[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2024225076A1 - Expansion valve attachment part - Google Patents

Expansion valve attachment part Download PDF

Info

Publication number
WO2024225076A1
WO2024225076A1 PCT/JP2024/014807 JP2024014807W WO2024225076A1 WO 2024225076 A1 WO2024225076 A1 WO 2024225076A1 JP 2024014807 W JP2024014807 W JP 2024014807W WO 2024225076 A1 WO2024225076 A1 WO 2024225076A1
Authority
WO
WIPO (PCT)
Prior art keywords
expansion valve
valve body
manifold
retainer
flange
Prior art date
Application number
PCT/JP2024/014807
Other languages
French (fr)
Japanese (ja)
Inventor
奈那子 関
祐介 戸田
豪太 尾形
誠 吉野
達博 鈴木
晃一 川戸
雄大 山本
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2024225076A1 publication Critical patent/WO2024225076A1/en

Links

Images

Definitions

  • This disclosure relates to a mounting portion for mounting an expansion valve to a heat pump module.
  • Patent Document 1 describes a mounting structure for an expansion valve in which multiple expansion valves for a heat pump cycle for a vehicle are mounted to a housing.
  • a flow path for the refrigerant of the heat pump cycle is formed in the housing, and the expansion valve opens and closes the flow path for the refrigerant in the housing. This aims to save space when installing multiple expansion valves in a vehicle.
  • the expansion valve is fixed to a retaining plate by a bracket and a bolt, and the retaining plate is fixed to the housing, thereby mounting the expansion valve to the housing.
  • the present disclosure aims to provide an expansion valve mounting part that can improve productivity.
  • an expansion valve mounting portion that mounts an expansion valve main body that adjusts an opening degree of a refrigerant flow path to a manifold, the expansion valve mounting portion comprising: A retainer having a locking portion is provided, The engaging portion is fixed to one of the outer periphery of the manifold and the outer periphery of the expansion valve body.
  • FIG. 2 is a perspective view showing a mounting portion of the expansion valve according to the first embodiment.
  • 2 is a cross-sectional view showing a mounting portion of the expansion valve according to the first embodiment.
  • FIG. FIG. 2 is an enlarged perspective view showing a portion of the manifold in the first embodiment.
  • FIG. 2 is an enlarged perspective view showing a part of a valve body in the first embodiment.
  • FIG. 2 is a front view showing the valve body in the first embodiment.
  • FIG. 6 is a cross-sectional view taken along the line VI-VI of FIG. 5 .
  • FIG. 5A to 5C are explanatory diagrams for explaining a method of attaching the expansion valve and the retainer in the first embodiment.
  • FIG. 2 is an explanatory diagram for explaining a mounting structure of an expansion valve and a manifold in the first embodiment.
  • FIG. 4 is an explanatory diagram for explaining a method of attaching an expansion valve and a manifold in the first embodiment.
  • FIG. 11 is an explanatory diagram for explaining a mounting structure of an expansion valve and a manifold in a second embodiment.
  • 13 is an explanatory diagram for explaining a mounting structure of an expansion valve and a retainer in a second embodiment.
  • FIG. FIG. 11 is a perspective view showing a mounting portion of an expansion valve according to a third embodiment.
  • FIG. 11 is a cross-sectional view showing a mounting portion of an expansion valve according to a third embodiment.
  • FIG. 13 is an enlarged perspective view showing a portion of a manifold in a third embodiment.
  • FIG. 13 is an enlarged front view showing a portion of a manifold in a third embodiment. This is a cross-sectional view taken along line XVIII-XVIII of Figure 17.
  • FIG. 11 is an enlarged perspective view showing a part of a valve body in a third embodiment.
  • FIG. 13 is a front view showing a valve body in a third embodiment.
  • FIG. 13 is a perspective view showing a retainer in a third embodiment. 13 is an explanatory diagram for explaining a mounting structure of a manifold and a retainer in a third embodiment.
  • FIG. 13 is an explanatory diagram for explaining a method of attaching a manifold and a retainer in the third embodiment.
  • FIG. 13 is an explanatory diagram for explaining a mounting structure between an expansion valve and a manifold in a third embodiment.
  • FIG. 13 is an explanatory diagram for explaining a method of attaching an expansion valve and a manifold in the third embodiment.
  • FIG. 13 is an explanatory diagram for explaining a mounting structure between an expansion valve and a manifold in a fourth embodiment.
  • 13 is an explanatory diagram for explaining a mounting structure of an expansion valve and a retainer in a fourth embodiment.
  • FIG. A cross-sectional view showing a mounting portion of an expansion valve according to a fifth embodiment.
  • FIG. 13 is a front view showing a coil portion in a fifth embodiment.
  • FIG. 23 is a front view showing a coil portion in a sixth embodiment.
  • FIG. 13 is a perspective view showing a retainer in a sixth embodiment.
  • FIG. 11 is a cross-sectional view showing a valve body in another embodiment (1).
  • FIG. 4 is an enlarged perspective view showing a portion of a mounting portion of an expansion valve according to another embodiment (1).
  • FIG. 13 is a perspective view showing a retainer in another embodiment (1).
  • FIG. 11 is a plan view showing a mounting portion of an expansion valve according to another embodiment (1).
  • FIG. 11 is an enlarged perspective view showing a portion of a manifold in another embodiment (2).
  • FIG. 11 is an enlarged perspective view showing a part of a valve body in another embodiment (2).
  • FIG. 13 is a perspective view showing a mounting portion of the expansion valve according to the seventh embodiment.
  • FIG. 13 is a cross-sectional view showing a mounting portion of an expansion valve according to a seventh embodiment.
  • FIG. 23 is an enlarged perspective view showing a portion of a manifold in a seventh embodiment.
  • FIG. 23 is a perspective view showing a retainer in a seventh embodiment. 13 is an explanatory diagram for explaining a mounting structure of an expansion valve and a retainer in a seventh embodiment.
  • FIG. FIG. 23 is a perspective view showing a retainer in an eighth embodiment.
  • FIG. 23 is a plan view showing a retainer in the eighth embodiment.
  • FIG. 23 is a plan view showing a retainer in the eighth embodiment.
  • FIG. 23 is a side view showing a retainer in the eighth embodiment. A cross-sectional view showing the mounting portion of the expansion valve according to the 9th embodiment.
  • FIG. 13 is a perspective view showing a mounting portion of an expansion valve according to a ninth embodiment. A cross-sectional view showing the mounting portion of the expansion valve according to the tenth embodiment.
  • FIG. 23 is a perspective view showing a mounting portion of the expansion valve according to the tenth embodiment.
  • the expansion valve 100 of this embodiment is applied to a heat pump module.
  • the heat pump module has a compressor, a condenser, the expansion valve 100, an evaporator, and a casing 200 that constitute a heat pump.
  • the heat pump module has a compressor, a condenser, an expansion valve 100, and an evaporator.
  • the compressor draws in, compresses, and discharges refrigerant.
  • the condenser condenses the refrigerant discharged from the compressor by dissipating heat.
  • the expansion valve 100 reduces the pressure and expands the refrigerant condensed by the condenser.
  • the evaporator causes the refrigerant reduced in pressure and expanded by the expansion valve 100 to absorb heat and evaporate.
  • the compressor, condenser, expansion valve 100 and evaporator are fixed to a casing 200 to form a heat pump module. Inside the casing 200, a refrigerant flow path is formed through which the refrigerant of the heat pump flows.
  • the axial direction of the expansion valve 100 will be simply referred to as the "axial direction.”
  • the radial direction of the expansion valve 100 will be simply referred to as the “radial direction.”
  • the circumferential direction of the expansion valve 100 will be simply referred to as the “circumferential direction.”
  • the expansion valve 100 is fixed to a manifold 300 formed in the casing 200 by a retainer 400.
  • the manifold 300 is an expansion valve fixing portion formed in a portion of the casing 200 of the heat pump module where the expansion valve 100 is fixed.
  • the retainer 400 is a fixing member that fixes the expansion valve 100 to the manifold 300.
  • the expansion valve 100 has a valve body portion 10 and a coil portion 50.
  • the expansion valve 100 of this embodiment corresponds to an example of an expansion valve body.
  • the valve body 10 is inserted into the insertion hole 30 of the manifold 300.
  • the opening 30a of the insertion hole 30 in the manifold 300 is located higher than other parts of the manifold 300.
  • the valve body 10 includes a valve body 11.
  • the valve body 11 is a cylindrical member made of an aluminum alloy or the like. As shown in FIG. 2, the valve body 11 is formed with a refrigerant flow path 13 that connects a refrigerant inlet 12 and an outlet 16. Furthermore, inside the valve body 10, a valve chamber 14 is formed on the refrigerant flow path 13, and a valve body (not shown) is housed inside the valve chamber 14 in a slidable manner.
  • the inlet 12 is formed on one side of the valve body 10 and is the portion through which the refrigerant circulating in the refrigeration cycle flows into the inside of the expansion valve 100.
  • the inlet 12 is connected to the valve chamber 14 via a refrigerant flow path 13.
  • An outlet 16 is formed on the underside of the valve body 10, and the refrigerant that has flowed through the valve chamber 14 flows out to the outside of the expansion valve 100.
  • a valve seat (not shown) is formed at the bottom of the valve chamber 14, and connects the valve chamber 14 to the outlet 16 via the refrigerant flow path 13.
  • the inlet 12 is formed on the side of the valve body 10, and the outlet 16 is formed on the bottom surface of the valve body 10, but this is not limited to the above.
  • the mechanism for driving the valve body i.e., a motor, etc.
  • the mechanism for driving the valve body may be located on the low pressure side.
  • a through hole 17 is formed in the upper part of the valve body portion 10.
  • the through hole 17 is formed so as to connect the upper surface of the valve body portion 10 to the central part of the upper surface of the valve chamber 14. Inside the through hole 17, a part of the valve body that moves up and down by the driving force transmitted via the output shaft of a motor (not shown) and a power transmission part is disposed.
  • the driving force from a rotor (not shown) of a motor located above the valve body portion 10 is transmitted to the valve body via the through hole 17 and the power transmission portion located above it.
  • the power transmission portion includes a feed screw mechanism, and converts the rotational motion generated by the rotor into linear motion and transmits it to the valve body.
  • valve disc moves axially (up and down in Figure 2) due to the driving force from the rotor, approaching or moving away from the valve seat.
  • the valve disc can be brought into contact with the valve seat to close the refrigerant flow path.
  • the opening of the refrigerant flow path is adjusted by the relative movement of the valve body with respect to the valve seat.
  • the refrigerant flows through the refrigerant flow path 13, it is reduced in pressure and expanded by the throttling action in the gap between the valve body and the valve seat, so the expansion valve 100 can adjust the amount of pressure reduction of the refrigerant by adjusting the opening.
  • the coil section 50 is fixed to the upper surface of the valve body section 10.
  • the coil section 50 has a stator, a can, a can cover, a can collar 28, a mold 53, etc. (not shown).
  • the can is made of a metal such as stainless steel and is cylindrical in shape, and is a rotor housing member that houses the rotor.
  • the can is arranged coaxially with the valve body.
  • the can is closed by a can cover.
  • the other end of the can (lower end in FIG. 1) is open and in close contact with the can collar 28.
  • the can collar 28 is made of a metal such as stainless steel and is cylindrically shaped, and is arranged coaxially with the valve body.
  • the other end of the can collar 28 (lower end in FIG. 1) is in close contact with the valve body portion 10.
  • the high-pressure refrigerant before pressure reduction is present in the internal space of the can, and the can acts as a partition between the refrigerant sealed circuit containing the high-pressure refrigerant and the outside.
  • a first O-ring 56 is placed between the can collar 28 and the valve body 10, and the can collar 28 and the valve body 10 are sealed together by fastening a male thread formed on the outer peripheral surface of the can collar 28 to a female thread formed on the inner peripheral surface of the valve body 10.
  • the rotor is the rotating part of the motor, and rotates when electricity is passed through the coil of the stator, which is the stationary part. As the rotor rotates, it generates a driving force for driving the valve body.
  • the motor is made up of a rotor and a stator, and is used as an electric actuator that displaces the valve body.
  • the stator is arranged coaxially with the rotor and the can, radially outward of the rotor and the can.
  • the stator is provided with a coil, and when electricity is passed through the coil, a rotating magnetic field is generated to rotate the rotor.
  • the mold 53 is made of resin and covers the can and stator from the outside, and is a housing member that houses the can and stator.
  • Polyphenylene sulfide (PPS) which has excellent durability, is used as the resin that forms the mold 53. Note that instead of the mold 53, a resin case formed to cover the coil may be used.
  • the bottom of the mold 53 is in close contact with the valve body 11.
  • a sealing structure using an annular packing 55 is provided in the gap between the bottom of the mold 53 and the valve body 11. The packing 55 prevents liquid from entering the inside of the mold 53 and the inside of the valve body 11.
  • the gap between the can collar 28 and the valve body 11 is provided with a seal structure using a first O-ring 56.
  • the first O-ring 56 prevents liquid from entering the inside of the valve body 11.
  • a seal structure using a second O-ring 57 is provided in the gap between the valve body 11 and the manifold 300.
  • the second O-ring 57 prevents liquid from entering the inside of the manifold 300.
  • the second O-ring 57 has elasticity, so it prevents the expansion valve 100 from rattling when the internal pressure rises.
  • the manifold 300 has a protrusion 31 that protrudes toward the coil section 50 at its end on the coil section 50 side (the upper side in Figure 2).
  • the valve body 11 has a recess 111 that fits with the protrusion 31 of the manifold 300.
  • the projection 31 of the manifold 300 and the recess 111 of the valve body 11 engage with each other, so that the expansion valve 100 is circumferentially locked to the manifold 300. This prevents the expansion valve 100 from rotating relative to the manifold 300. In other words, the expansion valve 100 is constrained in the rotational direction (i.e., the circumferential direction) relative to the manifold 300. Therefore, the projection 31 of the manifold 300 and the recess 111 of the valve body 11 in this embodiment correspond to an example of a main body rotation prevention portion.
  • two convex portions 31 are formed on the manifold 300, and two concave portions 111 are formed on the valve body 11, but this is not limited to the above.
  • the manifold 300 has a flange 32 that protrudes radially outward at the end on the coil section 50 side (upper side in FIG. 2).
  • the flange 32 is provided on the opposite side of the coil section 50 from the protruding portion 31 (lower side in FIG. 2).
  • the flange 32 is tapered so that its radial length becomes shorter as it approaches the coil section 50.
  • a groove portion 112 extending in the circumferential direction is provided at the end of the valve body 11 on the coil portion 50 side (the upper side in Figure 6).
  • the groove portion 112 is formed only in a part of the circumferential direction.
  • a non-groove portion 113 where the groove portion 112 is not formed is provided at the end of the valve body 11 on the coil portion 50 side.
  • two groove portions 112 are provided.
  • a non-groove portion 113 is disposed between the two groove portions 112.
  • the valve body 11 is provided with two groove portions 112 and two non-groove portions 113.
  • the two groove portions 112 are disposed so as to be symmetrical with respect to a virtual reference line extending in the radial direction in a cross section perpendicular to the axial direction.
  • the retainer 400 is a fixing member that fixes the expansion valve 100 to the manifold 300.
  • the retainer 400 is made of stainless steel (SUS) or the like.
  • the retainer 400 can be formed, for example, by subjecting a plate-shaped member to press processing or punching processing.
  • the retainer 400 has a clip portion 41 and a flange portion 42.
  • the clip portion 41 has a cross section perpendicular to the axial direction that is U-shaped.
  • Two side portions 411 of the clip portion 41 that face each other in the radial direction of the expansion valve 100 each have a through hole 412.
  • the flange 32 formed on the outer periphery of the manifold 300 is engaged and fixed in the through hole 412. This restrains the expansion valve 100 in the removal direction (i.e., the axial direction) relative to the manifold 300.
  • the through hole 412 in this embodiment corresponds to an example of a second engagement portion.
  • the through hole 412 is formed in an elongated hole shape that extends in a direction perpendicular to the axial direction.
  • the flange 42 is connected to the coil portion 50 side of the clip portion 41 (the upper side in FIG. 7).
  • the flange 42 is formed in a plate shape that extends from the end of the coil portion 50 side of each side portion 411 of the clip portion 41 toward the radial inside of the expansion valve 100.
  • Two flanges 42 are provided facing each other with the valve body 11 in between.
  • the flange 42 is engaged and fixed in a groove 112 formed on the outer periphery of the valve body 11. This restrains the retainer 400 in the removal direction (i.e., the axial direction) relative to the valve body 11.
  • the flange 42 in this embodiment corresponds to an example of a first engagement portion.
  • the groove portion 112 is formed only in a portion of the circumferential direction, when the flange portion 42 is fixed to the groove portion 112, the retainer 400 is engaged in the circumferential direction to the valve body 11. This prevents the retainer 400 from rotating relative to the valve body portion 10.
  • the retainer 400 is restrained in the rotational direction (i.e., the circumferential direction) relative to the valve body 11. Therefore, the non-groove portion 113 in this embodiment corresponds to an example of a retainer rotation prevention portion.
  • the groove portion 112 formed only in a portion of the circumferential direction corresponds to an example of a retainer rotation prevention portion.
  • the radially inner end surface 421 of the flange 42 is formed in an arc shape that corresponds to the groove 112.
  • the flange 42 is provided with a hole 422 into which the tip of a bent-tip pliers or a dedicated jig can be inserted.
  • the retainer 400 has a first abutment portion 413 and a second abutment portion 423.
  • the first abutment portion 413 is an axial abutment portion that abuts against the manifold 300 in the axial direction.
  • the first abutment portion 413 is configured by the end portion of the clip portion 41 opposite the coil portion 50 (the lower end portion in FIG. 7).
  • the second abutment portion 423 is an axially perpendicular abutment portion that abuts against the valve body 11 in an abutment direction that is perpendicular to the axial direction.
  • the second abutment portion 423 is configured by the end of the flange portion 42 on the U-shaped opening side of the clip portion 41.
  • the second abutment portion 423 is provided on each of the two opposing flange portions 42.
  • the second abutment portions 423 are formed in a tapered shape such that the distance between the opposing second abutment portions 423 increases toward the U-shaped opening side.
  • the retainer 400 is configured to elastically deform when assembled. Specifically, the retainer 400 has an elastic deformation portion 414 that elastically deforms radially outward when an axial force acts on the first abutment portion 413.
  • the elastic deformation portion 414 also elastically deforms radially outward when a force acts in the abutment direction on the second abutment portion 423. Therefore, the elastic deformation portion 414 in this embodiment corresponds to an example of an axial side elastic deformation portion and an abutment side elastic deformation portion.
  • the elastic deformation portion 414 is provided in a portion of the clip portion 41 other than the two side portions 411.
  • the entire retainer 400 may be configured to be elastically deformable.
  • the coil portion 50 is fixed to the valve body portion 10.
  • the retainer 400 is attached to the valve body portion 10 from the abutment direction, which is perpendicular to the axial direction. Specifically, the retainer 400 is attached to the valve body portion 10 from the U-shaped opening side of the clip portion 41. More specifically, the flange portion 42 of the retainer 400 is inserted into the groove portion 112 of the valve body portion 10 from the abutment direction.
  • valve body 10 to which the retainer 400 is fixed is attached to the manifold 300. Specifically, the valve body 10 is inserted axially into the insertion hole 30 of the manifold 300.
  • the retainer 400 slides in a direction away from the coil portion 50 (toward the bottom of the paper in FIG. 11), and the flange 32 is locked in the through hole 412.
  • the elastic deformation of the retainer 400 returns to its original state.
  • the following method can be used. That is, first, the tip of a bent-tip pliers or a special tool is inserted into the hole 422 of the retainer 400, and the retainer 400 is elastically deformed in the direction in which the two flanges 42 move apart (i.e., radially outward). The expansion valve 100 can then be removed from the manifold 300 by pulling it out from the gap between the two flanges 42.
  • the expansion valve 100 is attached to the manifold 300 using the retainer 400 having the through hole 412 and the flange portion 42. At this time, there is no need to use a dedicated jig for assembling the retainer 400 to the expansion valve 100 and the manifold 300.
  • the expansion valve 100 can be attached to the manifold 300 by a simple process of engaging the through hole 412 of the retainer 400 with the flange 32 of the manifold 300 and engaging the flange portion 42 of the retainer 400 with the groove portion 112 of the valve body 11. Therefore, the number of parts and the number of steps required to attach the expansion valve 100 to the manifold 300 can be reduced. As a result, it is possible to improve productivity.
  • the flange 32 of the manifold 300 is formed in a tapered shape.
  • the retainer 400 is attached to the valve body 11 in advance. This allows the expansion valve 100 to be attached to the manifold 300 with a single touch by simply pushing the expansion valve 100 in the insertion direction against the insertion hole 30 of the manifold 300.
  • a dedicated jig for attaching the expansion valve 100 to the manifold 300 is not required. Therefore, the number of parts and the number of steps required to attach the expansion valve 100 to the manifold 300 can be reduced. As a result, the manifold 300 can be made smaller. This allows the heat pump module to be made smaller and the mountability to be improved.
  • the expansion valve 100 is circumferentially engaged with the manifold 300 by fitting the convex portion 31 of the manifold 300 into the concave portion 111 of the valve body 11. This prevents the refrigerant flow path of the expansion valve 100 from being misaligned with the refrigerant flow path on the manifold 300 side. In addition, since the direction of the connector is regulated, it becomes easier to automate the assembly of the harness.
  • the elastic deformation portion 414 of the retainer 400 is provided in a portion other than the two side portions 411 of the clip portion 41. That is, in this embodiment, the portion of the retainer 400 that elastically deforms during assembly and the portion that receives force during engagement are configured in separate portions. This makes it possible to achieve both improved ease of assembly and improved holding strength.
  • the opening 30a of the insertion hole 30 in the manifold 300 is located higher than other parts of the manifold 300. This makes the mating surface between the valve body 11 and the manifold 300 higher than the surrounding upper surface of the manifold 300, preventing water from pooling on the mating surface. As a result, corrosion between the valve body 11 and the manifold 300 can be suppressed.
  • the fastening portion of the retainer 400 is located on the outer periphery of the manifold 300, making it easy to remove the expansion valve 100. This improves serviceability, such as replacement during repairs.
  • the second embodiment is different from the first embodiment in the method of mounting the expansion valve 100 to the manifold 300.
  • valve body portion 10 to which the coil portion 50 is fixed is inserted into the insertion hole 30 of the manifold 300.
  • a retainer 400 is attached to the valve body portion 10 and the manifold 300.
  • the flange 42 of the retainer 400 is inserted radially into the groove 112 of the valve body 10.
  • a force in the contact direction acts on the retainer 400, and when the second contact portion 423 of the flange 42 comes into contact with the groove 112 of the valve body 11, the retainer 400 elastically deforms radially outward. If the force in the contact direction continues to be applied in this state, the two flanges 42 of the retainer 400 each open radially outward, and the flanges 42 of the retainer 400 are inserted along the groove 112 of the valve body 11.
  • the rest of the configuration is the same as in the first embodiment. Therefore, the mounting portion of the expansion valve 100 in the second embodiment can also achieve the same effects as in the first embodiment.
  • the third embodiment is different from the first embodiment in the method of mounting the expansion valve 100 to the manifold 300.
  • the manifold 300 has a tubular portion 34 formed into a cylindrical shape.
  • An insertion hole 30 is formed inside the tubular portion 34.
  • the tubular portion 34 is formed into a cylindrical shape.
  • a groove portion 35 extending in the circumferential direction is provided on the outer periphery of the cylindrical portion 34.
  • the groove portion 35 is formed only in a part of the circumferential direction.
  • the cylindrical portion 34 is provided with a non-groove portion 36 where the groove portion 35 is not formed.
  • two groove portions 35 are provided.
  • a non-groove portion 36 is disposed between the two groove portions 35.
  • the two groove portions 35 are disposed so as to be symmetrical with respect to a virtual reference line extending in the radial direction in a cross section perpendicular to the axial direction.
  • a flange 114 that protrudes radially outward is provided at the end of the outer periphery of the valve body 11 on the coil section 50 side (the upper side in Figure 15).
  • the flange 114 is formed in a plate shape perpendicular to the axial direction.
  • the retainer 400 of this embodiment has a clip portion 41, a flange portion 42, and a tapered portion 43.
  • a flange 114 formed on the outer periphery of the valve body 11 is engaged and fixed in the through hole 412 of the clip portion 41. This restrains the expansion valve 100 in the removal direction (i.e., the axial direction) relative to the manifold 300.
  • the through hole 412 of this embodiment corresponds to an example of a second engagement portion.
  • the flange portion 42 is connected to the side of the clip portion 41 opposite the coil portion 50 (the lower side in FIG. 21).
  • the flange portion 42 is formed in a plate shape extending from the end of each side portion 411 of the clip portion 41 opposite the coil portion 50 toward the radial inside of the expansion valve 100.
  • Two flange portions 42 are provided facing each other with the cylindrical portion 34 of the manifold 300 in between.
  • the flange 42 is engaged and fixed in a groove 35 formed on the outer periphery of the manifold 300. This restrains the expansion valve 100 in the removal direction (i.e., the axial direction) relative to the manifold 300.
  • the flange 42 in this embodiment corresponds to an example of a first engagement portion.
  • the groove portion 35 is formed only in a portion of the circumferential direction, when the flange portion 42 is fixed to the groove portion 35, the retainer 400 is engaged in the circumferential direction with the manifold 300. This prevents the retainer 400 from rotating relative to the manifold 300. In other words, the retainer 400 is restrained in the rotational direction (i.e., the circumferential direction) relative to the manifold 300. Therefore, the non-grooved portion 36 in this embodiment corresponds to an example of a retainer rotation prevention portion. In other words, the groove portion 35 formed only in a portion of the circumferential direction corresponds to an example of a retainer rotation prevention portion.
  • the tapered portion 43 is formed in a flat plate shape.
  • the tapered portion 43 is connected to the coil portion 50 side of the clip portion 41 (the upper side in FIG. 21). Specifically, the tapered portion 43 is connected to the end of each side portion 411 of the clip portion 41 on the coil portion 50 side.
  • the tapered portion 43 is formed in a tapered shape that extends radially outward as it approaches the coil portion 50.
  • the retainer 400 of this embodiment has a third abutment portion 43 and a fourth abutment portion 424.
  • the third abutment portion 43 abuts against the valve body 11 in the axial direction.
  • the third abutment portion 43 is configured by a tapered portion 43.
  • the fourth abutment portion 424 abuts against the manifold 300 in an abutment direction that is perpendicular to the axial direction.
  • the fourth abutment portion 424 is configured by the end of the flange portion 42 on the U-shaped opening side of the clip portion 41.
  • the fourth abutment portion 424 is provided on each of the two opposing flange portions 42.
  • the fourth abutment portions 424 are formed in a tapered shape such that the distance between the opposing fourth abutment portions 424 increases toward the U-shaped opening side.
  • the retainer 400 also has an elastic deformation portion 415 that elastically deforms radially outward when an axial force acts on the third abutment portion 43.
  • the elastic deformation portion 415 also elastically deforms radially outward when a force acts on the fourth abutment portion 424 in the abutment direction.
  • the elastic deformation portion 415 is provided in a portion other than the two side portions 411 of the clip portion 41.
  • the entire retainer 400 may be configured to be elastically deformable.
  • the retainer 400 is attached to the cylindrical portion 34 of the manifold 300 from the radial direction. Specifically, the retainer 400 is attached to the valve body portion 10 from the U-shaped opening side of the clip portion 41. More specifically, the flange portion 42 of the retainer 400 is slid radially into the groove portion 112 of the valve body portion 10 to attach it.
  • the elastic deformation of the retainer 400 returns to its original state with the arc-shaped end surface 421 of the flange 42 in contact with the groove 35. This causes the flange 42 of the retainer 400 to engage with the groove 35 of the manifold 300.
  • valve body 10 with the coil portion 50 fixed thereto is attached to the manifold 300 to which the retainer 400 is engaged. Specifically, the valve body 10 is inserted axially into the insertion hole 30 of the manifold 300.
  • the valve body 11 slides axially downward (toward the bottom of the paper in FIG. 25) and the flange 114 is locked in the through hole 412.
  • the elastic deformation of the retainer 400 returns to its original state.
  • the rest of the configuration is the same as in the first embodiment. Therefore, the mounting portion of the expansion valve 100 in the third embodiment can also achieve the same effects as in the first embodiment.
  • the fourth embodiment is different from the third embodiment in the method of mounting the expansion valve 100 to the manifold 300.
  • valve body portion 10 to which the coil portion 50 is fixed is inserted into the insertion hole 30 of the cylindrical portion 34 of the manifold 300.
  • a retainer 400 is attached to the valve body portion 10 and the manifold 300.
  • the flange 42 of the retainer 400 is inserted into the groove 35 of the manifold 300 from the contact direction.
  • a force in the contact direction acts on the retainer 400, and when the fourth contact portion 424 of the flange 42 comes into contact with the groove 35 of the manifold 300, the retainer 400 elastically deforms radially outward. If the force in the contact direction continues to be applied in this state, the two flanges 42 of the retainer 400 each open radially outward, and the flanges 42 of the retainer 400 are inserted along the groove 35 of the manifold 300.
  • the elastic deformation of the retainer 400 returns to its original state with the arc-shaped end surface 421 of the flange 42 in contact with the groove 35. This causes the flange 42 of the retainer 400 to engage with the groove 35 of the manifold 300, and the flange 114 of the valve body 11 to engage with the through hole 412 of the clip portion 41 of the retainer 400.
  • the rest of the configuration is the same as in the third embodiment. Therefore, the mounting portion of the expansion valve 100 in the fourth embodiment can also achieve the same effects as in the third embodiment.
  • the fifth embodiment is different from the first embodiment in the shape of the coil portion 50, etc.
  • the coil portion 50 has a retainer locking portion 51 at its end on the valve body portion 10 side (the lower end in FIG. 24) to which the retainer 400 is locked.
  • the retainer locking portion 51 locks the flange portion 42 of the retainer 400 and the end of the valve body 11 on the coil portion 50 side (the upper end in FIG. 24). At this time, the flange portion 42 of the retainer 400 and the end of the valve body 11 on the coil portion 50 side are inserted into the coil portion 50.
  • the retainer locking portion 51 of the coil portion 50 can fix the coil portion 50 and the retainer 400, and can also fix the coil portion 50 and the valve body 11. This makes it possible to eliminate the coil fastening bracket that fixes the coil portion 50 and the valve body portion 10, thereby reducing the number of parts and the assembly man-hours.
  • the sixth embodiment is different from the fifth embodiment in the shapes of the coil portion 50 and the retainer 400, etc.
  • a flange 52 is formed at the end of the coil section 50 on the valve body section 10 side (the lower end in Figure 24).
  • the flange 52 is formed in a disk shape perpendicular to the axial direction.
  • the retainer 400 has a coil side flange 44, which is located closer to the coil section 50 (upper side in Figure 32) than the flange 42 on the clip section 41.
  • the coil side flange 44 is formed in the same shape as the flange 42. That is, the coil side flange 44 is formed in a plate shape extending from the end of the coil section 50 side of each side section 411 of the clip section 41 toward the radial inside of the valve body 11. Two coil side flanges 44 are provided facing each other with the valve body 11 in between.
  • the coil side flange 44 is engaged with the flange 52 of the coil section 50.
  • the coil section 50 is fixed to the valve body 11 by the coil side flange 44.
  • the coil side flange 44 in this embodiment corresponds to an example of a coil engagement section to which the coil section 50 is fixed.
  • the radially inner end surface 441 of the coil side flange 44 is formed in an arc shape that corresponds to the flange 52 of the coil section 50.
  • the coil portion 50 and the valve body 11 can be fixed by the coil side flange portion 44 of the retainer 400. This makes it possible to eliminate the coil fastening bracket that fixes the coil portion 50 and the valve body portion 10, thereby reducing the number of parts and the assembly labor.
  • the retainer 400 of this embodiment has an upper flange 42A and a lower flange 42B.
  • the upper flange 42A is connected to the coil portion 50 side of the clip portion 41 (the upper side in FIG. 40).
  • the upper flange 42A is formed in a plate shape extending from the end of the coil portion 50 side of each side portion 411 of the clip portion 41 toward the radial inside of the expansion valve 100.
  • Two upper flanges 42A are provided facing each other with the valve body 11 in between.
  • the upper flange 42A is engaged and fixed in a groove 112 formed on the outer periphery of the valve body 11. This restrains the retainer 400 in the removal direction (i.e., the axial direction) relative to the valve body 11.
  • the upper flange 42A in this embodiment corresponds to an example of a first engagement portion.
  • a manifold side anti-rotation portion and a retainer side anti-rotation portion 425 are provided as the retainer rotation prevention portion. That is, a manifold side anti-rotation portion having a non-arc shape is formed in a part of the groove portion 112 of the valve body 11. And a retainer side anti-rotation portion 425 having a non-arc shape is formed in a part of the upper flange portion 42A of the retainer 400.
  • the manifold side anti-rotation portion and the retainer side anti-rotation portion 425 may each have a planar shape.
  • the second abutment portion 423 is formed by the end of the upper flange portion 42A on the side of the U-shaped opening of the clip portion 41.
  • the second abutment portion 423 is provided on each of the two opposing upper flange portions 42A.
  • the second abutment portions 423 are formed in a tapered shape in which the distance between the opposing second abutment portions 423 increases toward the U-shaped opening side.
  • the upper flange portion 42A is provided with a hole portion 422 into which the tip of a bent tip pliers or a dedicated jig or the like can be inserted.
  • the lower flange 42B is connected to the side of the clip portion 41 opposite the coil portion 50 (the lower side in FIG. 40).
  • the lower flange 42B is formed in a plate shape extending from the end of each side portion 411 of the clip portion 41 opposite the coil portion 50 toward the radial inside of the expansion valve 100.
  • Two lower flanges 42B are provided facing each other across the cylindrical portion 34 of the manifold 300.
  • the lower flange 42B is engaged and fixed in a groove 35 formed on the outer periphery of the manifold 300. This restrains the expansion valve 100 in the removal direction (i.e., the axial direction) relative to the manifold 300.
  • the radially inner end face of the lower flange 42B extends perpendicular to the axial direction. More specifically, the radially inner end face of the lower flange 42B extends parallel to the retainer side anti-rotation portion 425 of the upper flange 42A.
  • the lower flange 42B in this embodiment corresponds to an example of a third engagement portion.
  • the groove portion 35 is formed only on a portion of the manifold 300 in the circumferential direction.
  • the retainer 400 is engaged with the manifold 300 in the circumferential direction.
  • the retainer 400 is prevented from rotating relative to the manifold 300.
  • the retainer 400 is restrained in the rotational direction (i.e., the circumferential direction) relative to the manifold 300. Therefore, the non-grooved portion 36 in this embodiment corresponds to an example of a retainer rotation prevention portion.
  • the groove portion 35 formed only on a portion of the circumferential direction corresponds to an example of a retainer rotation prevention portion.
  • the coil portion 50 is fixed to the valve body portion 10. Then, the valve body portion 10 with the coil portion 50 fixed thereto is attached to the manifold 300. Specifically, the valve body portion 10 is inserted axially into the insertion hole 30 of the manifold 300.
  • the retainer 400 is attached to the valve body 10 and manifold 300 from the abutment direction, which is a direction perpendicular to the axial direction. Specifically, the retainer 400 is attached to the valve body 10 and manifold 300 from the U-shaped opening side of the clip portion 41. More specifically, the upper flange 42A of the retainer 400 is inserted into the groove 112 of the valve body 10 from the abutment direction, and the lower flange 42B of the retainer 400 is inserted into the groove 35 of the manifold 300 from the abutment direction.
  • the retainer 400 elastically deforms radially outward (i.e., in the direction in which the two upper flange portions 42A move away from each other).
  • the two upper flanges 42A of the retainer 400 open radially outward, and the upper flanges 42A of the retainer 400 are inserted along the grooves 112 of the valve body 11.
  • the two lower flanges 42B of the retainer 400 open radially outward, and the lower flanges 42B of the retainer 400 are inserted along the grooves 35 of the manifold 300.
  • the following method can be used. That is, first, the tip of a bent-tip pliers or a special tool is inserted into the hole 422 of the retainer 400, and the retainer 400 is elastically deformed in a direction in which the two upper flanges 42A move apart (i.e., radially outward). The expansion valve 100 can then be removed from the manifold 300 by pulling it out from the gap between the two upper flanges 42A.
  • the expansion valve 100 is attached to the manifold 300 using the retainer 400 having the upper flange 42A and the lower flange 42B. At this time, there is no need to use a dedicated jig for assembling the retainer 400 to the expansion valve 100 and the manifold 300. That is, the expansion valve 100 can be attached to the manifold 300 by a simple process of engaging the upper flange 42A of the retainer 400 with the groove 112 of the valve body portion 10 and engaging the lower flange 42B of the retainer 400 with the groove 35 of the manifold 300. Therefore, the number of parts and the number of steps required to attach the expansion valve 100 to the manifold 300 can be reduced. As a result, it is possible to improve productivity.
  • FIG. 44 is a view of the retainer 400 as seen from the axial direction
  • Fig. 46 is a view of the retainer 400 as seen from the radial direction (i.e., the left-right direction in Fig. 45).
  • the clip portion 41 of the retainer 400 is provided with a connection portion 416, an inner protrusion 417, and an outer protrusion 418.
  • the connection portion 416 connects the radial ends of the two side portions 411.
  • the inner protrusion 417 extends from the connection portion 416 toward the radial inside of the expansion valve 100.
  • the outer protrusion 418 extends from the connection portion 416 toward the radial outside of the expansion valve 100.
  • An elastic deformation portion 414 may be interposed between the side portion 411 and the connection portion 416.
  • connection portion 416 in this embodiment is formed in a plate shape extending perpendicular to the radial direction.
  • the connection portion 416 extends perpendicular to each side portion 411.
  • the elastic deformation portion 414 is formed in an arc shape that protrudes radially outward when viewed from the axial direction. The radial end of the side portion 411 and the radial end of the connection portion 416 are connected via the elastic deformation portion 414.
  • the inner protrusion 417 is a plate-like member that is connected to the connection portion 416 and protrudes radially inward from the connection portion 416.
  • the outer protrusion 418 is a plate-like member that is connected to the connection portion 416 and protrudes radially outward from the connection portion 416.
  • the inner protrusion 417 and the outer protrusion 418 in this embodiment are each formed in a plate shape extending perpendicular to the axial direction.
  • the inner protrusion 417 is connected to the end of the connection part 416 on the coil part 50 side (upper side in Figures 44 and 46).
  • the outer protrusion 418 is connected to the end of the connection part 416 on the opposite side to the coil part 50 (lower side in Figures 44 and 46).
  • the inner protrusion 417 is disposed on the same plane as the two upper flanges 42A.
  • the retainer 400 is provided with an inner protrusion 417 that protrudes radially inward from the connection portion 416. As a result, the retainer 400 comes into contact with the valve body portion 10 at the two upper flange portions 42A and the inner protrusion 417. This results in three-point contact between the retainer 400 and the valve body portion 10, which can suppress rattling of the retainer 400 relative to the valve body portion 10.
  • the retainer 400 is provided with an outer protrusion 418 that protrudes radially outward from the connection portion 416. This allows the outer protrusion 418 to function as a gripping portion for a jig to grip when assembling the retainer 400. Furthermore, if the process of assembling the retainer 400 is automated, positioning can be performed using the outer protrusion 418. This makes it possible to improve productivity.
  • the mold 53 of the coil portion 50 has a cylindrical portion 531 formed in a cylindrical shape.
  • the central axis of the cylindrical portion 531 is arranged coaxially with the axis of the expansion valve 100.
  • the cylindrical portion 531 extends from the end face of the mold 53 on the manifold 300 side (the lower end face in FIG. 47) toward the manifold 300 side.
  • the end of the valve body 11 on the coil 50 side is disposed inside the cylindrical portion 531.
  • the portion of the valve body 11 that is not inserted into the insertion hole 30 of the manifold 300 is disposed inside the cylindrical portion 531.
  • the tip of the cylindrical portion 531 (i.e., the end on the manifold 300 side) is in contact with the end face of the manifold 300 on the coil portion 50 side.
  • the inner wall surface of the cylindrical portion 531 is in contact with the outer wall surface of the valve body 11.
  • a coil side through hole 532 is provided in the cylindrical portion 531 at a location corresponding to the groove portion 112 of the valve body 11.
  • the coil side through hole 532 is formed so that the upper flange portion 42A of the retainer 400 passes through it.
  • the upper flange 42A of the retainer 400 passes through the coil side through hole 532 of the coil portion 50 and is engaged with the groove portion 112 of the valve body 11.
  • both the coil portion 50 and the valve body 11 are engaged and fixed by the upper flange 42A of the retainer 400.
  • the upper flange 42A is fixed to both the valve body portion 10 and the coil portion 50.
  • both the coil section 50 and the valve body 11 can be fixed to the manifold 300 by the upper flange 42A of the retainer 400. This makes it possible to eliminate the coil fastening bracket that fastens the coil section 50 and the valve body section 10, thereby reducing the number of parts and the assembly man-hours.
  • the groove portion 112 is eliminated. Furthermore, an insertion groove 54 into which the upper flange portion 42A of the retainer 400 is inserted is provided at the end of the coil portion 50 on the valve body portion 10 side (the lower end portion in FIG. 49). The upper flange portion 42A of the retainer 400 is inserted into the insertion groove 54 and engaged.
  • the coil section 50 is fixed to the manifold 300 by inserting the upper flange 42A of the retainer 400 into the insertion groove 54 of the coil section 50 and the lower flange 42B of the retainer 400 into the groove 35 of the manifold 300.
  • the valve body 11 is indirectly fixed by being sandwiched between the coil section 50 and the manifold 300.
  • the coil section 50 and the manifold 300 are fixed by the upper flange 42A and the lower flange 42B of the retainer 400, and the valve body 11 is indirectly fixed. This makes it possible to eliminate the coil fastening bracket that fixes the coil section 50 and the valve body section 10, thereby reducing the number of parts and the assembly man-hours.
  • one non-groove portion 113 may be used as the retainer rotation prevention portion.
  • one groove portion 112 and one non-groove portion 113 may be provided on the valve body 11.
  • a manifold side anti-rotation portion 115 and a retainer side anti-rotation portion 425 may be used as the retainer rotation prevention portion. That is, a manifold side anti-rotation portion 115 having a non-arc shape may be formed in a part of the groove portion 112 of the valve body 11. And a retainer side anti-rotation portion 425 having a non-arc shape may be formed in a part of the flange portion 42 of the retainer 400.
  • the manifold side anti-rotation portion 115 and the retainer side anti-rotation portion 425 may each have a planar shape.
  • a protrusion 33 that protrudes radially outward may be formed on a part of the flange 32 of the manifold 300 as a retainer rotation prevention part.
  • a flange 32 provided with a protrusion 33 may be used as the retainer rotation prevention part.
  • the protrusion 33 may be provided on a part of the flange 32 that engages with the through hole 412.
  • the recess 37 of the manifold 300 and the protrusion 116 of the valve body 11 may be used as the main body rotation prevention part. That is, the end of the manifold 300 on the coil section 50 side (the upper side in Figure 37) may be provided with a recess 37 that is recessed on the side opposite the coil section 50 side. The valve body 11 may then be provided with a protrusion 116 that fits into the recess 37 of the manifold 300.
  • the heat pump module had a compressor, a condenser, an expansion valve 100, and an evaporator, but the configuration of the heat pump module is not limited to this.
  • the heat pump module does not necessarily have to include a compressor, a condenser, and an evaporator.
  • a heat pump module in which only valves such as the expansion valve 100 and solenoid valves are modularized may be used.
  • the features of the mounting portion of the expansion valve disclosed in this specification are as follows: (Item 1) An expansion valve mounting portion for mounting an expansion valve body (100) that adjusts the opening degree of a refrigerant flow path to a manifold (300), A retainer (400) having a locking portion (42, 42A), The locking portion is an expansion valve mounting portion that is fixed to one of the outer periphery of the manifold and the outer periphery of the expansion valve body. (Item 2) The locking portion is a first locking portion (42), The first engaging portion is fixed to a groove portion (35, 112) formed in one of the outer periphery of the manifold and the outer periphery of the expansion valve body, 2.
  • the mounting portion for an expansion valve according to claim 1, wherein the retainer has a second engaging portion (412) to which a flange (32, 114) formed on the other of the outer periphery of the manifold and the outer periphery of the expansion valve body is fixed.
  • the locking portion is a first locking portion (42A)
  • the first engaging portion is fixed to a groove portion (54, 112) formed in one of the outer periphery of the manifold and the outer periphery of the expansion valve body
  • the retainer has a third engaging portion (42B) fixed to the other of the outer periphery of the manifold and the outer periphery of the expansion valve body, 2.
  • the first engaging portion is fixed to a groove portion (112) formed on the outer periphery of the expansion valve body, 3.
  • the retainer has an axial abutment portion (413) that abuts against the manifold in the axial direction of the expansion valve body, an axial side elastic deformation portion (414) that elastically deforms radially outward of the expansion valve body when an axial force acts on the axial abutment portion.
  • the retainer has an axially perpendicular abutment portion (423) that abuts against the manifold in a contact direction that is perpendicular to the axial direction of the expansion valve body, and an abutment-side elastic deformation portion (414) that elastically deforms radially outward of the expansion valve body when a force in the abutment direction acts on the axially perpendicular abutment portion.
  • a main body rotation prevention portion (31, 37, 111, 116) that prevents the expansion valve main body from rotating relative to the manifold;
  • the mounting portion of the expansion valve according to item 2 or 4 further comprising a retainer rotation prevention portion (32, 33, 35, 36, 112, 113, 115, 425) that prevents the retainer from rotating relative to the expansion valve body or the manifold.
  • the retainer rotation prevention portion is provided in the groove portion.
  • the retainer rotation prevention portion is provided on the flange.
  • the manifold has an insertion hole (30) into which a portion of the expansion valve body (10) is inserted, 11.
  • the expansion valve body has a coil portion (50) that drives a valve body that adjusts the opening degree of the refrigerant flow path, 12.
  • 13 13.
  • the mounting portion for an expansion valve according to any one of items 1 to 12, wherein the retainer has an inner protrusion (417) extending radially inwardly of the expansion valve body.
  • the expansion valve body includes a valve body portion (10) having a valve body for adjusting an opening degree of the refrigerant flow path and being inserted into an insertion hole (30) of the manifold, and a coil portion (50) for driving the valve body, 2.

