.0 ㎛ or less as measured from an SEM image, and the plurality of primary particles may include disk-type primary particles, and the disk-type primary particles may have, in the primary particles observed from an SEM image of a surface or cross-section of the secondary particles, when two imaginary tangent lines having the largest number of contact points are drawn for each of two boundaries of the primary particles existing within an angle of 45° or less with respect to the major axis direction, and one imaginary line crossing the two tangent lines is drawn, the coplanar internal angle may be 150° or more and 210° or less, the minor axis of the primary particles may be 0.3 ㎛ or more, and the aspect ratio (major axis/minor axis) may be 1.5 or more. More specifically, the disk type primary particles may have a minor diameter of 0.8 ㎛ or more.
본 발명의 일 실시예에 따르면, 상기 디스크 형태의 1차 입자는, 2차 입자의 표면 또는 단면에 대한 SEM 이미지로부터 관찰되는 1차 입자에 있어서, 장경 방향을 기준으로 45 ° 이하의 각도 내에서 존재하는 1차 입자의 2개의 경계선에 대하여, 각각 가장 많은 접점이 존재하는 가상의 접선을 긋고, 2개의 접선을 가로지르는 1개의 가상의 선을 그었을 때, 동측내각이 150 ° 이상, 210 ° 이하이고, 1차 입자의 1차 입자 표면부의 결정면 중 (003)면의 면적 비율이 가장 큰 것인 것을 의미할 수 있다. 여기서, 상기 디스크 형태의 1차 입자의 1차 입자 표면부의 결정면 중 (003)면의 면적 비율이 가장 큰 경우, 1차 입자는 단경이 0.3 ㎛ 이상이며, 종횡비(장경/단경)가 1.5 이상일 수 있다. 즉, 1차 입자의 1차 입자 표면부의 결정면 중 (003)면의 면적 비율이 가장 큰 것은 1차 입자의 단경이 0.3 ㎛ 이상이며, 종횡비(장경/단경)가 1.5 이상인 것으로부터 확인할 수 있다.According to one embodiment of the present invention, the disk-shaped primary particle may mean that, in the primary particle observed from the SEM image of the surface or cross-section of the secondary particle, when two imaginary tangent lines having the largest number of contact points are drawn for each of the primary particles existing within an angle of 45° or less with respect to the major axis direction, and one imaginary line crossing the two tangent lines is drawn, the coaxial angle is 150° or more and 210° or less, and the area ratio of the (003) plane among the crystal planes on the surface of the primary particle of the primary particle is the largest. Here, when the area ratio of the (003) plane among the crystal planes on the surface of the primary particle of the disk-shaped primary particle is the largest, the primary particle may have a minor axis of 0.3 ㎛ or more and an aspect ratio (major axis/minor axis) of 1.5 or more. That is, the largest area ratio of the (003) plane among the crystal planes on the surface of the primary particle can be confirmed from the fact that the minor axis of the primary particle is 0.3 ㎛ or more and the aspect ratio (major axis/minor axis) is 1.5 or more.
본 발명의 일 실시예에 따르면, 상기 양극 활물질은 레이저 회절 입도 분석기를 이용하여 측정한 체적 누적 분포를, x축을 x값이 좌에서 우로 증가하는 입자 직경에 대한 로그 스케일(log scale)로 나타내고, y축을 y값이 하에서 상으로 증가하는 중량 분포를 나타낸 도수 분포 그래프에서, 최빈값(Mode)에서 나타나는 피크의 y축 최상단의 피크점; 및 상기 최빈값의 반치폭(FWHM)에서 접하는 도수 분포 곡선의 2개의 접점으로 삼각형을 도시하였을 때, 반치폭에서 접하는 도수 분포 곡선의 2개의 접점 중 좌측 접점에서의 내각(θL)과 우측 접점에서의 내각(θR)의 차(θL - θR)가 6 이상 20 이하인 것일 수 있다. 구체적인 예로, 좌측 접점에서의 내각(θL)과 우측 접점에서의 내각(θR)의 차(θL - θR)가 6 이상, 7 이상, 8 이상, 9 이상, 10 이상, 11 이상, 12 이상, 13 이상, 또는 14 이상인 것일 수 있고, 또한, 20 이하, 19 이하, 18 이하, 17 이하, 16 이하, 또는 15 이하인 것일 수 있다. 상기 양극 활물질은 우측 접점에서의 내각에 대한 좌측 접점에서의 내각의 비율(θLR)이 1.100 이상, 2.000 이하인 것일 수 있다. 구체적인 예로, 우측 접점에서의 내각에 대한 좌측 접점에서의 내각의 비율(θLR)이 1.100 이상, 1.110 이상, 1.120 이상, 1.130 이상, 1.140 이상, 1.150 이상, 1.160 이상, 1.170 이상, 1.180 이상, 1.190 이상, 1.200 이상, 1.210 이상, 1.220 이상, 1.230 이상, 1.240 이상, 1.250 이상, 1.260 이상, 1.270 이상, 1.280 이상, 1.290 이상, 1.300 이상, 1.310 이상, 1.320 이상, 1.330 이상, 1.340 이상, 1.350 이상, 1.360 이상, 1.370 이상, 1.380 이상, 1.390 이상, 1.400 이상, 1.410 이상, 1.420 이상, 1.430 이상, 또는 1.440 이상인 것일 수 있고, 또한, 1.450 이하, 1.460 이하, 1.470 이하, 1.480 이하, 1.490 이하, 1.500 이하, 1.550 이하, 1.600 이하, 1.650 이하, 1.700 이하, 1.750 이하, 1.800 이하, 1.850 이하, 1.900 이하, 1.950 이하, 또는 2.000 이하인 것일 수 있다. 여기서, 상기 도수 분포 그래프는 유니모달 분포 그래프일 수 있다.According to one embodiment of the present invention, the positive electrode active material may be a frequency distribution graph in which the x-axis represents a volume cumulative distribution measured using a laser diffraction particle size analyzer in a log scale for particle diameters in which the x-value increases from left to right, and the y-axis represents a weight distribution in which the y-value increases from bottom to top, wherein, when a triangle is drawn with a peak point at the uppermost point of the y-axis of a peak appearing in a mode; and two contact points of the frequency distribution curves that touch at the half width at half maximum (FWHM) of the mode, the difference (θ L - θ R ) between the internal angle (θ L ) at the left contact point and the internal angle (θ R ) at the right contact point among the two contact points of the frequency distribution curves that touch at the half width may be 6 or more and 20 or less. As a specific example, the difference (θ L - θ R ) between the interior angle (θ L ) at the left contact point and the interior angle (θ R ) at the right contact point may be 6 or more, 7 or more, 8 or more, 9 or more, 10 or more, 11 or more, 12 or more, 13 or more, or 14 or more, and may also be 20 or less, 19 or less, 18 or less, 17 or less, 16 or less, or 15 or less. The positive active material may have a ratio of the interior angle at the left contact point to the interior angle at the right contact point (θ LR ) of 1.100 or more and 2.000 or less. As a specific example, the ratio of the interior angle at the left contact point to the interior angle at the right contact point (θ LR ) is 1.100 or more, 1.110 or more, 1.120 or more, 1.130 or more, 1.140 or more, 1.150 or more, 1.160 or more, 1.170 or more, 1.180 or more, 1.190 or more, 1.200 or more, 1.210 or more, 1.220 or more, 1.230 or more, 1.240 or more, 1.250 or more, 1.260 or more, 1.270 or more, 1.280 or more, 1.290 or more, 1.300 or more, 1.310 or more, 1.320 or more, 1.330 or more, 1.340 or more, 1.350 or more, 1.360 or more, It may be 1.370 or more, 1.380 or more, 1.390 or more, 1.400 or more, 1.410 or more, 1.420 or more, 1.430 or more, or 1.440 or more, and may also be 1.450 or less, 1.460 or less, 1.470 or less, 1.480 or less, 1.490 or less, 1.500 or less, 1.550 or less, 1.600 or less, 1.650 or less, 1.700 or less, 1.750 or less, 1.800 or less, 1.850 or less, 1.900 or less, 1.950 or less, or 2.000 or less. Here, the frequency distribution graph may be a unimodal distribution graph.
본 발명의 일 실시예에 따르면, 상기 양극 활물질은 레이저 회절 입도 분석기를 이용하여 측정한 체적 누적 분포를, x축을 x값이 좌에서 우로 증가하는 입자 직경에 대한 선형 스케일(linear scale)로 나타내고, y축을 y값이 하에서 상으로 증가하는 중량 분포를 나타낸 도수 분포 그래프에서, 양의 왜도를 나타내는 것일 수 있다. 여기서, 상기 도수 분포 그래프는 유니모달 분포 그래프일 수 있다.According to one embodiment of the present invention, the positive active material may exhibit positive skewness in a frequency distribution graph in which the volume cumulative distribution measured using a laser diffraction particle size analyzer is represented by a linear scale for particle diameter in which the x-axis represents the x-value increasing from left to right, and the y-axis represents the weight distribution in which the y-value increasing from bottom to top. Here, the frequency distribution graph may be a unimodal distribution graph.
본 발명의 일 실시예에 따르면, 상기 양극 활물질은 체적 누적 분포에 따른 최빈값(Mode)에서 나타나는 피크의 y축 최상단의 피크점의 y값(PMODE)에 대한 왜도값(S)의 비율(S/PMODE)이 0.037 이상, 0.150 이하인 것일 수 있다. 구체적인 예로, 상기 양극 활물질은 체적 누적 분포에 따른 최빈값(Mode)에서 나타나는 피크의 y축 최상단의 피크점의 y값(PMODE)에 대한 왜도값(S)의 비율(S/PMODE)이 0.037 이상, 0.038 이상, 0.039 이상, 0.040 이상, 0.041 이상, 0.042 이상, 0.043 이상, 0.044 이상, 0.045 이상, 0.046 이상, 0.047 이상, 0.048 이상, 0.049 이상, 0.050 이상, 0.051 이상, 0.052 이상, 0.053 이상, 0.054 이상, 0.055 이상, 0.056 이상, 0.057 이상, 0.058 이상, 0.059 이상, 0.060 이상, 0.061 이상, 0.062 이상, 0.063 이상, 0.064 이상, 0.065 이상, 0.066 이상, 0.067 이상, 0.068 이상, 0.069 이상, 0.070 이상, 0.071 이상, 0.072 이상, 0.073 이상, 0.074 이상, 0.075 이상, 0.076 이상, 0.077 이상, 0.078 이상, 0.079 이상, 0.080 이상, 0.081 이상, 0.082 이상, 0.083 이상, 0.083 이상, 0.084 이상, 0.085 이상, 0.086 이상, 0.087 이상, 0.088 이상, 0.089 이상, 0.090 이상, 0.091 이상, 0.092 이상, 0.093 이상, 0.094 이상, 0.095 이상, 0.096 이상, 0.097 이상, 0.098 이상, 0.099 이상, 또는 0.100 이상인 것일 수 있고, 0.150 이하, 0.140 이하, 0.130 이하, 0.120 이하, 또는 0.110 이하인 것일 수 있다. 여기서, 상기 왜도값(S)은 하기 식 3으로부터 계산된 것일 수 있다.According to one embodiment of the present invention, the positive electrode active material may have a ratio (S/P MODE) of a skewness value (S) to a y-value (P MODE ) of a peak point at the uppermost y-axis of a peak appearing in a mode ( Mode ) according to a volume cumulative distribution of 0.037 or more and 0.150 or less. As a specific example, the positive electrode active material has a ratio (S/P MODE ) of the skewness value (S) to the y-value (P MODE ) of the peak point at the top of the y-axis of the peak appearing in the mode (Mode) according to the volume cumulative distribution of 0.037 or more, 0.038 or more, 0.039 or more, 0.040 or more, 0.041 or more, 0.042 or more, 0.043 or more, 0.044 or more, 0.045 or more, 0.046 or more, 0.047 or more, 0.048 or more, 0.049 or more, 0.050 or more, 0.051 or more, 0.052 or more, 0.053 or more, 0.054 or more, 0.055 or more, 0.056 or more, 0.057 or more, 0.058 or more, 0.059 or more, 0.060 or higher, 0.061 or higher, 0.062 or higher, 0.063 or higher, 0.064 or higher, 0.065 or higher, 0.066 or higher, 0.067 or higher, 0.068 or higher, 0.069 or higher, 0.070 or higher, 0.071 or higher, 0.072 or higher, 0.073 or higher, 0.074 or higher, 0.075 or higher, 0.076 or higher, 0.077 or higher, 0.078 or higher, 0.079 or higher, 0.080 or higher, 0.081 or higher, 0.082 or higher, 0.083 or higher, 0.083 or higher, 0.084 or higher, 0.085 or higher, 0.086 or higher, 0.087 or higher, 0.088 or higher, 0.089 It may be 0.090 or more, 0.091 or more, 0.092 or more, 0.093 or more, 0.094 or more, 0.095 or more, 0.096 or more, 0.097 or more, 0.098 or more, 0.099 or more, or 0.100 or more, and may be 0.150 or less, 0.140 or less, 0.130 or less, 0.120 or less, or 0.110 or less. Here, the skewness value (S) may be calculated from the following Equation 3.
[식 3][Formula 3]
Figure PCTKR2024005819-appb-img-000001
Figure PCTKR2024005819-appb-img-000001
본 발명의 일 실시예에 따르면, 상기 양극 활물질은 질소 흡착 BET 비표면적 분석을 통해 측정된 BET 비표면적이 0.20 m2/g 이상, 0.35 m2/g 이하인 것일 수 있다. 구체적인 예로, 상기 양극 활물질은 질소 흡착 BET 비표면적 분석을 통해 측정된 BET 비표면적이 0.20 m2/g 이상, 0.21 m2/g 이상, 0.22 m2/g 이상, 0.23 m2/g 이상, 0.24 m2/g 이상, 0.25 m2/g 이상, 0.26 m2/g 이상, 0.27 m2/g 이상, 0.28 m2/g 이상, 0.29 m2/g 이상, 0.30 m2/g 이상, 또는 0.31 m2/g 이상인 것일 수 있고, 또한, 0.35 m2/g 이하, 또는 0.34 m2/g 이하인 것일 수 있다. 이 범위 내에서 직류 저항이 감소하고, 압연 밀도가 향상될 수 있다.According to one embodiment of the present invention, the positive electrode active material may have a BET specific surface area measured through nitrogen adsorption BET specific surface area analysis of 0.20 m 2 /g or more and 0.35 m 2 /g or less. As a specific example, the positive active material may have a BET surface area measured through nitrogen adsorption BET surface area analysis of 0.20 m 2 /g or more, 0.21 m 2 /g or more, 0.22 m 2 /g or more, 0.23 m 2 /g or more, 0.24 m 2 /g or more, 0.25 m 2 /g or more, 0.26 m 2 /g or more, 0.27 m 2 /g or more, 0.28 m 2 /g or more, 0.29 m 2 /g or more, 0.30 m 2 /g or more, or 0.31 m 2 /g or more, and further may have 0.35 m 2 /g or less, or 0.34 m 2 /g or less. Within this range, the DC resistance can be reduced and the rolling density can be improved.
본 발명의 일 실시예에 따르면, 상기 양극 활물질은 상기 2차 입자에 대해 레이저 회절 입도 분석기를 이용하여 측정한 체적 누적 분포에 따른 평균 입경(D50)이 7.0 ㎛ 이상, 20.0 ㎛ 이하이고, 2차 입자의 단면에 대한 SEM 이미지로부터 관찰되는, 2차 입자의 단면의 크기가 2차 입자의 평균 입경(D50) 범위 내의 크기를 갖는 2차 입자의 단면에 대하여, 2차 입자의 단면 내의 가로 5 ㎛ * 세로 5 ㎛의 단위 면적 내에서 확인되는 1차 입자의 단면의 개수가 1 개 이상, 100 개 이하인 것일 수 있다.According to one embodiment of the present invention, the positive electrode active material may have an average particle diameter ( D50 ) of 7.0 ㎛ or more and 20.0 ㎛ or less according to a volume cumulative distribution measured using a laser diffraction particle size analyzer for the secondary particles, and a size of a cross-section of the secondary particles observed from a SEM image of a cross-section of the secondary particles is within a range of the average particle diameter ( D50 ) of the secondary particles, and the number of cross-sections of primary particles confirmed within a unit area of 5 ㎛ in width x 5 ㎛ in length within the cross-section of the secondary particles may be 1 or more and 100 or less.
본 발명의 일 실시예에 따르면, 상기 2차 입자의 단면에 대한 SEM 이미지로부터 관찰되는, 2차 입자의 단면의 크기가 2차 입자의 평균 입경(D50) 범위 내의 크기를 갖는 2차 입자의 단면에 대하여, 2차 입자의 단면 내의 가로 5 ㎛ * 세로 5 ㎛의 단위 면적 내에서 확인되는 1차 입자의 단면의 개수는 상기 단위 면적 내에서 확인되는 1차 입자의 단면이 전부 포함되어 있는 것에 더하여, 1차 입자의 단면 중 일부라도 포함되어 있는 모든 1차 입자의 단면의 개수를 의미한다. 또한, 상기 2차 입자의 단면 내의 가로 5 ㎛ * 세로 5 ㎛의 단위 면적은 2차 입자의 단면 내의 임의의 지점에서의 단위 면적으로, 2차 입자의 단면 내라면 위치는 제한되지 않는다.According to one embodiment of the present invention, for a cross-section of a secondary particle having a size within the range of an average particle diameter ( D50 ) of the secondary particle as observed from a SEM image of the cross-section of the secondary particle, the number of cross-sections of primary particles confirmed within a unit area of 5 ㎛ width * 5 ㎛ height within the cross-section of the secondary particle means the number of cross-sections of all primary particles that include at least a part of the cross-sections of the primary particles in addition to all cross-sections of the primary particles confirmed within the unit area. In addition, the unit area of 5 ㎛ width * 5 ㎛ height within the cross-section of the secondary particle is the unit area at any point within the cross-section of the secondary particle, and the location is not limited as long as it is within the cross-section of the secondary particle.
본 발명의 일 실시예에 따르면, 상기 양극 활물질은 2차 입자의 단면에 대한 SEM 이미지로부터 관찰되는, 2차 입자의 단면의 크기가 2차 입자의 평균 입경(D50) 범위 내의 크기를 갖는 2차 입자의 단면에 대하여, 2차 입자의 단면 내의 가로 5 ㎛ * 세로 5 ㎛의 단위 면적 내에서 확인되는 1차 입자 단면의 개수가 1 개 이상, 100 개 이하인 것일 수 있고, 구체적인 예로, 1 개 이상, 2 개 이상, 3 개 이상, 4 개 이상, 5 개 이상, 6 개 이상, 7 개 이상, 8 개 이상, 9 개 이상, 또는 10 개 이상인 것일 수 있고, 또한, 100 개 이하, 95 개 이하, 90 개 이하, 85 개 이하, 80 개 이하, 75 개 이하, 70 개 이하, 65 개 이하, 60 개 이하, 55 개 이하, 50 개 이하, 45 개 이하, 40 개 이하, 35 개 이하, 30 개 이하, 또는 25 개 이하인 것일 수 있다. 이와 같은 범위를 만족하는 경우, 상기 양극 활물질은 복수 개의 1차 입자가 종래의 단입자와 같은 입자 크기가 0.5 ㎛ 이상, 5.0 ㎛ 이하인 1차 입자, 구체적으로 1.0 ㎛ 이상인 미크론 수준의 1차 입자, 더욱 구체적으로 SEM 이미지로부터 측정한 평균 입자 크기가 2.0 ㎛ 이상, 3.5 ㎛ 이하인 복수 개의 1차 입자가 응집되어 형성된 평균 입경(D50)이 7.0 ㎛ 이상, 20.0 ㎛ 이하인 대입경의 2차 입자를 포함하는 것을 나타낼 수 있다.According to one embodiment of the present invention, the cathode active material has a cross-section of the secondary particle, the size of which is within the range of the average particle diameter (D 50 ) of the secondary particle, as observed from the SEM image of the cross-section of the secondary particle, and the number of primary particle cross-sections confirmed within a unit area of 5 ㎛ width x 5 ㎛ length within the cross-section of the secondary particle is It can be 1 or more and 100 or less, and for specific examples, it can be 1 or more, 2 or more, 3 or more, 4 or more, 5 or more, 6 or more, 7 or more, 8 or more, 9 or more, or 10 or more, and also can be 100 or less, 95 or less, 90 or less, 85 or less, 80 or less, 75 or less, 70 or less, 65 or less, 60 or less, 55 or less, 50 or less, 45 or less, 40 or less, 35 or less, 30 or less, or 25 or less. When such a range is satisfied, the positive electrode active material may be represented as including a plurality of primary particles having a particle size of 0.5 ㎛ or more and 5.0 ㎛ or less, such as a conventional single particle, specifically a micron-level primary particle of 1.0 ㎛ or more, and more specifically a secondary particle having a large particle size ( D50 ) of 7.0 ㎛ or more and 20.0 ㎛ or less, formed by agglomeration of a plurality of primary particles having an average particle size of 2.0 ㎛ or more and 3.5 ㎛ or less as measured from a SEM image.
본 발명의 일 실시예에 따르면, 상기 양극 활물질은 상기 2차 입자에 대해 레이저 회절 입도 분석기를 이용하여 측정한 체적 누적 분포에 따른 평균 입경(D50)이 7.0 ㎛ 이상, 20.0 ㎛ 이하이고, 2차 입자의 단면에 대한 SEM 이미지의 후방 산란 전자의 회절(EBSD) 패턴(가속 전압 20 kV, WD 16 mm, 측정 배율 5,000 배(너비 16 ㎛ * 높이 16 ㎛), step size 0.025 ㎛의 조건에서 측정)으로부터 관찰되는, 2차 입자의 단면의 크기가 2차 입자의 평균 입경(D50) 범위 내의 크기를 갖는 2차 입자의 단면에 대하여, 2차 입자의 단면 내의 가로 5 ㎛ * 세로 5 ㎛의 단위 면적 내에서 확인되는 그레인의 단면의 개수가 1 개 이상, 150 개 이하인 것일 수 있다.According to one embodiment of the present invention, the cathode active material may have an average particle diameter ( D50 ) of 7.0 ㎛ or more and 20.0 ㎛ or less according to a volume cumulative distribution measured using a laser diffraction particle size analyzer for the secondary particles, and a size of a cross-section of the secondary particles observed from an backscattered electron diffraction (EBSD) pattern of an SEM image of a cross-section of the secondary particles (measured under the conditions of an acceleration voltage of 20 kV, a WD of 16 mm, a measurement magnification of 5,000 times (width 16 ㎛ * height 16 ㎛), and a step size of 0.025 ㎛) may be within a range of the average particle diameter ( D50 ) of the secondary particles, and the number of cross-sections of grains confirmed within a unit area of 5 ㎛ in width * 5 ㎛ in the cross-section of the secondary particles may be 1 or more and 150 or less.
본 발명의 일 실시예에 따르면, 2차 입자의 단면에 대한 SEM 이미지의 후방 산란 전자의 회절(EBSD) 패턴(가속 전압 20 kV, WD 16 mm, 측정 배율 5,000 배(너비 16 ㎛ * 높이 16 ㎛), step size 0.025 ㎛의 조건에서 측정)으로부터 관찰되는, 2차 입자의 단면의 크기가 2차 입자의 평균 입경(D50) 범위 내의 크기를 갖는 2차 입자의 단면에 대하여, 2차 입자의 단면 내의 가로 5 ㎛ * 세로 5 ㎛의 단위 면적 내에서 확인되는 그레인의 단면의 개수는 상기 단위 면적 내에서 확인되는 그레인의 단면이 전부 포함되어 있는 것에 더하여, 그레인의 단면 중 일부라도 포함되어 있는 모든 그레인의 단면의 개수를 의미한다. 또한, 상기 2차 입자의 단면 내의 가로 5 ㎛ * 세로 5 ㎛의 단위 면적은 2차 입자의 단면 내의 임의의 지점에서의 단위 면적으로, 2차 입자의 단면 내라면 위치는 제한되지 않는다.According to one embodiment of the present invention, for a cross-section of a secondary particle, the size of the cross-section of the secondary particle observed from an electronic beam spread spectrum (EBSD) pattern of a SEM image (measured under the conditions of an acceleration voltage of 20 kV, a WD of 16 mm, a measurement magnification of 5,000 times (width 16 ㎛ * height 16 ㎛), and a step size of 0.025 ㎛) is within a range of an average particle diameter (D 50 ) of the secondary particle, the number of cross-sections of grains confirmed within a unit area of 5 ㎛ in width * 5 ㎛ in length within the cross-section of the secondary particle means the number of cross-sections of all grains that are included in addition to all cross-sections of grains confirmed within the unit area, even if only a part of the cross-sections of the grains is included. In addition, the unit area of 5 ㎛ width x 5 ㎛ height within the cross-section of the secondary particle is the unit area at any point within the cross-section of the secondary particle, and there is no limitation on the location within the cross-section of the secondary particle.
본 발명의 일 실시예에 따르면, 상기 양극 활물질은 2차 입자의 단면에 대한 SEM 이미지의 후방 산란 전자의 회절(EBSD) 패턴(가속 전압 20 kV, WD 16 mm, 측정 배율 5,000 배(너비 16 ㎛ * 높이 16 ㎛), step size 0.025 ㎛의 조건에서 측정)으로부터 관찰되는, 2차 입자의 단면의 크기가 2차 입자의 평균 입경(D50) 범위 내의 크기를 갖는 2차 입자의 단면에 대하여, 2차 입자의 단면 내의 가로 5 ㎛ * 세로 5 ㎛의 단위 면적 내에서 확인되는 그레인의 단면의 개수가 1 개 이상, 150 개 이하인 것일 수 있고, 구체적인 예로, 1 개 이상, 2 개 이상, 3 개 이상, 4 개 이상, 5 개 이상, 6 개 이상, 7 개 이상, 8 개 이상, 또는 9 개 이상인 것일 수 있고, 또한, 150 개 이하, 145 개 이하, 140 개 이하, 135 개 이하, 130 개 이하, 125 개 이하, 120 개 이하, 115 개 이하, 110 개 이하, 105 개 이하, 100 개 이하, 95 개 이하, 90 개 이하, 85 개 이하, 80 개 이하, 75 개 이하, 70 개 이하, 65 개 이하, 60 개 이하, 55 개 이하, 50 개 이하, 45 개 이하, 40 개 이하, 35 개 이하, 30 개 이하, 25개 이하 또는 20 개 이하인 것일 수 있다. 이와 같은 범위를 만족하는 경우, 상기 양극 활물질은 복수 개의 1차 입자가 종래의 단입자와 같은 입자 크기가 0.5 ㎛ 이상, 5.0 ㎛ 이하인 1차 입자, 구체적으로 1.0 ㎛ 이상인 미크론 수준의 1차 입자, 더욱 구체적으로 SEM 이미지로부터 측정한 평균 입자 크기가 2.0 ㎛ 이상, 3.5 ㎛ 이하인 복수 개의 1차 입자가 응집되어 형성된 평균 입경(D50)이 7.0 ㎛ 이상, 20.0 ㎛ 이하인 대입경의 2차 입자를 포함하는 것을 나타낼 수 있다.According to one embodiment of the present invention, the cathode active material may be such that the size of the cross-section of the secondary particle, as observed from the backscattered electron diffraction (EBSD) pattern of the SEM image of the cross-section of the secondary particle (measured under the conditions of acceleration voltage 20 kV, WD 16 mm, measurement magnification 5,000 times (width 16 ㎛ * height 16 ㎛), step size 0.025 ㎛), is within the range of the average particle diameter (D 50 ) of the secondary particle, and the number of cross-sections of grains confirmed within a unit area of 5 ㎛ width * 5 ㎛ height within the cross-section of the secondary particle may be 1 or more and 150 or less, and as specific examples, may be 1 or more, 2 or more, 3 or more, 4 or more, 5 or more, 6 or more, 7 or more, 8 or more, or 9 or more, and further, 150 or less, It may be 145 or less, 140 or less, 135 or less, 130 or less, 125 or less, 120 or less, 115 or less, 110 or less, 105 or less, 100 or less, 95 or less, 90 or less, 85 or less, 80 or less, 75 or less, 70 or less, 65 or less, 60 or less, 55 or less, 50 or less, 45 or less, 40 or less, 35 or less, 30 or less, 25 or less, or 20 or less. When such a range is satisfied, the positive electrode active material may be represented as including a plurality of primary particles having a particle size of 0.5 ㎛ or more and 5.0 ㎛ or less, such as a conventional single particle, specifically a micron-level primary particle of 1.0 ㎛ or more, and more specifically a secondary particle having a large particle size ( D50 ) of 7.0 ㎛ or more and 20.0 ㎛ or less, formed by agglomeration of a plurality of primary particles having an average particle size of 2.0 ㎛ or more and 3.5 ㎛ or less as measured from a SEM image.
본 발명의 일 실시예에 따르면, 상기 양극 활물질은 하기 식 1로부터 계산되는 단결정화도가 0.15 ㎛3 이상인 것일 수 있다.According to one embodiment of the present invention, the positive electrode active material may have a single crystallinity of 0.15 ㎛ 3 or more as calculated from the following equation 1.
[식 1][Formula 1]
Figure PCTKR2024005819-appb-img-000002
Figure PCTKR2024005819-appb-img-000002
상기 식 1에서, radius(grain)은 2차 입자의 단면에 대한 SEM 이미지에 대한 후방 산란 전자의 회절(EBSD) 패턴(가속 전압 20 kV, WD 16 mm, 측정 배율 5,000 배(너비 16 ㎛ * 높이 16 ㎛), step size 0.025 ㎛의 조건에서 측정)으로부터 관찰되는, 2차 입자의 단면의 크기가 2차 입자의 평균 입경(D50) 범위 내의 크기를 갖는 2차 입자의 단면에서 확인 가능한 모든 그레인의 단면 중 그레인의 단면의 면적이 0.196 ㎛2 이상인 그레인의 단면에 대해, 그레인의 단면이 원형인 것으로 가정하였을 때의 그레인의 단면의 반경이고, n은 그레인 수이다.In the above equation 1, radius(grain) is the area of the cross-section of all grains that can be confirmed in the cross-section of the secondary particle having a size within the range of the average particle diameter (D50) of the secondary particle, as observed from the backscattered electron diffraction (EBSD) pattern of the SEM image of the cross-section of the secondary particle (measured under the conditions of acceleration voltage 20 kV, WD 16 mm, measurement magnification 5,000 times (width 16 ㎛ * height 16 ㎛), step size 0.025 ㎛). For grains with a cross-section of 0.196 ㎛ 2 or more, this is the radius of the cross-section of the grain assuming that the cross-section of the grain is circular, and n is the number of grains.
본 발명의 일 실시예에 따르면, 상기 양극 활물질은 상기 식 1로부터 계산되는 단결정화도가 0.15 ㎛3 이상, 12.70 ㎛3 이하인 것일 수 있다. 구체적인 예로, 상기 양극 활물질은 상기 식 1로부터 계산되는 단결정화도가 0.15 ㎛3 이상, 0.20 ㎛3 이상, 0.25 ㎛3 이상, 0.30 ㎛3 이상, 0.35 ㎛3 이상, 0.40 ㎛3 이상, 0.45 ㎛3 이상, 0.50 ㎛3 이상, 0.55 ㎛3 이상, 0.60 ㎛3 이상, 0.65 ㎛3 이상, 0.70 ㎛3 이상, 0.75 ㎛3 이상, 0.80 ㎛3 이상, 0.85 ㎛3 이상, 0.90 ㎛3 이상, 0.95 ㎛3 이상, 1.00 ㎛3 이상, 또는 1.05 ㎛3 이상인 것일 수 있고, 또한, 상한은 특별히 제한되는 것은 아니나, 20.00 ㎛3 이하, 19.00 ㎛3 이하, 18.00 ㎛3 이하, 17.00 ㎛3 이하, 16.00 ㎛3 이하, 15.00 ㎛3 이하, 14.00 ㎛3 이하, 13.00 ㎛3 이하, 또는 12.70 ㎛3 이하인 것일 수 있다.According to one embodiment of the present invention, the cathode active material may have a single crystallinity calculated from Equation 1 of 0.15 ㎛ 3 or more and 12.70 ㎛ 3 or less. As a specific example, the cathode active material may have a single crystallinity calculated from the above formula 1 of 0.15 ㎛ 3 or more, 0.20 ㎛ 3 or more, 0.25 ㎛ 3 or more, 0.30 ㎛ 3 or more, 0.35 ㎛ 3 or more, 0.40 ㎛ 3 or more, 0.45 ㎛ 3 or more, 0.50 ㎛ 3 or more, 0.55 ㎛ 3 or more, 0.60 ㎛ 3 or more, 0.65 ㎛ 3 or more, 0.70 ㎛ 3 or more, 0.75 ㎛ 3 or more, 0.80 ㎛ 3 or more, 0.85 ㎛ 3 or more, 0.90 ㎛ 3 or more, 0.95 ㎛ 3 or more, 1.00 ㎛ 3 or more, or 1.05 ㎛ 3 or more, and further, the upper limit is not particularly limited. However, it may be 20.00 ㎛ 3 or less, 19.00 ㎛ 3 or less, 18.00 ㎛ 3 or less, 17.00 ㎛ 3 or less, 16.00 ㎛ 3 or less, 15.00 ㎛ 3 or less, 14.00 ㎛ 3 or less, 13.00 ㎛ 3 or less, or 12.70 ㎛ 3 or less.
본 발명의 일 실시예에 따르면, 상기 양극 활물질은 알루미늄(Al), 이트륨(Y) 및 지르코늄(Zr)을 포함하는 리튬 전이금속 복합 산화물을 포함하는 것일 수 있다. 구체적인 예로, 상기 양극 활물질은 알루미늄(Al), 이트륨(Y) 및 지르코늄(Zr)을 도핑 원소로 포함하는 것일 수 있다.According to one embodiment of the present invention, the positive electrode active material may include a lithium transition metal composite oxide including aluminum (Al), yttrium (Y), and zirconium (Zr). As a specific example, the positive electrode active material may include aluminum (Al), yttrium (Y), and zirconium (Zr) as doping elements.
