[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2024224927A1 - Method for treating filling layer housed in cylindrical container - Google Patents

Method for treating filling layer housed in cylindrical container Download PDF

Info

Publication number
WO2024224927A1
WO2024224927A1 PCT/JP2024/012485 JP2024012485W WO2024224927A1 WO 2024224927 A1 WO2024224927 A1 WO 2024224927A1 JP 2024012485 W JP2024012485 W JP 2024012485W WO 2024224927 A1 WO2024224927 A1 WO 2024224927A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
cylindrical container
nozzles
nozzle
cylindrical
Prior art date
Application number
PCT/JP2024/012485
Other languages
French (fr)
Japanese (ja)
Inventor
直美 澤木
誠治 内田
宏紀 原田
康平 松谷
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Publication of WO2024224927A1 publication Critical patent/WO2024224927A1/en

Links

Images

Definitions

  • the present invention relates to a method for treating a packed bed contained in a cylindrical vessel, including a blast furnace.
  • Patent Document 1 discloses a method for allowing the preheat gas to reach the core by making a part or all of the preheat gas injection nozzle movable forward and backward toward the furnace when injecting gas from the shaft in an oxygen blast furnace.
  • Patent Document 2 discloses a method for stably carrying out low reducing agent ratio operation by setting the shaft gas injection angle to 45° or less, which can prevent poor temperature rise of the charge in the upper part of the furnace during low reducing agent ratio operation in the operation of a conventional blast furnace, and can effectively suppress moisture condensation and wall adhesion of zinc compounds due to a drop in the furnace top temperature.
  • Patent Document 3 discloses a method for avoiding poor temperature rise at the top of a furnace at low cost without requiring large-scale capital investment by controlling the temperature, amount, and height of shaft gas blown from the shaft according to the furnace top gas temperature during blast furnace operation using ferro-coke as part of the raw materials.
  • the present invention aims to provide a method for treating a packed bed contained in a cylindrical container, which can ensure uniformity of gas flow in the circumferential direction within the cylindrical container.
  • the inventors of the present invention have conducted extensive research to solve the above problems, and have come to the following findings.
  • the gas flow uniformity index which is expressed by the flow rate of gas rising in the cylindrical vessel, the total flow rate of gas supplied from n nozzles spaced circumferentially on the side of the cylindrical vessel, the inner diameter of the cylindrical vessel at the height of the nozzles, the length of projection of the nozzles from the inner circumferential surface of the cylindrical vessel, the nozzle aperture, and the number of nozzles n, is within a predetermined range, thereby ensuring uniformity of the circumferential gas flow in the cylindrical vessel and realizing a balanced gas flow in the vessel.
  • the gist of the present invention is as follows:
  • a method for treating a packed bed contained in a cylindrical container comprising the steps of: a step of supplying a second gas into the cylindrical container from n nozzles provided at intervals in the circumferential direction on a side portion of the cylindrical container while generating a first gas that rises inside the cylindrical container by supplying a gas from a supply port provided at a lower portion of the cylindrical container with the packed bed contained in the cylindrical container, under a condition in which a gas flow uniformity index D represented by the following formula (1) is 0.60 or more.
  • V 1 Flow rate of the first gas [NL/min]
  • V 2 The total flow rate of the second gas supplied from the n nozzles [NL/min]
  • D C Inner diameter of the cylindrical container at the height position of the n nozzles [m] z: protruding length of the n nozzles from the inner circumferential surface of the cylindrical container [m]
  • D N Horizontal length of the nozzle opening of the n nozzles [m] It is.
  • the packed bed treatment method of the present invention ensures uniformity of the circumferential gas flow within the cylindrical container.
  • FIG. 2 is a schematic diagram showing (a) the external structure and (b) the internal structure of a cylindrical container used in an example of the present invention.
  • 1 is a horizontal cross-sectional view of a cylindrical container used in one embodiment of the present invention, taken at a height position where a nozzle is provided.
  • 1A and 1B are horizontal cross-sectional views of a cylindrical container used in one embodiment of the present invention at a height position where a nozzle is installed, in cases where (a) the nozzle diameter is small and (b) the nozzle diameter is large.
  • FIG. 2 is a schematic vertical cross-sectional view showing an enlarged view of a portion of a cylindrical container used in an example of the present invention where a nozzle is provided.
  • FIG. 13 is a diagram showing a result of measuring temperature distribution in an embodiment of the present invention.
  • the cylindrical container used in one embodiment of the present invention contains a packed bed inside, has a supply port at the bottom, and has a plurality of nozzles (n is an integer of 2 or more) spaced circumferentially on the side.
  • Figure 1 shows schematic diagrams of (a) the external structure and (b) the internal structure of a cylindrical container 100 used in an embodiment of the present invention.
  • gas is supplied into the cylindrical container 100 from a supply port 40 provided at the bottom of the cylindrical container 100, generating a first gas 42 that rises inside the cylindrical container, while a second gas 24 is supplied into the cylindrical container 100 from n nozzles 20 provided at intervals circumferentially on the side of the cylindrical container 100.
  • the second gas 24 is supplied from each nozzle 20 toward the center inside the cylindrical container 100, and the second gas 24 diffuses around the nozzle port.
  • the position of the maximum height of the packed bed 30 contained inside the cylindrical container 100 is set as the reference height, and the nozzle 20 is installed at a position lower than the reference height.
  • the height is preferably such that the value obtained by dividing the distance from the reference height to the installation height of the nozzle 20 by the distance from the reference height to the position of the supply port 40 is 0.1 to 0.9.
  • this value By setting this value to 0.1 or more, it is possible to preferably prevent the particles on the surface of the packed bed 30 from fluidizing and blowing through.
  • the cylindrical container 100 is installed so that the axis in the height direction of the cylindrical container 100 is parallel to the vertical direction.
  • FIG. 2 shows a horizontal cross-sectional view of the cylindrical container 100 used in one embodiment of the present invention at the height position where the nozzles 20 are provided.
  • FIG. 2 shows a case where six nozzles 20 are provided on the side portion 10 of the cylindrical container 100.
  • the second gas diffusion range 22 is represented as a semicircle or semiellipse centered on the tip of the nozzle 20 in the horizontal cross-section of the cylindrical container 100.
  • all of the multiple nozzles 20 are provided at the same height position of the cylindrical container 100, are provided in the circumferential direction of the side portion 10 of the cylindrical container 100, and are provided so that the nozzle mouth faces the center inside the cylindrical container 100.
  • the angle of the nozzles 20 is perpendicular to the height direction of the cylindrical container 100.
  • An example of a cylindrical vessel having such a structure is a blast furnace.
  • the cylindrical vessel used in one embodiment of the present invention is preferably a blast furnace.
  • the present invention can be applied to other vessels besides blast furnaces, such as shaft furnaces that have a structure in which gas is injected from the sides and bottom of the cylindrical vessel, when processing is performed.
  • the packed bed accommodated inside the cylindrical vessel can be appropriately selected by the practitioner according to the type and use of the cylindrical vessel.
  • the gas flow uniformity index D is not affected by the properties of the particles (particle size, particle density, particle shape factor, etc.). Therefore, the present invention can be applied regardless of the type of particles constituting the packed bed.
  • the packed bed can be made of iron-based raw materials (iron ore, sintered iron ore, iron ore pellets, reduced iron, etc.) and reducing materials (coke, etc.).
  • the particle size of the raw materials constituting the packed bed is appropriately selected according to the size of the cylindrical vessel, and for example, for a blast furnace with a height of 10 m and an inner furnace diameter of 3 m, the particle size can be 10 to 50 mm.
  • the raw material density of the packed bed is preferably 900 to 1810 kg/m 3 .
  • a physical phenomenon can be described as a generalized phenomenon applicable to a wide range of targets, independent of the size , physical properties, and operating conditions (flow rate, temperature, pressure , etc. ) of the equipment, by using appropriately non-dimensionalized parameters ( V2 /( V1 + V2 ), DN / DC, etc.) rather than specific physical quantities themselves (gas flow rate V1 (Nm3/t), horizontal length of the nozzle opening of the nozzle, etc.).
  • V2 /( V1 + V2 ), DN / DC, etc. gas flow rate V1 (Nm3/t), horizontal length of the nozzle opening of the nozzle, etc.
  • the present inventors investigated whether a gas flow uniformity index independent of equipment scale, gas properties, or operating conditions can be described by non-dimensionalized parameters.
  • the gas flow uniformity index D can be described using three non-dimensional parameters, namely, the flow rate ratio ( V2 /( V1 + V2 )) between the first gas rising inside the cylindrical vessel and the second gas supplied from the nozzle, and the ratios of the lengths of the model device ( DN / DC and z/ DC ), making it possible to evaluate the gas flow uniformity regardless of the equipment scale, gas properties, or operating conditions.
  • the gas flow uniformity index D used in the present invention is an index that can be applied to equipment with different equipment scales, gas properties, and operating conditions, and can be widely applied not only to cylindrical model vessels but also to blast furnaces, etc.
  • the gas flow uniformity index D is a calculated value of the ratio of the area where the gas supplied from the nozzles diffuses on the circumference of a circle connecting the nozzle tips in the cylindrical container.
  • the gas flow uniformity index D is expressed by the formula (1).
  • n Number of nozzles [nozzles]
  • V 1 Flow rate of the first gas [NL/min]
  • V 2 Total flow rate of the second gas supplied from the n nozzles [NL/min]
  • C Inner diameter of the cylindrical container at the height position of n nozzles [m]
  • z protruding length of n nozzles from the inner surface of the cylindrical container [m]
  • D N Horizontal length of the nozzle opening of n nozzles [m] It is.
  • the tuyere provided at the bottom of the blast furnace is regarded as the supply port provided at the bottom of the cylindrical vessel
  • the SGI nozzle provided at the shaft of the blast furnace is regarded as the nozzle provided at the side of the cylindrical vessel. That is, the flow rate V1 of the first gas is the bosh gas flow rate VBOSH [ Nm3 /molten iron-ton], the total flow rate V2 of the second gas is the shaft gas total flow rate VSGI [ Nm3 /molten iron-ton], and the horizontal length DN of the nozzle mouth is the SGI nozzle inner diameter DSGI [m], and the above formula (1) is expressed by the following formula (2).
  • the bosh gas flow rate refers to the total flow rate of reducing gas (CO, H2 , N2 , etc.) generated by the reaction of the gas blown from the tuyere with the coke at the tip of the tuyere in the raceway.
  • Equation (1) or (2) is an equation that takes into account the horizontal length D N of the nozzle opening of the nozzle, assuming that the gas supplied from the nozzle spreads in a semi-elliptical shape. That is, the gas flow uniformity index D evaluates the gas diffusion range taking into account the nozzle diameter.
  • FIG. 3 shows horizontal cross-sectional views of the nozzle installation location of the cylindrical container used in one embodiment of the present invention, in (a) when the nozzle diameter is small and (b) when the nozzle diameter is large.
  • the second gas diffusion range 22 diffuses in a semicircular shape
  • the second gas diffusion range 22 diffuses in a semi-elliptical shape.
  • the gas flow uniformity index D can be used to accurately evaluate the gas flow uniformity.
  • the gas flow uniformity index D when the gas flow uniformity index D is 0.60 or more, the circumferential gas flow uniformity within the cylindrical container can be ensured. When the gas flow uniformity index D is 1.00 or more, the gas flow uniformity can be more sufficiently ensured. Therefore, in formula (1) or formula (2), the gas flow uniformity index D is 0.60 or more, preferably 1.00 or more, and more preferably 1.10 or more. In addition, the gas flow uniformity index D is generally 10.00 or less.
  • the gas flow uniformity index D is 0.60 or more.
  • the gas flow uniformity index D is 0.60 or more.
  • the flow rate V1 of the first gas rising in the cylindrical container and the flow rate V2 of the second gas supplied from n nozzles provided at intervals in the circumferential direction on the side of the cylindrical container are appropriately adjusted according to the size of the cylindrical container.
  • the ratio V2 /( V1 + V2 ) of V2 to the total flow rate of V1 and V2 is preferably 0.1 or more from the viewpoint of favorably forming the shape of the second gas diffusion range 22 (semicircle or semiellipse centered on the tip of the nozzle 20).
  • the shape of the second gas diffusion range 22 is favorably formed, so that V2 /( V1 + V2 ) is preferably 1.0 or less.
  • the flow rate V1 of the first gas can be calculated from the composition and flow rate of the gas etc. supplied from the supply port at the bottom of the cylindrical vessel, and the composition change due to the chemical reaction in the furnace.
  • the amount of gas flowing in from the supply port at the bottom of the cylindrical vessel may be set as the flow rate V1 of the first gas.
  • the bosh gas generated by the reaction of the gas etc. supplied to the tuyere with the coke at the end of the tuyere in the raceway may be set as the first gas.
  • the bosh gas flow rate can be calculated if the composition and flow rate of the gas etc. (blast gas and tuyere-injected reducing material etc.) blown in from the tuyere are known.
  • Air or the like can be used as the first gas and the second gas.
  • the temperature of at least one of the first gas and the second gas is higher than the atmospheric temperature surrounding the cylindrical container, for example, 40°C or higher.
  • the temperature of the first gas and the second gas is lower than the heat resistance temperature of the device, for example, 60°C or lower if the cylindrical container is made of PVC.
  • the flow rate V1 of the first gas and the flow rate V2 of the second gas can be gas flow rates under standard conditions (0° C., 1 atm). This is because if the first gas and the second gas are at the same temperature, the value of V1 /( V1 + V2 ) in formula (1) is the same regardless of the temperature. Even if the temperatures of the first gas and the second gas are different, if the temperature difference between the first gas and the second gas is within 20% in absolute temperature (K), the effect on the present invention is small, so the gas flow rate under standard conditions can be used.
  • the present invention can be applied using the gas flow rate before the reaction.
  • the cylindrical vessel is a blast furnace
  • a gasification reaction accompanied by a large volume change occurs in the region (raceway) immediately after the blast gas is blown into the furnace from the tuyere.
  • the reduction reaction which is the main reaction in the blast furnace after that, the number of moles does not change, so the volume change is small and the present invention can be applied. Therefore, when the cylindrical vessel is a blast furnace, the flow rate of the bosh gas in the raceway is set as the first gas flow rate V1 and the present invention is applied.
  • Bosh gas is composed of reducing gas (CO, H2 , N2 , etc.) generated when gas supplied to the tuyere of the blast furnace reacts with the coke at the tip of the tuyere in the raceway.
  • the temperature of the bosh gas at the nozzle height is preferably 560°C or higher.
  • the temperature of the bosh gas at the nozzle height is preferably 1200°C or lower.
  • the gas supplied to the tuyere of the blast furnace is preferably air or oxygen, and a gaseous reducing agent such as methane, from the viewpoint of reducing CO2 gas emissions.
  • the temperature of the gas supplied to the tuyere is preferably 0°C or higher from the viewpoint of ensuring the gas temperature at the tuyere tip.
  • the temperature of the gas supplied to the tuyere is preferably 1300°C or lower from the viewpoint of preventing an excessive temperature rise of the gas at the tuyere tip.
  • the gas supplied to the SGI nozzle of the blast furnace is preferably a reducing gas containing CO, H 2 , etc., from the viewpoint of not inhibiting the reduction of the iron-based raw materials in the blast furnace.
  • the reducing gas may also contain oxidizing gases such as CO 2 and H 2 O, and inert gases such as N 2.
  • the temperature of the gas supplied to the SGI nozzle is preferably 400 ° C. or higher.
  • the temperature of the gas supplied to the SGI nozzle is preferably 1000 ° C. or lower from the viewpoint of preventing energy loss due to overheating of the gas temperature.
  • the number n of nozzles spaced apart in the circumferential direction on the side of the cylindrical container is 2 or more, the effect of the present invention can be obtained, and if it is 3 or more, the gas flow uniformity can be more suitably obtained. Therefore, the number n of nozzles is 2 or more, and preferably 3 or more. On the other hand, if the number n of nozzles is 50 or less, the equipment cost and maintenance cost can be suitably suppressed and the operation can be performed efficiently. Therefore, the number n of nozzles is preferably 50 or less. The nozzles are preferably spaced apart in the circumferential direction on the side of the cylindrical container.
  • the gas flow uniformity in the cylindrical container can be ensured by satisfying that the gas flow uniformity index D is within a predetermined range.
  • D N is preferably equal to or greater than the harmonic mean diameter of all the packed particles constituting the packed bed.
  • D N is preferably equal to or greater than 0.02 [m].
  • D N is preferably equal to or less than 10 times the harmonic mean diameter of all the packed particles, the raw material particles in the packed bed can be suitably prevented from flowing back to the nozzle.
  • D N is preferably equal to or less than 10 times the harmonic mean diameter of all the packed particles constituting the packed bed, and more preferably equal to or less than 5 times.
  • D N is preferably equal to or less than 0.20 [m], and more preferably equal to or less than 0.10 [m].
  • the cross-sectional shape of the nozzle orifice perpendicular to the gas ejection direction is not limited to a circle, and may be, for example, a rectangle. Regardless of the shape, the maximum length of the nozzle orifice in the horizontal direction is defined as D N.
  • the nozzle is not limited to a single-hole nozzle, and a multi-hole nozzle may be used. As the multi-hole nozzle, one having a plurality of adjacent discharge holes arranged at equal intervals can be used.
  • a nozzle in which a plurality of pipes are bundled together to form a plurality of holes a nozzle tip having a plurality of holes attached to the tip of a single pipe, a single-hole nozzle with a net attached thereto to form a plurality of holes, etc. can be used.
  • the horizontal length D N of the nozzle orifice is defined as the length in the horizontal direction from the rightmost end of the nozzle located at the rightmost position to the leftmost end of the nozzle located at the leftmost position among the plurality of discharge holes of the multi-hole nozzle.
  • the horizontal length D N of the nozzle orifice may be defined as the arithmetic average value of the horizontal lengths of the nozzle orifices for n nozzles.
  • the nozzle does not necessarily have to be placed horizontally, but may be placed at an angle to the side of the cylindrical container. If the nozzle is placed at an angle to the side of the cylindrical container, the nozzle height position shall be the height of the nozzle tip.
  • the nozzles may be arranged in multiple stages.
  • the nozzles may be arranged in a staggered arrangement of two or more stages.
  • the position of the highest nozzle is taken as the nozzle height position.
  • the inner diameter D C of the cylindrical container is the inner diameter of the cylindrical container at the height position of the highest nozzle, and the number n of nozzles is the total number of nozzles arranged in multiple stages to calculate the gas flow uniformity index D.
  • z/D C is preferably 0.25 or less, and more preferably 0.20 or less.
  • the lower limit of z/D C is not particularly limited and may be 0.00. However, by protruding the nozzles from the inner circumferential surface of the cylindrical container so that z/D C is 0.02 or more, the gas flow uniformity index D is easily within a predetermined range.
  • z/D C is preferably 0.02 or more.
  • the protruding lengths of the n nozzles are all the same.
  • z is calculated using the value of the nozzle with the shortest protruding length.
  • the heat flow ratio is preferably 1.0 or less, and more preferably 0.9 or less.
  • the heat flow ratio is preferably 0.4 or more, and more preferably 0.6 or more.
  • the heat flow ratio (Ws/Wg) is a value calculated by the following formula (3).
  • C p,c , C p,o and C p,g are the specific heats of the coke, ore and gas, respectively, CR is the coke ratio (kg/molten iron-ton), OR is the ore ratio (kg/molten iron-ton), and BV is the bosh gas consumption rate (Nm 3 /molten iron-ton).
  • FIG. 1 shows a schematic diagram of the external structure (a) and the internal structure (b) of the cylindrical vessel used.
  • the cylindrical vessel 100 is an opaque PVC vessel having a size equivalent to about 1/10 of a blast furnace in actual operation, an inner dimension of a furnace mouth radius of 300 mm, and a furnace height of 1000 mm.
  • the cylindrical vessel 100 has a supply port 40 at the center of the bottom surface of the vessel, a gas injection nozzle 20 on the side, and a packed bed 30 inside the vessel.
  • FIG. 1 shows a schematic diagram of the external structure (a) and the internal structure (b) of the cylindrical vessel used.
  • the cylindrical vessel 100 is an opaque PVC vessel having a size equivalent to about 1/10 of a blast furnace in actual operation, an inner dimension of a furnace mouth radius of 300 mm, and a furnace height of 1000 mm.
  • the cylindrical vessel 100 has a supply port 40 at the center of the bottom surface of the vessel, a gas injection nozzle 20 on the side, and a packed bed 30 inside the vessel.
  • some of the gas injection nozzles 20 are not shown, but six or thirty nozzles 20 were installed at equal intervals in the circumferential direction of the cylindrical vessel 100.
  • the horizontal position of the bottom of the cylindrical vessel 100 was set to 0 mm, and from 0 mm to 200 mm, BB bullets with a large particle size of about ⁇ 6 mm were packed to form a BB bullet packed bed 36 in order to generate a gas flow that uniformly rises in the cross section of the cylindrical vessel.
  • the BB bullet packed bed 36 was fixed using a wire mesh 34.
  • PE particles with a size of about ⁇ 3 mm simulating the raw material in a blast furnace were packed to form a PE particle packed bed 32.
  • the gas injection nozzle 20 was installed at a height of 400 mm, with the horizontal position of the bottom of the cylindrical vessel 100 set to 0 mm.
  • air heated to about 60° C. was blown from the supply port 40 to generate a first gas 42 that rises in the cylindrical vessel. While blowing air at 20° C. as the second gas 24 from the gas blowing nozzle 20, the temperature distribution inside the cylindrical container 100 was observed from above the container at a height of 400 mm above the installation height of the gas blowing nozzle 20 with a thermographic camera 50.
  • Figure 4 shows a schematic vertical cross-sectional view of the cylindrical container used, enlarging the area where the nozzle was installed.
  • the nozzle 20 is installed on the side 10 of the cylindrical container perpendicular to the height direction of the cylindrical container, and blows the second gas 24 into the PE particle packed layer 32 contained inside the cylindrical container.
  • Table 1 shows the experimental conditions for the cylindrical vessel.
  • the number of nozzles was 6 or 30 as the experimental conditions for the cylindrical vessel.
  • the blowing conditions for the cylindrical vessel were set so that the flow rate ratio was constant with respect to the blast furnace, taking into account the gas flow in the packed bed.
  • the nozzle used in Example 1 was a pipe with an outer diameter of 15 mm and an inner diameter of 5 mm or 9 mm (horizontal length D N of the nozzle mouth: 0.005 [m] or 0.009 [m]) simulating an SGI nozzle.
  • the inner diameter of the nozzle When converted to the scale ratio of an actual blast furnace, the inner diameter of the nozzle, 5 mm, corresponds to the SGI nozzle diameter of the blast furnace of 0.050 m, and the inner diameter of the nozzle, 9 mm, corresponds to the SGI nozzle diameter of the blast furnace of 0.090 m.
  • Table 2 shows the experimental conditions, experimental results, and the calculation results of the gas flow uniformity index D when a pipe with an outer diameter of 15 mm and an inner diameter of 5 mm was used.
  • Figure 5 also shows the temperature distribution measurement results.
  • Figures 5(a) to (d) show the measurement results in Table 2, specifically, (a) No. 1, (b) No. 3, (c) No. 2, and (d) No. 4.
  • the white dotted lines in Figures 5(a) to (d) indicate isothermal lines, and the numbers corresponding to each white dotted line indicate the temperature of the corresponding white dotted line.
  • No. 1 and No. 2 show that, under conditions where the amount of second gas injected is constant, increasing the number of gas injection nozzles from 6 to 30 improves the uniformity of the circumferential gas flow of the cylindrical vessel.
  • No. 3 and No. 4 also show that the same tendency as No. 1 and No. 2 is observed when the amount of second gas injected is increased.
  • No. 3 which has a large injected gas amount, the number of gas injection nozzles is small but the gas flow in the circumferential direction of the cylindrical vessel was roughly uniform.
  • No. 5 shows that the uniformity of the circumferential gas flow of the cylindrical vessel is improved even when the nozzles are extended toward the inside of the furnace while keeping the number of gas injection nozzles and gas injection amount fixed.
  • Table 3 shows the experimental conditions and results when a pipe with an outer diameter of 15 mm and an inner diameter of 9 mm (horizontal length D N of the nozzle opening: 0.009 [m]) was used.
  • D N the gas flow uniformity index
  • Table 3 shows the experimental conditions and results when a pipe with an outer diameter of 15 mm and an inner diameter of 9 mm (horizontal length D N of the nozzle opening: 0.009 [m]) was used.
  • D N the evaluation results of the circumferential gas flow uniformity based on the direct observation of temperature are consistent with the evaluation results using the gas flow uniformity index D of the present invention (D is preferably 0.60 or more, and more preferably 1.00 or more), confirming that the gas flow uniformity can be evaluated using the present invention.
  • the gas flow uniformity index D is an index composed of dimensionless parameters that are not dependent on the size of the device or the physical properties of the gas, so the present invention is a method that can be applied to a wide range of objects, not limited to cylindrical vessels.
  • the gas flow uniformity index D was used to evaluate the uniformity of the gas flow in a large blast furnace.
  • the gas flow uniformity was calculated assuming the conditions when a large blast furnace is operated using methane gas.
  • Table 1 shows the operating conditions of the blast furnace reproduced by a cylindrical vessel. In this calculation, it was assumed that 200 kg/t of methane gas was supplied from the tuyere in a blast furnace with an inner diameter D C (m) of 4.6 m at the SGI nozzle position. It was assumed that 160 kg/t of methane gas was supplied from the tuyere in a blast furnace with an inner diameter D C (m) of 12.4 m at the SGI nozzle position.
  • Tables 4 and 5 show the operating conditions and calculation results. Based on the results of Example 1, the uniformity of the gas flow in the circumferential direction of the blast furnace was judged as " ⁇ ” if the gas flow uniformity index D was 1.00 or more, “ ⁇ ” if it was less than 1.00 and 0.60 or more, and “ ⁇ ” if it was less than 0.60.
  • the present invention provides a method for treating a packed bed contained in a cylindrical container that can ensure uniformity of gas flow in the circumferential direction of the cylindrical container.

