WO2024225690A1 - Dielectric composition with high-temperature stability - Google Patents
Dielectric composition with high-temperature stability Download PDFInfo
- Publication number
- WO2024225690A1 WO2024225690A1 PCT/KR2024/005201 KR2024005201W WO2024225690A1 WO 2024225690 A1 WO2024225690 A1 WO 2024225690A1 KR 2024005201 W KR2024005201 W KR 2024005201W WO 2024225690 A1 WO2024225690 A1 WO 2024225690A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- subcomponent
- component
- mol parts
- content
- auxiliary component
- Prior art date
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 68
- 239000000463 material Substances 0.000 claims abstract description 43
- 150000004649 carbonic acid derivatives Chemical class 0.000 claims abstract description 24
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 9
- 229910052720 vanadium Inorganic materials 0.000 claims abstract description 9
- 229910052788 barium Inorganic materials 0.000 claims abstract description 8
- 229910052726 zirconium Inorganic materials 0.000 claims abstract description 6
- 229910002113 barium titanate Inorganic materials 0.000 claims abstract description 5
- JRPBQTZRNDNNOP-UHFFFAOYSA-N barium titanate Chemical compound [Ba+2].[Ba+2].[O-][Ti]([O-])([O-])[O-] JRPBQTZRNDNNOP-UHFFFAOYSA-N 0.000 claims abstract description 4
- 239000004615 ingredient Substances 0.000 claims description 22
- 238000005245 sintering Methods 0.000 claims description 22
- 230000002068 genetic effect Effects 0.000 claims description 11
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 claims description 7
- 238000004519 manufacturing process Methods 0.000 claims description 6
- 229910052802 copper Inorganic materials 0.000 claims description 5
- 239000011159 matrix material Substances 0.000 claims description 5
- 229910052804 chromium Inorganic materials 0.000 claims description 4
- 239000011521 glass Substances 0.000 claims description 4
- 229910052742 iron Inorganic materials 0.000 claims description 4
- 229910052759 nickel Inorganic materials 0.000 claims description 4
- 229910052725 zinc Inorganic materials 0.000 claims description 4
- 238000001354 calcination Methods 0.000 claims 1
- 239000003985 ceramic capacitor Substances 0.000 description 19
- 230000000052 comparative effect Effects 0.000 description 19
- 230000008859 change Effects 0.000 description 18
- 239000000843 powder Substances 0.000 description 11
- 230000000694 effects Effects 0.000 description 6
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical compound OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 229910052761 rare earth metal Inorganic materials 0.000 description 5
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 239000007858 starting material Substances 0.000 description 3
- 238000006467 substitution reaction Methods 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- -1 barium titanate compound Chemical class 0.000 description 2
- 239000003990 capacitor Substances 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 150000002910 rare earth metals Chemical class 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- OHVLMTFVQDZYHP-UHFFFAOYSA-N 1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)-2-[4-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidin-5-yl]piperazin-1-yl]ethanone Chemical compound N1N=NC=2CN(CCC=21)C(CN1CCN(CC1)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)=O OHVLMTFVQDZYHP-UHFFFAOYSA-N 0.000 description 1
- KZEVSDGEBAJOTK-UHFFFAOYSA-N 1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)-2-[5-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidin-5-yl]-1,3,4-oxadiazol-2-yl]ethanone Chemical compound N1N=NC=2CN(CCC=21)C(CC=1OC(=NN=1)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)=O KZEVSDGEBAJOTK-UHFFFAOYSA-N 0.000 description 1
- LDXJRKWFNNFDSA-UHFFFAOYSA-N 2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)-1-[4-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidin-5-yl]piperazin-1-yl]ethanone Chemical compound C1CN(CC2=NNN=C21)CC(=O)N3CCN(CC3)C4=CN=C(N=C4)NCC5=CC(=CC=C5)OC(F)(F)F LDXJRKWFNNFDSA-UHFFFAOYSA-N 0.000 description 1
- JQMFQLVAJGZSQS-UHFFFAOYSA-N 2-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperazin-1-yl]-N-(2-oxo-3H-1,3-benzoxazol-6-yl)acetamide Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)N1CCN(CC1)CC(=O)NC1=CC2=C(NC(O2)=O)C=C1 JQMFQLVAJGZSQS-UHFFFAOYSA-N 0.000 description 1
- YLZOPXRUQYQQID-UHFFFAOYSA-N 3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)-1-[4-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidin-5-yl]piperazin-1-yl]propan-1-one Chemical compound N1N=NC=2CN(CCC=21)CCC(=O)N1CCN(CC1)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F YLZOPXRUQYQQID-UHFFFAOYSA-N 0.000 description 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910052692 Dysprosium Inorganic materials 0.000 description 1
- 229910052691 Erbium Inorganic materials 0.000 description 1
- 229910052693 Europium Inorganic materials 0.000 description 1
- 229910052688 Gadolinium Inorganic materials 0.000 description 1
- 229910052689 Holmium Inorganic materials 0.000 description 1
- 229910052765 Lutetium Inorganic materials 0.000 description 1
- AFCARXCZXQIEQB-UHFFFAOYSA-N N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CCNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 AFCARXCZXQIEQB-UHFFFAOYSA-N 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 229910052771 Terbium Inorganic materials 0.000 description 1
- 229910052775 Thulium Inorganic materials 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 239000002075 main ingredient Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000010405 reoxidation reaction Methods 0.000 description 1
- 229910052706 scandium Inorganic materials 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 238000003836 solid-state method Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G4/00—Fixed capacitors; Processes of their manufacture
- H01G4/002—Details
- H01G4/018—Dielectrics
- H01G4/06—Solid dielectrics
- H01G4/08—Inorganic dielectrics
- H01G4/12—Ceramic dielectrics
- H01G4/1209—Ceramic dielectrics characterised by the ceramic dielectric material
- H01G4/1218—Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates
- H01G4/1227—Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates based on alkaline earth titanates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/46—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
- C04B35/462—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
- C04B35/465—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
- C04B35/468—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3205—Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
- C04B2235/3206—Magnesium oxides or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3224—Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
- C04B2235/3225—Yttrium oxide or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3231—Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3239—Vanadium oxides, vanadates or oxide forming salts thereof, e.g. magnesium vanadate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3231—Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3244—Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/34—Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3427—Silicates other than clay, e.g. water glass
- C04B2235/3436—Alkaline earth metal silicates, e.g. barium silicate
Definitions
- the present invention relates to a dielectric composition having high temperature stability, and more particularly, to a dielectric composition satisfying X8R characteristics.
- Multilayer ceramic chip capacitors have high capacity and high reliability, but are relatively small in size, so they are widely used in fields such as automobiles and motors that require precision and stability.
- multilayer ceramic capacitors for electrical fields used in automobiles must not change their capacity (capacitance) even at high temperatures because they operate at high temperatures.
- EIA Electronic Industries Association
- a multilayer ceramic capacitor satisfies the X8R characteristic when the change in capacitance at a temperature of -55 degrees Celsius to 150 degrees Celsius is within ⁇ 15% of the reference capacitance at 25 degrees Celsius.
- the present invention provides a dielectric composition satisfying the X8R standard.
- a dielectric composition includes a barium titanate-based matrix main component and a subcomponent, wherein the subcomponents include a first subcomponent including at least one selected from the group consisting of oxides and carbonates of Yb element, a second subcomponent including at least one selected from the group consisting of oxides including Ba and Zr, a third subcomponent including at least one selected from the group consisting of oxides and carbonates of Y element, a fourth subcomponent including at least one selected from oxides and carbonates of a valence-fixed acceptor element including Mg, a fifth subcomponent including at least one selected from the group consisting of oxides and carbonates of a valence-variable acceptor element including at least one selected from the group consisting of V, Mn, Cr, Fe, Ni, Co, Cu, and Zn, and a sixth subcomponent including at least one selected from the group consisting of oxides, carbonates, and glasses of Si element.
- the subcomponents include a first subcomponent including at
- It contains at least one subcomponent, and at least one subcomponent contains a first subcomponent, and the content of Yb element contained in the first subcomponent is 0.2 to 6 molar parts with respect to 100 molar parts of the main component of the parent material.
- the dielectric composition of the present invention satisfies the X8R characteristics of the EIA standard.
- FIG. 1 is a perspective view showing a multilayer ceramic capacitor according to an embodiment of the present invention.
- FIG. 2 is a perspective view showing a plurality of electrode units of a laminated ceramic capacitor according to an embodiment of the present invention.
- the present invention relates to a dielectric composition, and electronic components including the dielectric composition include capacitors, inductors, piezoelectric elements, varistors, thermistors, and the like.
- a multilayer ceramic capacitor MLCC
- FIG. 1 is a perspective view showing a multilayer ceramic capacitor according to an embodiment of the present invention
- FIG. 2 is a transparent perspective view showing a plurality of electrode units of the multilayer ceramic capacitor according to an embodiment of the present invention.
- a multilayer ceramic capacitor according to an embodiment of the present invention is configured to include a dielectric (100), a first external electrode (220), and a second external electrode (240).
- the dielectric (100) is configured as a rectangular solid having a top surface, a bottom surface, a first side surface, a second side surface opposite the first side surface, a third side surface, and a fourth side surface opposite the third side surface.
- the first side surface is the left side in the drawing
- the second side surface is the right side in the drawing
- the third side surface is the front side in the drawing
- the fourth side surface is the back side in the drawing.
- the dielectric (100) may include a plurality of dielectric sheets.
- the plurality of dielectric sheets may be laminated.
- Each dielectric sheet may include a dielectric composition and may be formed by sintering the dielectric composition.
- the first external electrode (220) is an electrode disposed on the first side of the dielectric (100).
- the first external electrode (220) may be formed to extend from the first side of the dielectric (100) to the upper surface, lower surface, third surface, and fourth surface of the dielectric (100).
- the second external electrode (240) is an electrode disposed on the second side of the dielectric (100).
- the second external electrode (240) may be formed to extend from the second side of the dielectric (100) to the upper surface, lower surface, third surface, and fourth surface of the dielectric (100).
- the first external electrode (220) and the second external electrode (240) may be formed to face each other at a predetermined distance from each other on the upper surface, lower surface, third surface, and fourth surface of the dielectric (100).
- the multilayer ceramic capacitor according to an embodiment of the present invention may further include a plurality of electrode units (300). At this time, the plurality of electrode units (300) are stacked to form a multilayer body, and the multilayer body is disposed inside the dielectric (100).
- a plurality of electrode units (300) are stacked vertically in the drawing and placed inside the dielectric (100).
- Each electrode unit (300) includes a first electrode set (320) and a second electrode set (340), and the first electrode set (320) and the second electrode set (340) are alternately stacked.
- the first electrode set (320) is composed of a plate-shaped conductor formed in a rectangular shape.
- the first electrode set (320) is arranged inside the dielectric (100) so as to be offset from the first side of the dielectric (100).
- the first end of the first electrode set (320) is connected to the first external electrode (220) at the first side of the dielectric (100).
- the second electrode set (340) is composed of a plate-shaped conductor formed in a rectangular shape.
- the second electrode set (340) is arranged in the interior of the dielectric (100) so as to be offset from the second side of the dielectric (100).
- the first end of the second electrode set (340) is connected to the second external electrode (240) at the second side of the dielectric (100).
- the first electrode set (320) and the second electrode set (340) are respectively distributed and arranged on two adjacent dielectric sheets among the dielectric sheets included in the dielectric (100).
- the first electrode set (320) and the second electrode set (340) may partially overlap each other with the dielectric sheet (110) therebetween.
- the dielectric composition can form the above-described dielectric (100). However, in order to avoid redundant description, any content that overlaps with the above-described content will be omitted.
- the dielectric composition according to embodiments of the present invention may include a parent material main component including a rare earth element.