Landscapes

  • Temperature-Responsive Valves (AREA)
  • Valve Housings (AREA)

Abstract

This expansion valve attachment part is for attaching, to a manifold (300), an expansion valve body (100) for adjusting the opening degree of a refrigerant flow path. The expansion valve attachment part is provided with a retainer (400) having a locking part (42, 42A). The locking part is fixed to either the outer circumference of the manifold or the outer circumference of the expansion valve body. By attaching the expansion valve body to the manifold by using the retainer having the locking part, it is possible to reduce the number of components needed for attaching the expansion valve body to the manifold. As a result, productivity can be improved.

Description

膨張弁の取付部Expansion valve mounting part 関連出願の相互参照CROSS-REFERENCE TO RELATED APPLICATIONS
 本出願は、2023年4月25日に出願された日本特許出願2023-71637号に基づくもので、ここにその記載内容を援用する。 This application is based on Japanese Patent Application No. 2023-71637, filed on April 25, 2023, the contents of which are incorporated herein by reference.
 本開示は、膨張弁をヒートポンプモジュールに取り付けるための取付部に関する。 This disclosure relates to a mounting portion for mounting an expansion valve to a heat pump module.
 従来、特許文献1には、車両用ヒートポンプサイクルの複数の膨張弁が筐体に取り付けられる膨張弁の取付構造が記載されている。特許文献1の膨張弁の取付構造では、筐体にヒートポンプサイクルの冷媒の流路が形成され、膨張弁が筐体の冷媒の流路を開閉するようになっている。これにより、複数の膨張弁を車両に設置する際の省スペース化を図っている。  Patent Document 1 describes a mounting structure for an expansion valve in which multiple expansion valves for a heat pump cycle for a vehicle are mounted to a housing. In the mounting structure for an expansion valve in Patent Document 1, a flow path for the refrigerant of the heat pump cycle is formed in the housing, and the expansion valve opens and closes the flow path for the refrigerant in the housing. This aims to save space when installing multiple expansion valves in a vehicle.
 また、特許文献1の膨張弁の取付構造では、膨張弁は、ブラケット及びボルトにより留め板に固定されており、留め板が筐体に固定されることにより膨張弁が筐体に取り付けられるようになっている。 In addition, in the expansion valve mounting structure of Patent Document 1, the expansion valve is fixed to a retaining plate by a bracket and a bolt, and the retaining plate is fixed to the housing, thereby mounting the expansion valve to the housing.
特開2021-160680号公報JP 2021-160680 A
 上記従来技術では、膨張弁を筐体に取り付けるために必要な部品の点数が多く、膨張弁を筐体に取り付けるための工数も多いので、生産性の向上が望まれている。 In the above conventional technology, a large number of parts are required to attach the expansion valve to the housing, and the labor required to attach the expansion valve to the housing is also large, so there is a demand for improved productivity.
 本開示は、上記点に鑑みて、生産性を向上可能な膨張弁の取付部を提供することを目的とする。 In view of the above, the present disclosure aims to provide an expansion valve mounting part that can improve productivity.
 上記目的を達成するため、本開示の一態様に係る膨張弁の取付部は、冷媒流路の開度を調整する膨張弁本体をマニフォールドへ取り付ける膨張弁の取付部において、
 係止部を有するリテーナを備え、
 係止部は、マニフォールドの外周および膨張弁本体の外周の一方に固定される。
In order to achieve the above object, an expansion valve mounting portion according to one aspect of the present disclosure is an expansion valve mounting portion that mounts an expansion valve main body that adjusts an opening degree of a refrigerant flow path to a manifold, the expansion valve mounting portion comprising:
A retainer having a locking portion is provided,
The engaging portion is fixed to one of the outer periphery of the manifold and the outer periphery of the expansion valve body.
 これによれば、係止部を有するリテーナを用いて、膨張弁本体をマニフォールドに取り付けることにより、膨張弁本体をマニフォールドに取り付けるために必要な部品の点数を低減することができる。したがって、生産性を向上させることが可能となる。 By using a retainer with a locking portion to attach the expansion valve body to the manifold, the number of parts required to attach the expansion valve body to the manifold can be reduced. This makes it possible to improve productivity.
第1実施形態に係る膨張弁の取付部を示す斜視図である。FIG. 2 is a perspective view showing a mounting portion of the expansion valve according to the first embodiment. 第1実施形態に係る膨張弁の取付部を示す断面図である。2 is a cross-sectional view showing a mounting portion of the expansion valve according to the first embodiment. FIG. 第1実施形態におけるマニフォールドの一部を示す拡大斜視図である。FIG. 2 is an enlarged perspective view showing a portion of the manifold in the first embodiment. 第1実施形態におけるバルブボデーの一部を示す拡大斜視図である。FIG. 2 is an enlarged perspective view showing a part of a valve body in the first embodiment. 第1実施形態におけるバルブボデーを示す正面図である。FIG. 2 is a front view showing the valve body in the first embodiment. 図5のVI-VI断面図である。FIG. 6 is a cross-sectional view taken along the line VI-VI of FIG. 5 . 第1実施形態におけるリテーナを示す斜視図である。FIG. 2 is a perspective view showing a retainer in the first embodiment. 第1実施形態における膨張弁とリテーナとの取付構造を説明するための説明図である。4 is an explanatory diagram for explaining a mounting structure of an expansion valve and a retainer in the first embodiment. FIG. 第1実施形態における膨張弁とリテーナとの取付方法を説明するための説明図である。5A to 5C are explanatory diagrams for explaining a method of attaching the expansion valve and the retainer in the first embodiment. 第1実施形態における膨張弁とマニフォールドとの取付構造を説明するための説明図である。FIG. 2 is an explanatory diagram for explaining a mounting structure of an expansion valve and a manifold in the first embodiment. 第1実施形態における膨張弁とマニフォールドとの取付方法を説明するための説明図である。FIG. 4 is an explanatory diagram for explaining a method of attaching an expansion valve and a manifold in the first embodiment. 第2実施形態における膨張弁とマニフォールドとの取付構造を説明するための説明図である。FIG. 11 is an explanatory diagram for explaining a mounting structure of an expansion valve and a manifold in a second embodiment. 第2実施形態における膨張弁とリテーナとの取付構造を説明するための説明図である。13 is an explanatory diagram for explaining a mounting structure of an expansion valve and a retainer in a second embodiment. FIG. 第3実施形態に係る膨張弁の取付部を示す斜視図である。FIG. 11 is a perspective view showing a mounting portion of an expansion valve according to a third embodiment. 第3実施形態に係る膨張弁の取付部を示す断面図である。FIG. 11 is a cross-sectional view showing a mounting portion of an expansion valve according to a third embodiment. 第3実施形態におけるマニフォールドの一部を示す拡大斜視図である。FIG. 13 is an enlarged perspective view showing a portion of a manifold in a third embodiment. 第3実施形態におけるマニフォールドの一部を示す拡大正面図である。FIG. 13 is an enlarged front view showing a portion of a manifold in a third embodiment. 図17のXVIII-XVIII断面図である。This is a cross-sectional view taken along line XVIII-XVIII of Figure 17. 第3実施形態におけるバルブボデーの一部を示す拡大斜視図である。FIG. 11 is an enlarged perspective view showing a part of a valve body in a third embodiment. 第3実施形態におけるバルブボデーを示す正面図である。FIG. 13 is a front view showing a valve body in a third embodiment. 第3実施形態におけるリテーナを示す斜視図である。FIG. 13 is a perspective view showing a retainer in a third embodiment. 第3実施形態におけるマニフォールドとリテーナとの取付構造を説明するための説明図である。13 is an explanatory diagram for explaining a mounting structure of a manifold and a retainer in a third embodiment. FIG. 第3実施形態におけるマニフォールドとリテーナとの取付方法を説明するための説明図である。13 is an explanatory diagram for explaining a method of attaching a manifold and a retainer in the third embodiment. FIG. 第3実施形態における膨張弁とマニフォールドとの取付構造を説明するための説明図である。FIG. 13 is an explanatory diagram for explaining a mounting structure between an expansion valve and a manifold in a third embodiment. 第3実施形態における膨張弁とマニフォールドとの取付方法を説明するための説明図である。FIG. 13 is an explanatory diagram for explaining a method of attaching an expansion valve and a manifold in the third embodiment. 第4実施形態における膨張弁とマニフォールドとの取付構造を説明するための説明図である。FIG. 13 is an explanatory diagram for explaining a mounting structure between an expansion valve and a manifold in a fourth embodiment. 第4実施形態における膨張弁とリテーナとの取付構造を説明するための説明図である。13 is an explanatory diagram for explaining a mounting structure of an expansion valve and a retainer in a fourth embodiment. FIG. 第5実施形態に係る膨張弁の取付部を示す断面図である。A cross-sectional view showing a mounting portion of an expansion valve according to a fifth embodiment. 第5実施形態におけるコイル部を示す正面図である。FIG. 13 is a front view showing a coil portion in a fifth embodiment. 第6実施形態に係る膨張弁の取付部を示す断面図である。A cross-sectional view showing a mounting portion of an expansion valve according to a sixth embodiment. 第6実施形態におけるコイル部を示す正面図である。FIG. 23 is a front view showing a coil portion in a sixth embodiment. 第6実施形態におけるリテーナを示す斜視図である。FIG. 13 is a perspective view showing a retainer in a sixth embodiment. 他の実施形態(1)におけるバルブボデーを示す断面図である。FIG. 11 is a cross-sectional view showing a valve body in another embodiment (1). 他の実施形態(1)に係る膨張弁の取付部の一部を示す拡大斜視図である。FIG. 4 is an enlarged perspective view showing a portion of a mounting portion of an expansion valve according to another embodiment (1). 他の実施形態(1)におけるリテーナを示す斜視図である。FIG. 13 is a perspective view showing a retainer in another embodiment (1). 他の実施形態(1)に係る膨張弁の取付部を示す平面図である。FIG. 11 is a plan view showing a mounting portion of an expansion valve according to another embodiment (1). 他の実施形態(2)におけるマニフォールドの一部を示す拡大斜視図である。FIG. 11 is an enlarged perspective view showing a portion of a manifold in another embodiment (2). 他の実施形態(2)におけるバルブボデーの一部を示す拡大斜視図である。FIG. 11 is an enlarged perspective view showing a part of a valve body in another embodiment (2). 第7実施形態に係る膨張弁の取付部を示す斜視図である。FIG. 13 is a perspective view showing a mounting portion of the expansion valve according to the seventh embodiment. 第7実施形態に係る膨張弁の取付部を示す断面図である。FIG. 13 is a cross-sectional view showing a mounting portion of an expansion valve according to a seventh embodiment. 第7実施形態におけるマニフォールドの一部を示す拡大斜視図である。FIG. 23 is an enlarged perspective view showing a portion of a manifold in a seventh embodiment. 第7実施形態におけるリテーナを示す斜視図である。FIG. 23 is a perspective view showing a retainer in a seventh embodiment. 第7実施形態における膨張弁とリテーナとの取付構造を説明するための説明図である。13 is an explanatory diagram for explaining a mounting structure of an expansion valve and a retainer in a seventh embodiment. FIG. 第8実施形態におけるリテーナを示す斜視図である。FIG. 23 is a perspective view showing a retainer in an eighth embodiment. 第8実施形態におけるリテーナを示す平面図である。FIG. 23 is a plan view showing a retainer in the eighth embodiment. 第8実施形態におけるリテーナを示す側面図である。FIG. 23 is a side view showing a retainer in the eighth embodiment. 第9実施形態に係る膨張弁の取付部を示す断面図である。A cross-sectional view showing the mounting portion of the expansion valve according to the 9th embodiment. 第9実施形態に係る膨張弁の取付部を示す斜視図である。FIG. 13 is a perspective view showing a mounting portion of an expansion valve according to a ninth embodiment. 第10実施形態に係る膨張弁の取付部を示す断面図である。A cross-sectional view showing the mounting portion of the expansion valve according to the tenth embodiment. 第10実施形態に係る膨張弁の取付部を示す斜視図である。FIG. 23 is a perspective view showing a mounting portion of the expansion valve according to the tenth embodiment.
 以下に、図面を参照しながら本開示を実施するための複数の形態を説明する。各実施形態において先行する実施形態で説明した事項に対応する部分には同一の参照符号を付して重複する説明を省略する場合がある。各実施形態において構成の一部のみを説明している場合は、構成の他の部分については先行して説明した他の実施形態を適用することができる。各実施形態で具体的に組合せが可能であることを明示している部分同士の組合せばかりではなく、特に組合せに支障が生じなければ、明示してなくとも実施形態同士を部分的に組み合せることも可能である。 Below, several embodiments for implementing the present disclosure will be described with reference to the drawings. In each embodiment, parts corresponding to matters described in the preceding embodiment will be given the same reference numerals, and duplicated descriptions may be omitted. In each embodiment, when only a part of the configuration is described, other previously described embodiments may be applied to the other parts of the configuration. In addition to combinations of parts that are specifically specified as being possible in each embodiment, it is also possible to partially combine embodiments even if not specified, as long as there is no particular problem with the combination.
 (第1実施形態)
 第1実施形態を図1~図11に基づいて説明する。本実施形態の膨張弁100は、ヒートポンプモジュールに適用されている。ヒートポンプモジュールは、ヒートポンプを構成する圧縮機、凝縮器、膨張弁100および蒸発器とケーシング200とを有している。
First Embodiment
The first embodiment will be described with reference to Figures 1 to 11. The expansion valve 100 of this embodiment is applied to a heat pump module. The heat pump module has a compressor, a condenser, the expansion valve 100, an evaporator, and a casing 200 that constitute a heat pump.
 ヒートポンプモジュールは、圧縮機、凝縮器、膨張弁100および蒸発器を有している。圧縮機は、冷媒を吸入して圧縮して吐出する。凝縮器は、圧縮機から吐出された冷媒を放熱させて凝縮させる。膨張弁100は、凝縮器で凝縮された冷媒を減圧膨張させる。蒸発器は、膨張弁100で減圧膨張された冷媒に吸熱させて蒸発させる。 The heat pump module has a compressor, a condenser, an expansion valve 100, and an evaporator. The compressor draws in, compresses, and discharges refrigerant. The condenser condenses the refrigerant discharged from the compressor by dissipating heat. The expansion valve 100 reduces the pressure and expands the refrigerant condensed by the condenser. The evaporator causes the refrigerant reduced in pressure and expanded by the expansion valve 100 to absorb heat and evaporate.
 圧縮機、凝縮器、膨張弁100および蒸発器はケーシング200に固定されてヒートポンプモジュールを構成している。ケーシング200の内部には、ヒートポンプの冷媒が流れる冷媒流路が形成されている。 The compressor, condenser, expansion valve 100 and evaporator are fixed to a casing 200 to form a heat pump module. Inside the casing 200, a refrigerant flow path is formed through which the refrigerant of the heat pump flows.
 以下、膨張弁100の軸方向を単に「軸方向」と言う。膨張弁100の径方向を単に「径方向」と言う。膨張弁100の周方向を単に「周方向」と言う。 Hereinafter, the axial direction of the expansion valve 100 will be simply referred to as the "axial direction." The radial direction of the expansion valve 100 will be simply referred to as the "radial direction." The circumferential direction of the expansion valve 100 will be simply referred to as the "circumferential direction."
 膨張弁100は、ケーシング200に形成されたマニフォールド300にリテーナ400によって固定されている。マニフォールド300は、ヒートポンプモジュールのケーシング200のうち膨張弁100が固定される部位に形成された膨張弁固定部である。リテーナ400は、膨張弁100をマニフォールド300に固定する固定部材である。 The expansion valve 100 is fixed to a manifold 300 formed in the casing 200 by a retainer 400. The manifold 300 is an expansion valve fixing portion formed in a portion of the casing 200 of the heat pump module where the expansion valve 100 is fixed. The retainer 400 is a fixing member that fixes the expansion valve 100 to the manifold 300.
 膨張弁100は、弁体部10およびコイル部50等を有している。本実施形態の膨張弁100は、膨張弁本体の一例に相当する。 The expansion valve 100 has a valve body portion 10 and a coil portion 50. The expansion valve 100 of this embodiment corresponds to an example of an expansion valve body.
 弁体部10は、マニフォールド300の挿入穴30に挿入されている。マニフォールド300における挿入穴30の開口部30aは、マニフォールド300における他の部位よりも上方側に位置している。 The valve body 10 is inserted into the insertion hole 30 of the manifold 300. The opening 30a of the insertion hole 30 in the manifold 300 is located higher than other parts of the manifold 300.
 弁体部10は、バルブボデー11等を有している。バルブボデー11は、アルミニウム合金等から構成された円筒状の部材である。図2に示すように、バルブボデー11には、冷媒の流入口12と流出口16を接続する冷媒流路13が形成されている。更に、弁体部10の内部には、冷媒流路13上に弁室14が形成されており、弁室14の内部には、図示しない弁体が摺動可能に収容されている。 The valve body 10 includes a valve body 11. The valve body 11 is a cylindrical member made of an aluminum alloy or the like. As shown in FIG. 2, the valve body 11 is formed with a refrigerant flow path 13 that connects a refrigerant inlet 12 and an outlet 16. Furthermore, inside the valve body 10, a valve chamber 14 is formed on the refrigerant flow path 13, and a valve body (not shown) is housed inside the valve chamber 14 in a slidable manner.
 流入口12は、弁体部10の一側面に形成されており、冷凍サイクルを循環する冷媒が膨張弁100の内部に流入する部分である。流入口12は、冷媒流路13を介して、弁室14に接続されている。 The inlet 12 is formed on one side of the valve body 10 and is the portion through which the refrigerant circulating in the refrigeration cycle flows into the inside of the expansion valve 100. The inlet 12 is connected to the valve chamber 14 via a refrigerant flow path 13.
 弁体部10の下面には、流出口16が形成されており、弁室14を流通した冷媒が膨張弁100の外部に流出する。弁室14の下部には、図示しない弁座が形成されており、冷媒流路13を介して、弁室14と流出口16を接続している。 An outlet 16 is formed on the underside of the valve body 10, and the refrigerant that has flowed through the valve chamber 14 flows out to the outside of the expansion valve 100. A valve seat (not shown) is formed at the bottom of the valve chamber 14, and connects the valve chamber 14 to the outlet 16 via the refrigerant flow path 13.
 第1実施形態においては、弁体部10の側面に流入口12を形成し、弁体部10の下面に流出口16を形成した構成であったが、この態様に限定されるものではない。例えば、弁体部10の下面に流入口を形成し、弁体部10の側面に流出口を形成する構成を採用することも可能である。この構成において、弁体を駆動する為の構成(即ち、モータ等)を、低圧側に配置しても良い。 In the first embodiment, the inlet 12 is formed on the side of the valve body 10, and the outlet 16 is formed on the bottom surface of the valve body 10, but this is not limited to the above. For example, it is also possible to adopt a configuration in which the inlet is formed on the bottom surface of the valve body 10, and the outlet is formed on the side of the valve body 10. In this configuration, the mechanism for driving the valve body (i.e., a motor, etc.) may be located on the low pressure side.
 そして、弁体部10の上部には、貫通孔17が形成されている。貫通孔17は、弁体部10の上面と弁室14の上面における中央部分を接続するように形成される。貫通孔17の内部には、図示しないモータの出力軸、動力伝達部を介して伝達された駆動力によって上下方向に移動する弁体の一部が配置される。 Then, a through hole 17 is formed in the upper part of the valve body portion 10. The through hole 17 is formed so as to connect the upper surface of the valve body portion 10 to the central part of the upper surface of the valve chamber 14. Inside the through hole 17, a part of the valve body that moves up and down by the driving force transmitted via the output shaft of a motor (not shown) and a power transmission part is disposed.
 弁体には、弁体部10の上方に配置されたモータの図示しないロータからの駆動力が、貫通孔17及びその上方に配置された動力伝達部を介して伝達される。動力伝達部は、送りねじ機構を含んでおり、ロータで生じた回転運動を直線運動に変換して弁体に伝達する。 The driving force from a rotor (not shown) of a motor located above the valve body portion 10 is transmitted to the valve body via the through hole 17 and the power transmission portion located above it. The power transmission portion includes a feed screw mechanism, and converts the rotational motion generated by the rotor into linear motion and transmits it to the valve body.
 弁体が、ロータからの駆動力によって軸方向(図2では上下方向)に移動することにより弁座に近づいたり弁座から離れたりする。膨張弁100では、弁体を弁座に接触させることで、冷媒流路を閉じた閉状態にすることができる。 The valve disc moves axially (up and down in Figure 2) due to the driving force from the rotor, approaching or moving away from the valve seat. In the expansion valve 100, the valve disc can be brought into contact with the valve seat to close the refrigerant flow path.
 弁座に対する弁体の相対移動により、膨張弁100では、冷媒流路の開度が調整される。冷媒は冷媒流路13を流れる際に弁体と弁座との間の隙間にて絞り作用によって減圧膨張する為、膨張弁100は、開度調整に伴って冷媒の減圧量を調整することができる。 In the expansion valve 100, the opening of the refrigerant flow path is adjusted by the relative movement of the valve body with respect to the valve seat. As the refrigerant flows through the refrigerant flow path 13, it is reduced in pressure and expanded by the throttling action in the gap between the valve body and the valve seat, so the expansion valve 100 can adjust the amount of pressure reduction of the refrigerant by adjusting the opening.
 弁体部10の上面には、コイル部50が固定されている。コイル部50は、図示しないステータ、キャン、キャンカバー、およびキャンカラー28、モールド53等を有している。 The coil section 50 is fixed to the upper surface of the valve body section 10. The coil section 50 has a stator, a can, a can cover, a can collar 28, a mold 53, etc. (not shown).
 キャンは、ステンレス等の金属によって円筒状に形成されており、ロータを収容するロータ収容部材である。キャンは、弁体と同軸上に配置されている。 The can is made of a metal such as stainless steel and is cylindrical in shape, and is a rotor housing member that houses the rotor. The can is arranged coaxially with the valve body.
