WO2024225307A1 - Balancer and method for adjusting rotation balance - Google Patents
Balancer and method for adjusting rotation balance Download PDFInfo
- Publication number
- WO2024225307A1 WO2024225307A1 PCT/JP2024/016041 JP2024016041W WO2024225307A1 WO 2024225307 A1 WO2024225307 A1 WO 2024225307A1 JP 2024016041 W JP2024016041 W JP 2024016041W WO 2024225307 A1 WO2024225307 A1 WO 2024225307A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- weight
- weights
- groove
- rotating body
- weight holder
- Prior art date
Links
- 238000000034 method Methods 0.000 title abstract description 11
- 238000005259 measurement Methods 0.000 claims description 75
- 238000003825 pressing Methods 0.000 claims description 26
- 230000002093 peripheral effect Effects 0.000 claims description 22
- 235000012489 doughnuts Nutrition 0.000 claims 1
- 230000002265 prevention Effects 0.000 description 5
- 238000000227 grinding Methods 0.000 description 4
- 230000035945 sensitivity Effects 0.000 description 3
- 230000007423 decrease Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000003754 machining Methods 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
Images
Definitions
- the present invention relates to a balancer that adjusts the rotational balance of a rotating body and a method for adjusting the rotational balance.
- a balancer is used to adjust the rotational balance, i.e. to correct the imbalance in the mass distribution of the rotating body.
- a method is known in which multiple screw holes are provided at regular intervals on the end surface of the spindle in the direction of rotation, and the position of the screw hole into which the set screw that acts as a weight is inserted and screwed, and the weight (mass) of the set screw are changed to adjust the rotation balance (see, for example, Patent Document 1). Also, a method is known in which multiple screw holes are provided at regular intervals on the circumferential surface of the tool holder in the direction of rotation, and the rotation balance is adjusted in a similar manner to the above (see, for example, Patent Document 2).
- the positions and number of screw holes into which the set screws that act as weights are attached are predetermined, so there is a limit to how much the imbalance in the mass distribution of the rotating body can be corrected, and vibrations of the rotating body cannot be sufficiently suppressed.
- the length of the set screws inserted into the rotating body changes depending on the weight, which causes changes in the mass distribution of the entire rotating body including the set screws, making it difficult to accurately correct the state.
- the present invention aims to provide a balancer and a method for adjusting rotational balance that can adjust the rotational balance of a rotating body with high precision.
- the balancer of the present invention is a balancer for adjusting the rotational balance of a rotating body, and is provided with a plurality of end surface weights, a doughnut-shaped weight holder to which the plurality of end surface weights are attached and which rotates coaxially integrally with the rotating body, a first groove formed on the end surface of the weight holder and formed in an annular shape along the direction of rotation of the weight holder, within which the plurality of end surface weights can slide freely, and a fixing portion for fixing the plurality of end surface weights at any position within the first groove, and is provided on a spindle as the rotating body, or on a tool holder which can be detachably attached to the spindle.
- the balancer of the present invention is a balancer for adjusting the rotational balance of a rotating body, and is provided with: a plurality of end surface weights; a doughnut plate-shaped weight holder to which the plurality of end surface weights are attached and which rotates coaxially integrally with the rotating body; a first groove formed on the end surface of the weight holder and formed in an annular shape along the direction of rotation of the weight holder, within which the plurality of end surface weights can slide freely; and a doughnut plate-shaped pressing plate whose outer diameter is larger than and smaller than the inner diameter of the first groove, and the pressing plate is disposed coaxially with the weight holder on the end surface of the weight holder, and presses and fixes a portion of each of the plurality of end surface weights inside the first groove with its peripheral portion.
- the method for adjusting the rotational balance of the present invention uses a balancer that adjusts the rotational balance of a rotating body by changing the angular position of a plurality of weights arranged on a weight holder that rotates coaxially with the rotating body, using a spindle or a tool holder that can be detachably attached to the spindle as the rotating body, and measures the unbalance state of the rotating body when the rotating body is rotated with the plurality of weights arranged at equal intervals in the rotation direction of the weight holder, and the unbalance state of the rotating body when the rotating body is rotated with the position of one of the plurality of weights shifted from the equally spaced arrangement state, and determines an angular position that corrects the unbalance using each unbalance state of the rotating body, and a second measurement step that measures the unbalance state of the rotating body by arranging the plurality of weights at an angular position that corrects the rotational unbalance of the rotating body obtained based on the unbalance state
- the balancer of the present invention adjusts the rotational balance of the rotor by fixing multiple end surface weights in a first groove formed in the end surface of a doughnut-shaped weight holder that rotates coaxially with the rotor, making it possible to adjust the rotational balance of the rotor with high precision.
- multiple end weights are placed in a first groove formed in the weight holder, and the multiple end weights are fixed by pressing the peripheral portion with a pressing plate whose outer diameter is larger than the inner diameter of the first groove but smaller than the outer diameter. This prevents the end weights from falling off and allows the end weights to be fixed while being exposed so that they can move.
- the unbalance state of the rotating body is measured in a state where the multiple weights are arranged at equal intervals in the rotational direction of the weight holder and in a state where the position of one of the multiple weights is shifted, and an angular position for correcting the unbalance is determined.
- FIG. 2 is a perspective view from below showing a balancer attached to a spindle of the vertical machining center according to the first embodiment.
- FIG. 4 is an exploded perspective view of the balancer, seen from below.
- FIG. 2 is a perspective view from below showing the balancer in an assembled state.
- 11 is a cross-sectional view of a main portion showing a state in which a weight protrudes from a mounting surface portion.
- FIG. 13 is a perspective view showing a fall-off prevention plate provided on the upper surface of the weight holder.
- FIG. FIG. 13 is a perspective view from below showing an example in which a balancer is attached to a tool holder.
- FIG. 11 is a perspective view showing an example in which a balancer is attached to a spindle of a lathe.
- FIG. 11 is a perspective view showing a balancer according to a second embodiment.
- 4 is a cross-sectional view of a main portion showing the cross-sectional shape of a groove provided on the peripheral surface of a weight holder and a weight placed in the groove.
- FIG. FIG. 13 is a cross-sectional view of a main portion showing an example in which the weight holder is made up of two members. 13 is a cross-sectional view of a main portion showing an example in which two grooves are provided on the adjustment surface of the weight holder.
- FIG. 13 is a cross-sectional view of a main portion showing an example in which grooves are provided on both sides of a weight holder as adjustment surfaces.
- a balancer 10 is attached to a main shaft (spindle) 12 as a rotating body, and adjusts the rotational balance of the main shaft 12, i.e., corrects imbalance (unbalanced mass distribution) around a rotation axis Z.
- the balancer 10 is suitable for precisely adjusting the rotational balance of a rotating body such as the main shaft 12 that rotates at a high speed of, for example, 10,000 rpm (10,000 revolutions per minute) or more.
- the spindle 12 is that of a machine tool, such as a vertical machining center, protrudes downward from the spindle head 14, and rotates around the rotation axis Z.
- the spindle head 14 is equipped with a bearing that rotatably supports the spindle 12, a drive mechanism that rotates the spindle 12, a clamping mechanism that clamps the tool holder 15, and the like.
- the balancer 10 is attached to the end of the spindle 12 protruding from the spindle head 14 (the lower end in this example) so as to rotate together with the spindle 12, and corrects any imbalance in the spindle 12.
- the balancer 10 is fixed to the exposed portion of the spindle 12 protruding from the spindle head 14, but it may also be provided on the spindle rotor of the spindle 12 housed in the spindle head 14. Also, in this example, a configuration is described in which the spindle 12 rotates around a vertical rotation axis Z, but the rotation axis Z may also be horizontal.
- a tool holder 15 with a tool such as a drill or end mill (not shown) attached thereto is replaceably attached to the spindle 12.
- the tool holder 15 has a tool fixed to the end opposite the shank 15a.
- a fitting hole 12a is provided inside the spindle 12, and the fitting hole 12a opens to the lower end surface of the spindle 12.
- the tool holder 15 is fixed to the spindle 12 by fitting the shank 15a provided at the upper part of the tool holder 15 into the fitting hole 12a and clamping it. This causes the tool to rotate integrally with the spindle 12.
- FIG. 2 shows the components that make up the balancer 10 disassembled
- Figure 3 shows the components assembled.
- the balancer 10 is composed of weight holders 21, weights 22, pressure plates 23, pressure screws (bolts) 24, mounting parts 25, etc. Except for the arrangement of the weights 22, the balancer 10 is formed in a shape that is rotationally symmetrical about the central axis (rotation axis Z) of the weight holder 21, which is three-fold symmetrical in this example. In this example, there are the same number of weights 22, pressure screws 24, and mounting parts 25, all of which are three.
- the weight holder 21 is a donut-shaped plate with a circular through-hole 27 that penetrates the thickness of the disk-shaped member in the center.
- the inner diameter of the through-hole 27 is the same as or slightly larger than the outer diameter of the main shaft 12, and the balancer 10 is fixed coaxially to the main shaft 12 that passes through the through-hole 27, and rotates coaxially with the main shaft 12.
- the through hole 27 is formed with a plurality of notches 28 that extend radially outward from the through hole 27 and are cut out in a circumferential direction.
- the notches 28 are formed at equal intervals in the rotation direction of the spindle 12, i.e., the rotation direction (circumferential direction) of the weight holder 21.
- the notches 28 are provided at equal intervals, they do not have to be strictly equal, but it is preferable to make them as precisely equal as possible in order not to significantly disrupt the rotation balance of the spindle 12 by the balancer 10.
- three notches 28 are formed at intervals of 120° around the rotation axis Z.
- the mounting parts 25 are fitted into each of the notches 28.
- Each mounting part 25 is composed of mounting pieces 25a, 25b that, when assembled, form a block shape that is approximately the same shape as the notch 28, and a set screw 25c.
- the set screw 25c is a hexagon socket set screw (hollow set, set screw).
- Attachment piece 25a is roughly U-shaped along three sides of cutout 28, and has a recess that opens toward through-hole 27.
- Attachment piece 25b has the same shape as the recess of attachment piece 25a, and is fitted into the recess so as to be movable in the radial direction of weight holder 21 relative to attachment piece 25a.
- a screw hole 29 that divides attachment piece 25a and attachment piece 25b is formed at the boundary between attachment pieces 25a and 25b along the circumferential direction of weight holder 21.
- the mounting pieces 25a and 25b are fitted into the notch 28 with the spindle 12 passing through the through hole 27.
- the set screw 25c is screwed into the threaded hole 29 while widening the threaded hole 29 deeper than a predetermined depth, i.e., while sliding the mounting piece 25a outward and the mounting piece 25b toward the spindle 12 in the radial direction of the weight holder 21.
- the mounting piece 25b presses against the outer circumferential surface of the spindle 12 in the radial direction of the weight holder 21, and the mounting piece 25a presses against the inner surface of the notch 28 facing the outer circumferential surface of the spindle 12, fixing the weight holder 21 to the spindle 12.
- the lower surface which is one end surface of the weight holder 21, serves as an adjustment surface 21a in which a groove 31 is formed.
- a groove 31 is formed in an annular shape along the rotational direction of the weight holder 21 at a position on the outer periphery side of the cutout portion 28, and a scale 33 is engraved on the portion outside this groove 31.
- the portion inside the groove 31 of the adjustment surface 21a serves as an attachment surface portion 34 for attaching the pressure plate 23.
- the groove 31 as the first groove has a flat bottom surface, and the center side surface on the rotation axis Z side and the outer periphery side surface on the outer periphery side of the weight holder 21 are shaped to rise vertically from the bottom surface.
- the scale 33 indicates the rotation center of the weight holder 21, i.e., the position around the rotation axis Z (hereinafter referred to as the angular position), as an angle centered on the rotation axis Z, and has scale lines engraved in increments of 1°, for example.
- the weights 22 can be fixed at a predetermined angular position based on this scale 33.
- the scale 33 has numbers engraved near the scale lines for arranging the weights 22 at equal intervals, that is, the angular positions of each angle (hereinafter referred to as the reference angle) when arranging the weights at equal intervals when correcting the imbalance by opening angle calculation (opening angle calculation balancing), that is, the multiple weights 22 are arranged at equal intervals.
- numbers indicating 0°, 120°, and 240° are engraved near the scale lines that are equal intervals (120° intervals) when three weights 22 are used. Note that in Figures 2 and 3, only the number "0" for the reference angle "0°" is shown. When placing the weights 22 at equal intervals, they do not have to be spaced exactly at equal intervals.
- the balancer 10 is provided with three weights 22 as end weights.
- Each weight 22 is disposed in a groove 31.
- the weight 22 has a rectangular cross-sectional shape along the radial direction of the weight holder 21, and both the upper surface 22a that contacts the bottom surface of the groove 31 and the lower surface 22b (see FIG. 4) are flat.
- the weight 22 has an arc-like shape in a plan view that follows the groove 31.
- the inner circumferential surface of the weight 22 has approximately the same radius of curvature as the center side surface of the groove 31, and the outer circumferential surface of the weight 22 has approximately the same radius of curvature as the outer circumferential side surface of the groove 31.
- the three weights 22 have the same shape and weight (mass).
- a center line 22c is engraved on the underside 22b of the weight 22, passing through the circumferential center of the weight holder 21 and extending in the radial direction. By aligning the center line 22c with the scale markings of the scale 33, the weight 22 can be fixed at a specified angular position.
- the pressure plate 23 is a doughnut plate with a circular opening 23a in the center of the disk.
- the pressure plate 23 is a fixing part that holds down and fixes each weight 22, and prevents them from falling out of the notch 28.
- the outer diameter of the pressure plate 23 is larger than the inner diameter of the groove 31 (the radius of curvature of the side surface on the center side, the outer diameter of the mounting surface portion 34) and smaller than the outer diameter of the groove 31 (the radius of curvature of the side surface on the outer periphery).
- the outer periphery of the weight 22 is exposed without being covered by the pressure plate 23, and the exposed part of the weight 22 can be pushed and slid, for example, making it easy to adjust the angular position of the weight 22.
- the inner diameter of the pressure plate 23 (diameter of the opening 23a) is the same as or slightly larger than the inner diameter of the through hole 27.
- the mounting surface portion 34 has a plurality of screw holes 35 formed at equal intervals in the rotational direction of the weight holder 21. The intervals between the plurality of screw holes 35 do not have to be strictly equal.
- the screw holes 35 are provided near the groove 31.
- the mounting surface portion 34 is divided into a first surface area 34a surrounding the periphery of the through hole 27 and a donut-shaped second surface area 34b outside the first surface area 34a, and the first surface area 34a protrudes slightly downward from the second surface area 34b.
- the screw holes 35 are formed in the second surface area 34b, and the first surface area 34a is located closer to the center than the position where the pressure screw 24 screwed into the screw hole 35 presses the pressure plate 23, as described below.
- Through holes 23c are formed in the pressure plate 23 at positions corresponding to the screw holes 35.
- the same number of screw holes 35 and through holes 23c are provided as the pressure screws 24.
- three screw holes 35 and through holes 23c are provided at intervals of 120° in the rotational direction of the weight holder 21, and the screw holes 35 are provided on the extensions of the 0°, 120°, and 240° graduation lines of the scale 33.
- the pressure plate 23 is coaxially assembled to the weight holder 21 by screwing the three pressure screws 24, which serve as first screws and pass through the through holes 23c, into the screw holes 35.
- the one on the extension of the 0° scale line of the scale 33 will be referred to as the first pressure screw 24, the one on the extension of the 120° scale line will be referred to as the second pressure screw 24, and the one on the extension of the 240° scale line will be referred to as the third pressure screw 24.
- the one whose angular position is fixed at 0° in the initial measurement described below will be referred to as the first weight 22
- the one whose angular position is fixed at 120° will be referred to as the second weight 22
- the one whose angular position is fixed at 240° will be referred to as the third weight 22.
- the pressure plate 23 also has through holes 23c formed at positions corresponding to the screw holes 29 of each mounting portion 25.
- the set screws 25c can be tightened or loosened, or inserted or removed from the screw holes 29, through the through holes 23c. Therefore, with the weight 22 and pressure plate 23 fixed to the weight holder 21, the balancer 10 can be attached to and detached from the spindle 12.
- the mounting surface portion 34 is divided into a first surface area 34a and a second surface area 34b, and the first surface area 34a protrudes further in the direction of the rotation axis Z (downward) than the second surface area 34b.
- the pressure plate 23 is attached to the weight holder 21 by screwing the pressure screw 24 through the through hole 23c into the screw hole 35, so that the area of the pressure plate 23 on the second surface area 34b side is pressed by the pressure screw 24, and the area of the pressure plate 23 on the center side is in close contact with the first surface area 34a.
- the weight 22 has a thickness (length in the direction of the rotation axis Z) greater than the depth of the groove 31, and protrudes in the direction of the rotation axis Z (downward) beyond the second surface region 34b of the mounting surface portion 34 that contacts the groove 31. That is, the weight 22 has a thickness such that the lower surface 22b protrudes in the direction of the rotation axis Z from the second surface region 34b as a protruding surface.
- the peripheral portion 23b of the pressure plate 23 protrudes from the mounting surface portion 34 (second surface region 34b) toward the groove 31. This allows the peripheral portion 23b to come into contact with the lower surface 22b of the weight 22 with a gap formed between the pressure plate 23 and the second surface region 34b when the pressure screw 24 is not tightened.
- the length of protrusion of the weight 22 from the second surface region 34b may be slight, for example, about 0.1 mm.
- the length of protrusion of the first surface region 34a from the second surface region 34b may also be slight, for example, approximately the same as the length of protrusion of the weight 22 from the second surface region 34b.
- the protrusion of the first surface region 34a and the weight 22 from the second surface region 34b is exaggerated.
- a gap is depicted between the pressure plate 23 and the mounting surface portion 34, but the pressure plate 23 and the second surface region 34b may come into contact with each other by tightening the pressure screw 24. The same applies to FIG. 11 and FIG. 12.