- the parent material main component is a barium titanate compound including Ba and Ti, and preferably, may be BaTiO 3 .
- the dielectric composition according to embodiments of the present invention may additionally include a secondary component, and the secondary component may include the first secondary component to the sixth secondary component.
- the dielectric composition according to embodiments of the present invention may include the auxiliary components of Table 1 per 100 mol of the base material BaTiO 3 .
- dielectric compositions to which rare earth materials (such as Yb 2 O 3 ) that increase the Curie temperature have been added, or dielectric compositions using (Ba 1-x Ca x )TiO 3 , which is a base material modified by substitution instead of BaTiO 3 , which is the main component of the base material, have been developed.
- the dielectric composition to which the rare earth material Yb 2 O 3 has been added it can satisfy the X8R standard that the temperature coefficient of capacitance (TCC) at 150°C must change within the range of +15% to -15% as the Curie temperature increases.
- the dielectric composition to which Yb 2 O 3 has been added has a problem in that the sintering temperature increases as Yb 2 O 3 is added in order to implement the X8R temperature characteristics. If the sintering temperature becomes too high, the heat generation of the MLCC increases, which can damage the Ni internal electrodes, which can cause problems with the connectivity of the internal electrodes and complicate the process.
- the widely known one is (Ba 1-x Ca x )TiO 3 , in which Ca is substituted in the Ba position.
- BCT BCT
- a dielectric composition using BCT as a parent material has a disadvantage in that BCT synthesis is difficult.
- Ca initially substitutes for Ba, but as the amount of Ca added increases, it gradually substitutes Ti instead of Ba, resulting in Ba(Ti 1-x Ca x )O 3 .
- the Curie temperature is rather lowered, so it is not suitable as an X8R composition.
- BCT has a lower permittivity than a composition to which Yb 2 O 3 is added, which is somewhat disadvantageous in implementing capacity.
- the dielectric composition according to embodiments of the present invention is characterized by providing a dielectric composition capable of suppressing an increase in sintering temperature while satisfying the criterion of X8R that should change within the range of 15 % to -15% by adding Yb 2 O 3 and BaZrO 3 to BaTiO 3.
- the dielectric composition according to embodiments of the present invention can suppress an increase in sintering temperature by reducing the amount of Yb 2 O 3 added as BaZrO 3 is added to BaTiO 3 , and at the same time, the overall permittivity is reduced due to BaZrO 3 , and the change in permittivity according to temperature is reduced, thereby alleviating extreme changes in permittivity around the Curie temperature.
- the dielectric composition according to embodiments of the present invention satisfies the X8R (-55°C to 150°C) characteristic specified in the EIA standard, thereby realizing a dielectric composition having excellent reliability and a multilayer ceramic capacitor including the same.
- the dielectric composition according to embodiments of the present invention may include a base material component including Ba and Ti.
- the base material component is BaTiO 3 .
- the above-mentioned parent material main component may be included in a powder form and may be included in the dielectric composition.
- the average particle diameter of the parent material main component powder is not particularly limited, but may be 1000 nm or less.
- the average particle diameter of the parent material main component powder may be 200 nm to 350 nm, and more preferably, 250 nm.
- the dielectric composition according to embodiments of the present invention may include at least one selected from the group consisting of oxides and carbonates of Yb element as the first auxiliary component.
- the first auxiliary component may include at least one selected from the group consisting of oxides and carbonates of at least one of Sc, Lu, and Tm, which are rare earth elements, instead of Yb element.
- the first auxiliary component may be included in an amount of 0.2 to 6 mol parts per 100 mol parts of the parent material main component.
- the content of the first auxiliary component may be based on the content of the element included in the first auxiliary component, regardless of the addition form such as oxide or carbonate.
- the total content of the elements included in the first auxiliary component may be 0.2 to 6 mol parts per 100 mol parts of the parent material main component.
- the first auxiliary component is Yb 2 O 3
- 4 mol parts of Yb, a metal are included in the first auxiliary component. Therefore, in this case, 4 mol parts of Yb are included per 100 mol parts of BaTiO 3 .
- the first subcomponent may have the effect of shifting the Curie temperature toward a higher temperature and improving the stability of capacitance according to temperature change. That is, the first subcomponent serves to prevent a decrease in the reliability of a multilayer ceramic capacitor formed with a dielectric composition according to embodiments of the present invention.
- the content of the Yb element included in the first subcomponent is less than 0.2 mol parts with respect to 100 mol parts of the main component of the parent material, the effect of improving the temperature coefficient of capacitance (TCC) at high temperature may not be significantly observed, and if the content of the Yb element included in the first subcomponent exceeds 6 mol parts with respect to 100 mol parts of the main component of the parent material, the characteristics related to sintering may deteriorate.
- the dielectric composition according to embodiments of the present invention may include at least one selected from the group consisting of oxides containing Ba and Zr as a second auxiliary component.
- the second auxiliary component is preferably BaZrO 3 or a mixture of BaO and ZrO 2 , but is not limited thereto.
- the ratio of Ba and Zr is not particularly limited, and the molar ratio of Ba to Zr (Ba/Zr) may be 0.5 to 1.5, and preferably, 0.9 to 1.1.
- the second auxiliary component When the second auxiliary component is added, the overall permittivity may decrease, and the permittivity change according to temperature may become flat.
- the second auxiliary component may be included in an amount of 0.1 to 3 mol parts per 100 mol parts of the main component of the base material. If the content of the second auxiliary component is less than 0.1 mol parts per 100 mol parts of the main component of the base material, the high-temperature TCC improvement effect may not be significantly exhibited, and if the content of the second auxiliary component exceeds 3 mol parts per 100 mol parts of the main component of the base material, the high-temperature withstand voltage characteristics may deteriorate.
- the dielectric composition according to embodiments of the present invention may include at least one selected from the group consisting of oxides and carbonates of Y element as a third auxiliary component.
- the third auxiliary component may include at least one selected from the group consisting of oxides and carbonates of at least one rare earth element, Dy, Ho, Tb, Gd, Eu, and Er, instead of Y element.
- the third auxiliary component is preferably Y 2 O 3 , which is an oxide of Y, but is not limited thereto.
- the third auxiliary component can be contained in an amount of 2 mol parts or less with respect to 100 mol parts of the parent material main component.
- the content of the third auxiliary component can be based on the content of the element included in the third auxiliary component, regardless of the addition form such as oxide or carbonate.
- the total content of the elements included in the third auxiliary component can be 2 mol parts or less with respect to 100 mol parts of the parent material main component.
- the third auxiliary component is Y 2 O 3
- Y 2 O 3 assuming that Y 2 O 3 exists in an amount of 0.3 mol with respect to 100 mol parts of BaTiO 3
- 0.6 mol parts of the metal Y included in the third auxiliary component are present. Therefore, in this case, 0.6 mol parts of Y are contained with respect to 100 mol parts of BaTiO 3 .
- the third auxiliary component can help improve the high-temperature TCC and prevent the deterioration of the reliability of the multilayer ceramic capacitor formed with the dielectric composition. If the content of the Y element included in the third auxiliary component exceeds 2 mol parts with respect to 100 mol parts of the main component of the parent material, this effect may be insufficient.
- the dielectric composition according to embodiments of the present invention may include at least one of an oxide and a carbonate of a fixed-valence acceptor element including Mg as a fourth auxiliary component.
- the fourth auxiliary component may be included in an amount of 0.1 to 2 mol parts or less with respect to 100 mol parts of the parent material main component.
- the content of the fourth auxiliary component may be based on the content of the Mg element included in the fourth auxiliary component, regardless of the addition form such as oxide or carbonate.
- the content of the Mg element included in the fourth auxiliary component may be 0.1 to 2 mol parts or less with respect to 100 mol parts of the parent material main component.
- the content of the fourth component is less than 0.1 mol parts or more than 2 mol parts with respect to 100 mol parts of the main component of the dielectric matrix, it is not desirable because there may be problems of low dielectric constant and low high-temperature withstand voltage characteristics.
- the dielectric composition according to embodiments of the present invention may include at least one selected from the group consisting of oxides and carbonates of atomic variable acceptor elements including at least one of V, Mn, Cr, Fe, Ni, Co, Cu, and Zn as a fifth auxiliary component.
- the fifth auxiliary component may include V 2 O 5 and It is preferable that at least one selected from the group consisting of MnO 2 is present, but is not limited thereto.
- the fifth auxiliary component may be included in an amount of 0.03 to 4 mol parts per 100 mol parts of the parent material main component.
- the content of the fifth auxiliary component may be based on the content of the elements included in the fifth auxiliary component, regardless of the addition form such as oxide or carbonate.
- the total content of the elements included in the fifth auxiliary component may be 0.03 to 4 mol parts per 100 mol parts of the parent material main component.
- the fifth auxiliary component can improve the high-temperature withstand voltage characteristics by improving the reduction resistance of the dielectric composition. If the content of the fifth auxiliary component is less than 0.03 molar parts, the high-temperature withstand voltage may be reduced, and if it exceeds 4 molar parts, the reliability of the dielectric magnetic composition may be reduced (e.g., a decrease in permittivity, etc.).
- the dielectric composition according to embodiments of the present invention may include, as a sixth auxiliary component, at least one selected from the group consisting of an oxide of Si element, a carbonate of Si element, and a glass including Si element.
- the sixth auxiliary component may include a composite oxide represented by Ba x Ca 1-x SiO 3 (wherein x is 0.3 to 0.8).
- the x value of the composite oxide may be 0.3 to 0.8.
- the x value is too small, dielectric properties may be deteriorated due to a reaction between SiO 2 and the main component BaTiO 3.
- the x value is too large, the melting point may increase, which may deteriorate properties related to sintering.
- the sixth auxiliary component may be included in an amount of 0.1 to 5 mol parts based on 100 mol parts of the above-mentioned parent material main component. If the content of the sixth auxiliary component is less than 0.1 mol parts, the rate of change in capacitance depending on the temperature may increase. On the other hand, if the content of the sixth auxiliary component exceeds 5 mol parts, problems such as a decrease in sinterability and density and the formation of secondary phases may occur, which is not preferable.
- BaTiO 3 powder As a starting material for forming a dielectric layer, main component BaTiO 3 powder was prepared, and Yb 2 O 3 , BaZrO 3 , Y 2 O 3 , MgCO 3 , V 2 O 5 , MnO 2 , Ba 0.6 Ca 0.4 SiO 3 were prepared as secondary components, respectively.
- BaTiO 3 mixed solid solution powder which is a parent powder including the main component, was manufactured by applying a solid-state method as follows.
- the starting materials are BaCO 3 and TiO 2. These starting material powders were mixed in a ball mill and calcined in the range of 900 to 1000°C to prepare the main component matrix powder. After mixing the auxiliary component additive powders with the main component matrix powder in the ingredient ratios shown in Table 2, the raw material powders containing the main and auxiliary components were ball milled using zirconia balls as a mixing/dispersing medium, and ethanol/toluene, a dispersant, and a binder for a predetermined time (e.g., 20 hours).
- the manufactured slurry was molded into a 10 ⁇ m thick sheet using a doctor blade type coater, and Ni internal electrodes were printed on the molded sheet.
- the upper and lower covers were manufactured by laminating 25 layers of cover sheets, and 21 layers of printed active sheets were pressed and laminated to manufacture a press bar.
- the press bar was cut into chips of the size of 3225 (length X width X thickness 3.2 mm X 2.5 mm X 2.5 mm) using a cutter.
- the manufactured chip was calcined, it was fired at a temperature of 1150 to 1350°C for more than 1 hour in a reducing atmosphere (0.1% H2 /99.9% N2 , H2O / H2 / N2 atmosphere), and then heat-treated by reoxidation in a nitrogen ( N2 ) atmosphere at a temperature of 1000°C for more than 2 hours.