 キャンの一端(図1では上端)は、キャンカバーによって閉塞されている。キャンの他端(図1では下端)は、開口しておりキャンカラー28に密接している。キャンカラー28は、ステンレス等の金属によって円筒状に形成されており、弁体と同軸上に配置されている。キャンカラー28の他端(図1では下端)は弁体部10に密接している。 One end of the can (upper end in FIG. 1) is closed by a can cover. The other end of the can (lower end in FIG. 1) is open and in close contact with the can collar 28. The can collar 28 is made of a metal such as stainless steel and is cylindrically shaped, and is arranged coaxially with the valve body. The other end of the can collar 28 (lower end in FIG. 1) is in close contact with the valve body portion 10.
 従って、キャンの内部空間には減圧前の高圧冷媒が存在しており、キャンは、高圧冷媒を含む冷媒封入回路と外部との隔壁となる。具体的には、キャンカラー28と弁体部10との間に第1Oリング56が配置され、キャンカラー28の外周面に形成された雄ネジと弁体部10の内周面に形成された雌ネジとが締結されることによって、キャンカラー28と弁体部10とがシール固定されている。 Therefore, the high-pressure refrigerant before pressure reduction is present in the internal space of the can, and the can acts as a partition between the refrigerant sealed circuit containing the high-pressure refrigerant and the outside. Specifically, a first O-ring 56 is placed between the can collar 28 and the valve body 10, and the can collar 28 and the valve body 10 are sealed together by fastening a male thread formed on the outer peripheral surface of the can collar 28 to a female thread formed on the inner peripheral surface of the valve body 10.
 ロータは、モータにおける回転子であり、固定子であるステータのコイルに通電されることによって回転する。そして、ロータが回転することによって、弁体を駆動するための駆動力を発生させる。モータは、ロータ及びステータにより構成され、弁体を変位させる電動アクチュエータとして採用されている。 The rotor is the rotating part of the motor, and rotates when electricity is passed through the coil of the stator, which is the stationary part. As the rotor rotates, it generates a driving force for driving the valve body. The motor is made up of a rotor and a stator, and is used as an electric actuator that displaces the valve body.
 ステータは、ロータ及びキャンの径方向外側にて、ロータ及びキャンと同軸状に配置されている。ステータには、コイルが設けられており、コイルに対する通電によって、ロータを回転させるための回転磁界を発生させる。 The stator is arranged coaxially with the rotor and the can, radially outward of the rotor and the can. The stator is provided with a coil, and when electricity is passed through the coil, a rotating magnetic field is generated to rotate the rotor.
 モールド53は、キャンおよびステータを外側から覆うように樹脂で形成されており、キャンおよびステータを収容する収容部材である。モールド53を形成する樹脂としては、耐久性に優れたポリフェニレンサルファイド(いわゆるPPS)が用いられている。なお、モールド53に代えて、コイルを覆うように形成された樹脂ケースを採用してもよい。 The mold 53 is made of resin and covers the can and stator from the outside, and is a housing member that houses the can and stator. Polyphenylene sulfide (PPS), which has excellent durability, is used as the resin that forms the mold 53. Note that instead of the mold 53, a resin case formed to cover the coil may be used.
 モールド53の底部はバルブボデー11と密接している。モールド53の底部とバルブボデー11との間の隙間には環状のパッキン55によるシール構造が設けられている。パッキン55は、モールド53の内部およびバルブボデー11の内部への液体の侵入を抑制する。 The bottom of the mold 53 is in close contact with the valve body 11. A sealing structure using an annular packing 55 is provided in the gap between the bottom of the mold 53 and the valve body 11. The packing 55 prevents liquid from entering the inside of the mold 53 and the inside of the valve body 11.
 キャンカラー28とバルブボデー11との間の隙間には第1Oリング56によるシール構造が設けられている。第1Oリング56は、バルブボデー11の内部への液体の侵入を抑制する。 The gap between the can collar 28 and the valve body 11 is provided with a seal structure using a first O-ring 56. The first O-ring 56 prevents liquid from entering the inside of the valve body 11.
 バルブボデー11とマニフォールド300との隙間には第2Oリング57によるシール構造が設けられている。第2Oリング57は、マニフォールド300の内部への液体の侵入を抑制する。また、第2Oリング57は弾力性を有しているので、内圧が上昇した際の膨張弁100のガタツキを抑制する。 A seal structure using a second O-ring 57 is provided in the gap between the valve body 11 and the manifold 300. The second O-ring 57 prevents liquid from entering the inside of the manifold 300. In addition, the second O-ring 57 has elasticity, so it prevents the expansion valve 100 from rattling when the internal pressure rises.
 図2~図4に示すように、マニフォールド300におけるコイル部50側(図2では上方側)の端部には、コイル部50側に向かって突出する凸部31が設けられている。図2および図4に示すように、バルブボデー11には、マニフォールド300の凸部31と嵌合する凹部111が設けられている。 As shown in Figures 2 to 4, the manifold 300 has a protrusion 31 that protrudes toward the coil section 50 at its end on the coil section 50 side (the upper side in Figure 2). As shown in Figures 2 and 4, the valve body 11 has a recess 111 that fits with the protrusion 31 of the manifold 300.
 マニフォールド300の凸部31とバルブボデー11の凹部111とが嵌合することで、膨張弁100がマニフォールド300に周方向に係止される。これにより、膨張弁100のマニフォールド300に対する回転が防止される。すなわち、膨張弁100がマニフォールド300に対して回転方向(すなわち、周方向)に拘束される。したがって、本実施形態におけるマニフォールド300の凸部31とバルブボデー11の凹部111とが、本体回転防止部の一例に相当する。 The projection 31 of the manifold 300 and the recess 111 of the valve body 11 engage with each other, so that the expansion valve 100 is circumferentially locked to the manifold 300. This prevents the expansion valve 100 from rotating relative to the manifold 300. In other words, the expansion valve 100 is constrained in the rotational direction (i.e., the circumferential direction) relative to the manifold 300. Therefore, the projection 31 of the manifold 300 and the recess 111 of the valve body 11 in this embodiment correspond to an example of a main body rotation prevention portion.
 第1実施形態においては、マニフォールド300に二つの凸部31を形成するとともに、バルブボデー11に二つの凹部111を形成した構成であったが、この態様に限定されない。例えば、マニフォールド300に一つまたは3つ以上の凸部31を形成するとともに、バルブボデー11に一つまたは3つ以上の凹部111を形成した構成を採用することも可能である。 In the first embodiment, two convex portions 31 are formed on the manifold 300, and two concave portions 111 are formed on the valve body 11, but this is not limited to the above. For example, it is also possible to adopt a configuration in which one or three or more convex portions 31 are formed on the manifold 300, and one or three or more concave portions 111 are formed on the valve body 11.
 マニフォールド300におけるコイル部50側(図2では上方側)の端部には、径方向外側に向かって突出するフランジ32が設けられている。フランジ32は、凸部31よりもコイル部50と反対側(図2では下方側)に設けられている。フランジ32は、コイル部50に近づくにつれて、径方向長さが短くなるテーパ状に形成されている。 The manifold 300 has a flange 32 that protrudes radially outward at the end on the coil section 50 side (upper side in FIG. 2). The flange 32 is provided on the opposite side of the coil section 50 from the protruding portion 31 (lower side in FIG. 2). The flange 32 is tapered so that its radial length becomes shorter as it approaches the coil section 50.
 図5および図6に示すように、バルブボデー11におけるコイル部50側(図6では上方側)の端部には、周方向に延びる溝部112が設けられている。溝部112は、周方向の一部にのみ形成されている。すなわち、バルブボデー11におけるコイル部50側の端部には、溝部112が形成されていない非溝部113が設けられている。 As shown in Figures 5 and 6, a groove portion 112 extending in the circumferential direction is provided at the end of the valve body 11 on the coil portion 50 side (the upper side in Figure 6). The groove portion 112 is formed only in a part of the circumferential direction. In other words, a non-groove portion 113 where the groove portion 112 is not formed is provided at the end of the valve body 11 on the coil portion 50 side.
 本実施形態では、溝部112は二つ設けられている。二つの溝部112の間に非溝部113が配置されている。すなわち、バルブボデー11には、二つの溝部112および二つの非溝部113が設けられている。二つの溝部112は、軸方向に垂直な断面において径方向に延びる仮想基準線に対して線対称となるように配置されている。 In this embodiment, two groove portions 112 are provided. A non-groove portion 113 is disposed between the two groove portions 112. In other words, the valve body 11 is provided with two groove portions 112 and two non-groove portions 113. The two groove portions 112 are disposed so as to be symmetrical with respect to a virtual reference line extending in the radial direction in a cross section perpendicular to the axial direction.
 図2および図7に示すように、リテーナ400は、膨張弁100をマニフォールド300に固定する固定部材である。リテーナ400は、ステンレス(SUS)等から構成されている。リテーナ400は、例えば、板状部材にプレス加工や打ち抜き加工を施すことにより形成することができる。 As shown in Figures 2 and 7, the retainer 400 is a fixing member that fixes the expansion valve 100 to the manifold 300. The retainer 400 is made of stainless steel (SUS) or the like. The retainer 400 can be formed, for example, by subjecting a plate-shaped member to press processing or punching processing.
 リテーナ400は、クリップ部41と鍔部42とを有している。クリップ部41は、軸方向に垂直な断面がコの字状(すなわちU字状)に形成されている。クリップ部41における膨張弁100の径方向に対向する二つの側面部411には、それぞれ、貫通穴412が形成されている。 The retainer 400 has a clip portion 41 and a flange portion 42. The clip portion 41 has a cross section perpendicular to the axial direction that is U-shaped. Two side portions 411 of the clip portion 41 that face each other in the radial direction of the expansion valve 100 each have a through hole 412.
 貫通穴412には、マニフォールド300の外周に形成されたフランジ32が係止されて固定されている。これにより、膨張弁100がマニフォールド300に対して抜き方向(すなわち、軸方向)に拘束される。本実施形態の貫通穴412は、第2係止部の一例に相当する。本実施形態では、貫通穴412は、軸方向に対して垂直な方向に延びる長穴形状に形成されている。 The flange 32 formed on the outer periphery of the manifold 300 is engaged and fixed in the through hole 412. This restrains the expansion valve 100 in the removal direction (i.e., the axial direction) relative to the manifold 300. The through hole 412 in this embodiment corresponds to an example of a second engagement portion. In this embodiment, the through hole 412 is formed in an elongated hole shape that extends in a direction perpendicular to the axial direction.
 鍔部42は、クリップ部41におけるコイル部50側(図7では上方側)に接続されている。鍔部42は、クリップ部41の各側面部411におけるコイル部50側の端部から膨張弁100の径方向内側に向かって延びる板状に形成されている。鍔部42は、バルブボデー11を挟んで対向するように二つ設けられている。 The flange 42 is connected to the coil portion 50 side of the clip portion 41 (the upper side in FIG. 7). The flange 42 is formed in a plate shape that extends from the end of the coil portion 50 side of each side portion 411 of the clip portion 41 toward the radial inside of the expansion valve 100. Two flanges 42 are provided facing each other with the valve body 11 in between.
 鍔部42は、バルブボデー11の外周に形成された溝部112に係止されて固定されている。これにより、リテーナ400がバルブボデー11に対して抜き方向(すなわち、軸方向)に拘束される。本実施形態の鍔部42は、第1係止部の一例に相当する。 The flange 42 is engaged and fixed in a groove 112 formed on the outer periphery of the valve body 11. This restrains the retainer 400 in the removal direction (i.e., the axial direction) relative to the valve body 11. The flange 42 in this embodiment corresponds to an example of a first engagement portion.
 ここで、溝部112が周方向の一部にのみ形成されているので、溝部112に鍔部42が固定された際に、リテーナ400がバルブボデー11に周方向に係止される。これにより、リテーナ400の弁体部10に対する回転が防止される。換言すると、リテーナ400がバルブボデー11に対して回転方向(すなわち、周方向)に拘束される。したがって、本実施形態における非溝部113が、リテーナ回転防止部の一例に相当する。換言すると、周方向の一部にのみ形成された溝部112が、リテーナ回転防止部の一例に相当する。 Here, since the groove portion 112 is formed only in a portion of the circumferential direction, when the flange portion 42 is fixed to the groove portion 112, the retainer 400 is engaged in the circumferential direction to the valve body 11. This prevents the retainer 400 from rotating relative to the valve body portion 10. In other words, the retainer 400 is restrained in the rotational direction (i.e., the circumferential direction) relative to the valve body 11. Therefore, the non-groove portion 113 in this embodiment corresponds to an example of a retainer rotation prevention portion. In other words, the groove portion 112 formed only in a portion of the circumferential direction corresponds to an example of a retainer rotation prevention portion.
 鍔部42の径方向内側の端面421は、溝部112に対応する円弧状に形成されている。鍔部42には、先端が屈曲した先曲がりプライヤや専用治具等の先端部が挿入可能な穴部422が設けられている。 The radially inner end surface 421 of the flange 42 is formed in an arc shape that corresponds to the groove 112. The flange 42 is provided with a hole 422 into which the tip of a bent-tip pliers or a dedicated jig can be inserted.
 ここで、リテーナ400は、第1当接部413と第2当接部423とを有している。第1当接部413は、マニフォールド300に対して軸方向に当接する軸方向当接部である。本実施形態では、第1当接部413は、クリップ部41におけるコイル部50と反対側の端部(図7では下端部)により構成されている。 Here, the retainer 400 has a first abutment portion 413 and a second abutment portion 423. The first abutment portion 413 is an axial abutment portion that abuts against the manifold 300 in the axial direction. In this embodiment, the first abutment portion 413 is configured by the end portion of the clip portion 41 opposite the coil portion 50 (the lower end portion in FIG. 7).
 第2当接部423は、バルブボデー11に対して軸方向に垂直な方向である当接方向に当接する軸垂直方向当接部である。第2当接部423は、鍔部42における、クリップ部41のコの字状の開口部側の端部により構成されている。本実施形態では、第2当接部423は、対向する二つの鍔部42にそれぞれ設けられている。第2当接部423は、コの字状の開口部側に向かうにつれて、対向する第2当接部423同士の距離が大きくなるテーパ状に形成されている。 The second abutment portion 423 is an axially perpendicular abutment portion that abuts against the valve body 11 in an abutment direction that is perpendicular to the axial direction. The second abutment portion 423 is configured by the end of the flange portion 42 on the U-shaped opening side of the clip portion 41. In this embodiment, the second abutment portion 423 is provided on each of the two opposing flange portions 42. The second abutment portions 423 are formed in a tapered shape such that the distance between the opposing second abutment portions 423 increases toward the U-shaped opening side.
 リテーナ400は、組み付け時に弾性変形するように構成されている。具体的には、リテーナ400は、第1当接部413に対して軸方向の力が作用した際に、径方向外側に弾性変形する弾性変形部414を有している。弾性変形部414は、第2当接部423に対して当接方向の力が作用した際にも、径方向外側に弾性変形する。したがって、本実施形態の弾性変形部414は、軸側弾性変形部および当接側弾性変形部の一例に相当する。 The retainer 400 is configured to elastically deform when assembled. Specifically, the retainer 400 has an elastic deformation portion 414 that elastically deforms radially outward when an axial force acts on the first abutment portion 413. The elastic deformation portion 414 also elastically deforms radially outward when a force acts in the abutment direction on the second abutment portion 423. Therefore, the elastic deformation portion 414 in this embodiment corresponds to an example of an axial side elastic deformation portion and an abutment side elastic deformation portion.
 本実施形態では、弾性変形部414は、クリップ部41における二つの側面部411以外の部位に設けられている。なお、リテーナ400全体が弾性変形可能に構成されていてもよい。 In this embodiment, the elastic deformation portion 414 is provided in a portion of the clip portion 41 other than the two side portions 411. The entire retainer 400 may be configured to be elastically deformable.
 続いて、本実施形態における膨張弁100のマニフォールド300への取付方法について説明する。 Next, we will explain how to attach the expansion valve 100 to the manifold 300 in this embodiment.
 まず、弁体部10にコイル部50を固定する。次に、図8に示すように、弁体部10に対して、リテーナ400を軸方向に垂直な方向である当接方向から取り付ける。具体的には、弁体部10に対して、リテーナ400をクリップ部41のコの字状の開口部側から取り付ける。より詳細には、弁体部10の溝部112に対し、リテーナ400の鍔部42を当接方向から挿入する。 First, the coil portion 50 is fixed to the valve body portion 10. Next, as shown in FIG. 8, the retainer 400 is attached to the valve body portion 10 from the abutment direction, which is perpendicular to the axial direction. Specifically, the retainer 400 is attached to the valve body portion 10 from the U-shaped opening side of the clip portion 41. More specifically, the flange portion 42 of the retainer 400 is inserted into the groove portion 112 of the valve body portion 10 from the abutment direction.
 このとき、図9に示すように、リテーナ400に当接方向の力が作用し、鍔部42の第2当接部423がバルブボデー11の溝部112に当接すると、リテーナ400は径方向外側(すなわち、二つの鍔部42同士が離れる方向)に弾性変形する。その状態で当接方向の力を作用させ続けると、リテーナ400の二つの鍔部42がそれぞれ径方向外側に開き、バルブボデー11の溝部112に沿ってリテーナ400の鍔部42が挿入されていく。 At this time, as shown in FIG. 9, when a force acts on the retainer 400 in the contact direction and the second contact portion 423 of the flange 42 comes into contact with the groove portion 112 of the valve body 11, the retainer 400 elastically deforms radially outward (i.e., in the direction in which the two flanges 42 move away from each other). If the force in the contact direction continues to be applied in this state, the two flanges 42 of the retainer 400 open radially outward, and the flanges 42 of the retainer 400 are inserted along the groove portion 112 of the valve body 11.
 鍔部42が溝部112の最奥まで挿入されると、鍔部42の円弧状の端面421が溝部112と接触した状態で、リテーナ400の弾性変形が元に戻る。これにより、リテーナ400の鍔部42がバルブボデー11の溝部112に係止される。 When the flange 42 is inserted all the way into the groove 112, the elastic deformation of the retainer 400 returns to its original state with the arc-shaped end surface 421 of the flange 42 in contact with the groove 112. This causes the flange 42 of the retainer 400 to engage with the groove 112 of the valve body 11.
 次に、図10に示すように、マニフォールド300に対して、リテーナ400が固定された弁体部10を取り付ける。具体的には、マニフォールド300の挿入穴30に、弁体部10を軸方向に挿入する。 Next, as shown in FIG. 10, the valve body 10 to which the retainer 400 is fixed is attached to the manifold 300. Specifically, the valve body 10 is inserted axially into the insertion hole 30 of the manifold 300.
 このとき、図11に示すように、マニフォールド300の挿入穴30にバルブボデー11を軸方向に挿入すると、リテーナ400のクリップ部41の第1当接部413が、マニフォールド300のフランジ32に当接する。そして、第1当接部413がフランジ32に当接した状態で軸方向の力が作用し、フランジ32のテーパ状の面に沿ってリテーナ400は径方向外側(すなわち、二つの側面部411同士が離れる方向)に弾性変形する。 At this time, as shown in FIG. 11, when the valve body 11 is axially inserted into the insertion hole 30 of the manifold 300, the first abutment portion 413 of the clip portion 41 of the retainer 400 abuts against the flange 32 of the manifold 300. Then, with the first abutment portion 413 abutting against the flange 32, an axial force acts, and the retainer 400 elastically deforms radially outward (i.e., in the direction in which the two side portions 411 move away from each other) along the tapered surface of the flange 32.
 その後、リテーナ400の側面部411の内面とフランジ32とが接触した状態で、リテーナ400がコイル部50から離れる方向(図11では紙面下方側)にスライドしていき、貫通穴412にフランジ32が係止される。貫通穴412にフランジ32が係止されると、リテーナ400の弾性変形が元に戻る。 Then, with the inner surface of the side portion 411 of the retainer 400 and the flange 32 in contact, the retainer 400 slides in a direction away from the coil portion 50 (toward the bottom of the paper in FIG. 11), and the flange 32 is locked in the through hole 412. When the flange 32 is locked in the through hole 412, the elastic deformation of the retainer 400 returns to its original state.
 膨張弁100をマニフォールド300からの取り外す際には、以下の方法を採用することができる。すなわち、まず、リテーナ400の穴部422に、先曲がりプライヤや専用治具等の先端部を挿入し、二つの鍔部42同士が離れる方向(すなわち、径方向外側)にリテーナ400を弾性変形させる。その後、二つの鍔部42同士の隙間から膨張弁100を引き抜くことにより、膨張弁100をマニフォールド300から取り外すことができる。 When removing the expansion valve 100 from the manifold 300, the following method can be used. That is, first, the tip of a bent-tip pliers or a special tool is inserted into the hole 422 of the retainer 400, and the retainer 400 is elastically deformed in the direction in which the two flanges 42 move apart (i.e., radially outward). The expansion valve 100 can then be removed from the manifold 300 by pulling it out from the gap between the two flanges 42.
 以上説明したように、本実施形態では、貫通穴412および鍔部42を有するリテーナ400を用いて、膨張弁100をマニフォールド300に取り付けている。このとき、リテーナ400を膨張弁100およびマニフォールド300に組み付けるための専用の治具を用いる必要がない。すなわち、リテーナ400の貫通穴412とマニフォールド300のフランジ32と係止させるとともに、リテーナ400の鍔部42とバルブボデー11の溝部112とを係止させるという簡素な工程で、膨張弁100をマニフォールド300に取り付けることができる。したがって、膨張弁100をマニフォールド300に取り付けるために必要な部品の点数および工数を低減することができる。その結果、生産性を向上させることが可能となる。 As described above, in this embodiment, the expansion valve 100 is attached to the manifold 300 using the retainer 400 having the through hole 412 and the flange portion 42. At this time, there is no need to use a dedicated jig for assembling the retainer 400 to the expansion valve 100 and the manifold 300. In other words, the expansion valve 100 can be attached to the manifold 300 by a simple process of engaging the through hole 412 of the retainer 400 with the flange 32 of the manifold 300 and engaging the flange portion 42 of the retainer 400 with the groove portion 112 of the valve body 11. Therefore, the number of parts and the number of steps required to attach the expansion valve 100 to the manifold 300 can be reduced. As a result, it is possible to improve productivity.