- the mounting surface portion 34 is divided into the first surface area 34a and the second surface area 34b of different heights and has a step as described above, but the mounting surface portion 34 may be a flat surface. In this case, a gap is formed between the mounting surface portion 34 and the pressing plate 23 when the pressing plate 23 comes into contact with each weight 22.
- the mounting surface portion 34 may be a flat surface and a step may be provided on the surface of the pressing plate 23 on the mounting surface portion 34 side, so that the step brings the pressing plate 23 into close contact with the first surface area 34a of the mounting surface portion 34, and a gap may be formed between the portion of the pressing plate 23 on the outer periphery side of the position of the pressing screw 24 and the second surface area 34b of the mounting surface portion 34.
- full tightening the state in which the pressure screw 24 is tightened to fix the nearby weight 22
- pre-tightening the state in which the pressure screw 24 is tightened or in this state after being loosened from this full tightening so that the nearby weight 22 can slide
- the balancer 10 fixes the weight 22 with the pressing plate 23, but the configuration of the fixing part for fixing the weight 22 is not limited to this.
- the weight 22 may be formed of two members and a set screw may be screwed into a screw hole provided in the two members to expand the weight 22 in its width direction (radial direction of the weight holder 21) within the groove 31.
- the weight 22 is fixed by pressing the center side and the outer circumferential side of the groove 31 in opposite directions.
- the configuration in which the weight 22 is fixed with the pressing plate 23 as in this example does not require the weight 22 to be divided or to have a screw hole, and the weight 22 can be miniaturized, which is advantageous in terms of adjusting with higher accuracy using a weight 22 with a small weight. Furthermore, since centrifugal force increases in proportion to the square of the speed, it is particularly useful to be able to use a miniaturized weight 22 in the main shaft 12 that rotates at high speed, etc., since it is necessary to correct minute deviations in mass distribution.
- This adjustment of the rotational balance of the spindle 12 is performed with the tool holder 15 not attached to the spindle 12.
- the imbalance is corrected by calculating the opening angle using three weights 22.
- a balance measuring machine such as a device called a field balancer, is used for the measurement, i.e., detection of the vibration value (vibration magnitude) and vibration phase of the spindle 12, and calculation of the setting position of the weights 22 including the opening angle calculation based on the vibration detection results.
- the balancer 10 with the three weights 22 placed in the grooves 31 is fixed to the spindle 12. It is also set up so that measurements can be taken with a balance measuring machine.
- the balance measuring machine is set up by attaching a vibration sensor (vibration pickup) to the spindle head 14 to detect the vibration of the spindle 12, and then attaching a reflective sticker to the spindle 12 to detect the rotation speed of the spindle 12 and use it as a reference position for the vibration phase, and placing a sensor to detect the reflective sticker close to the spindle 12.
- a vibration sensor vibration pickup
- the three weights 22 are slid to angular positions at equal intervals (120° intervals) and fixed, and the angular position and weight of each weight 22 are input to the balance measuring machine.
- the weights 22 are slid to the vicinity of the 0°, 120°, and 240° graduation lines of the scale 33, and then two of them, for example the second pressure screw 24 and the third pressure screw 24, are tightened to fully tighten.
- the weights 22 placed near the 0° angular position are finely adjusted to the 0° angular position, and then the first pressure screw 24 is fully tightened to fix the weights 22.
- the second pressure screw 24 is temporarily tightened, and the weights 22 placed near the 120° angular position are finely adjusted to the 120° angular position, and then the second pressure screw 24 is fully tightened to fix the weights 22.
- the third press screw 24 is temporarily tightened, and the weight 22 placed near the 240° angular position is finely adjusted to the 240° angular position, and then the third press screw 24 is fully tightened to fix the weight 22.
- the angular positions input to the balance measuring machine are 0°, 120°, and 240°. Note that the angular positions of each weight 22 may be specified by the balance measuring machine.
- the main shaft 12 After each weight 22 is fixed, the main shaft 12 is rotated at a predetermined rotational speed to perform an initial measurement. Through this initial measurement, the imbalance state (vibration value and vibration phase) of the main shaft 12 to which the balancer 10 is attached is obtained by the balance measuring machine as the measurement result of the initial measurement.
- the measurement results including this initial measurement can be displayed, for example, on the balance measuring machine.
- a trial measurement is performed.
- one weight 22 is shifted to the trial measurement angle position and fixed according to the instructions from the balance measuring machine.
- the first weight 22 is fixed at an angle position of 10°.
- the weight 22 to be shifted and fixed can be selected arbitrarily, and the trial measurement angle position can also be set arbitrarily within a predetermined range. In this case, the angular position of the shifted weight 22 is input into the balance measuring machine.
- the main shaft 12 After fixing the first weight 22 at the trial measurement angle position (10° in this example), the main shaft 12 is rotated at a predetermined rotation speed, and the unbalanced state of the main shaft 12 is obtained as the trial measurement result by the balance measuring machine.
- the balance measuring machine performs a calculation based on the initial measurement result and the angular position of each weight 22, the trial measurement result and the angular position of each weight 22, and the weight of each weight 22, and determines the angular position of each weight 22 to cancel out the vibration measured in the initial measurement, and displays that angular position.
- the angular position of each weight 22 is adjusted according to the new angular position of each weight 22 displayed on the balance measuring machine during measurement.
- a first residual measurement is performed with the balance measuring machine.
- the main shaft 12 is rotated at a predetermined rotation speed and the unbalance state of the main shaft 12 is obtained as a measurement result. Then, it is determined whether the unbalance state obtained by this residual measurement is within a predetermined allowable range, i.e., whether the vibration value of the main shaft 12 is below the target vibration value.
- the balance measuring machine performs a calculation based on the measurement results of the initial measurement and the angular position of each weight 22, the measurement results of the first residual measurement and the angular position of each weight 22, and the weight of each weight 22, to determine the angular position of each weight 22 to cancel out the vibrations measured in the initial measurement, and displays each of these angular positions.
- each weight 22 is slid and fixed to the angular position of each weight 22 displayed on the balance measuring machine after the first residual measurement as described above, and then a second residual measurement is performed.
- the second residual measurement the unbalanced state of the spindle 12 is obtained and displayed as a measurement result, as in the first residual measurement.
- the balance measuring machine performs a calculation based on the measurement result of the initial measurement and the angular position of each weight 22, the measurement result of the second residual measurement and the angular position of each weight 22, and the weight of each weight 22, and the angular position of each weight 22 is obtained to cancel out the vibration measured in the initial measurement, and the angular position is displayed.
- the angular position of each weight 22 is slid to the angular position displayed after the previous residual measurement and a residual measurement is performed, until the measured vibration value becomes equal to or less than the target vibration value.
- the balance measuring machine performs a calculation based on the result of that residual measurement, the result of the initial measurement, and the weight of each weight 22, and determines and displays the angular position of each weight 22 that cancels out the vibration measured in the initial measurement. Then, when the measured vibration value becomes equal to or less than the target vibration value, the adjustment of the rotational balance of the spindle 12 is completed.
- each weight 22 is adjusted based on the measurement results.
- the weights 22 are slid one by one to adjust the angular position, as in the case of the initial position adjustment. That is, for one weight 22 whose angular position is to be adjusted, the pressure screw 24 in its vicinity is loosened and temporarily tightened, the weight 22 is slid to a new angular position, and the temporarily tightened pressure screw 24 is fully tightened.
- each weight 22 whose angular position is to be adjusted is moved to a new angular position and fixed.
- the two weights 22 other than the weight 22 to be moved are fixed, so while one weight 22 is being moved, the other weight 22 does not move, and the position of each weight 22 can be easily and accurately adjusted. Also, since a part of the weight 22 is exposed and not hidden by the pressure plate 23, the weight 22 can be easily slid.
- each weight 22 can be slid within the groove 31 and fixed at any position, so the rotational balance of the main shaft 12 can be adjusted with even higher precision.
- the vibration sensor of a balance measuring machine has high sensitivity to vibrations in one direction (sensitive axis) and low sensitivity to vibrations in the direction perpendicular to that (lateral sensitivity), but by attaching the vibration sensor to an appropriate position on the spindle head 14 and adjusting it as described above, the balancer 10 can reduce both radial and thrust vibrations of the spindle 12.
- the vibration sensor When detecting vibrations in the radial direction, the vibration sensor is attached to the surface of the spindle head 14 perpendicular to the radial direction of the spindle 12, for example, so that its sensitive axis coincides with the radial direction of the spindle 12.
- the vibration sensor When detecting vibrations in the thrust direction, the vibration sensor is attached to the surface of the spindle head 14 perpendicular to the rotation axis Z, for example, so that its sensitive axis coincides with the thrust direction of the spindle 12 (the direction of the rotation axis Z).
- vibration sensors one attached to detect vibrations in the radial direction and the other attached to detect vibrations in the thrust direction, and connected to a balance measuring machine, and to select each of them one by one with the balance measuring machine to perform balance adjustment in each direction.
- the unbalance state of the spindle 12 may be intentionally changed using one test weight to measure the unbalance state, and based on the measurement result, three weights 22 may be arranged to correct the unbalance by calculating the opening angle.
- the spindle 12 is rotated with the three weights 22 removed from the balancer 10 to measure the unbalance state.
- a second preliminary measurement is performed using one weight 22 as a test weight.
- the weight 22 as a test weight is fixed, for example, at an angle position of 0°.
- the remaining two weights 22 are removed from the balancer 10.
- the spindle 12 After fixing the weight 22 at an angle position of 0°, the spindle 12 is rotated to obtain the unbalance state of the spindle 12 as the measurement result of the second preliminary measurement.
- the angular position of the weight 22 for correcting the unbalance obtained by the calculation of the balance measuring machine is obtained and displayed.
- the angular position of the weight 22 for correcting the imbalance is the angular position of the weight 22 for canceling the vibration measured in the first advance measurement, which is calculated by a calculation based on the measurement results of the first advance measurement, the measurement results of the second advance measurement, and the angular position and weight of the weight 22.
- the weight 22 may be fixed at an angular position of 120° or 240° instead of the angular position of 0°.
- the imbalance is corrected by calculating the opening angle.
- the three pressure screws 24 are loosened more than when provisionally tightened to create a gap between the pressure plate 23 and the weight holder 21, and the other two weights 22 are inserted into the groove 31 through the gap, and their respective angular positions are adjusted before being fixed.
- the weight 22 selected as the test weight among the three weights 22 is slid and fixed to the angular position obtained based on the measurement results of the second preliminary measurement.
- the remaining two weights 22 are positioned and fixed so that the three, including the weight 22 selected as the test weight, are equally spaced in the rotational direction of the weight holder 21 (120° in this example).
- the test weight 22 is fixed at an angular position of 5°, and the other two weights 22 are fixed at angular positions of 125° and 245°, respectively.
- the angular position of each weight 22 is input into the balance measuring machine; in the above example, 5°, 125°, and 245°, and the weight of each weight 22 is also input. After this, initial measurements and trial measurements are carried out in the same manner as above, and adjustments to the angular position of each weight 22 and residual measurements are repeated until the measured vibration value is below the target vibration value. This allows the rotational balance of the spindle 12 to be quickly adjusted so that the vibration is below the target vibration value.
- the balancer 10 is fixed to the spindle 12 with the adjustment surface 21a facing downward (toward the side opposite the spindle head 14), but when a gap can be secured between the balancer 10 and the spindle head 14 for adjusting the position of the weight 22, the balancer 10 may be fixed to the spindle 12 with the adjustment surface 21a facing upward (toward the spindle head 14 side).
- the adjustment surface 21a faces upward in this way, or when the gap between the surface of the weight holder 21 opposite the adjustment surface 21a and the spindle head 14 becomes large, it is preferable to provide a drop prevention plate 41 on the surface opposite the adjustment surface 21a, in this example, the upper surface 21b, as shown in FIG. 5.
- the drop prevention plate 41 is fixed to the upper surface 21b with a screw 42 so as to closely contact and cover the mounting portion 25 exposed on the upper surface 21b side. This prevents the mounting portion 25 from coming off the cutout portion 28 toward the upper surface 21b side.
- the fall prevention plate 41 like the pressure plate 23, is a doughnut-shaped plate with a circular opening 41a in the center of the plate through which the main shaft 12 passes.
- FIG. 6 shows an example in which the balancer 10 is provided on a tool holder 15 as a rotating body.
- the balancer 10 is fixed to the end 15b of the tool holder 15 opposite the shank 15a.
- the configuration of the balancer 10 attached to the tool holder 15 can be the same as that attached to the spindle 12. It is preferable to provide a fall prevention plate 41 for the balancer 10 provided on the tool holder 15, as shown in FIG. 5.
- the balancer 10 is fixed to the tool holder 15 with the adjustment surface 21a facing downward (toward the opposite side to the shank 15a), but the balancer 10 may be fixed to the tool holder 15 with the adjustment surface 21a facing upward (toward the shank 15a side).
- the balancer 10 is provided on the tool holder 15, the tool holder 15 is attached to the spindle 12 and rotated, and the rotational balance is adjusted in the same manner as in the case of the spindle 12 described above.
- Figure 7 shows an example in which the balancer 10 is attached to the spindle 45 of a lathe, which has a chuck 47 attached to its end for gripping a workpiece.
- the lathe in this example is a horizontal type, and the spindle 45 protrudes horizontally from the headstock 46. Therefore, in this example, the balancer 10 rotates integrally with the spindle 45, which rotates around a horizontal axis of rotation.
- the lathe may also be a vertical type.
- the balancer 10 can be attached to a rotating grinding wheel attached to a rotating shaft as a rotating body, and the rotational balance of the grinding wheel can be adjusted by attaching the balancer 10 to the grinding wheel as a flange. Furthermore, the balancer 10 can be used with the rotating parts of machining centers, grinding machines, milling machines, motors, and engines as rotating bodies.
- the rotational balance is adjusted using three weights 22 as the multiple weights 22, but the number of weights 22 is not limited as long as it is two or more.
- multiple weights 22 can be fixed to the weight holder 21 at equal intervals along the rotational direction as described above.
- the balancer 10 is attached to the spindle 12 as a rotating body by the mounting portion 25, but the method of attaching the balancer to the rotating body is not limited to this.
- a female thread may be formed on the inner circumferential surface of the through hole 27 of the weight holder 21, and a male thread may be formed on the circumferential surface of a rotating body such as the spindle 12 or tool holder 15, and the weight holder 21 may be screwed onto the rotating body for attachment.
- the balancer is constructed as a separate member from the rotating body such as the spindle or tool holder and attached to the rotating body, the weight holder of the balancer may be formed integrally with the rotating body. In this case, for example, the end surface of the spindle or tool holder may be used as the adjustment surface.
- the balancer of the second embodiment has weights for adjusting the rotation balance arranged on the peripheral surface as well as the end surface of the weight holder.
- the balancer of the second embodiment is similar to that of the first embodiment except for the following description, and the same reference numerals are used to designate substantially the same members, and detailed description thereof will be omitted.
- the balancer 50 shown in FIG. 8 is attached to a rotating body such as a spindle or a tool holder.
- the balancer 50 is composed of a weight holder 51, weights 22 and 52, a pressure plate 23, a pressure screw 24, and an attachment part 25.
- the balancer 50 is fixed coaxially to the rotating body passed through the through hole 27 by the attachment part 25, and rotates coaxially with the rotating body.
- the weight holder 51 is a doughnut plate with a circular through hole 27 that penetrates the center of the disk-shaped member in the thickness direction.
- a groove 31 is formed as a first groove on the adjustment surface 51a, which is one end surface of the weight holder 51, and each weight 22 arranged in the groove 31 is fixed by a pressing plate 23.
- a groove 54 is formed as a second groove in the rotation direction (circumferential direction) of the weight holder 51 on the peripheral surface 51c of the weight holder 51.
- a plurality of weights 52, three weights 52 in this example, are arranged and fixed in the groove 54 as peripheral weights. In FIG. 8, only two weights 52 are shown.
- the weight holder 51 may be formed integrally with the rotating body, and in this case, a groove 54 may be formed on the peripheral surface of the rotating body.
- the number of weights 52 may be more than one (two or more), and may be different from the number of weights 22.
- a groove 54 may be provided on the peripheral surface of the rotating body.
- the groove 54 is a dovetail groove. That is, the groove 54 has a cross-sectional shape in which its width (length in the thickness direction of the weight holder 51) gradually increases toward the bottom of the groove 54.
- the weight 52 is composed of a pair of weight members 52a divided into two in the width direction, and a set screw 52b. Each of the pair of weight members 52a is large enough to be inserted into the groove 54 from its opening, and is inserted into the groove 54 and then assembled together within the groove 54.
- the cross-sectional shape of the pair of weight members 52a when assembled together is approximately the same as the cross-sectional shape of the groove 54, but is narrower than the groove 54.
- a screw hole 57 is formed at the boundary where the pair of weight members 52a are assembled, dividing each of the pair of weight members 52a into two.
- the diameter of the screw hole 57 becomes smaller than the diameter of the set screw 52b from a predetermined depth, and gradually decreases as the depth increases.
- the set screw 52b is screwed deeper than the predetermined depth into the screw hole 57 formed by assembling the pair of weight members 52a in the groove 54.
- the pair of weight members 52a press against the opposing inner surfaces of the groove 54, fixing the weight 52.
- the set screw 52b can be loosened to move the weight 52 in the groove 54.
- a scale 58 is engraved on the peripheral surface 51c near the opening of the groove 54, similar to the scale 33, to indicate the angular position of the weight holder 51 around the center of rotation in degrees.
- One of the weight members 52a of the weight 52 is engraved with a center line 52c extending in the thickness direction of the weight holder 51 (the direction of the rotation axis Z) at the circumferential center of the weight holder 51.
- the balancer 50 When the balancer 50 is used, three weights 22 are fixed in the groove 31, and three weights 52 are fixed in the groove 54 at equal intervals, for example at angular positions of 0°, 120°, and 240°, respectively. After this, the three weights 22 are used to correct the imbalance of the rotor by opening angle calculation to reduce the vibration of the rotor, and three more weights 52 are used to correct the imbalance of the rotor by opening angle calculation to further reduce the vibration of the rotor. In this way, by adjusting both the weights 22 arranged on the end face of the weight holder 51 and the weights 52 arranged on the circumferential surface, the balance of both thrust and radial is adjusted as in the first embodiment.