- a reducing atmosphere (0.1% H2 /99.9% N2 , H2O / H2 / N2 atmosphere)
- N2 nitrogen
- the external electrode was completed by performing a termination process and electrode firing using copper paste on the fired chip.
- the capacity dielectric constant
- TCC temperature-dependent change in electrostatic capacitance
- sintering temperature room temperature insulation resistance, high temperature accelerated life, and loss factor were evaluated, but are not described.
- the room temperature capacitance was measured using an LCR meter under the conditions of 1 kHz and AC 0.2 V/ ⁇ m.
- the permittivity of the multilayer ceramic capacitor (MLCC) chip was calculated from the capacitance, dielectric thickness, internal electrode area, and number of layers of the multilayer ceramic capacitor (MLCC) chip.
- the change in capacitance according to temperature was measured in the temperature range of -55°C to 150°C.
- the capacitance change was measured under the conditions of 1kHz, 1Vrms using an LCR-meter.
- the change rate (%) of the capacitance at each temperature is measured compared to the capacitance at 25°C.
- the change in capacitance at 150°C is described. If the change rate of capacitance (Temperature Coefficient of Capacitance, TCC) at 150°C is within ⁇ 15%, it is judged as good, and otherwise, it is judged as bad.
- Table 2 below is a composition table of comparative examples, and Table 3 shows the characteristics of multilayer ceramic capacitor chips corresponding to the compositions specified in Table 2.
- Comparative examples 1 to 4 in Table 2 differ from the examples described later in that the second auxiliary component, BaZrO 3 , was not added.
- Comparative Examples 1 to 4 in Table 2 represent samples in which the content of the third auxiliary component Y was fixed at 0 mol, the content of the fourth auxiliary component Mg was fixed at 1.45 mol, the content of the sum of the fifth auxiliary component (V, Mn) was fixed at 0.25 mol, and the content of the sixth auxiliary component was fixed at 2.7 mol, and the content of the first auxiliary component Yb was changed while the second auxiliary component was not added, and Table 3 represents the characteristics of samples corresponding to Comparative Examples 1 to 4 in Table 2. In the range where the content of the first auxiliary component Yb was 4.36 mol or less (Comparative Examples 1 to 2), the high-temperature TCC (150°C) exceeded ⁇ 15% and was vulnerable to temperature change.
- the dielectric composition according to embodiments of the present invention is characterized by providing a dielectric composition capable of suppressing an increase in sintering temperature while satisfying the criterion of X8R that must vary within a range of 15% to -15% by adding Yb 2 O 3 and BaZrO 3 to BaTiO 3.
- Table 4 below is a composition table of examples, and Table 5 shows the characteristics of a multilayer ceramic capacitor chip corresponding to the composition specified in Table 4.
- Examples 2 to 6 differ from the comparative examples described above in that the second auxiliary component, BaZrO 3 , is added.
- Example 2 1900 -11.3 1265 O
- Example 3 1800 -11.1 1250 O
- Example 4 1800 -12.3 1250 O
- Example 5 1900 -12.8 1245 O
- Example 6 1900 -19.7 1235 X
- Examples 1 to 6 in Table 4 represent samples in which the content of the second auxiliary component was changed while the content of the first auxiliary component Yb was fixed at 2 mol, the content of the third auxiliary component Y was fixed at 0 mol, the content of the fourth auxiliary component Mg was fixed at 1.45 mol, the content of the sum of the fifth auxiliary component (V, Mn) was fixed at 0.25 mol, and the content of the sixth auxiliary component was fixed at 2.7 mol.
- Table 5 shows the characteristics of the samples corresponding to Examples 1 to 6 in Table 4.
- the content of the second auxiliary component was 0 mol (Example 1), there was a problem that the high temperature TCC (150°C) exceeded ⁇ 15% and the sample was vulnerable to temperature changes.
- the content of the second auxiliary component exceeded 3 mol (Example 6)
- the high temperature TCC 150°C
- the high temperature TCC was found to be within ⁇ 15%, satisfying the X8R specification. Therefore, the appropriate content range of the second auxiliary component can be said to be 0.1 to 3 mol parts or less with respect to 100 mol parts of the main component of the parent material.
- Examples 2 to 5 showed a high temperature TCC within ⁇ 15% when the second auxiliary component, BaZrO 3 , was added, thereby satisfying the X8R standard, while having a sintering temperature within the range of 1245°C to 1265°C. That is, the sintering temperatures of Examples 2 to 5 were found to be lower than the sintering temperatures of 1290°C to 1310°C of Comparative Examples 3 to 4 described above.
- Example 8 1800 -11.5 1245 O
- Example 9 1500 -10.9 1250 O
- Example 10 1400 -12.3 1265 O
- Example 11 1350 -19.8 1280 X
- Examples 7 to 11 in Table 6 represent samples in which the content of the first auxiliary ingredient was changed while the content of the second auxiliary ingredient was fixed at 1.5 mol, the content of the third auxiliary ingredient Y was fixed at 0 mol, the content of the fourth auxiliary ingredient Mg was fixed at 1.45 mol, the content of the sum of the fifth auxiliary ingredient (V, Mn) was fixed at 0.25 mol, and the content of the sixth auxiliary ingredient was fixed at 2.7 mol.
- Table 7 represents the characteristics of the samples corresponding to Examples 7 to 11 in Table 6.
- the content of the first auxiliary ingredient Yb was 0 mol (Example 7)
- the high temperature TCC 150°C
- the appropriate content range of the first auxiliary component Yb can be said to be 0.2 to 6 mol parts in element ratio with respect to 100 mol parts of the main component of the base material.
- Examples 12 to 14 in Table 8 represent samples in which the content of the third auxiliary component Y was changed while the content of the first auxiliary component Yb was fixed at 2 mol, the content of the second auxiliary component was fixed at 1.5 mol, the content of the fourth auxiliary component Mg was fixed at 1.45 mol, the content of the sum of the fifth auxiliary component (V, Mn) was fixed at 0.25 mol, and the content of the sixth auxiliary component was fixed at 2.7 mol.
- Table 9 represents the characteristics of the samples corresponding to Examples 12 to 14 in Table 8.
- the high-temperature TCC 150°C
- the high-temperature TCC was found to be within ⁇ 15%, satisfying the X8R specification, and the sintering temperature was also found to be relatively low. Therefore, the appropriate content range of the third auxiliary component Y can be said to be 2 molar parts or less in element ratio with respect to 100 molar parts of the main component of the parent material.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Power Engineering (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Compositions Of Oxide Ceramics (AREA)
Abstract
Description
본 발명은 고온 안정성을 갖는 유전체 조성물에 관한 것으로, 특히, X8R 특성을 만족하는 유전체 조성물에 관한 것이다.The present invention relates to a dielectric composition having high temperature stability, and more particularly, to a dielectric composition satisfying X8R characteristics.
다층 세라믹 칩 커패시터는 높은 용량과 높은 신뢰성을 가지되, 그 크기가 상대적으로 작아 자동차, 모터 등 정밀도 및 안정성이 요구되는 분야에서 널리 사용되고 있다. Multilayer ceramic chip capacitors have high capacity and high reliability, but are relatively small in size, so they are widely used in fields such as automobiles and motors that require precision and stability.
적층 세라믹 커패시터에 대해 용량, 온도 안정성, 전압 안정성 등 여러가지 요인에 대한 요구가 있다. 특히, 자동차에 사용되는 전장용 적층 세라믹 커패시터의 경우 높은 온도 하에서 동작하기 때문에, 높은 온도에서도 그 용량(커패시턴스)이 변화하지 않아야 한다. 이와 관련하여, 미국 전자 산업 협회(Electronic Industries Association, EIA)는 적층 세라믹 커패시터에 대해, 섭씨 -55도 내지 150도의 온도에서의 커패시턴스의 변화가, 25도에서의 기준 커패시턴스에 대하여 ±15% 내외일 때, X8R 특성을 만족한다고 규정하고 있다.There are requirements for various factors such as capacity, temperature stability, and voltage stability for multilayer ceramic capacitors. In particular, multilayer ceramic capacitors for electrical fields used in automobiles must not change their capacity (capacitance) even at high temperatures because they operate at high temperatures. In this regard, the Electronic Industries Association (EIA) of the United States stipulates that a multilayer ceramic capacitor satisfies the X8R characteristic when the change in capacitance at a temperature of -55 degrees Celsius to 150 degrees Celsius is within ±15% of the reference capacitance at 25 degrees Celsius.
본 발명은 X8R 규격을 만족하는 유전체 조성물을 제공하는 것에 있다.The present invention provides a dielectric composition satisfying the X8R standard.
본 발명의 실시예들에 따른 유전체 조성물은 티탄산바륨계 모재 주성분 및 부성분을 포함하며, 부성분은 Yb 원소의 산화물 및 탄산염으로 이루어진 군에서 선택되는 하나 이상을 포함하는 제1 부성분, Ba 및 Zr을 포함하는 산화물로 이루어지는 군에서 선택되는 하나 이상을 포함하는 제2 부성분, Y 원소의 산화물 및 탄산염으로 이루어진 군에서 선택되는 하나 이상을 포함하는 제3 부성분, Mg를 포함하는 원자가 고정 억셉터 원소의, 산화물 및 탄산염 중 하나 이상을 포함하는 제4 부성분, V, Mn, Cr, Fe, Ni, Co, Cu, 및 Zn 중 하나 이상을 포함하는 원자가 가변 억셉터 원소의, 산화물 및 탄산염으로 이루어진 군에서 선택되는 하나 이상을 포함하는 제5 부성분 및 Si 원소의 산화물, 탄산염 및 글라스로 이루어진 군에서 선택되는 하나 이상을 포함하는 제6부성분; 중 적어도 하나의 부성분을 포함하고, 적어도 하나의 부성분은 제1 부성분을 포함하고, 제1 부성분에 포함된 Yb 원소의 함량은 모재 주성분 100몰부에 대해 0.2 내지 6몰부이다.According to embodiments of the present invention, a dielectric composition includes a barium titanate-based matrix main component and a subcomponent, wherein the subcomponents include a first subcomponent including at least one selected from the group consisting of oxides and carbonates of Yb element, a second subcomponent including at least one selected from the group consisting of oxides including Ba and Zr, a third subcomponent including at least one selected from the group consisting of oxides and carbonates of Y element, a fourth subcomponent including at least one selected from oxides and carbonates of a valence-fixed acceptor element including Mg, a fifth subcomponent including at least one selected from the group consisting of oxides and carbonates of a valence-variable acceptor element including at least one selected from the group consisting of V, Mn, Cr, Fe, Ni, Co, Cu, and Zn, and a sixth subcomponent including at least one selected from the group consisting of oxides, carbonates, and glasses of Si element. It contains at least one subcomponent, and at least one subcomponent contains a first subcomponent, and the content of Yb element contained in the first subcomponent is 0.2 to 6 molar parts with respect to 100 molar parts of the main component of the parent material.
본 발명의 유전체 조성물은 EIA 규격의 X8R 특성을 만족한다.The dielectric composition of the present invention satisfies the X8R characteristics of the EIA standard.
도 1은 본 발명의 실시예에 따른 적층 세라믹 커패시터를 나타낸 사시도이다.FIG. 1 is a perspective view showing a multilayer ceramic capacitor according to an embodiment of the present invention.
도 2는 본 발명의 실시예에 따른 적층 세라믹 커패시터의 복수의 전극 유닛을 나타낸 투시 사시도이다.FIG. 2 is a perspective view showing a plurality of electrode units of a laminated ceramic capacitor according to an embodiment of the present invention.