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

To provide a method for treating a filling layer housed in a cylindrical container with which it is possible to secure gas flow uniformity in the circumferential direction in the cylindrical container. In this method for treating a filling layer housed in a cylindrical container, a step for supplying a second gas into the cylindrical container from n nozzles on the cylindrical container side part while generating a first gas that rises in the cylindrical container by supplying a gas from a supply port on the lower part of the cylindrical container is performed under a condition that a gas flow uniformity index D represented by the formula (1) is 0.60 or above. Here, V1: flow rate of the first gas, V2: total flow rate of the second gas supplied from n nozzles, DC: inside diameter of the cylindrical container at the nozzle height position, z: projection length of the nozzle from the inner circumferential surface of the cylindrical container, DN: horizontal length of the nozzle port.

Description

円筒状容器内に収容された充填層の処理方法Method for treating a packed bed contained in a cylindrical container
 本発明は、高炉を含む円筒状容器内に収容された充填層の処理方法に関する。 The present invention relates to a method for treating a packed bed contained in a cylindrical vessel, including a blast furnace.
 近年、温室効果ガスの一つであるCOガス(二酸化炭素ガス)の排出量削減の動きが高まっており、高炉操業における石炭由来の還元材の削減が急務となっている。還元材は、炉内で熱となって装入物を昇温させる役割と、炉内の鉄系原料(鉄鉱石、鉄鉱石の焼結鉱、鉄鉱石のペレットなど)を還元する役割がある。COガスの排出量削減を目的とした還元材として、水素が注目されている。水素による還元速度はCOガスによる還元速度よりも速いので、高炉への水素系ガス吹き込みにより、COガスの排出量削減及び還元効率の上昇を同時に図ることが可能となる。 In recent years, there has been an increasing trend to reduce emissions of CO2 gas (carbon dioxide gas), one of the greenhouse gases, and it is urgent to reduce the use of coal-derived reducing agents in blast furnace operations. The reducing agent has the role of raising the temperature of the charge by generating heat in the furnace and of reducing the iron-based raw materials (iron ore, sintered iron ore, iron ore pellets, etc.) in the furnace. Hydrogen has been attracting attention as a reducing agent aimed at reducing CO2 gas emissions. Since the reduction rate by hydrogen is faster than the reduction rate by CO gas, it is possible to simultaneously reduce CO2 gas emissions and increase the reduction efficiency by injecting hydrogen-based gas into the blast furnace.
 水素による鉄系原料の還元は吸熱反応であるため、高炉内において装入物の昇温が遅れ、順調な還元が達成されなくなるという課題があった。そこで、炉上部での装入物の昇温不良の影響を回避するための操業方法が開示されている。特許文献1には、酸素高炉でシャフトからガスを吹込む際に、予熱ガス吹き込みノズルの一部もしくは全部を、炉内方向への前後進自在とすることで予熱ガスを炉心まで到達させる方法が開示されている。特許文献2には、シャフトガス吹込み角度を45°以下とすることで、普通高炉の操業において、低還元材比操業時の炉上部での装入物の昇温不良を防止できるとともに、炉頂温度低下による水分凝縮や亜鉛化合物の壁付き等も効果的に抑えることができ、これらにより、低還元材比操業を安定的に実施する方法が開示されている。特許文献3には、装入原料の一部としてフェロコークスを使用する高炉操業の際に、炉頂ガス温度に応じて、シャフト部からのシャフトガスの吹き込み温度、吹き込み量、及び吹き込み高さ位置の何れか又は2種又は3種を組合せて制御することにより、大規模な設備投資を必要とせず、炉頂部の昇温不良を低コストで回避する方法が開示されている。 Since the reduction of iron-based raw materials by hydrogen is an endothermic reaction, there was a problem that the temperature rise of the charge in the blast furnace was delayed, and smooth reduction could not be achieved. Therefore, an operation method for avoiding the influence of poor temperature rise of the charge in the upper part of the furnace has been disclosed. Patent Document 1 discloses a method for allowing the preheat gas to reach the core by making a part or all of the preheat gas injection nozzle movable forward and backward toward the furnace when injecting gas from the shaft in an oxygen blast furnace. Patent Document 2 discloses a method for stably carrying out low reducing agent ratio operation by setting the shaft gas injection angle to 45° or less, which can prevent poor temperature rise of the charge in the upper part of the furnace during low reducing agent ratio operation in the operation of a conventional blast furnace, and can effectively suppress moisture condensation and wall adhesion of zinc compounds due to a drop in the furnace top temperature. Patent Document 3 discloses a method for avoiding poor temperature rise at the top of a furnace at low cost without requiring large-scale capital investment by controlling the temperature, amount, and height of shaft gas blown from the shaft according to the furnace top gas temperature during blast furnace operation using ferro-coke as part of the raw materials.
特公平6-19088号公報Special Publication No. 6-19088 特開2011-214022号公報JP 2011-214022 A 特開2011-32584号公報JP 2011-32584 A
 従来の高炉の操業方法においては、高炉内の周方向のガス流れ均一性を確保することが可能なガスの流量、ノズルの突き出し長さ、ノズルの口径、ノズル本数等について十分に考慮されておらず、改善の余地があった。従来の高炉の操業方法のままでは、高炉内の周方向での温度が不均一となることで、周方向で還元率分布が不均一となり、高炉内の平均的な還元効率が悪化し、最適な低還元材比操業が実施できないという問題がある。また、高炉内の周方向での不均一な温度分布は、ガス通気性の偏りを生み、炉内通気抵抗を増加させ、吹き抜けを誘発することが懸念される。同様の課題は、高炉に限らず、円筒状容器内に収容された充填層を処理する場合全般に当てはまる。  In conventional blast furnace operation methods, the gas flow rate, nozzle projection length, nozzle diameter, number of nozzles, etc., which can ensure uniformity of gas flow in the circumferential direction inside the blast furnace, were not fully considered, and there was room for improvement. If conventional blast furnace operation methods were used, the temperature in the circumferential direction inside the blast furnace would be uneven, which would lead to uneven distribution of the reduction rate in the circumferential direction, deteriorating the average reduction efficiency inside the blast furnace and making it impossible to implement optimal low reducing agent ratio operation. In addition, uneven temperature distribution in the circumferential direction inside the blast furnace creates bias in gas permeability, increasing the air flow resistance inside the furnace and raising concerns about the possibility of blow-by. Similar issues are not limited to blast furnaces, but apply generally to the treatment of packed beds contained in cylindrical containers.
 上記事情を鑑みて、本発明は、円筒状容器内の周方向のガス流れ均一性を確保することが可能な、円筒状容器内に収容された充填層の処理方法を提供することを目的とする。 In view of the above circumstances, the present invention aims to provide a method for treating a packed bed contained in a cylindrical container, which can ensure uniformity of gas flow in the circumferential direction within the cylindrical container.
 本発明者らは、上記課題を解決するべく鋭意検討した結果、以下の知見を得た。円筒状容器内に収容された充填層を処理するにあたり、円筒状容器内を上昇するガスの流量と、円筒状容器の側部に周方向に間隔をもって設けられたn本のノズルから供給されるガスの合計流量と、ノズルの高さ位置における円筒状容器の内径と、ノズルの円筒状容器の内周面からの突出長さと、ノズルの口径と、ノズルの本数nと、によって表されるガス流れ均一性指標が所定の範囲にあることで、円筒状容器内の周方向のガス流れ均一性を確保し、容器内でバランスのとれたガス流れを実現することが可能になる。この知見を円筒状容器としての高炉に適用することで、装入物昇温不良、還元効率悪化及び通気性悪化を防止できるとともに、炉頂温度低下による水分凝縮も効果的に抑えることができ、安定した高炉の操業を実現することができる。 The inventors of the present invention have conducted extensive research to solve the above problems, and have come to the following findings. When treating a packed bed contained in a cylindrical vessel, the gas flow uniformity index, which is expressed by the flow rate of gas rising in the cylindrical vessel, the total flow rate of gas supplied from n nozzles spaced circumferentially on the side of the cylindrical vessel, the inner diameter of the cylindrical vessel at the height of the nozzles, the length of projection of the nozzles from the inner circumferential surface of the cylindrical vessel, the nozzle aperture, and the number of nozzles n, is within a predetermined range, thereby ensuring uniformity of the circumferential gas flow in the cylindrical vessel and realizing a balanced gas flow in the vessel. By applying this finding to a blast furnace as a cylindrical vessel, it is possible to prevent poor temperature rise of the charge, deterioration of reduction efficiency, and deterioration of permeability, and also effectively suppress moisture condensation due to a drop in the furnace top temperature, thereby realizing stable blast furnace operation.
 すなわち、本発明の要旨構成は次のとおりである。 In other words, the gist of the present invention is as follows:
 [1]円筒状容器内に収容された充填層の処理方法であって、
 前記円筒状容器内に前記充填層を収容した状態で、前記円筒状容器の下部に設けられた供給口からガスを供給することで前記円筒状容器内を上昇する第1ガスを生成しつつ、前記円筒状容器の側部に周方向に間隔をもって設けられたn本のノズルから前記円筒状容器内に第2ガスを供給する工程を、以下の式(1)で表されるガス流れ均一性指標Dが0.60以上である条件下にて行うことを特徴とする方法。
Figure JPOXMLDOC01-appb-M000002
 ここで、
 V:前記第1ガスの流量[NL/min]
 V:前記n本のノズルから供給される前記第2ガスの合計流量[NL/min]
 D:前記n本のノズルの高さ位置における前記円筒状容器の内径[m]
 z:前記n本のノズルの前記円筒状容器の内周面からの突出長さ[m]
 D:前記n本のノズルのノズル口の水平方向長さ[m]
である。
[1] A method for treating a packed bed contained in a cylindrical container, comprising the steps of:
a step of supplying a second gas into the cylindrical container from n nozzles provided at intervals in the circumferential direction on a side portion of the cylindrical container while generating a first gas that rises inside the cylindrical container by supplying a gas from a supply port provided at a lower portion of the cylindrical container with the packed bed contained in the cylindrical container, under a condition in which a gas flow uniformity index D represented by the following formula (1) is 0.60 or more.
Figure JPOXMLDOC01-appb-M000002
Where:
V 1 : Flow rate of the first gas [NL/min]
V 2 : The total flow rate of the second gas supplied from the n nozzles [NL/min]
D C : Inner diameter of the cylindrical container at the height position of the n nozzles [m]
z: protruding length of the n nozzles from the inner circumferential surface of the cylindrical container [m]
D N : Horizontal length of the nozzle opening of the n nozzles [m]
It is.
 [2]前記ガス流れ均一性指標Dが1.00以上である、上記[1]に記載の円筒状容器内に収容された充填層の処理方法。 [2] A method for treating a packed bed contained in a cylindrical container as described in [1] above, in which the gas flow uniformity index D is 1.00 or more.
 [3]前記第1ガスの流量V、前記n本のノズルから供給される前記第2ガスの合計流量V、前記n本のノズルの前記円筒状容器の内周面からの突出長さz、前記n本のノズルのノズル口の水平方向長さD、及び前記ノズルの本数nの選定にあたり、前記ガス流れ均一性指標Dが0.60以上であることを確認する、上記[1]又は[2]に記載の円筒状容器内に収容された充填層の処理方法。 [3] The method for treating a packed bed contained in a cylindrical container described in [1] or [2] above, wherein when selecting the flow rate V 1 of the first gas, the total flow rate V 2 of the second gas supplied from the n nozzles, the protrusion length z of the n nozzles from the inner surface of the cylindrical container, the horizontal length D N of the nozzle openings of the n nozzles, and the number n of the nozzles, it is confirmed that the gas flow uniformity index D is 0.60 or more.
 [4]前記ガス流れ均一性指標Dが0.60以上となるように、前記第1ガスの流量V、前記n本のノズルから供給される前記第2ガスの合計流量V、前記n本のノズルの前記円筒状容器の内周面からの突出長さz、前記n本のノズルのノズル口の水平方向長さD、及び前記ノズルの本数nの少なくとも一つを調整する、上記[1]又は[2]に記載の円筒状容器内に収容された充填層の処理方法。 [4] A method for treating a packed bed contained in a cylindrical container described in [1] or [2] above, comprising adjusting at least one of the flow rate V 1 of the first gas, the total flow rate V 2 of the second gas supplied from the n nozzles, the protrusion length z of the n nozzles from the inner surface of the cylindrical container, the horizontal length D N of the nozzle openings of the n nozzles, and the number n of the nozzles, so that the gas flow uniformity index D is 0.60 or more.
 [5]前記n本のノズルの前記円筒状容器の内周面からの突出長さzと前記n本のノズルの高さ位置における前記円筒状容器の内径Dとの比z/Dが0.25以下である、上記[1]~[4]のいずれか一項に記載の円筒状容器内に収容された充填層の処理方法。 [5] The method for treating a packed bed contained in a cylindrical container according to any one of [1] to [4] above, wherein a ratio z/D C of a protruding length z of the n nozzles from an inner peripheral surface of the cylindrical container to an inner diameter D C of the cylindrical container at a height position of the n nozzles is 0.25 or less.