- the imbalance may be corrected using three weights 52, and then the imbalance may be corrected using three weights 22.
- the imbalance correction using three weights 22 and the imbalance correction by opening angle calculation using three weights 52 may be repeated alternately.
- the imbalance correction by opening angle calculation performed by detecting the vibration in the radial direction of the rotor and the imbalance correction by opening angle calculation performed by detecting the vibration in the thrust direction may be used in combination.
- the imbalance correction using three weights 22 and the imbalance correction by opening angle calculation using three weights 52 are performed by detecting the vibration in the radial direction of the rotor, and then the imbalance correction using three weights 22 and the imbalance correction by opening angle calculation using three weights 52 are performed by detecting the vibration in the thrust direction of the rotor.
- FIG. 10 shows an example in which the weight holder 51 is composed of a first member 61 and a second member 62, and the groove 54, which becomes the second groove, is formed so as to divide it in the direction of the rotation axis Z.
- the weight holder 51 is divided into two in its thickness direction (the direction of the rotation axis Z), and is composed of a first member 61 on the adjustment surface 51a side and a second member 62 on the upper surface 51b side.
- the second member 62 is assembled to the first member 61 by threading a screw 64 passed through a through hole 63 formed in the second member 62 into a screw hole 65 formed in the first member 61.
- a plurality of through holes 63 and a plurality of screw holes 65 are provided at equal intervals in the rotation direction of the weight holder 51, and the first member 61 and the second member 62 are assembled by threading a plurality of screws 64 into them.
- the groove 54 has a T-shaped cross section along the radial direction of the weight holder 51. That is, the groove 54 has the same width (length in the direction of the rotation axis Z) as the opening exposed on the peripheral surface 51c up to a certain depth, and has a certain width larger than the opening between the certain depth and the bottom surface. In this way, the groove 54 has a cross section along the radial direction of the weight holder 51 that has a portion wider than the opening width. This groove 54 is formed by combining the portions formed by dividing the groove 54 into the first member 61 and the second member 62.
- the groove 54 is divided by a plane perpendicular to the rotation axis Z, one portion of which is formed in the first member 61 and the other portion is formed in the second member 62. More specifically, in this example, the groove 54 is divided so that the opening and the bottom surface are divided into two in the direction of the rotation axis Z.
- each weight 52 is a single member, and its cross-sectional shape is the same as the cross-sectional shape of the groove 54, that is, a T-shape.
- Each weight 52 is placed in the groove 54 by inserting it between the first member 61 and the second member 62 that form the groove 54 and assembling the first member 61 and the second member 62.
- the weight 52 is pressed and fixed by the opposing inner surfaces of the first member 61 and the second member 62 that form the inner wall surface of the groove 54 by tightening the screw 64.
- the screw 64 near the weight 52 whose angular position is to be adjusted is loosened. This weakens the pressing force of the first member 61 and the second member 62 on the weight 52, and the weight 52 can slide within the groove 54.
- weight 52 can be configured as a single member while being shaped so that weight 52 does not fall out of groove 54 and scatter, and weight 52 can be fixed within groove 54. As with the case where weight 52 is held down by pressing plate 23, weight 52 can be made smaller, which is advantageous for high-precision adjustment.
- the weight is placed and fixed in one groove on the adjustment surface (end surface) of the weight holder, but multiple grooves may be provided on the adjustment surface and the rotational balance of the rotating body may be adjusted by moving the weights placed in each groove.
- groove 31 and groove 71 are formed on adjustment surface 21a of weight holder 21.
- Groove 71 is formed outside groove 31, and three weights 72, for example, are placed in groove 71.
- the number of weights 22, 72 may be multiple (two or more), and the number of weights 22 and weights 72 may be different.
- the weight 72 is composed of a pair of weight members 72a and a set screw 72b.
- the cross-sectional shape of the pair of weight members 72a when combined is almost the same as the cross-sectional shape of the groove 71, but is narrower than the groove 71.
- the weight 72 is fixed in the groove 71 by screwing the set screw 72b to a predetermined depth or more into a screw hole 73 formed at the boundary part where the pair of weight members 72a are combined.
- the diameter of the screw hole 73 becomes smaller than the diameter of the set screw 73b from a predetermined depth, and the diameter of the screw hole 73 is gradually reduced as it becomes deeper from that depth.
- the pair of weight members 72a press the opposing inner surfaces of the groove 71, and the weight 72 is fixed.
- the weight 72 can be slid within the groove 71.
- the weight 22 in the groove 31 is pressed and fixed by the pressing plate 23.
- three weights 22 are fixed in groove 31, and three weights 72 are fixed in groove 71, each equally spaced apart in the rotational direction of weight holder 21.
- the angular positions of the three weights 22 and the three weights 72 may differ from each other.
- the three weights 72 each of which has a larger moment of inertia than weight 22, are used to correct the imbalance through an opening angle calculation, thereby reducing the vibration of the rotating body.
- the three weights 22 are used to correct the imbalance through an opening angle calculation, thereby further reducing the vibration of the rotating body. Note that the correction of the imbalance through an opening angle calculation using weights 72 and the correction of the imbalance through an opening angle calculation using weights 22 may be repeated.
- FIG. 12 shows an example in which the upper and lower end faces of the weight holder 75 are each used as an adjustment surface 75a, a groove 31 is provided on each adjustment surface 75a, and weights 22 are placed in each groove 31.
- the rotational balance of the rotating body is adjusted by moving the weights 22 placed in the grooves 31 of each adjustment surface 75a.
- the number of weights 22 on each adjustment surface 75a may differ from each other.
Landscapes
- Golf Clubs (AREA)
- Manufacture Of Motors, Generators (AREA)
- Testing Of Balance (AREA)
Abstract
Provided are: a balancer capable of adjusting the rotation balance of a rotating body at high precision; and a method for adjusting the rotation balance. A balancer 10 has a weight-holding body 21, weights 22, a keep plate 23, cap screws 24, and mounting parts 25. The weight-holding body 21 has a doughnut plate shape and is secured in a state in which a main shaft 12 passes through a through-hole 27. A groove 31 is formed in an adjustment surface 21a, which is one end surface of the weight-holding body 21. Three weights 22 are disposed in the groove 31. Each weight 22 is secured by being pressed by a circumferential section 23a of the keep plate 23, which is attached to the weight-holding body 21 by the cap screws 24. The weights 22 can be slid and moved by loosening the cap screws 24 in the vicinity of the weights 22.
Description
本発明は、回転体の回転バランスを調整するバランサ及び回転バランスの調整方法に関する。
The present invention relates to a balancer that adjusts the rotational balance of a rotating body and a method for adjusting the rotational balance.
例えばマシニングセンタ等の工作機械の主軸(スピンドル)やツールホルダといった回転体に、その回転軸まわりに質量分布の不釣り合いがあると、回転体のスラスト方向やラジアル方向の振動等が発生して加工精度が低下したり、スピンドルベアリングの劣化を早めたりする。このため、バランサによって、回転バランスの調整すなわち回転体の質量分布の不釣り合いを補正している。
For example, if there is an imbalance in the mass distribution around the rotating axis of a rotating body such as the main shaft (spindle) or tool holder of a machine tool such as a machining center, vibrations will occur in the thrust and radial directions of the rotating body, reducing the machining accuracy and accelerating the deterioration of the spindle bearings. For this reason, a balancer is used to adjust the rotational balance, i.e. to correct the imbalance in the mass distribution of the rotating body.
主軸の端面にその回転方向に一定の間隔で複数のねじ穴を設けておき、錘となる止めねじを挿入螺合するねじ穴の位置、止めねじの重さ(質量)を変えることで回転バランスを調整する手法が知られている(例えば、特許文献1参照)。また、ツールホルダの周面にその回転方向に一定の間隔で複数のねじ穴を設け、上記と同様な手法で回転バランスを調整する手法が知られている(例えば、特許文献2参照)。
A method is known in which multiple screw holes are provided at regular intervals on the end surface of the spindle in the direction of rotation, and the position of the screw hole into which the set screw that acts as a weight is inserted and screwed, and the weight (mass) of the set screw are changed to adjust the rotation balance (see, for example, Patent Document 1). Also, a method is known in which multiple screw holes are provided at regular intervals on the circumferential surface of the tool holder in the direction of rotation, and the rotation balance is adjusted in a similar manner to the above (see, for example, Patent Document 2).
しかしながら、上記のような回転バランスの調整手法では、錘となるいもねじが取り付けられるねじ穴の位置及び個数が予め決まっているため、回転体の質量分布の不釣り合いの補正に限界があり、回転体の振動等を十分に抑制できないという問題があった。また、重さによって回転体に挿入される止めねじの長さが変わってしまい、それがいもねじを含む回転体全体の質量分布に変化を生じさせるため、精度よく補正された状態にすることが難しいという問題もあった。
However, with the above-mentioned rotational balance adjustment method, the positions and number of screw holes into which the set screws that act as weights are attached are predetermined, so there is a limit to how much the imbalance in the mass distribution of the rotating body can be corrected, and vibrations of the rotating body cannot be sufficiently suppressed. In addition, the length of the set screws inserted into the rotating body changes depending on the weight, which causes changes in the mass distribution of the entire rotating body including the set screws, making it difficult to accurately correct the state.
本発明は、回転体の回転バランスを高精度に調整することができるバランサ及び回転バランスの調整方法を提供することを目的とする。
The present invention aims to provide a balancer and a method for adjusting rotational balance that can adjust the rotational balance of a rotating body with high precision.
本発明のバランサは、回転体の回転バランスを調整するバランサにおいて、複数の端面錘と、複数の端面錘が取り付けられ、回転体と一体に同軸に回転するドーナツ板形状の錘保持体と、錘保持体の端面に形成され、錘保持体が回転する回転方向に沿って円環状に形成され、複数の端面錘が内部でスライド自在な第1溝と、第1溝内の任意の位置で複数の端面錘を固定する固定部と、を備え、回転体としてスピンドル又はスピンドルに着脱自在に取り付けられるツールホルダに設けられるものである。
The balancer of the present invention is a balancer for adjusting the rotational balance of a rotating body, and is provided with a plurality of end surface weights, a doughnut-shaped weight holder to which the plurality of end surface weights are attached and which rotates coaxially integrally with the rotating body, a first groove formed on the end surface of the weight holder and formed in an annular shape along the direction of rotation of the weight holder, within which the plurality of end surface weights can slide freely, and a fixing portion for fixing the plurality of end surface weights at any position within the first groove, and is provided on a spindle as the rotating body, or on a tool holder which can be detachably attached to the spindle.
本発明のバランサは、回転体の回転バランスを調整するバランサにおいて、複数の端面錘と、複数の端面錘が取り付けられ、回転体と一体に同軸に回転するドーナツ板形状の錘保持体と、錘保持体の端面に形成され、錘保持体が回転する回転方向に沿って円環状に形成され、複数の端面錘が内部でスライド自在な第1溝と、外径が第1溝の内径よりも大きく外径よりも小さいドーナツ板形状の押え板とを備え、押え板は、錘保持体の端面上に錘保持体と同軸に配され、第1溝の内部の複数の端面錘の各々の一部を周縁部で押えて固定するものである。
The balancer of the present invention is a balancer for adjusting the rotational balance of a rotating body, and is provided with: a plurality of end surface weights; a doughnut plate-shaped weight holder to which the plurality of end surface weights are attached and which rotates coaxially integrally with the rotating body; a first groove formed on the end surface of the weight holder and formed in an annular shape along the direction of rotation of the weight holder, within which the plurality of end surface weights can slide freely; and a doughnut plate-shaped pressing plate whose outer diameter is larger than and smaller than the inner diameter of the first groove, and the pressing plate is disposed coaxially with the weight holder on the end surface of the weight holder, and presses and fixes a portion of each of the plurality of end surface weights inside the first groove with its peripheral portion.
本発明の回転バランスの調整方法は、スピンドル又はスピンドルに着脱自在に取り付けられるツールホルダを回転体として、回転体と一体に同軸に回転する錘保持体上に配される複数の錘の回転体の回転軸まわりの角度位置を変えることによって、回転体の回転バランスを調整するバランサを用い、複数の錘を錘保持体の回転方向に等間隔に配置した状態で、回転体を回転させた際の回転体のアンバランス状態と複数の錘のうち1個の錘の位置を等間隔に配置した状態からずらして回転体を回転させた際の回転体のアンバランス状態とをそれぞれを測定し、回転体の各アンバランス状態を用いてアンバランスを補正する角度位置を求める第1の測定ステップと、直前の測定ステップで測定される回転体のアンバランス状態に基づいて得られる回転体の回転のアンバランスを補正する角度位置に複数の錘を配置して、回転体のアンバランス状態を測定する第2の測定ステップとを有し、第1の測定ステップの後に、アンバランス状態が所定の許容される状態になるまで第2の測定ステップを繰り返すものである。
The method for adjusting the rotational balance of the present invention uses a balancer that adjusts the rotational balance of a rotating body by changing the angular position of a plurality of weights arranged on a weight holder that rotates coaxially with the rotating body, using a spindle or a tool holder that can be detachably attached to the spindle as the rotating body, and measures the unbalance state of the rotating body when the rotating body is rotated with the plurality of weights arranged at equal intervals in the rotation direction of the weight holder, and the unbalance state of the rotating body when the rotating body is rotated with the position of one of the plurality of weights shifted from the equally spaced arrangement state, and determines an angular position that corrects the unbalance using each unbalance state of the rotating body, and a second measurement step that measures the unbalance state of the rotating body by arranging the plurality of weights at an angular position that corrects the rotational unbalance of the rotating body obtained based on the unbalance state of the rotating body measured in the immediately preceding measurement step, and repeats the second measurement step after the first measurement step until the unbalance state reaches a predetermined allowable state.
本発明のバランサによれば、回転体と一体に同軸に回転するドーナツ板形状の錘保持体の端面に形成された第1溝内に複数の端面錘を固定して回転体の回転バランスを調整するので、回転体の回転バランスを高精度に調整することができる。
The balancer of the present invention adjusts the rotational balance of the rotor by fixing multiple end surface weights in a first groove formed in the end surface of a doughnut-shaped weight holder that rotates coaxially with the rotor, making it possible to adjust the rotational balance of the rotor with high precision.
本発明のバランサによれば、複数の端面錘を錘保持体に形成した第1溝内に配し、複数の端面錘を、外径が第1溝の内径よりも大きく外径よりも小さい押え板で部を周縁部で押えて固定するので、各端面錘の脱落を防止し、また端面錘を移動できるように露呈しつつ端面錘を固定することができる。
In the balancer of the present invention, multiple end weights are placed in a first groove formed in the weight holder, and the multiple end weights are fixed by pressing the peripheral portion with a pressing plate whose outer diameter is larger than the inner diameter of the first groove but smaller than the outer diameter. This prevents the end weights from falling off and allows the end weights to be fixed while being exposed so that they can move.
本発明の回転バランスの調整方法によれば、複数の端面錘を用いたバランサで回転体の回転バランスを調整する際に、複数の錘を錘保持体の回転方向に等間隔に配置した状態と複数の錘のうち1個の錘の位置をずらした状態とで、回転体のアンバランス状態をそれぞれ測定してアンバランスを補正する角度位置を求め、それ以降において、アンバランス状態が所定の許容される状態になるまで、直前の測定ステップで測定されるアンバランス状態に基づく角度位置に複数の錘を配置してアンバランス状態を測定する第2の測定ステップと繰り返すようにしたので、回転体の回転バランスを高精度に調整することができる。
According to the method for adjusting rotational balance of the present invention, when adjusting the rotational balance of a rotating body with a balancer using multiple end surface weights, the unbalance state of the rotating body is measured in a state where the multiple weights are arranged at equal intervals in the rotational direction of the weight holder and in a state where the position of one of the multiple weights is shifted, and an angular position for correcting the unbalance is determined. Thereafter, this is repeated with a second measurement step in which the multiple weights are arranged at an angular position based on the unbalance state measured in the immediately preceding measurement step and the unbalance state is measured until the unbalance state reaches a predetermined allowable state, thereby making it possible to adjust the rotational balance of the rotating body with high precision.
[第1実施形態]
図1において、この実施形態に係るバランサ10は、回転体としての主軸(スピンドル)12に取り付けられ、その主軸12の回転バランスの調整すなわち回転軸Zのまわりのアンバランス(質量分布の不釣り合い)を補正する。バランサ10は、例えば回転数が1万rpm(1万回毎分)以上で高速回転する主軸12等の回転体の回転バランスを精度よく調整するのに適している。 [First embodiment]
1, abalancer 10 according to this embodiment is attached to a main shaft (spindle) 12 as a rotating body, and adjusts the rotational balance of the main shaft 12, i.e., corrects imbalance (unbalanced mass distribution) around a rotation axis Z. The balancer 10 is suitable for precisely adjusting the rotational balance of a rotating body such as the main shaft 12 that rotates at a high speed of, for example, 10,000 rpm (10,000 revolutions per minute) or more.
図1において、この実施形態に係るバランサ10は、回転体としての主軸(スピンドル)12に取り付けられ、その主軸12の回転バランスの調整すなわち回転軸Zのまわりのアンバランス(質量分布の不釣り合い)を補正する。バランサ10は、例えば回転数が1万rpm(1万回毎分)以上で高速回転する主軸12等の回転体の回転バランスを精度よく調整するのに適している。 [First embodiment]
1, a
主軸12は、工作機械、例えば縦型マシニングセンタのものであって、主軸頭14から下方に突出しており、回転軸Zを中心に回転する。主軸頭14は、主軸12の他、主軸12を回動自在に支持するベアリングや主軸12を回転させる駆動機構、ツールホルダ15をクランプするクランプ機構等を備えている。バランサ10は、主軸12の主軸頭14から突出した端部(この例では、下端部)に主軸12と一体に回転するように取り付けられ、主軸12のアンバランスを補正する。
The spindle 12 is that of a machine tool, such as a vertical machining center, protrudes downward from the spindle head 14, and rotates around the rotation axis Z. In addition to the spindle 12, the spindle head 14 is equipped with a bearing that rotatably supports the spindle 12, a drive mechanism that rotates the spindle 12, a clamping mechanism that clamps the tool holder 15, and the like. The balancer 10 is attached to the end of the spindle 12 protruding from the spindle head 14 (the lower end in this example) so as to rotate together with the spindle 12, and corrects any imbalance in the spindle 12.