본 발명의 일 실시예에 따르면, 상기 알루미늄(Al)은 상기 리튬 전이금속 복합 산화물 총 중량에 대하여 500 ppm 내지 3,000 ppm의 함량으로 포함되는 것일 수 있다. 구체적인 예로, 상기 알루미늄(Al)은 상기 리튬 전이금속 복합 산화물 총 중량에 대하여 500 ppm 이상, 1,000 ppm 이상, 또는 1,500 ppm 이상의 함량으로 포함되는 것일 수 있고, 또한, 3,000 ppm 이하, 2,500 ppm 이하, 또는 2,000 ppm 이하의 함량으로 포함되는 것일 수 있다.According to one embodiment of the present invention, the aluminum (Al) may be included in an amount of 500 ppm to 3,000 ppm based on the total weight of the lithium transition metal composite oxide. As a specific example, the aluminum (Al) may be included in an amount of 500 ppm or more, 1,000 ppm or more, or 1,500 ppm or more based on the total weight of the lithium transition metal composite oxide, and further may be included in an amount of 3,000 ppm or less, 2,500 ppm or less, or 2,000 ppm or less.
본 발명의 일 실시예에 따르면, 상기 이트륨(Y)은 상기 리튬 전이금속 복합 산화물 총 중량에 대하여 100 ppm 내지 2,000 ppm의 함량으로 포함되는 것일 수 있다. 구체적인 예로, 상기 이트륨(Y)은 상기 리튬 전이금속 복합 산화물 총 중량에 대하여 100 ppm 이상, 200 ppm 이상, 300 ppm 이상, 400 ppm 이상, 또는 500 ppm 이상의 함량으로 포함되는 것일 수 있고, 또한, 2,000 ppm 이하, 1,900 ppm 이하, 1,800 ppm 이하, 1,700 ppm 이하, 1,600 ppm 이하, 또는 1,500 ppm 이하의 함량으로 포함되는 것일 수 있다.According to one embodiment of the present invention, the yttrium (Y) may be included in an amount of 100 ppm to 2,000 ppm based on the total weight of the lithium transition metal composite oxide. As a specific example, the yttrium (Y) may be included in an amount of 100 ppm or more, 200 ppm or more, 300 ppm or more, 400 ppm or more, or 500 ppm or more based on the total weight of the lithium transition metal composite oxide, and further may be included in an amount of 2,000 ppm or less, 1,900 ppm or less, 1,800 ppm or less, 1,700 ppm or less, 1,600 ppm or less, or 1,500 ppm or less.
본 발명의 일 실시예에 따르면, 상기 지르코늄(Zr)은 상기 리튬 전이금속 복합 산화물 총 중량에 대하여 500 ppm 내지 5,000 ppm의 함량으로 포함되는 것일 수 있다. 구체적인 예로, 상기 지르코늄(Zr)은 상기 리튬 전이금속 복합 산화물 총 중량에 대하여, 500 ppm 이상, 1,000 ppm 이상, 또는 1,500 ppm 이상의 함량으로 포함되는 것일 수 있고, 또한, 5,000 ppm 이하, 4,500 ppm 이하, 4,000 pmm 이하, 3,500 ppm 이하, 또는 3.000 ppm 이하의 함량으로 포함되는 것일 수 있다.According to one embodiment of the present invention, the zirconium (Zr) may be included in an amount of 500 ppm to 5,000 ppm based on the total weight of the lithium transition metal composite oxide. As a specific example, the zirconium (Zr) may be included in an amount of 500 ppm or more, 1,000 ppm or more, or 1,500 ppm or more based on the total weight of the lithium transition metal composite oxide, and further may be included in an amount of 5,000 ppm or less, 4,500 ppm or less, 4,000 ppm or less, 3,500 ppm or less, or 3,000 ppm or less.
본 발명의 일 실시예에 따르면, 상기 양극 활물질은 하기 화학식 2로 표시되는 평균 조성을 갖는 리튬 전이금속 복합 산화물을 포함하는 것일 수 있다.According to one embodiment of the present invention, the positive electrode active material may include a lithium transition metal composite oxide having an average composition represented by the following chemical formula 2.
[화학식 2][Chemical formula 2]
Lix[NiaCobMncAleYfZrgM2 d]O2-yAy Li x [Ni a Co b Mn c Al e Y f Zr g M 2 d ]O 2-y A y
상기 화학식 2에서, M2은 B, W, Mo, Cr, Nb, Mg, Hf, Ta, La, Ti, Sr, Ba, Ce, V, F, P 및 S로 이루어진 군으로부터 선택되는 1종 이상이고, A는 F, Cl, Br, I 및 S로 이루어진 군으로부터 선택되는 1종 이상이며, 0.9≤x≤1.3, 0.6≤a<1.0, 0<b<0.4, 0<c<0.4, 0≤d≤0.2, 0<e≤0.01, 0<f≤0.0006, 0<g≤0.0005, a+b+c+d+e+f+g=1, 0≤y≤0.2이다.In the above chemical formula 2, M 2 is at least one selected from the group consisting of B, W, Mo, Cr, Nb, Mg, Hf, Ta, La, Ti, Sr, Ba, Ce, V, F, P, and S, A is at least one selected from the group consisting of F, Cl, Br, I, and S, and 0.9≤x≤1.3, 0.6≤a<1.0, 0<b<0.4, 0<c<0.4, 0≤d≤0.2, 0<e≤0.01, 0<f≤0.0006, 0<g≤0.0005, a+b+c+d+e+f+g=1, 0≤y≤0.2.
본 발명의 일 실시예에 따르면, 상기 화학식 2에서, x는 리튬 전이금속 복합 산화물 내 전이금속에 대한 리튬의 몰비로서, 0.9 이상, 0.95 이상, 또는 1.0 이상일 수 있고, 또한, 1.1 이하, 1.07 이하, 1.05 이하, 또는 1.03 이하일 수 있다.According to one embodiment of the present invention, in the chemical formula 2, x is a molar ratio of lithium to a transition metal in the lithium-transition metal composite oxide, which may be 0.9 or more, 0.95 or more, or 1.0 or more, and further may be 1.1 or less, 1.07 or less, 1.05 or less, or 1.03 or less.
본 발명의 일 실시예에 따르면, 상기 화학식 2에서, a, b, c, d, e, f 및 g는 각각 전이금속 중 니켈(Ni), 코발트(Co), 망간(Mn), 도핑 원소(M2), 알루미늄(Al), 이트륨(Y) 및 지르코늄(Zr)에 대한 몰 분율일 수 있다. 구체적인 예로, 상기 a는 전이금속 중 니켈(Ni)에 대한 몰 분율로서 0.6 이상, 0.7 이상, 0.8 이상, 0.85 이상, 0.88 이상, 0.90 이상, 0.91 이상, 0.92 이상, 0.93 이상, 0.94 이상, 0.95 이상, 또는 0.96 이상일 수 있고, 또한, 1.0 미만, 0.99 이하, 0.98 이하, 0.97 이하, 또는 0.96 이하일 수 있다. 또한, 상기 b는 전이금속 중 코발트(Co)에 대한 몰 분율로서 0 초과, 0.01 이상, 0.02 이상, 또는 0.03 이상일 수 있고, 또한, 0.4 미만, 0.3 이하, 0.2 이하, 0.1 이하, 0.09 이하, 0.08 이하, 0.07 이하, 0.06 이하, 또는 0.05 이하일 수 있다. 상기 c는 전이금속 중 망간(Mn)에 대한 몰 분율로서 0 초과, 0.01 이상, 또는 0.05 이상일 수 있고, 또한, 0.4 미만, 0.3 이하, 0.2 이하, 0.1 이하, 0.09 이하, 0.08 이하, 0.07 이하, 0.06 이하, 또는 0.05 이하일 수 있다. 상기 d는 전이금속 중 도핑 원소(M2)에 대한 몰 분율로서 0, 0.01 이상, 0.02 이상, 0.03 이상, 0.04 이상, 0.05 이상, 0.06 이상, 0.07 이상, 0.08 이상, 0.09 이상, 0.10 이상, 0.11 이상, 0.12 이상, 0.13 이상, 0.14 이상, 0.15 이상, 0.16 이상, 0.17 이상, 0.18 이상, 또는 0.19 이상일 수 있고, 또한, 0.20 미만, 0.19 이하, 0.18 이하, 0.17 이하, 0.16 이하, 0.15 이하, 0.14 이하, 0.13 이하, 0.12 이하, 0.11 이하, 0.10 이하, 0.09 이하, 0.08 이하, 0.07 이하, 0.06 이하, 0.05 이하, 0.04 이하, 0.03 이하, 0.02 이하, 또는 0.01 이하일 수 있다. 상기 e는 전이금속 중 알루미늄(Al)에 대한 몰분율로서, 0 초과, 0.001 이상, 0.002 이상, 0.003 이상, 0.004 이상, 또는 0.005 이상일 수 있고, 또한, 0.01 이하, 0.009 이하, 또는 0.008 이하일 수 있다. 상기 f는 전이금속 중 이트륨(Y)에 대한 몰 분율로서, 0 초과, 0.0001 이상, 0.0002 이상, 또는 0.0003 이상일 수 있고, 또한, 0.0006 이하, 0.0005 이하, 또는 0.0004 이하일 수 있다. 상기 g는 전이금속 중 지르코늄(Zr)에 대한 몰 분율로서, 0 초과, 0.0001 이상, 또는 0.0002 이상일 수 있고, 또한, 0.0005 이하, 또는 0.0004 이하일 수 있다.According to one embodiment of the present invention, in the chemical formula 2, a, b, c, d, e, f, and g may be mole fractions of nickel (Ni), cobalt (Co), manganese (Mn), a doping element (M 2 ), aluminum (Al), yttrium (Y), and zirconium (Zr) among transition metals, respectively. As a specific example, a may be a mole fraction of nickel (Ni) among transition metals, which may be 0.6 or more, 0.7 or more, 0.8 or more, 0.85 or more, 0.88 or more, 0.90 or more, 0.91 or more, 0.92 or more, 0.93 or more, 0.94 or more, 0.95 or more, or 0.96 or more, and further may be less than 1.0, 0.99 or less, 0.98 or less, 0.97 or less, or 0.96 or less. In addition, the b may be a mole fraction of cobalt (Co) among the transition metals, greater than 0, 0.01, 0.02, or 0.03, and further may be less than 0.4, 0.3 or less, 0.2 or less, 0.1 or less, 0.09 or less, 0.08 or less, 0.07 or less, 0.06 or less, or 0.05 or less. The c may be a mole fraction of manganese (Mn) among the transition metals, greater than 0, 0.01 or more, or 0.05 or more, and further may be less than 0.4, 0.3 or less, 0.2 or less, 0.1 or less, 0.09 or less, 0.08 or less, 0.07 or less, 0.06 or less, or 0.05 or less. The above d is a mole fraction of a doping element (M 2 ) among transition metals and may be 0, 0.01 or more, 0.02 or more, 0.03 or more, 0.04 or more, 0.05 or more, 0.06 or more, 0.07 or more, 0.08 or more, 0.09 or more, 0.10 or more, 0.11 or more, 0.12 or more, 0.13 or more, 0.14 or more, 0.15 or more, 0.16 or more, 0.17 or more, 0.18 or more, or 0.19 or more, and further, less than 0.20, 0.19 or less, 0.18 or less, 0.17 or less, 0.16 or less, 0.15 or less, 0.14 or less, 0.13 or less, 0.12 or less, 0.11 or less, 0.10 or less, It may be 0.09 or less, 0.08 or less, 0.07 or less, 0.06 or less, 0.05 or less, 0.04 or less, 0.03 or less, 0.02 or less, or 0.01 or less. The e is a mole fraction of aluminum (Al) among transition metals, and may be greater than 0, 0.001 or more, 0.002 or more, 0.003 or more, 0.004 or more, or 0.005 or more, and further may be 0.01 or less, 0.009 or less, or 0.008 or less. The above f is a mole fraction of yttrium (Y) among transition metals, and may be greater than 0, 0.0001 or more, 0.0002 or more, or 0.0003 or more, and further may be 0.0006 or less, 0.0005 or less, or 0.0004 or less. The above g is a mole fraction of zirconium (Zr) among transition metals, and may be greater than 0, 0.0001 or more, or 0.0002 or more, and further may be 0.0005 or less, or 0.0004 or less.
본 발명의 일 실시예에 따르면, 상기 화학식 2에서, y는 리튬 전이금속 복합 산화물 내 산소가 치환된 A 원소의 몰비로서, 0, 0 초과, 0.01 이상, 0.02 이상, 또는 0.03 이상일 수 있고, 또한, 0.2 이하, 0.15 이하, 또는 0.1 이하일 수 있다.According to one embodiment of the present invention, in the chemical formula 2, y is a molar ratio of A element substituted with oxygen in the lithium transition metal composite oxide, which may be 0, more than 0, 0.01 or more, 0.02 or more, or 0.03 or more, and further may be 0.2 or less, 0.15 or less, or 0.1 or less.
본 발명의 일 실시예에 따르면, 상기 양극 활물질은 알루미늄(Al), 지르코늄(Zr) 및 M3을 포함하는 리튬 전이금속 복합 산화물을 포함하는 것일 수 있다. 구체적인 예로, 상기 양극 활물질은 알루미늄(Al), 지르코늄(Zr) 및 M3을 도핑 원소로 포함하는 것일 수 있다.According to one embodiment of the present invention, the positive electrode active material may include a lithium transition metal composite oxide including aluminum (Al), zirconium (Zr), and M 3 . As a specific example, the positive electrode active material may include aluminum (Al), zirconium (Zr), and M 3 as doping elements.
본 발명의 일 실시예에 따르면, 상기 M3은 산화수가 +4 이상인 금속 원소일 수 있다. 구체적인 예로, 상기 M3은 티타늄(Ti), 탄탈륨(Ta), 텅스텐(W), 바나듐(V), 몰리브데넘(Mo) 및 니오븀(Nb)으로 이루어진 군으로부터 선택된 1종 이상일 수 있다.According to one embodiment of the present invention, the M 3 may be a metal element having an oxidation number of +4 or higher. As a specific example, the M 3 may be at least one selected from the group consisting of titanium (Ti), tantalum (Ta), tungsten (W), vanadium (V), molybdenum (Mo), and niobium (Nb).
본 발명의 일 실시예에 따르면, 상기 알루미늄(Al)은 상기 리튬 전이금속 복합 산화물 총 중량에 대하여 500 ppm 내지 3,000 ppm의 함량으로 포함되는 것일 수 있다. 구체적인 예로, 상기 알루미늄(Al)은 상기 리튬 전이금속 복합 산화물 총 중량에 대하여 500 ppm 이상, 1,000 ppm 이상, 또는 1,500 ppm 이상의 함량으로 포함되는 것일 수 있고, 또한, 3,000 ppm 이하, 2,500 ppm 이하, 또는 2,000 ppm 이하의 함량으로 포함되는 것일 수 있다.According to one embodiment of the present invention, the aluminum (Al) may be included in an amount of 500 ppm to 3,000 ppm based on the total weight of the lithium transition metal composite oxide. As a specific example, the aluminum (Al) may be included in an amount of 500 ppm or more, 1,000 ppm or more, or 1,500 ppm or more based on the total weight of the lithium transition metal composite oxide, and further may be included in an amount of 3,000 ppm or less, 2,500 ppm or less, or 2,000 ppm or less.
본 발명의 일 실시예에 따르면, 상기 지르코늄(Zr)은 상기 리튬 전이금속 복합 산화물 총 중량에 대하여 500 ppm 내지 3,000 ppm의 함량으로 포함되는 것일 수 있다. 구체적인 예로, 상기 지르코늄(Zr)은 상기 리튬 전이금속 복합 산화물 총 중량에 대하여 500 ppm 이상, 1,000 ppm 이상, 또는 1,500 ppm 이상의 함량으로 포함되는 것일 수 있고, 또한, 3,000 ppm 이하, 2,500 ppm 이하, 또는 2,000 ppm 이하의 함량으로 포함되는 것일 수 있다.According to one embodiment of the present invention, the zirconium (Zr) may be included in an amount of 500 ppm to 3,000 ppm based on the total weight of the lithium transition metal composite oxide. As a specific example, the zirconium (Zr) may be included in an amount of 500 ppm or more, 1,000 ppm or more, or 1,500 ppm or more based on the total weight of the lithium transition metal composite oxide, and further may be included in an amount of 3,000 ppm or less, 2,500 ppm or less, or 2,000 ppm or less.
본 발명의 일 실시예에 따르면, 상기 M3은 상기 리튬 전이금속 복합 산화물 총 중량에 대하여 100 ppm 내지 2,000 ppm의 함량으로 포함되는 것일 수 있다. 구체적인 예로, 상기 M3은 상기 리튬 전이금속 복합 산화물 총 중량에 대하여 100 ppm 이상, 200 ppm 이상, 300 ppm 이상, 400 ppm 이상, 또는 500 ppm 이상의 함량으로 포함되는 것일 수 있고, 또한, 2,000 ppm 이하, 1,900 ppm 이하, 1,800 ppm 이하, 1,700 ppm 이하, 1,600 ppm 이하, 또는 1,500 ppm 이하의 함량으로 포함되는 것일 수 있다.According to one embodiment of the present invention, the M 3 may be included in an amount of 100 ppm to 2,000 ppm based on the total weight of the lithium transition metal composite oxide. As a specific example, the M 3 may be included in an amount of 100 ppm or more, 200 ppm or more, 300 ppm or more, 400 ppm or more, or 500 ppm or more based on the total weight of the lithium transition metal composite oxide, and further may be included in an amount of 2,000 ppm or less, 1,900 ppm or less, 1,800 ppm or less, 1,700 ppm or less, 1,600 ppm or less, or 1,500 ppm or less.
본 발명의 일 실시예에 따르면, 상기 양극 활물질은 1차 입자 표면, 1차 입자 계면 및 2차 입자 표면 중 적어도 하나에 형성된 코팅부를 포함하고, 상기 코팅부는 코발트(Co) 및 붕소(B)로 이루어진 군으로부터 선택된 1종 이상의 코팅 원소를 포함하는 것일 수 있다.According to one embodiment of the present invention, the positive electrode active material includes a coating portion formed on at least one of a primary particle surface, a primary particle interface, and a secondary particle surface, and the coating portion may include at least one coating element selected from the group consisting of cobalt (Co) and boron (B).
본 발명의 일 실시예에 따르면, 상기 코팅부는 1차 입자 표면, 1차 입자 계면 및 2차 입자 표면 중 적어도 하나의 일부에 형성된 아일랜드형 코팅부일 수 있다.According to one embodiment of the present invention, the coating portion may be an island-shaped coating portion formed on at least a portion of a primary particle surface, a primary particle interface, and a secondary particle surface.
본 발명의 일 실시예에 따르면, 상기 코팅부는 1차 입자 표면, 1차 입자 계면 및 2차 입자 표면 중 적어도 하나를 감싸며 형성된 코팅층일 수 있다.According to one embodiment of the present invention, the coating portion may be a coating layer formed to surround at least one of a primary particle surface, a primary particle interface, and a secondary particle surface.
본 발명의 일 실시예에 따르면, 상기 코팅부는 코발트(Co)를 포함하는 코팅부, 코발트(Co) 및 붕소(B)를 포함하는 코팅부 및 붕소(B)를 포함하는 코팅부 중 적어도 하나 이상의 코팅부를 포함하는 것일 수 있다.According to one embodiment of the present invention, the coating portion may include at least one of a coating portion including cobalt (Co), a coating portion including cobalt (Co) and boron (B), and a coating portion including boron (B).
본 발명의 일 실시예에 따르면, 상기 코팅부는 코발트(Co)를 포함하는 코팅부, 코발트(Co) 및 붕소(B)를 포함하는 코팅부 및 붕소(B)를 포함하는 코팅부가 순차적으로 형성된 코팅부를 포함하는 것일 수 있다.According to one embodiment of the present invention, the coating portion may include a coating portion in which a coating portion including cobalt (Co), a coating portion including cobalt (Co) and boron (B), and a coating portion including boron (B) are sequentially formed.
본 발명의 일 실시예에 따르면, 상기 코팅부는 코발트-붕소 산화물을 포함하는 것일 수 있다.According to one embodiment of the present invention, the coating portion may include cobalt-boron oxide.
본 발명의 일 실시예에 따르면, 상기 양극 활물질은 자동 펠렛 프레스를 이용하여, 직경 13 mm의 원통형 틀에 양극 활물질을 투입하고, 9,000 kgf에 해당하는 힘이 될 때까지 힘을 가하여 펠렛을 형성하였을 때, 하기 식 2로 계산된 압연 밀도가 3.60 g/cm3 이상인 것일 수 있다.According to one embodiment of the present invention, when the cathode active material is formed into a pellet by putting the cathode active material into a cylindrical mold having a diameter of 13 mm using an automatic pellet press and applying a force until a force corresponding to 9,000 kgf is reached, the rolling density calculated by Equation 2 below may be 3.60 g/cm 3 or more.
[식 2][Formula 2]
압연 밀도(g/cm3) = 양극 활물질 무게(g) / 펠렛 체적(cm3)Rolling density (g/cm 3 ) = Positive active material weight (g) / Pellet volume (cm 3 )
본 발명의 일 실시예에 따르면, 상기 양극 활물질은 상기 식 2로 계산된 압연 밀도가 3.60 g/cm3 이상인 것일 수 있고, 구체적인 예로, 3.61 g/cm3 이상, 3.62 g/cm3 이상, 3.63 g/cm3 이상, 3.64 g/cm3 이상, 3.65 g/cm3 이상, 3.66 g/cm3 이상, 3.67 g/cm3 이상, 3.68 g/cm3 이상, 3.69 g/cm3 이상, 3.70 g/cm3 이상, 또는 3.71 g/cm3 이상인 것일 수 있고, 상한은 특별히 제한되지 않으나, 10.0 g/cm3 이하인 것일 수 있다.According to one embodiment of the present invention, the positive electrode active material may have a rolling density calculated by the above formula 2 of 3.60 g/cm 3 or more, and specific examples thereof include 3.61 g/cm 3 or more, 3.62 g/cm 3 or more, 3.63 g/cm 3 or more, 3.64 g/cm 3 or more, 3.65 g/cm 3 or more, 3.66 g/cm 3 or more, 3.67 g/cm 3 or more, 3.68 g/cm 3 or more, 3.69 g/cm 3 or more, 3.70 g/cm 3 or more, or 3.71 g/cm 3 or more, and the upper limit is not particularly limited, but may be 10.0 g/cm 3 or less.
본 발명의 일 실시예에 따르면, 상기 양극 활물질은 상기 양극 활물질을 포함하는 양극; 음극; 양극과 음극 사이에 개재된 분리막 및 전해질을 포함하는 리튬이차전지에 대하여, 상기 리튬이차전지를 0.5 C 전류로 충전한 후, 0.1 C 전류로 방전하였을 때의 방전 용량을 기준으로, 상기 리튬이차전지를 0.5 C 전류로 충전한 후, 1.0 C 전류로 방전하였을 때의 방전 용량이 92.0 % 이상인 것일 수 있다. 여기서, 상기 리튬이차전지는 양극 활물질의 출력 특성에 따른 방전 용량을 확인하기 위한 것으로, 양극 활물질 이외의 성분은 리튬이차전지에 이용할 수 있는 것이라면 특별히 제한되지 않는다. 구체적인 예로, 상기 양극 활물질은 상기 리튬이차전지를 0.5 C 전류로 충전한 후, 0.1 C 전류로 방전하였을 때의 방전 용량을 기준으로, 상기 리튬이차전지를 0.5 C 전류로 충전한 후, 1.0 C 전류로 방전하였을 때의 방전 용량이 92.0 % 이상, 92.1 % 이상, 92.2 % 이상, 92.3 % 이상, 92.4 % 이상, 92.5 % 이상, 92.6 % 이상, 92.7 % 이상, 92.8 % 이상, 92.9 % 이상, 93.0 % 이상, 또는 93.1 % 이상인 것일 수 있고, 상한은 특별히 제한되지 않으나, 100 % 이하인 것일 수 있다.According to one embodiment of the present invention, the positive electrode active material may be such that, for a lithium secondary battery including a positive electrode including the positive electrode active material; an anode; and a separator and an electrolyte interposed between the positive electrode and the anode, when the lithium secondary battery is charged with a 0.5 C current and then discharged with a 0.1 C current, a discharge capacity may be 92.0% or more based on the discharge capacity when the lithium secondary battery is charged with a 0.5 C current and then discharged with a 1.0 C current. Here, the lithium secondary battery is to confirm the discharge capacity according to the output characteristics of the positive electrode active material, and components other than the positive electrode active material are not particularly limited as long as they can be used in a lithium secondary battery. As a specific example, the cathode active material may have a discharge capacity of 92.0% or more, 92.1% or more, 92.2% or more, 92.3% or more, 92.4% or more, 92.5% or more, 92.6% or more, 92.7% or more, 92.8% or more, 92.9% or more, 93.0% or more, or 93.1% or more, based on the discharge capacity when the lithium secondary battery is charged with a 0.5 C current and then discharged with a 0.1 C current, and the upper limit is not particularly limited, but may be 100% or less.
본 발명의 일 실시예에 따르면, 상기 양극 활물질은 상기 양극 활물질을 포함하는 양극; 음극; 양극과 음극 사이에 개재된 분리막 및 전해질을 포함하는 리튬이차전지에 대하여, 상기 리튬이차전지를 0.5 C 전류로 충전한 후, 0.1 C 전류로 방전하였을 때의 방전 용량을 기준으로, 상기 리튬이차전지를 0.5 C 전류로 충전한 후, 2.0 C 전류로 방전하였을 때의 방전 용량이 89.0 % 이상인 것일 수 있다. 여기서, 상기 리튬이차전지는 양극 활물질의 출력 특성에 따른 방전 용량을 확인하기 위한 것으로, 양극 활물질 이외의 성분은 리튬이차전지에 이용할 수 있는 것이라면 특별히 제한되지 않는다. 구체적인 예로, 상기 양극 활물질은 상기 리튬이차전지를 0.5 C 전류로 충전한 후, 0.1 C 전류로 방전하였을 때의 방전 용량을 기준으로, 상기 리튬이차전지를 0.5 C 전류로 충전한 후, 2.0 C 전류로 방전하였을 때의 방전 용량이 89.0 % 이상, 89.1 % 이상, 89.2 % 이상, 89.3 % 이상, 89.4 % 이상, 89.5 % 이상, 89.6 % 이상, 89.7 % 이상, 89.8 % 이상, 89.9 % 이상, 90.0 % 이상, 90.1 % 이상, 90.2 % 이상, 90.3 % 이상, 또는 90.4 % 이상인 것일 수 있고, 상한은 특별히 제한되지 않으나, 100 % 이하인 것일 수 있다.According to one embodiment of the present invention, the positive electrode active material may be such that, for a lithium secondary battery including a positive electrode including the positive electrode active material; an anode; and a separator and an electrolyte interposed between the positive electrode and the anode, when the lithium secondary battery is charged with a 0.5 C current and then discharged with a 0.1 C current, a discharge capacity may be 89.0% or more when the lithium secondary battery is charged with a 0.5 C current and then discharged with a 2.0 C current based on the discharge capacity. Here, the lithium secondary battery is to confirm the discharge capacity according to the output characteristics of the positive electrode active material, and components other than the positive electrode active material are not particularly limited as long as they can be used in a lithium secondary battery. As a specific example, the cathode active material may have a discharge capacity of 89.0% or more, 89.1% or more, 89.2% or more, 89.3% or more, 89.4% or more, 89.5% or more, 89.6% or more, 89.7% or more, 89.8% or more, 89.9% or more, 90.0% or more, 90.1% or more, 90.2% or more, 90.3% or more, or 90.4% or more, based on the discharge capacity when the lithium secondary battery is charged with a 0.5 C current and then discharged with a 0.1 C current, and the upper limit is not particularly limited, but may be 100% or less.
본 발명의 일 실시예에 따르면, 상기 양극 활물질은 2차 입자의 표면에 대한 SEM 이미지(측정 배율 3,000배)로부터 관찰되는 1차 입자들 각각에 대해 하기 식 5로부터 체적(Volume) 값을 계산하였을 때, 1차 입자들의 체적 누적 분포의 50 %가 되는 지점에서의 체적의 지름에 해당하는 단입자화도(Dv50)가 1.2 ㎛ 이상 3.8 ㎛ 이하인 것일 수 있다.According to one embodiment of the present invention, the cathode active material may have a single particle size (Dv 50 ), which corresponds to the diameter of the volume at a point where 50% of the cumulative volume distribution of the primary particles is calculated from Equation 5 below for each of the primary particles observed from a SEM image (measurement magnification 3,000 times ) of the surface of the secondary particles, of 1.2 ㎛ or more and 3.8 ㎛ or less.
[식 5][Formula 5]
Figure PCTKR2024005819-appb-img-000003
Figure PCTKR2024005819-appb-img-000003
상기 식 5에서,In the above equation 5,
radius는 2차 입자의 표면에 대한 SEM 이미지(측정 배율 3,000배)로부터 관찰되는 1차 입자의 표면이 원형인 것으로 가정하였을 때의 1차 입자의 표면의 반경이다.The radius is the radius of the surface of the primary particle assuming that the surface of the primary particle is circular as observed from the SEM image (measurement magnification 3,000x) of the surface of the secondary particle.
구체적인 예로, 상기 양극 활물질은 상기 단입자화도(Dv50)가 1.2 ㎛ 이상, 1.3 ㎛ 이상, 1.4 ㎛ 이상, 1.5 ㎛ 이상, 1.6 ㎛ 이상, 또는 1.65 ㎛ 이상인 것일 수 있고, 또한, 3.8 ㎛ 이하, 3.7 ㎛ 이하, 3.6 ㎛ 이하, 3.59 ㎛ 이하, 3.58 ㎛ 이하, 3.57 ㎛ 이하, 3.56 ㎛ 이하, 또는 3.55 ㎛ 이하인 것일 수 있다.As a specific example, the cathode active material may have a particle size (Dv 50 ) of 1.2 ㎛ or more, 1.3 ㎛ or more, 1.4 ㎛ or more, 1.5 ㎛ or more, 1.6 ㎛ or more, or 1.65 ㎛ or more, and may also have a particle size of 3.8 ㎛ or less, 3.7 ㎛ or less, 3.6 ㎛ or less, 3.59 ㎛ or less, 3.58 ㎛ or less, 3.57 ㎛ or less, 3.56 ㎛ or less, or 3.55 ㎛ or less.
양극 활물질 제조방법Method for manufacturing positive electrode active material
본 발명은 양극 활물질 제조방법을 제공한다.The present invention provides a method for manufacturing a positive electrode active material.
본 발명의 일 실시예에 따르면, 상기 양극 활물질 제조방법은 앞서 기재한 양극 활물질을 제조하기 위한 방법일 수 있다.According to one embodiment of the present invention, the method for manufacturing the positive electrode active material may be a method for manufacturing the positive electrode active material described above.
본 발명의 일 실시예에 따르면, 상기 양극 활물질 제조방법은 니켈, 코발트 및 망간을 포함하는 양극 활물질 전구체와, 리튬 원료 물질을 혼합하고, 소성을 실시하여 소성품을 제조하는 단계(S10)를 포함하여 실시되는 것일 수 있다.According to one embodiment of the present invention, the method for manufacturing the cathode active material may be performed including a step (S10) of mixing a cathode active material precursor including nickel, cobalt, and manganese and a lithium raw material, and performing firing to manufacture a sintered product.
본 발명의 일 실시예에 따르면, 상기 (S10) 단계는 하나의 소성 단계 내에서 온도 구간을 나누어 소성을 실시하는 방법(원스텝 방법), 두번의 소성 단계를 나누어 실시하는 방법(투스텝 방법) 및 하나의 소성 단계 내에서 온도 구간을 나누어 소성을 실시하기에 앞서, 가소성을 실시하는 방법(가소성 방법) 등의 방법으로 실시될 수 있다.According to one embodiment of the present invention, the step (S10) may be performed by a method such as a method of performing firing by dividing temperature sections within one firing step (one-step method), a method of performing firing by dividing two firing steps (two-step method), and a method of performing plastic firing prior to performing firing by dividing temperature sections within one firing step (plastic firing method).
본 발명의 일 실시예에 따르면, 상기 원스텝 방법은 하나의 소성 단계 내에서 두개의 온도 구간에서 연달아 소성을 실시하는 방법으로, 양극 활물질 전구체와, 리튬 원료 물질의 혼합물에 대해 1단 소성을 실시하고, 바로 이어서, 온도 구간을 변경하여 2단 소성을 실시할 수 있다. 이 때, 상기 2단 소성은 1단 소성 보다 낮은 온도에서 실시될 수 있고, 각 소성 온도는 니켈 함량에 따라 조절될 수 있으며, 이와 같은 온도 조절을 통해 1차 입자의 형태 및 크기와, 2차 입자의 평균 입경을 조절할 수 있다.According to one embodiment of the present invention, the one-step method is a method of sequentially performing firing at two temperature sections within one firing step, wherein a single-step firing is performed on a mixture of a positive electrode active material precursor and a lithium raw material, and immediately thereafter, a second-step firing is performed by changing the temperature section. At this time, the two-step firing can be performed at a lower temperature than the single-step firing, and each firing temperature can be controlled according to the nickel content, and through such temperature control, the shape and size of the primary particles and the average particle diameter of the secondary particles can be controlled.