 [6]前記円筒状容器が高炉である、上記[1]~[5]のいずれか一項に記載の円筒状容器内に収容された充填層の処理方法。 [6] A method for treating a packed bed contained in a cylindrical vessel described in any one of [1] to [5] above, wherein the cylindrical vessel is a blast furnace.
 本発明の充填層の処理方法によれば、円筒状容器内の周方向のガス流れ均一性を確保することができる。 The packed bed treatment method of the present invention ensures uniformity of the circumferential gas flow within the cylindrical container.
本発明の実施例で使用した円筒状容器の(a)外部構造及び(b)内部構造の模式図である。FIG. 2 is a schematic diagram showing (a) the external structure and (b) the internal structure of a cylindrical container used in an example of the present invention. 本発明の一実施形態で用いる円筒状容器の、ノズルが設けられた高さ位置における水平断面図である。1 is a horizontal cross-sectional view of a cylindrical container used in one embodiment of the present invention, taken at a height position where a nozzle is provided. 本発明の一実施形態で用いる円筒状容器の、(a)ノズル径が小さい場合及び(b)ノズル径が大きい場合における、ノズルが設置された高さ位置における水平断面図である。1A and 1B are horizontal cross-sectional views of a cylindrical container used in one embodiment of the present invention at a height position where a nozzle is installed, in cases where (a) the nozzle diameter is small and (b) the nozzle diameter is large. 本発明の実施例で使用した円筒状容器の、ノズルが設置された箇所を拡大した模式縦断面図である。FIG. 2 is a schematic vertical cross-sectional view showing an enlarged view of a portion of a cylindrical container used in an example of the present invention where a nozzle is provided. 本発明の実施例における温度分布測定結果を示した図である。FIG. 13 is a diagram showing a result of measuring temperature distribution in an embodiment of the present invention.
 以下、本発明に係る円筒状容器内に収容された充填層の処理方法の実施形態を説明する。なお、以下に説明する実施形態は、本発明を具体化した一例であって、その具体例をもって本発明の構成を限定するものではない。 Below, an embodiment of the method for treating a packed bed contained in a cylindrical container according to the present invention will be described. Note that the embodiment described below is one example of the present invention, and the configuration of the present invention is not limited to this specific example.
 本発明の一実施形態で用いる円筒状容器は、内部に充填層が収容され、下部に供給口が設けられており、側部に周方向に間隔をもって複数本のノズル(ノズル本数nは2以上の整数)が設けられている。図1に、本発明の実施例で使用した円筒状容器100の(a)外部構造及び(b)内部構造の模式図を示す。円筒状容器100の内部に充填層30を収容した状態で、円筒状容器100の下部に設けられた供給口40から円筒状容器100内にガスを供給することで、円筒状容器内を上昇する第1ガス42を生成しつつ、円筒状容器100の側部に周方向に間隔をもって設けられたn本のノズル20から円筒状容器100内に第2ガス24を供給する。各ノズル20から、円筒状容器100内部の中心へ向けて第2ガス24が供給され、第2ガス24はノズル口を中心として周囲に拡散する。 The cylindrical container used in one embodiment of the present invention contains a packed bed inside, has a supply port at the bottom, and has a plurality of nozzles (n is an integer of 2 or more) spaced circumferentially on the side. Figure 1 shows schematic diagrams of (a) the external structure and (b) the internal structure of a cylindrical container 100 used in an embodiment of the present invention. With a packed bed 30 contained inside the cylindrical container 100, gas is supplied into the cylindrical container 100 from a supply port 40 provided at the bottom of the cylindrical container 100, generating a first gas 42 that rises inside the cylindrical container, while a second gas 24 is supplied into the cylindrical container 100 from n nozzles 20 provided at intervals circumferentially on the side of the cylindrical container 100. The second gas 24 is supplied from each nozzle 20 toward the center inside the cylindrical container 100, and the second gas 24 diffuses around the nozzle port.
 円筒状容器100の内部に収容された充填層30の積み上がった最大高さの位置を基準高さとして、基準高さよりも低い位置にノズル20が設置されているものとする。基準高さからノズル20の設置高さまでの距離を、基準高さから供給口40の位置までの距離で割った値が0.1~0.9となる高さであることが好ましい。当該値を0.1以上とすることで、充填層30の表面の粒子が流動化して吹き抜けてしまうことを好適に抑制することができる。当該値を0.9以下とすることで、第1ガス42が円筒状容器100の炉壁まで拡がる前に第2ガス24が導入されることを好適に抑制することができる。なお、円筒状容器100は、円筒状容器100の高さ方向の軸が鉛直方向と平行になるように設置されていることが好ましい。 The position of the maximum height of the packed bed 30 contained inside the cylindrical container 100 is set as the reference height, and the nozzle 20 is installed at a position lower than the reference height. The height is preferably such that the value obtained by dividing the distance from the reference height to the installation height of the nozzle 20 by the distance from the reference height to the position of the supply port 40 is 0.1 to 0.9. By setting this value to 0.1 or more, it is possible to preferably prevent the particles on the surface of the packed bed 30 from fluidizing and blowing through. By setting this value to 0.9 or less, it is possible to preferably prevent the second gas 24 from being introduced before the first gas 42 spreads to the furnace wall of the cylindrical container 100. It is preferable that the cylindrical container 100 is installed so that the axis in the height direction of the cylindrical container 100 is parallel to the vertical direction.
 図2に、本発明の一実施形態で用いる円筒状容器100の、ノズル20が設けられた高さ位置における水平断面図を示す。図2においては、円筒状容器100の側部10にノズル20が6本設置された場合を示している。第2ガス拡散範囲22は円筒状容器100の水平断面において、ノズル20の先端を中心とした半円又は半楕円として表される。図2においては、複数本のノズル20は全て円筒状容器100の同じ高さの位置に設置され、円筒状容器100の側部10の周方向に設置され、ノズル口は円筒状容器100内部の中心を向くように設置されている。また、図2においては、ノズル20の角度は、円筒状容器100の高さ方向に対して垂直である。 FIG. 2 shows a horizontal cross-sectional view of the cylindrical container 100 used in one embodiment of the present invention at the height position where the nozzles 20 are provided. FIG. 2 shows a case where six nozzles 20 are provided on the side portion 10 of the cylindrical container 100. The second gas diffusion range 22 is represented as a semicircle or semiellipse centered on the tip of the nozzle 20 in the horizontal cross-section of the cylindrical container 100. In FIG. 2, all of the multiple nozzles 20 are provided at the same height position of the cylindrical container 100, are provided in the circumferential direction of the side portion 10 of the cylindrical container 100, and are provided so that the nozzle mouth faces the center inside the cylindrical container 100. Also, in FIG. 2, the angle of the nozzles 20 is perpendicular to the height direction of the cylindrical container 100.
 このような構造を備える円筒状容器としては、高炉が挙げられる。本発明の一実施形態で用いる円筒状容器は、高炉であることが好ましい。なお、高炉以外にも、円筒状容器の側部及び下部からガスを吹き込む構造を有するシャフト炉等を用いて処理を行う場合であれば、本発明を適用できる。 An example of a cylindrical vessel having such a structure is a blast furnace. The cylindrical vessel used in one embodiment of the present invention is preferably a blast furnace. Note that the present invention can be applied to other vessels besides blast furnaces, such as shaft furnaces that have a structure in which gas is injected from the sides and bottom of the cylindrical vessel, when processing is performed.
 円筒状容器の内部に収容される充填層は、円筒状容器の種類や用途に応じて実施者が適宜選択することができる。なお、式(1)に示すとおり、ガス流れ均一性指標Dは粒子の性状(粒径、粒子密度、粒子形状係数等)の影響を受けない。したがって、充填層を構成する粒子の種類によらず、本発明を適用することができる。円筒状容器が高炉である場合、充填層としては、鉄系原料(鉄鉱石、鉄鉱石の焼結鉱、鉄鉱石のペレット、還元鉄など)及び還元材(コークス等)とすることができる。充填層を構成する原料の粒径は、円筒状容器の大きさに合わせて適宜選択され、例えば高さ10m、内寸炉径3mの高炉であれば粒径10~50mmとすることができる。また、円筒状容器が高炉である場合、充填層の原料密度は、900~1810kg/mであることが好ましい。 The packed bed accommodated inside the cylindrical vessel can be appropriately selected by the practitioner according to the type and use of the cylindrical vessel. As shown in formula (1), the gas flow uniformity index D is not affected by the properties of the particles (particle size, particle density, particle shape factor, etc.). Therefore, the present invention can be applied regardless of the type of particles constituting the packed bed. When the cylindrical vessel is a blast furnace, the packed bed can be made of iron-based raw materials (iron ore, sintered iron ore, iron ore pellets, reduced iron, etc.) and reducing materials (coke, etc.). The particle size of the raw materials constituting the packed bed is appropriately selected according to the size of the cylindrical vessel, and for example, for a blast furnace with a height of 10 m and an inner furnace diameter of 3 m, the particle size can be 10 to 50 mm. When the cylindrical vessel is a blast furnace, the raw material density of the packed bed is preferably 900 to 1810 kg/m 3 .
 一般的に、物理現象は具体的な物理量そのもの(ガス流量V(Nm/t)、ノズルのノズル口の水平方向長さD等)ではなく、適切に無次元化したパラメータ(V/(V+V)、D/D等)を用いることによって、装置のサイズや物性値、運転条件(流量、温度、圧力等)によらない、幅広い対象に適用可能な一般化した現象として記述できることが知られている。これは相似則と呼ばれ、測定が困難な高炉などの大型設備を冷間縮小模型で再現する際等によく用いられている評価方法である。本発明者らは、円筒状容器を用いた各種実験結果に基づき、無次元化されたパラメータによって装置スケール、ガス物性、又は運転条件等によらないガス流れ均一性指標を記述することができるか検討した。その結果、円筒状容器内を上昇する第1ガスとノズルから供給される第2ガスとの流量比(V/(V+V))、及び模型装置の各長さの比(D/D及びz/D)という3つの無次元化したパラメータを用いてガス流れ均一性指標Dを記述することで、装置スケールやガス物性、運転条件によらず、ガス流れ均一性を評価できることを見出した。 In general, it is known that a physical phenomenon can be described as a generalized phenomenon applicable to a wide range of targets, independent of the size , physical properties, and operating conditions (flow rate, temperature, pressure , etc. ) of the equipment, by using appropriately non-dimensionalized parameters ( V2 /( V1 + V2 ), DN / DC, etc.) rather than specific physical quantities themselves (gas flow rate V1 (Nm3/t), horizontal length of the nozzle opening of the nozzle, etc.). This is called the law of similarity, and is an evaluation method that is often used when reproducing large-scale equipment such as blast furnaces, which are difficult to measure, using cold scale models. Based on the results of various experiments using a cylindrical vessel, the present inventors investigated whether a gas flow uniformity index independent of equipment scale, gas properties, or operating conditions can be described by non-dimensionalized parameters. As a result, it was found that the gas flow uniformity index D can be described using three non-dimensional parameters, namely, the flow rate ratio ( V2 /( V1 + V2 )) between the first gas rising inside the cylindrical vessel and the second gas supplied from the nozzle, and the ratios of the lengths of the model device ( DN / DC and z/ DC ), making it possible to evaluate the gas flow uniformity regardless of the equipment scale, gas properties, or operating conditions.
 以上より、本発明で用いるガス流れ均一性指標Dは装置スケールやガス物性、運転条件の異なる装置に対しても適用可能な指標であり、円筒模型容器に限らず高炉等にも幅広く適用可能である。 From the above, the gas flow uniformity index D used in the present invention is an index that can be applied to equipment with different equipment scales, gas properties, and operating conditions, and can be widely applied not only to cylindrical model vessels but also to blast furnaces, etc.
 本発明において、ガス流れ均一性指標Dは、円筒状容器内のノズル先端をつないだ円の円周上において、ノズルから供給されたガスが拡散する範囲の割合を計算した値である。ガス流れ均一性指標Dは式(1)で表される。
Figure JPOXMLDOC01-appb-M000003
 ここで、
 n:ノズルの本数[本]
 V:第1ガスの流量[NL/min]
 V:n本のノズルから供給される第2ガスの合計流量[NL/min]
 D:n本のノズルの高さ位置における円筒状容器の内径[m]
 z:n本のノズルの円筒状容器の内周面からの突出長さ[m]
 D:n本のノズルのノズル口の水平方向長さ[m]
である。
In the present invention, the gas flow uniformity index D is a calculated value of the ratio of the area where the gas supplied from the nozzles diffuses on the circumference of a circle connecting the nozzle tips in the cylindrical container. The gas flow uniformity index D is expressed by the formula (1).
Figure JPOXMLDOC01-appb-M000003
Where:
n: Number of nozzles [nozzles]
V 1 : Flow rate of the first gas [NL/min]
V 2 : Total flow rate of the second gas supplied from the n nozzles [NL/min]
D C : Inner diameter of the cylindrical container at the height position of n nozzles [m]
z: protruding length of n nozzles from the inner surface of the cylindrical container [m]
D N : Horizontal length of the nozzle opening of n nozzles [m]