 また、本実施形態では、マニフォールド300のフランジ32をテーパ状に形成している。そして、膨張弁100のマニフォールド300への取付に際し、バルブボデー11に予めリテーナ400を組み付けている。これによれば、膨張弁100をマニフォールド300の挿入穴30に対して挿入方向に押すだけで、膨張弁100をマニフォールド300にワンタッチで取り付けることができる。このとき、膨張弁100をマニフォールド300に取り付けるための専用治具は不要となる。したがって、膨張弁100をマニフォールド300に取り付けるために必要な部品の点数および工数を低減することができる。その結果、マニフォールド300を小型化できる。これにより、ヒートポンプモジュールを小型化でき、搭載性を向上することができる。 In addition, in this embodiment, the flange 32 of the manifold 300 is formed in a tapered shape. When the expansion valve 100 is attached to the manifold 300, the retainer 400 is attached to the valve body 11 in advance. This allows the expansion valve 100 to be attached to the manifold 300 with a single touch by simply pushing the expansion valve 100 in the insertion direction against the insertion hole 30 of the manifold 300. At this time, a dedicated jig for attaching the expansion valve 100 to the manifold 300 is not required. Therefore, the number of parts and the number of steps required to attach the expansion valve 100 to the manifold 300 can be reduced. As a result, the manifold 300 can be made smaller. This allows the heat pump module to be made smaller and the mountability to be improved.
 また、本実施形態では、マニフォールド300の凸部31とバルブボデー11の凹部111とを嵌合させることにより、膨張弁100をマニフォールド300に周方向に係止している。これによれば、膨張弁100の冷媒流路とマニフォールド300側の冷媒流路とがずれてしまうことを抑制できる。また、コネクタの方向が規制されるため、ハーネスの組み付けの自動化が容易となる。 In addition, in this embodiment, the expansion valve 100 is circumferentially engaged with the manifold 300 by fitting the convex portion 31 of the manifold 300 into the concave portion 111 of the valve body 11. This prevents the refrigerant flow path of the expansion valve 100 from being misaligned with the refrigerant flow path on the manifold 300 side. In addition, since the direction of the connector is regulated, it becomes easier to automate the assembly of the harness.
 また、本実施形態では、リテーナ400の弾性変形部414を、クリップ部41における二つの側面部411以外の部位に設けている。すなわち、本実施形態では、リテーナ400において、組み付け時に弾性変形する部位と係止時に力を受ける部位とが別の部位で構成されている。これにより、組み付け性向上と保持強度向上とを両立できる。 In addition, in this embodiment, the elastic deformation portion 414 of the retainer 400 is provided in a portion other than the two side portions 411 of the clip portion 41. That is, in this embodiment, the portion of the retainer 400 that elastically deforms during assembly and the portion that receives force during engagement are configured in separate portions. This makes it possible to achieve both improved ease of assembly and improved holding strength.
 また、本実施形態では、マニフォールド300における挿入穴30の開口部30aは、マニフォールド300における他の部位よりも上方側に位置している。これにより、バルブボデー11およびマニフォールド300の嵌合面が周囲のマニフォールド300上面より高くなるため、嵌合面に水溜りすることを抑制できる。その結果、バルブボデー11およびマニフォールド300間の腐食を抑制できる。 In addition, in this embodiment, the opening 30a of the insertion hole 30 in the manifold 300 is located higher than other parts of the manifold 300. This makes the mating surface between the valve body 11 and the manifold 300 higher than the surrounding upper surface of the manifold 300, preventing water from pooling on the mating surface. As a result, corrosion between the valve body 11 and the manifold 300 can be suppressed.
 また、本実施形態では、リテーナ400の締結部がマニフォールド300の外周にあるため、膨張弁100の取り外しが容易となる。このため、修理時の交換等のサービス性を向上できる。 In addition, in this embodiment, the fastening portion of the retainer 400 is located on the outer periphery of the manifold 300, making it easy to remove the expansion valve 100. This improves serviceability, such as replacement during repairs.
 (第2実施形態)
 次に、本開示の第2実施形態について図面に基づいて説明する。本第2実施形態は、上記第1実施形態と比較して、膨張弁100のマニフォールド300への取付方法が異なる。
Second Embodiment
Next, a second embodiment of the present disclosure will be described with reference to the drawings. The second embodiment is different from the first embodiment in the method of mounting the expansion valve 100 to the manifold 300.
 本実施形態では、まず、図12に示すように、コイル部50が固定された弁体部10を、マニフォールド300の挿入穴30に挿入する。次に、図13に示すように、弁体部10がマニフォールド300の挿入穴30に挿入された状態で、弁体部10およびマニフォールド300に対してリテーナ400を取り付ける。 In this embodiment, first, as shown in FIG. 12, the valve body portion 10 to which the coil portion 50 is fixed is inserted into the insertion hole 30 of the manifold 300. Next, as shown in FIG. 13, with the valve body portion 10 inserted into the insertion hole 30 of the manifold 300, a retainer 400 is attached to the valve body portion 10 and the manifold 300.
 具体的には、弁体部10の溝部112に対し、リテーナ400の鍔部42を径方向から挿入する。このとき、リテーナ400に当接方向の力が作用し、鍔部42の第2当接部423がバルブボデー11の溝部112に当接すると、リテーナ400は径方向外側に弾性変形する。その状態で当接方向の力を作用させ続けると、リテーナ400の二つの鍔部42がそれぞれ径方向外側に開き、バルブボデー11の溝部112に沿ってリテーナ400の鍔部42が挿入されていく。 Specifically, the flange 42 of the retainer 400 is inserted radially into the groove 112 of the valve body 10. At this time, a force in the contact direction acts on the retainer 400, and when the second contact portion 423 of the flange 42 comes into contact with the groove 112 of the valve body 11, the retainer 400 elastically deforms radially outward. If the force in the contact direction continues to be applied in this state, the two flanges 42 of the retainer 400 each open radially outward, and the flanges 42 of the retainer 400 are inserted along the groove 112 of the valve body 11.
 鍔部42が溝部112の最奥まで挿入されると、鍔部42の円弧状の端面421が溝部112と接触した状態で、リテーナ400の弾性変形が元に戻る。これにより、リテーナ400の鍔部42がバルブボデー11の溝部112に係止されるとともに、リテーナ400のクリップ部41の貫通穴412に、マニフォールド300のフランジ32が係止される。 When the flange 42 is inserted all the way into the groove 112, the arc-shaped end surface 421 of the flange 42 comes into contact with the groove 112, and the elastic deformation of the retainer 400 returns to its original state. This causes the flange 42 of the retainer 400 to engage with the groove 112 of the valve body 11, and the flange 32 of the manifold 300 to engage with the through hole 412 of the clip portion 41 of the retainer 400.
 その他の構成は、第1実施形態と同様である。したがって、第2実施形態の膨張弁100の取付部においても、第1実施形態と同様の効果を得ることができる。 The rest of the configuration is the same as in the first embodiment. Therefore, the mounting portion of the expansion valve 100 in the second embodiment can also achieve the same effects as in the first embodiment.
 (第3実施形態)
 次に、本開示の第3実施形態について図面に基づいて説明する。本第3実施形態は、上記第1実施形態と比較して、膨張弁100のマニフォールド300への取付方法が異なる。
Third Embodiment
Next, a third embodiment of the present disclosure will be described with reference to the drawings. The third embodiment is different from the first embodiment in the method of mounting the expansion valve 100 to the manifold 300.
 図14~図16に示すように、本実施形態では、マニフォールド300は、筒状に形成された筒状部34を有している。筒状部34の内部に、挿入穴30が形成されている。本実施形態では、筒状部34は円筒状に形成されている。 As shown in Figures 14 to 16, in this embodiment, the manifold 300 has a tubular portion 34 formed into a cylindrical shape. An insertion hole 30 is formed inside the tubular portion 34. In this embodiment, the tubular portion 34 is formed into a cylindrical shape.
 図16~図18に示すように、筒状部34の外周には、周方向に延びる溝部35が設けられている。溝部35は、周方向の一部にのみ形成されている。すなわち、筒状部34には、溝部35が形成されていない非溝部36が設けられている。 As shown in Figures 16 to 18, a groove portion 35 extending in the circumferential direction is provided on the outer periphery of the cylindrical portion 34. The groove portion 35 is formed only in a part of the circumferential direction. In other words, the cylindrical portion 34 is provided with a non-groove portion 36 where the groove portion 35 is not formed.
 本実施形態では、溝部35は二つ設けられている。二つの溝部35の間に非溝部36が配置されている。二つの溝部35は、軸方向に垂直な断面において径方向に延びる仮想基準線に対して線対称となるように配置されている。 In this embodiment, two groove portions 35 are provided. A non-groove portion 36 is disposed between the two groove portions 35. The two groove portions 35 are disposed so as to be symmetrical with respect to a virtual reference line extending in the radial direction in a cross section perpendicular to the axial direction.
 図19および図20に示すように、バルブボデー11の外周におけるコイル部50側(図15では上方側)の端部には、径方向外側に向かって突出するフランジ114が設けられている。本実施形態では、フランジ114は、軸方向に垂直な板状に形成されている。 As shown in Figures 19 and 20, a flange 114 that protrudes radially outward is provided at the end of the outer periphery of the valve body 11 on the coil section 50 side (the upper side in Figure 15). In this embodiment, the flange 114 is formed in a plate shape perpendicular to the axial direction.
 図15および図21に示すように、本実施形態のリテーナ400は、クリップ部41、鍔部42およびテーパ部43を有している。クリップ部41の貫通穴412には、バルブボデー11の外周に形成されたフランジ114が係止されて固定されている。これにより、膨張弁100がマニフォールド300に対して抜き方向(すなわち、軸方向)に拘束される。本実施形態の貫通穴412は、第2係止部の一例に相当する。 As shown in Figures 15 and 21, the retainer 400 of this embodiment has a clip portion 41, a flange portion 42, and a tapered portion 43. A flange 114 formed on the outer periphery of the valve body 11 is engaged and fixed in the through hole 412 of the clip portion 41. This restrains the expansion valve 100 in the removal direction (i.e., the axial direction) relative to the manifold 300. The through hole 412 of this embodiment corresponds to an example of a second engagement portion.
 鍔部42は、クリップ部41におけるコイル部50と反対側(図21では下方側)に接続されている。鍔部42は、クリップ部41の各側面部411におけるコイル部50と反対側の端部から膨張弁100の径方向内側に向かって延びる板状に形成されている。鍔部42は、マニフォールド300の筒状部34を挟んで対向するように二つ設けられている。 The flange portion 42 is connected to the side of the clip portion 41 opposite the coil portion 50 (the lower side in FIG. 21). The flange portion 42 is formed in a plate shape extending from the end of each side portion 411 of the clip portion 41 opposite the coil portion 50 toward the radial inside of the expansion valve 100. Two flange portions 42 are provided facing each other with the cylindrical portion 34 of the manifold 300 in between.
 鍔部42は、マニフォールド300の外周に形成された溝部35に係止されて固定されている。これにより、膨張弁100がマニフォールド300に対して抜き方向(すなわち、軸方向)に拘束される。本実施形態の鍔部42は、第1係止部の一例に相当する。 The flange 42 is engaged and fixed in a groove 35 formed on the outer periphery of the manifold 300. This restrains the expansion valve 100 in the removal direction (i.e., the axial direction) relative to the manifold 300. The flange 42 in this embodiment corresponds to an example of a first engagement portion.
 ここで、溝部35が周方向の一部にのみ形成されているので、溝部35に鍔部42が固定された際に、リテーナ400がマニフォールド300に周方向に係止される。これにより、リテーナ400のマニフォールド300に対する回転が防止される。換言すると、リテーナ400がマニフォールド300に対して回転方向(すなわち、周方向)に拘束される。したがって、本実施形態における非溝部36が、リテーナ回転防止部の一例に相当する。換言すると、周方向の一部にのみ形成された溝部35が、リテーナ回転防止部の一例に相当する。 Here, since the groove portion 35 is formed only in a portion of the circumferential direction, when the flange portion 42 is fixed to the groove portion 35, the retainer 400 is engaged in the circumferential direction with the manifold 300. This prevents the retainer 400 from rotating relative to the manifold 300. In other words, the retainer 400 is restrained in the rotational direction (i.e., the circumferential direction) relative to the manifold 300. Therefore, the non-grooved portion 36 in this embodiment corresponds to an example of a retainer rotation prevention portion. In other words, the groove portion 35 formed only in a portion of the circumferential direction corresponds to an example of a retainer rotation prevention portion.
 テーパ部43は、平板状に形成されている。テーパ部43は、クリップ部41におけるコイル部50側(図21では上方側)に接続されている。具体的には、テーパ部43は、クリップ部41の各側面部411におけるコイル部50側の端部に接続されている。テーパ部43は、コイル部50に近づくにつれて、径方向外側に向かって延びるテーパ状に形成されている。 The tapered portion 43 is formed in a flat plate shape. The tapered portion 43 is connected to the coil portion 50 side of the clip portion 41 (the upper side in FIG. 21). Specifically, the tapered portion 43 is connected to the end of each side portion 411 of the clip portion 41 on the coil portion 50 side. The tapered portion 43 is formed in a tapered shape that extends radially outward as it approaches the coil portion 50.
 ここで、本実施形態のリテーナ400は、第3当接部43と第4当接部424とを有している。第3当接部43は、バルブボデー11に対して軸方向に当接する。本実施形態では、第3当接部43は、テーパ部43により構成されている。 Here, the retainer 400 of this embodiment has a third abutment portion 43 and a fourth abutment portion 424. The third abutment portion 43 abuts against the valve body 11 in the axial direction. In this embodiment, the third abutment portion 43 is configured by a tapered portion 43.
 第4当接部424は、マニフォールド300に対して軸方向に垂直な方向である当接方向に当接する。第4当接部424は、鍔部42における、クリップ部41のコの字状の開口部側の端部により構成されている。本実施形態では、第4当接部424は、対向する二つの鍔部42にそれぞれ設けられている。第4当接部424は、コの字状の開口部側に向かうにつれて、対向する第4当接部424同士の距離が大きくなるテーパ状に形成されている。 The fourth abutment portion 424 abuts against the manifold 300 in an abutment direction that is perpendicular to the axial direction. The fourth abutment portion 424 is configured by the end of the flange portion 42 on the U-shaped opening side of the clip portion 41. In this embodiment, the fourth abutment portion 424 is provided on each of the two opposing flange portions 42. The fourth abutment portions 424 are formed in a tapered shape such that the distance between the opposing fourth abutment portions 424 increases toward the U-shaped opening side.
 また、リテーナ400は、第3当接部43に対して軸方向の力が作用した際に、径方向外側に弾性変形する弾性変形部415を有している。弾性変形部415は、第4当接部424に対して当接方向の力が作用した際にも、径方向外側に弾性変形する。本実施形態では、弾性変形部415は、クリップ部41における二つの側面部411以外の部位に設けられている。なお、リテーナ400全体が弾性変形可能に構成されていてもよい。 The retainer 400 also has an elastic deformation portion 415 that elastically deforms radially outward when an axial force acts on the third abutment portion 43. The elastic deformation portion 415 also elastically deforms radially outward when a force acts on the fourth abutment portion 424 in the abutment direction. In this embodiment, the elastic deformation portion 415 is provided in a portion other than the two side portions 411 of the clip portion 41. The entire retainer 400 may be configured to be elastically deformable.
 続いて、本実施形態における膨張弁100のマニフォールド300への取付方法について説明する。 Next, we will explain how to attach the expansion valve 100 to the manifold 300 in this embodiment.
 まず、図22に示すように、マニフォールド300の筒状部34に対して、リテーナ400を径方向から取り付ける。具体的には、弁体部10に対して、リテーナ400をクリップ部41のコの字状の開口部側から取り付ける。より詳細には、弁体部10の溝部112に対し、リテーナ400の鍔部42を径方向からスライドさせて取り付ける。 First, as shown in FIG. 22, the retainer 400 is attached to the cylindrical portion 34 of the manifold 300 from the radial direction. Specifically, the retainer 400 is attached to the valve body portion 10 from the U-shaped opening side of the clip portion 41. More specifically, the flange portion 42 of the retainer 400 is slid radially into the groove portion 112 of the valve body portion 10 to attach it.
 このとき、図23に示すように、リテーナ400に当接方向の力が作用し、鍔部42の第4当接部424がマニフォールド300の溝部35に当接すると、リテーナ400は径方向外側(すなわち、二つの鍔部42同士が離れる方向)に弾性変形する。その状態で当接方向の力を作用させ続けると、リテーナ400の二つの鍔部42がそれぞれ径方向外側に開き、マニフォールド300の溝部35に沿ってリテーナ400の鍔部42が挿入されていく。 At this time, as shown in FIG. 23, when a force acts on the retainer 400 in the contact direction and the fourth contact portion 424 of the flange portion 42 comes into contact with the groove portion 35 of the manifold 300, the retainer 400 elastically deforms radially outward (i.e., in the direction in which the two flange portions 42 move away from each other). If the force in the contact direction continues to be applied in this state, the two flange portions 42 of the retainer 400 open radially outward, and the flange portions 42 of the retainer 400 are inserted along the groove portion 35 of the manifold 300.
 鍔部42が溝部35の最奥まで挿入されると、鍔部42の円弧状の端面421が溝部35と接触した状態で、リテーナ400の弾性変形が元に戻る。これにより、リテーナ400の鍔部42がマニフォールド300の溝部35に係止される。 When the flange 42 is inserted all the way into the groove 35, the elastic deformation of the retainer 400 returns to its original state with the arc-shaped end surface 421 of the flange 42 in contact with the groove 35. This causes the flange 42 of the retainer 400 to engage with the groove 35 of the manifold 300.
 次に、図24に示すように、リテーナ400が係止されたマニフォールド300に対して、コイル部50が固定された弁体部10を取り付ける。具体的には、マニフォールド300の挿入穴30に、弁体部10を軸方向に挿入する。 Next, as shown in FIG. 24, the valve body 10 with the coil portion 50 fixed thereto is attached to the manifold 300 to which the retainer 400 is engaged. Specifically, the valve body 10 is inserted axially into the insertion hole 30 of the manifold 300.
 このとき、図25に示すように、マニフォールド300の挿入穴30にバルブボデー11を軸方向に挿入すると、リテーナ400のテーパ部43の第3当接部43が、バルブボデー11のフランジ114に当接する。そして、第3当接部43がフランジ114に当接した状態で軸方向の力が作用し、テーパ部43のテーパ状の面に沿ってリテーナ400は径方向外側(すなわち、二つの側面部411同士が離れる方向)に弾性変形する。 At this time, as shown in FIG. 25, when the valve body 11 is axially inserted into the insertion hole 30 of the manifold 300, the third abutment portion 43 of the tapered portion 43 of the retainer 400 abuts against the flange 114 of the valve body 11. Then, with the third abutment portion 43 abutting against the flange 114, an axial force acts, and the retainer 400 elastically deforms radially outward (i.e., in the direction in which the two side portions 411 move away from each other) along the tapered surface of the tapered portion 43.
 その後、リテーナ400のテーパ部43および側面部411の内面とフランジ114とが接触した状態で、バルブボデー11が軸方向下側(図25では紙面下方側)にスライドしていき、貫通穴412にフランジ114が係止される。貫通穴412にフランジ114が係止されると、リテーナ400の弾性変形が元に戻る。 Then, with the tapered portion 43 and the inner surface of the side portion 411 of the retainer 400 in contact with the flange 114, the valve body 11 slides axially downward (toward the bottom of the paper in FIG. 25) and the flange 114 is locked in the through hole 412. When the flange 114 is locked in the through hole 412, the elastic deformation of the retainer 400 returns to its original state.
 その他の構成は、第1実施形態と同様である。したがって、第3実施形態の膨張弁100の取付部においても、第1実施形態と同様の効果を得ることができる。 The rest of the configuration is the same as in the first embodiment. Therefore, the mounting portion of the expansion valve 100 in the third embodiment can also achieve the same effects as in the first embodiment.
 (第4実施形態)
 次に、本開示の第4実施形態について図面に基づいて説明する。本第4実施形態は、上記第3実施形態と比較して、膨張弁100のマニフォールド300への取付方法が異なる。
Fourth Embodiment
Next, a fourth embodiment of the present disclosure will be described with reference to the drawings. The fourth embodiment is different from the third embodiment in the method of mounting the expansion valve 100 to the manifold 300.
 本実施形態では、まず、図26に示すように、コイル部50が固定された弁体部10を、マニフォールド300における筒状部34の挿入穴30に挿入する。次に、図27に示すように、弁体部10がマニフォールド300の挿入穴30挿入された状態で、弁体部10およびマニフォールド300に対してリテーナ400を取り付ける。 In this embodiment, first, as shown in FIG. 26, the valve body portion 10 to which the coil portion 50 is fixed is inserted into the insertion hole 30 of the cylindrical portion 34 of the manifold 300. Next, as shown in FIG. 27, with the valve body portion 10 inserted into the insertion hole 30 of the manifold 300, a retainer 400 is attached to the valve body portion 10 and the manifold 300.
 具体的には、マニフォールド300の溝部35に対し、リテーナ400の鍔部42を当接方向から挿入する。このとき、リテーナ400に当接方向の力が作用し、鍔部42の第4当接部424がマニフォールド300の溝部35に当接すると、リテーナ400は径方向外側に弾性変形する。その状態で当接方向の力を作用させ続けると、リテーナ400の二つの鍔部42がそれぞれ径方向外側に開き、マニフォールド300の溝部35に沿ってリテーナ400の鍔部42が挿入されていく。 Specifically, the flange 42 of the retainer 400 is inserted into the groove 35 of the manifold 300 from the contact direction. At this time, a force in the contact direction acts on the retainer 400, and when the fourth contact portion 424 of the flange 42 comes into contact with the groove 35 of the manifold 300, the retainer 400 elastically deforms radially outward. If the force in the contact direction continues to be applied in this state, the two flanges 42 of the retainer 400 each open radially outward, and the flanges 42 of the retainer 400 are inserted along the groove 35 of the manifold 300.