본 발명의 일 실시예에 따르면, 상기 투스텝 방법은 1차 소성 및 2차 소성을 나누어 실시하는 방법으로, 양극 활물질 전구체와, 리튬 원료 물질의 혼합물에 대해 1차 소성을 실시하고, 1차 소성에 의해 제조된 제1 소성품을 분쇄한 후, 분쇄품을 2차 소성하여 실시할 수 있다. 이 때, 상기 2차 소성은 1차 소성 보다 낮은 온도에서 실시될 수 있고, 각 소성 온도는 니켈 함량에 따라 조절될 수 있으며, 이와 같은 온도 조절을 통해 1차 입자의 형태 및 크기와, 2차 입자의 평균 입경을 조절할 수 있다.According to one embodiment of the present invention, the two-step method is a method that performs the first firing and the second firing separately, and may be performed by performing the first firing on a mixture of a positive electrode active material precursor and a lithium raw material, pulverizing a first fired product manufactured by the first firing, and then performing the second firing on the pulverized product. At this time, the second firing may be performed at a lower temperature than the first firing, and each firing temperature may be controlled according to the nickel content, and through such temperature control, the shape and size of the primary particles and the average particle diameter of the secondary particles may be controlled.
본 발명의 일 실시예에 따르면, 상기 가소성 방법은 원스텝 소성에 앞서 가소성을 실시하는 방법으로, 양극 활물질 전구체와, 리튬 원료 물질의 혼합물에 대해 가소성을 실시하고, 가소성품에 대해 원스텝 방법을 실시할 수 있다. 이 때, 상기 가소성은 원스텝 소성 보다 낮은 온도에서 실시될 수 있고, 각 소성 온도는 니켈 함량에 따라 조절될 수 있으며, 이와 같은 온도 조절을 통해 1차 입자의 형태 및 크기와, 2차 입자의 평균 입경을 조절할 수 있다.According to one embodiment of the present invention, the plasticizing method is a method of performing plasticizing prior to one-step sintering, wherein plasticizing is performed on a mixture of a positive electrode active material precursor and a lithium raw material, and the one-step method can be performed on the sintered product. At this time, the plasticizing can be performed at a lower temperature than the one-step sintering, and each sintering temperature can be controlled according to the nickel content, and through such temperature control, the shape and size of the primary particles and the average particle diameter of the secondary particles can be controlled.
본 발명의 일 실시예에 따르면, 상기 양극 활물질 전구체는 전이금속 중 니켈을 60 몰% 이상으로 포함하는 것일 수 있다. 구체적인 예로, 상기 양극 활물질 전구체는 니켈, 코발트 및 망간을 포함하고, 전이금속 중 니켈을 60 몰% 이상으로 포함하는 전이금속 수산화물일 수 있다. 구체적인 예로, 상기 전이금속 수산화물은 하기 화학식 3으로 표시되는 평균 조성을 가질 수 있다.According to one embodiment of the present invention, the positive electrode active material precursor may contain nickel among the transition metals in an amount of 60 mol% or more. As a specific example, the positive electrode active material precursor may be a transition metal hydroxide containing nickel, cobalt, and manganese, and containing nickel among the transition metals in an amount of 60 mol% or more. As a specific example, the transition metal hydroxide may have an average composition represented by the following chemical formula 3.
[화학식 3][Chemical Formula 3]
Nia'Cob'Mnc'(OH)2 Ni a' Co b' Mn c'( OH) 2
상기 화학식 3에서, 0.6≤a'<1.0, 0<b'<0.4, 0<c'<0.4, a'+b'+c'=1이다.In the above chemical formula 3, 0.6≤a'<1.0, 0<b'<0.4, 0<c'<0.4, a'+b'+c'=1.
본 발명의 일 실시예에 따르면, 상기 화학식 3에서, a', b' 및 c' 은 각각 전이금속 중 니켈(Ni), 코발트(Co) 및 망간(Mn)에 대한 몰 분율일 수 있다. 구체적인 예로, 상기 a'은 전이금속 중 니켈(Ni)에 대한 몰 분율로서 0.6 이상, 0.7 이상, 0.8 이상, 0.85 이상, 0.88 이상, 0.90 이상, 0.91 이상, 0.92 이상, 0.93 이상, 0.94 이상, 0.95 이상, 또는 0.96 이상일 수 있고, 또한, 1.0 미만, 0.99 이하, 0.98 이하, 0.97 이하, 또는 0.96 이하일 수 있다. 또한, 상기 b'은 전이금속 중 코발트(Co)에 대한 몰 분율로서 0 초과, 0.01 이상, 0.02 이상, 또는 0.03 이상일 수 있고, 또한, 0.4 미만, 0.3 이하, 0.2 이하, 0.1 이하, 0.09 이하, 0.08 이하, 0.07 이하, 0.06 이하, 또는 0.05 이하일 수 있다. 상기 c'은 전이금속 중 망간(Mn)에 대한 몰 분율로서 0 초과, 0.01 이상, 또는 0.05 이상일 수 있고, 또한, 0.4 미만, 0.3 이하, 0.2 이하, 0.1 이하, 0.09 이하, 0.08 이하, 0.07 이하, 0.06 이하, 또는 0.05 이하일 수 있다.According to one embodiment of the present invention, in the chemical formula 3, a', b', and c' may be mole fractions of nickel (Ni), cobalt (Co), and manganese (Mn) among transition metals, respectively. As a specific example, a' may be a mole fraction of nickel (Ni) among transition metals, which may be 0.6 or more, 0.7 or more, 0.8 or more, 0.85 or more, 0.88 or more, 0.90 or more, 0.91 or more, 0.92 or more, 0.93 or more, 0.94 or more, 0.95 or more, or 0.96 or more, and further may be less than 1.0, 0.99 or less, 0.98 or less, 0.97 or less, or 0.96 or less. In addition, the b' may be a mole fraction of cobalt (Co) among the transition metals, greater than 0, 0.01, 0.02, or 0.03, and further may be less than 0.4, 0.3 or less, 0.2 or less, 0.1 or less, 0.09 or less, 0.08 or less, 0.07 or less, 0.06 or less, or 0.05 or less. The c' may be a mole fraction of manganese (Mn) among the transition metals, greater than 0, 0.01 or more, or 0.05 or more, and further may be less than 0.4, 0.3 or less, 0.2 or less, 0.1 or less, 0.09 or less, 0.08 or less, 0.07 or less, 0.06 or less, or 0.05 or less.
본 발명의 일 실시예에 따르면, 상기 리튬 원료 물질은 리튬 함유 황산염, 질산염, 아세트산염, 탄산염, 옥살산염, 시트르산염, 할라이드, 수산화물 또는 옥시수산화물 등이 사용될 수 있으며, 예를 들면, Li2CO3, LiNO3, LiNO2, LiOH, LiOH·H2O, LiH, LiF, LiCl, LiBr, LiI, CH3COOLi, Li2O, Li2SO4, CH3COOLi, Li3C6H5O7 또는 이들의 혼합물이 사용될 수 있다.According to one embodiment of the present invention, the lithium raw material may be a lithium-containing sulfate, nitrate, acetate, carbonate, oxalate, citrate, halide, hydroxide or oxyhydroxide, and for example, Li 2 CO 3 , LiNO 3 , LiNO 2 , LiOH, LiOH H 2 O, LiH, LiF, LiCl, LiBr, LiI, CH 3 COOLi, Li 2 O, Li 2 SO 4 , CH 3 COOLi, Li 3 C 6 H 5 O 7 or a mixture thereof.
본 발명의 일 실시예에 따르면, 상기 (S10) 단계는 Al, Zr, B, W, Mo, Cr, Nb, Mg, Hf, Ta, La, Ti, Sr, Ba, Ce, F, P, S 및 Y로 이루어진 군으로부터 선택되는 1종 이상의 도핑 원료를 더 포함하여 실시되는 것일 수 있다. 상기 도핑 원료는 상기 원소를 포함하는 아세트산염, 질산염, 황산염, 할라이드, 황화물, 수산화물, 산화물 또는 옥시수산화물 등일 수 있으며, 구체적인 예로, Al2O3, Al(OH)3, Al(NO3)3·9H2O, Al2(SO4)3, Y2O3, ZrO2 등일 수 있다.According to one embodiment of the present invention, the step (S10) may be performed by further including one or more doping raw materials selected from the group consisting of Al, Zr, B, W, Mo, Cr, Nb, Mg, Hf, Ta, La, Ti, Sr, Ba, Ce, F, P, S, and Y. The doping raw material may be an acetate, a nitrate, a sulfate, a halide, a sulfide, a hydroxide, an oxide, or an oxyhydroxide containing the element, and specific examples thereof include Al 2 O 3 , Al(OH) 3 , Al(NO 3 ) 3 ·9H 2 O, Al 2 (SO 4 ) 3 , Y 2 O 3 , It could be ZrO 2, etc.
본 발명의 일 실시예에 따르면, 상기 도핑 원료는 Al, Y 및 Zr을 포함하는 것일 수 있다. 또한, 상기 도핑 원료는 Al, Zr 및 산화수가 +4 이상인 금속 원소(M3)를 포함하는 것일 수 있다.According to one embodiment of the present invention, the doping raw material may include Al, Y, and Zr. In addition, the doping raw material may include Al, Zr, and a metal element (M 3 ) having an oxidation number of +4 or higher.
본 발명의 일 실시예에 따르면, 상기 (S10) 단계에서 양극 활물질 전구체와 리튬 원료 물질의 혼합 시, 양극 활물질 전구체의 전이금속(M)에 대한 리튬 원료 물질의 리튬(Li)의 몰비(Li/M)는 0.9 이상 1.3 이하인 것일 수 있다. 구체적인 예로, 상기 Li/M은 0.9 이상, 0.95 이상, 또는 1.0 이상일 수 있고, 또한, 1.1 이하, 1.07 이하, 1.05 이하, 또는 1.04 이하일 수 있으며, 상기 Li/M은 전이금속 내 니켈의 함량에 따라 조절될 수 있다.According to one embodiment of the present invention, when mixing the positive electrode active material precursor and the lithium raw material in the step (S10), the molar ratio (Li/M) of lithium (Li) of the lithium raw material to the transition metal (M) of the positive electrode active material precursor may be 0.9 or more and 1.3 or less. As a specific example, the Li/M may be 0.9 or more, 0.95 or more, or 1.0 or more, and further may be 1.1 or less, 1.07 or less, 1.05 or less, or 1.04 or less, and the Li/M may be adjusted depending on the content of nickel in the transition metal.
본 발명의 일 실시예에 따르면, 상기 양극 활물질 제조방법은 상기 (S10) 단계에서 제조된 양극 활물질을 코팅하는 단계(S20)를 더 포함할 수 있다. 구체적인 예로, 상기 (S20) 단계는 Co 및 B로 이루어진 군으로부터 선택되는 1종 이상의 코팅 원료를 포함하여 실시되는 것일 수 있다. 또한, 상기 (S20) 단계는 Al 코팅 원료를 더 포함하여 실시되는 것일 수 있다.According to one embodiment of the present invention, the method for manufacturing the positive electrode active material may further include a step (S20) of coating the positive electrode active material manufactured in the step (S10). As a specific example, the step (S20) may be performed by including at least one coating raw material selected from the group consisting of Co and B. In addition, the step (S20) may be performed by further including an Al coating raw material.
본 발명의 일 실시예에 따르면, 상기 (S20) 단계의 코팅은 각 코팅 원료 물질을 동시에 코팅하여 실시될 수 있고, 또는 순차적으로 나누어 실시될 수 있다. 구체적인 예로, 상기 (S20) 단계의 코팅은 양극 활물질에 Co 코팅 원료 물질 및 Al 코팅 원료 물질을 혼합하고, 열처리하는 단계(S21) 및 상기 (S21) 단계에서 제조된 코팅품에 B 코팅 원료 물질을 혼합하고, 열처리하는 단계(S22)를 포함하여 실시될 수 있다.According to one embodiment of the present invention, the coating of the step (S20) may be performed by coating each coating raw material simultaneously, or may be performed sequentially and separately. As a specific example, the coating of the step (S20) may be performed including a step (S21) of mixing a Co coating raw material and an Al coating raw material into a positive active material and performing heat treatment, and a step (S22) of mixing a B coating raw material into a coating product manufactured in the step (S21) and performing heat treatment.
본 발명의 일 실시예에 따르면, 상기 Co 코팅 원료 물질은 Co(OH)2 등의 코발트 수산화물일 수 있고, Al 코팅 원료 물질은 Al(OH)3 등의 알루미늄 수산화물일 수 있으며, B 코팅 원료 물질은 H3BO3일 수 있다.According to one embodiment of the present invention, the Co coating raw material may be a cobalt hydroxide such as Co(OH) 2 , the Al coating raw material may be an aluminum hydroxide such as Al(OH) 3 , and the B coating raw material may be H3BO3 .
본 발명의 일 실시예에 따르면, 상기 양극 활물질 제조방법은 (S10) 단계 및 (S20) 단계를 실시함에 있어서, 소성 이후, 필요에 따라 소성품을 분쇄하는 단계를 포함할 수 있고, 상기 분쇄는 양극 활물질을 분쇄할 수 있는 분쇄 장치라면 특별히 제한 없이 사용하여 실시될 수 있다.According to one embodiment of the present invention, the method for manufacturing the positive electrode active material may include, when performing steps (S10) and (S20), a step of crushing the sintered product after the firing, if necessary, and the crushing may be performed without particular limitation using a crushing device capable of crushing the positive electrode active material.
본 발명의 일 실시예에 따르면, 상기 도핑 원료 물질 및 코팅 원료 물질은 앞서 기재한 양극 활물질의 도핑 원소 함량 및 코팅 원소 함량을 만족하도록 조절하여 투입될 수 있다.According to one embodiment of the present invention, the doping raw material and the coating raw material can be introduced by adjusting them to satisfy the doping element content and the coating element content of the positive electrode active material described above.
양극anode
본 발명은 상기 양극 활물질을 포함하는 양극을 제공한다.The present invention provides a positive electrode comprising the positive electrode active material.
본 발명의 일 실시예에 따르면, 상기 양극은 양극 집전체, 상기 양극 집전체 상에 형성된 양극 활물질층을 포함하는 것일 수 있고, 상기 양극 활물질층은 상기 양극 활물질을 포함하는 것일 수 있다.According to one embodiment of the present invention, the positive electrode may include a positive electrode current collector and a positive electrode active material layer formed on the positive electrode current collector, and the positive electrode active material layer may include the positive electrode active material.
본 발명의 일 실시예에 따르면, 상기 양극 집전체는 전도성이 높은 금속을 포함할 수 있으며, 양극 활물질층이 용이하게 접착하되, 전지의 전압 범위에서 반응성이 없는 것이라면 특별히 제한되는 것은 아니다. 상기 양극 집전체는 예를 들어 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소 또는 알루미늄이나 스테인레스 스틸 표면에 탄소, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다. 또한, 상기 양극 집전체는 통상적으로 3 ㎛ 내지 500 ㎛의 두께를 가질 수 있으며, 상기 집전체 표면 상에 미세한 요철을 형성하여 양극 활물질의 접착력을 높일 수도 있다. 예를 들어 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.According to one embodiment of the present invention, the positive electrode current collector may include a highly conductive metal, and is not particularly limited as long as it is easily adhered to a positive electrode active material layer but does not react in the voltage range of the battery. The positive electrode current collector may be, for example, stainless steel, aluminum, nickel, titanium, sintered carbon, or aluminum or stainless steel surface-treated with carbon, nickel, titanium, silver, or the like. In addition, the positive electrode current collector may typically have a thickness of 3 ㎛ to 500 ㎛, and fine unevenness may be formed on the surface of the current collector to increase the adhesive strength of the positive electrode active material. For example, the positive electrode current collector may be used in various forms such as a film, a sheet, a foil, a net, a porous body, a foam, a non-woven fabric, etc.
본 발명의 일 실시예에 따르면, 상기 양극 활물질층은 상기 양극 활물질과 함께, 필요에 따라 선택적으로 도전재, 및 바인더를 포함할 수 있다. 이때 상기 양극 활물질은 양극 활물질층 총 중량에 대하여 80 중량% 내지 99 중량%, 보다 구체적으로는 85 중량% 내지 98.5중량%의 햠량으로 포함될 수 있으며, 이 범위 내에서 우수한 용량 특성을 나타낼 수 있다.According to one embodiment of the present invention, the positive electrode active material layer may optionally include a conductive material and a binder, together with the positive electrode active material, as needed. At this time, the positive electrode active material may be included in an amount of 80 wt% to 99 wt%, more specifically 85 wt% to 98.5 wt%, based on the total weight of the positive electrode active material layer, and excellent capacity characteristics may be exhibited within this range.
본 발명의 일 실시예에 따르면, 상기 도전재는 전극에 도전성을 부여하기 위해 사용되는 것으로서, 구성되는 전지에 있어서, 화학변화를 야기하지 않고 전자 전도성을 갖는 것이면 특별한 제한 없이 사용 가능하다. 구체적인 예로는 천연 흑연이나 인조 흑연 등의 흑연; 카본 블랙, 아세틸렌블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서멀 블랙, 탄소섬유 등의 탄소계 물질; 구리, 니켈, 알루미늄, 은 등의 금속 분말 또는 금속 섬유; 탄소나노튜브 등의 도전성 튜브; 산화아연, 티탄산 칼륨 등의 도전성 휘스커; 산화 티탄 등의 도전성 금속 산화물; 또는 폴리페닐렌 유도체 등의 전도성 고분자 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 도전재는 양극 활물질층 총 중량에 대하여 0.1 중량% 내지 15 중량%로 포함될 수 있다.According to one embodiment of the present invention, the conductive material is used to provide conductivity to the electrode, and in the battery to be formed, any conductive material that does not cause a chemical change and has electronic conductivity can be used without special limitations. Specific examples thereof include graphite such as natural graphite or artificial graphite; carbon-based materials such as carbon black, acetylene black, Ketjen black, channel black, furnace black, lamp black, thermal black, and carbon fiber; metal powders or metal fibers such as copper, nickel, aluminum, and silver; conductive tubes such as carbon nanotubes; conductive whiskers such as zinc oxide or potassium titanate; conductive metal oxides such as titanium oxide; or conductive polymers such as polyphenylene derivatives, and the like, and one of these may be used alone or a mixture of two or more may be used. The conductive material may be included in an amount of 0.1 wt% to 15 wt% with respect to the total weight of the positive electrode active material layer.
본 발명의 일 실시예에 따르면, 상기 바인더는 양극 활물질 입자들 간의 부착 및 양극 활물질과 집전체와의 접착력을 향상시키는 역할을 한다. 구체적인 예로는 폴리비닐리덴플루오라이드(PVDF), 폴리비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HFP), 폴리비닐알코올(polyvinylalcohol), 폴리아크릴로니트릴(polyacrylonitrile), 폴리메틸메타크릴레이트(polymethymethaxrylate), 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 폴리테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 폴리머(EPDM), 술폰화-EPDM, 스티렌 부타디엔 고무(SBR), 불소 고무, 폴리아크릴산(poly acrylic acid), 및 이들의 수소를 Li, Na, 또는 Ca로 치환된 고분자, 또는 이들의 다양한 공중합체 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 바인더는 양극 활물질층 총 중량에 대하여 0.1 중량% 내지 15 중량%로 포함될 수 있다.According to one embodiment of the present invention, the binder serves to improve adhesion between positive electrode active material particles and adhesion between the positive electrode active material and the current collector. Specific examples include polyvinylidene fluoride (PVDF), polyvinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP), polyvinylalcohol, polyacrylonitrile, polymethyl methacrylate, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinyl pyrrolidone, polytetrafluoroethylene, polyethylene, polypropylene, ethylene-propylene-diene polymer (EPDM), sulfonated-EPDM, styrene butadiene rubber (SBR), fluoroelastomer, polyacrylic acid, and polymers in which hydrogens of these are substituted with Li, Na, or Ca, or various copolymers thereof, and one of these may be used alone or a mixture of two or more thereof. The above binder may be included in an amount of 0.1 wt% to 15 wt% based on the total weight of the positive electrode active material layer.
본 발명의 일 실시예에 따르면, 상기 양극은 상기한 양극 활물질을 이용하는 것을 제외하고는 통상의 양극 제조방법에 따라 제조될 수 있다. 구체적으로, 상기 양극은, 상기한 양극 활물질 및 필요에 따라 선택적으로 바인더, 도전재, 및 분산제를 용매 중에 용해 또는 분산시켜 제조한 양극 활물질층 형성용 조성물을 양극 집전체 상에 도포한 후, 건조 및 압연함으로써 제조하거나, 상기 양극 활물질층 형성용 조성물을 별도의 지지체 상에 캐스팅한 다음, 이 지지체로부터 박리하여 얻은 필름을 양극 집전체 상에 라미네이션함으로써 제조할 수 있다.According to one embodiment of the present invention, the positive electrode can be manufactured according to a conventional positive electrode manufacturing method, except that the positive electrode active material described above is used. Specifically, the positive electrode can be manufactured by applying a composition for forming a positive electrode active material layer, which is manufactured by dissolving or dispersing the positive electrode active material and optionally a binder, a conductive agent, and a dispersant in a solvent as needed, onto a positive electrode current collector, and then drying and rolling, or by casting the composition for forming a positive electrode active material layer onto a separate support, and then peeling off the support to obtain a film and laminating it onto a positive electrode current collector.
본 발명의 일 실시예에 따르면, 상기 용매로는 당해 기술분야에서 일반적으로 사용되는 용매일 수 있으며, 디메틸셀폭사이드(dimethyl sulfoxide, DMSO), 이소프로필 알코올(isopropyl alcohol), N-메틸피롤리돈(NMP), 디메틸포름아미드(dimethylformamide, DMF), 아세톤(acetone) 또는 물 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 용매의 사용량은 슬러리의 도포 두께, 제조 수율을 고려하여 상기 양극 활물질, 도전재, 바인더, 및 분산제를 용해 또는 분산시키고, 이후 양극 제조를 위한 도포시 우수한 두께 균일도를 나타낼 수 있는 점도를 갖도록 하는 정도면 충분하다.According to one embodiment of the present invention, the solvent may be a solvent generally used in the art, and may include dimethyl sulfoxide (DMSO), isopropyl alcohol, N-methylpyrrolidone (NMP), dimethylformamide (DMF), acetone, or water, and one of these may be used alone or as a mixture of two or more thereof. The amount of the solvent used is sufficient to dissolve or disperse the positive electrode active material, conductive material, binder, and dispersant, taking into account the coating thickness and manufacturing yield of the slurry, and to have a viscosity that can exhibit excellent thickness uniformity during subsequent coating for manufacturing the positive electrode.
리튬이차전지Lithium secondary battery
본 발명은 상기 양극을 포함하는 리튬이차전지를 제공한다.The present invention provides a lithium secondary battery including the positive electrode.
본 발명의 일 실시예에 따르면, 상기 리튬이차전지는 상기 양극; 음극; 상기 양극과 음극 사이에 개재된 분리막 및 전해질을 포함하는 것일 수 있다. 또한, 상기 리튬이차전지는 상기 양극, 음극, 분리막의 전극 조립체를 수납하는 전지용기, 및 상기 전지용기를 밀봉하는 밀봉 부재를 선택적으로 더 포함할 수 있다.According to one embodiment of the present invention, the lithium secondary battery may include the positive electrode; the negative electrode; a separator interposed between the positive electrode and the negative electrode, and an electrolyte. In addition, the lithium secondary battery may optionally further include a battery container that accommodates an electrode assembly of the positive electrode, the negative electrode, and the separator, and a sealing member that seals the battery container.
본 발명의 일 실시예에 따르면, 상기 음극은 음극 집전체 및 상기 음극 집전체 상에 위치하는 음극 활물질층을 포함하는 것일 수 있다.According to one embodiment of the present invention, the negative electrode may include a negative electrode current collector and a negative electrode active material layer positioned on the negative electrode current collector.
본 발명의 일 실시예에 따르면, 상기 음극 집전체는 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인레스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인레스 스틸의 표면에 탄소, 니켈, 티탄, 은 등으로 표면처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또, 상기 음극 집전체는 통상적으로 3 ㎛ 내지 500 ㎛의 두께를 가질 수 있으며, 양극 집전체와 마찬가지로, 상기 집전체 표면에 미세한 요철을 형성하여 음극 활물질의 결합력을 강화시킬 수도 있다. 예를 들어, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.According to one embodiment of the present invention, the negative electrode current collector is not particularly limited as long as it has high conductivity without causing a chemical change in the battery, and for example, copper, stainless steel, aluminum, nickel, titanium, calcined carbon, copper or stainless steel surface-treated with carbon, nickel, titanium, silver, etc., an aluminum-cadmium alloy, etc. can be used. In addition, the negative electrode current collector can typically have a thickness of 3 ㎛ to 500 ㎛, and, like the positive electrode current collector, fine unevenness can be formed on the surface of the current collector to strengthen the bonding strength of the negative electrode active material. For example, it can be used in various forms such as a film, a sheet, a foil, a net, a porous body, a foam, a non-woven fabric, etc.
본 발명의 일 실시예에 따르면, 상기 음극 활물질층은 음극 활물질과 함께 선택적으로 바인더 및 도전재를 포함하는 것일 수 있다.According to one embodiment of the present invention, the negative electrode active material layer may optionally include a binder and a conductive material together with the negative electrode active material.
본 발명의 일 실시예에 따르면, 상기 음극 활물질로는 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물이 사용될 수 있다. 구체적인 예로는 인조흑연, 천연흑연, 흑연화 탄소섬유, 비정질탄소 등의 탄소질 재료; Si, Al, Sn, Pb, Zn, Bi, In, Mg, Ga, Cd, Si합금, Sn합금 또는 Al합금 등 리튬과 합금화가 가능한 금속질 화합물; SiOβ(0<β<2), SnO2, 바나듐 산화물, 리튬 바나듐 산화물과 같이 리튬을 도프 및 탈도프할 수 있는 금속산화물; 또는 Si-C 복합체 또는 Sn-C 복합체과 같이 상기 금속질 화합물과 탄소질 재료를 포함하는 복합물 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다. 또한, 상기 음극활물질로서 금속 리튬 박막이 사용될 수도 있다. 또한, 탄소재료는 저결정성 탄소 및 고결정성 탄소 등이 모두 사용될 수 있다. 저결정성 탄소로는 연화탄소 (soft carbon) 및 경화탄소 (hard carbon)가 대표적이며, 고결정성 탄소로는 무정형, 판상, 인편상, 구형 또는 섬유형의 천연 흑연 또는 인조 흑연, 키시 흑연 (Kish graphite), 열분해 탄소 (pyrolytic carbon), 액정 피치계 탄소섬유 (mesophase pitch based carbonfiber), 탄소 미소구체 (meso-carbon microbeads), 액정피치 (Mesophase pitches) 및 석유와 석탄계 코크스 (petroleum or coal tar pitch derived cokes) 등의 고온 소성탄소가 대표적이다. 상기 음극 활물질은 음극 활물질층의 전체 중량을 기준으로 80 중량% 내지 99 중량%로 포함될 수 있다.According to one embodiment of the present invention, a compound capable of reversible intercalation and deintercalation of lithium may be used as the negative electrode active material. Specific examples thereof include carbonaceous materials such as artificial graphite, natural graphite, graphitized carbon fiber, and amorphous carbon; metallic compounds capable of alloying with lithium such as Si, Al, Sn, Pb, Zn, Bi, In, Mg, Ga, Cd, Si alloy, Sn alloy, and Al alloy; metallic oxides capable of doping and dedoping lithium such as SiOβ(0<β<2), SnO2 , vanadium oxide, and lithium vanadium oxide; or composites including the metallic compounds and carbonaceous materials such as Si-C composites or Sn-C composites, and any one or a mixture of two or more of these may be used. In addition, a metallic lithium thin film may be used as the negative electrode active material. In addition, both low-crystalline carbon and high-crystalline carbon may be used as the carbon material. Representative examples of low-crystallization carbon include soft carbon and hard carbon, and representative examples of high-crystallization carbon include amorphous, plate-like, flaky, spherical or fibrous natural graphite or artificial graphite, Kish graphite, pyrolytic carbon, mesophase pitch based carbon fiber, mesophase pitches, mesophase pitches, and high-temperature calcined carbon such as petroleum or coal tar pitch derived cokes. The negative electrode active material may be included in an amount of 80 to 99 wt% based on the total weight of the negative electrode active material layer.
본 발명의 일 실시예에 따르면, 상기 음극 활물질층의 바인더는 도전재, 활물질 및 집전체 간의 결합에 조력하는 성분으로서, 통상적으로 음극 활물질층의 전체 중량을 기준으로 0.1 중량% 내지 10 중량%로 첨가된다. 이러한 바인더의 예로는, 폴리비닐리덴플루오라이드(PVDF), 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 폴리테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 폴리머(EPDM), 술폰화-EPDM, 스티렌-부타디엔 고무, 니트릴-부타디엔 고무, 불소 고무, 이들의 다양한 공중합체 등을 들 수 있다.According to one embodiment of the present invention, the binder of the negative electrode active material layer is a component that assists in bonding between the conductive material, the active material, and the current collector, and is typically added in an amount of 0.1 to 10 wt% based on the total weight of the negative electrode active material layer. Examples of such binders include polyvinylidene fluoride (PVDF), polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinyl pyrrolidone, polytetrafluoroethylene, polyethylene, polypropylene, ethylene-propylene-diene polymer (EPDM), sulfonated-EPDM, styrene-butadiene rubber, nitrile-butadiene rubber, fluororubber, various copolymers thereof, and the like.
본 발명의 일 실시예에 따르면, 상기 음극 활물질층의 도전재는 음극활물질의 도전성을 더욱 향상시키기 위한 성분으로서, 음극 활물질층의 전체 중량을 기준으로 10 중량% 이하, 바람직하게는 5 중량% 이하로 첨가될 수 있다. 이러한 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 천연 흑연이나 인조 흑연 등의 흑연; 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서멀 블랙 등의 카본 블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본; 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 휘스커; 산화티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다.According to one embodiment of the present invention, the conductive material of the negative electrode active material layer is a component for further improving the conductivity of the negative electrode active material, and may be added in an amount of 10 wt% or less, preferably 5 wt% or less, based on the total weight of the negative electrode active material layer. The conductive material is not particularly limited as long as it has conductivity without causing a chemical change in the battery, and for example, graphite such as natural graphite or artificial graphite; carbon black such as acetylene black, Ketjen black, channel black, furnace black, lamp black, or thermal black; conductive fibers such as carbon fibers or metal fibers; fluorinated carbon; metal powders such as aluminum or nickel powder; conductive whiskers such as zinc oxide or potassium titanate; conductive metal oxides such as titanium oxide; conductive materials such as polyphenylene derivatives, etc. may be used.
본 발명의 일 실시예에 따르면, 상기 음극은 음극 집전체 상에 음극 활물질, 및 선택적으로 바인더 및 도전재를 용매 중에 용해 또는 분산시켜 제조한 음극 활물질층 형성용 조성물을 도포하고 건조함으로써 제조되거나, 또는 상기 음극 활물질층 형성용 조성물을 별도의 지지체 상에 캐스팅한 다음, 이 지지체로부터 박리하여 얻은 필름을 음극 집전체 상에 라미네이션함으로써 제조될 수 있다.According to one embodiment of the present invention, the negative electrode can be manufactured by applying and drying a composition for forming a negative electrode active material layer, which is manufactured by dissolving or dispersing a negative electrode active material, and optionally a binder and a conductive material in a solvent, on a negative electrode current collector, or by casting the composition for forming a negative electrode active material layer on a separate support and then laminating the resulting film on a negative electrode current collector by peeling it off from the support.
본 발명의 일 실시예에 따르면, 상기 분리막은 음극과 양극을 분리하고 리튬 이온의 이동 통로를 제공하는 것으로, 통상 리튬 이차 전지에서 분리막으로 사용되는 것이라면 특별한 제한 없이 사용가능하며, 특히 전해질의 이온 이동에 대하여 저저항이면서 전해액 함습 능력이 우수한 것이 바람직하다. 구체적으로는 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름 또는 이들의 2층 이상의 적층 구조체가 사용될 수 있다. 또한 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포가 사용될 수도 있다. 또한, 내열성 또는 기계적 강도 확보를 위해 세라믹 성분 또는 고분자 물질이 포함된 코팅된 분리막이 사용될 수도 있으며, 선택적으로 단층 또는 다층 구조로 사용될 수 있다.According to one embodiment of the present invention, the separator separates the negative electrode and the positive electrode and provides a passage for lithium ions to move. If it is a separator that is usually used as a separator in a lithium secondary battery, it can be used without any special limitation, and in particular, it is preferable that it has low resistance to ion movement of the electrolyte and excellent electrolyte moisture retention capacity. Specifically, a porous polymer film, for example, a porous polymer film made of a polyolefin polymer such as an ethylene homopolymer, a propylene homopolymer, an ethylene/butene copolymer, an ethylene/hexene copolymer, and an ethylene/methacrylate copolymer, or a laminated structure of two or more layers thereof, can be used. In addition, a conventional porous nonwoven fabric, for example, a nonwoven fabric made of high-melting-point glass fiber, polyethylene terephthalate fiber, etc. can also be used. In addition, a coated separator containing a ceramic component or a polymer material to secure heat resistance or mechanical strength can be used, and can be selectively used in a single-layer or multi-layer structure.
본 발명의 일 실시예에 따르면, 상기 전해질로는 리튬 이차 전지 제조시 사용 가능한 유기계 액체 전해질, 무기계 액체 전해질, 고체 고분자 전해질, 겔형 고분자 전해질, 고체 무기 전해질, 용융형 무기 전해질 등을 들 수 있으며, 이들로 한정되는 것은 아니다. 구체적인 예로, 상기 전해질은 유기 용매 및 리튬염을 포함할 수 있다.According to one embodiment of the present invention, the electrolyte may include, but is not limited to, an organic liquid electrolyte, an inorganic liquid electrolyte, a solid polymer electrolyte, a gel-type polymer electrolyte, a solid inorganic electrolyte, a molten inorganic electrolyte, etc. that can be used in the manufacture of a lithium secondary battery. As a specific example, the electrolyte may include an organic solvent and a lithium salt.