なお、この例では、バランサ10を主軸12の主軸頭14から突出して露呈されている部分に固定しているが、主軸頭14に収容されている主軸12の主軸ロータに設けてもよい。また、この例では、主軸12が垂直な回転軸Zのまわりに回転する構成について説明するが、回転軸Zは、水平でもよい。
In this example, the balancer 10 is fixed to the exposed portion of the spindle 12 protruding from the spindle head 14, but it may also be provided on the spindle rotor of the spindle 12 housed in the spindle head 14. Also, in this example, a configuration is described in which the spindle 12 rotates around a vertical rotation axis Z, but the rotation axis Z may also be horizontal.
主軸12には、ドリルやエンドミル等の工具(図示省略)を取り付けたツールホルダ15が交換可能に装着される。ツールホルダ15は、シャンク15aと反対側の端部に工具が固定される。主軸12は、その内部に嵌合穴12aが設けられ、その嵌合穴12aが主軸12の下端面に開口している。ツールホルダ15は、その上部に設けたシャンク15aを嵌合穴12aに嵌合されてクランプされることによって主軸12に固定される。これにより、主軸12と一体に工具が回転する。
A tool holder 15 with a tool such as a drill or end mill (not shown) attached thereto is replaceably attached to the spindle 12. The tool holder 15 has a tool fixed to the end opposite the shank 15a. A fitting hole 12a is provided inside the spindle 12, and the fitting hole 12a opens to the lower end surface of the spindle 12. The tool holder 15 is fixed to the spindle 12 by fitting the shank 15a provided at the upper part of the tool holder 15 into the fitting hole 12a and clamping it. This causes the tool to rotate integrally with the spindle 12.
図2にバランサ10を構成する各部材を分解して、また図3に各部材を組み付けた状態でそれぞれ示す。バランサ10は、錘保持体21、錘22、押え板23、押えねじ(ボルト)24、装着部25等で構成される。バランサ10は、錘22の配置を除き、錘保持体21の中心軸(回転軸Z)に対して回転対称、この例で3回対称となる形状に形成されている。この例では、錘22、押えねじ24、装着部25は、互いに同数であり、いずれも3個である。
Figure 2 shows the components that make up the balancer 10 disassembled, and Figure 3 shows the components assembled. The balancer 10 is composed of weight holders 21, weights 22, pressure plates 23, pressure screws (bolts) 24, mounting parts 25, etc. Except for the arrangement of the weights 22, the balancer 10 is formed in a shape that is rotationally symmetrical about the central axis (rotation axis Z) of the weight holder 21, which is three-fold symmetrical in this example. In this example, there are the same number of weights 22, pressure screws 24, and mounting parts 25, all of which are three.
錘保持体21は、円盤状の部材の中央にその厚み方向に貫通する断面円形の貫通孔27を設けたドーナツ板形状である。貫通孔27の内径は主軸12の外径と同じまたはそれよりも僅かに大きい程度であって、バランサ10は、貫通孔27に通した主軸12に対して同軸に固定され、主軸12と同軸に回転する。
The weight holder 21 is a donut-shaped plate with a circular through-hole 27 that penetrates the thickness of the disk-shaped member in the center. The inner diameter of the through-hole 27 is the same as or slightly larger than the outer diameter of the main shaft 12, and the balancer 10 is fixed coaxially to the main shaft 12 that passes through the through-hole 27, and rotates coaxially with the main shaft 12.
貫通孔27には、貫通孔27から径方向外側に入り込み周方向に広がる形状に切り欠いた複数の切欠部28が形成されている。各切欠部28は、主軸12の回転方向すなわち錘保持体21の回転方向(周方向)に等間隔で形成されている。なお、切欠部28を等間隔に設ける場合、厳密に等間隔でなくてもよいが、バランサ10により主軸12の回転バランスを大きく崩さないようにするために、できるだけ精密に等間隔とすることが好ましい。この例では、3つの切欠部28が回転軸Zまわりに120°間隔で形成されている。各切欠部28には、装着部25がそれぞれ嵌入される。各装着部25は、組み合わせたときに切欠部28とほぼ同形のブロック形状となる装着片25a、25bと、止めねじ25cとから構成される。この例では、止めねじ25cは、六角穴付き止めねじ(ホーローセット、いもねじ)である。
The through hole 27 is formed with a plurality of notches 28 that extend radially outward from the through hole 27 and are cut out in a circumferential direction. The notches 28 are formed at equal intervals in the rotation direction of the spindle 12, i.e., the rotation direction (circumferential direction) of the weight holder 21. When the notches 28 are provided at equal intervals, they do not have to be strictly equal, but it is preferable to make them as precisely equal as possible in order not to significantly disrupt the rotation balance of the spindle 12 by the balancer 10. In this example, three notches 28 are formed at intervals of 120° around the rotation axis Z. The mounting parts 25 are fitted into each of the notches 28. Each mounting part 25 is composed of mounting pieces 25a, 25b that, when assembled, form a block shape that is approximately the same shape as the notch 28, and a set screw 25c. In this example, the set screw 25c is a hexagon socket set screw (hollow set, set screw).
装着片25aは、切欠部28の3面に沿った略コ字形状であって、貫通孔27側に開口した凹部を有する。装着片25bは、装着片25aの凹部と同形状であり、その凹部内に装着片25aに対して錘保持体21の径方向に移動自在に嵌め込まれる。装着片25aと装着片25bの錘保持体21の周方向に沿った境界部分に、装着片25aと装着片25bとに二分されるねじ穴29が形成されている。装着片25aと装着片25bとを隙間なく組み合わせた状態では、ねじ穴29の径は、所定の深さから止めねじ25cの径よりも小さくなり、その深さからさらに深くなるにしたがって漸次小さくなるように縮径している。
Attachment piece 25a is roughly U-shaped along three sides of cutout 28, and has a recess that opens toward through-hole 27. Attachment piece 25b has the same shape as the recess of attachment piece 25a, and is fitted into the recess so as to be movable in the radial direction of weight holder 21 relative to attachment piece 25a. A screw hole 29 that divides attachment piece 25a and attachment piece 25b is formed at the boundary between attachment pieces 25a and 25b along the circumferential direction of weight holder 21. When attachment pieces 25a and 25b are assembled without any gaps, the diameter of screw hole 29 becomes smaller than the diameter of set screw 25c from a specified depth, and gradually decreases as the depth increases.
装着片25a、25bは、貫通孔27に主軸12を通した状態で切欠部28に嵌入される。錘保持体21を主軸12に固定する際に、止めねじ25cは、ねじ穴29に、所定の深さよりも深くそのねじ穴29を広げながら、すなわち錘保持体21の径方向に装着片25aを外側に向けてまた装着片25bを主軸12に向けてスライド移動しながら螺合される。これにより、錘保持体21の径方向に、装着片25bが主軸12の外周面を押圧し、装着片25aが主軸12の外周面に対向する切欠部28の内面を押圧し、錘保持体21が主軸12に固定される。
The mounting pieces 25a and 25b are fitted into the notch 28 with the spindle 12 passing through the through hole 27. When fixing the weight holder 21 to the spindle 12, the set screw 25c is screwed into the threaded hole 29 while widening the threaded hole 29 deeper than a predetermined depth, i.e., while sliding the mounting piece 25a outward and the mounting piece 25b toward the spindle 12 in the radial direction of the weight holder 21. As a result, the mounting piece 25b presses against the outer circumferential surface of the spindle 12 in the radial direction of the weight holder 21, and the mounting piece 25a presses against the inner surface of the notch 28 facing the outer circumferential surface of the spindle 12, fixing the weight holder 21 to the spindle 12.
錘保持体21の一方の端面である下面は、溝31が形成された調整面21aになっている。この調整面21aには、切欠部28よりも外周側の位置に、錘保持体21の回転方向に沿って円環状に溝31が形成され、この溝31よりも外側の部分に目盛り33が刻設されている。調整面21aの溝31の内側の部分は、押え板23を取り付けるための取付面部34となっている。
The lower surface, which is one end surface of the weight holder 21, serves as an adjustment surface 21a in which a groove 31 is formed. On this adjustment surface 21a, a groove 31 is formed in an annular shape along the rotational direction of the weight holder 21 at a position on the outer periphery side of the cutout portion 28, and a scale 33 is engraved on the portion outside this groove 31. The portion inside the groove 31 of the adjustment surface 21a serves as an attachment surface portion 34 for attaching the pressure plate 23.
第1溝としての溝31は、この例では、その底面が平坦であり、回転軸Z側の中心側側面及び錘保持体21の外周側の外周側側面が底面から垂直に起立した形状である。目盛り33は、錘保持体21の回転中心すなわち回転軸Zまわりの位置(以下、角度位置と称する)を回転軸Zを中心とする角度で示しており、例えば1°単位で目盛り線が刻まれている。この目盛り33に基づいて錘22を所定の角度位置に固定することができる。目盛り33には、開角計算によるアンバランスの修正(開角計算釣り合せ)の際に等間隔で配置する際の各角度(以下、基準角度と称する)の角度位置、すなわち複数の錘22を等間隔に配置するための目盛り線の近傍に、その角度を示す数字が刻設されている。この例では、3個の錘22を用いた場合に等間隔(120°間隔)となる目盛り線の近傍に0°、120°、240°を示す数字が刻設されている。なお、図2及び図3では、基準角度のうち「0°」の数字「0」のみが示されている。錘22を等間隔に配置する場合、厳密に等間隔でなくてよい。
In this example, the groove 31 as the first groove has a flat bottom surface, and the center side surface on the rotation axis Z side and the outer periphery side surface on the outer periphery side of the weight holder 21 are shaped to rise vertically from the bottom surface. The scale 33 indicates the rotation center of the weight holder 21, i.e., the position around the rotation axis Z (hereinafter referred to as the angular position), as an angle centered on the rotation axis Z, and has scale lines engraved in increments of 1°, for example. The weights 22 can be fixed at a predetermined angular position based on this scale 33. The scale 33 has numbers engraved near the scale lines for arranging the weights 22 at equal intervals, that is, the angular positions of each angle (hereinafter referred to as the reference angle) when arranging the weights at equal intervals when correcting the imbalance by opening angle calculation (opening angle calculation balancing), that is, the multiple weights 22 are arranged at equal intervals. In this example, numbers indicating 0°, 120°, and 240° are engraved near the scale lines that are equal intervals (120° intervals) when three weights 22 are used. Note that in Figures 2 and 3, only the number "0" for the reference angle "0°" is shown. When placing the weights 22 at equal intervals, they do not have to be spaced exactly at equal intervals.
この例では、バランサ10には、端面錘として3個の錘22が設けられている。各錘22は、溝31に配される。錘22は、錘保持体21の径方向に沿った断面形状は矩形であって、溝31の底面と接する上面22aと、下面22b(図4参照)とはいずれも平坦になっている。また、錘22は、平面視で、円弧状に延びた形状であって溝31に沿った形状である。錘22の内周面は、溝31の中心側側面と、また錘22の外周面は、溝31の外周側側面と略同じ曲率半径である。これにより、錘22は、溝31内において、錘保持体21の径方向に移動することなく回転方向にスライド自在にされている。3個の錘22は、互いに同じ形状、同じ重さ(質量)である。
In this example, the balancer 10 is provided with three weights 22 as end weights. Each weight 22 is disposed in a groove 31. The weight 22 has a rectangular cross-sectional shape along the radial direction of the weight holder 21, and both the upper surface 22a that contacts the bottom surface of the groove 31 and the lower surface 22b (see FIG. 4) are flat. In addition, the weight 22 has an arc-like shape in a plan view that follows the groove 31. The inner circumferential surface of the weight 22 has approximately the same radius of curvature as the center side surface of the groove 31, and the outer circumferential surface of the weight 22 has approximately the same radius of curvature as the outer circumferential side surface of the groove 31. As a result, the weight 22 can slide freely in the rotational direction within the groove 31 without moving in the radial direction of the weight holder 21. The three weights 22 have the same shape and weight (mass).
錘22の下面22bには、錘保持体21の周方向における中心を通り、その径方向に延びたセンタ線22cが刻設されている。センタ線22cを目盛り33の目盛り線に合せることで、所定の角度位置に位置決めして錘22を固定することができる。
A center line 22c is engraved on the underside 22b of the weight 22, passing through the circumferential center of the weight holder 21 and extending in the radial direction. By aligning the center line 22c with the scale markings of the scale 33, the weight 22 can be fixed at a specified angular position.
押え板23は、円板の中央部に円形の開口23aを設けたドーナツ板形状である。この例では、押え板23は、各錘22を押えて固定する固定部であるとともに、切欠部28からの抜け落ちを防止する。押え板23の外径は、溝31の内径(中心側側面の曲率半径、取付面部34の外径)よりも大きく、溝31の外径(外周側側面の曲率半径)よりも小さい。このような押え板23で錘22の一部を押えることにより、押え板23によって錘22の外周側を覆うことなく露出させ、錘22の露出した部分を例えば押してスライド移動できるようにし、錘22の角度位置の調整を容易にしている。
The pressure plate 23 is a doughnut plate with a circular opening 23a in the center of the disk. In this example, the pressure plate 23 is a fixing part that holds down and fixes each weight 22, and prevents them from falling out of the notch 28. The outer diameter of the pressure plate 23 is larger than the inner diameter of the groove 31 (the radius of curvature of the side surface on the center side, the outer diameter of the mounting surface portion 34) and smaller than the outer diameter of the groove 31 (the radius of curvature of the side surface on the outer periphery). By pressing down a part of the weight 22 with such a pressure plate 23, the outer periphery of the weight 22 is exposed without being covered by the pressure plate 23, and the exposed part of the weight 22 can be pushed and slid, for example, making it easy to adjust the angular position of the weight 22.
押え板23の内径(開口23aの径)は、貫通孔27の内径と同じまたは少し大きい程度である。これにより、錘保持体21と押え板23とを同軸に組み付けた状態で、押え板23の周縁部23bが溝31内に配された各錘22を押えて固定する。また、装着部25が切欠部28から抜け落ちた場合には、その装着部25が遠心力で飛散してしまうが、調整面21a側において押え板23で装着部25を覆うことにより、装着部25が切欠部28から抜け落ちないようにしている。なお、錘保持体21の上面側については、この例では錘保持体21を主軸頭14に近接して設けることによって、主軸頭14によって装着部25が抜け落ちないようにされている。
The inner diameter of the pressure plate 23 (diameter of the opening 23a) is the same as or slightly larger than the inner diameter of the through hole 27. As a result, when the weight holder 21 and the pressure plate 23 are assembled coaxially, the peripheral portion 23b of the pressure plate 23 presses and fixes each weight 22 arranged in the groove 31. Furthermore, if the mounting portion 25 falls out of the cutout portion 28, the mounting portion 25 will be scattered by centrifugal force, but by covering the mounting portion 25 with the pressure plate 23 on the adjustment surface 21a side, the mounting portion 25 is prevented from falling out of the cutout portion 28. Note that, in this example, the weight holder 21 is provided close to the spindle head 14 on the upper surface side of the weight holder 21, so that the spindle head 14 prevents the mounting portion 25 from falling out.
取付面部34には、錘保持体21の回転方向に等間隔で複数のねじ穴35が形成されている。複数のねじ穴35の間隔は、厳密に等間隔でなくてよい。ねじ穴35は、溝31の近傍に設けられている。この例では、取付面部34は、貫通孔27の周囲を取り囲む第1面領域34aとこの第1面領域34aの外側のドーナツ状の第2面領域34bとに分かれており、第1面領域34aは第2面領域34bよりも僅かに下方に突出している。ねじ穴35は、第2面領域34bに形成されており、後述するようにねじ穴35に螺合した押えねじ24が押え板23を押える位置よりも中心側が第1面領域34aになっている。
The mounting surface portion 34 has a plurality of screw holes 35 formed at equal intervals in the rotational direction of the weight holder 21. The intervals between the plurality of screw holes 35 do not have to be strictly equal. The screw holes 35 are provided near the groove 31. In this example, the mounting surface portion 34 is divided into a first surface area 34a surrounding the periphery of the through hole 27 and a donut-shaped second surface area 34b outside the first surface area 34a, and the first surface area 34a protrudes slightly downward from the second surface area 34b. The screw holes 35 are formed in the second surface area 34b, and the first surface area 34a is located closer to the center than the position where the pressure screw 24 screwed into the screw hole 35 presses the pressure plate 23, as described below.
押え板23には、各ねじ穴35に対応する位置に貫通孔23cがそれぞれ形成されている。ねじ穴35及び貫通孔23cは、押えねじ24と同数がそれぞれ設けられており、この例では3個のねじ穴35及び貫通孔23cが、錘保持体21の回転方向に120°間隔で設けられており、ねじ穴35は、目盛り33の0°、120°、240°の目盛り線の延長線上に設けられている。押え板23は、各貫通孔23cに通した第1ねじとしての3本の押えねじ24をそれぞれねじ穴35に螺合することで錘保持体21に同軸に組み付けられる。
Through holes 23c are formed in the pressure plate 23 at positions corresponding to the screw holes 35. The same number of screw holes 35 and through holes 23c are provided as the pressure screws 24. In this example, three screw holes 35 and through holes 23c are provided at intervals of 120° in the rotational direction of the weight holder 21, and the screw holes 35 are provided on the extensions of the 0°, 120°, and 240° graduation lines of the scale 33. The pressure plate 23 is coaxially assembled to the weight holder 21 by screwing the three pressure screws 24, which serve as first screws and pass through the through holes 23c, into the screw holes 35.