이하, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명의 기술적 사상을 용이하게 실시할 수 있을 정도로 상세히 설명하기 위하여, 본 발명의 가장 바람직한 실시예를 첨부 도면을 참조하여 설명하기로 한다. 우선 각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 발명을 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.Hereinafter, in order to explain in detail the technical idea of the present invention to a degree that a person having ordinary skill in the art to which the present invention pertains can easily practice the present invention, the most preferred embodiment of the present invention will be described with reference to the accompanying drawings. First, when adding reference symbols to components in each drawing, it should be noted that the same components are given the same symbols as much as possible even if they are shown in different drawings. In addition, when explaining the present invention, if it is determined that a specific description of a related known configuration or function may obscure the gist of the present invention, the detailed description thereof will be omitted.
본 발명은 유전체 조성물에 관한 것으로, 유전체 조성물을 포함하는 전자부품은 커패시터, 인덕터, 압전체 소자, 바리스터, 또는 서미스터 등이 있으며, 이하에서는 유전체 조성물 및 전자부품의 일례로서 적층 세라믹 커패시터(MLCC: Multi Layer Ceramic Capacitor)에 관하여 설명한다.The present invention relates to a dielectric composition, and electronic components including the dielectric composition include capacitors, inductors, piezoelectric elements, varistors, thermistors, and the like. Hereinafter, a multilayer ceramic capacitor (MLCC) will be described as an example of the dielectric composition and electronic components.
적층 세라믹 커패시터Multilayer Ceramic Capacitors
도 1은 본 발명의 실시예에 따른 적층 세라믹 커패시터를 나타낸 사시도이고, 도 2는 본 발명의 실시예에 따른 적층 세라믹 커패시터의 복수의 전극 유닛을 나타낸 투시 사시도이다.FIG. 1 is a perspective view showing a multilayer ceramic capacitor according to an embodiment of the present invention, and FIG. 2 is a transparent perspective view showing a plurality of electrode units of the multilayer ceramic capacitor according to an embodiment of the present invention.
도 1을 참조하면, 본 발명의 실시예에 따른 적층 세라믹 커패시터는 유전체(100), 제1 외부 전극(220) 및 제2 외부 전극(240)을 포함하여 구성된다.Referring to FIG. 1, a multilayer ceramic capacitor according to an embodiment of the present invention is configured to include a dielectric (100), a first external electrode (220), and a second external electrode (240).
유전체(100)는 상면, 하면, 제1 측면, 제1 측면에 대향되는 제2 측면, 제3 측면, 제3 측면에 대향되는 제4 측면을 갖는 직육면체로 구성되며, 제1 측면은 도면상 좌측이고, 제2 측면은 도면상 우측이고, 제3측면은 도면상 전면이고, 제4 측면은 도면상 후면인 것을 일례로 한다. The dielectric (100) is configured as a rectangular solid having a top surface, a bottom surface, a first side surface, a second side surface opposite the first side surface, a third side surface, and a fourth side surface opposite the third side surface. As an example, the first side surface is the left side in the drawing, the second side surface is the right side in the drawing, the third side surface is the front side in the drawing, and the fourth side surface is the back side in the drawing.
유전체(100)는 복수의 유전체 시트를 포함할 수 있다. 복수의 유전체 시트는 적층될 수 있다. 각각의 유전체 시트는 유전체 조성물을 포함하고, 유전체 조성물을 소결함으로써 형성된 것일 수 있다. The dielectric (100) may include a plurality of dielectric sheets. The plurality of dielectric sheets may be laminated. Each dielectric sheet may include a dielectric composition and may be formed by sintering the dielectric composition.
제1 외부 전극(220)은 유전체(100)의 제1 측면에 배치되는 전극이다. 제1 외부 전극(220)은 유전체(100)의 제1 측면에서 유전체(100)의 상면, 하면, 제3측면 및 제4 측면으로 연장되어 형성될 수 있다. 제2 외부 전극(240)은 유전체(100)의 제2 측면에 배치되는 전극이다. 제2 외부 전극(240)은 유전체(100)의 제2 측면에서 유전체(100)의 상면, 하면, 제3측면 및 제4 측면으로 연장되어 형성될 수 있다. 이러한 제1 외부 전극(220) 및 제2 외부 전극(240)은 유전체(100)의 상면, 하면, 제3측면 및 제4 측면에서 소정 간격 이격되어 서로 마주보도록 형성될 수 있다.The first external electrode (220) is an electrode disposed on the first side of the dielectric (100). The first external electrode (220) may be formed to extend from the first side of the dielectric (100) to the upper surface, lower surface, third surface, and fourth surface of the dielectric (100). The second external electrode (240) is an electrode disposed on the second side of the dielectric (100). The second external electrode (240) may be formed to extend from the second side of the dielectric (100) to the upper surface, lower surface, third surface, and fourth surface of the dielectric (100). The first external electrode (220) and the second external electrode (240) may be formed to face each other at a predetermined distance from each other on the upper surface, lower surface, third surface, and fourth surface of the dielectric (100).
도 2를 참조하면, 본 발명의 실시예에 따른 적층 세라믹 커패시터는 복수의 전극 유닛(300)을 더 포함할 수 있다. 이 때, 복수의 전극 유닛(300)은 적층되어 적층체를 형성하고, 이 적층체는 유전체(100)의 내부에 배치된다.Referring to FIG. 2, the multilayer ceramic capacitor according to an embodiment of the present invention may further include a plurality of electrode units (300). At this time, the plurality of electrode units (300) are stacked to form a multilayer body, and the multilayer body is disposed inside the dielectric (100).
복수의 전극 유닛(300)은 도면상에서 수직 방향으로 적층되어 유전체(100)의 내부에 배치된다. 각각의 전극 유닛(300)은 제1 전극 세트(320) 및 제2 전극 세트(340)를 포함하며, 제1 전극 세트(320) 및 제2 전극 세트(340)가 교대로 적층되어 구성된다.A plurality of electrode units (300) are stacked vertically in the drawing and placed inside the dielectric (100). Each electrode unit (300) includes a first electrode set (320) and a second electrode set (340), and the first electrode set (320) and the second electrode set (340) are alternately stacked.
제1 전극 세트(320)는 직사각형 형상으로 형성된 판상의 도전체로 구성된다. 제1 전극 세트(320)는 유전체(100)의 내부에서 유전체(100)의 제1 측면으로 치우쳐져 배치된다. 제1 전극 세트(320)의 제1 단부는 유전체(100)의 제1 측면에서 제1 외부 전극(220)과 연결된다.The first electrode set (320) is composed of a plate-shaped conductor formed in a rectangular shape. The first electrode set (320) is arranged inside the dielectric (100) so as to be offset from the first side of the dielectric (100). The first end of the first electrode set (320) is connected to the first external electrode (220) at the first side of the dielectric (100).
제2 전극 세트(340)는 직사각형 형상으로 형성된 판상의 도전체로 구성된다. 제2 전극 세트(340)는 유전체(100)의 내부에서 유전체(100)의 제2 측면으로 치우쳐져 배치된다. 제2 전극 세트(340)의 제1 단부는 유전체(100)의 제2 측면에서 제2 외부 전극(240)과 연결된다.The second electrode set (340) is composed of a plate-shaped conductor formed in a rectangular shape. The second electrode set (340) is arranged in the interior of the dielectric (100) so as to be offset from the second side of the dielectric (100). The first end of the second electrode set (340) is connected to the second external electrode (240) at the second side of the dielectric (100).
제1 전극 세트(320) 및 제2 전극 세트(340)는 유전체(100)에 포함된 유전체 시트들 중에서 인접한 두 개의 유전체 시트에 각각 분산 배치된다. 제1 전극 세트(320) 및 제2 전극 세트(340)는 유전체 시트(110)를 사이에 두고 일부 중첩될 수 있다.The first electrode set (320) and the second electrode set (340) are respectively distributed and arranged on two adjacent dielectric sheets among the dielectric sheets included in the dielectric (100). The first electrode set (320) and the second electrode set (340) may partially overlap each other with the dielectric sheet (110) therebetween.
유전체 조성물 및 이의 제조방법Genetic composition and method for producing the same
이하, 본 발명의 실시예들에 따른 유전체 조성물 및 이의 제조방법에 대하여 상세히 설명한다. 유전체 조성물은 상술한 유전체(100)를 형성할 수 있다. 다만, 중복되는 설명을 피하기 위하여, 상술한 내용과 중복되는 내용은 생략한다. Hereinafter, a dielectric composition and a method for manufacturing the same according to embodiments of the present invention will be described in detail. The dielectric composition can form the above-described dielectric (100). However, in order to avoid redundant description, any content that overlaps with the above-described content will be omitted.
본 발명의 실시예들에 따른 유전체 조성물은 희토류 원소를 포함하는 모재 주성분을 포함할 수 있다. 모재 주성분은 Ba 및 Ti를 포함하는 티탄산 바륨계 화합물이고, 바람직하게는, BaTiO3일 수 있다. 또한, 본 발명의 실시예들에 따른 유전체 조성물은 부성분을 추가적으로 포함하고, 상기 부성분은 제1 부성분 내지 제6 부성분을 포함할 수 있다. The dielectric composition according to embodiments of the present invention may include a parent material main component including a rare earth element. The parent material main component is a barium titanate compound including Ba and Ti, and preferably, may be BaTiO 3 . In addition, the dielectric composition according to embodiments of the present invention may additionally include a secondary component, and the secondary component may include the first secondary component to the sixth secondary component.
본 발명의 실시예들에 따른 유전체 조성물은 모재 BaTiO3 100몰당 표 1의 부성분들을 포함할 수 있다.The dielectric composition according to embodiments of the present invention may include the auxiliary components of Table 1 per 100 mol of the base material BaTiO 3 .
X8R 온도 특성을 구현하기 위해, 기존에는 큐리 온도를 상승시키는 희토류 물질(Yb2O3 등)이 첨가된 유전체 조성물 또는 모재 주성분인 BaTiO3 대신 치환 등으로 개질된 모재인 (Ba1-xCax)TiO3 등을 사용하는 유전체 조성물이 개발되었다. 여기서, 희토류 물질인 Yb2O3가 첨가된 유전체 조성물의 경우, 큐리 온도가 상승하면서 150℃에서의 용량 변화율(Temperature Coefficient of Capacitance, TCC)이 +15% 내지 -15%의 범위 이내에서 변화해야 하는 X8R의 기준을 충족할 수 있다. 그러나 Yb2O3가 첨가된 유전체 조성물은 X8R 온도 특성을 구현하기 위해 Yb2O3를 첨가할수록 소결 온도가 증가한다는 문제점이 있다. 소결 온도가 지나치게 높아지면 MLCC의 발열이 증가하여 Ni 내부 전극이 손상되므로 내부 전극의 연결성 문제가 발생할 수 있고, 공정이 복잡해지는 문제점이 있다.또한, 치환 등으로 개질된 모재 중 널리 알려진 것은 Ba 자리에 Ca이 치환된 (Ba1-xCax)TiO3, 즉 BCT이며, 이러한 BCT를 단독 혹은 혼합하여 유전체 조성물에 사용할 경우 온도에 따른 용량 변화가 적어지는 동시에 큐리 온도가 상승하면서 +15% 내지 -15%의 범위 이내에서 변화해야 하는 X8R의 기준을 충족할 수 있다. 그러나 BCT를 모재로 사용하는 유전체 조성물은 BCT 합성의 난이도가 높다는 단점이 있다. BCT 합성 시 Ca이 처음에는 Ba를 치환하지만, Ca의 첨가량이 증가할수록 점차 Ba가 아닌 Ti를 치환하기 때문에 Ba(Ti1-xCax)O3가 되며, 이 경우 큐리 온도가 오히려 낮아지기 때문에 X8R 조성으로는 적합하지 않다. 또한, BCT는 Yb2O3를 첨가한 조성물과 대비하여 유전율이 낮아 용량을 구현하는데 다소 불리하다는 문제점이 있다.In order to implement the X8R temperature characteristics, dielectric compositions to which rare earth materials (such as Yb 2 O 3 ) that increase the Curie temperature have been added, or dielectric compositions using (Ba 1-x Ca x )TiO 3 , which is a base material modified by substitution instead of BaTiO 3 , which is the main component of the base material, have been developed. Here, in the case of the dielectric composition to which the rare earth material Yb 2 O 3 has been added, it can satisfy the X8R standard that the temperature coefficient of capacitance (TCC) at 150℃ must change within the range of +15% to -15% as the Curie temperature increases. However, the dielectric composition to which Yb 2 O 3 has been added has a problem in that the sintering temperature increases as Yb 2 O 3 is added in order to implement the X8R temperature characteristics. If the sintering temperature becomes too high, the heat generation of the MLCC increases, which can damage the Ni internal electrodes, which can cause problems with the connectivity of the internal electrodes and complicate the process. In addition, among the base materials modified by substitution, etc., the widely known one is (Ba 1-x Ca x )TiO 3 , in which Ca is substituted in the Ba position. BCT, and when these BCTs are used alone or in mixtures in a dielectric composition, the change in capacity depending on the temperature is small, and at the same time, it can satisfy the X8R standard that the change should be within the range of +15% to -15% as the Curie temperature rises. However, a dielectric composition using BCT as a parent material has a disadvantage in that BCT synthesis is difficult. During BCT synthesis, Ca initially substitutes for Ba, but as the amount of Ca added increases, it gradually substitutes Ti instead of Ba, resulting in Ba(Ti 1-x Ca x )O 3 . In this case, the Curie temperature is rather lowered, so it is not suitable as an X8R composition. In addition, BCT has a lower permittivity than a composition to which Yb 2 O 3 is added, which is somewhat disadvantageous in implementing capacity.