본 발명의 일 실시예에 따르면, 상기 유기 용매로는 전지의 전기 화학적 반응에 관여하는 이온들이 이동할 수 있는 매질 역할을 할 수 있는 것이라면 특별한 제한 없이 사용될 수 있다. 구체적으로 상기 유기 용매로는, 메틸 아세테이트(methyl acetate), 에틸 아세테이트(ethyl acetate), γ-부티로락톤(γ-butyrolactone), ε-카프로락톤(ε-caprolactone) 등의 에스테르계 용매; 디부틸 에테르(dibutyl ether) 또는 테트라히드로퓨란(tetrahydrofuran) 등의 에테르계 용매; 시클로헥사논(cyclohexanone) 등의 케톤계 용매; 벤젠(benzene), 플루오로벤젠(fluorobenzene) 등의 방향족 탄화수소계 용매; 디메틸카보네이트(dimethylcarbonate, DMC), 디에틸카보네이트(diethylcarbonate, DEC), 에틸메틸카보네이트(ethylmethylcarbonate, EMC), 에틸렌카보네이트(ethylenecarbonate, EC), 프로필렌카보네이트(propylene carbonate, PC) 등의 카보네이트계 용매; 에틸알코올, 이소프로필 알코올 등의 알코올계 용매; R-CN(R은 탄소수 2 내지 20의 직쇄상, 분지상 또는 환 구조의 탄화수소기이며, 이중결합 방향 환 또는 에테르 결합을 포함할 수 있다) 등의 니트릴류; 디메틸포름아미드 등의 아미드류; 1,3-디옥솔란 등의 디옥솔란류; 또는 설포란(sulfolane)류 등이 사용될 수 있다. 이중에서도 카보네이트계 용매가 바람직하고, 전지의 충방전 성능을 높일 수 있는 높은 이온전도도 및 고유전율을 갖는 환형 카보네이트(예를 들면, 에틸렌카보네이트 또는 프로필렌카보네이트 등)와, 저점도의 선형 카보네이트계 화합물(예를 들면, 에틸메틸카보네이트, 디메틸카보네이트 또는 디에틸카보네이트 등)의 혼합물이 보다 바람직하다.According to one embodiment of the present invention, as the organic solvent, any solvent that can act as a medium through which ions involved in the electrochemical reaction of the battery can move can be used without particular limitation. Specifically, the organic solvent may include ester solvents such as methyl acetate, ethyl acetate, γ-butyrolactone, and ε-caprolactone; ether solvents such as dibutyl ether or tetrahydrofuran; ketone solvents such as cyclohexanone; aromatic hydrocarbon solvents such as benzene and fluorobenzene; Examples of solvents that can be used include carbonate solvents such as dimethylcarbonate (DMC), diethylcarbonate (DEC), ethylmethylcarbonate (EMC), ethylenecarbonate (EC), and propylene carbonate (PC); alcohol solvents such as ethyl alcohol and isopropyl alcohol; nitriles such as R-CN (wherein R represents a linear, branched, or cyclic hydrocarbon group having 2 to 20 carbon atoms and may include a double-bonded aromatic ring or an ether bond); amides such as dimethylformamide; dioxolanes such as 1,3-dioxolane; and sulfolanes. Among these, a carbonate solvent is preferable, and a mixture of a cyclic carbonate (e.g., ethylene carbonate or propylene carbonate, etc.) having high ionic conductivity and high dielectric constant that can improve the charge/discharge performance of the battery and a low-viscosity linear carbonate compound (e.g., ethyl methyl carbonate, dimethyl carbonate, or diethyl carbonate, etc.) is more preferable.
본 발명의 일 실시예에 따르면, 상기 리튬염은 리튬 이차 전지에서 사용되는 리튬 이온을 제공할 수 있는 화합물이라면 특별한 제한 없이 사용될 수 있다. 구체적으로 상기 리튬염의 음이온으로는 F-, Cl-, Br-, I-, NO3 -, N(CN)2 -, BF4 -, CF3CF2SO3 -, (CF3SO2)2N-, (FSO2)2N-, CF3CF2(CF3)2CO-, (CF3SO2)2CH-, (SF5)3C-, (CF3SO2)3C-, CF3(CF2)7SO3 -, CF3CO2 -, CH3CO2 -, SCN- 및 (CF3CF2SO2)2N-로 이루어진 군에서 선택되는 적어도 하나 이상일 수 있고, 상기 리튬염은, LiPF6, LiClO4, LiAsF6, LiBF4, LiSbF6, LiAl04, LiAlCl4, LiCF3SO3, LiC4F9SO3, LiN(C2F5SO3)2, LiN(C2F5SO2)2, LiN(CF3SO2)2, LiCl, LiI, 또는 LiB(C2O4)2 등이 사용될 수 있다. 상기 리튬염의 농도는 0.1 M 내지 2.0 M 범위 내에서 사용하는 것이 좋다. 리튬염의 농도가 상기 범위에 포함되면, 전해질이 적절한 전도도 및 점도를 가지므로 우수한 전해질 성능을 나타낼 수 있고, 리튬 이온이 효과적으로 이동할 수 있다.According to one embodiment of the present invention, the lithium salt may be used without any particular limitation as long as it is a compound capable of providing lithium ions used in a lithium secondary battery. Specifically, the anion of the lithium salt may be at least one selected from the group consisting of F - , Cl - , Br - , I - , NO 3 - , N(CN) 2 - , BF 4 - , CF 3 CF 2 SO 3 - , (CF 3 SO 2 ) 2 N - , (FSO 2 ) 2 N - , CF 3 CF 2 (CF 3 ) 2 CO - , (CF 3 SO 2 ) 2 CH - , (SF 5 ) 3 C - , (CF 3 SO 2 ) 3 C - , CF 3 (CF 2 ) 7 SO 3 - , CF 3 CO 2 - , CH 3 CO 2 - , SCN - and (CF 3 CF 2 SO 2 ) 2 N - , and the lithium salt may be at least one selected from the group consisting of LiPF 6 , LiClO 4 , LiAsF 6 , LiBF 4 , LiSbF 6 , LiAl0 4 , LiAlCl 4 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiN(C 2 F 5 SO 3 ) 2 , LiN(C 2 F 5 SO 2 ) 2 , LiN(CF 3 SO 2 ) 2 , LiCl, LiI, or LiB(C 2 O 4 ) 2 can be used. It is preferable to use the concentration of the lithium salt within the range of 0.1 M to 2.0 M. When the concentration of the lithium salt is within the above range, the electrolyte can exhibit excellent electrolyte performance because it has appropriate conductivity and viscosity, and lithium ions can move effectively.
본 발명의 일 실시예에 따르면, 상기 전해질에는 상기 전해질 구성 성분들 외에도 전지의 수명특성 향상, 전지 용량 감소 억제, 전지의 방전 용량 향상 등을 목적으로 예를 들어, 디플루오로 에틸렌카보네이트 등과 같은 할로알킬렌카보네이트계 화합물, 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사인산 트리아미드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환 옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌 글리콜 디알킬 에테르, 암모늄염, 피롤, 2-메톡시 에탄올 또는 삼염화 알루미늄 등의 첨가제가 1종 이상 더 포함될 수도 있다. 이때 상기 첨가제는 전해질 총 중량에 대하여 0.1 중량% 내지 5 중량%로 포함될 수 있다.According to one embodiment of the present invention, in addition to the electrolyte components, the electrolyte may further contain one or more additives, such as, for example, a haloalkylene carbonate compound such as difluoroethylene carbonate, pyridine, triethylphosphite, triethanolamine, a cyclic ether, ethylene diamine, n-glyme, hexaphosphoric acid triamide, a nitrobenzene derivative, sulfur, a quinone imine dye, an N-substituted oxazolidinone, an N,N-substituted imidazolidine, ethylene glycol dialkyl ether, an ammonium salt, pyrrole, 2-methoxy ethanol, or aluminum trichloride, for the purpose of improving the life characteristics of the battery, suppressing battery capacity decrease, and improving the discharge capacity of the battery. At this time, the additive may be contained in an amount of 0.1 wt% to 5 wt% with respect to the total weight of the electrolyte.
본 발명에 따른 양극 활물질을 포함하는 리튬이차전지는 우수한 용량 특성, 출력 특성 및 수명 특성을 안정적으로 나타내기 때문에, 휴대전화, 노트북 컴퓨터, 디지털 카메라 등의 휴대용 기기, 하이브리드 전기자동차(hybrid electric vehicle, HEV), 전기자동차(electric vehicle, EV) 등의 전기 자동차 분야 등에 유용하다.A lithium secondary battery including a cathode active material according to the present invention stably exhibits excellent capacity characteristics, output characteristics, and life characteristics, and is therefore useful in portable devices such as mobile phones, laptop computers, and digital cameras, and electric vehicles such as hybrid electric vehicles (HEVs) and electric vehicles (EVs).
본 발명의 리튬이차전지의 외형은 특별한 제한이 없으나, 캔을 사용한 원통형, 각형, 파우치(pouch)형 또는 코인(coin)형 등이 될 수 있다.There is no particular limitation on the external shape of the lithium secondary battery of the present invention, but it may be in the shape of a cylinder, a square, a pouch, or a coin using a can.
본 발명에 따른 리튬이차전지는 소형 디바이스의 전원으로 사용되는 전지셀에 사용될 수 있을 뿐만 아니라, 다수의 전지셀들을 포함하는 중대형 전지모듈에 단위전지로도 바람직하게 사용될 수 있다.The lithium secondary battery according to the present invention can be used not only as a battery cell used as a power source for a small device, but can also be preferably used as a unit battery in a medium- to large-sized battery module including a plurality of battery cells.
이에 따라, 본 발명의 일 실시예에 따르면, 상기 리튬이차전지를 단위 셀로 포함하는 전지 모듈 및 이를 포함하는 전지팩이 제공된다.Accordingly, according to one embodiment of the present invention, a battery module including the lithium secondary battery as a unit cell and a battery pack including the same are provided.
본 발명의 일 실시예에 따르면, 상기 전지모듈 또는 전지팩은 파워 툴(Power Tool); 전기자동차(Electric Vehicle, EV), 하이브리드 전기자동차, 및 플러그인 하이브리드 전기자동차(Plug-in Hybrid Electric Vehicle, PHEV)를 포함하는 전기차; 또는 전력 저장용 시스템 중 어느 하나 이상의 중대형 디바이스 전원으로 이용될 수 있다.According to one embodiment of the present invention, the battery module or battery pack can be used as a power source for one or more medium- to large-sized devices, such as a power tool; an electric vehicle including an electric vehicle (EV), a hybrid electric vehicle, and a plug-in hybrid electric vehicle (PHEV); or a power storage system.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.Hereinafter, embodiments of the present invention will be described in detail so that those skilled in the art can easily implement the present invention. However, the present invention may be implemented in various different forms and is not limited to the embodiments described herein.
실시예 및 비교예Examples and Comparative Examples
실시예 1Example 1
수십 내지 수백 개의 1차 입자들이 응집되어 형성된 2차 입자 형태로서 Ni0.89Co0.03Mn0.08(OH)2로 표시되는 조성을 갖는 전이금속 복합 수산화물(D50: 10.2 ㎛)과, LiOH를 전이금속(Ni+Co+Mn)에 대한 리튬(Li)의 몰비(Li/(Ni+Co+Mn))가 1.04가 되도록 혼합하였다. 여기에, 상기 전이금속 복합 수산화물 총 중량 대비 Al(OH)3를 1,470 ppm, Y2O3를 1,000 ppm 및 ZrO2를 1,500 ppm의 함량으로 첨가하고 혼합하여 혼합물을 제조하였다.A transition metal composite hydroxide (D 50 : 10.2 ㎛) having a composition represented by Ni 0.89 Co 0.03 Mn 0.08 (OH) 2 in the form of secondary particles formed by the agglomeration of tens to hundreds of primary particles and LiOH were mixed such that the molar ratio of lithium (Li) to transition metal (Ni + Co + Mn) (Li / (Ni + Co + Mn)) was 1.04. To this, 1,470 ppm of Al (OH) 3 , 1,000 ppm of Y 2 O 3 , and 1,500 ppm of ZrO 2 were added and mixed relative to the total weight of the transition metal composite hydroxide to prepare a mixture.
상기 혼합물을 산소 분위기 하에서, 850 ℃에서 6 시간, 이어서, 800 ℃에서 9 시간 동안 소성하여 소성품을 얻었다. 상온에서 상기 소성품을 분쇄하여 평균 입경(D50)이 9.8 ㎛이고, LiNi0.8833Co0.0298Mn0.0794Al0.0050Y0.0010Zr0.0015O2로 표시되는 조성을 가지며, 1차 입자가 응집된 2차 입자 형태의 리튬 전이금속 산화물을 제조하였다.The above mixture was calcined under an oxygen atmosphere at 850° C. for 6 hours and then at 800° C. for 9 hours to obtain a calcined product. The calcined product was pulverized at room temperature to produce a lithium transition metal oxide having an average particle size (D 50 ) of 9.8 μm and a composition represented by LiNi 0.8833 Co 0.0298 Mn 0.0794 Al 0.0050 Y 0.0010 Zr 0.0015 O 2 in the form of secondary particles in which primary particles are aggregated.
상기 제조된 2차 입자 형태의 리튬 전이금속 산화물과, Co(OH)2를 리튬을 제외한 금속(Ni+Co+Mn+Al+Y+Zr)에 대한 코발트(Co)의 몰비(Co/(Ni+Co+Mn+Al+Y+Zr))가 0.02가 되도록, Al(OH)3를 상기 제조된 2차 입자 형태의 리튬 전이금속 산화물 총 중량 대비 500 ppm의 함량으로 각각 첨가하고 균일하게 혼합하여 혼합물을 제조하였다. 상기 혼합물을 산소 분위기 하에서, 740 ℃에서 3 시간, 이어서, 500 ℃에서 3 시간 동안 열처리하여 제1 코팅품을 얻었다. 상온에서 상기 제1 코팅품을 평균 입경(D50)이 10.2 ㎛이 되도록 분쇄하여, 1차 입자가 응집된 2차 입자 형태의 리튬 전이금속 산화물 상에 Co 및 Al을 포함하는 코팅부가 형성된 양극 활물질을 제조하였다. 상기 코팅부를 포함한 양극 활물질의 전체 조성은 LiNi0.8641Co0.0491Mn0.0777Al0.0066Y0.0010Zr0.0015O2이었다.A mixture was prepared by adding the lithium transition metal oxide in the form of secondary particles prepared above and Al(OH) 3 in an amount of 500 ppm based on the total weight of the lithium transition metal oxide in the form of secondary particles prepared above so that the molar ratio of cobalt (Co) to the metal (Ni+Co+Mn+Al+Y+Zr) excluding lithium (Co/(Ni+Co+Mn+Al+Y+Zr)) was 0.02, and mixing them uniformly. The mixture was heat-treated at 740°C for 3 hours and then at 500°C for 3 hours in an oxygen atmosphere to obtain a first coated product. The first coated product was pulverized at room temperature to an average particle size ( D50 ) of 10.2 μm to prepare a cathode active material in which a coating portion including Co and Al was formed on the lithium transition metal oxide in the form of secondary particles in which the primary particles were aggregated. The overall composition of the cathode active material including the above coating portion was LiNi 0.8641 Co 0.0491 Mn 0.0777 Al 0.0066 Y 0.0010 Zr 0.0015 O 2 .
상기 분쇄된 제1 코팅품에, 상기 분쇄된 제1 코팅품 총 중량 대비 H3BO3를 500 ppm의 함량으로 첨가하고 혼합하여 혼합물을 제조하였다. 상기 혼합물을 대기 분위기 하에서, 330 ℃에서 5 시간 동안 열처리하여 제2 코팅품을 얻었다. 상온에서 상기 제2 코팅품을 평균 입경(D50)이 10.2 ㎛이 되도록 분쇄하여, 1차 입자가 응집된 2차 입자 형태의 리튬 전이금속 산화물 상에 Co, Al 및 B를 포함하는 코팅부가 형성된 양극 활물질을 제조하였다. 상기 코팅부를 포함한 양극 활물질의 전체 조성은 LiNi0.8602Co0.0489Mn0.0773Al0.0066Y0.0010Zr0.0015B0.0045O2이었다.To the above-mentioned pulverized first coating product, H3BO3 was added in an amount of 500 ppm based on the total weight of the above-mentioned pulverized first coating product, and the mixture was mixed to prepare a mixture. The mixture was heat-treated at 330°C for 5 hours in an air atmosphere to obtain a second coating product. The second coating product was pulverized at room temperature to an average particle diameter ( D50 ) of 10.2 μm, and a positive electrode active material was prepared in which a coating portion including Co, Al, and B was formed on a lithium transition metal oxide in the form of secondary particles in which primary particles were aggregated. The total composition of the positive electrode active material including the coating portion was LiNi 0.8602 Co 0.0489 Mn 0.0773 Al 0.0066 Y 0.0010 Zr 0.0015 B 0.0045 O 2 .
실시예 2Example 2
수십 내지 수백 개의 1차 입자들이 응집되어 형성된 2차 입자 형태로서 Ni0.89Co0.03Mn0.08(OH)2로 표시되는 조성을 갖는 전이금속 복합 수산화물(D50: 10.2 ㎛)과, LiOH를 전이금속(Ni+Co+Mn)에 대한 리튬(Li)의 몰비(Li/(Ni+Co+Mn))가 1.00가 되도록 혼합하였다. 여기에, 상기 전이금속 복합 수산화물 총 중량 대비 Al(OH)3를 1,470 ppm, Y2O3를 1,000 ppm 및 ZrO2를 1,500 ppm의 함량으로 첨가하고 혼합하여 혼합물을 제조하였다.A transition metal composite hydroxide (D 50 : 10.2 μm) having a composition represented by Ni 0.89 Co 0.03 Mn 0.08 (OH) 2 in the form of secondary particles formed by the agglomeration of tens to hundreds of primary particles and LiOH were mixed such that the molar ratio of lithium (Li) to transition metal (Ni + Co + Mn) (Li / (Ni + Co + Mn)) was 1.00. To this, 1,470 ppm of Al (OH) 3 , 1,000 ppm of Y 2 O 3 , and 1,500 ppm of ZrO 2 were added and mixed relative to the total weight of the transition metal composite hydroxide to prepare a mixture.
상기 혼합물을 산소 분위기 하에서, 850 ℃에서 6 시간 동안 1차 소성하여 제1 소성품을 얻었다. 이후, 상온에서 상기 제1 소성품을 평균 입경(D50)이 9.8 ㎛가 되도록 분쇄하였다.The above mixture was first fired at 850° C. for 6 hours under an oxygen atmosphere to obtain a first fired product. Thereafter, the first fired product was pulverized at room temperature so that the average particle size (D 50 ) became 9.8 μm.
상기 분쇄된 1차 소성품과, LiOH를 전이금속(Ni+Co+Mn)에 대한 리튬(Li)의 몰비(Li/(Ni+Co+Mn))가 0.04가 되도록 혼합하고, 산소 분위기 하에서, 800 ℃에서 9 시간 동안 2차 소성하여 제2 소성품을 얻었다. 상온에서 상기 제2 소성품을 분쇄하여 평균 입경(D50)이 9.8 ㎛이고, LiNi0.8833Co0.0298Mn0.0794Al0.0050Y0.0010Zr0.0015O2로 표시되는 조성을 가지며, 1차 입자가 응집된 2차 입자 형태의 리튬 전이금속 산화물을 제조하였다.The above-mentioned pulverized primary sintered product and LiOH were mixed so that the molar ratio of lithium (Li) to transition metal (Ni+Co+Mn) (Li/(Ni+Co+Mn)) was 0.04, and the second sintering was performed at 800° C. for 9 hours in an oxygen atmosphere to obtain a second sintered product. The second sintered product was pulverized at room temperature to produce a lithium transition metal oxide having an average particle size ( D50 ) of 9.8 μm and a composition represented by LiNi 0.8833 Co 0.0298 Mn 0.0794 Al 0.0050 Y 0.0010 Zr 0.0015 O 2 in the form of secondary particles in which primary particles were aggregated.
상기 제조된 2차 입자 형태의 리튬 전이금속 산화물과, Co(OH)2를 리튬을 제외한 금속(Ni+Co+Mn+Al+Y+Zr)에 대한 코발트(Co)의 몰비(Co/(Ni+Co+Mn+Al+Y+Zr))가 0.02가 되도록, Al(OH)3를 상기 제조된 2차 입자 형태의 리튬 전이금속 산화물 총 중량 대비 500 ppm의 함량으로 각각 첨가하고 균일하게 혼합하여 혼합물을 제조하였다. 상기 혼합물을 산소 분위기 하에서, 740 ℃에서 3 시간, 이어서, 500 ℃에서 3 시간 동안 열처리하여 제1 코팅품을 얻었다. 상온에서 상기 제1 코팅품을 평균 입경(D50)이 10.2 ㎛이 되도록 분쇄하여, 1차 입자가 응집된 2차 입자 형태의 리튬 전이금속 산화물 상에 Co 및 Al을 포함하는 코팅부가 형성된 양극 활물질을 제조하였다. 상기 코팅부를 포함한 양극 활물질의 전체 조성은 LiNi0.8641Co0.0491Mn0.0777Al0.0066Y0.0010Zr0.0015O2이었다.A mixture was prepared by adding the lithium transition metal oxide in the form of secondary particles prepared above and Al(OH) 3 in an amount of 500 ppm based on the total weight of the lithium transition metal oxide in the form of secondary particles prepared above so that the molar ratio of cobalt (Co) to the metal (Ni+Co+Mn+Al+Y+Zr) excluding lithium (Co/(Ni+Co+Mn+Al+Y+Zr)) was 0.02, and mixing them uniformly. The mixture was heat-treated at 740°C for 3 hours and then at 500°C for 3 hours in an oxygen atmosphere to obtain a first coated product. The first coated product was pulverized at room temperature to an average particle size ( D50 ) of 10.2 μm to prepare a cathode active material in which a coating portion including Co and Al was formed on the lithium transition metal oxide in the form of secondary particles in which the primary particles were aggregated. The overall composition of the cathode active material including the above coating portion was LiNi 0.8641 Co 0.0491 Mn 0.0777 Al 0.0066 Y 0.0010 Zr 0.0015 O 2 .
상기 분쇄된 제1 코팅품에, 상기 분쇄된 제1 코팅품 총 중량 대비 H3BO3를 500 ppm의 함량으로 첨가하고 혼합하여 혼합물을 제조하였다. 상기 혼합물을 대기 분위기 하에서, 330 ℃에서 5 시간 동안 열처리하여 제2 코팅품을 얻었다. 상온에서 상기 제2 코팅품을 평균 입경(D50)이 10.2 ㎛이 되도록 분쇄하여, 1차 입자가 응집된 2차 입자 형태의 리튬 전이금속 산화물 상에 Co, Al 및 B를 포함하는 코팅부가 형성된 양극 활물질을 제조하였다. 상기 코팅부를 포함한 양극 활물질의 전체 조성은 LiNi0.8602Co0.0489Mn0.0773Al0.0066Y0.0010Zr0.0015B0.0045O2이었다.To the above-mentioned pulverized first coating product, H3BO3 was added in an amount of 500 ppm based on the total weight of the above-mentioned pulverized first coating product, and the mixture was mixed to prepare a mixture. The mixture was heat-treated at 330°C for 5 hours in an air atmosphere to obtain a second coating product. The second coating product was pulverized at room temperature to an average particle diameter ( D50 ) of 10.2 μm, and a positive electrode active material was prepared in which a coating portion including Co, Al, and B was formed on a lithium transition metal oxide in the form of secondary particles in which primary particles were aggregated. The total composition of the positive electrode active material including the coating portion was LiNi 0.8602 Co 0.0489 Mn 0.0773 Al 0.0066 Y 0.0010 Zr 0.0015 B 0.0045 O 2 .
실시예 3Example 3
수십 내지 수백 개의 1차 입자들이 응집되어 형성된 2차 입자 형태로서 Ni0.89Co0.03Mn0.08(OH)2로 표시되는 조성을 갖는 전이금속 복합 수산화물(D50: 10.2 ㎛)과, LiOH를 전이금속(Ni+Co+Mn)에 대한 리튬(Li)의 몰비(Li/(Ni+Co+Mn))가 1.04가 되도록 혼합하였다. 여기에, 상기 전이금속 복합 수산화물 총 중량 대비 Al(OH)3를 1,470 ppm, Y2O3를 1,000 ppm 및 ZrO2를 1,500 ppm의 함량으로 첨가하고 혼합하여 혼합물을 제조하였다.A transition metal composite hydroxide (D 50 : 10.2 ㎛) having a composition represented by Ni 0.89 Co 0.03 Mn 0.08 (OH) 2 in the form of secondary particles formed by the agglomeration of tens to hundreds of primary particles and LiOH were mixed such that the molar ratio of lithium (Li) to transition metal (Ni + Co + Mn) (Li / (Ni + Co + Mn)) was 1.04. To this, 1,470 ppm of Al (OH) 3 , 1,000 ppm of Y 2 O 3 , and 1,500 ppm of ZrO 2 were added and mixed relative to the total weight of the transition metal composite hydroxide to prepare a mixture.
상기 혼합물을 산소 분위기 하에서, 550 ℃에서 5 시간 동안 가소성하여 가소성품을 얻었다. 이후, 상온에서 상기 가소성품을 평균 입경(D50)이 9.8 ㎛가 되도록 분쇄하였다.The above mixture was calcined at 550°C for 5 hours under an oxygen atmosphere to obtain a calcined product. Thereafter, the calcined product was pulverized at room temperature to an average particle size ( D50 ) of 9.8 μm.
상기 분쇄된 가소성품을 산소 분위기 하에서, 850 ℃에서 6 시간, 이어서, 800 ℃에서 9 시간 동안 소성하여 소성품을 얻었다. 상온에서 상기 소성품을 분쇄하여 평균 입경(D50)이 9.8 ㎛이고, LiNi0.8833Co0.0298Mn0.0794Al0.0050Y0.0010Zr0.0015O2로 표시되는 조성을 가지며, 1차 입자가 응집된 2차 입자 형태의 리튬 전이금속 산화물을 제조하였다.The above-mentioned pulverized sintered product was calcined in an oxygen atmosphere at 850° C. for 6 hours and then at 800° C. for 9 hours to obtain a sintered product. The sintered product was pulverized at room temperature to produce a lithium transition metal oxide having an average particle size (D 50 ) of 9.8 μm and a composition represented by LiNi 0.8833 Co 0.0298 Mn 0.0794 Al 0.0050 Y 0.0010 Zr 0.0015 O 2 in the form of secondary particles in which primary particles are aggregated.
상기 제조된 2차 입자 형태의 리튬 전이금속 산화물과, Co(OH)2를 리튬을 제외한 금속(Ni+Co+Mn+Al+Y+Zr)에 대한 코발트(Co)의 몰비(Co/(Ni+Co+Mn+Al+Y+Zr))가 0.02가 되도록, Al(OH)3를 상기 제조된 2차 입자 형태의 리튬 전이금속 산화물 총 중량 대비 500 ppm의 함량으로 각각 첨가하고 균일하게 혼합하여 혼합물을 제조하였다. 상기 혼합물을 산소 분위기 하에서, 740 ℃에서 3 시간, 이어서, 500 ℃에서 3 시간 동안 열처리하여 제1 코팅품을 얻었다. 상온에서 상기 제1 코팅품을 평균 입경(D50)이 10.2 ㎛이 되도록 분쇄하여, 1차 입자가 응집된 2차 입자 형태의 리튬 전이금속 산화물 상에 Co 및 Al을 포함하는 코팅부가 형성된 양극 활물질을 제조하였다. 상기 코팅부를 포함한 양극 활물질의 전체 조성은 LiNi0.8641Co0.0491Mn0.0777Al0.0066Y0.0010Zr0.0015O2이었다.A mixture was prepared by adding the lithium transition metal oxide in the form of secondary particles prepared above and Al(OH) 3 in an amount of 500 ppm based on the total weight of the lithium transition metal oxide in the form of secondary particles prepared above so that the molar ratio of cobalt (Co) to the metal (Ni+Co+Mn+Al+Y+Zr) excluding lithium (Co/(Ni+Co+Mn+Al+Y+Zr)) was 0.02, and mixing them uniformly. The mixture was heat-treated at 740°C for 3 hours and then at 500°C for 3 hours in an oxygen atmosphere to obtain a first coated product. The first coated product was pulverized at room temperature to an average particle size ( D50 ) of 10.2 μm to prepare a cathode active material in which a coating portion including Co and Al was formed on the lithium transition metal oxide in the form of secondary particles in which the primary particles were aggregated. The overall composition of the cathode active material including the above coating portion was LiNi 0.8641 Co 0.0491 Mn 0.0777 Al 0.0066 Y 0.0010 Zr 0.0015 O 2 .
상기 분쇄된 제1 코팅품에, 상기 분쇄된 제1 코팅품 총 중량 대비 H3BO3를 500 ppm의 함량으로 첨가하고 혼합하여 혼합물을 제조하였다. 상기 혼합물을 대기 분위기 하에서, 330 ℃에서 5 시간 동안 열처리하여 제2 코팅품을 얻었다. 상온에서 상기 제2 코팅품을 평균 입경(D50)이 10.2 ㎛이 되도록 분쇄하여, 1차 입자가 응집된 2차 입자 형태의 리튬 전이금속 산화물 상에 Co, Al 및 B를 포함하는 코팅부가 형성된 양극 활물질을 제조하였다. 상기 코팅부를 포함한 양극 활물질의 전체 조성은 LiNi0.8602Co0.0489Mn0.0773Al0.0066Y0.0010Zr0.0015B0.0045O2이었다.To the above-mentioned pulverized first coating product, H3BO3 was added in an amount of 500 ppm based on the total weight of the above-mentioned pulverized first coating product, and the mixture was mixed to prepare a mixture. The mixture was heat-treated at 330°C for 5 hours in an air atmosphere to obtain a second coating product. The second coating product was pulverized at room temperature to an average particle diameter ( D50 ) of 10.2 μm, and a positive electrode active material was prepared in which a coating portion including Co, Al, and B was formed on a lithium transition metal oxide in the form of secondary particles in which primary particles were aggregated. The total composition of the positive electrode active material including the coating portion was LiNi 0.8602 Co 0.0489 Mn 0.0773 Al 0.0066 Y 0.0010 Zr 0.0015 B 0.0045 O 2 .
실시예 4Example 4
수십 내지 수백 개의 1차 입자들이 응집되어 형성된 2차 입자 형태로서 Ni0.89Co0.03Mn0.08(OH)2로 표시되는 조성을 갖는 전이금속 복합 수산화물(D50: 10.2 ㎛)과, LiOH를 전이금속(Ni+Co+Mn)에 대한 리튬(Li)의 몰비(Li/(Ni+Co+Mn))가 1.04가 되도록 혼합하였다. 여기에, 상기 전이금속 복합 수산화물 총 중량 대비 Al(OH)3를 1,470 ppm, Y2O3를 1,000 ppm 및 ZrO2를 1,500 ppm의 함량으로 첨가하고 혼합하여 혼합물을 제조하였다.A transition metal composite hydroxide (D 50 : 10.2 ㎛) having a composition represented by Ni 0.89 Co 0.03 Mn 0.08 (OH) 2 in the form of secondary particles formed by the agglomeration of tens to hundreds of primary particles and LiOH were mixed such that the molar ratio of lithium (Li) to transition metal (Ni + Co + Mn) (Li / (Ni + Co + Mn)) was 1.04. To this, 1,470 ppm of Al (OH) 3 , 1,000 ppm of Y 2 O 3 , and 1,500 ppm of ZrO 2 were added and mixed relative to the total weight of the transition metal composite hydroxide to prepare a mixture.
상기 혼합물을 산소 분위기 하에서, 880 ℃에서 6 시간, 이어서, 800 ℃에서 9 시간 동안 소성하여 소성품을 얻었다. 상온에서 상기 소성품을 분쇄하여 평균 입경(D50)이 9.8 ㎛이고, LiNi0.8833Co0.0298Mn0.0794Al0.0050Y0.0010Zr0.0015O2로 표시되는 조성을 가지며, 1차 입자가 응집된 2차 입자 형태의 리튬 전이금속 산화물을 제조하였다.The above mixture was calcined under an oxygen atmosphere at 880° C. for 6 hours and then at 800° C. for 9 hours to obtain a calcined product. The calcined product was pulverized at room temperature to produce a lithium transition metal oxide having an average particle size (D 50 ) of 9.8 μm and a composition represented by LiNi 0.8833 Co 0.0298 Mn 0.0794 Al 0.0050 Y 0.0010 Zr 0.0015 O 2 in the form of secondary particles in which primary particles are aggregated.