なお、以下の説明では、3本の押えねじ24の各々を特に区別する場合には、目盛り33の0°の目盛り線の延長線上にあるものを第1押えねじ24、120°の目盛り線の延長線上にあるものを第2押えねじ24、240°の目盛り線の延長線上にあるものを第3押えねじ24と称する。同様に、3個の錘22の各々を特に区別する場合には、後述する初期測定において角度位置を0°に固定したものを第1錘22、120°の角度位置に固定したものを第2錘22、240°の角度位置に固定したものを第3錘22と称する。
In the following explanation, when it is necessary to distinguish between the three pressure screws 24, the one on the extension of the 0° scale line of the scale 33 will be referred to as the first pressure screw 24, the one on the extension of the 120° scale line will be referred to as the second pressure screw 24, and the one on the extension of the 240° scale line will be referred to as the third pressure screw 24. Similarly, when it is necessary to distinguish between the three weights 22, the one whose angular position is fixed at 0° in the initial measurement described below will be referred to as the first weight 22, the one whose angular position is fixed at 120° will be referred to as the second weight 22, and the one whose angular position is fixed at 240° will be referred to as the third weight 22.
また、押え板23には、各装着部25のねじ穴29に対応する位置に貫通孔23cが形成されている。貫通孔23cを通して、止めねじ25cの締緩ないしねじ穴29に対する止めねじ25cの挿抜を行うことができる。したがって、錘保持体21に錘22、押え板23を固定した状態で、主軸12に対するバランサ10の着脱ができる。
The pressure plate 23 also has through holes 23c formed at positions corresponding to the screw holes 29 of each mounting portion 25. The set screws 25c can be tightened or loosened, or inserted or removed from the screw holes 29, through the through holes 23c. Therefore, with the weight 22 and pressure plate 23 fixed to the weight holder 21, the balancer 10 can be attached to and detached from the spindle 12.
図4において、上述のように取付面部34は、第1面領域34aと第2面領域34bとに分かれており、第2面領域34bよりも第1面領域34aが回転軸Zの方向(下方)に突出している。押え板23は、貫通孔23cを通した押えねじ24をねじ穴35に螺合することで、押え板23の第2面領域34b側の領域が押えねじ24で押されて、押え板23の中心側の領域が第1面領域34aに密着した状態で錘保持体21に取り付けられる。
In FIG. 4, as described above, the mounting surface portion 34 is divided into a first surface area 34a and a second surface area 34b, and the first surface area 34a protrudes further in the direction of the rotation axis Z (downward) than the second surface area 34b. The pressure plate 23 is attached to the weight holder 21 by screwing the pressure screw 24 through the through hole 23c into the screw hole 35, so that the area of the pressure plate 23 on the second surface area 34b side is pressed by the pressure screw 24, and the area of the pressure plate 23 on the center side is in close contact with the first surface area 34a.
錘22は、その厚み(回転軸Zの方向の長さ)を溝31の深さよりも大きくしてあり、溝31に接する取付面部34の第2面領域34bよりも回転軸Zの方向(下方)に突出する。すなわち、錘22は、第2面領域34bから回転軸Zの方向に突出面としての下面22bが突出する厚みを有している。上述のように押え板23の外径を溝31の内径よりも大きくすることにより、押え板23の周縁部23bが取付面部34(第2面領域34b)から溝31側に突出している。これにより、押えねじ24を締めていないときに、押え板23と第2面領域34bとの間に間隙が形成された状態で錘22の下面22bに周縁部23bが接触するようにしている。
The weight 22 has a thickness (length in the direction of the rotation axis Z) greater than the depth of the groove 31, and protrudes in the direction of the rotation axis Z (downward) beyond the second surface region 34b of the mounting surface portion 34 that contacts the groove 31. That is, the weight 22 has a thickness such that the lower surface 22b protrudes in the direction of the rotation axis Z from the second surface region 34b as a protruding surface. As described above, by making the outer diameter of the pressure plate 23 greater than the inner diameter of the groove 31, the peripheral portion 23b of the pressure plate 23 protrudes from the mounting surface portion 34 (second surface region 34b) toward the groove 31. This allows the peripheral portion 23b to come into contact with the lower surface 22b of the weight 22 with a gap formed between the pressure plate 23 and the second surface region 34b when the pressure screw 24 is not tightened.
上記の構成により、押えねじ24を締めることにより、押え板23の当該押えねじ24の周辺部分が僅かに撓み、その近傍の周縁部23bが錘22の下面22bを強く押圧することで、その錘22が溝31内でスライド移動しないように固定される。また、1本の押えねじ24をその近傍の錘22が固定されている状態から少し緩めることにより、当該錘22に対する周縁部23bによる押圧力を弱めて当該錘22を溝31内でスライド移動させることができる。したがって、3本の押えねじ24のうち1本の押えねじ24のみを緩めることにより、当該押えねじ24の近傍にある錘22のみを移動可能とし他の錘22を固定したままとすることができる。これにより、錘22の角度位置の調整が容易になっている。
With the above configuration, by tightening the pressure screws 24, the peripheral portion of the pressure plate 23 around the pressure screw 24 bends slightly, and the peripheral portion 23b in the vicinity strongly presses against the underside 22b of the weight 22, fixing the weight 22 so that it does not slide within the groove 31. Also, by slightly loosening one of the pressure screws 24 from the state in which the weight 22 in the vicinity is fixed, the pressing force of the peripheral portion 23b on the weight 22 can be weakened, allowing the weight 22 to slide within the groove 31. Therefore, by loosening only one of the three pressure screws 24, only the weight 22 in the vicinity of the pressure screw 24 can be moved, while the other weights 22 remain fixed. This makes it easy to adjust the angular position of the weight 22.
第2面領域34bに対する錘22の突出長は、僅かでよく、例えば0.1mm程度である。また、第1面領域34aの第2面領域34bに対する突出長についても僅かでよく、例えば第2面領域34bに対する錘22の突出長と同程度とすることができる。なお、図4では、第2面領域34bに対する第1面領域34a及び錘22の突出を誇張して描いてある。また、図4では、押え板23と取付面部34との間に間隙を描いてあるが、押えねじ24を締めることによって押え板23と第2面領域34bとが接触してもよい。図11、図12についても同様である。
The length of protrusion of the weight 22 from the second surface region 34b may be slight, for example, about 0.1 mm. The length of protrusion of the first surface region 34a from the second surface region 34b may also be slight, for example, approximately the same as the length of protrusion of the weight 22 from the second surface region 34b. Note that in FIG. 4, the protrusion of the first surface region 34a and the weight 22 from the second surface region 34b is exaggerated. Also, in FIG. 4, a gap is depicted between the pressure plate 23 and the mounting surface portion 34, but the pressure plate 23 and the second surface region 34b may come into contact with each other by tightening the pressure screw 24. The same applies to FIG. 11 and FIG. 12.
この例では、上記のように取付面部34に高さの異なる第1面領域34aと第2面領域34bとに分けて段差を設けているが、取付面部34を平坦な面としてもよい。この場合には、押え板23が各錘22に接触することで取付面部34と押え板23との間に間隙が形成される。また、取付面部34を平坦な面として、押え板23の取付面部34側の面に段差を設け、当該段差によって取付面部34の第1面領域34aで押え板23を密着させ、押え板23の押えねじ24の位置よりも外周側の部分と取付面部34の第2面領域34bとの間に間隙が形成されるようにしてもよい。
In this example, the mounting surface portion 34 is divided into the first surface area 34a and the second surface area 34b of different heights and has a step as described above, but the mounting surface portion 34 may be a flat surface. In this case, a gap is formed between the mounting surface portion 34 and the pressing plate 23 when the pressing plate 23 comes into contact with each weight 22. Alternatively, the mounting surface portion 34 may be a flat surface and a step may be provided on the surface of the pressing plate 23 on the mounting surface portion 34 side, so that the step brings the pressing plate 23 into close contact with the first surface area 34a of the mounting surface portion 34, and a gap may be formed between the portion of the pressing plate 23 on the outer periphery side of the position of the pressing screw 24 and the second surface area 34b of the mounting surface portion 34.
以下の説明では、近傍の錘22を固定するように押えねじ24を締めた状態またその状態にすることを本締め、この本締めから緩めて近傍の錘22がスライド移動できるように押えねじ24を締めた状態またはその状態にすることを仮締めと称する。
In the following explanation, the state in which the pressure screw 24 is tightened to fix the nearby weight 22 is referred to as "full tightening," and the state in which the pressure screw 24 is tightened or in this state after being loosened from this full tightening so that the nearby weight 22 can slide is referred to as "pre-tightening."
この例のバランサ10は、押え板23によって錘22を固定しているが、錘22を固定する固定部の構成は、これに限定されない。例えば、上記の装着部25と同様に、錘22を2つの部材で構成してそれらに設けたねじ穴に止めねじを螺合させることで、溝31内でその幅方向(錘保持体21の径方向)に錘22を拡幅するようにしてもよい。この場合、錘22は、それが溝31の中心側側面と外周側側面とを互いに逆向きに押圧することで固定される。一方、この例のように、押え板23で錘22を固定する構成は、錘22を分割した構成にしたり、ねじ穴を設けたりする必要がなく、錘22を微小化でき、重量の小さい錘22でより高精度に調整するうえで有利である。さらに、遠心力が速度の自乗に比例して大きくなることから、高速回転する主軸12等では質量分布の微小なずれを補正する必要があるため、微小化された錘22を利用できることは特に有用である。
In this example, the balancer 10 fixes the weight 22 with the pressing plate 23, but the configuration of the fixing part for fixing the weight 22 is not limited to this. For example, similar to the mounting part 25 described above, the weight 22 may be formed of two members and a set screw may be screwed into a screw hole provided in the two members to expand the weight 22 in its width direction (radial direction of the weight holder 21) within the groove 31. In this case, the weight 22 is fixed by pressing the center side and the outer circumferential side of the groove 31 in opposite directions. On the other hand, the configuration in which the weight 22 is fixed with the pressing plate 23 as in this example does not require the weight 22 to be divided or to have a screw hole, and the weight 22 can be miniaturized, which is advantageous in terms of adjusting with higher accuracy using a weight 22 with a small weight. Furthermore, since centrifugal force increases in proportion to the square of the speed, it is particularly useful to be able to use a miniaturized weight 22 in the main shaft 12 that rotates at high speed, etc., since it is necessary to correct minute deviations in mass distribution.
次に上記バランサ10を用いた主軸12の回転バランスの調整について説明する。この主軸12の回転バランスの調整は、主軸12にツールホルダ15を装着していない状態で実施する。この例では、3個の錘22を用いた開角計算によるアンバランス修正を行う。なお、測定すなわち主軸12の振動値(振動の大きさ)や振動の位相の検出、振動の検出結果に基づく開角計算を含む錘22のセット位置の計算等には、バランス測定機、例えばフィールドバランサ等と称される装置を用いる。
Next, the adjustment of the rotational balance of the spindle 12 using the balancer 10 will be described. This adjustment of the rotational balance of the spindle 12 is performed with the tool holder 15 not attached to the spindle 12. In this example, the imbalance is corrected by calculating the opening angle using three weights 22. Note that a balance measuring machine, such as a device called a field balancer, is used for the measurement, i.e., detection of the vibration value (vibration magnitude) and vibration phase of the spindle 12, and calculation of the setting position of the weights 22 including the opening angle calculation based on the vibration detection results.
最初に3個の錘22を溝31内に配したバランサ10を主軸12に固定する。また、バランス測定機で測定が行えるようにセッティングする。バランス測定機のセッティングは、主軸頭14に主軸12の振動を検出するための振動センサ(振動ピックアップ)を取り付け、さらに主軸12の回転数を検出しまた振動の位相の基準位置とするための反射シールを主軸12に貼り付けるとともに反射シールを検出するセンサを主軸12に近接して配置する。
First, the balancer 10 with the three weights 22 placed in the grooves 31 is fixed to the spindle 12. It is also set up so that measurements can be taken with a balance measuring machine. The balance measuring machine is set up by attaching a vibration sensor (vibration pickup) to the spindle head 14 to detect the vibration of the spindle 12, and then attaching a reflective sticker to the spindle 12 to detect the rotation speed of the spindle 12 and use it as a reference position for the vibration phase, and placing a sensor to detect the reflective sticker close to the spindle 12.
さらに、3個の錘22を等間隔(120°間隔)の角度位置にスライド移動して固定しバランス測定機に各錘22の角度位置と重さをそれぞれ入力する。各錘22を固定する際には、例えば3本の押えねじ24を仮締めした状態で、目盛り33の0°、120°、240°の目盛り線の近傍にそれぞれ錘22をスライド移動させてから2本、例えば第2押えねじ24及び第3押えねじ24をそれぞれ締め込んで本締めする。この後に、0°の角度位置近傍に配した錘22を0°の角度位置となるように微調整してから、第1押えねじ24を本締めしてその錘22を固定する。続いて、第2押えねじ24を仮締めにし、120°の角度位置近傍に配した錘22を120°の角度位置となるように微調整してから、第2押えねじ24を本締めしてその錘22を固定する。同様にして、第3押えねじ24を仮締めし、240°の角度位置近傍に配した錘22を240°の角度位置となるように微調整してから、第3押えねじ24を本締めしてその錘22を固定する。この場合、バランス測定機に入力する角度位置は、0°、120°、240°である。なお、バランス測定機によって、このような各錘22の角度位置が指定される場合もある。
Furthermore, the three weights 22 are slid to angular positions at equal intervals (120° intervals) and fixed, and the angular position and weight of each weight 22 are input to the balance measuring machine. When fixing each weight 22, for example, with the three pressure screws 24 temporarily fastened, the weights 22 are slid to the vicinity of the 0°, 120°, and 240° graduation lines of the scale 33, and then two of them, for example the second pressure screw 24 and the third pressure screw 24, are tightened to fully tighten. After this, the weights 22 placed near the 0° angular position are finely adjusted to the 0° angular position, and then the first pressure screw 24 is fully tightened to fix the weights 22. Next, the second pressure screw 24 is temporarily tightened, and the weights 22 placed near the 120° angular position are finely adjusted to the 120° angular position, and then the second pressure screw 24 is fully tightened to fix the weights 22. Similarly, the third press screw 24 is temporarily tightened, and the weight 22 placed near the 240° angular position is finely adjusted to the 240° angular position, and then the third press screw 24 is fully tightened to fix the weight 22. In this case, the angular positions input to the balance measuring machine are 0°, 120°, and 240°. Note that the angular positions of each weight 22 may be specified by the balance measuring machine.
各錘22を固定した後、主軸12を所定の回転速度で回転させて、初期測定を行う。この初期測定によって、バランサ10を取り付けた主軸12のアンバランス状態(振動値と振動の位相)が初期測定の測定結果としてバランス測定機で取得される。この初期測定を含む測定結果は、例えばバランス測定機に表示されて知ることができる。
After each weight 22 is fixed, the main shaft 12 is rotated at a predetermined rotational speed to perform an initial measurement. Through this initial measurement, the imbalance state (vibration value and vibration phase) of the main shaft 12 to which the balancer 10 is attached is obtained by the balance measuring machine as the measurement result of the initial measurement. The measurement results including this initial measurement can be displayed, for example, on the balance measuring machine.
初期測定に続いて、試し測定を行う。この試し測定のために、バランス測定機による指示にしたがい1個の錘22を試し測定の角度位置にずらして固定する。例えば、第1錘22を10°の角度位置に固定する。なお、ずらして固定する錘22は任意に選択でき、また試し測定の角度位置は、所定の大きさの範囲内で任意に設定することもでき、その場合にはずらした後の錘22について、その角度位置をバランス測定機に入力する。
Following the initial measurement, a trial measurement is performed. For this trial measurement, one weight 22 is shifted to the trial measurement angle position and fixed according to the instructions from the balance measuring machine. For example, the first weight 22 is fixed at an angle position of 10°. Note that the weight 22 to be shifted and fixed can be selected arbitrarily, and the trial measurement angle position can also be set arbitrarily within a predetermined range. In this case, the angular position of the shifted weight 22 is input into the balance measuring machine.
第1錘22を試し測定の角度位置(この例では10°)に固定した後、主軸12を所定の回転速度で回転させて、主軸12のアンバランス状態を試し測定の測定結果としてバランス測定機で取得する。試し測定の測定結果が取得されると、バランス測定機により、初期測定の測定結果及び各錘22の角度位置と、試し測定の測定結果及び各錘22の角度位置と、各錘22の重さとに基づいた演算が行われ、初期測定で測定された振動を打ち消すための各錘22の角度位置が求められて、その角度位置が表示される。
After fixing the first weight 22 at the trial measurement angle position (10° in this example), the main shaft 12 is rotated at a predetermined rotation speed, and the unbalanced state of the main shaft 12 is obtained as the trial measurement result by the balance measuring machine. When the trial measurement result is obtained, the balance measuring machine performs a calculation based on the initial measurement result and the angular position of each weight 22, the trial measurement result and the angular position of each weight 22, and the weight of each weight 22, and determines the angular position of each weight 22 to cancel out the vibration measured in the initial measurement, and displays that angular position.
試し測定後に測定でバランス測定機に表示される各錘22の上記の新たな角度位置にしたがい、各錘22の角度位置を調整する。この後、バランス測定機で1回目の残留測定を行う。この残留測定においても、主軸12を所定の回転速度で回転させて主軸12のアンバランス状態を測定結果として取得する。そして、この残留測定で得られるアンバランスの状態が所定の許容される範囲になっているか、すなわち主軸12の振動値が目標とする振動値以下となっているかを判断する。
After the trial measurement, the angular position of each weight 22 is adjusted according to the new angular position of each weight 22 displayed on the balance measuring machine during measurement. After this, a first residual measurement is performed with the balance measuring machine. In this residual measurement, the main shaft 12 is rotated at a predetermined rotation speed and the unbalance state of the main shaft 12 is obtained as a measurement result. Then, it is determined whether the unbalance state obtained by this residual measurement is within a predetermined allowable range, i.e., whether the vibration value of the main shaft 12 is below the target vibration value.