It is.
 円筒状容器が高炉である場合には、高炉の下部に設けられた羽口を円筒状容器の下部に設けられた供給口とみなし、高炉のシャフト部に設けられたSGIノズルを円筒状容器の側部に設けられたノズルとみなす。すなわち、第1ガスの流量Vはボッシュガス流量VBOSH[Nm/溶銑-ton]、第2ガスの合計流量Vはシャフトガス合計流量VSGI[Nm/溶銑-ton]、ノズルのノズル口の水平方向長さDはSGIノズル内径DSGI[m]として、前記式(1)は以下の式(2)で表される。ここで、ボッシュガス流量とは、羽口から吹き込まれたガス等と羽口先のコークスとがレースウェイにて反応して発生した還元ガス(CO、H、N等)の合計流量のことである。
Figure JPOXMLDOC01-appb-M000004
When the cylindrical vessel is a blast furnace, the tuyere provided at the bottom of the blast furnace is regarded as the supply port provided at the bottom of the cylindrical vessel, and the SGI nozzle provided at the shaft of the blast furnace is regarded as the nozzle provided at the side of the cylindrical vessel. That is, the flow rate V1 of the first gas is the bosh gas flow rate VBOSH [ Nm3 /molten iron-ton], the total flow rate V2 of the second gas is the shaft gas total flow rate VSGI [ Nm3 /molten iron-ton], and the horizontal length DN of the nozzle mouth is the SGI nozzle inner diameter DSGI [m], and the above formula (1) is expressed by the following formula (2). Here, the bosh gas flow rate refers to the total flow rate of reducing gas (CO, H2 , N2 , etc.) generated by the reaction of the gas blown from the tuyere with the coke at the tip of the tuyere in the raceway.
Figure JPOXMLDOC01-appb-M000004
 式(1)又は式(2)はノズルから供給されたガスが半楕円状に広がると仮定して、ノズルのノズル口の水平方向長さDを考慮した式である。すなわち、ガス流れ均一性指標Dは、ノズル径を考慮してガスの拡散範囲を評価している。図3に、本発明の一実施形態で用いる円筒状容器の、(a)ノズル径が小さい場合及び(b)ノズル径が大きい場合における、ノズルが設置された箇所の水平断面図を示す。図3(a)の場合は、第2ガス拡散範囲22が半円状に拡散し、図3(b)の場合は第2ガス拡散範囲22が半楕円状に拡散する。いずれの場合においても、ガス流れ均一性指標Dを用いることで、ガス流れ均一性を精度よく評価することができる。 Equation (1) or (2) is an equation that takes into account the horizontal length D N of the nozzle opening of the nozzle, assuming that the gas supplied from the nozzle spreads in a semi-elliptical shape. That is, the gas flow uniformity index D evaluates the gas diffusion range taking into account the nozzle diameter. FIG. 3 shows horizontal cross-sectional views of the nozzle installation location of the cylindrical container used in one embodiment of the present invention, in (a) when the nozzle diameter is small and (b) when the nozzle diameter is large. In the case of FIG. 3(a), the second gas diffusion range 22 diffuses in a semicircular shape, and in the case of FIG. 3(b), the second gas diffusion range 22 diffuses in a semi-elliptical shape. In either case, the gas flow uniformity index D can be used to accurately evaluate the gas flow uniformity.
 式(1)又は式(2)において、ガス流れ均一性指標Dが0.60以上であることで、円筒状容器内の周方向のガス流れ均一性を確保できる。ガス流れ均一性指標Dが1.00以上であると、ガス流れ均一性をより十分に確保できる。よって、式(1)又は式(2)において、ガス流れ均一性指標Dは0.60以上とし、1.00以上であることが好ましく、1.10以上であることがより好ましい。また、ガス流れ均一性指標Dは、おおむね10.00以下となる。 In formula (1) or formula (2), when the gas flow uniformity index D is 0.60 or more, the circumferential gas flow uniformity within the cylindrical container can be ensured. When the gas flow uniformity index D is 1.00 or more, the gas flow uniformity can be more sufficiently ensured. Therefore, in formula (1) or formula (2), the gas flow uniformity index D is 0.60 or more, preferably 1.00 or more, and more preferably 1.10 or more. In addition, the gas flow uniformity index D is generally 10.00 or less.
 円筒状容器内を上昇する第1ガスの流量V、円筒状容器の側部に周方向に間隔をもって設けられたn本のノズルから供給される第2ガスの合計流量V、n本のノズルの円筒状容器の内周面からの突出長さz、n本のノズルのノズル口の水平方向長さD、及びノズルの本数nの選定にあたり、ガス流れ均一性指標Dが0.60以上であることを確認することが好ましい。上記のように選定を行い、円筒状容器を設計することで、ガス流れ均一性が好適に確保できる。 In selecting the flow rate V 1 of the first gas rising inside the cylindrical vessel, the total flow rate V 2 of the second gas supplied from n nozzles provided at intervals in the circumferential direction on the side of the cylindrical vessel, the protruding length z of the n nozzles from the inner circumferential surface of the cylindrical vessel, the horizontal length D N of the nozzle openings of the n nozzles, and the number n of nozzles, it is preferable to confirm that the gas flow uniformity index D is 0.60 or more. By making the above selection and designing the cylindrical vessel, gas flow uniformity can be suitably ensured.
 ガス流れ均一性指標Dが0.60以上となるように、第1ガスの流量V、n本のノズルから供給される第2ガスの合計流量V、n本のノズルの前記円筒状容器の内周面からの突出長さz、n本のノズルのノズル口の水平方向長さD、及びノズルの本数nの少なくとも一つを調整することが好ましい。上記のように調整を行うことで、ガス流れ均一性が好適に確保できる。 It is preferable to adjust at least one of the flow rate V 1 of the first gas, the total flow rate V 2 of the second gas supplied from the n nozzles, the protruding length z of the n nozzles from the inner circumferential surface of the cylindrical vessel, the horizontal length D N of the nozzle openings of the n nozzles, and the number n of nozzles so that the gas flow uniformity index D is 0.60 or more. By making the adjustments as described above, the gas flow uniformity can be suitably ensured.
 円筒状容器内を上昇する第1ガスの流量Vと、円筒状容器の側部に周方向に間隔をもって設けられたn本のノズルから供給された第2ガスの流量Vは、円筒状容器の大きさによって適宜調整される。ここで、VとVの合計流量に対するVの比V/(V+V)は、第2ガス拡散範囲22の形状を好適に(ノズル20の先端を中心とした半円又は半楕円に)形成させる観点から、0.1以上であることが好ましい。また、第1ガスの流量が0であったとしても、第2ガス拡散範囲22の形状は好適に形成されるため、V/(V+V)は1.0以下であることが好ましい。 The flow rate V1 of the first gas rising in the cylindrical container and the flow rate V2 of the second gas supplied from n nozzles provided at intervals in the circumferential direction on the side of the cylindrical container are appropriately adjusted according to the size of the cylindrical container. Here, the ratio V2 /( V1 + V2 ) of V2 to the total flow rate of V1 and V2 is preferably 0.1 or more from the viewpoint of favorably forming the shape of the second gas diffusion range 22 (semicircle or semiellipse centered on the tip of the nozzle 20). Furthermore, even if the flow rate of the first gas is 0, the shape of the second gas diffusion range 22 is favorably formed, so that V2 /( V1 + V2 ) is preferably 1.0 or less.
 第1ガスの流量Vは、円筒状容器下部の供給口から供給したガス等の組成及び流量、並びに炉内の化学反応による組成変化から算出できる。例えば、化学反応が起こらない円筒状容器の場合は、円筒状容器下部の供給口から流入するガス量を第1ガスの流量Vとすればよい。また、円筒状容器が高炉である場合は、羽口に供給されたガス等が羽口先のコークスとレースウェイにて反応して発生したボッシュガスを第1ガスとすればよい。ボッシュガス流量は羽口から吹込まれるガス等(送風ガス及び羽口吹込み還元材等)の組成と流量がわかれば算出することができる。 The flow rate V1 of the first gas can be calculated from the composition and flow rate of the gas etc. supplied from the supply port at the bottom of the cylindrical vessel, and the composition change due to the chemical reaction in the furnace. For example, in the case of a cylindrical vessel in which no chemical reaction occurs, the amount of gas flowing in from the supply port at the bottom of the cylindrical vessel may be set as the flow rate V1 of the first gas. In addition, in the case of a cylindrical vessel that is a blast furnace, the bosh gas generated by the reaction of the gas etc. supplied to the tuyere with the coke at the end of the tuyere in the raceway may be set as the first gas. The bosh gas flow rate can be calculated if the composition and flow rate of the gas etc. (blast gas and tuyere-injected reducing material etc.) blown in from the tuyere are known.
 第1ガス及び第2ガスとしては、空気等を使用することができる。第1ガス及び第2ガスのうち少なくとも一方の温度は、充填層を加熱昇温する観点から、円筒状容器の周囲の大気温度より高い温度、例えば40℃以上であることが好ましい。また、第1ガス及び第2ガスの温度は、装置の保護の観点から、装置の耐熱温度以下、例えば円筒状容器が塩ビ製の場合は60℃以下であることが好ましい。 Air or the like can be used as the first gas and the second gas. From the viewpoint of heating and raising the temperature of the packed bed, it is preferable that the temperature of at least one of the first gas and the second gas is higher than the atmospheric temperature surrounding the cylindrical container, for example, 40°C or higher. From the viewpoint of protecting the device, it is also preferable that the temperature of the first gas and the second gas is lower than the heat resistance temperature of the device, for example, 60°C or lower if the cylindrical container is made of PVC.
 なお、評価を簡便化するため、第1ガスの流量V及び第2ガスの流量Vは、標準状態(0℃、1気圧)のガス流量を用いることができる。これは、第1ガス及び第2ガスが同一温度であれば、式(1)内のV/(V+V)の値は温度によらず同一となるためである。また、第1ガス及び第2ガスの温度が異なる場合であっても、第1ガスと第2ガスとの温度差が絶対温度(K)にて20%以内の差異であれば、本発明への影響は小さいため、標準状態のガス流量を用いることができる。同様に、円筒状容器内の反応により第1ガス又は第2ガスのモル数が増減するとガス体積が変化するが、反応によるモル数変化が20%以下であれば本発明への影響は小さいため、反応前のガス流量を用いて本発明を適用できる。なお、円筒状容器が高炉である場合は、送風ガスを羽口から炉内に吹き込んだ直後の領域(レースウェイ)では大きな体積変化を伴うガス化反応が起こる。しかし、その後の高炉内の主要な反応である還元反応においては、モル数が変化しないため体積変化は小さく、本発明を適用できる。そこで、円筒状容器が高炉である場合は、レースウェイにおけるボッシュガスの流量を第1ガス流量Vとして本発明を適用する。 In order to simplify the evaluation, the flow rate V1 of the first gas and the flow rate V2 of the second gas can be gas flow rates under standard conditions (0° C., 1 atm). This is because if the first gas and the second gas are at the same temperature, the value of V1 /( V1 + V2 ) in formula (1) is the same regardless of the temperature. Even if the temperatures of the first gas and the second gas are different, if the temperature difference between the first gas and the second gas is within 20% in absolute temperature (K), the effect on the present invention is small, so the gas flow rate under standard conditions can be used. Similarly, if the number of moles of the first gas or the second gas increases or decreases due to a reaction in the cylindrical vessel, the gas volume changes, but if the change in the number of moles due to the reaction is 20% or less, the effect on the present invention is small, so the present invention can be applied using the gas flow rate before the reaction. In addition, when the cylindrical vessel is a blast furnace, a gasification reaction accompanied by a large volume change occurs in the region (raceway) immediately after the blast gas is blown into the furnace from the tuyere. However, in the reduction reaction, which is the main reaction in the blast furnace after that, the number of moles does not change, so the volume change is small and the present invention can be applied. Therefore, when the cylindrical vessel is a blast furnace, the flow rate of the bosh gas in the raceway is set as the first gas flow rate V1 and the present invention is applied.
 ボッシュガスは、高炉の羽口に供給されたガス等が羽口先のコークスとレースウェイにて反応して発生した還元ガス(CO、H、N等)からなる。鉱石の還元反応を促進する観点から、ノズル高さにおけるボッシュガスの温度は、560℃以上とすることが好ましい。また、軟化溶融した鉱石をノズルに付着させない観点から、ノズル高さにおけるボッシュガスの温度は、1200℃以下とすることが好ましい。 Bosh gas is composed of reducing gas (CO, H2 , N2 , etc.) generated when gas supplied to the tuyere of the blast furnace reacts with the coke at the tip of the tuyere in the raceway. From the viewpoint of promoting the reduction reaction of the ore, the temperature of the bosh gas at the nozzle height is preferably 560°C or higher. Also, from the viewpoint of preventing the softened and molten ore from adhering to the nozzle, the temperature of the bosh gas at the nozzle height is preferably 1200°C or lower.
 高炉の羽口に供給されるガスは、COガスの排出量削減の観点から、空気又は酸素、及び、メタン等の気体還元材であることが好ましい。羽口に供給されるガスの温度は、羽口先のガス温度を確保する観点から、0℃以上であることが好ましい。また、羽口に供給されるガスの温度は、羽口先のガスの過度な温度上昇を防止する観点から、1300℃以下であることが好ましい。 The gas supplied to the tuyere of the blast furnace is preferably air or oxygen, and a gaseous reducing agent such as methane, from the viewpoint of reducing CO2 gas emissions. The temperature of the gas supplied to the tuyere is preferably 0°C or higher from the viewpoint of ensuring the gas temperature at the tuyere tip. Moreover, the temperature of the gas supplied to the tuyere is preferably 1300°C or lower from the viewpoint of preventing an excessive temperature rise of the gas at the tuyere tip.