이를 해결하기 위해, 본 발명의 실시예들에 따른 유전체 조성물은 BaTiO3에 Yb2O3와 BaZrO3를 첨가하여 15% 내지 -15%의 범위 이내에서 변화해야 하는 X8R의 기준을 충족하면서도 소결 온도 상승을 억제할 수 있는 유전체 조성물을 제공하는 것을 특징으로 한다. 본 발명의 실시예들에 따른 유전체 조성물은 BaTiO3에 BaZrO3가 첨가됨에 따라 Yb2O3 첨가량이 감소하여 소결 온도 상승을 억제할 수 있으며, BaZrO3로 인해 전체적인 유전율이 감소함과 동시에 온도에 따른 유전율 변화가 줄어들어 큐리 온도 주변에서의 극심한 유전율 변화를 완화시킬 수 있다. 즉, 본 발명의 실시예들에 따른 유전체 조성물은 EIA 규격에서 명시한 X8R(-55℃~150℃) 특성을 만족하여, 신뢰성이 우수한 유전체 조성물 및 이를 포함하는 적층 세라믹 커패시터를 구현할 수 있다.To solve this problem, the dielectric composition according to embodiments of the present invention is characterized by providing a dielectric composition capable of suppressing an increase in sintering temperature while satisfying the criterion of X8R that should change within the range of 15 % to -15% by adding Yb 2 O 3 and BaZrO 3 to BaTiO 3. The dielectric composition according to embodiments of the present invention can suppress an increase in sintering temperature by reducing the amount of Yb 2 O 3 added as BaZrO 3 is added to BaTiO 3 , and at the same time, the overall permittivity is reduced due to BaZrO 3 , and the change in permittivity according to temperature is reduced, thereby alleviating extreme changes in permittivity around the Curie temperature. That is, the dielectric composition according to embodiments of the present invention satisfies the X8R (-55°C to 150°C) characteristic specified in the EIA standard, thereby realizing a dielectric composition having excellent reliability and a multilayer ceramic capacitor including the same.
이하, 본 발명의 실시예들에 따른 유전체 조성물의 각 성분을 보다 구체적으로 설명하도록 한다.Hereinafter, each component of the dielectric composition according to embodiments of the present invention will be described in more detail.
모재 주성분Main ingredient of the mother material
본 발명의 실시예들에 따른 유전체 조성물은 Ba 및 Ti를 포함하는 모재 주성분을 포함할 수 있다. 실시예들에 따라, 상기 모재 주성분은 BaTiO3이다.The dielectric composition according to embodiments of the present invention may include a base material component including Ba and Ti. According to embodiments, the base material component is BaTiO 3 .
상기 모재 주성분은 분말 형태로 포함되어 유전체 조성물에 포함될 수 있다. 상기 모재 주성분 분말의 평균 입경은 특별히 제한되는 것은 아니나 1000nm 이하일 수 있다. 바람직하게는, 모재 주성분 분말의 평균 입경은 200nm 내지 350nm일 수 있고, 더욱 바람직하게는, 250nm일 수 있다.The above-mentioned parent material main component may be included in a powder form and may be included in the dielectric composition. The average particle diameter of the parent material main component powder is not particularly limited, but may be 1000 nm or less. Preferably, the average particle diameter of the parent material main component powder may be 200 nm to 350 nm, and more preferably, 250 nm.
제1 부성분Part 1
본 발명의 실시예들에 따른 유전체 조성물은 제1 부성분으로서 Yb 원소의 산화물 및 탄산염으로 이루어진 군에서 선택되는 하나 이상을 포함할 수 있다. 대안적으로, 제1 부성분은 Yb 원소 대신 다른 희토류 원소인 Sc, Lu 및 Tm 중 하나 이상 원소의 산화물 및 탄산염으로 이루어진 군에서 선택되는 하나 이상을 포함할 수도 있다.The dielectric composition according to embodiments of the present invention may include at least one selected from the group consisting of oxides and carbonates of Yb element as the first auxiliary component. Alternatively, the first auxiliary component may include at least one selected from the group consisting of oxides and carbonates of at least one of Sc, Lu, and Tm, which are rare earth elements, instead of Yb element.
제1 부성분은 모재 주성분 100몰부에 대하여 0.2 내지 6몰부 이하로 포함될 수 있다. 제1 부성분의 함량은 산화물 또는 탄산염과 같은 첨가 형태를 구분하지 않고 제1 부성분에 포함된 원소의 함량을 기준으로 할 수 있다. 예를 들어, 제1 부성분에 포함된 원소의 함량의 총합은 모재 주성분 100몰부에 대하여 0.2 내지 6몰부일 수 있다. 일 예로, 제1 부성분이 Yb2O3일 때, BaTiO3 100몰부에 대하여 Yb2O3가 2몰부 존재한다고 가정하면 제1 부성분에 포함된 금속인 Yb는 4몰부 존재한다. 따라서, 이 경우 BaTiO3 100몰부에 대하여 Yb는 4몰부 함유된다.The first auxiliary component may be included in an amount of 0.2 to 6 mol parts per 100 mol parts of the parent material main component. The content of the first auxiliary component may be based on the content of the element included in the first auxiliary component, regardless of the addition form such as oxide or carbonate. For example, the total content of the elements included in the first auxiliary component may be 0.2 to 6 mol parts per 100 mol parts of the parent material main component. For example, when the first auxiliary component is Yb 2 O 3 , assuming that 2 mol parts of Yb 2 O 3 exist per 100 mol parts of BaTiO 3 , 4 mol parts of Yb, a metal, are included in the first auxiliary component. Therefore, in this case, 4 mol parts of Yb are included per 100 mol parts of BaTiO 3 .
제1 부성분은 퀴리 온도를 고온 쪽으로 이동시키고 온도 변화에 따른 커패시턴스의 안정성을 향상시키는 효과를 가질 수 있다. 즉, 제1 부성분은 본 발명의 실시예들에 따른 유전체 조성물로 형성된 적층 세라믹 커패시터의 신뢰성 저하를 막는 역할을 한다. The first subcomponent may have the effect of shifting the Curie temperature toward a higher temperature and improving the stability of capacitance according to temperature change. That is, the first subcomponent serves to prevent a decrease in the reliability of a multilayer ceramic capacitor formed with a dielectric composition according to embodiments of the present invention.
제1부성분에 포함된 Yb 원소의 함량이 모재 주성분 100몰부에 대하여 0.2몰부 미만이면 고온부 TCC(temperature coefficient of capacitance) 개선효과가 크게 나타나지 않을 수 있고, 제1 부성분에 포함된 Yb 원소의 함량이 모재 주성분 100몰부에 대하여 6몰부를 초과하면 소성과 관련된 특성이 저하될 수 있다.If the content of the Yb element included in the first subcomponent is less than 0.2 mol parts with respect to 100 mol parts of the main component of the parent material, the effect of improving the temperature coefficient of capacitance (TCC) at high temperature may not be significantly observed, and if the content of the Yb element included in the first subcomponent exceeds 6 mol parts with respect to 100 mol parts of the main component of the parent material, the characteristics related to sintering may deteriorate.
제2 부성분Secondary component
본 발명의 실시예들에 따른 유전체 조성물은 제2 부성분으로서 Ba 및 Zr을 포함하는 산화물로 이루어지는 군에서 선택되는 하나 이상을 포함할 수 있다. 제2 부성분은 BaZrO3 또는 BaO와 ZrO2의 혼합체인 것이 바람직하나, 이에 한정되는 것은 아니다. BaZrO3의 경우 Ba 및 Zr의 비율은 특히 한정되지 않고, Zr에 대한 Ba의 몰비(Ba/Zr)는 0.5 내지 1.5일 수 있고, 바람직하게는, 0.9~1.1일 수 있다.The dielectric composition according to embodiments of the present invention may include at least one selected from the group consisting of oxides containing Ba and Zr as a second auxiliary component. The second auxiliary component is preferably BaZrO 3 or a mixture of BaO and ZrO 2 , but is not limited thereto. In the case of BaZrO 3 , the ratio of Ba and Zr is not particularly limited, and the molar ratio of Ba to Zr (Ba/Zr) may be 0.5 to 1.5, and preferably, 0.9 to 1.1.
제2 부성분이 첨가될 경우, 전체적인 유전율이 감소할 수 있고, 온도에 따른 유전율 변화가 평탄해질 수 있다. 제2 부성분은 모재 주성분 100몰부에 대하여 0.1 내지 3몰부 이하로 포함될 수 있다. 제2 부성분의 함량이 모재 주성분 100몰부에 대하여 0.1몰부 미만이면 고온부 TCC 개선효과가 크게 나타나지 않을 수 있고, 제2 부성분의 함량이 모재 주성분 100몰부에 대하여 3몰부를 초과하면 고온 내전압 특성이 저하될 수 있다.When the second auxiliary component is added, the overall permittivity may decrease, and the permittivity change according to temperature may become flat. The second auxiliary component may be included in an amount of 0.1 to 3 mol parts per 100 mol parts of the main component of the base material. If the content of the second auxiliary component is less than 0.1 mol parts per 100 mol parts of the main component of the base material, the high-temperature TCC improvement effect may not be significantly exhibited, and if the content of the second auxiliary component exceeds 3 mol parts per 100 mol parts of the main component of the base material, the high-temperature withstand voltage characteristics may deteriorate.