また、バランス測定機は、1回目の残留測定後には、初期測定の測定結果及び各錘22の角度位置と、1回目の残留測定の測定結果及び各錘22の角度位置と、各錘22の重さとに基づいた演算を行い、初期測定で測定された振動を打ち消すための各錘22の角度位置を求め、その角度位置をそれぞれ表示する。
Furthermore, after the first residual measurement, the balance measuring machine performs a calculation based on the measurement results of the initial measurement and the angular position of each weight 22, the measurement results of the first residual measurement and the angular position of each weight 22, and the weight of each weight 22, to determine the angular position of each weight 22 to cancel out the vibrations measured in the initial measurement, and displays each of these angular positions.
例えば、1回目の残留測定で得られた振動値が、目標とする振動値よりも大きい場合には、上記のように1回目の残留測定後にバランス測定機に表示される各錘22の角度位置に各錘22をスライド移動させて固定してから、2回目の残留測定を行う。2回目の残留測定についても、1回目の残留測定と同様に主軸12のアンバランス状態が測定結果として取得されて表示される。また、初期測定の測定結果及び各錘22の角度位置と、2回目の残留測定の測定結果及び各錘22の角度位置と、各錘22の重さとに基づいた演算がバランス測定機で行われ、初期測定で測定された振動を打ち消すための各錘22の角度位置が求められて、その角度位置がそれぞれ表示される。
For example, if the vibration value obtained in the first residual measurement is greater than the target vibration value, each weight 22 is slid and fixed to the angular position of each weight 22 displayed on the balance measuring machine after the first residual measurement as described above, and then a second residual measurement is performed. For the second residual measurement, the unbalanced state of the spindle 12 is obtained and displayed as a measurement result, as in the first residual measurement. Furthermore, the balance measuring machine performs a calculation based on the measurement result of the initial measurement and the angular position of each weight 22, the measurement result of the second residual measurement and the angular position of each weight 22, and the weight of each weight 22, and the angular position of each weight 22 is obtained to cancel out the vibration measured in the initial measurement, and the angular position is displayed.
以降同様にして、測定される振動値が目標とする振動値以下となるまで、直前の残留測定後に表示される角度位置への各錘22の角度位置のスライド移動と、残留測定とを行う。なお、バランス測定機は、残留測定ごとに、その残留測定の測定結果と初期測定の測定結果及び各錘22の重さに基づいた演算を行い、初期測定で測定された振動を打ち消すための各錘22の角度位置を求めて表示する。そして、測定された振動値が目標とする振動値以下となった段階で、主軸12の回転バランスの調整を終了する。
In the same manner, the angular position of each weight 22 is slid to the angular position displayed after the previous residual measurement and a residual measurement is performed, until the measured vibration value becomes equal to or less than the target vibration value. Note that for each residual measurement, the balance measuring machine performs a calculation based on the result of that residual measurement, the result of the initial measurement, and the weight of each weight 22, and determines and displays the angular position of each weight 22 that cancels out the vibration measured in the initial measurement. Then, when the measured vibration value becomes equal to or less than the target vibration value, the adjustment of the rotational balance of the spindle 12 is completed.
上記のように、測定結果に基づいて、各錘22の角度位置を調整するが、その調整では、最初に位置を調整した場合と同様に、錘22を1個ずつスライド移動して角度位置を調整する。すなわち、角度位置を調整すべき1個の錘22について、その近傍にある押えねじ24を緩めて仮締めにし、当該錘22を新たな角度位置にスライド移動させ、仮締めとした押えねじ24を本締めにする。同様な手順で角度位置を調整すべき各錘22を新たな角度位置に移動させて固定する。このように調整すると、移動する錘22以外の2個の錘22は固定されているので、1個の錘22を移動しようとしている間に、他の錘22が移動せず、各錘22の位置を容易に精度よく調整できる。また、錘22の一部が押え板23で隠されておらず露呈しているので、錘22のスライド移動を容易に行うことができる。
As described above, the angular position of each weight 22 is adjusted based on the measurement results. In this adjustment, the weights 22 are slid one by one to adjust the angular position, as in the case of the initial position adjustment. That is, for one weight 22 whose angular position is to be adjusted, the pressure screw 24 in its vicinity is loosened and temporarily tightened, the weight 22 is slid to a new angular position, and the temporarily tightened pressure screw 24 is fully tightened. In a similar procedure, each weight 22 whose angular position is to be adjusted is moved to a new angular position and fixed. When adjusted in this manner, the two weights 22 other than the weight 22 to be moved are fixed, so while one weight 22 is being moved, the other weight 22 does not move, and the position of each weight 22 can be easily and accurately adjusted. Also, since a part of the weight 22 is exposed and not hidden by the pressure plate 23, the weight 22 can be easily slid.
また、上記のようにして、主軸12のアンバランス修正を行うことにより、主軸12は、回転バランスが高精度に調整され、そしてバランサ10を用いることで、主軸12はラジアル方向の振動及びスラスト方向の振動が低減される。また、各錘22は、溝31内をスライドさせて任意の位置に固定できるため、主軸12の回転バランスがより高精度に調整される。
In addition, by correcting the unbalance of the main shaft 12 as described above, the rotational balance of the main shaft 12 is adjusted with high precision, and by using the balancer 10, the radial and thrust vibrations of the main shaft 12 are reduced. In addition, each weight 22 can be slid within the groove 31 and fixed at any position, so the rotational balance of the main shaft 12 can be adjusted with even higher precision.
一般的にバランス測定機の振動センサは、一方向(受感軸)の振動に対して高い感度を有し、それと直交する方向の振動についての感度(横感度)が小さいが、振動センサを主軸頭14の適当な位置に取り付けて、上記のように調整することで、主軸12は、バランサ10によってラジアル方向の振動及びスラスト方向の振動がそれぞれ低減できる。
Generally, the vibration sensor of a balance measuring machine has high sensitivity to vibrations in one direction (sensitive axis) and low sensitivity to vibrations in the direction perpendicular to that (lateral sensitivity), but by attaching the vibration sensor to an appropriate position on the spindle head 14 and adjusting it as described above, the balancer 10 can reduce both radial and thrust vibrations of the spindle 12.
一方で、例えば、主軸12のラジアル方向の振動を検出して行う開角計算によるアンバランス修正と、スラスト方向の振動を検出して行う開角計算によるアンバランス修正とを順次に行なったり、それらを交互に繰り返し行なったりすることも、ラジアル方向の振動及びスラスト方向の振動のさらなる低減を図る上で有用である。
On the other hand, for example, sequentially correcting the imbalance by detecting the radial vibration of the main shaft 12 and calculating the opening angle, and then correcting the imbalance by detecting the thrust vibration, or repeating them alternately, is also useful for further reducing the radial vibration and the thrust vibration.
なお、ラジアル方向の振動を検出する場合には、振動センサの受感軸を主軸12のラジアル方向に一致するように、例えば主軸12のラジアル方向と直交する主軸頭14の面に振動センサを取り付ける。また、スラスト方向の振動を検出する場合には、振動センサの受感軸を主軸12のスラスト方向(回転軸Zの方向)に一致するように、例えば回転軸Zに直交する主軸頭14の面に振動センサを取り付ける。なお、2個の振動センサを用い、一方の振動センサをラジアル方向の振動を検出するように、また他方の振動センサをスラスト方向の振動を検出するように取り付けてバランス測定機にそれぞれ接続して、それらの1つずつバランス測定機で選択しながらそれぞれの方向のバランス調整を行うこともできる。
When detecting vibrations in the radial direction, the vibration sensor is attached to the surface of the spindle head 14 perpendicular to the radial direction of the spindle 12, for example, so that its sensitive axis coincides with the radial direction of the spindle 12. When detecting vibrations in the thrust direction, the vibration sensor is attached to the surface of the spindle head 14 perpendicular to the rotation axis Z, for example, so that its sensitive axis coincides with the thrust direction of the spindle 12 (the direction of the rotation axis Z). It is also possible to use two vibration sensors, one attached to detect vibrations in the radial direction and the other attached to detect vibrations in the thrust direction, and connected to a balance measuring machine, and to select each of them one by one with the balance measuring machine to perform balance adjustment in each direction.
1個の試し錘を用いて主軸12のアンバランスを意図的に変化させたアンバランス状態を測定し、その測定結果に基づいて、3個の錘22を配置して開角計算によるアンバランスの修正を行なってもよい。この場合には、まず、第1事前測定として、バランサ10から3個の錘22を外した状態で主軸12を回転させてアンバランス状態を測定する。次に、試し錘として1個の錘22を用いて第2事前測定を行う。試し錘としての錘22は、例えば0°の角度位置に固定する。残りの2個の錘22は、バランサ10から取り外した状態にしておく。錘22を0°の角度位置に固定した後に、主軸12を回転させて、主軸12のアンバランス状態を第2事前測定の測定結果として取得する。バランス測定機に試し錘とした錘22の重さと角度位置(0°)を入力することで、バランス測定機の演算で得られるアンバランスを修正するための当該錘22の角度位置が求められて表示される。ここで、アンバランスを修正するための当該錘22の角度位置は、第1事前測定の測定結果と、第2事前測定の測定結果及び当該錘22の角度位置と重さとに基づいた演算によって求められる第1事前測定で測定された振動を打ち消すための当該錘22の角度位置である。なお、第2事前測定において、0°の角度位置に代えて、120°または240°の角度位置に錘22を固定して測定してもよい。
The unbalance state of the spindle 12 may be intentionally changed using one test weight to measure the unbalance state, and based on the measurement result, three weights 22 may be arranged to correct the unbalance by calculating the opening angle. In this case, first, as a first preliminary measurement, the spindle 12 is rotated with the three weights 22 removed from the balancer 10 to measure the unbalance state. Next, a second preliminary measurement is performed using one weight 22 as a test weight. The weight 22 as a test weight is fixed, for example, at an angle position of 0°. The remaining two weights 22 are removed from the balancer 10. After fixing the weight 22 at an angle position of 0°, the spindle 12 is rotated to obtain the unbalance state of the spindle 12 as the measurement result of the second preliminary measurement. By inputting the weight and angular position (0°) of the weight 22 used as the test weight into the balance measuring machine, the angular position of the weight 22 for correcting the unbalance obtained by the calculation of the balance measuring machine is obtained and displayed. Here, the angular position of the weight 22 for correcting the imbalance is the angular position of the weight 22 for canceling the vibration measured in the first advance measurement, which is calculated by a calculation based on the measurement results of the first advance measurement, the measurement results of the second advance measurement, and the angular position and weight of the weight 22. Note that in the second advance measurement, the weight 22 may be fixed at an angular position of 120° or 240° instead of the angular position of 0°.
続いて、開角計算によるアンバランスの修正を実施する。このために、3本の押えねじ24を仮締めよりも緩めて、押え板23と錘保持体21との間に隙間をあけ、その隙間から溝31内に他の2個の錘22を挿入し、それぞれの角度位置を調整してから固定する。このときに、3個の錘22のうち試し錘とした錘22は、第2事前測定の測定結果に基づいて得られた角度位置にスライド移動して固定する。残りの2個の錘22については、試し錘とした錘22を含めた3個が錘保持体21の回転方向に等間隔(この例では120°)となるように配置して固定する。
Next, the imbalance is corrected by calculating the opening angle. To do this, the three pressure screws 24 are loosened more than when provisionally tightened to create a gap between the pressure plate 23 and the weight holder 21, and the other two weights 22 are inserted into the groove 31 through the gap, and their respective angular positions are adjusted before being fixed. At this time, the weight 22 selected as the test weight among the three weights 22 is slid and fixed to the angular position obtained based on the measurement results of the second preliminary measurement. The remaining two weights 22 are positioned and fixed so that the three, including the weight 22 selected as the test weight, are equally spaced in the rotational direction of the weight holder 21 (120° in this example).
例えば、第2事前測定を行って得られる錘22の角度位置が5°である場合には、試し錘とした錘22を5°の角度位置に固定し、他の2個の錘22は125°と245°の各角度位置にそれぞれ固定する。このようにして、各錘22を固定することにより、主軸12のアンバランスを予め補正しているような状態にする。
For example, if the angular position of the weights 22 obtained by performing the second preliminary measurement is 5°, the test weight 22 is fixed at an angular position of 5°, and the other two weights 22 are fixed at angular positions of 125° and 245°, respectively. By fixing each weight 22 in this way, the imbalance of the main shaft 12 is corrected in advance.
バランス測定機に各錘22の角度位置、上記の例では5°、125°、245°を入力し、また各錘22の重さを入力する。この後、上記と同様に初期測定、試し測定を行い、測定される振動値が目標とする振動値以下となるまで、各錘22の角度位置の調整と残留測定と繰り返しを行う。これにより、主軸12の回転バランスを振動が目標とする振動値以下となるように速やかに調整できる。
The angular position of each weight 22 is input into the balance measuring machine; in the above example, 5°, 125°, and 245°, and the weight of each weight 22 is also input. After this, initial measurements and trial measurements are carried out in the same manner as above, and adjustments to the angular position of each weight 22 and residual measurements are repeated until the measured vibration value is below the target vibration value. This allows the rotational balance of the spindle 12 to be quickly adjusted so that the vibration is below the target vibration value.
上記では、調整面21aを下向きにして(主軸頭14と反対側に向けて)バランサ10を主軸12に固定しているが、バランサ10と主軸頭14との間に錘22の位置調整を行うための間隔を確保できるときには、調整面21aを上向きにして(主軸頭14側に向けて)バランサ10を主軸12に固定してもよい。このように調整面21aを上向きにして、あるいは錘保持体21の調整面21aと反対側の面と主軸頭14との間隔が大きくなる場合には、図5に示すように、調整面21aと反対側の面、この例では上面21bに脱落防止プレート41を設けることが好ましい。脱落防止プレート41は、上面21b側に露呈された装着部25に密着して覆うように、上面21bにねじ42で固定されている。これにより、装着部25が切欠部28から上面21b側に外れることを防止する。脱落防止プレート41は、押え板23と同様に、円板の中央部に主軸12を通す円形の開口41aを設けたドーナツ板形状である。
In the above, the balancer 10 is fixed to the spindle 12 with the adjustment surface 21a facing downward (toward the side opposite the spindle head 14), but when a gap can be secured between the balancer 10 and the spindle head 14 for adjusting the position of the weight 22, the balancer 10 may be fixed to the spindle 12 with the adjustment surface 21a facing upward (toward the spindle head 14 side). When the adjustment surface 21a faces upward in this way, or when the gap between the surface of the weight holder 21 opposite the adjustment surface 21a and the spindle head 14 becomes large, it is preferable to provide a drop prevention plate 41 on the surface opposite the adjustment surface 21a, in this example, the upper surface 21b, as shown in FIG. 5. The drop prevention plate 41 is fixed to the upper surface 21b with a screw 42 so as to closely contact and cover the mounting portion 25 exposed on the upper surface 21b side. This prevents the mounting portion 25 from coming off the cutout portion 28 toward the upper surface 21b side. The fall prevention plate 41, like the pressure plate 23, is a doughnut-shaped plate with a circular opening 41a in the center of the plate through which the main shaft 12 passes.
上記では、主軸12を回転体として、回転体にバランサ10を設けているが、バランサ10を取り付ける回転体は、これに限定されない。図6は、回転体としてのツールホルダ15にバランサ10を設けた例を示している。バランサ10は、ツールホルダ15のシャンク15aとは反対側の端部15bに固定される。ツールホルダ15に取り付けるバランサ10の構成は、上記主軸12に取り付けられるものと同じにすることができる。なお、ツールホルダ15に設けられるバランサ10については、図5に示されるように、脱落防止プレート41を設けることが好ましい。この例では、調整面21aを下向きにして(シャンク15aと反対側に向けて)バランサ10をツールホルダ15に固定しているが、調整面21aを上向きにして(シャンク15a側に向けて)バランサ10をツールホルダ15に固定してもよい。ツールホルダ15にバランサ10を設けた場合においては、ツールホルダ15を主軸12に取り付けて回転させ、上記主軸12の場合と同様に回転バランスを調整する。
In the above, the spindle 12 is used as a rotating body, and the balancer 10 is provided on the rotating body, but the rotating body to which the balancer 10 is attached is not limited to this. FIG. 6 shows an example in which the balancer 10 is provided on a tool holder 15 as a rotating body. The balancer 10 is fixed to the end 15b of the tool holder 15 opposite the shank 15a. The configuration of the balancer 10 attached to the tool holder 15 can be the same as that attached to the spindle 12. It is preferable to provide a fall prevention plate 41 for the balancer 10 provided on the tool holder 15, as shown in FIG. 5. In this example, the balancer 10 is fixed to the tool holder 15 with the adjustment surface 21a facing downward (toward the opposite side to the shank 15a), but the balancer 10 may be fixed to the tool holder 15 with the adjustment surface 21a facing upward (toward the shank 15a side). When the balancer 10 is provided on the tool holder 15, the tool holder 15 is attached to the spindle 12 and rotated, and the rotational balance is adjusted in the same manner as in the case of the spindle 12 described above.
図7は、端部にワークを把持するチャック47が取付けられる旋盤の主軸45にバランサ10を取り付けた例を示している。この例の旋盤は、横型のものであり、主軸45は、主軸台46から水平方向に突出している。したがって、この例では、バランサ10は、水平な回転軸まわりに回転する主軸45と一体に回転する。なお、旋盤は、縦型のものであってもよい。
Figure 7 shows an example in which the balancer 10 is attached to the spindle 45 of a lathe, which has a chuck 47 attached to its end for gripping a workpiece. The lathe in this example is a horizontal type, and the spindle 45 protrudes horizontally from the headstock 46. Therefore, in this example, the balancer 10 rotates integrally with the spindle 45, which rotates around a horizontal axis of rotation. The lathe may also be a vertical type.