상기 제조된 2차 입자 형태의 리튬 전이금속 산화물과, Co(OH)2를 리튬을 제외한 금속(Ni+Co+Mn+Al+Y+Zr)에 대한 코발트(Co)의 몰비(Co/(Ni+Co+Mn+Al+Y+Zr))가 0.02가 되도록, Al(OH)3를 상기 제조된 2차 입자 형태의 리튬 전이금속 산화물 총 중량 대비 500 ppm의 함량으로 각각 첨가하고 균일하게 혼합하여 혼합물을 제조하였다. 상기 혼합물을 산소 분위기 하에서, 740 ℃에서 3 시간, 이어서, 500 ℃에서 3 시간 동안 열처리하여 제1 코팅품을 얻었다. 상온에서 상기 제1 코팅품을 평균 입경(D50)이 10.2 ㎛이 되도록 분쇄하여, 1차 입자가 응집된 2차 입자 형태의 리튬 전이금속 산화물 상에 Co 및 Al을 포함하는 코팅부가 형성된 양극 활물질을 제조하였다. 상기 코팅부를 포함한 양극 활물질의 전체 조성은 LiNi0.8641Co0.0491Mn0.0777Al0.0066Y0.0010Zr0.0015O2이었다.A mixture was prepared by adding the lithium transition metal oxide in the form of secondary particles prepared above and Al(OH) 3 in an amount of 500 ppm based on the total weight of the lithium transition metal oxide in the form of secondary particles prepared above so that the molar ratio of cobalt (Co) to the metal (Ni+Co+Mn+Al+Y+Zr) excluding lithium (Co/(Ni+Co+Mn+Al+Y+Zr)) was 0.02, and mixing them uniformly. The mixture was heat-treated at 740°C for 3 hours and then at 500°C for 3 hours in an oxygen atmosphere to obtain a first coated product. The first coated product was pulverized at room temperature to an average particle size ( D50 ) of 10.2 μm to prepare a cathode active material in which a coating portion including Co and Al was formed on the lithium transition metal oxide in the form of secondary particles in which the primary particles were aggregated. The overall composition of the cathode active material including the above coating portion was LiNi 0.8641 Co 0.0491 Mn 0.0777 Al 0.0066 Y 0.0010 Zr 0.0015 O 2 .
상기 분쇄된 제1 코팅품에, 상기 분쇄된 제1 코팅품 총 중량 대비 H3BO3를 500 ppm의 함량으로 첨가하고 혼합하여 혼합물을 제조하였다. 상기 혼합물을 대기 분위기 하에서, 330 ℃에서 5 시간 동안 열처리하여 제2 코팅품을 얻었다. 상온에서 상기 제2 코팅품을 평균 입경(D50)이 10.2 ㎛이 되도록 분쇄하여, 1차 입자가 응집된 2차 입자 형태의 리튬 전이금속 산화물 상에 Co, Al 및 B를 포함하는 코팅부가 형성된 양극 활물질을 제조하였다. 상기 코팅부를 포함한 양극 활물질의 전체 조성은 LiNi0.8602Co0.0489Mn0.0773Al0.0066Y0.0010Zr0.0015B0.0045O2이었다.To the above-mentioned pulverized first coating product, H3BO3 was added in an amount of 500 ppm based on the total weight of the above-mentioned pulverized first coating product, and the mixture was mixed to prepare a mixture. The mixture was heat-treated at 330°C for 5 hours in an air atmosphere to obtain a second coating product. The second coating product was pulverized at room temperature to an average particle diameter ( D50 ) of 10.2 μm, and a positive electrode active material was prepared in which a coating portion including Co, Al, and B was formed on a lithium transition metal oxide in the form of secondary particles in which primary particles were aggregated. The total composition of the positive electrode active material including the coating portion was LiNi 0.8602 Co 0.0489 Mn 0.0773 Al 0.0066 Y 0.0010 Zr 0.0015 B 0.0045 O 2 .
실시예 5Example 5
수십 내지 수백 개의 1차 입자들이 응집되어 형성된 2차 입자 형태로서 Ni0.89Co0.03Mn0.08(OH)2로 표시되는 조성을 갖는 전이금속 복합 수산화물(D50: 10.2 ㎛)과, LiOH를 전이금속(Ni+Co+Mn)에 대한 리튬(Li)의 몰비(Li/(Ni+Co+Mn))가 1.04가 되도록 혼합하였다. 여기에, 상기 전이금속 복합 수산화물 총 중량 대비 Al(OH)3를 1,470 ppm, Y2O3를 2,000 ppm 및 ZrO2를 1,500 ppm의 함량으로 첨가하고 혼합하여 혼합물을 제조하였다.A transition metal composite hydroxide (D 50 : 10.2 ㎛) having a composition represented by Ni 0.89 Co 0.03 Mn 0.08 (OH) 2 in the form of secondary particles formed by the agglomeration of tens to hundreds of primary particles and LiOH were mixed such that the molar ratio of lithium (Li) to transition metal (Ni + Co + Mn) (Li / (Ni + Co + Mn)) was 1.04. To this, 1,470 ppm of Al (OH) 3 , 2,000 ppm of Y 2 O 3 , and 1,500 ppm of ZrO 2 were added and mixed relative to the total weight of the transition metal composite hydroxide to prepare a mixture.
상기 혼합물을 산소 분위기 하에서, 850 ℃에서 6 시간, 이어서, 800 ℃에서 9 시간 동안 소성하여 소성품을 얻었다. 상온에서 상기 소성품을 분쇄하여 평균 입경(D50)이 9.8 ㎛이고, LiNi0.8824Co0.0297Mn0.0793Al0.0050Y0.0021Zr0.0015O2로 표시되는 조성을 가지며, 1차 입자가 응집된 2차 입자 형태의 리튬 전이금속 산화물을 제조하였다.The above mixture was calcined under an oxygen atmosphere at 850° C. for 6 hours and then at 800° C. for 9 hours to obtain a calcined product. The calcined product was pulverized at room temperature to produce a lithium transition metal oxide having an average particle size (D 50 ) of 9.8 μm and a composition represented by LiNi 0.8824 Co 0.0297 Mn 0.0793 Al 0.0050 Y 0.0021 Zr 0.0015 O 2 in the form of secondary particles in which primary particles are aggregated.
상기 제조된 2차 입자 형태의 리튬 전이금속 산화물과, Co(OH)2를 리튬을 제외한 금속(Ni+Co+Mn+Al+Y+Zr)에 대한 코발트(Co)의 몰비(Co/(Ni+Co+Mn+Al+Y+Zr))가 0.02가 되도록, Al(OH)3를 상기 제조된 2차 입자 형태의 리튬 전이금속 산화물 총 중량 대비 500 ppm의 함량으로 각각 첨가하고 균일하게 혼합하여 혼합물을 제조하였다. 상기 혼합물을 산소 분위기 하에서, 740 ℃에서 3 시간, 이어서, 500 ℃에서 3 시간 동안 열처리하여 제1 코팅품을 얻었다. 상온에서 상기 제1 코팅품을 평균 입경(D50)이 10.2 ㎛이 되도록 분쇄하여, 1차 입자가 응집된 2차 입자 형태의 리튬 전이금속 산화물 상에 Co 및 Al을 포함하는 코팅부가 형성된 양극 활물질을 제조하였다. 상기 코팅부를 포함한 양극 활물질의 전체 조성은 LiNi0.8632Co0.0491Mn0.0776Al0.0066Y0.0020Zr0.0015O2이었다.A mixture was prepared by adding the lithium transition metal oxide in the form of secondary particles prepared above and Al(OH) 3 in an amount of 500 ppm based on the total weight of the lithium transition metal oxide in the form of secondary particles prepared above so that the molar ratio of cobalt (Co) to the metal (Ni+Co+Mn+Al+Y+Zr) excluding lithium (Co/(Ni+Co+Mn+Al+Y+Zr)) was 0.02, and mixing them uniformly. The mixture was heat-treated at 740°C for 3 hours and then at 500°C for 3 hours in an oxygen atmosphere to obtain a first coated product. The first coated product was pulverized at room temperature to an average particle size ( D50 ) of 10.2 μm to prepare a cathode active material in which a coating portion including Co and Al was formed on the lithium transition metal oxide in the form of secondary particles in which the primary particles were aggregated. The overall composition of the cathode active material including the above coating portion was LiNi 0.8632 Co 0.0491 Mn 0.0776 Al 0.0066 Y 0.0020 Zr 0.0015 O 2 .
상기 분쇄된 제1 코팅품에, 상기 분쇄된 제1 코팅품 총 중량 대비 H3BO3를 500 ppm의 함량으로 첨가하고 혼합하여 혼합물을 제조하였다. 상기 혼합물을 대기 분위기 하에서, 330 ℃에서 5 시간 동안 열처리하여 제2 코팅품을 얻었다. 상온에서 상기 제2 코팅품을 평균 입경(D50)이 10.2 ㎛이 되도록 분쇄하여, 1차 입자가 응집된 2차 입자 형태의 리튬 전이금속 산화물 상에 Co, Al 및 B를 포함하는 코팅부가 형성된 양극 활물질을 제조하였다. 상기 코팅부를 포함한 양극 활물질의 전체 조성은 LiNi0.8593Co0.0489Mn0.0772Al0.0066Y0.0020Zr0.0015B0.0045O2이었다.To the above-mentioned pulverized first coating product, H3BO3 was added in an amount of 500 ppm based on the total weight of the above-mentioned pulverized first coating product, and the mixture was mixed to prepare a mixture. The mixture was heat-treated at 330°C for 5 hours in an air atmosphere to obtain a second coating product. The second coating product was pulverized at room temperature to an average particle diameter ( D50 ) of 10.2 μm, and a positive electrode active material was prepared in which a coating portion including Co, Al, and B was formed on a lithium transition metal oxide in the form of secondary particles in which primary particles were aggregated. The total composition of the positive electrode active material including the coating portion was LiNi 0.8593 Co 0.0489 Mn 0.0772 Al 0.0066 Y 0.0020 Zr 0.0015 B 0.0045 O 2 .
실시예 6Example 6
수십 내지 수백 개의 1차 입자들이 응집되어 형성된 2차 입자 형태로서 Ni0.89Co0.03Mn0.08(OH)2로 표시되는 조성을 갖는 전이금속 복합 수산화물(D50: 10.2 ㎛)과, LiOH를 전이금속(Ni+Co+Mn)에 대한 리튬(Li)의 몰비(Li/(Ni+Co+Mn))가 1.04가 되도록 혼합하였다. 여기에, 상기 전이금속 복합 수산화물 총 중량 대비 Al(OH)3를 2,940 ppm, Y2O3를 1,000 ppm 및 ZrO2를 1,500 ppm의 함량으로 첨가하고 혼합하여 혼합물을 제조하였다.A transition metal composite hydroxide (D 50 : 10.2 μm) having a composition represented by Ni 0.89 Co 0.03 Mn 0.08 (OH) 2 in the form of secondary particles formed by the agglomeration of tens to hundreds of primary particles and LiOH were mixed such that the molar ratio of lithium (Li) to transition metal (Ni + Co + Mn) (Li / (Ni + Co + Mn)) was 1.04. To this, Al (OH) 3 was added in an amount of 2,940 ppm, Y 2 O 3 in an amount of 1,000 ppm, and ZrO 2 in an amount of 1,500 ppm relative to the total weight of the transition metal composite hydroxide, and then mixed to prepare a mixture.
상기 혼합물을 산소 분위기 하에서, 850 ℃에서 6 시간, 이어서, 800 ℃에서 9 시간 동안 소성하여 소성품을 얻었다. 상온에서 상기 소성품을 분쇄하여 평균 입경(D50)이 9.8 ㎛이고, LiNi0.8789Co0.0296Mn0.0790Al0.0100Y0.0010Zr0.0015O2로 표시되는 조성을 가지며, 1차 입자가 응집된 2차 입자 형태의 리튬 전이금속 산화물을 제조하였다.The above mixture was calcined under an oxygen atmosphere at 850° C. for 6 hours and then at 800° C. for 9 hours to obtain a calcined product. The calcined product was pulverized at room temperature to produce a lithium transition metal oxide having an average particle size (D 50 ) of 9.8 μm and a composition represented by LiNi 0.8789 Co 0.0296 Mn 0.0790 Al 0.0100 Y 0.0010 Zr 0.0015 O 2 in the form of secondary particles in which primary particles are aggregated.
상기 제조된 2차 입자 형태의 리튬 전이금속 산화물과, Co(OH)2를 리튬을 제외한 금속(Ni+Co+Mn+Al+Y+Zr)에 대한 코발트(Co)의 몰비(Co/(Ni+Co+Mn+Al+Y+Zr))가 0.02가 되도록, Al(OH)3를 상기 제조된 2차 입자 형태의 리튬 전이금속 산화물 총 중량 대비 500 ppm의 함량으로 각각 첨가하고 균일하게 혼합하여 혼합물을 제조하였다. 상기 혼합물을 산소 분위기 하에서, 740 ℃에서 3 시간, 이어서, 500 ℃에서 3 시간 동안 열처리하여 제1 코팅품을 얻었다. 상온에서 상기 제1 코팅품을 평균 입경(D50)이 10.2 ㎛이 되도록 분쇄하여, 1차 입자가 응집된 2차 입자 형태의 리튬 전이금속 산화물 상에 Co 및 Al을 포함하는 코팅부가 형성된 양극 활물질을 제조하였다. 상기 코팅부를 포함한 양극 활물질의 전체 조성은 LiNi0.8597Co0.0490Mn0.0773Al0.0115Y0.0010Zr0.0015O2이었다.A mixture was prepared by adding the lithium transition metal oxide in the form of secondary particles prepared above and Al(OH) 3 in an amount of 500 ppm based on the total weight of the lithium transition metal oxide in the form of secondary particles prepared above so that the molar ratio of cobalt (Co) to the metal (Ni+Co+Mn+Al+Y+Zr) excluding lithium (Co/(Ni+Co+Mn+Al+Y+Zr)) was 0.02, and mixing them uniformly. The mixture was heat-treated at 740°C for 3 hours and then at 500°C for 3 hours in an oxygen atmosphere to obtain a first coated product. The first coated product was pulverized at room temperature to an average particle size ( D50 ) of 10.2 μm to prepare a cathode active material in which a coating portion including Co and Al was formed on the lithium transition metal oxide in the form of secondary particles in which the primary particles were aggregated. The overall composition of the positive electrode active material including the above coating portion was LiNi 0.8597 Co 0.0490 Mn 0.0773 Al 0.0115 Y 0.0010 Zr 0.0015 O 2 .
상기 분쇄된 제1 코팅품에, 상기 분쇄된 제1 코팅품 총 중량 대비 H3BO3를 500 ppm의 함량으로 첨가하고 혼합하여 혼합물을 제조하였다. 상기 혼합물을 대기 분위기 하에서, 330 ℃에서 5 시간 동안 열처리하여 제2 코팅품을 얻었다. 상온에서 상기 제2 코팅품을 평균 입경(D50)이 10.2 ㎛이 되도록 분쇄하여, 1차 입자가 응집된 2차 입자 형태의 리튬 전이금속 산화물 상에 Co, Al 및 B를 포함하는 코팅부가 형성된 양극 활물질을 제조하였다. 상기 코팅부를 포함한 양극 활물질의 전체 조성은 LiNi0.8559Co0.0488Mn0.0769Al0.0115Y0.0010Zr0.0014B0.0045O2이었다.To the above-mentioned pulverized first coating product, H3BO3 was added in an amount of 500 ppm based on the total weight of the above-mentioned pulverized first coating product, and the mixture was mixed to prepare a mixture. The mixture was heat-treated at 330°C for 5 hours in an air atmosphere to obtain a second coating product. The second coating product was pulverized at room temperature to an average particle diameter ( D50 ) of 10.2 μm, and a positive electrode active material was prepared in which a coating portion including Co, Al, and B was formed on a lithium transition metal oxide in the form of secondary particles in which primary particles were aggregated. The total composition of the positive electrode active material including the coating portion was LiNi 0.8559 Co 0.0488 Mn 0.0769 Al 0.0115 Y 0.0010 Zr 0.0014 B 0.0045 O 2 .
실시예 7Example 7
수십 내지 수백 개의 1차 입자들이 응집되어 형성된 2차 입자 형태로서 Ni0.89Co0.03Mn0.08(OH)2로 표시되는 조성을 갖는 전이금속 복합 수산화물(D50: 10.2 ㎛)과, LiOH를 전이금속(Ni+Co+Mn)에 대한 리튬(Li)의 몰비(Li/(Ni+Co+Mn))가 1.04가 되도록 혼합하였다. 여기에, 상기 전이금속 복합 수산화물 총 중량 대비 Al(OH)3를 1,470 ppm, Y2O3를 1,000 ppm 및 ZrO2를 3,500 ppm의 함량으로 첨가하고 혼합하여 혼합물을 제조하였다.A transition metal composite hydroxide (D 50 : 10.2 ㎛) having a composition represented by Ni 0.89 Co 0.03 Mn 0.08 (OH) 2 in the form of secondary particles formed by the agglomeration of tens to hundreds of primary particles and LiOH were mixed such that the molar ratio of lithium (Li) to transition metal (Ni + Co + Mn) (Li / (Ni + Co + Mn)) was 1.04. To this, 1,470 ppm of Al (OH) 3 , 1,000 ppm of Y 2 O 3 , and 3,500 ppm of ZrO 2 were added and mixed relative to the total weight of the transition metal composite hydroxide to prepare a mixture.
상기 혼합물을 산소 분위기 하에서, 850 ℃에서 6 시간, 이어서, 800 ℃에서 9 시간 동안 소성하여 소성품을 얻었다. 상온에서 상기 소성품을 분쇄하여 평균 입경(D50)이 9.8 ㎛이고, LiNi0.8815Co0.0297Mn0.0793Al0.0050Y0.0010Zr0.0035O2로 표시되는 조성을 가지며, 1차 입자가 응집된 2차 입자 형태의 리튬 전이금속 산화물을 제조하였다.The above mixture was calcined under an oxygen atmosphere at 850° C. for 6 hours and then at 800° C. for 9 hours to obtain a calcined product. The calcined product was pulverized at room temperature to produce a lithium transition metal oxide having an average particle size (D 50 ) of 9.8 μm and a composition represented by LiNi 0.8815 Co 0.0297 Mn 0.0793 Al 0.0050 Y 0.0010 Zr 0.0035 O 2 in the form of secondary particles in which primary particles are aggregated.
상기 제조된 2차 입자 형태의 리튬 전이금속 산화물과, Co(OH)2를 리튬을 제외한 금속(Ni+Co+Mn+Al+Y+Zr)에 대한 코발트(Co)의 몰비(Co/(Ni+Co+Mn+Al+Y+Zr))가 0.02가 되도록, Al(OH)3를 상기 제조된 2차 입자 형태의 리튬 전이금속 산화물 총 중량 대비 500 ppm의 함량으로 각각 첨가하고 균일하게 혼합하여 혼합물을 제조하였다. 상기 혼합물을 산소 분위기 하에서, 740 ℃에서 3 시간, 이어서, 500 ℃에서 3 시간 동안 열처리하여 제1 코팅품을 얻었다. 상온에서 상기 제1 코팅품을 평균 입경(D50)이 10.2 ㎛이 되도록 분쇄하여, 1차 입자가 응집된 2차 입자 형태의 리튬 전이금속 산화물 상에 Co 및 Al을 포함하는 코팅부가 형성된 양극 활물질을 제조하였다. 상기 코팅부를 포함한 양극 활물질의 전체 조성은 LiNi0.8623Co0.0491Mn0.0775Al0.0066Y0.0010Zr0.0035O2이었다.A mixture was prepared by adding the lithium transition metal oxide in the form of secondary particles prepared above and Al(OH) 3 in an amount of 500 ppm based on the total weight of the lithium transition metal oxide in the form of secondary particles prepared above so that the molar ratio of cobalt (Co) to the metal (Ni+Co+Mn+Al+Y+Zr) excluding lithium (Co/(Ni+Co+Mn+Al+Y+Zr)) was 0.02, and mixing them uniformly. The mixture was heat-treated at 740°C for 3 hours and then at 500°C for 3 hours in an oxygen atmosphere to obtain a first coated product. The first coated product was pulverized at room temperature to an average particle size ( D50 ) of 10.2 μm to prepare a cathode active material in which a coating portion including Co and Al was formed on the lithium transition metal oxide in the form of secondary particles in which the primary particles were aggregated. The overall composition of the cathode active material including the above coating portion was LiNi 0.8623 Co 0.0491 Mn 0.0775 Al 0.0066 Y 0.0010 Zr 0.0035 O 2 .
상기 분쇄된 제1 코팅품에, 상기 분쇄된 제1 코팅품 총 중량 대비 H3BO3를 500 ppm의 함량으로 첨가하고 혼합하여 혼합물을 제조하였다. 상기 혼합물을 대기 분위기 하에서, 330 ℃에서 5 시간 동안 열처리하여 제2 코팅품을 얻었다. 상온에서 상기 제2 코팅품을 평균 입경(D50)이 10.2 ㎛이 되도록 분쇄하여, 1차 입자가 응집된 2차 입자 형태의 리튬 전이금속 산화물 상에 Co, Al 및 B를 포함하는 코팅부가 형성된 양극 활물질을 제조하였다. 상기 코팅부를 포함한 양극 활물질의 전체 조성은 LiNi0.8584Co0.0489Mn0.0772Al0.0066Y0.0010Zr0.0034B0.0045O2이었다.To the above-mentioned pulverized first coating product, H3BO3 was added in an amount of 500 ppm based on the total weight of the above-mentioned pulverized first coating product, and the mixture was mixed to prepare a mixture. The mixture was heat-treated at 330°C for 5 hours in an air atmosphere to obtain a second coating product. The second coating product was pulverized at room temperature to an average particle diameter ( D50 ) of 10.2 μm, and a positive electrode active material was prepared in which a coating portion including Co, Al, and B was formed on a lithium transition metal oxide in the form of secondary particles in which primary particles were aggregated. The total composition of the positive electrode active material including the coating portion was LiNi 0.8584 Co 0.0489 Mn 0.0772 Al 0.0066 Y 0.0010 Zr 0.0034 B 0.0045 O 2 .
실시예 8Example 8
수십 내지 수백 개의 1차 입자들이 응집되어 형성된 2차 입자 형태로서 Ni0.96Co0.03Mn0.01(OH)2로 표시되는 조성을 갖는 전이금속 복합 수산화물(D50: 14.5 ㎛)과, LiOH를 전이금속(Ni+Co+Mn)에 대한 리튬(Li)의 몰비(Li/(Ni+Co+Mn))가 1.02가 되도록 혼합하였다. 여기에, 상기 전이금속 복합 수산화물 총 중량 대비 Al(OH)3를 1,470 ppm, Y2O3를 1,000 ppm 및 ZrO2를 1,500 ppm의 함량으로 첨가하고 혼합하여 혼합물을 제조하였다.A transition metal composite hydroxide (D 50 : 14.5 μm) having a composition represented by Ni 0.96 Co 0.03 Mn 0.01 (OH) 2 in the form of secondary particles formed by the agglomeration of tens to hundreds of primary particles and LiOH were mixed such that the molar ratio of lithium (Li) to transition metal (Ni + Co + Mn) (Li / (Ni + Co + Mn)) was 1.02. To this, 1,470 ppm of Al (OH) 3 , 1,000 ppm of Y 2 O 3 , and 1,500 ppm of ZrO 2 were added and mixed relative to the total weight of the transition metal composite hydroxide to prepare a mixture.
상기 혼합물을 산소 분위기 하에서, 800 ℃에서 6 시간, 이어서, 760 ℃에서 9 시간 동안 소성하여 소성품을 얻었다. 상온에서 상기 소성품을 분쇄하여 평균 입경(D50)이 14.2 ㎛이고, LiNi0.9528Co0.0298Mn0.0099Al0.0050Y0.0010Zr0.0015O2로 표시되는 조성을 가지며, 1차 입자가 응집된 2차 입자 형태의 리튬 전이금속 산화물을 제조하였다.The above mixture was calcined under an oxygen atmosphere at 800° C. for 6 hours and then at 760° C. for 9 hours to obtain a calcined product. The calcined product was pulverized at room temperature to produce a lithium transition metal oxide having an average particle size (D 50 ) of 14.2 μm and a composition represented by LiNi 0.9528 Co 0.0298 Mn 0.0099 Al 0.0050 Y 0.0010 Zr 0.0015 O 2 in the form of secondary particles in which primary particles are aggregated.
상기 제조된 2차 입자 형태의 리튬 전이금속 산화물과, Co(OH)2를 리튬을 제외한 금속(Ni+Co+Mn+Al+Y+Zr)에 대한 코발트(Co)의 몰비(Co/(Ni+Co+Mn+Al+Y+Zr))가 0.02가 되도록, Al(OH)3를 상기 제조된 2차 입자 형태의 리튬 전이금속 산화물 총 중량 대비 500 ppm의 함량으로 각각 첨가하고 균일하게 혼합하여 혼합물을 제조하였다. 상기 혼합물을 산소 분위기 하에서, 700 ℃에서 3 시간, 이어서, 500 ℃에서 3 시간 동안 열처리하여 제1 코팅품을 얻었다. 상온에서 상기 제1 코팅품을 평균 입경(D50)이 14.5 ㎛이 되도록 분쇄하여, 1차 입자가 응집된 2차 입자 형태의 리튬 전이금속 산화물 상에 Co 및 Al을 포함하는 코팅부가 형성된 양극 활물질을 제조하였다. 상기 코팅부를 포함한 양극 활물질의 전체 조성은 LiNi0.9320Co0.0491Mn0.0097Al0.0067Y0.0010Zr0.0015O2이었다.A mixture was prepared by adding the lithium transition metal oxide in the form of secondary particles prepared above and Al(OH) 3 in an amount of 500 ppm based on the total weight of the lithium transition metal oxide in the form of secondary particles prepared above so that the molar ratio of cobalt (Co) to the metal (Ni+Co+Mn+Al+Y+Zr) excluding lithium (Co/(Ni+Co+Mn+Al+Y+Zr)) was 0.02, and mixing them uniformly. The mixture was heat-treated at 700°C for 3 hours and then at 500°C for 3 hours in an oxygen atmosphere to obtain a first coated product. The first coated product was pulverized at room temperature to an average particle size ( D50 ) of 14.5 μm to prepare a positive electrode active material in which a coating portion including Co and Al was formed on the lithium transition metal oxide in the form of secondary particles in which the primary particles were aggregated. The overall composition of the positive electrode active material including the above coating portion was LiNi 0.9320 Co 0.0491 Mn 0.0097 Al 0.0067 Y 0.0010 Zr 0.0015 O 2 .
상기 분쇄된 제1 코팅품에, 상기 분쇄된 제1 코팅품 총 중량 대비 H3BO3를 500 ppm의 함량으로 첨가하고 혼합하여 혼합물을 제조하였다. 상기 혼합물을 대기 분위기 하에서, 330 ℃에서 5 시간 동안 열처리하여 제2 코팅품을 얻었다. 상온에서 상기 제2 코팅품을 평균 입경(D50)이 14.2 ㎛이 되도록 분쇄하여, 1차 입자가 응집된 2차 입자 형태의 리튬 전이금속 산화물 상에 Co, Al 및 B를 포함하는 코팅부가 형성된 양극 활물질을 제조하였다. 상기 코팅부를 포함한 양극 활물질의 전체 조성은 LiNi0.9278Co0.0489Mn0.0097Al0.0066Y0.0010Zr0.0015B0.0045O2이었다.To the above-mentioned pulverized first coating product, H3BO3 was added in an amount of 500 ppm based on the total weight of the above-mentioned pulverized first coating product, and the mixture was mixed to prepare a mixture. The mixture was heat-treated at 330° C. for 5 hours in an air atmosphere to obtain a second coating product. The second coating product was pulverized at room temperature to an average particle diameter ( D50 ) of 14.2 μm, and a positive electrode active material was prepared in which a coating portion including Co, Al, and B was formed on a lithium transition metal oxide in the form of secondary particles in which primary particles were aggregated. The total composition of the positive electrode active material including the coating portion was LiNi 0.9278 Co 0.0489 Mn 0.0097 Al 0.0066 Y 0.0010 Zr 0.0015 B 0.0045 O 2 .
실시예 9Example 9
수십 내지 수백 개의 1차 입자들이 응집되어 형성된 2차 입자 형태로서 Ni0.96Co0.03Mn0.01(OH)2로 표시되는 조성을 갖는 전이금속 복합 수산화물(D50: 14.5 ㎛)과, LiOH를 전이금속(Ni+Co+Mn)에 대한 리튬(Li)의 몰비(Li/(Ni+Co+Mn))가 0.98이 되도록 혼합하였다. 여기에, 상기 전이금속 복합 수산화물 총 중량 대비 Al(OH)3를 1,470 ppm, Y2O3를 1,000 ppm 및 ZrO2를 1,500 ppm의 함량으로 첨가하고 혼합하여 혼합물을 제조하였다.A transition metal composite hydroxide (D 50 : 14.5 ㎛) having a composition represented by Ni 0.96 Co 0.03 Mn 0.01 (OH) 2 in the form of secondary particles formed by the agglomeration of tens to hundreds of primary particles and LiOH were mixed such that the molar ratio of lithium (Li) to transition metal (Ni + Co + Mn) (Li / (Ni + Co + Mn)) was 0.98. To this, 1,470 ppm of Al (OH) 3 , 1,000 ppm of Y 2 O 3 , and 1,500 ppm of ZrO 2 were added and mixed relative to the total weight of the transition metal composite hydroxide to prepare a mixture.
상기 혼합물을 산소 분위기 하에서, 800 ℃에서 6 시간 동안 1차 소성하여 제1 소성품을 얻었다. 이후, 상온에서 상기 제1 소성품을 평균 입경(D50)이 14.2 ㎛가 되도록 분쇄하였다.The above mixture was first fired at 800° C. for 6 hours under an oxygen atmosphere to obtain a first fired product. Thereafter, the first fired product was pulverized at room temperature so that the average particle size (D 50 ) became 14.2 μm.
*227상기 분쇄된 1차 소성품과, LiOH를 전이금속(Ni+Co+Mn)에 대한 리튬(Li)의 몰비(Li/(Ni+Co+Mn))가 0.04가 되도록 혼합하고, 산소 분위기 하에서, 760 ℃에서 9 시간 동안 2차 소성하여 제2 소성품을 얻었다. 상온에서 상기 제2 소성품을 분쇄하여 평균 입경(D50)이 14.2 ㎛이고, LiNi0.9528Co0.0298Mn0.0099Al0.0050Y0.0010Zr0.0015O2로 표시되는 조성을 가지며, 1차 입자가 응집된 2차 입자 형태의 리튬 전이금속 산화물을 제조하였다.*227The above-mentioned pulverized primary sintered product and LiOH were mixed so that the molar ratio of lithium (Li) to transition metal (Ni+Co+Mn) (Li/(Ni+Co+Mn)) was 0.04, and the second sintering was performed at 760 ℃ for 9 hours in an oxygen atmosphere to obtain a second sintered product. The second sintered product was pulverized at room temperature to produce a lithium transition metal oxide having an average particle size (D 50 ) of 14.2 ㎛ and a composition represented by LiNi 0.9528 Co 0.0298 Mn 0.0099 Al 0.0050 Y 0.0010 Zr 0.0015 O 2 in the form of secondary particles in which primary particles were aggregated.
상기 제조된 2차 입자 형태의 리튬 전이금속 산화물과, Co(OH)2를 리튬을 제외한 금속(Ni+Co+Mn+Al+Y+Zr)에 대한 코발트(Co)의 몰비(Co/(Ni+Co+Mn+Al+Y+Zr))가 0.02가 되도록, Al(OH)3를 상기 제조된 2차 입자 형태의 리튬 전이금속 산화물 총 중량 대비 500 ppm의 함량으로 각각 첨가하고 균일하게 혼합하여 혼합물을 제조하였다. 상기 혼합물을 산소 분위기 하에서, 700 ℃에서 3 시간, 이어서, 500 ℃에서 3 시간 동안 열처리하여 제1 코팅품을 얻었다. 상온에서 상기 제1 코팅품을 평균 입경(D50)이 14.5 ㎛이 되도록 분쇄하여, 1차 입자가 응집된 2차 입자 형태의 리튬 전이금속 산화물 상에 Co 및 Al을 포함하는 코팅부가 형성된 양극 활물질을 제조하였다. 상기 코팅부를 포함한 양극 활물질의 전체 조성은 LiNi0.9320Co0.0491Mn0.0097Al0.0067Y0.0010Zr0.0015O2이었다.A mixture was prepared by adding the lithium transition metal oxide in the form of secondary particles prepared above and Al(OH) 3 in an amount of 500 ppm based on the total weight of the lithium transition metal oxide in the form of secondary particles prepared above so that the molar ratio of cobalt (Co) to the metal (Ni+Co+Mn+Al+Y+Zr) excluding lithium (Co/(Ni+Co+Mn+Al+Y+Zr)) was 0.02, and mixing them uniformly. The mixture was heat-treated at 700°C for 3 hours and then at 500°C for 3 hours in an oxygen atmosphere to obtain a first coated product. The first coated product was pulverized at room temperature to an average particle size ( D50 ) of 14.5 μm to prepare a positive electrode active material in which a coating portion including Co and Al was formed on the lithium transition metal oxide in the form of secondary particles in which the primary particles were aggregated. The overall composition of the positive electrode active material including the above coating portion was LiNi 0.9320 Co 0.0491 Mn 0.0097 Al 0.0067 Y 0.0010 Zr 0.0015 O 2 .
상기 분쇄된 제1 코팅품에, 상기 분쇄된 제1 코팅품 총 중량 대비 H3BO3를 500 ppm의 함량으로 첨가하고 혼합하여 혼합물을 제조하였다. 상기 혼합물을 대기 분위기 하에서, 330 ℃에서 5 시간 동안 열처리하여 제2 코팅품을 얻었다. 상온에서 상기 제2 코팅품을 평균 입경(D50)이 14.2 ㎛이 되도록 분쇄하여, 1차 입자가 응집된 2차 입자 형태의 리튬 전이금속 산화물 상에 Co, Al 및 B를 포함하는 코팅부가 형성된 양극 활물질을 제조하였다. 상기 코팅부를 포함한 양극 활물질의 전체 조성은 LiNi0.9278Co0.0489Mn0.0097Al0.0066Y0.0010Zr0.0015B0.0045O2이었다.To the above-mentioned pulverized first coating product, H3BO3 was added in an amount of 500 ppm based on the total weight of the above-mentioned pulverized first coating product, and the mixture was mixed to prepare a mixture. The mixture was heat-treated at 330° C. for 5 hours in an air atmosphere to obtain a second coating product. The second coating product was pulverized at room temperature to an average particle diameter ( D50 ) of 14.2 μm, and a positive electrode active material was prepared in which a coating portion including Co, Al, and B was formed on a lithium transition metal oxide in the form of secondary particles in which primary particles were aggregated. The total composition of the positive electrode active material including the coating portion was LiNi 0.9278 Co 0.0489 Mn 0.0097 Al 0.0066 Y 0.0010 Zr 0.0015 B 0.0045 O 2 .