 高炉のSGIノズルに供給されるガスは、高炉内の鉄系原料の還元を阻害しない観点から、CO、H等が含まれる還元性ガスであることが好ましい。還元性ガスが含まれていれば、CO、HO等の酸化ガスやN等の不活性ガスも含まれていてもよい。また、ボッシュガスがノズル位置まで上昇した時のガス温度以上のガスをSGIノズルから供給する必要があるため、SGIノズルに供給するガスの温度は400℃以上であることが好ましい。また、SGIノズルに供給するガスの温度は、ガス温度の過熱によるエネルギー損失を防ぐ観点から、1000℃以下であることが好ましい。具体的には、例えば高炉から排出された高炉ガスを部分燃焼させて生成した予熱ガスを用いることが好ましい。 The gas supplied to the SGI nozzle of the blast furnace is preferably a reducing gas containing CO, H 2 , etc., from the viewpoint of not inhibiting the reduction of the iron-based raw materials in the blast furnace. If the reducing gas is contained, it may also contain oxidizing gases such as CO 2 and H 2 O, and inert gases such as N 2. In addition, since it is necessary to supply gas from the SGI nozzle at a temperature equal to or higher than the gas temperature when the bosh gas rises to the nozzle position, the temperature of the gas supplied to the SGI nozzle is preferably 400 ° C. or higher. In addition, the temperature of the gas supplied to the SGI nozzle is preferably 1000 ° C. or lower from the viewpoint of preventing energy loss due to overheating of the gas temperature. Specifically, it is preferable to use a preheated gas generated by partially burning the blast furnace gas discharged from the blast furnace, for example.
 円筒状容器の側部に周方向に間隔をもって設けられたノズルの本数nが2[本]以上であれば本発明の効果が得られ、3[本]以上であると、ガス流れ均一性がより好適に得られる。よって、ノズルの本数nは、2[本]以上とし、3[本]以上であることが好ましい。一方、ノズルの本数nが50[本]以下であると、設備費用や維持管理費を好適に抑え、効率的に操業することができる。よって、ノズルの本数nは50[本]以下であることが好ましい。ノズルは、円筒状容器の側部に周方向に等間隔に設けられることが好ましい。なお、ノズルの本数が多いほど円筒状容器内のガス流れを均一にすることは容易になるが、ガスの流量等によってはノズル本数が多い場合であっても均一性を確保することができない場合もある。本発明においては、ノズルの本数が少ない場合においても、ガス流れ均一性指標Dが所定範囲であることを満たすことで、円筒状容器内のガス流れの均一性を確保することができる。 If the number n of nozzles spaced apart in the circumferential direction on the side of the cylindrical container is 2 or more, the effect of the present invention can be obtained, and if it is 3 or more, the gas flow uniformity can be more suitably obtained. Therefore, the number n of nozzles is 2 or more, and preferably 3 or more. On the other hand, if the number n of nozzles is 50 or less, the equipment cost and maintenance cost can be suitably suppressed and the operation can be performed efficiently. Therefore, the number n of nozzles is preferably 50 or less. The nozzles are preferably spaced apart in the circumferential direction on the side of the cylindrical container. Note that the more nozzles there are, the easier it is to make the gas flow uniform in the cylindrical container, but depending on the gas flow rate, etc., even if the number of nozzles is large, uniformity may not be ensured. In the present invention, even if the number of nozzles is small, the gas flow uniformity in the cylindrical container can be ensured by satisfying that the gas flow uniformity index D is within a predetermined range.
 ノズルのノズル口の水平方向長さDが充填層を構成する全充填粒子の調和平均径以上であると、第2ガス拡散範囲22の形状が好適に形成される。したがって、Dは、充填層を構成する全充填粒子の調和平均径以上であることが好ましい。例えば、原料粒子の調和平均径が0.02[m]である場合、Dは0.02[m]以上であることが好ましい。一方、Dが全充填粒子の調和平均径の10倍以下であると、充填層内の原料粒子のノズルへの逆流を好適に防ぐことができる。したがって、Dは、充填層を構成する全充填粒子の調和平均径の、10倍以下であることが好ましく、5倍以下がより好ましい。例えば、原料粒子の調和平均径が0.02[m]である場合、Dは、0.20[m]以下が好ましく、0.10[m]以下がより好ましい。 When the horizontal length D N of the nozzle opening of the nozzle is equal to or greater than the harmonic mean diameter of all the packed particles constituting the packed bed, the shape of the second gas diffusion range 22 is suitably formed. Therefore, D N is preferably equal to or greater than the harmonic mean diameter of all the packed particles constituting the packed bed. For example, when the harmonic mean diameter of the raw material particles is 0.02 [m], D N is preferably equal to or greater than 0.02 [m]. On the other hand, when D N is equal to or less than 10 times the harmonic mean diameter of all the packed particles, the raw material particles in the packed bed can be suitably prevented from flowing back to the nozzle. Therefore, D N is preferably equal to or less than 10 times the harmonic mean diameter of all the packed particles constituting the packed bed, and more preferably equal to or less than 5 times. For example, when the harmonic mean diameter of the raw material particles is 0.02 [m], D N is preferably equal to or less than 0.20 [m], and more preferably equal to or less than 0.10 [m].
 ノズル口のガス噴射方向に垂直な断面形状(すなわちノズル口形状)は円形に限定されず、例えば矩形であってもよく、形状によらずノズル口の水平方向における最大長さをDとする。また、ノズルは単孔ノズルに限定されず、多孔ノズルを用いてもよい。多孔ノズルとしては等間隔に配置された近接する複数の吐出孔を持つものを使用できる。例えば、複数のパイプを束ねて多孔を形成したもの、単管の配管の先端に多孔形状のノズルチップをつけたもの、単孔ノズルに網を設置して多孔を形成したもの等が使用できる。また、多孔ノズルを用いる場合、ノズル口の水平方向長さDは、水平方向において、多孔ノズルが有する複数の吐出孔のうち、最も右に位置するノズルの最右端から最も左に位置するノズルの最左端までの長さとする。また、多孔ノズルを用いる場合は、ノズル内への原料粒子の侵入を防止できるという効果が得られる。また、ノズルごとにノズル口の水平方向長さが異なる場合は、n本のノズルに対してノズル口の水平方向長さを算術平均した値をノズル口の水平方向長さDとすればよい。 The cross-sectional shape of the nozzle orifice perpendicular to the gas ejection direction (i.e., the nozzle orifice shape) is not limited to a circle, and may be, for example, a rectangle. Regardless of the shape, the maximum length of the nozzle orifice in the horizontal direction is defined as D N. The nozzle is not limited to a single-hole nozzle, and a multi-hole nozzle may be used. As the multi-hole nozzle, one having a plurality of adjacent discharge holes arranged at equal intervals can be used. For example, a nozzle in which a plurality of pipes are bundled together to form a plurality of holes, a nozzle tip having a plurality of holes attached to the tip of a single pipe, a single-hole nozzle with a net attached thereto to form a plurality of holes, etc. can be used. In addition, when a multi-hole nozzle is used, the horizontal length D N of the nozzle orifice is defined as the length in the horizontal direction from the rightmost end of the nozzle located at the rightmost position to the leftmost end of the nozzle located at the leftmost position among the plurality of discharge holes of the multi-hole nozzle. In addition, when a multi-hole nozzle is used, the effect of preventing the intrusion of raw material particles into the nozzle can be obtained. In addition, when the horizontal length of the nozzle orifice differs for each nozzle, the horizontal length D N of the nozzle orifice may be defined as the arithmetic average value of the horizontal lengths of the nozzle orifices for n nozzles.
 また、ノズルは必ずしも水平に配置される必要はなく、円筒状容器の側部に対して斜めに配置されていてもよい。ノズルが円筒状容器の側部に対して斜めに配置される場合、ノズル高さ位置はノズル先端の高さとする。 In addition, the nozzle does not necessarily have to be placed horizontally, but may be placed at an angle to the side of the cylindrical container. If the nozzle is placed at an angle to the side of the cylindrical container, the nozzle height position shall be the height of the nozzle tip.
 さらに、全てのノズルが同じ高さに配置される必要はなく、ノズル配置を多段としてもよい。例えば、ノズルの配置を2段以上の千鳥配置としてもよい。ノズルを多段配置した場合は、最も高い位置にあるノズルの位置をノズル高さ位置とする。円筒状容器の内径Dには最も高い位置にあるノズルの高さ位置における円筒容器の内径を用い、ノズルの本数nには多段配置したノズルの全数を用いてガス流れ均一性指標Dを算出する。 Furthermore, it is not necessary for all the nozzles to be arranged at the same height, and the nozzles may be arranged in multiple stages. For example, the nozzles may be arranged in a staggered arrangement of two or more stages. When the nozzles are arranged in multiple stages, the position of the highest nozzle is taken as the nozzle height position. The inner diameter D C of the cylindrical container is the inner diameter of the cylindrical container at the height position of the highest nozzle, and the number n of nozzles is the total number of nozzles arranged in multiple stages to calculate the gas flow uniformity index D.
 円筒状容器の側部に周方向に間隔をもって設けられたn本のノズルの円筒状容器の内周面からの突出長さzと、ノズルの設置された高さ位置における円筒状容器の内径Dとの比z/Dが0.25以下であると、荷下がりを好適に抑えることができる。よって、z/Dは0.25以下であることが好ましく、0.20以下であることがより好ましい。一方、z/Dの下限は特に限定されず、0.00であってもよい。ただし、z/Dが0.02以上となるようにノズルを円筒状容器の内周面から突き出すことにより、ガス流れ均一性指標Dを所定範囲としやすい。よって、z/Dは0.02以上であることが好ましい。なお、ノズルを円筒状容器の内周面から突き出す場合には、n本のノズルの突出長さは全て同じとすることが好ましい。突出長さが異なる場合は、zは突出し長さが最も短いノズルの値を用いてDを算出することとする。 When the ratio z/D C of the protruding length z of the n nozzles provided at intervals in the circumferential direction from the inner circumferential surface of the cylindrical container to the inner diameter D C of the cylindrical container at the height position where the nozzles are installed is 0.25 or less, the load drop can be suitably suppressed. Therefore, z/D C is preferably 0.25 or less, and more preferably 0.20 or less. On the other hand, the lower limit of z/D C is not particularly limited and may be 0.00. However, by protruding the nozzles from the inner circumferential surface of the cylindrical container so that z/D C is 0.02 or more, the gas flow uniformity index D is easily within a predetermined range. Therefore, z/D C is preferably 0.02 or more. In addition, when the nozzles protrude from the inner circumferential surface of the cylindrical container, it is preferable that the protruding lengths of the n nozzles are all the same. When the protruding lengths are different, z is calculated using the value of the nozzle with the shortest protruding length.
 また、円筒状容器が高炉である場合、熱流比が1.0以下であると、高炉操業における還元材比を低減させることができる。よって、熱流比は1.0以下であることが好ましく、0.9以下であることがより好ましい。一方、熱流比が0.4以上であると、高炉内の気体と固体の熱交換が効率よく進行するため、原料の昇温に好適である。よって、熱流比は0.4以上であることが好ましく、0.6以上であることがより好ましい。なお、熱流比(Ws/Wg)とは、以下の式(3)で算出される値である。
Figure JPOXMLDOC01-appb-M000005
 ここで、Cp,c、Cp,o、Cp,gはそれぞれコークス、鉱石、ガスの比熱であり、CRはコークス比(kg/溶銑-ton)、ORは鉱石比(kg/溶銑-ton)、BVはボッシュガス原単位(Nm/溶銑-ton)である。
In addition, when the cylindrical vessel is a blast furnace, if the heat flow ratio is 1.0 or less, the reducing agent ratio in the blast furnace operation can be reduced. Therefore, the heat flow ratio is preferably 1.0 or less, and more preferably 0.9 or less. On the other hand, if the heat flow ratio is 0.4 or more, the heat exchange between the gas and the solid in the blast furnace proceeds efficiently, which is suitable for raising the temperature of the raw material. Therefore, the heat flow ratio is preferably 0.4 or more, and more preferably 0.6 or more. The heat flow ratio (Ws/Wg) is a value calculated by the following formula (3).
Figure JPOXMLDOC01-appb-M000005
Here, C p,c , C p,o and C p,g are the specific heats of the coke, ore and gas, respectively, CR is the coke ratio (kg/molten iron-ton), OR is the ore ratio (kg/molten iron-ton), and BV is the bosh gas consumption rate (Nm 3 /molten iron-ton).
 なお、本明細書に記載されていない工程及び条件については、定法を使用することができる。  Regular methods can be used for steps and conditions not described in this specification.
 <例1 円筒状容器試験>
 高炉を模した円筒状容器を用いて、熱処理試験を行った。図1に使用した円筒状容器の(a)外部構造及び(b)内部構造の模式図を示す。円筒状容器100は、実操業における高炉との縮尺比として約1/10相当の大きさであり、内寸炉口半径300mm、炉高1000mmである不透明の塩ビ容器からなる。そして、円筒状容器100は、容器の底面中心に供給口40を有し、側面にガス吹き込みノズル20を有し、容器内部に充填層30を有する。図1(a)においては、ガス吹込みノズル20の一部は図示されていないが、円筒状容器100の周方向に等間隔に、ノズル20を6本又は30本設置した。円筒状容器100の内部の充填層30としては、円筒状容器100の底部の水平位置を0mmとして、0mm~200mmまでは、円筒状容器断面を一様に上昇するガス流れを生成するため、粒径の大きい約φ6mmのBB弾を充填してBB弾充填層36を形成した。さらに、円筒状容器100の底部の水平位置から200mmの位置で、金網34を用いてBB弾充填層36を固定した。また、円筒状容器100の200mm~800mmの位置には、高炉内原料を模擬した約φ3mmのPE粒子を充填してPE粒子充填層32を形成した。なお、ガス吹込みノズル20は円筒状容器100の底部の水平位置を0mmとして、400mmの高さに設置した。また、供給口40からは約60℃に加熱した空気を送風して円筒状容器内を上昇する第1ガス42を生成した。ガス吹込みノズル20からは20℃の空気を第2ガス24として送風しながら、円筒状容器100の上部からサーモグラフィーカメラ50でガス吹込みノズル20の設置高さから400mm上方の容器内の温度分布を観察した。
<Example 1: Cylindrical container test>