回転軸に取り付けられて回転する砥石を回転体として、砥石にバランサ10をフランジとして取り付けて、砥石の回転バランスを調整することもできる。さらに、マシニングセンタ、研削盤、フライス盤、モータやエンジンの回転部分を回転体として、バランサ10を利用できる。
The balancer 10 can be attached to a rotating grinding wheel attached to a rotating shaft as a rotating body, and the rotational balance of the grinding wheel can be adjusted by attaching the balancer 10 to the grinding wheel as a flange. Furthermore, the balancer 10 can be used with the rotating parts of machining centers, grinding machines, milling machines, motors, and engines as rotating bodies.
上記では、複数の錘22として3個の錘22で回転バランスを調整しているが、錘22の個数は、2個以上であればその個数は限定されない。開角計算によるアンバランスの修正を実施する場合には、測定の当初では、上記のように複数の錘22を錘保持体21にその回転方向に沿って等間隔に配置して固定すればよい。
In the above, the rotational balance is adjusted using three weights 22 as the multiple weights 22, but the number of weights 22 is not limited as long as it is two or more. When correcting the imbalance by calculating the opening angle, at the beginning of the measurement, multiple weights 22 can be fixed to the weight holder 21 at equal intervals along the rotational direction as described above.
上記の例では、装着部25によりバランサ10を回転体としての主軸12に取り付けているが、バランサの回転体への取付け手法は、これに限定されない。例えば、錘保持体21の貫通孔27の内周面に雌ねじを形成し、主軸12やツールホルダ15等の回転体の周面に雄ねじを形成して、錘保持体21を回転体に螺合して取り付けるようにしてもよい。また、バランサを主軸、ツールホルダ等の回転体とは別部材として構成し、回転体に取り付けているが、バランサの錘保持体を回転体に一体に形成してもよい。この場合に、例えば主軸やツールホルダの端面を調整面としてもよい。
In the above example, the balancer 10 is attached to the spindle 12 as a rotating body by the mounting portion 25, but the method of attaching the balancer to the rotating body is not limited to this. For example, a female thread may be formed on the inner circumferential surface of the through hole 27 of the weight holder 21, and a male thread may be formed on the circumferential surface of a rotating body such as the spindle 12 or tool holder 15, and the weight holder 21 may be screwed onto the rotating body for attachment. Also, although the balancer is constructed as a separate member from the rotating body such as the spindle or tool holder and attached to the rotating body, the weight holder of the balancer may be formed integrally with the rotating body. In this case, for example, the end surface of the spindle or tool holder may be used as the adjustment surface.
[第2実施形態]
第2実施形態のバランサは、錘保持体の端面とともに周面に回転バランスの調整のための錘を配している。なお、第2実施形態のバランサは、以下に説明する他は、第1実施形態と同様であり、実質的に同じ部材には、同一の符号を付してその詳細な説明を省略する。 [Second embodiment]
The balancer of the second embodiment has weights for adjusting the rotation balance arranged on the peripheral surface as well as the end surface of the weight holder. The balancer of the second embodiment is similar to that of the first embodiment except for the following description, and the same reference numerals are used to designate substantially the same members, and detailed description thereof will be omitted.
第2実施形態のバランサは、錘保持体の端面とともに周面に回転バランスの調整のための錘を配している。なお、第2実施形態のバランサは、以下に説明する他は、第1実施形態と同様であり、実質的に同じ部材には、同一の符号を付してその詳細な説明を省略する。 [Second embodiment]
The balancer of the second embodiment has weights for adjusting the rotation balance arranged on the peripheral surface as well as the end surface of the weight holder. The balancer of the second embodiment is similar to that of the first embodiment except for the following description, and the same reference numerals are used to designate substantially the same members, and detailed description thereof will be omitted.
図8に示すバランサ50は、主軸やツールホルダ等の回転体に取り付けられる。バランサ50は、錘保持体51、錘22、52、押え板23、押えねじ24、装着部25等で構成される。バランサ50は、装着部25によって、貫通孔27に通した回転体に対して同軸に固定され、回転体と同軸に回転する。
The balancer 50 shown in FIG. 8 is attached to a rotating body such as a spindle or a tool holder. The balancer 50 is composed of a weight holder 51, weights 22 and 52, a pressure plate 23, a pressure screw 24, and an attachment part 25. The balancer 50 is fixed coaxially to the rotating body passed through the through hole 27 by the attachment part 25, and rotates coaxially with the rotating body.
錘保持体51は、円盤状の部材の中央にその厚み方向に貫通する断面円形の貫通孔27を設けたドーナツ板状である。この錘保持体51の一方の端面である調整面51aに第1溝としての溝31が形成され、溝31内に配される各錘22が押え板23によって固定される。また、錘保持体51の周面51cには、第2溝としての溝54が錘保持体51の回転方向(周方向)に沿って円環状に形成されている。この溝54内には、周面錘としての複数、この例では3個の錘52が配されて固定される、図8では、2個の錘52のみが示されている。なお、錘保持体51を回転体に一体形成してもよく、この場合に回転体の周面に溝54を形成してもよい。錘52の個数は、複数(2個以上)であればよく、錘22の個数と異なってもよい。また、回転体の端面を調整面51aとする場合、回転体の周面に溝54を設ければよい。
The weight holder 51 is a doughnut plate with a circular through hole 27 that penetrates the center of the disk-shaped member in the thickness direction. A groove 31 is formed as a first groove on the adjustment surface 51a, which is one end surface of the weight holder 51, and each weight 22 arranged in the groove 31 is fixed by a pressing plate 23. A groove 54 is formed as a second groove in the rotation direction (circumferential direction) of the weight holder 51 on the peripheral surface 51c of the weight holder 51. A plurality of weights 52, three weights 52 in this example, are arranged and fixed in the groove 54 as peripheral weights. In FIG. 8, only two weights 52 are shown. The weight holder 51 may be formed integrally with the rotating body, and in this case, a groove 54 may be formed on the peripheral surface of the rotating body. The number of weights 52 may be more than one (two or more), and may be different from the number of weights 22. In addition, when the end surface of the rotating body is the adjustment surface 51a, a groove 54 may be provided on the peripheral surface of the rotating body.
図9に示すように、溝54は、アリ溝である。すなわち、溝54は、その幅(錘保持体51の厚み方向の長さ)が溝54の底に向かって漸次大きくなる断面形状を有している。錘52は、その幅方向に2分割された一対の錘部材52a、止めねじ52bとから構成される。一対の錘部材52aの各々は、溝54の開口から溝54内に挿入できる大きさであり、それぞれを溝54内に挿入してから互いに溝54内で組み合わせられる。一対の錘部材52aを互いに組み合わせたときの断面形状は、溝54の断面形状とほぼ同じであるが、溝54よりも幅が小さくされている。一対の錘部材52aを組み合わせた境界部分に、一対の錘部材52aの各々に二分されるねじ穴57が形成されている。
As shown in FIG. 9, the groove 54 is a dovetail groove. That is, the groove 54 has a cross-sectional shape in which its width (length in the thickness direction of the weight holder 51) gradually increases toward the bottom of the groove 54. The weight 52 is composed of a pair of weight members 52a divided into two in the width direction, and a set screw 52b. Each of the pair of weight members 52a is large enough to be inserted into the groove 54 from its opening, and is inserted into the groove 54 and then assembled together within the groove 54. The cross-sectional shape of the pair of weight members 52a when assembled together is approximately the same as the cross-sectional shape of the groove 54, but is narrower than the groove 54. A screw hole 57 is formed at the boundary where the pair of weight members 52a are assembled, dividing each of the pair of weight members 52a into two.
一対の錘部材52aを隙間なく組み合わせた状態では、ねじ穴57の径は、所定の深さから止めねじ52bの径よりも小さくなり、その深さからさらに深くなるのにしたがって漸次小さくなるように縮径している。錘52を溝54内に固定する場合には、一対の錘部材52aを溝54内において、組み合わせることで形成されるねじ穴57に止めねじ52bを所定の深さよりも深く螺合させる。これにより、一対の錘部材52aが溝54の対向する内面を押圧することで、錘52が固定される。止めねじ52bを緩めることにより、錘52を溝54内で移動することができる。
When the pair of weight members 52a are assembled without any gaps, the diameter of the screw hole 57 becomes smaller than the diameter of the set screw 52b from a predetermined depth, and gradually decreases as the depth increases. When fixing the weight 52 in the groove 54, the set screw 52b is screwed deeper than the predetermined depth into the screw hole 57 formed by assembling the pair of weight members 52a in the groove 54. As a result, the pair of weight members 52a press against the opposing inner surfaces of the groove 54, fixing the weight 52. The set screw 52b can be loosened to move the weight 52 in the groove 54.
周面51cの溝54の開口に近接した部分には、目盛り33と同様に、錘保持体51の回転中心まわりの角度位置を角度で示す目盛り58が刻設されている。錘52の一方の錘部材52aには、錘保持体51の周方向の中心には錘保持体51の厚み方向(回転軸Z方向)に延びたセンタ線52cが刻設されている。センタ線52cを目盛り58の目盛り線に合せることで、所定の角度位置に位置決めして錘52を固定することができる。このようにアリ溝である溝54内に錘52を固定することで、錘52が溝54から抜け出て飛散し難くしている。なお、この例では、3個の錘52を用いているが、錘22と同様に2個の錘52を用いてもよい。
A scale 58 is engraved on the peripheral surface 51c near the opening of the groove 54, similar to the scale 33, to indicate the angular position of the weight holder 51 around the center of rotation in degrees. One of the weight members 52a of the weight 52 is engraved with a center line 52c extending in the thickness direction of the weight holder 51 (the direction of the rotation axis Z) at the circumferential center of the weight holder 51. By aligning the center line 52c with the scale line of the scale 58, the weight 52 can be positioned and fixed at a predetermined angular position. By fixing the weight 52 in the groove 54, which is a dovetail groove, the weight 52 is less likely to slip out of the groove 54 and fly away. In this example, three weights 52 are used, but two weights 52 may be used as in the weight 22.
上記バランサ50を用いた場合には、3個の錘22を溝31内において、また3個の錘52を溝54内において等間隔に、例えばそれぞれ0°、120°、240°の角度位置に固定する。この後、3個の錘22を用いて開角計算によって回転体のアンバランスを修正して回転体の振動を小さくし、さらに3個の錘52を用いて開角計算によって回転体のアンバランスを修正して回転体の振動をさらに小さくする。このように、錘保持体51の端面に配される錘22と周面に配される錘52との両方を調整することにより、結果として、第1実施形態と同様に、スラスト、ラジアルの両方のバランスが調整される。
When the balancer 50 is used, three weights 22 are fixed in the groove 31, and three weights 52 are fixed in the groove 54 at equal intervals, for example at angular positions of 0°, 120°, and 240°, respectively. After this, the three weights 22 are used to correct the imbalance of the rotor by opening angle calculation to reduce the vibration of the rotor, and three more weights 52 are used to correct the imbalance of the rotor by opening angle calculation to further reduce the vibration of the rotor. In this way, by adjusting both the weights 22 arranged on the end face of the weight holder 51 and the weights 52 arranged on the circumferential surface, the balance of both thrust and radial is adjusted as in the first embodiment.
なお、3個の錘52を用いてアンバランスを修正してから、3個の錘22を用いてアンバランスを修正してもよい。3個の錘22を用いたアンバランスの修正と3個の錘52を用いた開角計算によるアンバランスの修正とを交互に繰り返し行なってもよい。また、回転体のラジアル方向の振動を検出して行う開角計算によるアンバランス修正と、スラスト方向の振動を検出して行う開角計算によるアンバランス修正とを併用してもよい。例えば、回転体のラジアル方向の振動を検出して3個の錘22を用いたアンバランスの修正と3個の錘52を用いた開角計算によるアンバランスの修正とを行なった後に、回転体のスラスト方向の振動を検出して3個の錘22を用いたアンバランスの修正と3個の錘52を用いた開角計算によるアンバランスの修正とを行う。
In addition, the imbalance may be corrected using three weights 52, and then the imbalance may be corrected using three weights 22. The imbalance correction using three weights 22 and the imbalance correction by opening angle calculation using three weights 52 may be repeated alternately. Also, the imbalance correction by opening angle calculation performed by detecting the vibration in the radial direction of the rotor and the imbalance correction by opening angle calculation performed by detecting the vibration in the thrust direction may be used in combination. For example, the imbalance correction using three weights 22 and the imbalance correction by opening angle calculation using three weights 52 are performed by detecting the vibration in the radial direction of the rotor, and then the imbalance correction using three weights 22 and the imbalance correction by opening angle calculation using three weights 52 are performed by detecting the vibration in the thrust direction of the rotor.
図10は、錘保持体51を第1部材61、第2部材62で構成し、第2溝となる溝54を回転軸Zの方向に分割するように形成した例を示している。錘保持体51は、その厚み方向(回転軸Zの方向)に2分割されており、調整面51a側の第1部材61と、上面51b側の第2部材62とから構成される。この例では、第2部材62に形成した貫通孔63に通したねじ64を、第1部材61に形成したねじ穴65に螺合することで、第1部材61に第2部材62が組み付けられる。貫通孔63及びねじ穴65は、錘保持体51の回転方向に等間隔にそれぞれ複数設けられており、それらに複数のねじ64を螺合させて、第1部材61及び第2部材62は組み付けられる。
FIG. 10 shows an example in which the weight holder 51 is composed of a first member 61 and a second member 62, and the groove 54, which becomes the second groove, is formed so as to divide it in the direction of the rotation axis Z. The weight holder 51 is divided into two in its thickness direction (the direction of the rotation axis Z), and is composed of a first member 61 on the adjustment surface 51a side and a second member 62 on the upper surface 51b side. In this example, the second member 62 is assembled to the first member 61 by threading a screw 64 passed through a through hole 63 formed in the second member 62 into a screw hole 65 formed in the first member 61. A plurality of through holes 63 and a plurality of screw holes 65 are provided at equal intervals in the rotation direction of the weight holder 51, and the first member 61 and the second member 62 are assembled by threading a plurality of screws 64 into them.
溝54は、この例では、錘保持体51の径方向に沿った断面がT字形状になっている。すなわち、溝54は、一定の深さまで周面51cに露呈した開口と同じ幅(回転軸Zの方向の長さ)であり、一定の深さから底面までの間が開口よりも大きな一定の幅を有する。このように、溝54は、錘保持体51の径方向に沿った断面形状が開口幅よりも幅広な部分を有する形状とされている。この溝54は、第1部材61及び第2部材62に分割して形成された部分を組み合わせることで1つの溝を構成する。すなわち、溝54は、回転軸Zと直交する面で分割され、その一方の部分が第1部材61に、他方の部分が第2部材62に形成されている。より、具体的には、この例では、溝54は、その開口と底面とを回転軸Zの方向に2分するように分割されている。
In this example, the groove 54 has a T-shaped cross section along the radial direction of the weight holder 51. That is, the groove 54 has the same width (length in the direction of the rotation axis Z) as the opening exposed on the peripheral surface 51c up to a certain depth, and has a certain width larger than the opening between the certain depth and the bottom surface. In this way, the groove 54 has a cross section along the radial direction of the weight holder 51 that has a portion wider than the opening width. This groove 54 is formed by combining the portions formed by dividing the groove 54 into the first member 61 and the second member 62. That is, the groove 54 is divided by a plane perpendicular to the rotation axis Z, one portion of which is formed in the first member 61 and the other portion is formed in the second member 62. More specifically, in this example, the groove 54 is divided so that the opening and the bottom surface are divided into two in the direction of the rotation axis Z.
この例における各錘52は、それぞれ1個の部材であって、その断面形状は、溝54の断面形状と同じでありT字形状になっている。各錘52は、溝54となる第1部材61と第2部材62との間に入れて第1部材61と第2部材62とを組み付けることにより、溝54内に配される。錘52は、ねじ64を締めることで溝54の内壁面となる第1部材61と第2部材62の対向する内面で押圧されて固定される。錘52の角度位置を調整する場合には、角度位置を調整する錘52の近傍のねじ64を緩める。これにより、当該錘252に対する第1部材61及び第2部材62による押圧力が弱められ、当該錘52を溝54内でスライド移動することができる。
In this example, each weight 52 is a single member, and its cross-sectional shape is the same as the cross-sectional shape of the groove 54, that is, a T-shape. Each weight 52 is placed in the groove 54 by inserting it between the first member 61 and the second member 62 that form the groove 54 and assembling the first member 61 and the second member 62. The weight 52 is pressed and fixed by the opposing inner surfaces of the first member 61 and the second member 62 that form the inner wall surface of the groove 54 by tightening the screw 64. When the angular position of the weight 52 is to be adjusted, the screw 64 near the weight 52 whose angular position is to be adjusted is loosened. This weakens the pressing force of the first member 61 and the second member 62 on the weight 52, and the weight 52 can slide within the groove 54.
上記のように構成することで、錘52を、錘52が溝54から脱落して飛散しないような形状にし、また溝54内に錘52を固定できるようにしながら、錘52を1個の部材として構成することができる。押え板23で錘22を押える場合と同様に、錘52を微小化でき高精度に調整するうえで有利である。
By configuring as described above, weight 52 can be configured as a single member while being shaped so that weight 52 does not fall out of groove 54 and scatter, and weight 52 can be fixed within groove 54. As with the case where weight 52 is held down by pressing plate 23, weight 52 can be made smaller, which is advantageous for high-precision adjustment.
上記各実施形態では、錘保持体の調整面(端面)に1本の溝内に錘を配置して固定しているが、調整面に複数本の溝を設け、各溝内にそれぞれ配置した錘を移動することによって、回転体の回転バランスを調整してもよい。図11に示す例では、錘保持体21の調整面21aに溝31と溝71とが形成されている。溝71は、溝31よりも外側に形成され、その溝内71内に例えば3個の錘72が配置される。例えば、錘72よりも錘22の慣性モーメントが小さくなるように、錘22、72の各質量が決められることが望ましい。錘22、72の個数は、複数(2個以上)であればよく、錘22と錘72の個数が異なってもよい。
In each of the above embodiments, the weight is placed and fixed in one groove on the adjustment surface (end surface) of the weight holder, but multiple grooves may be provided on the adjustment surface and the rotational balance of the rotating body may be adjusted by moving the weights placed in each groove. In the example shown in FIG. 11, groove 31 and groove 71 are formed on adjustment surface 21a of weight holder 21. Groove 71 is formed outside groove 31, and three weights 72, for example, are placed in groove 71. For example, it is desirable to determine the masses of weights 22, 72 so that the moment of inertia of weight 22 is smaller than that of weight 72. The number of weights 22, 72 may be multiple (two or more), and the number of weights 22 and weights 72 may be different.