 鍔部42が溝部35の最奥まで挿入されると、鍔部42の円弧状の端面421が溝部35と接触した状態で、リテーナ400の弾性変形が元に戻る。これにより、リテーナ400の鍔部42がマニフォールド300の溝部35に係止されるとともに、リテーナ400のクリップ部41の貫通穴412に、バルブボデー11のフランジ114が係止される。 When the flange 42 is inserted all the way into the groove 35, the elastic deformation of the retainer 400 returns to its original state with the arc-shaped end surface 421 of the flange 42 in contact with the groove 35. This causes the flange 42 of the retainer 400 to engage with the groove 35 of the manifold 300, and the flange 114 of the valve body 11 to engage with the through hole 412 of the clip portion 41 of the retainer 400.
 その他の構成は、第3実施形態と同様である。したがって、第4実施形態の膨張弁100の取付部においても、第3実施形態と同様の効果を得ることができる。 The rest of the configuration is the same as in the third embodiment. Therefore, the mounting portion of the expansion valve 100 in the fourth embodiment can also achieve the same effects as in the third embodiment.
 (第5実施形態)
 次に、本開示の第5実施形態について図面に基づいて説明する。本第5実施形態は、上記第1実施形態と比較して、コイル部50の形状等が異なる。
Fifth Embodiment
Next, a fifth embodiment of the present disclosure will be described with reference to the drawings. The fifth embodiment is different from the first embodiment in the shape of the coil portion 50, etc.
 図28および図29に示すように、本実施形態のコイル部50における弁体部10側の端部(図24では下端部)には、リテーナ400が係止されるリテーナ係止部51が設けられている。リテーナ係止部51には、リテーナ400の鍔部42およびバルブボデー11のコイル部50側の端部(図24では上端部)が係止される。このとき、リテーナ400の鍔部42およびバルブボデー11のコイル部50側の端部が、コイル部50内に挿入された状態となる。 28 and 29, in this embodiment, the coil portion 50 has a retainer locking portion 51 at its end on the valve body portion 10 side (the lower end in FIG. 24) to which the retainer 400 is locked. The retainer locking portion 51 locks the flange portion 42 of the retainer 400 and the end of the valve body 11 on the coil portion 50 side (the upper end in FIG. 24). At this time, the flange portion 42 of the retainer 400 and the end of the valve body 11 on the coil portion 50 side are inserted into the coil portion 50.
 本実施形態によれば、コイル部50のリテーナ係止部51により、コイル部50およびリテーナ400を固定するともに、コイル部50およびバルブボデー11を固定することができる。このため、コイル部50と弁体部10とを固定するコイル締結用ブラケットを廃止することができるので、部品点数を削減するとともに、組付工数を削減することができる。 According to this embodiment, the retainer locking portion 51 of the coil portion 50 can fix the coil portion 50 and the retainer 400, and can also fix the coil portion 50 and the valve body 11. This makes it possible to eliminate the coil fastening bracket that fixes the coil portion 50 and the valve body portion 10, thereby reducing the number of parts and the assembly man-hours.
 (第6実施形態)
 次に、本開示の第6実施形態について図面に基づいて説明する。本第6実施形態は、上記第5実施形態と比較して、コイル部50およびリテーナ400の形状等が異なる。
Sixth Embodiment
Next, a sixth embodiment of the present disclosure will be described with reference to the drawings. The sixth embodiment is different from the fifth embodiment in the shapes of the coil portion 50 and the retainer 400, etc.
 図30および図31に示すように、本実施形態のコイル部50における弁体部10側の端部(図24では下端部)には、フランジ52が形成されている。フランジ52は、軸方向に垂直な円板状に形成されている。 As shown in Figures 30 and 31, in this embodiment, a flange 52 is formed at the end of the coil section 50 on the valve body section 10 side (the lower end in Figure 24). The flange 52 is formed in a disk shape perpendicular to the axial direction.
 図30および図32に示すように、リテーナ400は、コイル側鍔部44を有しているコイル側鍔部44は、クリップ部41における鍔部42よりもコイル部50側(図32では上方側)に設けられている。 As shown in Figures 30 and 32, the retainer 400 has a coil side flange 44, which is located closer to the coil section 50 (upper side in Figure 32) than the flange 42 on the clip section 41.
 コイル側鍔部44は、鍔部42と同様の形状に形成されている。すなわち、コイル側鍔部44は、クリップ部41の各側面部411におけるコイル部50側の端部からバルブボデー11の径方向内側に向かって延びる板状に形成されている。コイル側鍔部44は、バルブボデー11を挟んで対向するように二つ設けられている。 The coil side flange 44 is formed in the same shape as the flange 42. That is, the coil side flange 44 is formed in a plate shape extending from the end of the coil section 50 side of each side section 411 of the clip section 41 toward the radial inside of the valve body 11. Two coil side flanges 44 are provided facing each other with the valve body 11 in between.
 コイル側鍔部44は、コイル部50のフランジ52に係止されている。コイル側鍔部44により、コイル部50がバルブボデー11に固定される。本実施形態のコイル側鍔部44は、コイル部50が固定されるコイル係止部の一例に相当する。コイル側鍔部44の径方向内側の端面441は、コイル部50のフランジ52に対応する円弧状に形成されている。 The coil side flange 44 is engaged with the flange 52 of the coil section 50. The coil section 50 is fixed to the valve body 11 by the coil side flange 44. The coil side flange 44 in this embodiment corresponds to an example of a coil engagement section to which the coil section 50 is fixed. The radially inner end surface 441 of the coil side flange 44 is formed in an arc shape that corresponds to the flange 52 of the coil section 50.
 本実施形態によれば、リテーナ400のコイル側鍔部44によりコイル部50とバルブボデー11とを固定することができる。このため、コイル部50と弁体部10とを固定するコイル締結用ブラケットを廃止することができるので、部品点数を削減するとともに、組付工数を削減することができる。 According to this embodiment, the coil portion 50 and the valve body 11 can be fixed by the coil side flange portion 44 of the retainer 400. This makes it possible to eliminate the coil fastening bracket that fixes the coil portion 50 and the valve body portion 10, thereby reducing the number of parts and the assembly labor.
 (第7実施形態)
 次に、本開示の第7実施形態について図面に基づいて説明する。本第7実施形態では、図39~図42に示すように、第1実施形態のリテーナ400に対して、貫通穴412を廃止して、マニフォールド300側に下側鍔部42Bを追加した例を説明する。
Seventh Embodiment
Next, a seventh embodiment of the present disclosure will be described with reference to the drawings. In the seventh embodiment, as shown in Figures 39 to 42, an example will be described in which the through hole 412 is eliminated from the retainer 400 of the first embodiment, and a lower flange portion 42B is added to the manifold 300 side.
 具体的には、本実施形態のリテーナ400は、上側鍔部42Aと下側鍔部42Bとを有している。上側鍔部42Aは、クリップ部41におけるコイル部50側(図40では上方側)に接続されている。上側鍔部42Aは、クリップ部41の各側面部411におけるコイル部50側の端部から膨張弁100の径方向内側に向かって延びる板状に形成されている。上側鍔部42Aは、バルブボデー11を挟んで対向するように二つ設けられている。 Specifically, the retainer 400 of this embodiment has an upper flange 42A and a lower flange 42B. The upper flange 42A is connected to the coil portion 50 side of the clip portion 41 (the upper side in FIG. 40). The upper flange 42A is formed in a plate shape extending from the end of the coil portion 50 side of each side portion 411 of the clip portion 41 toward the radial inside of the expansion valve 100. Two upper flanges 42A are provided facing each other with the valve body 11 in between.
 上側鍔部42Aは、バルブボデー11の外周に形成された溝部112に係止されて固定されている。これにより、リテーナ400がバルブボデー11に対して抜き方向(すなわち、軸方向)に拘束される。本実施形態の上側鍔部42Aは、第1係止部の一例に相当する。 The upper flange 42A is engaged and fixed in a groove 112 formed on the outer periphery of the valve body 11. This restrains the retainer 400 in the removal direction (i.e., the axial direction) relative to the valve body 11. The upper flange 42A in this embodiment corresponds to an example of a first engagement portion.
 一例として本実施形態では、リテーナ回転防止部として、図示しないマニフォールド側回り止め部およびリテーナ側回り止め部425を設けている。すなわち、バルブボデー11の溝部112の一部に、非円弧形状を有するマニフォールド側回り止め部が形成されている。そして、リテーナ400の上側鍔部42Aの一部に、非円弧形状を有するリテーナ側回り止め部425が形成されている。マニフォールド側回り止め部およびリテーナ側回り止め部425は、それぞれ平面形状を有していてもよい。 As an example, in this embodiment, a manifold side anti-rotation portion and a retainer side anti-rotation portion 425 (not shown) are provided as the retainer rotation prevention portion. That is, a manifold side anti-rotation portion having a non-arc shape is formed in a part of the groove portion 112 of the valve body 11. And a retainer side anti-rotation portion 425 having a non-arc shape is formed in a part of the upper flange portion 42A of the retainer 400. The manifold side anti-rotation portion and the retainer side anti-rotation portion 425 may each have a planar shape.
 本実施形態では、上側鍔部42Aにおける、クリップ部41のコの字状の開口部側の端部により、第2当接部423が構成されている。第2当接部423は、対向する二つの上側鍔部42Aにそれぞれ設けられている。第2当接部423は、コの字状の開口部側に向かうにつれて、対向する第2当接部423同士の距離が大きくなるテーパ状に形成されている。また、上側鍔部42Aには、先端が屈曲した先曲がりプライヤや専用治具等の先端部が挿入可能な穴部422が設けられている。 In this embodiment, the second abutment portion 423 is formed by the end of the upper flange portion 42A on the side of the U-shaped opening of the clip portion 41. The second abutment portion 423 is provided on each of the two opposing upper flange portions 42A. The second abutment portions 423 are formed in a tapered shape in which the distance between the opposing second abutment portions 423 increases toward the U-shaped opening side. In addition, the upper flange portion 42A is provided with a hole portion 422 into which the tip of a bent tip pliers or a dedicated jig or the like can be inserted.
 下側鍔部42Bは、クリップ部41におけるコイル部50と反対側(図40では下方側)に接続されている。下側鍔部42Bは、クリップ部41の各側面部411におけるコイル部50と反対側の端部から膨張弁100の径方向内側に向かって延びる板状に形成されている。下側鍔部42Bは、マニフォールド300の筒状部34を挟んで対向するように二つ設けられている。 The lower flange 42B is connected to the side of the clip portion 41 opposite the coil portion 50 (the lower side in FIG. 40). The lower flange 42B is formed in a plate shape extending from the end of each side portion 411 of the clip portion 41 opposite the coil portion 50 toward the radial inside of the expansion valve 100. Two lower flanges 42B are provided facing each other across the cylindrical portion 34 of the manifold 300.
 下側鍔部42Bは、マニフォールド300の外周に形成された溝部35に係止されて固定されている。これにより、膨張弁100がマニフォールド300に対して抜き方向(すなわち、軸方向)に拘束される。一例として本実施形態では、下側鍔部42Bにおける径方向内側の端面は、軸方向に対して垂直に延びている。より詳細には、下側鍔部42Bにおける径方向内側の端面は、上側鍔部42Aのリテーナ側回り止め部425と平行に延びている。本実施形態の下側鍔部42Bは、第3係止部の一例に相当する。 The lower flange 42B is engaged and fixed in a groove 35 formed on the outer periphery of the manifold 300. This restrains the expansion valve 100 in the removal direction (i.e., the axial direction) relative to the manifold 300. As an example, in this embodiment, the radially inner end face of the lower flange 42B extends perpendicular to the axial direction. More specifically, the radially inner end face of the lower flange 42B extends parallel to the retainer side anti-rotation portion 425 of the upper flange 42A. The lower flange 42B in this embodiment corresponds to an example of a third engagement portion.
 一例として本実施形態では、マニフォールド300において、溝部35は周方向の一部にのみ形成されている。これにより、溝部35に下側鍔部42Bが固定された際に、リテーナ400がマニフォールド300に周方向に係止される。その結果、リテーナ400のマニフォールド300に対する回転が防止される。換言すると、リテーナ400がマニフォールド300に対して回転方向(すなわち、周方向)に拘束される。したがって、本実施形態における非溝部36が、リテーナ回転防止部の一例に相当する。換言すると、周方向の一部にのみ形成された溝部35が、リテーナ回転防止部の一例に相当する。 As an example, in this embodiment, the groove portion 35 is formed only on a portion of the manifold 300 in the circumferential direction. As a result, when the lower flange portion 42B is fixed to the groove portion 35, the retainer 400 is engaged with the manifold 300 in the circumferential direction. As a result, the retainer 400 is prevented from rotating relative to the manifold 300. In other words, the retainer 400 is restrained in the rotational direction (i.e., the circumferential direction) relative to the manifold 300. Therefore, the non-grooved portion 36 in this embodiment corresponds to an example of a retainer rotation prevention portion. In other words, the groove portion 35 formed only on a portion of the circumferential direction corresponds to an example of a retainer rotation prevention portion.
 続いて、本実施形態における膨張弁100のマニフォールド300への取付方法について説明する。 Next, we will explain how to attach the expansion valve 100 to the manifold 300 in this embodiment.
 まず、弁体部10にコイル部50を固定する。その後、マニフォールド300に対して、コイル部50が固定された弁体部10を取り付ける。具体的には、マニフォールド300の挿入穴30に、弁体部10を軸方向に挿入する。 First, the coil portion 50 is fixed to the valve body portion 10. Then, the valve body portion 10 with the coil portion 50 fixed thereto is attached to the manifold 300. Specifically, the valve body portion 10 is inserted axially into the insertion hole 30 of the manifold 300.
 次に、図43に示すように、弁体部10およびマニフォールド300に対して、リテーナ400を軸方向に垂直な方向である当接方向から取り付ける。具体的には、弁体部10およびマニフォールド300に対して、リテーナ400をクリップ部41のコの字状の開口部側から取り付ける。より詳細には、弁体部10の溝部112に対してリテーナ400の上側鍔部42Aを当接方向から挿入するとともに、マニフォールド300の溝部35に対してリテーナ400の下側鍔部42Bを当接方向から挿入する。 Next, as shown in FIG. 43, the retainer 400 is attached to the valve body 10 and manifold 300 from the abutment direction, which is a direction perpendicular to the axial direction. Specifically, the retainer 400 is attached to the valve body 10 and manifold 300 from the U-shaped opening side of the clip portion 41. More specifically, the upper flange 42A of the retainer 400 is inserted into the groove 112 of the valve body 10 from the abutment direction, and the lower flange 42B of the retainer 400 is inserted into the groove 35 of the manifold 300 from the abutment direction.
 このとき、リテーナ400に当接方向の力が作用し、上側鍔部42Aの第2当接部423が弁体部10の溝部112に当接すると、リテーナ400は径方向外側(すなわち、二つの上側鍔部42A同士が離れる方向)に弾性変形する。 At this time, when a force acts on the retainer 400 in the contact direction and the second contact portion 423 of the upper flange portion 42A contacts the groove portion 112 of the valve body portion 10, the retainer 400 elastically deforms radially outward (i.e., in the direction in which the two upper flange portions 42A move away from each other).
 その状態で当接方向の力を作用させ続けると、リテーナ400の二つの上側鍔部42Aがそれぞれ径方向外側に開き、バルブボデー11の溝部112に沿ってリテーナ400の上側鍔部42Aが挿入されていく。同時に、リテーナ400の二つの下側鍔部42Bがそれぞれ径方向外側に開き、マニフォールド300の溝部35に沿ってリテーナ400の下側鍔部42Bが挿入されていく。 If force is continued to be applied in this state in the contact direction, the two upper flanges 42A of the retainer 400 open radially outward, and the upper flanges 42A of the retainer 400 are inserted along the grooves 112 of the valve body 11. At the same time, the two lower flanges 42B of the retainer 400 open radially outward, and the lower flanges 42B of the retainer 400 are inserted along the grooves 35 of the manifold 300.
 上側鍔部42Aが弁体部10の溝部112の最奥まで挿入されるとともに、下側鍔部42Bがマニフォールド300の溝部35の最奥まで挿入されると、リテーナ400の弾性変形が元に戻る。これにより、リテーナ400の上側鍔部42Aが弁体部10の溝部112に係止されるとともに、リテーナ400の下側鍔部42Bがマニフォールド300の溝部35に係止される。 When the upper flange 42A is inserted all the way into the groove 112 of the valve body 10 and the lower flange 42B is inserted all the way into the groove 35 of the manifold 300, the elastic deformation of the retainer 400 returns to its original state. As a result, the upper flange 42A of the retainer 400 is engaged with the groove 112 of the valve body 10 and the lower flange 42B of the retainer 400 is engaged with the groove 35 of the manifold 300.
 膨張弁100をマニフォールド300からの取り外す際には、以下の方法を採用することができる。すなわち、まず、リテーナ400の穴部422に、先曲がりプライヤや専用治具等の先端部を挿入し、二つの上側鍔部42A同士が離れる方向(すなわち、径方向外側)にリテーナ400を弾性変形させる。その後、二つの上側鍔部42A同士の隙間から膨張弁100を引き抜くことにより、膨張弁100をマニフォールド300から取り外すことができる。 When removing the expansion valve 100 from the manifold 300, the following method can be used. That is, first, the tip of a bent-tip pliers or a special tool is inserted into the hole 422 of the retainer 400, and the retainer 400 is elastically deformed in a direction in which the two upper flanges 42A move apart (i.e., radially outward). The expansion valve 100 can then be removed from the manifold 300 by pulling it out from the gap between the two upper flanges 42A.
 以上説明したように、本実施形態では、上側鍔部42Aおよび下側鍔部42Bを有するリテーナ400を用いて、膨張弁100をマニフォールド300に取り付けている。このとき、リテーナ400を膨張弁100およびマニフォールド300に組み付けるための専用の治具を用いる必要がない。すなわち、リテーナ400の上側鍔部42Aと弁体部10の溝部112と係止させるとともに、リテーナ400の下側鍔部42Bとマニフォールド300の溝部35とを係止させるという簡素な工程で、膨張弁100をマニフォールド300に取り付けることができる。したがって、膨張弁100をマニフォールド300に取り付けるために必要な部品の点数および工数を低減することができる。その結果、生産性を向上させることが可能となる。 As described above, in this embodiment, the expansion valve 100 is attached to the manifold 300 using the retainer 400 having the upper flange 42A and the lower flange 42B. At this time, there is no need to use a dedicated jig for assembling the retainer 400 to the expansion valve 100 and the manifold 300. That is, the expansion valve 100 can be attached to the manifold 300 by a simple process of engaging the upper flange 42A of the retainer 400 with the groove 112 of the valve body portion 10 and engaging the lower flange 42B of the retainer 400 with the groove 35 of the manifold 300. Therefore, the number of parts and the number of steps required to attach the expansion valve 100 to the manifold 300 can be reduced. As a result, it is possible to improve productivity.
 (第8実施形態)
 次に、本開示の第8実施形態について図面に基づいて説明する。本第8実施形態では、図44~図46に示すように、第7実施形態のリテーナ400の形状を変更した例を説明する。なお、図45はリテーナ400を軸方向から見た図であり、図46はリテーナ400を径方向(すなわち、図45における左右方向)から見た図である。
Eighth embodiment
Next, an eighth embodiment of the present disclosure will be described with reference to the drawings. In this eighth embodiment, an example in which the shape of the retainer 400 of the seventh embodiment is modified will be described as shown in Fig. 44 to Fig. 46. Fig. 45 is a view of the retainer 400 as seen from the axial direction, and Fig. 46 is a view of the retainer 400 as seen from the radial direction (i.e., the left-right direction in Fig. 45).
 具体的には、本実施形態におけるリテーナ400のクリップ部41には、接続部416、内側突出部417および外側突出部418が設けられている。接続部416は、二つの側面部411の径方向の端部同士を接続する。内側突出部417は、接続部416から膨張弁100の径方向内側に向かって延びている。外側突出部418は、接続部416から膨張弁100の径方向外側に向かって延びている。なお、側面部411と接続部416との間には、弾性変形部414が介在されていてもよい。 Specifically, in this embodiment, the clip portion 41 of the retainer 400 is provided with a connection portion 416, an inner protrusion 417, and an outer protrusion 418. The connection portion 416 connects the radial ends of the two side portions 411. The inner protrusion 417 extends from the connection portion 416 toward the radial inside of the expansion valve 100. The outer protrusion 418 extends from the connection portion 416 toward the radial outside of the expansion valve 100. An elastic deformation portion 414 may be interposed between the side portion 411 and the connection portion 416.
 一例として本実施形態の接続部416は、径方向に対して垂直に延びる板状に形成されている。接続部416は、各側面部411に対して垂直に延びている。弾性変形部414は、軸方向から見たときに径方向外側に突出する円弧状に形成されている。そして、側面部411における径方向の端部と、接続部416における径方向の端部とが、弾性変形部414を介して接続されている。 As an example, the connection portion 416 in this embodiment is formed in a plate shape extending perpendicular to the radial direction. The connection portion 416 extends perpendicular to each side portion 411. The elastic deformation portion 414 is formed in an arc shape that protrudes radially outward when viewed from the axial direction. The radial end of the side portion 411 and the radial end of the connection portion 416 are connected via the elastic deformation portion 414.
 内側突出部417は、接続部416に接続されるとともに、接続部416から径方向内側に向かって突出する板状部材である。外側突出部418は、接続部416に接続されるとともに、接続部416から径方向外側に向かって突出する板状部材である。 The inner protrusion 417 is a plate-like member that is connected to the connection portion 416 and protrudes radially inward from the connection portion 416. The outer protrusion 418 is a plate-like member that is connected to the connection portion 416 and protrudes radially outward from the connection portion 416.
 一例として本実施形態の内側突出部417および外側突出部418は、それぞれ、軸方向に対して垂直に延びる板状に形成されている。内側突出部417は、接続部416におけるコイル部50側(図44および図46では上方側)の端部に接続されている。外側突出部418は、接続部416におけるコイル部50と反対側(図44および図46では下方側)の端部に接続されている。 As an example, the inner protrusion 417 and the outer protrusion 418 in this embodiment are each formed in a plate shape extending perpendicular to the axial direction. The inner protrusion 417 is connected to the end of the connection part 416 on the coil part 50 side (upper side in Figures 44 and 46). The outer protrusion 418 is connected to the end of the connection part 416 on the opposite side to the coil part 50 (lower side in Figures 44 and 46).