A heat treatment test was carried out using a cylindrical vessel simulating a blast furnace. FIG. 1 shows a schematic diagram of the external structure (a) and the internal structure (b) of the cylindrical vessel used. The cylindrical vessel 100 is an opaque PVC vessel having a size equivalent to about 1/10 of a blast furnace in actual operation, an inner dimension of a furnace mouth radius of 300 mm, and a furnace height of 1000 mm. The cylindrical vessel 100 has a supply port 40 at the center of the bottom surface of the vessel, a gas injection nozzle 20 on the side, and a packed bed 30 inside the vessel. In FIG. 1(a), some of the gas injection nozzles 20 are not shown, but six or thirty nozzles 20 were installed at equal intervals in the circumferential direction of the cylindrical vessel 100. As the packed bed 30 inside the cylindrical vessel 100, the horizontal position of the bottom of the cylindrical vessel 100 was set to 0 mm, and from 0 mm to 200 mm, BB bullets with a large particle size of about φ6 mm were packed to form a BB bullet packed bed 36 in order to generate a gas flow that uniformly rises in the cross section of the cylindrical vessel. Furthermore, at a position 200 mm from the horizontal position of the bottom of the cylindrical vessel 100, the BB bullet packed bed 36 was fixed using a wire mesh 34. In addition, at a position 200 mm to 800 mm of the cylindrical vessel 100, PE particles with a size of about φ3 mm simulating the raw material in a blast furnace were packed to form a PE particle packed bed 32. The gas injection nozzle 20 was installed at a height of 400 mm, with the horizontal position of the bottom of the cylindrical vessel 100 set to 0 mm. In addition, air heated to about 60° C. was blown from the supply port 40 to generate a first gas 42 that rises in the cylindrical vessel. While blowing air at 20° C. as the second gas 24 from the gas blowing nozzle 20, the temperature distribution inside the cylindrical container 100 was observed from above the container at a height of 400 mm above the installation height of the gas blowing nozzle 20 with a thermographic camera 50.
 図4に使用した円筒状容器の、ノズルが設置された箇所を拡大した模式縦断面図を示す。ノズル20は、円筒状容器の高さ方向に垂直に円筒状容器の側部10に設置されていて、円筒状容器の内部に収容されたPE粒子充填層32へ第2ガス24を吹き込む。 Figure 4 shows a schematic vertical cross-sectional view of the cylindrical container used, enlarging the area where the nozzle was installed. The nozzle 20 is installed on the side 10 of the cylindrical container perpendicular to the height direction of the cylindrical container, and blows the second gas 24 into the PE particle packed layer 32 contained inside the cylindrical container.
 表1に円筒状容器の実験条件を示す。円筒状容器の実験条件として、ノズル本数は6本又は30本とした。また、円筒状容器の送風条件は、充填層内でのガス流れを考慮し、高炉と流量比が一定となるようにした。また、例1で使用したノズルは、SGIノズルを模擬し、外形15mm、内径5mm又は9mmのパイプ(ノズルのノズル口の水平方向長さD:0.005[m]又は0.009[m])とした。なお、実高炉の縮尺比に換算すると、上記ノズルの内径5mmは高炉のSGIノズル径0.050m、上記ノズルの内径9mmは高炉のSGIノズル径0.090mに相当する。 Table 1 shows the experimental conditions for the cylindrical vessel. The number of nozzles was 6 or 30 as the experimental conditions for the cylindrical vessel. The blowing conditions for the cylindrical vessel were set so that the flow rate ratio was constant with respect to the blast furnace, taking into account the gas flow in the packed bed. The nozzle used in Example 1 was a pipe with an outer diameter of 15 mm and an inner diameter of 5 mm or 9 mm (horizontal length D N of the nozzle mouth: 0.005 [m] or 0.009 [m]) simulating an SGI nozzle. When converted to the scale ratio of an actual blast furnace, the inner diameter of the nozzle, 5 mm, corresponds to the SGI nozzle diameter of the blast furnace of 0.050 m, and the inner diameter of the nozzle, 9 mm, corresponds to the SGI nozzle diameter of the blast furnace of 0.090 m.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表2に外形15mm、内径5mmのパイプを使用した場合の実験条件、実験結果、及びガス流れ均一性指標Dの計算結果を示す。また、図5に温度分布測定結果を示す。図5(a)~(d)はそれぞれ表2の測定結果を示し、具体的には(a):No.1、(b):No.3、(c):No.2、(d):No.4の結果を示す。図5(a)~(d)の白点線は等温度線を示し、各白点線に対応する数字は対応する白点線の温度を表す。図5(c)、(d)のように、観測した範囲の円の外周において、温度の差異が20℃以内の場合(白点線のうち1本以下が円と交差する場合)、円筒状容器の周方向のガス流れが均一であると判断し、表2に「◎」と記載した。図5(b)のように、観測した範囲の円の外周において、温度の差異が20℃超え30℃以内の場合(白点線のうち2本が円と交差する場合)、円筒状容器の周方向のガス流れがおおよそ均一であると判断し、表2に「○」と記載した。図5(a)のように、炉壁側の温度に30℃を超える差異がある場合(白点線のうち3本以上が円と交差する場合)、円筒状容器の周方向のガス流れが均一でないと判断し、表2に「×」と記載した。以降の試験においても、同様の基準でガス流れの均一性を評価した。 Table 2 shows the experimental conditions, experimental results, and the calculation results of the gas flow uniformity index D when a pipe with an outer diameter of 15 mm and an inner diameter of 5 mm was used. Figure 5 also shows the temperature distribution measurement results. Figures 5(a) to (d) show the measurement results in Table 2, specifically, (a) No. 1, (b) No. 3, (c) No. 2, and (d) No. 4. The white dotted lines in Figures 5(a) to (d) indicate isothermal lines, and the numbers corresponding to each white dotted line indicate the temperature of the corresponding white dotted line. As in Figures 5(c) and (d), when the temperature difference is within 20°C on the outer periphery of the circle in the observed range (when one or less of the white dotted lines intersects with the circle), the gas flow in the circumferential direction of the cylindrical container is determined to be uniform, and this is marked in Table 2 as "◎". As shown in Figure 5(b), when the temperature difference on the periphery of the circle in the observed range is more than 20°C and less than 30°C (when two of the white dotted lines intersect the circle), the gas flow in the circumferential direction of the cylindrical container is judged to be approximately uniform, and this is recorded as "○" in Table 2. As shown in Figure 5(a), when the temperature difference on the furnace wall side is more than 30°C (when three or more of the white dotted lines intersect the circle), the gas flow in the circumferential direction of the cylindrical container is judged to be not uniform, and this is recorded as "X" in Table 2. In subsequent tests, the uniformity of the gas flow was evaluated using the same criteria.
 No.1及びNo.2より、第2ガスの吹込みガス量が一定の条件下では、ガス吹込みノズルの本数を6本から30本に増加させることで円筒状容器の周方向のガス流れ均一性が改善されることが分かった。また、No.3及びNo.4より、第2ガスの吹込みガス量が増加した際もNo.1及びNo.2と同様の傾向がみられることを確認した。ただし、吹込みガス量が多いNo.3では、ガス吹込みノズル本数が少ないが円筒状容器の周方向のガス流れはおおよそ均一であった。さらに、No.5より、ガス吹込みノズルの本数やガス吹込み量を固定したままノズルを炉内側に突き出した場合も、円筒状容器の周方向のガス流れ均一性が改善することがわかった。 No. 1 and No. 2 show that, under conditions where the amount of second gas injected is constant, increasing the number of gas injection nozzles from 6 to 30 improves the uniformity of the circumferential gas flow of the cylindrical vessel. No. 3 and No. 4 also show that the same tendency as No. 1 and No. 2 is observed when the amount of second gas injected is increased. However, in No. 3, which has a large injected gas amount, the number of gas injection nozzles is small but the gas flow in the circumferential direction of the cylindrical vessel was roughly uniform. Furthermore, No. 5 shows that the uniformity of the circumferential gas flow of the cylindrical vessel is improved even when the nozzles are extended toward the inside of the furnace while keeping the number of gas injection nozzles and gas injection amount fixed.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 表3に外形15mm、内径9mm(ノズルのノズル口の水平方向長さD:0.009[m])のパイプを使用した場合の実験条件及び実験結果を示す。表2、表3に示すとおり、温度の直接観測結果に基づく円周方向ガス流れの均一性の評価結果は、本発明のガス流れ均一性指標Dによる評価結果(Dが0.60以上である場合が好ましく、1.00以上がさらに好ましい)と一致しており、本発明にてガス流れ均一性を評価できることが確認できた。 Table 3 shows the experimental conditions and results when a pipe with an outer diameter of 15 mm and an inner diameter of 9 mm (horizontal length D N of the nozzle opening: 0.009 [m]) was used. As shown in Tables 2 and 3, the evaluation results of the circumferential gas flow uniformity based on the direct observation of temperature are consistent with the evaluation results using the gas flow uniformity index D of the present invention (D is preferably 0.60 or more, and more preferably 1.00 or more), confirming that the gas flow uniformity can be evaluated using the present invention.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 <例2 高炉条件試算結果>
 前述のとおり、ガス流れ均一性指標Dは装置の大きさやガスの物性によらない無次元化されたパラメータで構成された指標となっているので、本発明は円筒状容器に限らず幅広い対象に適用可能な方法となっている。例2ではガス流れ均一性指標Dを用いて大型高炉におけるガス流れの均一性を評価した。
<Example 2: Blast furnace condition calculation results>
As described above, the gas flow uniformity index D is an index composed of dimensionless parameters that are not dependent on the size of the device or the physical properties of the gas, so the present invention is a method that can be applied to a wide range of objects, not limited to cylindrical vessels. In Example 2, the gas flow uniformity index D was used to evaluate the uniformity of the gas flow in a large blast furnace.
 大型高炉においてメタンガスを用いて操業した場合の条件を想定して、ガス流れ均一性を計算した。表1に円筒状容器によって再現した高炉の操業条件を示す。本計算においては、SGIノズル位置の高炉内径D(m)が4.6mの高炉においては、メタンガス200kg/tを羽口から供給することを想定した。SGIノズル位置の高炉内径D(m)が12.4mの高炉においては、メタンガス160kg/tを羽口から供給することを想定した。シャフトガス吹込みノズルは高炉の周方向に30本設置し、ノズル本数を減らすときは等間隔になるようにノズルを間引き、ノズル本数が30本、15本、6本の場合で計算を行った。なお、高炉下部の羽口から高炉内に吹き込まれるガスは酸素ガス及びメタンガスとし、羽口直後のレースウェイにおいて反応して、ボッシュガスとなり高炉内を上昇することを想定した。ノズル径を0.05m又は0.09mとして、二種類の計算を行った。 The gas flow uniformity was calculated assuming the conditions when a large blast furnace is operated using methane gas. Table 1 shows the operating conditions of the blast furnace reproduced by a cylindrical vessel. In this calculation, it was assumed that 200 kg/t of methane gas was supplied from the tuyere in a blast furnace with an inner diameter D C (m) of 4.6 m at the SGI nozzle position. It was assumed that 160 kg/t of methane gas was supplied from the tuyere in a blast furnace with an inner diameter D C (m) of 12.4 m at the SGI nozzle position. Thirty shaft gas injection nozzles were installed in the circumferential direction of the blast furnace, and when the number of nozzles was reduced, the nozzles were thinned out to be equally spaced, and calculations were performed for the cases of 30, 15, and 6 nozzles. It was assumed that the gas injected into the blast furnace from the tuyere at the bottom of the blast furnace was oxygen gas and methane gas, which reacted in the raceway immediately after the tuyere to become bosh gas and rise inside the blast furnace. Two types of calculations were performed with the nozzle diameter set to 0.05 m or 0.09 m.
 表4及び表5に操業条件及び計算結果を示す。高炉の周方向におけるガス流れの均一性は、例1の結果を踏まえて、ガス流れ均一性指標Dが1.00以上であれば「◎」、1.00未満0.60以上であれば「○」、0.60未満であれば「×」と判定した。 Tables 4 and 5 show the operating conditions and calculation results. Based on the results of Example 1, the uniformity of the gas flow in the circumferential direction of the blast furnace was judged as "◎" if the gas flow uniformity index D was 1.00 or more, "○" if it was less than 1.00 and 0.60 or more, and "×" if it was less than 0.60.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 本発明によれば、円筒状容器の周方向のガス流れ均一性を確保することが可能な、円筒状容器内に収容された充填層の処理方法を提供することができる。 The present invention provides a method for treating a packed bed contained in a cylindrical container that can ensure uniformity of gas flow in the circumferential direction of the cylindrical container.
 100 円筒状容器
  10 円筒状容器の側部
  20 ノズル
  22 第2ガス拡散範囲
  24 第2ガス
  30 充填層
  32 PE粒子充填層
  34 金網
  36 BB弾充填層
  40 供給口
  42 第1ガス
  50 サーモグラフィーカメラ
Reference Signs List 100 Cylindrical container 10 Side of cylindrical container 20 Nozzle 22 Second gas diffusion range 24 Second gas 30 Packed bed 32 PE particle packed bed 34 Wire mesh 36 BB bullet packed bed 40 Supply port 42 First gas 50 Thermography camera