제3 부성분Third Component
본 발명의 실시예들에 따른 유전체 조성물은 제3 부성분으로서 Y 원소의 산화물 및 탄산염으로 이루어진 군에서 선택되는 하나 이상을 포함할 수 있다. 대안적으로, 제3 부성분은 Y 원소 대신 다른 희토류 원소인 Dy, Ho, Tb, Gd, Eu 및 Er 중 하나 이상 원소의 산화물 및 탄산염으로 이루어지는 군에서 선택되는 하나 이상을 포함할 수 있다. 제3 부성분은 Y 산화물인 Y2O3이 바람직하나, 이에 한정되는 것은 아니다.The dielectric composition according to embodiments of the present invention may include at least one selected from the group consisting of oxides and carbonates of Y element as a third auxiliary component. Alternatively, the third auxiliary component may include at least one selected from the group consisting of oxides and carbonates of at least one rare earth element, Dy, Ho, Tb, Gd, Eu, and Er, instead of Y element. The third auxiliary component is preferably Y 2 O 3 , which is an oxide of Y, but is not limited thereto.
제3 부성분은 모재 주성분 100몰부에 대하여 2몰부 이하로 함유될 수 있다. 제3 부성분의 함량은 산화물 또는 탄산염과 같은 첨가 형태를 구분하지 않고 제3 부성분에 포함된 원소의 함량을 기준으로 할 수 있다. 예를 들어, 제3 부성분에 포함된 원소의 함량의 총합은 모재 주성분 100몰부에 대하여 2몰부 이하일 수 있다. 일 예로, 제3 부성분이 Y2O3일 때, BaTiO3 100몰부에 대하여 Y2O3가 0.3몰부 존재한다고 가정하면 제3 부성분에 포함된 금속인 Y는 0.6몰부 존재한다. 따라서, 이 경우 BaTiO3 100몰부에 대하여 Y는 0.6몰부 함유된다.The third auxiliary component can be contained in an amount of 2 mol parts or less with respect to 100 mol parts of the parent material main component. The content of the third auxiliary component can be based on the content of the element included in the third auxiliary component, regardless of the addition form such as oxide or carbonate. For example, the total content of the elements included in the third auxiliary component can be 2 mol parts or less with respect to 100 mol parts of the parent material main component. For example, when the third auxiliary component is Y 2 O 3 , assuming that Y 2 O 3 exists in an amount of 0.3 mol with respect to 100 mol parts of BaTiO 3 , 0.6 mol parts of the metal Y included in the third auxiliary component are present. Therefore, in this case, 0.6 mol parts of Y are contained with respect to 100 mol parts of BaTiO 3 .
제3 부성분은 고온부 TCC 개선에 도움을 주고, 유전체 조성물로 형성된 적층 세라믹 커패시터의 신뢰성 저하를 막는 역할을 할 수 있다. 만약 제3 부성분에 포함된 Y 원소의 함량이 모재 주성분 100몰부에 대하여 2몰부를 초과하면 이러한 효과가 미흡할 수 있다.The third auxiliary component can help improve the high-temperature TCC and prevent the deterioration of the reliability of the multilayer ceramic capacitor formed with the dielectric composition. If the content of the Y element included in the third auxiliary component exceeds 2 mol parts with respect to 100 mol parts of the main component of the parent material, this effect may be insufficient.
제4 부성분4th Subcomponent
본 발명의 실시예들에 따른 유전체 조성물은 제4 부성분으로서 Mg를 포함하는 원자가 고정 억셉터(fixed-valence acceptor) 원소의, 산화물 및 탄산염 중 하나 이상을 포함할 수 있다.The dielectric composition according to embodiments of the present invention may include at least one of an oxide and a carbonate of a fixed-valence acceptor element including Mg as a fourth auxiliary component.
제4 부성분은 모재 주성분 100몰부에 대하여 0.1 내지 2몰부 이하로 포함될 수 있다. 제4 부성분의 함량은 산화물 또는 탄산염과 같은 첨가 형태를 구분하지 않고 제4 부성분에 포함된 Mg 원소의 함량을 기준으로 할 수 있다. 예를 들어, 제4 부성분에 포함된 Mg 원소의 함량은 모재 주성분 100몰부에 대하여 0.1 내지 2몰부 이하일 수 있다.The fourth auxiliary component may be included in an amount of 0.1 to 2 mol parts or less with respect to 100 mol parts of the parent material main component. The content of the fourth auxiliary component may be based on the content of the Mg element included in the fourth auxiliary component, regardless of the addition form such as oxide or carbonate. For example, the content of the Mg element included in the fourth auxiliary component may be 0.1 to 2 mol parts or less with respect to 100 mol parts of the parent material main component.
제4 부성분의 함량이 유전체 모재 주성분 100몰부에 대하여 0.1몰부 미만이거나 2몰부를 초과하는 경우 유전율이 낮아지고 고온 내전압 특성이 낮아지는 문제가 있을 수 있어 바람직하지 못하다.If the content of the fourth component is less than 0.1 mol parts or more than 2 mol parts with respect to 100 mol parts of the main component of the dielectric matrix, it is not desirable because there may be problems of low dielectric constant and low high-temperature withstand voltage characteristics.
제5 부성분5th Subcomponent
본 발명의 실시예들에 따른 유전체 조성물은 제5 부성분으로서 V, Mn, Cr, Fe, Ni, Co, Cu, 및 Zn 중 하나 이상을 포함하는 원자가 가변 억셉터 원소의, 산화물 및 탄산염으로 이루어진 군에서 선택되는 하나 이상을 포함할 수 있다. 제5 부성분은 V2O5 및 MnO2로 이루어진 군에서 선택되는 하나 이상인 것이 바람직하나, 이에 한정되는 것은 아니다.The dielectric composition according to embodiments of the present invention may include at least one selected from the group consisting of oxides and carbonates of atomic variable acceptor elements including at least one of V, Mn, Cr, Fe, Ni, Co, Cu, and Zn as a fifth auxiliary component. The fifth auxiliary component may include V 2 O 5 and It is preferable that at least one selected from the group consisting of MnO 2 is present, but is not limited thereto.
제5 부성분은 모재 주성분 100몰부에 대하여 0.03 내지 4몰부 이하로 포함될 수 있다. 제5 부성분의 함량은 산화물 또는 탄산염과 같은 첨가 형태를 구분하지 않고 제5 부성분에 포함된 원소의 함량을 기준으로 할 수 있다. 예를 들어, 제5 부성분에 포함된 원소의 함량의 총합은 모재 주성분 100몰부에 대하여 0.03 내지 4몰부일 수 있다. The fifth auxiliary component may be included in an amount of 0.03 to 4 mol parts per 100 mol parts of the parent material main component. The content of the fifth auxiliary component may be based on the content of the elements included in the fifth auxiliary component, regardless of the addition form such as oxide or carbonate. For example, the total content of the elements included in the fifth auxiliary component may be 0.03 to 4 mol parts per 100 mol parts of the parent material main component.
제5 부성분은 유전체 조성물의 내환원성을 개선시킴으로써 고온 내전압 특성을 향상시킬 수 있다. 제5 부성분의 함량이 0.03몰부 미만이면 고온 내전압이 낮아질 수 있고, 4몰부를 초과하는 경우에는 유전체 자기 조성물의 신뢰도가 하락(예컨대, 유전율의 감소 등)할 수 있다.The fifth auxiliary component can improve the high-temperature withstand voltage characteristics by improving the reduction resistance of the dielectric composition. If the content of the fifth auxiliary component is less than 0.03 molar parts, the high-temperature withstand voltage may be reduced, and if it exceeds 4 molar parts, the reliability of the dielectric magnetic composition may be reduced (e.g., a decrease in permittivity, etc.).
제6 부성분6th Subcomponent
본 발명의 실시예들에 따른 유전체 조성물은 제6 부성분으로서 Si 원소의 산화물, Si 원소의 탄산염 및 Si 원소를 포함하는 글라스로 이루어진 군에서 선택되는 하나 이상을 포함할 수 있다. 바람직하게는, 제6 부성분은 BaxCa1-xSiO3(여기서 x는 0.3 내지 0.8)로 표시되는 복합 산화물을 포함할 수 있다. 상기 복합 산화물의 x값은 0.3 내지 0.8일 수 있다. 여기서 x값이 너무 작으면 SiO2와 주성분인 BaTiO3가 반응함으로써 유전 특성이 저하될 수 있다. 반대로 x값이 너무 크면 융점이 높아져 소성과 관련된 특성이 열화될 수 있다.The dielectric composition according to embodiments of the present invention may include, as a sixth auxiliary component, at least one selected from the group consisting of an oxide of Si element, a carbonate of Si element, and a glass including Si element. Preferably, the sixth auxiliary component may include a composite oxide represented by Ba x Ca 1-x SiO 3 (wherein x is 0.3 to 0.8). The x value of the composite oxide may be 0.3 to 0.8. Here, if the x value is too small, dielectric properties may be deteriorated due to a reaction between SiO 2 and the main component BaTiO 3. On the other hand, if the x value is too large, the melting point may increase, which may deteriorate properties related to sintering.
제6 부성분은 상기 모재 주성분 100몰부에 대하여 0.1 내지 5몰부 이하로 포함될 수 있다. 제6 부성분의 함량이 0.1몰부 미만인 경우 온도에 따른 커패시턴스의 변화율이 증가할 수 있다. 반대로, 제6 부성분의 함량이 5몰부를 초과하여 포함되는 경우 소결성 및 치밀도 저하, 2차 상 생성 등의 문제가 있을 수 있어 바람직하지 못하다.The sixth auxiliary component may be included in an amount of 0.1 to 5 mol parts based on 100 mol parts of the above-mentioned parent material main component. If the content of the sixth auxiliary component is less than 0.1 mol parts, the rate of change in capacitance depending on the temperature may increase. On the other hand, if the content of the sixth auxiliary component exceeds 5 mol parts, problems such as a decrease in sinterability and density and the formation of secondary phases may occur, which is not preferable.
이하, 구체적인 실시예 및 비교예를 가지고 본 발명의 구성 및 효과를 보다 상세히 설명하지만, 이들 실시예는 단지 본 발명을 보다 명확하게 이해시키기 위한 것일 뿐 본 발명의 범위를 한정하고자 하는 것은 아니다.Hereinafter, the configuration and effects of the present invention will be described in more detail with specific examples and comparative examples, but these examples are only intended to make the present invention more clearly understood and are not intended to limit the scope of the present invention.
유전체층을 형성하기 위한 출발 물질로서 주성분 BaTiO3 분말을 준비하고, 부성분으로서 Yb2O3, BaZrO3, Y2O3, MgCO3, V2O5, MnO2, Ba0.6Ca0.4SiO3를 각각 준비하였다. 여기서, 주성분을 포함하는 모재 분말인 BaTiO3 혼합 고용체 분말은 다음과 같이 고상법을 적용하여 제조하였다.As a starting material for forming a dielectric layer, main component BaTiO 3 powder was prepared, and Yb 2 O 3 , BaZrO 3 , Y 2 O 3 , MgCO 3 , V 2 O 5 , MnO 2 , Ba 0.6 Ca 0.4 SiO 3 were prepared as secondary components, respectively. Here, BaTiO 3 mixed solid solution powder, which is a parent powder including the main component, was manufactured by applying a solid-state method as follows.
출발원료는 BaCO3 및 TiO2이다. 이들 출발원료 파우더를 볼밀로 혼합하고 900~1000℃ 범위에 하소하여 주성분 모재 분말을 준비하였다. 주성분 모재 분말에 부성분 첨가제 파우더를 표 2와 같은 성분 비율로 혼합한 후, 주성분과 부성분이 포함된 원료 분말을 지르코니아 볼을 혼합/분산 메디아로 사용하고 에탄올/톨루엔과 분산제 및 바인더를 혼합하여, 소정 시간(예, 20시간) 동안 볼밀링 하였다.The starting materials are BaCO 3 and TiO 2. These starting material powders were mixed in a ball mill and calcined in the range of 900 to 1000°C to prepare the main component matrix powder. After mixing the auxiliary component additive powders with the main component matrix powder in the ingredient ratios shown in Table 2, the raw material powders containing the main and auxiliary components were ball milled using zirconia balls as a mixing/dispersing medium, and ethanol/toluene, a dispersant, and a binder for a predetermined time (e.g., 20 hours).