 内側突出部417は、二つの上側鍔部42Aと同一平面上に配置されている。そして、弁体部10およびマニフォールド300に対してリテーナ400を取り付けた際に、リテーナ400の上側鍔部42Aおよび内側突出部417が弁体部10の溝部112に係止される。 The inner protrusion 417 is disposed on the same plane as the two upper flanges 42A. When the retainer 400 is attached to the valve body 10 and the manifold 300, the upper flanges 42A and the inner protrusions 417 of the retainer 400 are engaged with the grooves 112 of the valve body 10.
 以上説明したように、本実施形態では、リテーナ400に、接続部416から径方向内側に向かって突出する内側突出部417を設けている。これによれば、二つの上側鍔部42Aおよび内側突出部417において、リテーナ400が弁体部10と接触する。このため、リテーナ400と弁体部10とが三点接触となり、弁体部10に対するリテーナ400のガタツキを抑制できる。 As described above, in this embodiment, the retainer 400 is provided with an inner protrusion 417 that protrudes radially inward from the connection portion 416. As a result, the retainer 400 comes into contact with the valve body portion 10 at the two upper flange portions 42A and the inner protrusion 417. This results in three-point contact between the retainer 400 and the valve body portion 10, which can suppress rattling of the retainer 400 relative to the valve body portion 10.
 また、本実施形態では、リテーナ400に、接続部416から径方向外側に向かって突出する外側突出部418を設けている。これによれば、外側突出部418を、リテーナ400を組み付ける際に治具が把持するための把持部とすることができる。また、リテーナ400を組み付ける工程を自動化した場合は、外側突出部418により位置決めを行うことができる。このため、生産性を向上させることが可能となる。 Furthermore, in this embodiment, the retainer 400 is provided with an outer protrusion 418 that protrudes radially outward from the connection portion 416. This allows the outer protrusion 418 to function as a gripping portion for a jig to grip when assembling the retainer 400. Furthermore, if the process of assembling the retainer 400 is automated, positioning can be performed using the outer protrusion 418. This makes it possible to improve productivity.
 (第9実施形態)
 次に、本開示の第9実施形態について図面に基づいて説明する。本第9実施形態では、図47および図48に示すように、第7実施形態に対して、コイル部50の形状を変更した例を説明する。
Ninth embodiment
Next, a ninth embodiment of the present disclosure will be described with reference to the drawings. In the ninth embodiment, as shown in Fig. 47 and Fig. 48, an example in which the shape of the coil portion 50 is changed from that of the seventh embodiment will be described.
 具体的には、本実施形態におけるコイル部50のモールド53は、円筒状に形成された円筒部531を有している。円筒部531の中心軸は、膨張弁100の軸と同軸上に配置されている。円筒部531は、モールド53におけるマニフォールド300側の端面(図47では下端面)から、マニフォールド300側に向かって延びている。 Specifically, in this embodiment, the mold 53 of the coil portion 50 has a cylindrical portion 531 formed in a cylindrical shape. The central axis of the cylindrical portion 531 is arranged coaxially with the axis of the expansion valve 100. The cylindrical portion 531 extends from the end face of the mold 53 on the manifold 300 side (the lower end face in FIG. 47) toward the manifold 300 side.
 円筒部531の内部には、バルブボデー11におけるコイル50部側の端部が配置されている。すなわち、バルブボデー11のうち、マニフォールド300の挿入穴30に挿入されていない部位は、円筒部531の内側に配置されている。 The end of the valve body 11 on the coil 50 side is disposed inside the cylindrical portion 531. In other words, the portion of the valve body 11 that is not inserted into the insertion hole 30 of the manifold 300 is disposed inside the cylindrical portion 531.
 一例として本実施形態では、円筒部531の先端部(すなわち、マニフォールド300側の端部)は、マニフォールド300におけるコイル部50側の端面と接触している。円筒部531の内壁面には、バルブボデー11の外壁面が接触している。 As an example, in this embodiment, the tip of the cylindrical portion 531 (i.e., the end on the manifold 300 side) is in contact with the end face of the manifold 300 on the coil portion 50 side. The inner wall surface of the cylindrical portion 531 is in contact with the outer wall surface of the valve body 11.
 ここで、円筒部531におけるバルブボデー11の溝部112と対応する部位には、コイル側貫通穴532が設けられている。コイル側貫通穴532は、リテーナ400の上側鍔部42Aが貫通するように形成されている。 Here, a coil side through hole 532 is provided in the cylindrical portion 531 at a location corresponding to the groove portion 112 of the valve body 11. The coil side through hole 532 is formed so that the upper flange portion 42A of the retainer 400 passes through it.
 本実施形態では、リテーナ400の上側鍔部42Aは、コイル部50のコイル側貫通穴532を貫通するとともに、バルブボデー11の溝部112に係止される。これにより、リテーナ400の上側鍔部42Aによって、コイル部50およびバルブボデー11の双方が係止されて固定される。換言すると、上側鍔部42Aが、弁体部10およびコイル部50の双方に固定される。 In this embodiment, the upper flange 42A of the retainer 400 passes through the coil side through hole 532 of the coil portion 50 and is engaged with the groove portion 112 of the valve body 11. As a result, both the coil portion 50 and the valve body 11 are engaged and fixed by the upper flange 42A of the retainer 400. In other words, the upper flange 42A is fixed to both the valve body portion 10 and the coil portion 50.
 本実施形態によれば、リテーナ400の上側鍔部42Aによりコイル部50とバルブボデー11の双方をマニフォールド300に固定することができる。これにより、コイル部50と弁体部10とを固定するコイル締結用ブラケットを廃止することができるので、部品点数を削減するとともに、組付工数を削減することができる。 According to this embodiment, both the coil section 50 and the valve body 11 can be fixed to the manifold 300 by the upper flange 42A of the retainer 400. This makes it possible to eliminate the coil fastening bracket that fastens the coil section 50 and the valve body section 10, thereby reducing the number of parts and the assembly man-hours.
 (第10実施形態)
 次に、本開示の第10実施形態について図面に基づいて説明する。本第10実施形態では、図49および図50に示すように、第7実施形態に対して、コイル部50の形状を変更した例を説明する。
Tenth embodiment
Next, a tenth embodiment of the present disclosure will be described with reference to the drawings. In the tenth embodiment, as shown in Fig. 49 and Fig. 50, an example in which the shape of the coil portion 50 is changed from that of the seventh embodiment will be described.
 具体的には、本実施形態では、第7実施形態のバルブボデー11と比較して、溝部112を廃止している。そして、コイル部50における弁体部10側の端部(図49では下端部)には、リテーナ400の上側鍔部42Aが挿入される挿入溝54が設けられている。挿入溝54には、リテーナ400の上側鍔部42Aが挿入されて係止される。 Specifically, in this embodiment, compared to the valve body 11 of the seventh embodiment, the groove portion 112 is eliminated. Furthermore, an insertion groove 54 into which the upper flange portion 42A of the retainer 400 is inserted is provided at the end of the coil portion 50 on the valve body portion 10 side (the lower end portion in FIG. 49). The upper flange portion 42A of the retainer 400 is inserted into the insertion groove 54 and engaged.
 本実施形態では、リテーナ400の上側鍔部42Aをコイル部50の挿入溝54に挿入するとともに、リテーナ400の下側鍔部42Bをマニフォールド300の溝部35に挿入することで、コイル部50がマニフォールド300に固定される。このとき、バルブボデー11は、コイル部50およびマニフォールド300の間に挟まれることにより、間接的に固定される。 In this embodiment, the coil section 50 is fixed to the manifold 300 by inserting the upper flange 42A of the retainer 400 into the insertion groove 54 of the coil section 50 and the lower flange 42B of the retainer 400 into the groove 35 of the manifold 300. At this time, the valve body 11 is indirectly fixed by being sandwiched between the coil section 50 and the manifold 300.
 本実施形態によれば、リテーナ400の上側鍔部42Aおよび下側鍔部42Bによりコイル部50とマニフォールド300とを固定するとともに、バルブボデー11を間接的に固定することができる。これにより、コイル部50と弁体部10とを固定するコイル締結用ブラケットを廃止することができるので、部品点数を削減するとともに、組付工数を削減することができる。 According to this embodiment, the coil section 50 and the manifold 300 are fixed by the upper flange 42A and the lower flange 42B of the retainer 400, and the valve body 11 is indirectly fixed. This makes it possible to eliminate the coil fastening bracket that fixes the coil section 50 and the valve body section 10, thereby reducing the number of parts and the assembly man-hours.
 (他の実施形態)
 本開示は上述の実施形態に限定されることなく、本開示の趣旨を逸脱しない範囲内で、以下のように種々変形可能である。
Other Embodiments
The present disclosure is not limited to the above-described embodiment, and various modifications can be made as follows without departing from the spirit and scope of the present disclosure.
 (1)例えば、上述した実施形態では、バルブボデー11に二つの溝部112および二つの非溝部113を設けて、二つの非溝部113をリテーナ回転防止部とした例について説明したが、リテーナ回転防止部はこの態様に限定されない。 (1) For example, in the above embodiment, an example was described in which two groove portions 112 and two non-groove portions 113 are provided in the valve body 11, and the two non-groove portions 113 serve as the retainer rotation prevention portion, but the retainer rotation prevention portion is not limited to this form.
 例えば、図33に示すように、リテーナ回転防止部として一つの非溝部113を採用してもよい。すなわち、バルブボデー11に、一つの溝部112および一つの非溝部113を設けてもよい。 For example, as shown in FIG. 33, one non-groove portion 113 may be used as the retainer rotation prevention portion. In other words, one groove portion 112 and one non-groove portion 113 may be provided on the valve body 11.
 また、図34および図35に示すように、リテーナ回転防止部として、マニフォールド側回り止め部115およびリテーナ側回り止め部425を採用してもよい。すなわち、バルブボデー11の溝部112の一部に、非円弧形状を有するマニフォールド側回り止め部115を形成してもよい。そして、リテーナ400の鍔部42の一部に、非円弧形状を有するリテーナ側回り止め部425を形成してもよい。マニフォールド側回り止め部115およびリテーナ側回り止め部425は、それぞれ平面形状を有していてもよい。 Also, as shown in Figures 34 and 35, a manifold side anti-rotation portion 115 and a retainer side anti-rotation portion 425 may be used as the retainer rotation prevention portion. That is, a manifold side anti-rotation portion 115 having a non-arc shape may be formed in a part of the groove portion 112 of the valve body 11. And a retainer side anti-rotation portion 425 having a non-arc shape may be formed in a part of the flange portion 42 of the retainer 400. The manifold side anti-rotation portion 115 and the retainer side anti-rotation portion 425 may each have a planar shape.
 また、図36に示すように、リテーナ回転防止部として、マニフォールド300のフランジ32の一部に、径方向外側に突出する突出部33を形成してもよい。すなわち、リテーナ回転防止部として、突出部33が設けられたフランジ32を採用してもよい。突出部33は、フランジ32のうち貫通穴412と係止する部位に設けられていてもよい。 Also, as shown in FIG. 36, a protrusion 33 that protrudes radially outward may be formed on a part of the flange 32 of the manifold 300 as a retainer rotation prevention part. In other words, a flange 32 provided with a protrusion 33 may be used as the retainer rotation prevention part. The protrusion 33 may be provided on a part of the flange 32 that engages with the through hole 412.
 (2)また、上述した実施形態では、本体回転防止部として、マニフォールド300の凸部31とバルブボデー11の凹部111とを採用した例について説明したが、本体回転防止部はこの態様に限定されない。 (2) In the above embodiment, an example was described in which the convex portion 31 of the manifold 300 and the concave portion 111 of the valve body 11 were used as the main body rotation prevention portion, but the main body rotation prevention portion is not limited to this embodiment.
 例えば、図37および図38に示すように、本体回転防止部として、マニフォールド300の凹部37とバルブボデー11の凸部116とを採用してもよい。すなわち、マニフォールド300におけるコイル部50側(図37では上方側)の端部に、コイル部50側と反対側に凹んだ凹部37を設けてもよい。そして、バルブボデー11に、マニフォールド300の凹部37と嵌合する凸部116を設けてもよい。 For example, as shown in Figures 37 and 38, the recess 37 of the manifold 300 and the protrusion 116 of the valve body 11 may be used as the main body rotation prevention part. That is, the end of the manifold 300 on the coil section 50 side (the upper side in Figure 37) may be provided with a recess 37 that is recessed on the side opposite the coil section 50 side. The valve body 11 may then be provided with a protrusion 116 that fits into the recess 37 of the manifold 300.
 (3)また、上述した実施形態では、ヒートポンプモジュールが、圧縮機、凝縮器、膨張弁100および蒸発器を有している例について説明したが、ヒートポンプモジュールの構成はこの態様に限定されない。すなわち、ヒートポンプモジュールは、必ずしも圧縮機、凝縮器および蒸発器を含んでいなくてもよい。例えば、ヒートポンプモジュールとして、膨張弁100や電磁弁等のバルブ類のみをモジュール化したものを採用してもよい。 (3) In the above embodiment, an example was described in which the heat pump module had a compressor, a condenser, an expansion valve 100, and an evaporator, but the configuration of the heat pump module is not limited to this. In other words, the heat pump module does not necessarily have to include a compressor, a condenser, and an evaporator. For example, a heat pump module in which only valves such as the expansion valve 100 and solenoid valves are modularized may be used.
 本明細書に開示された膨張弁の取付部の特徴を以下の通り示す。
(項目1)
 冷媒流路の開度を調整する膨張弁本体(100)をマニフォールド(300)へ取り付ける膨張弁の取付部であって、
 係止部(42、42A)を有するリテーナ(400)を備え、
 前記係止部は、前記マニフォールドの外周および前記膨張弁本体の外周の一方に固定される膨張弁の取付部。
(項目2)
 前記係止部は、第1係止部(42)であり、
 前記第1係止部は、前記マニフォールドの外周および前記膨張弁本体の外周の一方に形成された溝部(35、112)に固定され、
 前記リテーナは、前記マニフォールドの外周および前記膨張弁本体の外周の他方に形成されたフランジ(32、114)が固定される第2係止部(412)を有する項目1に記載の膨張弁の取付部。
(項目3)
 前記係止部は、第1係止部(42A)であり、
 前記第1係止部は、前記マニフォールドの外周および前記膨張弁本体の外周の一方に形成された溝部(54、112)に固定され、
 前記リテーナは、前記マニフォールドの外周および前記膨張弁本体の外周の他方に固定される第3係止部(42B)を有し、
 前記第3係止部は、前記マニフォールドの外周および前記膨張弁本体の外周の他方に形成された溝部(35)に固定される項目1に記載の膨張弁の取付部。
(項目4)
 前記第1係止部は、前記膨張弁本体の外周に形成された溝部(112)に固定され、
 前記第2係止部には、前記マニフォールドの外周に形成されたフランジ(32)が固定される項目2に記載の膨張弁の取付部。
(項目5)
 前記第1係止部は、前記膨張弁本体の径方向内側に向かって延びる鍔部(42、42A)である項目2ないし4のいずれか1つに記載の膨張弁の取付部。
(項目6)
 前記リテーナは、前記マニフォールドに対して前記膨張弁本体の軸方向に当接する軸方向当接部(413)と、
 前記軸方向当接部に対して前記軸方向の力が作用した際に、前記膨張弁本体の径方向外側に弾性変形する軸側弾性変形部(414)と、を有する項目5に記載の膨張弁の取付部。
(項目7)
 前記リテーナは、前記マニフォールドに対して、前記膨張弁本体の軸方向に垂直な方向である当接方向に当接する軸垂直方向当接部(423)と、
 前記軸垂直方向当接部に対して前記当接方向の力が作用した際に、前記膨張弁本体の径方向外側に弾性変形する当接側弾性変形部(414)と、を有する項目5に記載の膨張弁の取付部。
(項目8)
 さらに、前記膨張弁本体の前記マニフォールドに対する回転を防止する本体回転防止部(31、37、111、116)と、
 前記リテーナの前記膨張弁本体または前記マニフォールドに対する回転を防止するリテーナ回転防止部(32、33、35、36、112、113、115、425)と、を備える項目2または4に記載の膨張弁の取付部。
(項目9)
 前記リテーナ回転防止部は、前記溝部に設けられている項目8に記載の膨張弁の取付部。
(項目10)
 前記リテーナ回転防止部は、前記フランジに設けられている項目8に記載の膨張弁の取付部。
(項目11)
 前記マニフォールドは、前記膨張弁本体の一部(10)が挿入される挿入穴(30)を有しており、
 前記マニフォールドにおける前記挿入穴の開口部(30a)は、前記マニフォールドにおける他の部位よりも上方側に位置している項目1ないし10のいずれか一つに記載の膨張弁の取付部。
(項目12)
 前記膨張弁本体は、前記冷媒流路の開度を調整する弁体を駆動するコイル部(50)有しており、
 前記リテーナは、前記コイル部が固定されるコイル係止部(44)を有する項目1ないし11のいずれか一つに記載の膨張弁の取付部。
(項目13)
 前記リテーナは、前記膨張弁本体の径方向内側に向かって延びる内側突出部(417)を有している項目1ないし12のいずれか一つに記載の膨張弁の取付部。
(項目14)
 前記膨張弁本体は、前記冷媒流路の開度を調整する弁体を有し前記マニフォールドの挿入穴(30)に挿入される弁体部(10)と、前記弁体を駆動するコイル部(50)とを有し、
 前記係止部(42、42A)は、前記弁体部および前記コイル部の双方に固定される項目1に記載の膨張弁の取付部。
The features of the mounting portion of the expansion valve disclosed in this specification are as follows:
(Item 1)
An expansion valve mounting portion for mounting an expansion valve body (100) that adjusts the opening degree of a refrigerant flow path to a manifold (300),
A retainer (400) having a locking portion (42, 42A),
The locking portion is an expansion valve mounting portion that is fixed to one of the outer periphery of the manifold and the outer periphery of the expansion valve body.
(Item 2)
The locking portion is a first locking portion (42),
The first engaging portion is fixed to a groove portion (35, 112) formed in one of the outer periphery of the manifold and the outer periphery of the expansion valve body,
2. The mounting portion for an expansion valve according to claim 1, wherein the retainer has a second engaging portion (412) to which a flange (32, 114) formed on the other of the outer periphery of the manifold and the outer periphery of the expansion valve body is fixed.
(Item 3)
The locking portion is a first locking portion (42A),
The first engaging portion is fixed to a groove portion (54, 112) formed in one of the outer periphery of the manifold and the outer periphery of the expansion valve body,
the retainer has a third engaging portion (42B) fixed to the other of the outer periphery of the manifold and the outer periphery of the expansion valve body,
2. The mounting portion for an expansion valve according to claim 1, wherein the third engaging portion is fixed to a groove portion (35) formed in the other of the outer periphery of the manifold and the outer periphery of the expansion valve body.
(Item 4)
The first engaging portion is fixed to a groove portion (112) formed on the outer periphery of the expansion valve body,
3. The mounting portion of an expansion valve according to claim 2, wherein a flange (32) formed on an outer periphery of the manifold is fixed to the second engaging portion.
(Item 5)
5. The mounting portion of an expansion valve according to any one of items 2 to 4, wherein the first engaging portion is a flange portion (42, 42A) extending radially inward of the expansion valve body.
(Item 6)
The retainer has an axial abutment portion (413) that abuts against the manifold in the axial direction of the expansion valve body,
an axial side elastic deformation portion (414) that elastically deforms radially outward of the expansion valve body when an axial force acts on the axial abutment portion.
(Item 7)
The retainer has an axially perpendicular abutment portion (423) that abuts against the manifold in a contact direction that is perpendicular to the axial direction of the expansion valve body,
and an abutment-side elastic deformation portion (414) that elastically deforms radially outward of the expansion valve body when a force in the abutment direction acts on the axially perpendicular abutment portion.
(Item 8)
Furthermore, a main body rotation prevention portion (31, 37, 111, 116) that prevents the expansion valve main body from rotating relative to the manifold;
The mounting portion of the expansion valve according to item 2 or 4, further comprising a retainer rotation prevention portion (32, 33, 35, 36, 112, 113, 115, 425) that prevents the retainer from rotating relative to the expansion valve body or the manifold.
(Item 9)
9. The mounting portion of an expansion valve according to claim 8, wherein the retainer rotation prevention portion is provided in the groove portion.
(Item 10)
9. The mounting portion of an expansion valve according to claim 8, wherein the retainer rotation prevention portion is provided on the flange.
(Item 11)
The manifold has an insertion hole (30) into which a portion of the expansion valve body (10) is inserted,
11. The mounting portion for an expansion valve according to any one of items 1 to 10, wherein an opening (30a) of the insertion hole in the manifold is positioned higher than other portions of the manifold.
(Item 12)
The expansion valve body has a coil portion (50) that drives a valve body that adjusts the opening degree of the refrigerant flow path,
12. The mounting portion of an expansion valve according to any one of items 1 to 11, wherein the retainer has a coil locking portion (44) to which the coil portion is fixed.
(Item 13)
13. The mounting portion for an expansion valve according to any one of items 1 to 12, wherein the retainer has an inner protrusion (417) extending radially inwardly of the expansion valve body.
(Item 14)
The expansion valve body includes a valve body portion (10) having a valve body for adjusting an opening degree of the refrigerant flow path and being inserted into an insertion hole (30) of the manifold, and a coil portion (50) for driving the valve body,
2. The mounting portion of an expansion valve according to claim 1, wherein the locking portion (42, 42A) is fixed to both the valve body portion and the coil portion.
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。 Although the present disclosure has been described with reference to the embodiments, it is understood that the present disclosure is not limited to the embodiments or structures. The present disclosure also encompasses various modifications and modifications within the scope of equivalents. In addition, various combinations and forms, as well as other combinations and forms including only one element, more than one element, or less than one element, are also within the scope and spirit of the present disclosure.