Claims (6)

  1.  円筒状容器内に収容された充填層の処理方法であって、
     前記円筒状容器内に前記充填層を収容した状態で、前記円筒状容器の下部に設けられた供給口からガスを供給することで前記円筒状容器内を上昇する第1ガスを生成しつつ、前記円筒状容器の側部に周方向に間隔をもって設けられたn本のノズルから前記円筒状容器内に第2ガスを供給する工程を、以下の式(1)で表されるガス流れ均一性指標Dが0.60以上である条件下にて行うことを特徴とする方法。
    Figure JPOXMLDOC01-appb-M000001
     ここで、
     V:前記第1ガスの流量[NL/min]
     V:前記n本のノズルから供給される前記第2ガスの合計流量[NL/min]
     D:前記n本のノズルの高さ位置における前記円筒状容器の内径[m]
     z:前記n本のノズルの前記円筒状容器の内周面からの突出長さ[m]
     D:前記n本のノズルのノズル口の水平方向長さ[m]
    である。
    A method for treating a packed bed contained in a cylindrical container, comprising the steps of:
    a step of supplying a second gas into the cylindrical container from n nozzles provided at intervals in the circumferential direction on a side portion of the cylindrical container while generating a first gas that rises inside the cylindrical container by supplying a gas from a supply port provided at a lower portion of the cylindrical container with the packed bed contained in the cylindrical container, under a condition in which a gas flow uniformity index D represented by the following formula (1) is 0.60 or more.
    Figure JPOXMLDOC01-appb-M000001
    Where:
    V 1 : Flow rate of the first gas [NL/min]
    V 2 : The total flow rate of the second gas supplied from the n nozzles [NL/min]
    D C : Inner diameter of the cylindrical container at the height position of the n nozzles [m]
    z: protruding length of the n nozzles from the inner circumferential surface of the cylindrical container [m]
    D N : Horizontal length of the nozzle opening of the n nozzles [m]
    It is.
  2.  前記ガス流れ均一性指標Dが1.00以上である、請求項1に記載の円筒状容器内に収容された充填層の処理方法。 The method for treating a packed bed contained in a cylindrical container according to claim 1, wherein the gas flow uniformity index D is 1.00 or more.
  3.  前記第1ガスの流量V、前記n本のノズルから供給される前記第2ガスの合計流量V、前記n本のノズルの前記円筒状容器の内周面からの突出長さz、前記n本のノズルのノズル口の水平方向長さD、及び前記ノズルの本数nの選定にあたり、前記ガス流れ均一性指標Dが0.60以上であることを確認する、請求項1又は2に記載の円筒状容器内に収容された充填層の処理方法。 3. The method for treating a packed bed contained in a cylindrical vessel according to claim 1 or 2, wherein, when selecting the flow rate V 1 of the first gas, the total flow rate V 2 of the second gas supplied from the n nozzles, the protruding length z of the n nozzles from the inner surface of the cylindrical vessel, the horizontal length D N of the nozzle openings of the n nozzles, and the number n of the nozzles, it is confirmed that the gas flow uniformity index D is 0.60 or more.
  4.  前記ガス流れ均一性指標Dが0.60以上となるように、前記第1ガスの流量V、前記n本のノズルから供給される前記第2ガスの合計流量V、前記n本のノズルの前記円筒状容器の内周面からの突出長さz、前記n本のノズルのノズル口の水平方向長さD、及び前記ノズルの本数nの少なくとも一つを調整する、請求項1又は2に記載の円筒状容器内に収容された充填層の処理方法。 3. The method for treating a packed bed contained in a cylindrical container according to claim 1 or 2, wherein at least one of the flow rate V 1 of the first gas, the total flow rate V 2 of the second gas supplied from the n nozzles, the protrusion length z of the n nozzles from the inner surface of the cylindrical container, the horizontal length D N of the nozzle openings of the n nozzles, and the number n of the nozzles is adjusted so that the gas flow uniformity index D is 0.60 or more.
  5.  前記n本のノズルの前記円筒状容器の内周面からの突出長さzと前記n本のノズルの高さ位置における前記円筒状容器の内径Dとの比z/Dが0.25以下である、請求項1~4のいずれか一項に記載の円筒状容器内に収容された充填層の処理方法。 The method for treating a packed bed contained in a cylindrical container according to any one of claims 1 to 4, wherein a ratio z/D C of a protruding length z of the n nozzles from an inner peripheral surface of the cylindrical container to an inner diameter D C of the cylindrical container at a height position of the n nozzles is 0.25 or less.
  6.  前記円筒状容器が高炉である、請求項1~5のいずれか一項に記載の円筒状容器内に収容された充填層の処理方法。 A method for treating a packed bed contained in a cylindrical vessel according to any one of claims 1 to 5, wherein the cylindrical vessel is a blast furnace.
PCT/JP2024/012485 2023-04-27 2024-03-27 Method for treating filling layer housed in cylindrical container WO2024224927A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2023073877 2023-04-27
JP2023-073877 2023-04-27