실시예 10Example 10
수십 내지 수백 개의 1차 입자들이 응집되어 형성된 2차 입자 형태로서 Ni0.96Co0.03Mn0.01(OH)2로 표시되는 조성을 갖는 전이금속 복합 수산화물(D50: 14.5 ㎛)과, LiOH를 전이금속(Ni+Co+Mn)에 대한 리튬(Li)의 몰비(Li/(Ni+Co+Mn))가 1.02가 되도록 혼합하였다. 여기에, 상기 전이금속 복합 수산화물 총 중량 대비 Al(OH)3를 1,470 ppm, Y2O3를 1,000 ppm 및 ZrO2를 1,500 ppm의 함량으로 첨가하고 혼합하여 혼합물을 제조하였다.A transition metal composite hydroxide (D 50 : 14.5 μm) having a composition represented by Ni 0.96 Co 0.03 Mn 0.01 (OH) 2 in the form of secondary particles formed by the agglomeration of tens to hundreds of primary particles and LiOH were mixed such that the molar ratio of lithium (Li) to transition metal (Ni + Co + Mn) (Li / (Ni + Co + Mn)) was 1.02. To this, 1,470 ppm of Al (OH) 3 , 1,000 ppm of Y 2 O 3 , and 1,500 ppm of ZrO 2 were added and mixed relative to the total weight of the transition metal composite hydroxide to prepare a mixture.
상기 혼합물을 산소 분위기 하에서, 550 ℃에서 5 시간 동안 가소성하여 가소성품을 얻었다. 이후, 상온에서 상기 가소성품을 평균 입경(D50)이 14.2 ㎛가 되도록 분쇄하였다.The above mixture was calcined at 550°C for 5 hours under an oxygen atmosphere to obtain a calcined product. Thereafter, the calcined product was pulverized at room temperature to an average particle size ( D50 ) of 14.2 μm.
상기 분쇄된 가소성품을 산소 분위기 하에서, 800 ℃에서 6 시간, 이어서, 760 ℃에서 9 시간 동안 소성하여 소성품을 얻었다. 상온에서 상기 소성품을 분쇄하여 평균 입경(D50)이 14.2 ㎛이고, LiNi0.9528Co0.0298Mn0.0099Al0.0050Y0.0010Zr0.0015O2로 표시되는 조성을 가지며, 1차 입자가 응집된 2차 입자 형태의 리튬 전이금속 산화물을 제조하였다.The above-mentioned pulverized sintered product was calcined in an oxygen atmosphere at 800° C. for 6 hours and then at 760° C. for 9 hours to obtain a sintered product. The sintered product was pulverized at room temperature to produce a lithium transition metal oxide having an average particle size (D 50 ) of 14.2 μm and a composition represented by LiNi 0.9528 Co 0.0298 Mn 0.0099 Al 0.0050 Y 0.0010 Zr 0.0015 O 2 in the form of secondary particles in which primary particles are aggregated.
상기 제조된 2차 입자 형태의 리튬 전이금속 산화물과, Co(OH)2를 리튬을 제외한 금속(Ni+Co+Mn+Al+Y+Zr)에 대한 코발트(Co)의 몰비(Co/(Ni+Co+Mn+Al+Y+Zr))가 0.02가 되도록, Al(OH)3를 상기 제조된 2차 입자 형태의 리튬 전이금속 산화물 총 중량 대비 500 ppm의 함량으로 각각 첨가하고 균일하게 혼합하여 혼합물을 제조하였다. 상기 혼합물을 산소 분위기 하에서, 700 ℃에서 3 시간, 이어서, 500 ℃에서 3 시간 동안 열처리하여 제1 코팅품을 얻었다. 상온에서 상기 제1 코팅품을 평균 입경(D50)이 14.5 ㎛이 되도록 분쇄하여, 1차 입자가 응집된 2차 입자 형태의 리튬 전이금속 산화물 상에 Co 및 Al을 포함하는 코팅부가 형성된 양극 활물질을 제조하였다. 상기 코팅부를 포함한 양극 활물질의 전체 조성은 LiNi0.9320Co0.0491Mn0.0097Al0.0067Y0.0010Zr0.0015O2이었다.A mixture was prepared by adding the lithium transition metal oxide in the form of secondary particles prepared above and Al(OH) 3 in an amount of 500 ppm based on the total weight of the lithium transition metal oxide in the form of secondary particles prepared above so that the molar ratio of cobalt (Co) to the metal (Ni+Co+Mn+Al+Y+Zr) excluding lithium (Co/(Ni+Co+Mn+Al+Y+Zr)) was 0.02, and mixing them uniformly. The mixture was heat-treated at 700°C for 3 hours and then at 500°C for 3 hours in an oxygen atmosphere to obtain a first coated product. The first coated product was pulverized at room temperature to an average particle size ( D50 ) of 14.5 μm to prepare a positive electrode active material in which a coating portion including Co and Al was formed on the lithium transition metal oxide in the form of secondary particles in which the primary particles were aggregated. The overall composition of the positive electrode active material including the above coating portion was LiNi 0.9320 Co 0.0491 Mn 0.0097 Al 0.0067 Y 0.0010 Zr 0.0015 O 2 .
상기 분쇄된 제1 코팅품에, 상기 분쇄된 제1 코팅품 총 중량 대비 H3BO3를 500 ppm의 함량으로 첨가하고 혼합하여 혼합물을 제조하였다. 상기 혼합물을 대기 분위기 하에서, 330 ℃에서 5 시간 동안 열처리하여 제2 코팅품을 얻었다. 상온에서 상기 제2 코팅품을 평균 입경(D50)이 14.2 ㎛이 되도록 분쇄하여, 1차 입자가 응집된 2차 입자 형태의 리튬 전이금속 산화물 상에 Co, Al 및 B를 포함하는 코팅부가 형성된 양극 활물질을 제조하였다. 상기 코팅부를 포함한 양극 활물질의 전체 조성은 LiNi0.9278Co0.0489Mn0.0097Al0.0066Y0.0010Zr0.0015B0.0045O2이었다.To the above-mentioned pulverized first coating product, H3BO3 was added in an amount of 500 ppm based on the total weight of the above-mentioned pulverized first coating product, and the mixture was mixed to prepare a mixture. The mixture was heat-treated at 330° C. for 5 hours in an air atmosphere to obtain a second coating product. The second coating product was pulverized at room temperature to an average particle diameter ( D50 ) of 14.2 μm, and a positive electrode active material was prepared in which a coating portion including Co, Al, and B was formed on a lithium transition metal oxide in the form of secondary particles in which primary particles were aggregated. The total composition of the positive electrode active material including the coating portion was LiNi 0.9278 Co 0.0489 Mn 0.0097 Al 0.0066 Y 0.0010 Zr 0.0015 B 0.0045 O 2 .
실시예 11Example 11
수십 내지 수백 개의 1차 입자들이 응집되어 형성된 2차 입자 형태로서 Ni0.96Co0.03Mn0.01(OH)2로 표시되는 조성을 갖는 전이금속 복합 수산화물(D50: 14.5 ㎛)과, LiOH를 전이금속(Ni+Co+Mn)에 대한 리튬(Li)의 몰비(Li/(Ni+Co+Mn))가 1.02가 되도록 혼합하였다. 여기에, 상기 전이금속 복합 수산화물 총 중량 대비 Al(OH)3를 1,470 ppm, Y2O3를 1,000 ppm 및 ZrO2를 1,500 ppm의 함량으로 첨가하고 혼합하여 혼합물을 제조하였다.A transition metal composite hydroxide (D 50 : 14.5 μm) having a composition represented by Ni 0.96 Co 0.03 Mn 0.01 (OH) 2 in the form of secondary particles formed by the agglomeration of tens to hundreds of primary particles and LiOH were mixed such that the molar ratio of lithium (Li) to transition metal (Ni + Co + Mn) (Li / (Ni + Co + Mn)) was 1.02. To this, 1,470 ppm of Al (OH) 3 , 1,000 ppm of Y 2 O 3 , and 1,500 ppm of ZrO 2 were added and mixed relative to the total weight of the transition metal composite hydroxide to prepare a mixture.
상기 혼합물을 산소 분위기 하에서, 830 ℃에서 6 시간, 이어서, 760 ℃에서 9 시간 동안 소성하여 소성품을 얻었다. 상온에서 상기 소성품을 분쇄하여 평균 입경(D50)이 14.2 ㎛이고, LiNi0.9528Co0.0298Mn0.0099Al0.0050Y0.0010Zr0.0015O2로 표시되는 조성을 가지며, 1차 입자가 응집된 2차 입자 형태의 리튬 전이금속 산화물을 제조하였다.The above mixture was calcined under an oxygen atmosphere at 830° C. for 6 hours and then at 760° C. for 9 hours to obtain a calcined product. The calcined product was pulverized at room temperature to produce a lithium transition metal oxide having an average particle size (D 50 ) of 14.2 μm and a composition represented by LiNi 0.9528 Co 0.0298 Mn 0.0099 Al 0.0050 Y 0.0010 Zr 0.0015 O 2 in the form of secondary particles in which primary particles are aggregated.
상기 제조된 2차 입자 형태의 리튬 전이금속 산화물과, Co(OH)2를 리튬을 제외한 금속(Ni+Co+Mn+Al+Y+Zr)에 대한 코발트(Co)의 몰비(Co/(Ni+Co+Mn+Al+Y+Zr))가 0.02가 되도록, Al(OH)3를 상기 제조된 2차 입자 형태의 리튬 전이금속 산화물 총 중량 대비 500 ppm의 함량으로 각각 첨가하고 균일하게 혼합하여 혼합물을 제조하였다. 상기 혼합물을 산소 분위기 하에서, 700 ℃에서 3 시간, 이어서, 500 ℃에서 3 시간 동안 열처리하여 제1 코팅품을 얻었다. 상온에서 상기 제1 코팅품을 평균 입경(D50)이 14.5 ㎛이 되도록 분쇄하여, 1차 입자가 응집된 2차 입자 형태의 리튬 전이금속 산화물 상에 Co 및 Al을 포함하는 코팅부가 형성된 양극 활물질을 제조하였다. 상기 코팅부를 포함한 양극 활물질의 전체 조성은 LiNi0.9320Co0.0491Mn0.0097Al0.0067Y0.0010Zr0.0015O2이었다.A mixture was prepared by adding the lithium transition metal oxide in the form of secondary particles prepared above and Al(OH) 3 in an amount of 500 ppm based on the total weight of the lithium transition metal oxide in the form of secondary particles prepared above so that the molar ratio of cobalt (Co) to the metal (Ni+Co+Mn+Al+Y+Zr) excluding lithium (Co/(Ni+Co+Mn+Al+Y+Zr)) was 0.02, and mixing them uniformly. The mixture was heat-treated at 700°C for 3 hours and then at 500°C for 3 hours in an oxygen atmosphere to obtain a first coated product. The first coated product was pulverized at room temperature to an average particle size ( D50 ) of 14.5 μm to prepare a positive electrode active material in which a coating portion including Co and Al was formed on the lithium transition metal oxide in the form of secondary particles in which the primary particles were aggregated. The overall composition of the positive electrode active material including the above coating portion was LiNi 0.9320 Co 0.0491 Mn 0.0097 Al 0.0067 Y 0.0010 Zr 0.0015 O 2 .
상기 분쇄된 제1 코팅품에, 상기 분쇄된 제1 코팅품 총 중량 대비 H3BO3를 500 ppm의 함량으로 첨가하고 혼합하여 혼합물을 제조하였다. 상기 혼합물을 대기 분위기 하에서, 330 ℃에서 5 시간 동안 열처리하여 제2 코팅품을 얻었다. 상온에서 상기 제2 코팅품을 평균 입경(D50)이 14.2 ㎛이 되도록 분쇄하여, 1차 입자가 응집된 2차 입자 형태의 리튬 전이금속 산화물 상에 Co, Al 및 B를 포함하는 코팅부가 형성된 양극 활물질을 제조하였다. 상기 코팅부를 포함한 양극 활물질의 전체 조성은 LiNi0.9278Co0.0489Mn0.0097Al0.0066Y0.0010Zr0.0015B0.0045O2이었다.To the above-mentioned pulverized first coating product, H3BO3 was added in an amount of 500 ppm based on the total weight of the above-mentioned pulverized first coating product, and the mixture was mixed to prepare a mixture. The mixture was heat-treated at 330° C. for 5 hours in an air atmosphere to obtain a second coating product. The second coating product was pulverized at room temperature to an average particle diameter ( D50 ) of 14.2 μm, and a positive electrode active material was prepared in which a coating portion including Co, Al, and B was formed on a lithium transition metal oxide in the form of secondary particles in which primary particles were aggregated. The total composition of the positive electrode active material including the coating portion was LiNi 0.9278 Co 0.0489 Mn 0.0097 Al 0.0066 Y 0.0010 Zr 0.0015 B 0.0045 O 2 .
비교예 1Comparative Example 1
수십 내지 수백 개의 1차 입자들이 응집되어 형성된 2차 입자 형태로서 Ni0.87Co0.05Mn0.08(OH)2로 표시되는 조성을 갖는 전이금속 복합 수산화물(D50: 10.2 ㎛)과, LiOH를 전이금속(Ni+Co+Mn)에 대한 리튬(Li)의 몰비(Li/(Ni+Co+Mn))가 1.05가 되도록 혼합하였다. 여기에, 상기 전이금속 복합 수산화물 총 중량 대비 Al(OH)3를 1,470 ppm, Y2O3를 1,000 ppm 및 ZrO2를 1,500 ppm의 함량으로 첨가하고 혼합하여 혼합물을 제조하였다.A transition metal composite hydroxide (D 50 : 10.2 ㎛) having a composition represented by Ni 0.87 Co 0.05 Mn 0.08 (OH) 2 in the form of secondary particles formed by the agglomeration of tens to hundreds of primary particles and LiOH were mixed such that the molar ratio of lithium (Li) to transition metal (Ni + Co + Mn) (Li / (Ni + Co + Mn)) was 1.05. To this, 1,470 ppm of Al (OH) 3 , 1,000 ppm of Y 2 O 3 , and 1,500 ppm of ZrO 2 were added and mixed relative to the total weight of the transition metal composite hydroxide to prepare a mixture.
상기 혼합물을 산소 분위기 하에서, 780 ℃에서 5 시간 동안 소성하여 소성품을 얻었다. 상온에서 상기 소성품을 분쇄하여 평균 입경(D50)이 9.8 ㎛이고, LiNi0.8635Co0.0496Mn0.0794Al0.0050Y0.0010Zr0.0015O2로 표시되는 조성을 가지며, 1차 입자가 응집된 2차 입자 형태의 리튬 전이금속 산화물을 제조하였다. 이어서, 상기 제조된 2차 입자 형태의 리튬 전이금속 산화물 100 중량부와, 물 100 중량부를 5분 동안 교반한 후, 필터 프레스를 이용하여 수세하였다. 수세품을 130 ℃에서 4 시간 동안 건조하여 건조품을 제조하였다.The above mixture was fired at 780° C. for 5 hours under an oxygen atmosphere to obtain a fired product. The fired product was pulverized at room temperature to prepare a lithium transition metal oxide having an average particle size ( D50 ) of 9.8 μm and a composition represented by LiNi 0.8635 Co 0.0496 Mn 0.0794 Al 0.0050 Y 0.0010 Zr 0.0015 O 2 in the form of secondary particles in which primary particles were aggregated. Subsequently, 100 parts by weight of the above-mentioned lithium transition metal oxide in the form of secondary particles and 100 parts by weight of water were stirred for 5 minutes, and then washed using a filter press. The washed product was dried at 130° C. for 4 hours to prepare a dried product.
상기 제조된 건조품에, 상기 리튬 전이금속 산화물 총 중량 대비 H3BO3를 1,000 ppm의 함량으로 첨가하고 혼합하여 혼합물을 제조하였다. 상기 혼합물을 대기 분위기 하에서, 300 ℃에서 5 시간 동안 열처리하여 코팅품을 얻었다. 상온에서 상기 코팅품을 평균 입경(D50)이 10.2 ㎛이 되도록 분쇄하여, 1차 입자가 응집된 2차 입자 형태의 리튬 전이금속 산화물 상에 B를 포함하는 코팅부가 형성된 양극 활물질을 제조하였다. 상기 코팅부를 포함한 양극 활물질의 전체 조성은 LiNi0.8558Co0.0492Mn0.0787Al0.0049Y0.0010Zr0.0015B0.0089O2이었다.To the above-mentioned manufactured dry product, H 3 BO 3 was added in an amount of 1,000 ppm based on the total weight of the lithium transition metal oxide, and mixed to prepare a mixture. The mixture was heat-treated at 300° C. for 5 hours in an air atmosphere to obtain a coating product. The coating product was pulverized at room temperature to an average particle diameter (D 50 ) of 10.2 μm, thereby preparing a cathode active material in which a coating portion including B was formed on a lithium transition metal oxide in the form of secondary particles in which primary particles were aggregated. The overall composition of the cathode active material including the coating portion is LiNi 0.8558 Co 0.0492 Mn 0.0787 Al 0.0049 Y 0.0010 Zr 0.0015 B 0.0089 O 2 .
비교예 2Comparative Example 2
수십 내지 수백 개의 1차 입자들이 응집되어 형성된 2차 입자 형태로서 Ni0.87Co0.05Mn0.08(OH)2로 표시되는 조성을 갖는 전이금속 복합 수산화물(D50: 12.2 ㎛)과, LiOH를 전이금속(Ni+Co+Mn)에 대한 리튬(Li)의 몰비(Li/(Ni+Co+Mn))가 1.05가 되도록 혼합하였다. 여기에, 상기 전이금속 복합 수산화물 총 중량 대비 Al(OH)3를 1,470 ppm, Y2O3를 1,000 ppm 및 ZrO2를 1,500 ppm의 함량으로 첨가하고 혼합하여 혼합물을 제조하였다.A transition metal composite hydroxide (D 50 : 12.2 μm) having a composition represented by Ni 0.87 Co 0.05 Mn 0.08 (OH) 2 in the form of secondary particles formed by the agglomeration of tens to hundreds of primary particles and LiOH were mixed such that the molar ratio of lithium (Li) to transition metal (Ni + Co + Mn) (Li / (Ni + Co + Mn)) was 1.05. To this, 1,470 ppm of Al (OH) 3 , 1,000 ppm of Y 2 O 3 , and 1,500 ppm of ZrO 2 were added and mixed relative to the total weight of the transition metal composite hydroxide to prepare a mixture.
상기 혼합물을 산소 분위기 하에서, 780 ℃에서 5 시간 동안 소성하여 소성품을 얻었다. 상온에서 상기 소성품을 분쇄하여 평균 입경(D50)이 11.8 ㎛이고, LiNi0.8635Co0.0496Mn0.0794Al0.0050Y0.0010Zr0.0015O2로 표시되는 조성을 가지며, 1차 입자가 응집된 2차 입자 형태의 리튬 전이금속 산화물을 제조하였다. 이어서, 상기 제조된 2차 입자 형태의 리튬 전이금속 산화물 100 중량부와, 물 100 중량부를 5분 동안 교반한 후, 필터 프레스를 이용하여 수세하였다. 수세품을 130 ℃에서 4 시간 동안 건조하여 건조품을 제조하였다.The above mixture was fired at 780° C. for 5 hours under an oxygen atmosphere to obtain a fired product. The fired product was pulverized at room temperature to prepare a lithium transition metal oxide having an average particle size (D 50 ) of 11.8 μm and a composition represented by LiNi 0.8635 Co 0.0496 Mn 0.0794 Al 0.0050 Y 0.0010 Zr 0.0015 O 2 in the form of secondary particles in which primary particles were aggregated. Subsequently, 100 parts by weight of the above-mentioned lithium transition metal oxide in the form of secondary particles and 100 parts by weight of water were stirred for 5 minutes, and then washed using a filter press. The washed product was dried at 130° C. for 4 hours to prepare a dried product.
상기 제조된 건조품에, 상기 리튬 전이금속 산화물 총 중량 대비 H3BO3를 1,000 ppm의 함량으로 첨가하고 혼합하여 혼합물을 제조하였다. 상기 혼합물을 대기 분위기 하에서, 300 ℃에서 5 시간 동안 열처리하여 코팅품을 얻었다. 상온에서 상기 코팅품을 평균 입경(D50)이 12.2 ㎛이 되도록 분쇄하여, 1차 입자가 응집된 2차 입자 형태의 리튬 전이금속 산화물 상에 B를 포함하는 코팅부가 형성된 양극 활물질을 제조하였다. 상기 코팅부를 포함한 양극 활물질의 전체 조성은 LiNi0.8558Co0.0492Mn0.0787Al0.0049Y0.0010Zr0.0015B0.0089O2이었다.To the above-mentioned manufactured dry product, H 3 BO 3 was added in an amount of 1,000 ppm based on the total weight of the lithium transition metal oxide, and mixed to prepare a mixture. The mixture was heat-treated at 300° C. for 5 hours in an air atmosphere to obtain a coating product. The coating product was pulverized at room temperature to an average particle diameter (D 50 ) of 12.2 μm, thereby preparing a cathode active material in which a coating portion including B was formed on a lithium transition metal oxide in the form of secondary particles in which primary particles were aggregated. The overall composition of the cathode active material including the coating portion is LiNi 0.8558 Co 0.0492 Mn 0.0787 Al 0.0049 Y 0.0010 Zr 0.0015 B 0.0089 O 2 .
비교예 3Comparative Example 3
수십 내지 수백 개의 1차 입자들이 응집되어 형성된 2차 입자 형태로서 Ni0.94Co0.05Mn0.01(OH)2로 표시되는 조성을 갖는 전이금속 복합 수산화물(D50: 14.5 ㎛)과, LiOH를 전이금속(Ni+Co+Mn)에 대한 리튬(Li)의 몰비(Li/(Ni+Co+Mn))가 1.02가 되도록 혼합하였다. 여기에, 상기 전이금속 복합 수산화물 총 중량 대비 Al(OH)3를 1,470 ppm, Y2O3를 1,000 ppm 및 ZrO2를 1,500 ppm의 함량으로 첨가하고 혼합하여 혼합물을 제조하였다.A transition metal composite hydroxide (D 50 : 14.5 μm) having a composition represented by Ni 0.94 Co 0.05 Mn 0.01 (OH) 2 in the form of secondary particles formed by the agglomeration of tens to hundreds of primary particles and LiOH were mixed such that the molar ratio of lithium (Li) to transition metal (Ni + Co + Mn) (Li / (Ni + Co + Mn)) was 1.02. To this, 1,470 ppm of Al (OH) 3 , 1,000 ppm of Y 2 O 3 , and 1,500 ppm of ZrO 2 were added and mixed relative to the total weight of the transition metal composite hydroxide to prepare a mixture.
상기 혼합물을 산소 분위기 하에서, 730 ℃에서 5 시간 동안 소성하여 소성품을 얻었다. 상온에서 상기 소성품을 분쇄하여 평균 입경(D50)이 14.2 ㎛이고, LiNi0.9330Co0.0496Mn0.0099Al0.0050Y0.0010Zr0.0015O2로 표시되는 조성을 가지며, 1차 입자가 응집된 2차 입자 형태의 리튬 전이금속 산화물을 제조하였다. 이어서, 상기 제조된 2차 입자 형태의 리튬 전이금속 산화물 100 중량부와, 물 100 중량부를 5분 동안 교반한 후, 필터 프레스를 이용하여 수세하였다. 수세품을 130 ℃에서 4 시간 동안 건조하여 건조품을 제조하였다.The above mixture was calcined at 730°C for 5 hours under an oxygen atmosphere to obtain a calcined product. The calcined product was pulverized at room temperature to obtain an average particle size ( D50 ) of 14.2 μm. A lithium transition metal oxide having a composition represented by LiNi 0.9330 Co 0.0496 Mn 0.0099 Al 0.0050 Y 0.0010 Zr 0.0015 O 2 in the form of secondary particles in which primary particles are aggregated was manufactured. Subsequently, 100 parts by weight of the manufactured lithium transition metal oxide in the form of secondary particles and 100 parts by weight of water were stirred for 5 minutes, and then washed using a filter press. The washed product was dried at 130°C for 4 hours to manufacture a dried product.
상기 제조된 건조품에, 상기 리튬 전이금속 산화물 총 중량 대비 H3BO3를 1,000 ppm의 함량으로 첨가하고 혼합하여 혼합물을 제조하였다. 상기 혼합물을 대기 분위기 하에서, 300 ℃에서 5 시간 동안 열처리하여 코팅품을 얻었다. 상온에서 상기 코팅품을 평균 입경(D50)이 14.2 ㎛이 되도록 분쇄하여, 1차 입자가 응집된 2차 입자 형태의 리튬 전이금속 산화물 상에 B를 포함하는 코팅부가 형성된 양극 활물질을 제조하였다. 상기 코팅부를 포함한 양극 활물질의 전체 조성은 LiNi0.9246Co0.0492Mn0.0098Al0.0050Y0.0010Zr0.0015B0.0089O2이었다.To the above-mentioned manufactured dry product, H 3 BO 3 was added in an amount of 1,000 ppm based on the total weight of the lithium transition metal oxide, and the mixture was prepared. The mixture was heat-treated at 300 ℃ for 5 hours in an air atmosphere to obtain a coating product. The coated product was pulverized at room temperature to have an average particle diameter (D 50 ) of 14.2 ㎛, thereby preparing a cathode active material in which a coating portion including B was formed on a lithium transition metal oxide in the form of secondary particles in which primary particles were aggregated. The total composition of the cathode active material including the coating portion was LiNi 0.9246 Co 0.0492 Mn 0.0098 Al 0.0050 Y 0.0010 Zr 0.0015 B 0.0089 O 2 .
비교예 4Comparative Example 4
수십 내지 수백 개의 1차 입자들이 응집되어 형성된 2차 입자 형태로서 Ni0.94Co0.05Mn0.01(OH)2로 표시되는 조성을 갖는 전이금속 복합 수산화물(D50: 10.2 ㎛)과, LiOH를 전이금속(Ni+Co+Mn)에 대한 리튬(Li)의 몰비(Li/(Ni+Co+Mn))가 1.02가 되도록 혼합하였다. 여기에, 상기 전이금속 복합 수산화물 총 중량 대비 Al(OH)3를 1,470 ppm, Y2O3를 1,000 ppm 및 ZrO2를 1,500 ppm의 함량으로 첨가하고 혼합하여 혼합물을 제조하였다.A transition metal composite hydroxide (D 50 : 10.2 μm) having a composition represented by Ni 0.94 Co 0.05 Mn 0.01 (OH) 2 in the form of secondary particles formed by the agglomeration of tens to hundreds of primary particles and LiOH were mixed such that the molar ratio of lithium (Li) to transition metal (Ni + Co + Mn) (Li / (Ni + Co + Mn)) was 1.02. To this, 1,470 ppm of Al (OH) 3 , 1,000 ppm of Y 2 O 3 , and 1,500 ppm of ZrO 2 were added and mixed relative to the total weight of the transition metal composite hydroxide to prepare a mixture.
상기 혼합물을 산소 분위기 하에서, 730 ℃에서 5 시간 동안 소성하여 소성품을 얻었다. 상온에서 상기 소성품을 분쇄하여 평균 입경(D50)이 9.8 ㎛이고, LiNi0.9330Co0.0496Mn0.0099Al0.0050Y0.0010Zr0.0015O2로 표시되는 조성을 가지며, 1차 입자가 응집된 2차 입자 형태의 리튬 전이금속 산화물을 제조하였다. 이어서, 상기 제조된 2차 입자 형태의 리튬 전이금속 산화물 100 중량부와, 물 100 중량부를 5분 동안 교반한 후, 필터 프레스를 이용하여 수세하였다. 수세품을 130 ℃에서 4 시간 동안 건조하여 건조품을 제조하였다.The above mixture was fired at 730° C. for 5 hours under an oxygen atmosphere to obtain a fired product. The fired product was pulverized at room temperature to prepare a lithium transition metal oxide having an average particle size (D 50 ) of 9.8 μm and a composition represented by LiNi 0.9330 Co 0.0496 Mn 0.0099 Al 0.0050 Y 0.0010 Zr 0.0015 O 2 in the form of secondary particles in which primary particles were aggregated. Subsequently, 100 parts by weight of the above-mentioned lithium transition metal oxide in the form of secondary particles and 100 parts by weight of water were stirred for 5 minutes, and then washed using a filter press. The washed product was dried at 130° C. for 4 hours to prepare a dried product.
상기 제조된 건조품에, 상기 리튬 전이금속 산화물 총 중량 대비 H3BO3를 1,000 ppm의 함량으로 첨가하고 혼합하여 혼합물을 제조하였다. 상기 혼합물을 대기 분위기 하에서, 300 ℃에서 5 시간 동안 열처리하여 코팅품을 얻었다. 상온에서 상기 코팅품을 평균 입경(D50)이 10.2 ㎛이 되도록 분쇄하여, 1차 입자가 응집된 2차 입자 형태의 리튬 전이금속 산화물 상에 B를 포함하는 코팅부가 형성된 양극 활물질을 제조하였다. 상기 코팅부를 포함한 양극 활물질의 전체 조성은 LiNi0.9246Co0.0492Mn0.0098Al0.0050Y0.0010Zr0.0015B0.0089O2이었다.To the above-mentioned manufactured dry product, H 3 BO 3 was added in an amount of 1,000 ppm based on the total weight of the lithium transition metal oxide, and mixed to prepare a mixture. The mixture was heat-treated at 300° C. for 5 hours in an air atmosphere to obtain a coating product. The coating product was pulverized at room temperature to an average particle diameter (D 50 ) of 10.2 μm, thereby preparing a cathode active material in which a coating portion including B was formed on a lithium transition metal oxide in the form of secondary particles in which primary particles were aggregated. The overall composition of the cathode active material including the coating portion is LiNi 0.9246 Co 0.0492 Mn 0.0098 Al 0.0050 Y 0.0010 Zr 0.0015 B 0.0089 O 2 .
비교예 5Comparative Example 5
수십 내지 수백 개의 1차 입자들이 응집되어 형성된 2차 입자 형태로서 Ni0.89Co0.03Mn0.08(OH)2로 표시되는 조성을 갖는 전이금속 복합 수산화물(D50: 4.2 ㎛)과, LiOH를 전이금속(Ni+Co+Mn)에 대한 리튬(Li)의 몰비(Li/(Ni+Co+Mn))가 1.04가 되도록 혼합하였다. 여기에, 상기 전이금속 복합 수산화물 총 중량 대비 Al(OH)3를 1,470 ppm, Y2O3를 1,000 ppm 및 ZrO2를 1,500 ppm의 함량으로 첨가하고 혼합하여 혼합물을 제조하였다.A transition metal composite hydroxide (D 50 : 4.2 ㎛) having a composition represented by Ni 0.89 Co 0.03 Mn 0.08 (OH) 2 in the form of secondary particles formed by the agglomeration of tens to hundreds of primary particles and LiOH were mixed such that the molar ratio of lithium (Li) to transition metal (Ni + Co + Mn) (Li / (Ni + Co + Mn)) was 1.04. To this, 1,470 ppm of Al (OH) 3 , 1,000 ppm of Y 2 O 3 , and 1,500 ppm of ZrO 2 were added and mixed relative to the total weight of the transition metal composite hydroxide to prepare a mixture.
상기 혼합물을 산소 분위기 하에서, 930 ℃에서 6 시간, 이어서, 830 ℃에서 9 시간 동안 소성하여 소성품을 얻었다. 상온에서 상기 소성품을 분쇄하여 평균 입경(D50)이 3.8 ㎛이고, LiNi0.8833Co0.0298Mn0.0794Al0.0050Y0.0010Zr0.0015O2로 표시되는 조성을 가지며, 단입자 형태의 리튬 전이금속 산화물을 제조하였다.The above mixture was calcined under an oxygen atmosphere at 930° C. for 6 hours and then at 830° C. for 9 hours to obtain a sintered product. The sintered product was pulverized at room temperature to produce a lithium transition metal oxide in the form of single particles having an average particle size (D 50 ) of 3.8 μm and a composition represented by LiNi 0.8833 Co 0.0298 Mn 0.0794 Al 0.0050 Y 0.0010 Zr 0.0015 O 2 .
상기 제조된 단입자 형태의 리튬 전이금속 산화물과, Co(OH)2를 리튬을 제외한 금속(Ni+Co+Mn+Al+Y+Zr)에 대한 코발트(Co)의 몰비(Co/(Ni+Co+Mn+Al+Y+Zr))가 0.02가 되도록, Al(OH)3를 상기 제조된 단입자 형태의 리튬 전이금속 산화물 총 중량 대비 500 ppm의 함량으로 각각 첨가하고 균일하게 혼합하여 혼합물을 제조하였다. 상기 혼합물을 산소 분위기 하에서, 740 ℃에서 3 시간, 이어서, 500 ℃에서 3 시간 동안 열처리하여 코팅품을 얻었다. 상온에서 상기 코팅품을 평균 입경(D50)이 3.8 ㎛이 되도록 분쇄하여, 단입자 형태의 리튬 전이금속 산화물 상에 Co 및 Al을 포함하는 코팅부가 형성된 양극 활물질을 제조하였다. 상기 코팅부를 포함한 양극 활물질의 전체 조성은 LiNi0.8641Co0.0491Mn0.0777Al0.0066Y0.0010Zr0.0015O2이었다.A mixture was prepared by adding the lithium transition metal oxide in the form of single particles prepared above and Al(OH) 3 in an amount of 500 ppm based on the total weight of the lithium transition metal oxide in the form of single particles prepared above so that the molar ratio of cobalt (Co) to the metal (Ni+Co+Mn+Al+Y+Zr) excluding lithium (Co/(Ni+Co+Mn+Al+Y+Zr)) was 0.02, and mixing them uniformly. The mixture was heat-treated at 740°C for 3 hours and then at 500°C for 3 hours in an oxygen atmosphere to obtain a coating product. The coated product was pulverized at room temperature to an average particle size ( D50 ) of 3.8 μm, thereby preparing a cathode active material in which a coating portion including Co and Al was formed on the lithium transition metal oxide in the form of single particles. The overall composition of the cathode active material including the above coating portion was LiNi 0.8641 Co 0.0491 Mn 0.0777 Al 0.0066 Y 0.0010 Zr 0.0015 O 2 .