제조된 슬러리는 닥터 블레이드 방식의 코터를 이용하여 10㎛의 두께로 성형시트를 제조하고, 이 성형시트에 Ni 내부전극을 인쇄하였다. 상하 커버는 커버용 시트를 25층으로 적층하여 제작하였고, 21층의 인쇄된 활성시트를 가압하며 적층하여 압착바(bar)를 제작하였다. 압착바는 절단기를 이용하여 3225(길이Х폭Х두께가 3.2mmХ2.5mmХ2.5mm) 크기의 칩으로 절단하였다.The manufactured slurry was molded into a 10㎛ thick sheet using a doctor blade type coater, and Ni internal electrodes were printed on the molded sheet. The upper and lower covers were manufactured by laminating 25 layers of cover sheets, and 21 layers of printed active sheets were pressed and laminated to manufacture a press bar. The press bar was cut into chips of the size of 3225 (length X width X thickness 3.2 mm X 2.5 mm X 2.5 mm) using a cutter.
제작이 완료된 칩을 가소한 뒤에 환원 분위기(0.1% H2/99.9% N2, H2O/H2/N2 분위기)에서 1150℃~1350℃의 온도로 1시간 이상 소성한 후, 1000℃의 온도로 질소(N2) 분위기에서 재산화를 2시간 이상 실시하여 열처리하였다. After the manufactured chip was calcined, it was fired at a temperature of 1150 to 1350°C for more than 1 hour in a reducing atmosphere (0.1% H2 /99.9% N2 , H2O / H2 / N2 atmosphere), and then heat-treated by reoxidation in a nitrogen ( N2 ) atmosphere at a temperature of 1000°C for more than 2 hours.
소성된 칩에 대해 구리 페이스트를 이용하여 터미네이션 공정 및 전극 소성을 거쳐 외부전극을 완성하였다.The external electrode was completed by performing a termination process and electrode firing using copper paste on the fired chip.
상기와 같이 완성된 적층 세라믹 커패시터 시편에 대해 용량(유전율), 온도에 따른 정전용량의 변화(TCC) 및 소결 온도 등을 측정 및 평가하였다. 또한, 이와 더불어 상온 절연저항, 고온가속수명, 손실계수 등을 평가하였으나 기재하지는 않는다.As for the laminated ceramic capacitor specimens completed as above, the capacity (dielectric constant), temperature-dependent change in electrostatic capacitance (TCC), and sintering temperature were measured and evaluated. In addition, room temperature insulation resistance, high temperature accelerated life, and loss factor were evaluated, but are not described.
상온 정전용량은 LCR-meter를 이용하여 1kHz, AC 0.2 V/㎛ 조건에서 용량을 측정하였다. 정전용량과 적층 세라믹 커패시터(MLCC) 칩의 유전체 두께, 내부전극 면적, 적층수로부터 적층 세라믹 커패시터(MLCC) 칩의 유전율을 계산하였다.The room temperature capacitance was measured using an LCR meter under the conditions of 1 kHz and AC 0.2 V/㎛. The permittivity of the multilayer ceramic capacitor (MLCC) chip was calculated from the capacitance, dielectric thickness, internal electrode area, and number of layers of the multilayer ceramic capacitor (MLCC) chip.
온도에 따른 정전용량의 변화는 -55℃에서 150℃의 온도 범위에서 측정되었다. 해당 온도 범위에서, LCR-meter를 이용하여 1kHz, 1Vrms 조건에서 용량 변화를 측정하였다. 이 때, 25℃에서의 정전용량 대비 각 온도에서의 정전용량의 변화율(%)을 측정한다. 본 명세서에서는 150℃에서의 정전용량 변화를 기재하도록 한다. 150℃에서의 용량 변화율(Temperature Coefficient of Capacitance, TCC)이 ±15% 이내인 경우에는 양호로 판정하였고, 그 외에는 불량으로 판정하였다.The change in capacitance according to temperature was measured in the temperature range of -55℃ to 150℃. In the temperature range, the capacitance change was measured under the conditions of 1kHz, 1Vrms using an LCR-meter. At this time, the change rate (%) of the capacitance at each temperature is measured compared to the capacitance at 25℃. In this specification, the change in capacitance at 150℃ is described. If the change rate of capacitance (Temperature Coefficient of Capacitance, TCC) at 150℃ is within ±15%, it is judged as good, and otherwise, it is judged as bad.
아래 표 2는 비교예의 조성표이며, 표 3은 표 2에 명시된 조성에 해당하는 적층 세라믹 커패시터 칩의 특성을 나타낸다. 표 2에서 비교예1 내지 4는 제2 부성분인 BaZrO3를 첨가하지 않은 점에서 후술할 실시예들과 차이가 있다.Table 2 below is a composition table of comparative examples, and Table 3 shows the characteristics of multilayer ceramic capacitor chips corresponding to the compositions specified in Table 2. Comparative examples 1 to 4 in Table 2 differ from the examples described later in that the second auxiliary component, BaZrO 3 , was not added.
표 2의 비교예1 내지 4는 제3 부성분 Y의 함량이 0몰, 제4 부성분 Mg의 함량이 1.45몰, 제5 부성분 (V, Mn) 합의 함량이 0.25몰, 제6 부성분의 함량이 2.7몰로 고정되고, 제2 부성분이 첨가되지 않은 상태에서 제1 부성분 Yb의 함량을 변화시킨 샘플들을 나타내며, 표 3은 표 2의 비교예1 내지 4에 해당하는 시료의 특성을 나타낸다. 제1 부성분 Yb의 함량이 4.36몰 이하인 범위(비교예1~2)에서는 고온 TCC(150℃)가 ±15%를 벗어나 온도 변화에 취약하였다. 제1 부성분 Yb의 함량이 8.72몰 이상인 범위(비교예3~4)에서는 고온 TCC가 ±15% 이내로 X8R 규격을 만족하였다. 그러나 Yb의 함량이 높아질수록 용량 변화율이 낮아지지만, 소결 온도가 높아져 Ni 내부 전극이 손상되는 문제 등이 발생한다는 문제점이 있다. 본 발명의 비교예들에 따르면, 제1 부성분 Yb의 함량이 10몰 이상인 경우에는 1300℃ 이상의 소성온도가 요구된다고 할 수 있다.Comparative Examples 1 to 4 in Table 2 represent samples in which the content of the third auxiliary component Y was fixed at 0 mol, the content of the fourth auxiliary component Mg was fixed at 1.45 mol, the content of the sum of the fifth auxiliary component (V, Mn) was fixed at 0.25 mol, and the content of the sixth auxiliary component was fixed at 2.7 mol, and the content of the first auxiliary component Yb was changed while the second auxiliary component was not added, and Table 3 represents the characteristics of samples corresponding to Comparative Examples 1 to 4 in Table 2. In the range where the content of the first auxiliary component Yb was 4.36 mol or less (Comparative Examples 1 to 2), the high-temperature TCC (150°C) exceeded ±15% and was vulnerable to temperature change. In the range where the content of the first auxiliary component Yb was 8.72 mol or more (Comparative Examples 3 to 4), the high-temperature TCC satisfied the X8R specification within ±15%. However, there is a problem that as the content of Yb increases, the rate of change in capacity decreases, but the sintering temperature increases, causing damage to the Ni internal electrode. According to comparative examples of the present invention, when the content of the first auxiliary component Yb is 10 moles or more, a sintering temperature of 1300°C or higher is required.
이를 해결하기 위해, 본 발명의 실시예들에 따른 유전체 조성물은 BaTiO3에 Yb2O3와 BaZrO3를 첨가하여 15% 내지 -15%의 범위 이내에서 변화해야 하는 X8R의 기준을 충족하면서도 소결 온도 상승을 억제할 수 있는 유전체 조성물을 제공하는 것을 특징으로 한다. To solve this, the dielectric composition according to embodiments of the present invention is characterized by providing a dielectric composition capable of suppressing an increase in sintering temperature while satisfying the criterion of X8R that must vary within a range of 15% to -15% by adding Yb 2 O 3 and BaZrO 3 to BaTiO 3.
아래 표 4는 실시예의 조성표이며, 표 5는 표 4에 명시된 조성에 해당하는 적층 세라믹 커패시터 칩의 특성을 나타낸다. 표 4에서 실시예2 내지 6은 제2 부성분인 BaZrO3를 첨가한 점에서 상술한 비교예들과 차이가 있다.Table 4 below is a composition table of examples, and Table 5 shows the characteristics of a multilayer ceramic capacitor chip corresponding to the composition specified in Table 4. In Table 4, Examples 2 to 6 differ from the comparative examples described above in that the second auxiliary component, BaZrO 3 , is added.
표 4의 실시예1 내지 6은 제1 부성분 Yb의 함량이 2몰, 제3 부성분 Y의 함량이 0몰, 제4 부성분 Mg의 함량이 1.45몰, 제5 부성분 (V, Mn) 합의 함량이 0.25몰, 제6 부성분의 함량이 2.7몰로 고정된 상태에서, 제2 부성분의 함량을 변화시킨 샘플들을 나타내며, 표 5는 표 4의 실시예1 내지 6에 해당하는 시료의 특성을 나타낸다. 제2 부성분의 함량이 0몰인 경우(실시예1)에는 고온 TCC(150℃)가 ±15%를 벗어나 온도 변화에 취약한 문제가 있다. 또한, 제2 부성분의 함량이 3몰을 초과하는 경우(실시예6)에도 고온 TCC(150℃)가 ±15%를 벗어나 온도 변화에 취약한 문제가 나타났다. 제2 부성분의 함량이 0몰을 초과하고(예컨대, 0.1몰 이상) 3몰 이하인 범위(실시예2~5)인 범위에서는 고온 TCC가 ±15% 이내로 나타나 X8R 규격을 만족하는 것으로 나타났다. 따라서, 제2 부성분의 적정 함량 범위는 모재 주성분 100몰부에 대해 0.1 내지 3몰부 이하라고 할 수 있다.Examples 1 to 6 in Table 4 represent samples in which the content of the second auxiliary component was changed while the content of the first auxiliary component Yb was fixed at 2 mol, the content of the third auxiliary component Y was fixed at 0 mol, the content of the fourth auxiliary component Mg was fixed at 1.45 mol, the content of the sum of the fifth auxiliary component (V, Mn) was fixed at 0.25 mol, and the content of the sixth auxiliary component was fixed at 2.7 mol. Table 5 shows the characteristics of the samples corresponding to Examples 1 to 6 in Table 4. When the content of the second auxiliary component was 0 mol (Example 1), there was a problem that the high temperature TCC (150°C) exceeded ±15% and the sample was vulnerable to temperature changes. In addition, when the content of the second auxiliary component exceeded 3 mol (Example 6), there was a problem that the high temperature TCC (150°C) exceeded ±15% and the sample was vulnerable to temperature changes. In the range where the content of the second auxiliary component exceeds 0 mol (e.g., 0.1 mol or more) and is 3 mol or less (Examples 2 to 5), the high temperature TCC was found to be within ±15%, satisfying the X8R specification. Therefore, the appropriate content range of the second auxiliary component can be said to be 0.1 to 3 mol parts or less with respect to 100 mol parts of the main component of the parent material.