錘72は、一対の錘部材72aと、止めねじ72bとから構成される。一対の錘部材72aを互いに組み合わせたときの断面形状は、溝71の断面形状とほぼ同じであるが、溝71よりも幅が小さくされている。錘72は、一対の錘部材72aを組み合わせた境界部分に形成されたねじ穴73に止めねじ72bを所定の深さ以上に螺合することで溝71内に固定される。ねじ穴73は、一対の錘部材72aを隙間なく組み合わせた状態では、その径が所定の深さから止めねじ73bの径よりも小さくなり、その深さからさらに深くなるのにしたがって漸次小さくなるように縮径している。これにより、ねじ穴73に止めねじ72bを所定の深さよりも深く螺合させることによって、一対の錘部材72aが溝71の対向する内面を押圧することで、錘72が固定される。止めねじ72bを緩めることにより、錘72を溝71内でスライド移動することができる。なお、溝31内の錘22は、押え板23によって押え付けられて固定される。
The weight 72 is composed of a pair of weight members 72a and a set screw 72b. The cross-sectional shape of the pair of weight members 72a when combined is almost the same as the cross-sectional shape of the groove 71, but is narrower than the groove 71. The weight 72 is fixed in the groove 71 by screwing the set screw 72b to a predetermined depth or more into a screw hole 73 formed at the boundary part where the pair of weight members 72a are combined. When the pair of weight members 72a are combined without any gaps, the diameter of the screw hole 73 becomes smaller than the diameter of the set screw 73b from a predetermined depth, and the diameter of the screw hole 73 is gradually reduced as it becomes deeper from that depth. As a result, by screwing the set screw 72b into the screw hole 73 deeper than a predetermined depth, the pair of weight members 72a press the opposing inner surfaces of the groove 71, and the weight 72 is fixed. By loosening the set screw 72b, the weight 72 can be slid within the groove 71. The weight 22 in the groove 31 is pressed and fixed by the pressing plate 23.
この構成では、例えば、溝31内に3個の錘22を、また溝71内に3個の錘72をそれぞれ錘保持体21の回転方向に等間隔に配置して固定する。3個の錘22と3個の錘72の角度位置が相互に異なっていてもよい。まず、例えば、錘22よりも各々の慣性モーメントが大きい3個の錘72を用いて開角計算によるアンバランスの修正を実施し、回転体の振動を小さくする。この後に、3個の錘22を用いて開角計算によるアンバランスの修正を実施し、回転体の振動をさらに小さくする。なお、錘72を用いた開角計算によるアンバランスの修正と、錘22を用いて開角計算によるアンバランスの修正とを繰り返し行なってもよい。
In this configuration, for example, three weights 22 are fixed in groove 31, and three weights 72 are fixed in groove 71, each equally spaced apart in the rotational direction of weight holder 21. The angular positions of the three weights 22 and the three weights 72 may differ from each other. First, for example, the three weights 72, each of which has a larger moment of inertia than weight 22, are used to correct the imbalance through an opening angle calculation, thereby reducing the vibration of the rotating body. After this, the three weights 22 are used to correct the imbalance through an opening angle calculation, thereby further reducing the vibration of the rotating body. Note that the correction of the imbalance through an opening angle calculation using weights 72 and the correction of the imbalance through an opening angle calculation using weights 22 may be repeated.
図12は、錘保持体75の端面である上面及び下面をそれぞれ調整面75aとして、各調整面75aに溝31をそれぞれ設け、各々の溝31内に錘22を配置する例を示している。この例では、各調整面75aの溝31内にそれぞれ配置した錘22を移動することによって、回転体の回転バランスを調整する。各調整面75aにおける錘22の個数は、互いに異なってもよい。
FIG. 12 shows an example in which the upper and lower end faces of the weight holder 75 are each used as an adjustment surface 75a, a groove 31 is provided on each adjustment surface 75a, and weights 22 are placed in each groove 31. In this example, the rotational balance of the rotating body is adjusted by moving the weights 22 placed in the grooves 31 of each adjustment surface 75a. The number of weights 22 on each adjustment surface 75a may differ from each other.
10、50 バランサ
12、45 主軸
15 ツールホルダ
21、51、75 錘保持体
21a、51a、75a 調整面
22、52、72 錘
23 押え板
23b 周縁部
24 押えねじ
31、54、71 溝
34 取付面部 10, 50 Balancer 12, 45 Spindle 15 Tool holder 21, 51, 75 Weight holder 21a, 51a, 75a Adjustment surface 22, 52, 72 Weight 23 Pressing plate 23b Periphery 24 Pressing screw 31, 54, 71 Groove 34 Mounting surface
12、45 主軸
15 ツールホルダ
21、51、75 錘保持体
21a、51a、75a 調整面
22、52、72 錘
23 押え板
23b 周縁部
24 押えねじ
31、54、71 溝
34 取付面部 10, 50
Claims (8)
- 回転体の回転バランスを調整するバランサにおいて、
複数の端面錘と、
前記複数の端面錘が取り付けられ、前記回転体と一体に同軸に回転するドーナツ板形状の錘保持体と、
前記錘保持体の端面に形成され、前記錘保持体が回転する回転方向に沿って円環状に形成され、前記複数の端面錘が内部でスライド自在な第1溝と、
前記第1溝内の任意の位置で前記複数の端面錘を固定する固定部と、
を備え、
前記回転体としてスピンドル又は前記スピンドルに着脱自在に取り付けられるツールホルダに設けられるバランサ。 In balancers that adjust the rotation balance of rotating bodies,
A plurality of end weights;
a doughnut-shaped weight holder to which the plurality of end surface weights are attached and which rotates coaxially integrally with the rotor;
a first groove formed on an end surface of the weight holder, the first groove being formed in an annular shape along a rotation direction of the weight holder, the first groove being capable of allowing the end surface weights to slide freely therein;
a fixing portion that fixes the plurality of end weights at any position within the first groove;
Equipped with
The balancer is provided on a spindle as the rotating body or on a tool holder that is detachably attached to the spindle. - 前記固定部は、外径が前記第1溝の内径よりも大きく外径よりも小さいドーナツ板形状であり、前記錘保持体の端面上に前記錘保持体と同軸に配され、前記第1溝の内部に前記回転方向に移動自在に配される前記複数の端面錘の各々の一部を周縁部で押えて固定する押え板を備える請求項1に記載のバランサ。 The balancer according to claim 1, wherein the fixing portion is in the shape of a donut plate with an outer diameter larger than the inner diameter of the first groove and smaller than the outer diameter, and is provided with a pressing plate that is arranged coaxially with the weight holder on the end face of the weight holder and presses and fixes with its peripheral portion a portion of each of the multiple end surface weights that are arranged inside the first groove so as to be movable in the rotational direction.
- 前記複数の端面錘は、前記端面の前記第1溝よりも内側の取付面部から前記錘保持体の回転軸方向に突出する厚みを有し、
前記回転方向に沿って前記取付面部に形成された複数のねじ穴と、
前記複数のねじ穴に対応して前記回転方向に沿って前記押え板に形成された複数の貫通孔と
を備え、
前記固定部は、前記複数の貫通孔を通して前記複数のねじ穴にそれぞれ螺合し、前記押え板を前記取付面部に向けて押圧することによって、前記周縁部が前記複数の端面錘の前記取付面部より突出した突出面を押圧して前記押え板を前記錘保持体に固定する複数の第1ねじを有する
請求項2に記載のバランサ。 the end surface weights each have a thickness that protrudes in a direction of a rotation axis of the weight holder from a mounting surface portion of the end surface that is located on the inner side of the first groove,
a plurality of screw holes formed in the mounting surface portion along the rotation direction;
a plurality of through holes formed in the pressing plate along the rotation direction in correspondence with the plurality of screw holes,
3. The balancer according to claim 2, wherein the fixing portion has a plurality of first screws that screw into the plurality of screw holes through the plurality of through holes, respectively, and press the pressing plate toward the mounting surface portion, so that the peripheral portion presses against protruding surfaces of the plurality of end-face weights that protrude beyond the mounting surface portion, thereby fixing the pressing plate to the weight holder. - 前記複数のねじ穴及び前記複数の貫通孔は、前記複数の端面錘と同数で前記回転方向に沿って等間隔に設けられ、
前記複数のねじは、前記複数の端面錘と同数の第1ねじで前記押え板を押圧して固定する
請求項3に記載のバランサ。 the plurality of screw holes and the plurality of through holes are provided at equal intervals along the rotation direction in the same number as the plurality of end surface weights,
The balancer according to claim 3 , wherein the plurality of screws include first screws, the number of which is equal to the number of the end surface weights, that press and fix the retainer plate. - 前記錘保持体の周面に前記回転方向に沿って円環状に形成された第2溝と、
前記第2溝の内部に固定される複数の周面錘と、
を備える請求項1ないし4のいずれか1項に記載のバランサ。 a second groove formed in an annular shape along the rotation direction on a peripheral surface of the weight holder;
A plurality of peripheral weights fixed inside the second groove;
A balancer according to any one of claims 1 to 4, comprising: - 前記第2溝は、前記錘保持体の径方向に沿った断面形状が開口幅よりも幅広な部分を有し、
前記複数の周面錘は、前記錘保持体の径方向に沿った断面形状が、前記第2溝の前記断面形状と同じであり、
前記錘保持体は、前記錘保持体の回転軸の方向に分割された前記第2溝の一方が形成された第1部材と、他方が形成され前記第1部材に組み付けられる第2部材とを有する
請求項5に記載のバランサ。 The second groove has a portion whose cross-sectional shape along a radial direction of the weight holder is wider than an opening width,
The plurality of peripheral weights have a cross-sectional shape along a radial direction of the weight holder that is the same as the cross-sectional shape of the second groove,
6. The balancer according to claim 5, wherein the weight holder has a first member in which one of the second grooves divided in the direction of the rotation axis of the weight holder is formed, and a second member in which the other of the second grooves is formed and which is assembled to the first member. - 回転体の回転バランスを調整するバランサにおいて、
複数の端面錘と、
前記複数の端面錘が取り付けられ、前記回転体と一体に同軸に回転するドーナツ板形状の錘保持体と、
前記錘保持体の端面に形成され、前記錘保持体が回転する回転方向に沿って円環状に形成され、前記複数の端面錘が内部でスライド自在な第1溝と、
外径が前記第1溝の内径よりも大きく外径よりも小さいドーナツ板形状の押え板と
を備え、
前記押え板は、
前記錘保持体の端面上に前記錘保持体と同軸に配され、前記第1溝の内部の前記複数の端面錘の各々の一部を周縁部で押えて固定するバランサ。 In balancers that adjust the rotation balance of rotating bodies,
A plurality of end weights;
a doughnut-shaped weight holder to which the plurality of end surface weights are attached and which rotates coaxially integrally with the rotor;
a first groove formed on an end surface of the weight holder, the first groove being formed in an annular shape along a rotation direction of the weight holder, the first groove being capable of allowing the end surface weights to slide freely therein;
a presser plate having a doughnut shape, the outer diameter of which is larger than the inner diameter of the first groove and smaller than the outer diameter of the first groove;
The pressing plate is
a balancer that is disposed coaxially with the weight holder on the end surface of the weight holder and that presses and fixes a portion of each of the plurality of end surface weights inside the first groove by means of a peripheral portion thereof; - スピンドル又は前記スピンドルに着脱自在に取り付けられるツールホルダを回転体として、前記回転体と一体に同軸に回転する錘保持体上に配される複数の錘の前記回転体の回転軸まわりの角度位置を変えることによって、前記回転体の回転バランスを調整するバランサを用い、
前記複数の錘を前記錘保持体の回転方向に等間隔に配置した状態で、前記回転体を回転させた際の前記回転体のアンバランス状態と前記複数の錘のうち1個の錘の位置を等間隔に配置した状態からずらして前記回転体を回転させた際の前記回転体のアンバランス状態とをそれぞれを測定し、前記回転体の各アンバランス状態を用いてアンバランスを補正する角度位置を求める第1の測定ステップと、
直前の測定ステップで測定される前記回転体のアンバランス状態に基づいて得られる前記回転体の回転のアンバランスを補正する角度位置に前記複数の錘を配置して、前記回転体のアンバランス状態を測定する第2の測定ステップと
を有し、
前記第1の測定ステップの後に、前記アンバランス状態が所定の許容される状態になるまで前記第2の測定ステップを繰り返す、
回転バランスの調整方法。 A balancer is used to adjust the rotational balance of a rotating body by changing the angular positions of a plurality of weights arranged on a weight holder that rotates coaxially with a rotating body, the weight holder being a rotating body that is a spindle or a tool holder that is detachably attached to the spindle, around the rotation axis of the rotating body,
a first measurement step of measuring an unbalance state of the rotating body when the rotating body is rotated in a state in which the plurality of weights are arranged at equal intervals in the rotational direction of the weight holder, and measuring an unbalance state of the rotating body when the rotating body is rotated with a position of one of the plurality of weights shifted from the state in which the weights are arranged at equal intervals, and determining an angular position for correcting the unbalance using each unbalance state of the rotating body;
a second measuring step of measuring an unbalance state of the rotating body by disposing the plurality of weights at angular positions that correct an unbalance state of the rotating body obtained based on the unbalance state of the rotating body measured in the immediately preceding measuring step,
After the first measuring step, the second measuring step is repeated until the unbalance state reaches a predetermined allowable state.
How to adjust the rotation balance.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023071134A JP2024156559A (en) | 2023-04-24 | Balancer and rotation balance adjustment method | |
JP2023-071134 | 2023-04-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024225307A1 true WO2024225307A1 (en) | 2024-10-31 |
Family
ID=93256470
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2024/016041 WO2024225307A1 (en) | 2023-04-24 | 2024-04-24 | Balancer and method for adjusting rotation balance |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2024225307A1 (en) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS624567A (en) * | 1985-06-29 | 1987-01-10 | Nagase Tekkosho:Kk | Rotating balance adjusting mechanism in rotary device |
JPH0253312U (en) * | 1988-10-12 | 1990-04-17 | ||
JPH05253836A (en) * | 1992-01-30 | 1993-10-05 | Nippei Toyama Corp | Automatic balancing device of main spindle |
JPH06226621A (en) * | 1993-02-03 | 1994-08-16 | Hitachi Seiko Ltd | Balancing device for grinding wheel |
JP4218190B2 (en) * | 2000-07-12 | 2009-02-04 | 村田機械株式会社 | lathe |
EP2329913A1 (en) * | 2009-12-01 | 2011-06-08 | Maschinenfabrik Berthold Hermle Aktiengesellschaft | Vertical processing centre in gantry form with a balancing device for the workpiece table |
JP2018202546A (en) * | 2017-06-05 | 2018-12-27 | 株式会社ディスコ | Processing device |
-
2024
- 2024-04-24 WO PCT/JP2024/016041 patent/WO2024225307A1/en unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS624567A (en) * | 1985-06-29 | 1987-01-10 | Nagase Tekkosho:Kk | Rotating balance adjusting mechanism in rotary device |
JPH0253312U (en) * | 1988-10-12 | 1990-04-17 | ||
JPH05253836A (en) * | 1992-01-30 | 1993-10-05 | Nippei Toyama Corp | Automatic balancing device of main spindle |
JPH06226621A (en) * | 1993-02-03 | 1994-08-16 | Hitachi Seiko Ltd | Balancing device for grinding wheel |
JP4218190B2 (en) * | 2000-07-12 | 2009-02-04 | 村田機械株式会社 | lathe |
EP2329913A1 (en) * | 2009-12-01 | 2011-06-08 | Maschinenfabrik Berthold Hermle Aktiengesellschaft | Vertical processing centre in gantry form with a balancing device for the workpiece table |
JP2018202546A (en) * | 2017-06-05 | 2018-12-27 | 株式会社ディスコ | Processing device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR0139924B1 (en) | Method and apparatus for balancing a rotary tool assembly | |
US7393164B2 (en) | Dynamic balancing ring for cutter holder | |
JP3494655B2 (en) | Rotary tool with balance ring | |
JP6532769B2 (en) | Runout correction method for machine tools and tools | |
JP7387146B2 (en) | Dynamic balance tester and unbalance correction method in the dynamic balance tester | |
US20060162717A1 (en) | Apparatus and methods for aligning a center of mass with a rotational axis of a shaft or spindle | |
CN110926698B (en) | Dynamic balance correction method and automation equipment using same | |
JP2016513242A (en) | Method and apparatus for determining a machining axis | |
US20220252478A1 (en) | Method and drivetrain test bench for detecting an imbalance and/or a misalignment | |
JP2001246530A (en) | Ring for adjusting deflection precision/rotational balance of tool and adjustment method | |
WO2024225307A1 (en) | Balancer and method for adjusting rotation balance | |
US6477927B1 (en) | Method for improving the machining accuracy of a precision machine tool | |
JP3038254B2 (en) | Boring head | |
JP2024156559A (en) | Balancer and rotation balance adjustment method | |
JPS63259242A (en) | Automatic balancer for rotor | |
JPS63210437A (en) | Jig and method for correcting unbalance of cylindrical rotary body | |
JP6858531B2 (en) | Shaft connection adjustment mechanism | |
US20220048116A1 (en) | Chuck arrangement and method for fastening and rotating a workpiece using such | |
JP2024031742A (en) | balancer | |
JPH10238594A (en) | Balance regulating device for rotary body | |
JP4415680B2 (en) | Grinding apparatus and grinding method | |
JPH10286770A (en) | Grinding stone and grinding stone set | |
CN100412401C (en) | Method for balancing a clutch mechanism and a cover therefor | |
US6712682B2 (en) | Grinding wheel fixture | |
WO2024135726A1 (en) | Spindle balancer |