실험예Experimental example
실험예 1: 입자 분석 1Experimental Example 1: Particle Analysis 1
실시예 1 내지 11 및 비교예 1 내지 5에서 제조된 양극 활물질을 각각 주사 전자 현미경(FEI사 quanta250 FEG)을 이용하여 촬영하고, 실시예 1 내지 11의 SEM 이미지를 도 1 내지 11의 (A)에 순서대로 각각 나타내었고, 비교예 1 내지 5의 SEM 이미지를 도 12 내지 16의 (A)에 순서대로 각각 나타내었다. 상기 SEM 이미지로부터, 각각의 실시예 및 비교예들에 존재하는 1차 입자의 평균 입자 크기를 측정하여, 하기 표 1에 나타내었다.The positive electrode active materials manufactured in Examples 1 to 11 and Comparative Examples 1 to 5 were photographed using a scanning electron microscope (FEI quanta250 FEG), and the SEM images of Examples 1 to 11 are shown in order in Figs. 1 to 11 (A), and the SEM images of Comparative Examples 1 to 5 are shown in order in Figs. 12 to 16 (A). From the SEM images, the average particle size of the primary particles present in each of the Examples and Comparative Examples was measured, and is shown in Table 1 below.
그리고, 실시예 1 내지 11 및 비교예 1 내지 5에서 제조된 양극 활물질을 각각 이온 밀링한 후, 주사 전자 현미경을 이용하여 촬영하고, 실시예 1 내지 11의 SEM 이미지를 도 1 내지 11의 (B)에 순서대로 각각 나타내었고, 비교예 1 내지 5의 SEM 이미지를 도 12 내지 16의 (B)에 순서대로 각각 나타내었다. 도 1 내지 15의 (B)에서 하얀 사각형은 양극 활물질의 단면에 대해 촬영된 2차 입자의 단면에 대한 SEM 이미지로부터 관찰되는, 2차 입자의 단면의 크기가 2차 입자의 평균 입경(D50) 범위 내의 크기를 갖는 2차 입자의 단면의 SEM 이미지에 대하여, 2차 입자의 단면 내에 가로 5 ㎛ * 세로 5 ㎛의 단위 면적을 설정하여 나타낸 것이고, 해당 단위 면적 내에서 확인되는 1차 입자의 단면의 개수를 하기 표 1에 나타내었다.And, after ion milling each of the positive electrode active materials manufactured in Examples 1 to 11 and Comparative Examples 1 to 5, images were taken using a scanning electron microscope, and the SEM images of Examples 1 to 11 are sequentially shown in Figs. 1 to 11 (B), respectively, and the SEM images of Comparative Examples 1 to 5 are sequentially shown in Figs. 12 to 16 (B), respectively. The white squares in Figs. 1 to 15 (B) represent SEM images of cross-sections of secondary particles observed from SEM images of cross-sections of secondary particles photographed for cross-sections of the positive electrode active materials, in which the size of the cross-section of the secondary particles is within the range of the average particle diameter (D 50 ) of the secondary particles, by setting a unit area of 5 ㎛ width x 5 ㎛ height within the cross-section of the secondary particles, and the number of cross-sections of the primary particles confirmed within the unit area is shown in Table 1 below.
또한, 본 발명의 실시예 1의 SEM 이미지로부터 인공지능 모델을 기반으로 이미지 분석을 실시하여 복수의 리튬 복합 전이금속 산화물들을 세그멘테이션하여 나타낸 세그멘테이션 이미지를 도 17에 나타내었고, 비교예 1의 세그멘테이션 이미지를 도 18에 나타내었다.In addition, a segmentation image showing multiple lithium composite transition metal oxides segmented by performing image analysis based on an artificial intelligence model from the SEM image of Example 1 of the present invention is shown in FIG. 17, and a segmentation image of Comparative Example 1 is shown in FIG. 18.
구분division SEM 이미지로부터 측정한 1차 입자의 평균 입자 크기 (㎛)Average particle size (㎛) of primary particles measured from SEM images 단위 면적 내 1차 입자의 단면의 개수Number of cross sections of primary particles per unit area
실시예 1Example 1 2.52.5 1313
실시예 2Example 2 2.72.7 1818
실시예 3Example 3 2.82.8 2222
실시예 4Example 4 3.23.2 1010
실시예 5Example 5 2.62.6 88
실시예 6Example 6 2.42.4 1515
실시예 7Example 7 2.62.6 1111
실시예 8Example 8 1.71.7 1313
실시예 9Example 9 1.81.8 1414
실시예 10Example 10 1.91.9 2424
실시예 11Example 11 2.12.1 1919
비교예 1Comparative Example 1 < 0.5< 0.5 120120
비교예 2Comparative Example 2 < 0.5< 0.5 161161
비교예 3Comparative Example 3 < 0.5< 0.5 145145
비교예 4Comparative Example 4 < 0.5< 0.5 127127
비교예 5Comparative Example 5 4.04.0 --
실험예 2: 입자 분석 2Experimental Example 2: Particle Analysis 2
실시예 1, 2, 및 8에서 제조된 양극 활물질을 각각 이온 밀링한 후, 투과 전자 현미경(FEI Titan cubed G2 60-300)을 이용하여 촬영하고, 실시예 1, 2, 및 8의 양극 활물질 1차 입자의 단면에 대한 TEM 이미지를 순서대로 각각 도 19 내지 21에 나타내었다.The positive electrode active materials manufactured in Examples 1, 2, and 8 were each subjected to ion milling, and then photographed using a transmission electron microscope (FEI Titan cubed G2 60-300). TEM images of cross-sections of primary particles of the positive electrode active materials of Examples 1, 2, and 8 are shown in FIGS. 19 to 21, respectively.
도 1 내지 11과 표 1을 참조하면, 실시예 1 내지 11의 양극 활물질의 경우, 복수 개의 1차 입자가 응집된 2차 입자를 포함하고, 상기 복수 개의 1차 입자는 SEM 이미지로부터 측정한 평균 입자 크기가 1.5 ㎛ 이상, 5.0 ㎛ 이하인 것을 확인할 수 있다. 또한, 상기 복수 개의 1차 입자는 디스크 형태(disk type)의 1차 입자를 3개 이상 포함하는 것을 확인할 수 있다. 이때, 디스크 형태의 1차 입자는 2차 입자의 표면 또는 단면에 대한 SEM 이미지로부터 관찰되는 1차 입자에 있어서, 장경 방향을 기준으로 45 ° 이하의 각도 내에서 존재하는 1차 입자의 2개의 경계선에 대하여, 각각 가장 많은 접점이 존재하는 가상의 접선을 긋고, 2개의 접선을 가로지르는 1개의 가상의 선을 그었을 때, 동측내각이 150 ° 이상, 210 ° 이하인 1차 입자를 의미한다. 참고로, 도 1 내지 11의 (B)에서 빨간색의 장경 방향을 기준으로, 45 ° 이하의 각도 내에서 존재하는 1차 입자의 2개의 경계선에 대하여, 각각 가장 많은 접점이 존재하는 가상의 노란색의 접선을 그었을 때, 2개의 노란색 접선을 가로지르는 1개의 가상의 선(미도시)은, 동측내각이 150 ° 이상, 210 ° 이하를 만족하는데, 이러한 경우에 해당되는 1차 입자를 디스크 형태의 1차 입자라고 정의한 것이다. 그리고, 상기 디스크 형태의 1차 입자는 단경이 0.3 ㎛ 이상이며, 종횡비가(장경/단경)가 1.5 이상인 것을 확인할 수 있다. 또한, 단위 면적 내 1차 입자의 단면의 개수가 1 개 이상, 100 개 이하인 것을 확인할 수 있다. 구체적으로, 단위 면적 내 1차 입자의 단면의 개수가 8개 이상, 24개 이하인 것을 확인할 수 있다.Referring to FIGS. 1 to 11 and Table 1, in the case of the positive electrode active materials of Examples 1 to 11, it can be confirmed that a plurality of primary particles include aggregated secondary particles, and that the plurality of primary particles have an average particle size of 1.5 ㎛ or more and 5.0 ㎛ or less as measured from an SEM image. In addition, it can be confirmed that the plurality of primary particles include three or more disk-type primary particles. At this time, the disk-type primary particle means a primary particle in which, when two imaginary tangent lines are drawn for two boundaries of primary particles existing within an angle of 45° or less with respect to the major axis direction among the primary particles observed from an SEM image of the surface or cross-section of the secondary particle, the imaginary tangent lines having the largest number of contact points are respectively drawn, and one imaginary line crossing the two tangent lines is drawn, and the same internal angle is 150° or more and 210° or less. For reference, when two virtual yellow tangent lines having the largest number of contact points are drawn for each of the two boundary lines of the primary particles existing within an angle of 45° or less based on the major axis direction in (B) of FIGS. 1 to 11, one virtual line (not shown) crossing the two yellow tangent lines satisfies the condition that the same internal angle is 150° or more and 210° or less, and the primary particle corresponding to this case is defined as a disk-shaped primary particle. In addition, it can be confirmed that the disk-shaped primary particle has a minor axis of 0.3 ㎛ or more and an aspect ratio (major axis/minor axis) of 1.5 or more. In addition, it can be confirmed that the number of cross-sections of the primary particle per unit area is 1 or more and 100 or less. Specifically, it can be confirmed that the number of cross-sections of the primary particle per unit area is 8 or more and 24 or less.
또한, 도 1 내지 11과 도 19 내지 21을 참조하면, 본 발명의 일 실시예에 따른 양극 활물질의 경우, 1차 입자 표면부의 결정면 중 (003)면의 면적 비율이 가장 큰 것을 확인할 수 있다.In addition, referring to FIGS. 1 to 11 and 19 to 21, in the case of the positive electrode active material according to one embodiment of the present invention, it can be confirmed that the area ratio of the (003) plane among the crystal planes on the surface of the primary particle is the largest.
한편, 비교예 1 내지 4의 양극 활물질의 경우에는 SEM 이미지로부터 측정한 1차 입자의 평균 입자 크기가 500 nm 미만으로 작은 것을 확인할 수 있다. 그리고, 비교예 5의 양극 활물질의 경우에는 상기 디스크 형태의 1차 입자를 포함하지 않는 것을 확인할 수 있다.Meanwhile, in the case of the positive electrode active materials of Comparative Examples 1 to 4, it can be confirmed that the average particle size of the primary particles measured from the SEM image is small, less than 500 nm. In addition, in the case of the positive electrode active material of Comparative Example 5, it can be confirmed that it does not include the disk-shaped primary particles.
그리고, 도 17 및 18을 참조하면, 본 발명의 일 실시예에 따른 양극 활물질의 경우, 단결정 1차 입자를 포함하는 것을 확인할 수 있다.And, referring to FIGS. 17 and 18, it can be confirmed that the cathode active material according to one embodiment of the present invention includes single crystal primary particles.
실험예 3: 입자 분석 3Experimental Example 3: Particle Analysis 3
실시예 1 내지 11 및 비교예 1 내지 5에서 제조된 양극 활물질을 각각 EBSD가 구비된 주사 전자 현미경(FEI사 quanta250 FEG)을 이용하여 촬영하였다.The positive electrode active materials manufactured in Examples 1 to 11 and Comparative Examples 1 to 5 were photographed using a scanning electron microscope equipped with EBSD (FEI quanta250 FEG).
이 중에서, 실시예 1 내지 4, 8, 10, 11 및 비교예 3의 양극 활물질의 단면에 대해 촬영된 2차 입자의 단면에 대한 SEM 이미지의 후방 산란 전자의 회절(EBSD) 패턴(가속 전압 20 kV, WD 16 mm, 측정 배율 5,000 배(너비 16 ㎛ * 높이 16 ㎛), step size 0.025 ㎛의 조건에서 측정)으로부터 관찰되는, 2차 입자의 단면의 크기가 2차 입자의 평균 입경(D50) 범위 내의 크기를 갖는 2차 입자의 단면의 EBSD 패턴에 대하여, 2차 입자의 단면 내에 가로 5 ㎛ * 세로 5 ㎛의 단위 면적을 가운데 영역 및 바깥 영역에 각각 설정하여, 도 22(실시예 1), 도 23(실시예 2), 도 24(실시예 3), 도 25(실시예 4), 도 26(실시예 8), 도 27(실시예 10), 도 28(실시예 11) 및 도 29(비교예 3)에 각각 나타내었고, 해당 단위 면적 내에서 확인되는 그레인의 단면의 개수와, 하기 식 1에 따라 단결정화도를 계산하여 하기 표 2에 함께 나타내었다.Among these, for the cross-sections of the positive electrode active materials of Examples 1 to 4, 8, 10, 11 and Comparative Example 3, the cross-sections of the secondary particles are observed from the backscattered electron diffraction (EBSD) patterns (measured under the conditions of an acceleration voltage of 20 kV, a WD of 16 mm, a measurement magnification of 5,000 times (width 16 ㎛ * height 16 ㎛), and a step size of 0.025 ㎛) of the SEM images of the cross-sections of the secondary particles, in which the size of the cross-sections of the secondary particles is within the range of the average particle diameter (D 50 ), a unit area of 5 ㎛ in width * 5 ㎛ in height is set in the center region and the outer region, respectively, as shown in FIG. 22 (Example 1), FIG. 23 (Example 2), FIG. 24 (Example 3), FIG. 25 (Example 4), and FIG. 26 (Example 8), FIG. 27 (Example 10), FIG. 28 (Example 11), and FIG. 29 (Comparative Example 3), respectively, and the number of cross-sections of grains confirmed within the unit area and the degree of single crystallinity calculated according to the following Equation 1 are also shown in Table 2 below.
[식 1][Formula 1]
Figure PCTKR2024005819-appb-img-000004
Figure PCTKR2024005819-appb-img-000004
구분division 가운데 영역의 단위 면적 내 그레인의 단면의 개수Number of cross-sections of grains within a unit area of the central region 바깥 영역의 단위 면적 내 그레인의 단면의 개수The number of cross-sections of grains within a unit area of the outer region 단결정화도(㎛3)Single crystallinity (㎛ 3 )
실시예 1Example 1 1212 1414 0.860.86
실시예 2Example 2 33 66 0.900.90
실시예 3Example 3 88 99 0.920.92
실시예 4Example 4 66 66 0.980.98
실시예 5Example 5 -- -- 0.870.87
실시예 6Example 6 -- -- 0.870.87
실시예 7Example 7 -- -- 0.880.88
실시예 8Example 8 1212 1919 1.091.09
실시예 9Example 9 -- -- 1.201.20
실시예 10Example 10 77 99 1.571.57
실시예 11Example 11 1212 1313 1.561.56
비교예 1Comparative Example 1 -- -- 0.0460.046
비교예 2Comparative Example 2 -- -- 0.0400.040
비교예 3Comparative Example 3 203203 180180 0.0500.050
비교예 4Comparative Example 4 -- -- 0.0700.070
비교예 5Comparative Example 5 -- -- 3.13.1
표 2를 참조하면, 실시예 1 내지 11의 양극 활물질의 경우, 단위 면적 내 그레인의 단면 개수가 1개 이상, 150개 이하인 것을 확인할 수 있다. 구체적으로, 단위 면적 내 그레인의 단면 개수가 3개 이상, 19개 이하인 것을 확인할 수 있다. 또한, 단결정화도가 0.15 ㎛3 이상인 것을 확인할 수 있다. 구체적으로, 단결정화도가 0.86 ㎛3 이상, 1.57 ㎛3 이하인 것을 확인할 수 있다.Referring to Table 2, it can be confirmed that, for the positive electrode active materials of Examples 1 to 11, the number of cross-sections of grains per unit area is 1 or more and 150 or less. Specifically, it can be confirmed that the number of cross-sections of grains per unit area is 3 or more and 19 or less. In addition, it can be confirmed that the single crystallinity is 0.15 ㎛ 3 or more. Specifically, it can be confirmed that the single crystallinity is 0.86 ㎛ 3 or more and 1.57 ㎛ 3 or less.
실험예 4: 입자 분석 4Experimental Example 4: Particle Analysis 4
상기 실험예 1에서 얻은 양극 활물질 SEM 이미지로부터, 각각의 실시예 및 비교예들에 존재하는 1차 입자들의 체적 누적 분포의 50 %가 되는 지점에서의 체적의 지름에 해당하는 단입자화도(Dv50)를 측정하여, 하기 표 3에 나타내었다.From the SEM images of the positive electrode active materials obtained in the above Experimental Example 1, the single particle diameter (Dv 50 ) corresponding to the diameter of the volume at the point where 50% of the cumulative volume distribution of the primary particles present in each of the examples and comparative examples was measured, and is shown in Table 3 below.
구체적으로, 실시예 1 내지 11 및 비교예 1 내지 5의 양극 활물질의 표면에 대해 촬영된 2차 입자의 표면에 대한 SEM 이미지를 2차원 평면에 투영한 이미지로부터 관찰되는, n개의 1차 입자 각각에 해당하는 픽셀 수를 통하여 1차 입자 각각의 면적을 측정한다. 그 후, 1차 입자의 표면이 원형인 것으로 가정하고, 즉, 상기 1차 입자 각각의 표면 면적과 동일한 면적을 가지는 원의 반지름을 이용하여, 1차 입자의 표면의 반경인 radius를 도출하였다. 상기 radius를 이용하여, 하기 식 5에 따라 체적(Volume) 값을 계산하고, 1차 입자들의 체적 누적 분포의 50 %가 되는 지점에서의 체적의 지름에 해당하는 단입자화도(Dv50)를 계산하여 하기 표 3에 나타내었다.Specifically, the area of each primary particle is measured through the number of pixels corresponding to each of n primary particles observed from an image in which the SEM images of the surfaces of the secondary particles photographed on the surfaces of the positive active materials of Examples 1 to 11 and Comparative Examples 1 to 5 are projected onto a two-dimensional plane. Thereafter, assuming that the surfaces of the primary particles are circular, that is, the radius of the surface of the primary particle was derived using the radius of a circle having the same area as the surface area of each of the primary particles. Using the radius, the volume value was calculated according to Equation 5 below, and the single particle size (Dv 50 ) corresponding to the diameter of the volume at a point where the cumulative volume distribution of the primary particles is 50% was calculated, and the results are shown in Table 3 below.
[식 5][Formula 5]
Figure PCTKR2024005819-appb-img-000005
Figure PCTKR2024005819-appb-img-000005
구분division 단입자화도(Dv50) (㎛)Single particle magnetization (Dv 50 ) (㎛)
실시예 1Example 1 2.232.23
실시예 2Example 2 2.242.24
실시예 3Example 3 2.262.26
실시예 4Example 4 3.513.51
실시예 5Example 5 2.342.34
실시예 6Example 6 2.212.21
실시예 7Example 7 2.332.33
실시예 8Example 8 1.691.69
실시예 9Example 9 1.701.70
실시예 10Example 10 1.721.72
실시예 11Example 11 2.832.83
비교예 1Comparative Example 1 1.051.05
비교예 2Comparative Example 2 1.011.01
비교예 3Comparative Example 3 0.800.80
비교예 4Comparative Example 4 0.870.87
비교예 5Comparative Example 5 3.483.48
표 3을 참조하면, 실시예 1 내지 11의 양극 활물질의 경우, 단입자화도가 1.2 ㎛ 이상, 3.8 ㎛ 이하인 것을 확인할 수 있다. 구체적으로, 단입자화도가 1.65 ㎛ 이상, 3.55 ㎛ 이하인 것을 확인할 수 있다.Referring to Table 3, it can be confirmed that the single particle magnetization degree of the positive electrode active materials of Examples 1 to 11 is 1.2 ㎛ or more and 3.8 ㎛ or less. Specifically, it can be confirmed that the single particle magnetization degree is 1.65 ㎛ or more and 3.55 ㎛ or less.
실험예 5: 입자 분석 5Experimental Example 5: Particle Analysis 5
실시예 1 내지 11 및 비교예 1 내지 4에서 제조된 양극 활물질에 대하여, 표면에 존재하는 Co 및 B 코팅층의 원소 분포를 분석하기 위해 Thermo fisher社의 K-alpha XPS 장비로 전자분광 화학분석(ESCA)를 수행하였다. Depth profiling을 위해 Ar 이온 source를 이용하여 0.3 nm/10s의 속도로 에칭을 수행하여,0~100 nm의 두께의 코팅층에 포함된 B 및 Co 각각의 함량(atomic %)을 측정하고, 그 결과를 각각 표 4(B 코팅층) 및 5(Co 코팅층)에 나타내었다.In order to analyze the elemental distribution of the Co and B coating layers present on the surface of the positive electrode active materials manufactured in Examples 1 to 11 and Comparative Examples 1 to 4, electron spectroscopic chemical analysis (ESCA) was performed using a K-alpha XPS device from Thermo Fisher. For depth profiling, etching was performed at a rate of 0.3 nm/10 s using an Ar ion source, and the contents (atomic %) of B and Co each included in the coating layers with a thickness of 0 to 100 nm were measured, and the results are shown in Tables 4 (B coating layer) and 5 (Co coating layer), respectively.
실시예 1의 양극 활물질에 대해서는 표면 코팅 특성을 확인하기 위해 EPMA 단면 분석을 수행하였다. 우선, 실시예 1의 양극 활물질, 카본블랙 도전재 및 PVDF 바인더를 95:2:3의 중량비로 N-메틸피롤리돈(NMP) 용매 중에서 혼합하여 양극 슬러리를 제조하였다. 상기 제조된 양극 슬러리를 알루미늄 집전체의 일면에 도포한 후, 130 ℃에서 건조 후, 전극 공극률이 20%가 되도록 압연하여 양극을 제조하였다. EPMA 단면 분석을 위한 평평한(flat) 표면을 만들기 위해 상기 양극을 HITACHI IM-5000 장비를 이용해 가속 전압 6 kV 조건에서 Ar-ion milling 하여 양극 시료의 단면을 얻은 후, JEOL JXA-iHP200F 장비를 이용해 가속 전압 15 kV, 프로브 전류(probe current) 50nA의 조건에서 양극 시료의 단면 이미지를 관찰하여 도 30에 나타내었다.For the positive electrode active material of Example 1, EPMA cross-sectional analysis was performed to confirm the surface coating characteristics. First, the positive electrode active material of Example 1, the carbon black conductive agent, and the PVDF binder were mixed at a weight ratio of 95:2:3 in an N-methylpyrrolidone (NMP) solvent to prepare a positive electrode slurry. The prepared positive electrode slurry was applied to one surface of an aluminum current collector, dried at 130°C, and rolled so that the electrode porosity became 20% to prepare a positive electrode. In order to create a flat surface for EPMA cross-sectional analysis, the positive electrode was subjected to Ar-ion milling using a HITACHI IM-5000 equipment under an acceleration voltage of 6 kV to obtain a cross-section of the positive electrode sample. Then, the cross-sectional image of the positive electrode sample was observed using a JEOL JXA-iHP200F equipment under the conditions of an acceleration voltage of 15 kV and a probe current of 50 nA, and the results are shown in Fig. 30.
에칭 시간 (s)Etching time (s) 00 1010 3030 5050 100100 200200 300300 500500 10001000 20002000 30003000
실시예 1Example 1 10.410.4 10.710.7 9.49.4 8.48.4 6.66.6 4.34.3 3.43.4 2.42.4 1.61.6 1.31.3 11
실시예 2Example 2 1111 10.810.8 9.49.4 8.18.1 6.56.5 44 3.73.7 2.82.8 1.91.9 1.11.1 11
실시예 3Example 3 10.410.4 10.810.8 9.49.4 8.98.9 6.76.7 4.34.3 3.73.7 2.42.4 1.71.7 1.21.2 11
실시예 4Example 4 10.410.4 10.210.2 9.29.2 99 6.86.8 4.84.8 3.53.5 2.82.8 1.81.8 1.51.5 11
실시예 5Example 5 10.410.4 10.710.7 9.99.9 8.18.1 6.76.7 4.54.5 3.43.4 2.92.9 1.11.1 1.51.5 11
실시예 6Example 6 10.410.4 10.110.1 9.29.2 8.28.2 6.16.1 4.44.4 3.83.8 2.82.8 1.21.2 1.51.5 11
실시예 7Example 7 10.410.4 10.810.8 9.79.7 8.48.4 6.26.2 44 33 2.42.4 1.51.5 1.21.2 11
실시예 8Example 8 11.211.2 11.211.2 9.19.1 8.78.7 6.86.8 4.24.2 3.13.1 2.92.9 1.91.9 1.41.4 11
실시예 9Example 9 10.710.7 10.710.7 9.19.1 8.18.1 6.46.4 4.94.9 33 2.82.8 1.71.7 1.51.5 11
실시예 10Example 10 10.710.7 10.810.8 9.49.4 88 6.46.4 4.24.2 3.43.4 2.52.5 1.81.8 1.51.5 11
실시예 11Example 11 1111 11.211.2 9.29.2 8.78.7 6.16.1 4.54.5 3.73.7 2.92.9 1.91.9 1.51.5 11
비교예 1Comparative Example 1 16.416.4 17.517.5 15.115.1 14.814.8 11.811.8 8.98.9 77 5.95.9 3.53.5 2.42.4 1.51.5
비교예 2Comparative Example 2 1616 17.517.5 14.814.8 14.814.8 1212 8.78.7 7.87.8 5.15.1 33 22 11
비교예 3Comparative Example 3 1616 16.816.8 15.115.1 14.814.8 11.411.4 8.88.8 7.57.5 5.95.9 3.53.5 1.91.9 1.51.5
비교예 4Comparative Example 4 15.415.4 16.416.4 1515 14.814.8 11.211.2 8.78.7 77 5.55.5 3.83.8 22 1.11.1
에칭 시간 (s)Etching time (s) 00 1010 3030 5050 100100 200200 300300 500500 10001000 20002000 30003000
실시예 1Example 1 1.81.8 33 4.54.5 5.45.4 5.95.9 4.84.8 3.93.9 2.22.2 1.11.1 0.90.9 0.80.8
실시예 2Example 2 1.71.7 2.92.9 4.94.9 5.15.1 66 4.54.5 3.83.8 2.12.1 1.21.2 11 11
실시예 3Example 3 1.61.6 2.62.6 4.54.5 5.15.1 6.16.1 4.64.6 3.93.9 22 11 0.70.7 0.70.7
실시예 4Example 4 1.91.9 2.72.7 4.14.1 5.25.2 6.26.2 4.74.7 3.43.4 2.42.4 1.21.2 0.80.8 0.80.8
실시예 5Example 5 1.71.7 2.82.8 4.24.2 5.35.3 5.85.8 4.74.7 44 1.91.9 1.11.1 0.90.9 0.90.9
실시예 6Example 6 22 2.82.8 4.24.2 5.55.5 5.95.9 4.84.8 3.73.7 22 0.90.9 0.70.7 0.80.8
실시예 7Example 7 1.81.8 2.72.7 4.54.5 5.45.4 5.55.5 4.94.9 3.83.8 2.12.1 1.11.1 0.90.9 0.60.6
실시예 8Example 8 1.61.6 33 4.54.5 5.35.3 5.95.9 4.54.5 3.53.5 2.22.2 1.31.3 11 0.70.7
실시예 9Example 9 1.71.7 3.13.1 4.24.2 5.35.3 5.95.9 4.84.8 3.83.8 2.12.1 11 1.11.1 0.90.9
실시예 10Example 10 22 3.13.1 4.44.4 5.15.1 66 4.94.9 3.93.9 22 1.21.2 0.90.9 0.80.8
실시예 11Example 11 1.91.9 3.33.3 4.54.5 5.15.1 6.16.1 4.94.9 44 2.12.1 0.90.9 1.11.1 0.70.7
비교예 1Comparative Example 1 00 0.10.1 0.10.1 0.30.3 0.30.3 0.30.3 0.40.4 0.80.8 0.90.9 0.90.9 0.60.6
비교예 2Comparative Example 2 00 0.10.1 0.20.2 0.30.3 0.20.2 0.40.4 0.50.5 0.70.7 0.80.8 0.60.6 0.50.5
비교예 3Comparative Example 3 0.10.1 0.10.1 0.20.2 0.20.2 0.30.3 0.50.5 0.40.4 0.70.7 0.70.7 0.80.8 1.01.0
비교예 4Comparative Example 4 0.10.1 0.20.2 0.10.1 0.20.2 0.30.3 0.30.3 0.40.4 0.70.7 0.70.7 0.80.8 1.01.0
도 1 내지 11의 SEM 이미지 및 상기 표 4, 5 및 도 30을 참조하면, 실시예 1 내지 11의 양극 활물질의 경우, 1차 입자의 표면, 1차 입자의 계면 및/또는 2차 입자의 표면에 Co 및/또는 B를 포함하는 코팅부가 형성된 것을 확인할 수 있다. 그리고, 상기 코팅부는 1차 입자의 표면, 1차 입자의 계면 및/또는 2차 입자의 표면의 일부에 형성된 아일랜드 형태와 1차 입자의 표면, 1차 입자의 계면 및/또는 2차 입자의 표면을 감싸며 형성된 코팅층 형태를 모두 갖는 것을 확인할 수 있다.Referring to the SEM images of FIGS. 1 to 11 and Tables 4, 5 and FIG. 30 above, in the case of the positive electrode active materials of Examples 1 to 11, it can be confirmed that a coating portion including Co and/or B is formed on the surface of the primary particle, the interface of the primary particle and/or the surface of the secondary particle. In addition, it can be confirmed that the coating portion has both an island shape formed on a portion of the surface of the primary particle, the interface of the primary particle and/or the surface of the secondary particle, and a coating layer shape formed to surround the surface of the primary particle, the interface of the primary particle and/or the surface of the secondary particle.
실험예 6: 체적 누적 분포 분석Experimental Example 6: Volume cumulative distribution analysis
실시예 1 내지 11 및 비교예 1 내지 5에서 제조된 양극 활물질에 대하여, 입도 분석기(PSD, Malvern社, martersizer 3500)를 이용하여, Dmin, D50 및 Dmax, 입경에 따른 체적 누적 분포에서의 최빈값(Mode), 체적 누적 분포에 따른 최빈값(Mode)에서 나타나는 피크의 y축 최상단의 피크점의 y값(PMODE), θL, 및 θR을 측정하고, θL- θR을 계산하여 표 6에 나타내었다.For the positive electrode active materials manufactured in Examples 1 to 11 and Comparative Examples 1 to 5, a particle size analyzer (PSD, Malvern, martersizer 3500) was used to measure D min , D 50 , and D max , the mode in the cumulative volume distribution according to particle size, the y-value of the peak point at the top of the y-axis of the peak appearing in the mode according to the cumulative volume distribution (P MODE ), θ L , and θ R , and θ L - θ R were calculated, and the results are shown in Table 6.
그리고, 하기 식 3으로부터 왜도값(S)을 계산하고, 체적 누적 분포에 따른 최빈값(Mode)에서 나타나는 피크의 y축 최상단의 피크점의 y값(PMODE)에 대한 왜도값(S)의 비율(S/PMODE)을 계산하여, 하기 표 6에 함께 나타내었다.And, the skewness value (S) is calculated from the following equation 3, and the ratio (S/P MODE) of the skewness value (S) to the y-value (P MODE ) of the peak point at the top of the y-axis of the peak appearing in the mode ( Mode ) according to the cumulative volume distribution is calculated, and these are shown together in Table 6 below.
[식 3][Formula 3]
Figure PCTKR2024005819-appb-img-000006
Figure PCTKR2024005819-appb-img-000006
또한, 실시예 1 내지 11 및 비교예 1 및 3의 양극 활물질을 레이저 회절 입도 분석기를 이용하여 측정한 체적 누적 분포를, x축을 x값이 좌에서 우로 증가하는 입자 직경에 대한 선형 스케일(linear scale)로 나타내고, y축을 y값이 하에서 상으로 증가하는 중량 분포를 나타낸 도수 분포 그래프를 도 31(실시예 1), 도 32(실시예 2), 도 33(실시예 3), 도 34(실시예 4), 도 35(실시예 5), 도 36(실시예 6), 도 37(실시예 7), 도 38(실시예 8), 도 39(실시예 9), 도 40(실시예 10), 도 41(실시예 11), 도 42(비교예 1) 및 도 43(비교예 3)에 각각 나타내었다.In addition, the volume cumulative distributions of the positive electrode active materials of Examples 1 to 11 and Comparative Examples 1 and 3, which were measured using a laser diffraction particle size analyzer, are shown in Figs. 31 (Example 1), 32 (Example 2), 33 (Example 3), 34 (Example 4), 35 (Example 5), 36 (Example 6), 37 (Example 7), 38 (Example 8), 39 (Example 9), 40 (Example 10), 41 (Example 11), 42 (Comparative Example 1), and 43 (Comparative Example 3), respectively, in which the x-axis represents a linear scale for particle diameter in which the x-value increases from left to right, and the y-axis represents a weight distribution in which the y-value increases from bottom to top.