실시예2~5는 제2 부성분인 BaZrO3가 첨가됨에 따라 고온 TCC가 ±15% 이내로 나타나 X8R의 기준을 충족하면서도 소결 온도가 1245℃ 내지 1265℃ 이내의 범위인 것으로 나타났다. 즉, 실시예2~5의 소결 온도는 상술한 비교예3~4의 소결 온도인 1290℃ 내지 1310℃의 범위보다 낮아진 것으로 나타났다. 이와 같이, 유전체 조성물에 제2 부성분인 BaZrO3가 첨가됨에 따라 제1 부성분인 Yb2O3의 함량을 높이지 않더라도 X8R의 기준을 충족할 수 있고, 아울러 Yb2O3의 함량을 낮출 수 있기 때문에 소결 온도 상승을 억제하는 효과가 있음을 알 수 있다.Examples 2 to 5 showed a high temperature TCC within ±15% when the second auxiliary component, BaZrO 3 , was added, thereby satisfying the X8R standard, while having a sintering temperature within the range of 1245°C to 1265°C. That is, the sintering temperatures of Examples 2 to 5 were found to be lower than the sintering temperatures of 1290°C to 1310°C of Comparative Examples 3 to 4 described above. In this way, it can be seen that when the second auxiliary component, BaZrO 3 , is added to the dielectric composition, the X8R standard can be satisfied even without increasing the content of the first auxiliary component, Yb 2 O 3 , and at the same time, since the content of Yb 2 O 3 can be lowered, there is an effect of suppressing an increase in the sintering temperature.
표 6의 실시예7 내지 11은 제2 부성분의 함량이 1.5몰, 제3 부성분 Y의 함량이 0몰, 제4 부성분 Mg의 함량이 1.45몰, 제5 부성분 (V, Mn) 합의 함량이 0.25몰, 제6 부성분의 함량이 2.7몰로 고정된 상태에서, 제1 부성분의 함량을 변화시킨 샘플들을 나타내며, 표 7은 표 6의 실시예7 내지 11에 해당하는 시료의 특성을 나타낸다. 제1 부성분 Yb의 함량이 0몰인 경우(실시예7)에는 고온 TCC(150℃)가 ±15%를 벗어나 온도 변화에 취약한 문제가 있다. 또한, 제1 부성분 Yb의 함량이 6몰을 초과하는 경우(실시예11)에도 고온 TCC(150℃)가 ±15%를 벗어나 온도 변화에 취약한 문제가 나타났다. 제1 부성분 Yb의 함량이 0몰을 초과하고(예컨대, 0.2몰 이상) 6몰 이하인 범위(실시예8~10)인 범위에서는 고온 TCC가 ±15% 이내로 나타나 X8R 규격을 만족하는 것으로 나타났고, 소결 온도도 비교예들에 비해 낮은 것으로 나타났다. 따라서, 제1 부성분 Yb의 적정 함량 범위는 모재 주성분 100몰부에 대해 원소비율로 0.2 내지 6몰부 이하라고 할 수 있다.Examples 7 to 11 in Table 6 represent samples in which the content of the first auxiliary ingredient was changed while the content of the second auxiliary ingredient was fixed at 1.5 mol, the content of the third auxiliary ingredient Y was fixed at 0 mol, the content of the fourth auxiliary ingredient Mg was fixed at 1.45 mol, the content of the sum of the fifth auxiliary ingredient (V, Mn) was fixed at 0.25 mol, and the content of the sixth auxiliary ingredient was fixed at 2.7 mol. Table 7 represents the characteristics of the samples corresponding to Examples 7 to 11 in Table 6. When the content of the first auxiliary ingredient Yb was 0 mol (Example 7), there was a problem that the high temperature TCC (150°C) exceeded ±15% and the samples were vulnerable to temperature changes. In addition, when the content of the first auxiliary ingredient Yb exceeded 6 mol (Example 11), there was a problem that the high temperature TCC (150°C) exceeded ±15% and the samples were vulnerable to temperature changes. In the range where the content of the first auxiliary component Yb exceeds 0 mol (e.g., 0.2 mol or more) and is 6 mol or less (Examples 8 to 10), the high temperature TCC was found to be within ±15%, satisfying the X8R specification, and the sintering temperature was also found to be lower than that of the comparative examples. Therefore, the appropriate content range of the first auxiliary component Yb can be said to be 0.2 to 6 mol parts in element ratio with respect to 100 mol parts of the main component of the base material.
표 8의 실시예12 내지 14는 제1 부성분 Yb의 함량이 2몰, 제2 부성분의 함량이 1.5몰, 제4 부성분 Mg의 함량이 1.45몰, 제5 부성분 (V, Mn) 합의 함량이 0.25몰, 제6 부성분의 함량이 2.7몰로 고정된 상태에서, 제3 부성분 Y의 함량을 변화시킨 샘플들을 나타내며, 표 9는 표 8의 실시예12 내지 14에 해당하는 시료의 특성을 나타낸다. 제3 부성분 Y의 함량이 2몰을 초과하는 경우(실시예14)에는 고온 TCC(150℃)가 ±15%를 벗어나 온도 변화에 취약한 문제가 나타났다. 제3 부성분 Y의 함량이 2몰 이하인 범위(실시예12~13)인 범위에서는 고온 TCC가 ±15% 이내로 나타나 X8R 규격을 만족하는 것으로 나타났고, 소결 온도도 비교적 낮은 것으로 나타났다. 따라서, 제3 부성분 Y의 적정 함량 범위는 모재 주성분 100몰부에 대해 원소비율로 2몰부 이하라고 할 수 있다.Examples 12 to 14 in Table 8 represent samples in which the content of the third auxiliary component Y was changed while the content of the first auxiliary component Yb was fixed at 2 mol, the content of the second auxiliary component was fixed at 1.5 mol, the content of the fourth auxiliary component Mg was fixed at 1.45 mol, the content of the sum of the fifth auxiliary component (V, Mn) was fixed at 0.25 mol, and the content of the sixth auxiliary component was fixed at 2.7 mol. Table 9 represents the characteristics of the samples corresponding to Examples 12 to 14 in Table 8. When the content of the third auxiliary component Y exceeded 2 mol (Example 14), the high-temperature TCC (150°C) exceeded ±15%, which was a problem in that it was vulnerable to temperature changes. In the range where the content of the third auxiliary component Y was 2 mol or less (Examples 12 to 13), the high-temperature TCC was found to be within ±15%, satisfying the X8R specification, and the sintering temperature was also found to be relatively low. Therefore, the appropriate content range of the third auxiliary component Y can be said to be 2 molar parts or less in element ratio with respect to 100 molar parts of the main component of the parent material.
본 발명은 상술한 실시형태 및 첨부된 도면에 의해 한정되는 것이 아니며, 첨부된 청구범위에 의해 한정된다. 따라서, 청구범위에 기재된 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 다양한 형태의 치환, 변형 및 변경이 가능하다는 것은 당 기술분야의 통상의 지식을 가진 자에게는 자명할 것이며, 이 또한 첨부된 청구범위에 기재된 기술적 사상에 속한다 할 것이다.The present invention is not limited by the above-described embodiments and the attached drawings, but is limited by the appended claims. Accordingly, it will be apparent to those skilled in the art that various substitutions, modifications, and changes are possible within the scope that does not depart from the technical idea of the present invention described in the claims, and this also falls within the technical idea described in the appended claims.
Claims (9)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020230053134A KR20240156692A (en) | 2023-04-24 | 2023-04-24 | Ceramic composition having high temperature stability |
KR10-2023-0053134 | 2023-04-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024225690A1 true WO2024225690A1 (en) | 2024-10-31 |
Family
ID=93256766
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2024/005201 WO2024225690A1 (en) | 2023-04-24 | 2024-04-18 | Dielectric composition with high-temperature stability |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR20240156692A (en) |
WO (1) | WO2024225690A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004345927A (en) * | 2003-05-26 | 2004-12-09 | Murata Mfg Co Ltd | Method for manufacturing irreducible dielectric ceramic, irreducible dielectric ceramic, and laminated ceramic capacitor |
KR20080052691A (en) * | 2003-07-09 | 2008-06-11 | 티디케이가부시기가이샤 | Laminated ceramic parts and manufacturing method |
JP2013049587A (en) * | 2011-08-30 | 2013-03-14 | Kyocera Corp | Dielectric porcelain and capacitor |
KR20160073121A (en) * | 2014-12-16 | 2016-06-24 | 삼성전기주식회사 | Low temperature sintering dielectric composition and multilayer cderamic capacitor |
JP2017024969A (en) * | 2015-07-16 | 2017-02-02 | 国立臺北科技大學 | Ceramic capacitor dielectric material |
-
2023
- 2023-04-24 KR KR1020230053134A patent/KR20240156692A/en active Pending
-
2024
- 2024-04-18 WO PCT/KR2024/005201 patent/WO2024225690A1/en unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004345927A (en) * | 2003-05-26 | 2004-12-09 | Murata Mfg Co Ltd | Method for manufacturing irreducible dielectric ceramic, irreducible dielectric ceramic, and laminated ceramic capacitor |
KR20080052691A (en) * | 2003-07-09 | 2008-06-11 | 티디케이가부시기가이샤 | Laminated ceramic parts and manufacturing method |
JP2013049587A (en) * | 2011-08-30 | 2013-03-14 | Kyocera Corp | Dielectric porcelain and capacitor |
KR20160073121A (en) * | 2014-12-16 | 2016-06-24 | 삼성전기주식회사 | Low temperature sintering dielectric composition and multilayer cderamic capacitor |
JP2017024969A (en) * | 2015-07-16 | 2017-02-02 | 国立臺北科技大學 | Ceramic capacitor dielectric material |
Also Published As
Publication number | Publication date |
---|---|
KR20240156692A (en) | 2024-10-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3760364B2 (en) | Dielectric porcelain composition and electronic component | |
KR100341442B1 (en) | Monolithic ceramic capacitors | |
KR100259321B1 (en) | Dielectric ceramic composition and monolitic ceramic capacitor using the same | |
EP1043739B1 (en) | Multilayer ceramic chip capacitor wiht high reliability compatible with nickel electrodes | |
KR100326951B1 (en) | Dielectric ceramic composition and monolithic ceramic capacitor | |
US7678724B2 (en) | Electronic device, dielectric ceramic composition and the production method | |
CN101238080B (en) | Dielectric ceramic, process for producing the same, and laminated ceramic capacitor | |
KR100438517B1 (en) | Reduction-Resistant Dielectric Ceramic Compact and Laminated Ceramic Capacitor | |
JP3024536B2 (en) | Multilayer ceramic capacitors | |
KR100631995B1 (en) | Low-temperature firing dielectric ceramic composition and multilayer ceramic capacitor using the same | |
JP3039397B2 (en) | Dielectric ceramic composition and multilayer ceramic capacitor using the same | |
KR100256199B1 (en) | Monolithic ceramic capacitor | |
JP3161278B2 (en) | Dielectric porcelain composition | |
KR100375719B1 (en) | Dielectric Ceramic Composition and Monolithic Ceramic Capacitor | |
JPH09171938A (en) | Multilayered ceramic capacitor | |
JP4483659B2 (en) | Electronic component, dielectric ceramic composition and method for producing the same | |
KR20160073121A (en) | Low temperature sintering dielectric composition and multilayer cderamic capacitor | |
US7898793B2 (en) | Laminated ceramic capacitor | |
EP1767507B1 (en) | Dielectric ceramic composition and laminated ceramic capacitor | |
KR100271727B1 (en) | Monolithic Ceramic Capacitors | |
KR100271101B1 (en) | Monolithic ceramic capacitor | |
US20060234854A1 (en) | Dielectric porcelain composition and electronic part | |
WO2024225690A1 (en) | Dielectric composition with high-temperature stability | |
WO2024112052A1 (en) | Dielectric composition with high-temperature stability | |
WO2024232707A1 (en) | Dielectric composition with high-temperature stability |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 24797346 Country of ref document: EP Kind code of ref document: A1 |