Claims (14)

  1.  冷媒流路の開度を調整する膨張弁本体(100)をマニフォールド(300)へ取り付ける膨張弁の取付部であって、
     係止部(42、42A)を有するリテーナ(400)を備え、
     前記係止部は、前記マニフォールドの外周および前記膨張弁本体の外周の一方に固定される膨張弁の取付部。
    An expansion valve mounting portion for mounting an expansion valve body (100) that adjusts the opening degree of a refrigerant flow path to a manifold (300),
    A retainer (400) having a locking portion (42, 42A),
    The locking portion is an expansion valve mounting portion that is fixed to one of the outer periphery of the manifold and the outer periphery of the expansion valve body.
  2.  前記係止部は、第1係止部(42)であり、
     前記第1係止部は、前記マニフォールドの外周および前記膨張弁本体の外周の一方に形成された溝部(35、112)に固定され、
     前記リテーナは、前記マニフォールドの外周および前記膨張弁本体の外周の他方に形成されたフランジ(32、114)が固定される第2係止部(412)を有する請求項1に記載の膨張弁の取付部。
    The locking portion is a first locking portion (42),
    The first engaging portion is fixed to a groove portion (35, 112) formed in one of the outer periphery of the manifold and the outer periphery of the expansion valve body,
    2. The mounting portion for an expansion valve according to claim 1, wherein the retainer has a second engaging portion (412) to which a flange (32, 114) formed on the other of the outer periphery of the manifold and the outer periphery of the expansion valve body is fixed.
  3.  前記係止部は、第1係止部(42A)であり、
     前記第1係止部は、前記マニフォールドの外周および前記膨張弁本体の外周の一方に形成された溝部(54、112)に固定され、
     前記リテーナは、前記マニフォールドの外周および前記膨張弁本体の外周の他方に固定される第3係止部(42B)を有し、
     前記第3係止部は、前記マニフォールドの外周および前記膨張弁本体の外周の他方に形成された溝部(35)に固定される請求項1に記載の膨張弁の取付部。
    The locking portion is a first locking portion (42A),
    The first engaging portion is fixed to a groove portion (54, 112) formed in one of the outer periphery of the manifold and the outer periphery of the expansion valve body,
    the retainer has a third engaging portion (42B) fixed to the other of the outer periphery of the manifold and the outer periphery of the expansion valve body,
    2. The mounting portion for an expansion valve according to claim 1, wherein the third engaging portion is fixed to a groove portion (35) formed in the other of the outer periphery of the manifold and the outer periphery of the expansion valve body.
  4.  前記第1係止部は、前記膨張弁本体の外周に形成された溝部(112)に固定され、
     前記第2係止部には、前記マニフォールドの外周に形成されたフランジ(32)が固定される請求項2に記載の膨張弁の取付部。
    The first engaging portion is fixed to a groove portion (112) formed on the outer periphery of the expansion valve body,
    3. The mounting portion of the expansion valve according to claim 2, wherein a flange (32) formed on an outer periphery of the manifold is fixed to the second engaging portion.
  5.  前記第1係止部は、前記膨張弁本体の径方向内側に向かって延びる鍔部(42、42A)である請求項2ないし4のいずれか1つに記載の膨張弁の取付部。 The mounting portion of an expansion valve according to any one of claims 2 to 4, wherein the first engaging portion is a flange portion (42, 42A) that extends radially inward of the expansion valve body.
  6.  前記リテーナは、前記マニフォールドに対して前記膨張弁本体の軸方向に当接する軸方向当接部(413)と、
     前記軸方向当接部に対して前記軸方向の力が作用した際に、前記膨張弁本体の径方向外側に弾性変形する軸側弾性変形部(414)と、を有する請求項5に記載の膨張弁の取付部。
    The retainer has an axial abutment portion (413) that abuts against the manifold in the axial direction of the expansion valve body,
    An expansion valve mounting portion as described in claim 5, further comprising an axial side elastic deformation portion (414) that elastically deforms radially outward of the expansion valve body when an axial force acts on the axial abutment portion.
  7.  前記リテーナは、前記マニフォールドに対して、前記膨張弁本体の軸方向に垂直な方向である当接方向に当接する軸垂直方向当接部(423)と、
     前記軸垂直方向当接部に対して前記当接方向の力が作用した際に、前記膨張弁本体の径方向外側に弾性変形する当接側弾性変形部(414)と、を有する請求項5に記載の膨張弁の取付部。
    The retainer has an axially perpendicular abutment portion (423) that abuts against the manifold in a contact direction that is perpendicular to the axial direction of the expansion valve body,
    6. An expansion valve mounting portion as described in claim 5, further comprising: an abutment side elastic deformation portion (414) that elastically deforms radially outward of the expansion valve body when a force in the abutment direction acts on the axially perpendicular abutment portion.
  8.  さらに、前記膨張弁本体の前記マニフォールドに対する回転を防止する本体回転防止部(31、37、111、116)と、
     前記リテーナの前記膨張弁本体または前記マニフォールドに対する回転を防止するリテーナ回転防止部(32、33、35、36、112、113、115、425)と、を備える請求項2または4に記載の膨張弁の取付部。
    Furthermore, a main body rotation prevention portion (31, 37, 111, 116) that prevents the expansion valve main body from rotating relative to the manifold;
    5. The mounting portion of an expansion valve according to claim 2 or 4, further comprising a retainer rotation prevention portion (32, 33, 35, 36, 112, 113, 115, 425) that prevents the retainer from rotating relative to the expansion valve body or the manifold.
  9.  前記リテーナ回転防止部は、前記溝部に設けられている請求項8に記載の膨張弁の取付部。 The mounting portion of the expansion valve according to claim 8, wherein the retainer rotation prevention portion is provided in the groove portion.
  10.  前記リテーナ回転防止部は、前記フランジに設けられている請求項8に記載の膨張弁の取付部。 The mounting portion of the expansion valve according to claim 8, wherein the retainer rotation prevention portion is provided on the flange.
  11.  前記マニフォールドは、前記膨張弁本体の一部(10)が挿入される挿入穴(30)を有しており、
     前記マニフォールドにおける前記挿入穴の開口部(30a)は、前記マニフォールドにおける他の部位よりも上方側に位置している請求項1ないし4のいずれか一つに記載の膨張弁の取付部。
    The manifold has an insertion hole (30) into which a portion of the expansion valve body (10) is inserted,
    5. The mounting portion for an expansion valve according to claim 1, wherein an opening (30a) of the insertion hole in the manifold is positioned higher than other portions of the manifold.
  12.  前記膨張弁本体は、前記冷媒流路の開度を調整する弁体を駆動するコイル部(50)有しており、
     前記リテーナは、前記コイル部が固定されるコイル係止部(44)を有する請求項1ないし4のいずれか一つに記載の膨張弁の取付部。
    The expansion valve body has a coil portion (50) that drives a valve body that adjusts the opening degree of the refrigerant flow path,
    5. The mounting portion of an expansion valve according to claim 1, wherein the retainer has a coil locking portion (44) to which the coil portion is fixed.
  13.  前記リテーナは、前記膨張弁本体の径方向内側に向かって延びる内側突出部(417)を有している請求項1ないし4のいずれか一つに記載の膨張弁の取付部。 The mounting portion of an expansion valve according to any one of claims 1 to 4, wherein the retainer has an inner protrusion (417) that extends radially inward of the expansion valve body.
  14.  前記膨張弁本体は、前記冷媒流路の開度を調整する弁体を有し前記マニフォールドの挿入穴(30)に挿入される弁体部(10)と、前記弁体を駆動するコイル部(50)とを有し、
     前記係止部(42、42A)は、前記弁体部および前記コイル部の双方に固定される請求項1に記載の膨張弁の取付部。
    The expansion valve body includes a valve body portion (10) having a valve body for adjusting an opening degree of the refrigerant flow path and being inserted into an insertion hole (30) of the manifold, and a coil portion (50) for driving the valve body,
    2. The mounting portion of an expansion valve according to claim 1, wherein the locking portion (42, 42A) is fixed to both the valve body portion and the coil portion.
PCT/JP2024/014807 2023-04-25 2024-04-12 Expansion valve attachment part WO2024225076A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2023-071637 2023-04-25
JP2023071637 2023-04-25