그리고, 실시예 1 내지 11 및 비교예 1 및 3의 양극 활물질을 레이저 회절 입도 분석기를 이용하여 측정한 체적 누적 분포를, x축을 x값이 좌에서 우로 증가하는 입자 직경에 대한 로그 스케일(log scale)로 나타내고, y축을 y값이 하에서 상으로 증가하는 중량 분포를 나타낸 도수 분포 그래프를 도 44(실시예 1), 도 45(실시예 2), 도 46(실시예 3), 도 47(실시예 4), 도 48(실시예 5), 도 49(실시예 6), 도 50(실시예 7), 도 51(실시예 8), 도 52(실시예 9), 도 53(실시예 10), 도 54(실시예 11), 도 55(비교예 1) 및 도 56(비교예 3)에 각각 나타내었다.And, the volume cumulative distributions of the positive electrode active materials of Examples 1 to 11 and Comparative Examples 1 and 3, which were measured using a laser diffraction particle size analyzer, are plotted in a frequency distribution graph in which the x-axis represents a log scale for particle diameter in which the x-value increases from left to right, and the y-axis represents a weight distribution in which the y-value increases from bottom to top, respectively, in FIGS. 44 (Example 1), 45 (Example 2), 46 (Example 3), 47 (Example 4), 48 (Example 5), 49 (Example 6), 50 (Example 7), 51 (Example 8), 52 (Example 9), 53 (Example 10), 54 (Example 11), 55 (Comparative Example 1), and 56 (Comparative Example 3).
구분division Dmin (㎛)D min (㎛) D50 (㎛)D 50 (㎛) Dmax (㎛)D max (㎛) Mode (㎛)Mode (㎛) PMODE P MODE 왜도값 (S)Skewness value (S) S/PMODE S/P MODE θL θ L θR θ R θL/θR θ L/ θ R θL - θR θ L - θ R
실시예 1Example 1 2.522.52 11.4711.47 62.2362.23 12.0012.00 8.518.51 0.9260.926 0.1090.109 47.98047.980 33.16133.161 1.4471.447 14.81914.819
실시예 2Example 2 5.045.04 10.3210.32 37.0037.00 10.6010.60 13.7213.72 1.0371.037 0.0760.076 71.68471.684 63.08963.089 1.1361.136 8.5958.595
실시예 3Example 3 4.624.62 9.879.87 37.0037.00 9.929.92 12.9812.98 0.5870.587 0.0450.045 71.21571.215 62.58262.582 1.1381.138 8.6338.633
실시예 4Example 4 3.273.27 10.0610.06 52.3352.33 10.5010.50 12.7512.75 1.0071.007 0.0790.079 50.34550.345 42.75142.751 1.2351.235 7.5947.594
실시예 5Example 5 5.045.04 9.959.95 37.0037.00 10.3710.37 12.2512.25 0.7440.744 0.0610.061 72.13572.135 65.42165.421 1.1031.103 6.7146.714
실시예 6Example 6 5.505.50 10.6210.62 40.3540.35 10.6010.60 13.3213.32 1.0171.017 0.0760.076 72.84272.842 65.9565.95 1.1051.105 6.8926.892
실시예 7Example 7 5.045.04 10.2910.29 37.0037.00 10.0910.09 13.0613.06 0.7610.761 0.0580.058 72.75372.753 65.00565.005 1.1191.119 7.7487.748
실시예 8Example 8 8.488.48 14.0714.07 37.0037.00 14.2714.27 16.4216.42 0.6580.658 0.0400.040 71.52171.521 64.75764.757 1.1041.104 6.7646.764
실시예 9Example 9 8.488.48 14.1314.13 37.0037.00 14.2714.27 16.3116.31 0.8000.800 0.0490.049 70.69570.695 63.29563.295 1.1171.117 7.4007.400
실시예 10Example 10 8.488.48 14.2014.20 37.0037.00 14.2714.27 16.2816.28 0.7810.781 0.0480.048 70.53870.538 62.81262.812 1.1231.123 7.7267.726
실시예 11Example 11 8.488.48 14.2714.27 37.0037.00 14.2714.27 16.3016.30 0.7550.755 0.0460.046 70.77470.774 63.00463.004 1.1231.123 7.7707.770
비교예 1Comparative Example 1 6.546.54 9.859.85 26.1626.16 10.0910.09 16.916.9 0.5960.596 0.0350.035 75.64675.646 71.0271.02 1.0651.065 4.6264.626
비교예 2Comparative Example 2 7.137.13 11.8211.82 3737 1212 14.5214.52 0.4110.411 0.0280.028 78.62178.621 73.02673.026 1.0771.077 5.5955.595
비교예 3Comparative Example 3 5.045.04 9.959.95 3737 10.3710.37 18.0118.01 0.6530.653 0.0360.036 72.13572.135 70.86070.860 1.0181.018 1.2751.275
비교예 4Comparative Example 4 5.55.5 10.6210.62 40.3540.35 10.610.6 12.0112.01 1.8251.825 0.1520.152 72.84272.842 68.95268.952 1.0561.056 3.8903.890
비교예 5Comparative Example 5 2.002.00 4.304.30 18.0518.05 4.464.46 10.3610.36 0.3250.325 0.0310.031 53.21553.215 24.36024.360 2.1852.185 28.85528.855
표 6을 참조하면, 실시예 1 내지 11의 양극 활물질의 경우, 상기 D50이 7.0 ㎛ 이상, 20.0 ㎛ 이하인 것을 확인할 수 있다. 또한, (θL - θR) 값이 6 이상 20 이하인 것을 확인할 수 있다. 그리고, 레이저 회절 입도 분석기를 이용하여 측정한 체적 누적 분포를, x축을 x값이 좌에서 우로 증가하는 입자 직경에 대한 선형 스케일(linear scale)로 나타내고, y축을 y값이 하에서 상으로 증가하는 중량 분포를 나타낸 도수 분포 그래프에서, 양의 왜도를 나타내는 것을 확인할 수 있다.Referring to Table 6, it can be confirmed that for the positive electrode active materials of Examples 1 to 11, the D 50 is 7.0 ㎛ or more and 20.0 ㎛ or less. In addition, it can be confirmed that the (θ L - θ R ) value is 6 or more and 20 or less. In addition, it can be confirmed that the volume cumulative distribution measured using a laser diffraction particle size analyzer exhibits a positive skewness in a frequency distribution graph in which the x-axis represents a linear scale for particle diameter in which the x-value increases from left to right, and the y-axis represents a weight distribution in which the y-value increases from bottom to top.
실험예 7: 압연 밀도 측정Experimental Example 7: Rolling Density Measurement
자동 펠렛 프레스(Auto Pellet Press, Carver社, 3887.4)를 이용하여 13 mm의 지름을 가지는 원형의 펠렛 홀더에 대해 원기둥 형태의 몰드를 이용하여 두께에 대한 영점을 조절하였다. 이어서, 상기 원형의 펠렛 홀더에 실시예 1 내지 11 및 비교예 1 내지 5에서 제조된 양극 활물질을 각각 3 g씩 취하고, 9,000 kgf에 해당하는 힘이 될 때까지 힘을 가하여 형성된 펠렛의 두께를 측정하였다. 이어서, 하기 식 4로 펠렛 체적을 계산하고, 하기 식 2로 압연 밀도를 계산하여, 하기 표 7에 나타내었다.Using an automatic pellet press (Auto Pellet Press, Carver, 3887.4), a cylindrical mold was used to adjust the zero point for thickness for a circular pellet holder having a diameter of 13 mm. Then, 3 g each of the positive electrode active materials manufactured in Examples 1 to 11 and Comparative Examples 1 to 5 was placed in the circular pellet holder, and a force was applied until a force corresponding to 9,000 kgf was reached, and the thickness of the formed pellet was measured. Then, the pellet volume was calculated using the following Equation 4, and the rolling density was calculated using the following Equation 2, and the results are shown in Table 7 below.
[식 4][Formula 4]
펠렛 체적(cm3) = π(원형의 펠렛 홀더의 반지름)2 X 펠렛의 두께Pellet volume (cm 3 ) = π (radius of the circular pellet holder) 2 X thickness of the pellet
[식 2][Formula 2]
압연 밀도(g/cm3) = 양극 활물질 무게(g) / 펠렛 체적(cm3)Rolling density (g/cm 3 ) = Positive active material weight (g) / Pellet volume (cm 3 )
구분division 압연 밀도(g/cm3)Rolling density (g/cm 3 )
실시예 1Example 1 3.673.67
실시예 2Example 2 3.683.68
실시예 3Example 3 3.673.67
실시예 4Example 4 3.693.69
실시예 5Example 5 3.683.68
실시예 6Example 6 3.663.66
실시예 7Example 7 3.693.69
실시예 8Example 8 3.753.75
실시예 9Example 9 3.763.76
실시예 10Example 10 3.743.74
실시예 11Example 11 3.763.76
비교예 1Comparative Example 1 3.273.27
비교예 2Comparative Example 2 3.303.30
비교예 3Comparative Example 3 3.493.49
비교예 4Comparative Example 4 3.463.46
비교예 5Comparative Example 5 3.503.50
표 7을 참조하면, 실시예 1 내지 11의 양극 활물질의 경우, 압연 밀도가 3.60 g/cm3 이상인 것을 확인할 수 있다. 구체적으로, 압연 밀도가 3.66 g/cm3 이상인 것을 확인할 수 있다.Referring to Table 7, it can be confirmed that the rolling density of the positive electrode active materials of Examples 1 to 11 is 3.60 g/cm 3 or higher. Specifically, it can be confirmed that the rolling density is 3.66 g/cm 3 or higher.
실험예 8: BET 비표면적 측정Experimental Example 8: BET Surface Area Measurement
질소 기체 흡착 및 탈착 방법을 통해 비표면적을 측정하였다. 구체적으로, 빈 셀(cell)의 무게를 측정한 후, 상기 실시예 1 내지 11 및 비교예 1 내지 5에서 제조된 양극 활물질을 각각 3 g씩 취하고, 130 ℃에서 3 시간 동안 전처리 하였다. 전처리 과정 후의 셀(cell)의 무게를 측정한 후, 액체 질소가 담긴 듀어통을 준비한 후, 셀(cell)을 체결하였다. 질소 분위기 하에서 기체흡착 분석기(Micromeritics TriStarr II)를 사용하여 질소 기체 흡착량으로부터 BET 비표면적을 측정하여, 하기 표 8에 나타내었다.The specific surface area was measured by the nitrogen gas adsorption and desorption method. Specifically, after measuring the weight of an empty cell, 3 g each of the positive electrode active materials manufactured in Examples 1 to 11 and Comparative Examples 1 to 5 were taken and pretreated at 130° C. for 3 hours. After measuring the weight of the cell after the pretreatment process, a dewar containing liquid nitrogen was prepared and the cell was fastened. The BET specific surface area was measured from the nitrogen gas adsorption amount using a gas adsorption analyzer (Micromeritics TriStarr II) under a nitrogen atmosphere, and the results are shown in Table 8 below.
구분division 비표면적(m2/g)Specific surface area (m 2 /g)
실시예 1Example 1 0.3050.305
실시예 2Example 2 0.2940.294
실시예 3Example 3 0.2400.240
실시예 4Example 4 0.3050.305
실시예 5Example 5 0.3120.312
실시예 6Example 6 0.3220.322
실시예 7Example 7 0.3070.307
실시예 8Example 8 0.3320.332
실시예 9Example 9 0.3280.328
실시예 10Example 10 0.2700.270
실시예 11Example 11 0.3380.338
비교예 1Comparative Example 1 0.5040.504
비교예 2Comparative Example 2 0.5920.592
비교예 3Comparative Example 3 0.6310.631
비교예 4Comparative Example 4 0.7290.729
비교예 5Comparative Example 5 0.7480.748
표 8을 참조하면, 실시예 1 내지 11의 양극 활물질의 경우, BET 비표면적이 0.20 m2/g 이상, 0.35 m2/g 이하인 것을 확인할 수 있다. 구체적으로, BET 비표면적이 0.240 m2/g 이상, 0.338 m2/g 이하인 것을 확인할 수 있다.Referring to Table 8, it can be confirmed that the positive electrode active materials of Examples 1 to 11 have a BET specific surface area of 0.20 m 2 /g or more and 0.35 m 2 /g or less. Specifically, it can be confirmed that the BET specific surface area is 0.240 m 2 /g or more and 0.338 m 2 /g or less.
실험예 9: 코인형 반쪽전지 제조 및 충방전 평가Experimental Example 9: Manufacturing of Coin-Type Half-cell and Charge-Discharge Evaluation
상기 실시예 1 내지 11 및 비교예 1 내지 5에서 제조된 각각의 양극 활물질 95 중량부, 도전재(Denka社, FX35) 2 중량부, 바인더(KUREHA社, KF9709) 3 중량부를 N-메틸피롤리돈(NMP) 용매 중에서 혼합하여 양극 슬러리를 제조하였다. 상기 제조된 양극 슬러리를 20 ㎛ 두께의 알루미늄 집전체의 일면에 도포하고, 양극 활물질층의 기공률이 24 부피%가 되도록 압연하여 양극을 제조하였다.A positive electrode slurry was prepared by mixing 95 parts by weight of each of the positive electrode active materials manufactured in Examples 1 to 11 and Comparative Examples 1 to 5, 2 parts by weight of a conductive agent (Denka, FX35), and 3 parts by weight of a binder (KUREHA, KF9709) in an N-methylpyrrolidone (NMP) solvent. The prepared positive electrode slurry was applied to one surface of a 20 ㎛ thick aluminum current collector, and rolled so that the porosity of the positive electrode active material layer became 24% by volume, thereby preparing a positive electrode.
음극으로 리튬 금속 전극을 사용하고, 양극과 음극 사이에 다공성 폴리에틸렌 분리막을 개재하여 전극 조립체를 제조하였다. 이를 전지 케이스 내부에 위치시키고 전해액을 주입하여 리튬이차전지를 제조하였다. 이 때, 상기 전해액은 에틸렌카보네이트(EC):에틸메틸카보네이트(EMC):디메틸카보네이트(DMC)를 3:3:4의 부피비로 혼합한 유기 용매에 1M의 LiPF6를 용해시켜 제조하였다.An electrode assembly was manufactured using a lithium metal electrode as the negative electrode and a porous polyethylene separator interposed between the positive and negative electrodes. This was placed inside a battery case and an electrolyte was injected to manufacture a lithium secondary battery. At this time, the electrolyte was manufactured by dissolving 1 M LiPF 6 in an organic solvent mixed with ethylene carbonate (EC): ethyl methyl carbonate (EMC): dimethyl carbonate (DMC) in a volume ratio of 3:3:4.
상기 제조된 실시예 1 내지 11 및 비교예 1 내지 5의 양극 활물질을 포함하는 리튬이차전지를 이용하여 25 ℃에서 0.1 C 정전류로 4.25 V까지 CC/CV 모드로 충전을 실시(종료 전류 0.05 C)한 후, 2.5 V가 될 때까지 CC 모드로 방전을 실시하면서 충전 용량 및 방전 용량을 측정하여, 하기 표 9에 나타내었다. 이 때, 1 C = 200 mA/g으로 설정하였다.Using lithium secondary batteries including the positive electrode active materials of Examples 1 to 11 and Comparative Examples 1 to 5, which were manufactured above, charging was performed in CC/CV mode at a constant current of 0.1 C at 25°C up to 4.25 V (end current 0.05 C), and then discharging in CC mode until 2.5 V was reached, and the charge capacity and discharge capacity were measured, which are shown in Table 9 below. At this time, 1 C = 200 mA/g was set.
또한, 상기 제조된 리튬이차전지를 45 ℃에서 0.5 C 정전류로 4.25 V까지 CC/CV 모드로 충전을 실시(종료 전류 0.05 C)한 후, 2.5 V가 될 때까지 1.0 C 정전류로 CC 모드로 방전을 실시하는 것을 한 싸이클로하여, 50 싸이클을 반복하고, 첫 번째 싸이클의 방전 용량 대비 50 번째 싸이클의 방전 용량 백분율을 용량 유지율로 하여, 하기 표 9에 함께 나타내었다.In addition, the manufactured lithium secondary battery was charged in CC/CV mode at 45°C with a constant current of 0.5 C to 4.25 V (end current of 0.05 C), and then discharged in CC mode at a constant current of 1.0 C until 2.5 V, which was considered one cycle, and 50 cycles were repeated. The percentage of the discharge capacity of the 50th cycle to the discharge capacity of the first cycle was defined as the capacity retention rate, which is also shown in Table 9 below.
구분division 충전 용량Charging capacity 방전 용량Discharge capacity 효율Efficiency 직류저항DC resistance 고온(45 ℃) 용량 유지율High temperature (45 ℃) capacity retention rate
(mAh/g)(mAh/g) (mAh/g)(mAh/g) (%)(%) (Ω)(Ω) (%)(%)
실시예 1Example 1 233.6233.6 209.0209.0 89.589.5 18.518.5 96.1796.17
실시예 2Example 2 233.4233.4 208.4208.4 89.389.3 20.220.2 96.3096.30
실시예 3Example 3 233.6233.6 207.1207.1 88.788.7 20.420.4 96.9396.93
실시예 4Example 4 231.1231.1 205.8205.8 89.189.1 19.419.4 96.5796.57
실시예 5Example 5 232.6232.6 207.7207.7 89.389.3 18.418.4 95.8095.80
실시예 6Example 6 231.7231.7 208.7208.7 90.190.1 18.218.2 96.2096.20
실시예 7Example 7 232.0232.0 207.9207.9 89.689.6 13.213.2 96.5096.50
실시예 8Example 8 247.9247.9 216.5216.5 87.387.3 29.229.2 93.6793.67
실시예 9Example 9 247.6247.6 216.3216.3 87.387.3 30.230.2 94.0094.00
실시예 10Example 10 247.4247.4 215.1215.1 86.986.9 30.230.2 95.4595.45
실시예 11Example 11 245.9245.9 212.4212.4 86.486.4 30.530.5 94.9294.92
비교예 1Comparative Example 1 232.4232.4 212.1212.1 91.391.3 19.619.6 94.9094.90
비교예 2Comparative Example 2 231.1231.1 211.7211.7 91.691.6 20.420.4 94.5094.50
비교예 3Comparative Example 3 242.6242.6 222.8222.8 91.891.8 24.524.5 95.2095.20
비교예 4Comparative Example 4 242.9242.9 223.4223.4 92.092.0 23.123.1 95.3095.30
비교예 5Comparative Example 5 232.3232.3 198.6198.6 85.585.5 26.026.0 95.0095.00
실험예 10: 고율 방전 용량 평가Experimental Example 10: Evaluation of High-Rate Discharge Capacity
상기 실험예 9에서 제조된 리튬이차전지를 이용하여, 25 ℃에서 0.5 C 정전류로 4.25 V까지 CC/CV 모드로 충전을 실시(종료 전류 0.05 C)한 후, 0.1 C 정전류로 2.5 V가 될 때까지 CC 모드로 방전을 실시하면서 방전 용량을 측정하였다. 또한, 25 ℃에서 0.5 C 정전류로 4.25 V까지 CC/CV 모드로 충전을 실시(종료 전류 0.05 C)한 후, 1.0 C 정전류로 2.5 V가 될 때까지 CC 모드로 방전을 실시하면서 방전 용량을 측정하고, 25 ℃에서 0.5 C 정전류로 4.25 V까지 CC/CV 모드로 충전을 실시(종료 전류 0.05 C)한 후, 2.0 C 정전류로 2.5 V가 될 때까지 CC 모드로 방전을 실시하면서 방전 용량을 측정하여, 0.5 C 충전 이후 0.1 C의 방전 시의 방전 용량에 대한 백분율을 하기 표 10에 나타내었다.Using the lithium secondary battery manufactured in the above Experimental Example 9, the battery was charged in CC/CV mode at 25°C with a constant current of 0.5 C up to 4.25 V (end current of 0.05 C), and then discharged in CC mode at a constant current of 0.1 C until 2.5 V, and the discharge capacity was measured. In addition, the discharge capacity was measured while charging in CC/CV mode at 0.5 C constant current at 25 ℃ to 4.25 V (end current 0.05 C) and then discharging in CC mode at 1.0 C constant current to 2.5 V, and the discharge capacity was measured while charging in CC/CV mode at 0.5 C constant current at 25 ℃ to 4.25 V (end current 0.05 C) and then discharging in CC mode at 2.0 C constant current to 2.5 V, and the percentage of the discharge capacity at 0.1 C discharge after 0.5 C charge is shown in Table 10 below.
구분division (1.0 C 방전 용량) / (0.1 C 방전 용량) Х 100 (%)(1.0 C discharge capacity) / (0.1 C discharge capacity) Х 100 (%) (2.0 C 방전 용량) / (0.1 C 방전 용량) Х 100 (%)(2.0 C discharge capacity) / (0.1 C discharge capacity) Х 100 (%)
실시예 1Example 1 92.7792.77 90.6490.64
실시예 2Example 2 92.7292.72 90.6490.64
실시예 3Example 3 92.7092.70 90.4890.48
실시예 4Example 4 92.6692.66 90.4490.44
실시예 5Example 5 92.8292.82 90.4390.43
실시예 6Example 6 92.8592.85 90.5890.58
실시예 7Example 7 92.8392.83 90.6490.64
실시예 8Example 8 93.4393.43 91.0291.02
실시예 9Example 9 93.3893.38 90.9590.95
실시예 10Example 10 93.3593.35 90.8790.87
실시예 11Example 11 93.0493.04 89.7889.78
비교예 1Comparative Example 1 87.4787.47 86.1886.18
비교예 2Comparative Example 2 87.6087.60 86.2886.28
비교예 3Comparative Example 3 90.4490.44 87.6387.63
비교예 4Comparative Example 4 90.8490.84 88.7488.74
비교예 5Comparative Example 5 91.5491.54 89.5789.57
상기 표 9 및 10을 참조하면, 실시예 1 내지 11의 양극 활물질을 포함하는 전지의 경우, 방전 용량이 크고, 효율 및 고온 용량 유지율이 높으며, 직류 저항이 낮고, 율 특성이 우수한 것을 확인할 수 있다. 이에 비해, 비교예 1 내지 4의 양극 활물질을 포함하는 전지의 경우, 율 특성이 좋지 않은 문제가 있으며, 비교예 5의 양극 활물질을 포함하는 전지의 경우, 방전 용량이 작고, 효율이 낮은 것을 확인할 수 있다.Referring to Tables 9 and 10 above, it can be confirmed that the batteries including the positive electrode active materials of Examples 1 to 11 have a large discharge capacity, high efficiency and high temperature capacity retention, low DC resistance, and excellent rate characteristics. In contrast, the batteries including the positive electrode active materials of Comparative Examples 1 to 4 have a problem of poor rate characteristics, and the batteries including the positive electrode active material of Comparative Example 5 have a small discharge capacity and low efficiency.
이와 같은 결과로부터, 본 발명의 양극 활물질은 하이 니켈(High Ni) 양극 활물질에 있어서, 종래의 2차 입자의 문제점과, 단입자의 문제점을 동시에 해결할 수 있는 양극 활물질로, 1차 입자의 크기가 미크론 수준인 2차 입자 형태의 양극 활물질을 구현함으로써, 리튬이차전지의 수명 향상 및 가스 발생량 저감 등의 셀 특성은 물론, 밀도 특성이 우수하여 에너지 밀도를 향상시킬 수 있음을 확인할 수 있었다.From these results, it was confirmed that the cathode active material of the present invention can simultaneously solve the problems of conventional secondary particles and single particles in high nickel (High Ni) cathode active materials, and by implementing the cathode active material in the form of secondary particles whose primary particles are on the micron level in size, it can not only improve cell characteristics such as improved lifespan and reduced gas generation of lithium secondary batteries, but also improve energy density due to excellent density characteristics.

Claims (10)

  1. 복수 개의 1차 입자가 응집된 2차 입자를 포함하고,Contains secondary particles formed by agglomeration of multiple primary particles,
    상기 복수 개의 1차 입자는 SEM 이미지로부터 측정한 평균 입자 크기가 1.5 ㎛ 이상, 5.0 ㎛ 이하이며, 상기 1차 입자의 입자 크기는 1차 입자의 장경을 기준으로 한 입자 크기이고,The above plurality of primary particles have an average particle size of 1.5 ㎛ or more and 5.0 ㎛ or less as measured from a SEM image, and the particle size of the above primary particles is a particle size based on the major diameter of the primary particles.
    상기 복수 개의 1차 입자는 디스크 형태(disk type)의 1차 입자를 포함하고,The above plurality of primary particles include disk type primary particles,
    상기 디스크 형태의 1차 입자는,The above disk-shaped primary particles are,
    2차 입자의 표면 또는 단면에 대한 SEM 이미지로부터 관찰되는 1차 입자에 있어서, 장경 방향을 기준으로 45 ° 이하의 각도 내에서 존재하는 1차 입자의 2개의 경계선에 대하여, 각각 가장 많은 접점이 존재하는 가상의 접선을 긋고, 2개의 접선을 가로지르는 1개의 가상의 선을 그었을 때, 동측내각이 150 ° 이상, 210 ° 이하이고,In the primary particle observed from the SEM image of the surface or cross-section of the secondary particle, when two virtual tangent lines with the largest number of contact points are drawn for each of the two boundaries of the primary particle existing within an angle of 45° or less with respect to the major axis direction, and one virtual line is drawn crossing the two tangent lines, the coplanar internal angle is 150° or more and 210° or less,
    단경이 0.3 ㎛ 이상이며, 종횡비(장경/단경)가 1.5 이상인 것인 양극 활물질.A cathode active material having a minor diameter of 0.3 ㎛ or more and an aspect ratio (major diameter/minor diameter) of 1.5 or more.
  2. 제1항에 있어서,In the first paragraph,
    상기 복수 개의 1차 입자는 디스크 형태(disk type)의 1차 입자를 3개 이상 포함하는 것인 양극 활물질.A cathode active material wherein the plurality of primary particles include three or more disk-type primary particles.
  3. 제1항에 있어서,In the first paragraph,
    상기 디스크 형태의 1차 입자는 단경은 0.8 ㎛ 이상인 것인 양극 활물질.A positive electrode active material in which the above disk-shaped primary particles have a diameter of 0.8 ㎛ or more.
  4. 제1항에 있어서,In the first paragraph,
    니켈, 코발트 및 망간을 포함하는 리튬 전이금속 복합 산화물을 포함하는 것인 양극 활물질.A cathode active material comprising a lithium transition metal composite oxide containing nickel, cobalt and manganese.
  5. 제1항에 있어서,In the first paragraph,
    전체 전이금속 중 니켈을 60 몰% 이상으로 포함하는 리튬 전이금속 복합 산화물을 포함하는 것인 양극 활물질.A cathode active material comprising a lithium transition metal composite oxide containing nickel in an amount of 60 mol% or more among the total transition metals.
  6. 제1항에 있어서,In the first paragraph,
    하기 화학식 1로 표시되는 평균 조성을 갖는 리튬 전이금속 복합 산화물을 포함하는 것인 양극 활물질:A cathode active material comprising a lithium transition metal composite oxide having an average composition represented by the following chemical formula 1:
    [화학식 1][Chemical Formula 1]
    LixNiaCobMncM1 dO2 Li x Ni a Co b Mn c M 1 d O 2
    상기 화학식 1에서,In the above chemical formula 1,
    M1은 Al, Zr, B, W, Mo, Cr, Nb, Mg, Hf, Ta, La, Ti, Sr, Ba, Ce, V, F, P, S 및 Y로 이루어진 군으로부터 선택되는 1종 이상이며,M 1 is at least one selected from the group consisting of Al, Zr, B, W, Mo, Cr, Nb, Mg, Hf, Ta, La, Ti, Sr, Ba, Ce, V, F, P, S, and Y,
    0.9≤x≤1.3, 0.6≤a<1.0, 0<b<0.4, 0<c<0.4, 0≤d≤0.2, a+b+c+d=1이다.0.9≤x≤1.3, 0.6≤a<1.0, 0<b<0.4, 0<c<0.4, 0≤d≤0.2, a+b+c+d=1.
  7. 제1항에 있어서,In the first paragraph,
    상기 복수 개의 1차 입자는 단결정 1차 입자를 포함하는 것인 양극 활물질.A cathode active material wherein the plurality of primary particles include single crystal primary particles.
  8. 제1항에 있어서,In the first paragraph,
    상기 2차 입자는 레이저 회절 입도 분석기를 이용하여 측정한 체적 누적 분포에 따른 평균 입경(D50)이 7.0 ㎛ 이상, 20.0 ㎛ 이하인 것인 양극 활물질.The above secondary particles are a cathode active material having an average particle diameter ( D50 ) of 7.0 ㎛ or more and 20.0 ㎛ or less based on a volume cumulative distribution measured using a laser diffraction particle size analyzer.
  9. 제1항 내지 제8항 중 어느 한 항에 따른 양극 활물질을 포함하는 양극.A positive electrode comprising a positive electrode active material according to any one of claims 1 to 8.
  10. 제9항에 따른 양극; 음극; 양극과 음극 사이에 개재된 분리막 및 전해질을 포함하는 리튬이차전지.A lithium secondary battery comprising a cathode according to Article 9; a separator interposed between the cathode and the anode; and an electrolyte.
PCT/KR2024/005819 2023-04-28 2024-04-29 Cathode active material, cathode, and lithium secondary battery WO2024225855A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2023-0056231 2023-04-28
KR20230056231 2023-04-28
KR10-2024-0057122 2024-04-29
KR1020240057122A KR20240159537A (en) 2023-04-28 2024-04-29 Positive electrode active material, positive electrode and lithium secondary battery

Publications (1)

Publication Number Publication Date
WO2024225855A1 true WO2024225855A1 (en) 2024-10-31

Family

ID=93257065

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2024/005819 WO2024225855A1 (en) 2023-04-28 2024-04-29 Cathode active material, cathode, and lithium secondary battery

Country Status (1)

Country Link
WO (1) WO2024225855A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018538663A (en) * 2015-11-30 2018-12-27 エルジー・ケム・リミテッド Positive electrode active material for secondary battery and secondary battery including the same
KR20190065963A (en) * 2017-12-04 2019-06-12 삼성에스디아이 주식회사 Positive active material for lithium secondary battery, preparing method thereof, and lithium secondary battery comprising positive electrode including positive active material
KR20220057480A (en) * 2020-10-29 2022-05-09 주식회사 엘지에너지솔루션 Positive electrode material for lithium secondary battery, method for preparing same and lithium secondary battery comprising same
KR20220106897A (en) * 2021-01-22 2022-08-01 삼성에스디아이 주식회사 Nickel-based lithium metal oxide for lithium secondary battery, nickel-based active material formed from the same, preparing method thereof, and lithium secondary battery comprising positive electrode including the nickel-based active material
KR20220122576A (en) * 2020-03-27 2022-09-02 주식회사 에코프로비엠 Positive electrode active material and lithium secondary battery comprising the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018538663A (en) * 2015-11-30 2018-12-27 エルジー・ケム・リミテッド Positive electrode active material for secondary battery and secondary battery including the same
KR20190065963A (en) * 2017-12-04 2019-06-12 삼성에스디아이 주식회사 Positive active material for lithium secondary battery, preparing method thereof, and lithium secondary battery comprising positive electrode including positive active material
KR20220122576A (en) * 2020-03-27 2022-09-02 주식회사 에코프로비엠 Positive electrode active material and lithium secondary battery comprising the same
KR20220057480A (en) * 2020-10-29 2022-05-09 주식회사 엘지에너지솔루션 Positive electrode material for lithium secondary battery, method for preparing same and lithium secondary battery comprising same
KR20220106897A (en) * 2021-01-22 2022-08-01 삼성에스디아이 주식회사 Nickel-based lithium metal oxide for lithium secondary battery, nickel-based active material formed from the same, preparing method thereof, and lithium secondary battery comprising positive electrode including the nickel-based active material

Similar Documents

Publication Publication Date Title
WO2017111542A1 (en) Anode active material for lithium secondary battery and anode for lithium secondary battery including same
WO2021066458A1 (en) Composite anode active material, preparation method therefor, and anode comprising same
WO2021006520A1 (en) Cathode active material for lithium secondary battery, method for manufacturing same, and lithium secondary battery comprising same
WO2023121247A1 (en) Negative electrode and secondary battery comprising same
WO2017095133A1 (en) Cathode active material for secondary battery, and secondary battery comprising same
WO2023090847A1 (en) Anode and secondary battery comprising same
WO2021118144A1 (en) Anode active material, preparation method therefor, and anode and secondary battery each comprising same
WO2022031116A1 (en) Positive electrode active material precursor and method for preparing same
WO2022119158A1 (en) Cathode active material and lithium secondary battery comprising same
WO2017095152A1 (en) Cathode active material for secondary battery, and secondary battery comprising same
WO2023048550A1 (en) Cathode additive for lithium secondary battery, method for preparing same, cathode comprising same, and lithium secondary battery
WO2022139116A1 (en) Method for manufacturing positive electrode active material for lithium secondary battery using waste-positive electrode active material
WO2024225855A1 (en) Cathode active material, cathode, and lithium secondary battery
WO2024225852A1 (en) Cathode active material, cathode and lithium secondary battery
WO2024225849A1 (en) Cathode active material, cathode, and lithium secondary battery
WO2024225850A1 (en) Positive electrode active material, positive electrode, and lithium secondary battery
WO2024225851A1 (en) Cathode active material, cathode, and lithium secondary battery
WO2024225858A1 (en) Cathode active material, cathode, and lithium secondary battery
WO2024225862A1 (en) Positive electrode active material, positive electrode, and lithium secondary battery
WO2024225856A1 (en) Cathode active material, cathode, and lithium secondary battery
WO2024225857A1 (en) Cathode active material, cathode, and lithium secondary battery
WO2024225859A1 (en) Positive electrode active material, positive electrode, and lithium secondary battery
WO2024225853A1 (en) Cathode active material, cathode and lithium secondary battery
WO2024225860A1 (en) Cathode active material, cathode, and lithium secondary battery
WO2024225861A1 (en) Positive electrode active material, positive electrode, and lithium secondary battery