Publications (1)

Publication Number Publication Date
WO2024224927A1 true WO2024224927A1 (en) 2024-10-31

Family

ID=93256151

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2024/012485 WO2024224927A1 (en) 2023-04-27 2024-03-27 Method for treating filling layer housed in cylindrical container

Country Status (1)

Country Link
WO (1) WO2024224927A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5842706A (en) * 1981-09-04 1983-03-12 Sumitomo Metal Ind Ltd Operating method for blast furnace
JPH0619088B2 (en) * 1986-12-27 1994-03-16 日本鋼管株式会社 Oxygen blast furnace
CN112668148A (en) * 2020-12-04 2021-04-16 攀钢集团研究院有限公司 Method for judging upper airflow distribution condition and furnace condition of high-titanium blast furnace

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5842706A (en) * 1981-09-04 1983-03-12 Sumitomo Metal Ind Ltd Operating method for blast furnace
JPH0619088B2 (en) * 1986-12-27 1994-03-16 日本鋼管株式会社 Oxygen blast furnace
CN112668148A (en) * 2020-12-04 2021-04-16 攀钢集团研究院有限公司 Method for judging upper airflow distribution condition and furnace condition of high-titanium blast furnace

Similar Documents

Publication Publication Date Title
JP4697340B2 (en) Blast furnace operation method
JP6354962B2 (en) Oxygen blast furnace operation method
JP4745731B2 (en) Method of melting hot metal with cupola
WO2024224927A1 (en) Method for treating filling layer housed in cylindrical container
JP7582567B1 (en) Method for treating a packed bed contained in a cylindrical container
JP4743332B2 (en) Blast furnace operation method
JP2006312757A (en) Injection lance for gaseous reducing material, blast furnace and blast furnace operation method
JP5871062B2 (en) Raw material charging method to blast furnace
JP4894949B2 (en) Blast furnace operation method
JP2011503508A (en) Manufacturing method and melting method of liquid pig iron or liquid steel raw material product in gasification melting apparatus
JP7348467B2 (en) Blast furnace operating method and pig iron manufacturing method
RU2820584C1 (en) Upper blowing tuyere for converter, method of auxiliary raw material addition and method of liquid cast iron refining
TWI812069B (en) Oxygen blast furnace and operation method of oxygen blast furnace
JP2006283065A (en) Gas-blowing tuyere
KR101602837B1 (en) Manufacturing apparatus for molten metal and method thereof
JP4893290B2 (en) Hot metal production method using vertical scrap melting furnace
JP3788158B2 (en) Double pipe tuyere for hydrocarbon injection
JPH08219644A (en) Vertical scrap-melting-furnace and operating method therefor
TW202231878A (en) Top blowing lance for converter, method for adding auxiliary raw material, and method for refining of molten iron
EP1604373B1 (en) Method and apparatus for controling temperature uniformity of the burden in a direct reduction shaft furnace
JP2023128470A (en) Blast furnace operation method
JP2014084470A (en) Blast furnace operation method and lance
EP1214455A1 (en) Device for the direct reduction of iron oxides
JPH10204512A (en) Operation of vertical scrap melting furnace
JPH11124617A (en) Tuyere for blowing gas into molten metal and method of blowing gas