Publications (1)

Publication Number Publication Date
WO2024225076A1 true WO2024225076A1 (en) 2024-10-31

Family

ID=93256362

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2024/014807 WO2024225076A1 (en) 2023-04-25 2024-04-12 Expansion valve attachment part

Country Status (1)

Country Link
WO (1) WO2024225076A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003130244A (en) * 2001-10-24 2003-05-08 Fuji Koki Corp Solenoid valve
CN1711438A (en) * 2002-11-12 2005-12-21 依纳-谢夫勒两合公司 Electromagnetic hydraulic valve, particularly 3/2-way pilot valve for controlling a variable valve drive of an internal combustion engine
US8336852B1 (en) * 2007-10-01 2012-12-25 Numatics, Incorporated Cartridge valve and manifold assembly
CN110005832A (en) * 2018-01-04 2019-07-12 浙江三花智能控制股份有限公司 Valve gear
JP7048144B1 (en) * 2020-11-24 2022-04-05 株式会社不二工機 Solenoid valve

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003130244A (en) * 2001-10-24 2003-05-08 Fuji Koki Corp Solenoid valve
CN1711438A (en) * 2002-11-12 2005-12-21 依纳-谢夫勒两合公司 Electromagnetic hydraulic valve, particularly 3/2-way pilot valve for controlling a variable valve drive of an internal combustion engine
US8336852B1 (en) * 2007-10-01 2012-12-25 Numatics, Incorporated Cartridge valve and manifold assembly
CN110005832A (en) * 2018-01-04 2019-07-12 浙江三花智能控制股份有限公司 Valve gear
JP7048144B1 (en) * 2020-11-24 2022-04-05 株式会社不二工機 Solenoid valve

Similar Documents

Publication Publication Date Title
RU2447568C2 (en) Electric motor and gearbox drive unit for vehicle servos
US7469934B2 (en) Pipe joint structure and method for fabricating the same
JP5607563B2 (en) Automotive exhaust pipes and exhaust systems
EP2476934B1 (en) Lip type seal
MX2011006312A (en) Pump seal.
KR20080084987A (en) Lip type seal
KR20110014129A (en) Lip type seal
US20160003197A1 (en) Drive arrangement for an assembly of an internal combustion engine, and exhaust-gas recirculation valve
EP0971375B1 (en) Solenoid actuator
CN108343776B (en) Electric valve and refrigeration cycle system
JP6591478B2 (en) Control valve and manufacturing method thereof
WO2024225076A1 (en) Expansion valve attachment part
WO2024224854A1 (en) Attachment part for expansion valve
CN113847239B (en) Pump comprising an attachment seal
CN112483658B (en) Electric valve
CN112413209A (en) Electric valve
US20060083631A1 (en) Fuel pump assembly
US6969043B2 (en) Solenoid valve
JP2009068643A (en) Lip type seal
EP4160113B1 (en) Motor-operated valve
JP2016080243A (en) Electric expansion valve
JP2022146572A (en) control valve
JP6194452B2 (en) Expansion valve
JP2004232766A (en) Pipe body sealing structure
CN111702460A (en) Tool assembly for assembling oil-free linear pump and assembling method