[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2024219883A1 - Thin film manufacturing method, thin film obtained therefrom, and semiconductor substrate and semiconductor element including thin film - Google Patents

Thin film manufacturing method, thin film obtained therefrom, and semiconductor substrate and semiconductor element including thin film Download PDF

Info

Publication number
WO2024219883A1
WO2024219883A1 PCT/KR2024/005319 KR2024005319W WO2024219883A1 WO 2024219883 A1 WO2024219883 A1 WO 2024219883A1 KR 2024005319 W KR2024005319 W KR 2024005319W WO 2024219883 A1 WO2024219883 A1 WO 2024219883A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
substrate
precursor
film
layer
Prior art date
Application number
PCT/KR2024/005319
Other languages
French (fr)
Korean (ko)
Inventor
연창봉
정재선
Original Assignee
솔브레인 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020230147440A external-priority patent/KR20240156272A/en
Application filed by 솔브레인 주식회사 filed Critical 솔브레인 주식회사
Priority claimed from KR1020240052687A external-priority patent/KR20240156321A/en
Publication of WO2024219883A1 publication Critical patent/WO2024219883A1/en

Links

Images

Definitions

  • the present invention relates to a method for manufacturing a thin film, a thin film obtained thereby, a semiconductor substrate and a semiconductor device including the thin film, and more specifically, to a method for manufacturing a thin film capable of resolving thickness non-uniformity according to hole or trench positions of a substrate without voids or seams inside the holes or trenches by spatially dividing high aspect ratio holes or trenches of a semiconductor device and performing a selective deposition process, a thin film obtained thereby, and a semiconductor substrate and semiconductor device formed thereby.
  • drawing 1 is a cross-sectional view showing a seam formed on the upper surface of a substrate hole or trench and a void formed on the lower surface (inside) of the hole or trench according to a prior art.
  • the purpose of the present invention is to provide a method for manufacturing a thin film by performing a selective deposition process by spatially dividing high aspect ratio holes or trenches of a semiconductor device.
  • the present invention aims to provide a thin film in which voids or seams in holes or trenches, thickness unevenness according to hole or trench location in a substrate, etc. are eliminated.
  • the present invention aims to provide a semiconductor substrate and a semiconductor device formed using the above thin film.
  • the present invention provides a method for manufacturing a thin film, characterized in that a selective deposition process is performed by spatially dividing a hole or trench structure of a substrate, and the selective deposition process is performed to provide a precursor adsorption prevention layer, a precursor adsorption layer, and a ligand exchange layer generated by the deposition process by utilizing different surfaces of the hole or trench.
  • the present invention provides a method for manufacturing a thin film, characterized in that a hole or trench structure of a substrate is spatially divided to perform a selective deposition process, wherein the hole or trench structure of the substrate has one or more features formed on the surface of the substrate and has different surfaces of a top wall, a side wall, and a bottom, and the selective deposition process is performed to provide a precursor adsorption prevention layer, a precursor adsorption layer, and a ligand exchange layer by utilizing the different surfaces of the top wall, the side wall, and the bottom.
  • the above selective deposition process may include a first step of loading a substrate having one or more features formed on a surface of the substrate and having different surfaces of a top wall, a side wall, and a bottom wall into a chamber; a second step of depositing a precursor adsorption barrier layer on the top wall surface of the sidewalls of the one or more features, or the top wall surface and the upper sidewall surface; a third step of depositing a precursor adsorption layer on the sidewall surface and the bottom surface excluding the upper sidewall of the one or more features; and a fourth step of depositing a ligand exchange layer on the precursor adsorption layer to form a seam-free thin film.
  • the above selective deposition process can be performed by chemical vapor deposition (CVD) or atomic layer deposition (ALD).
  • CVD chemical vapor deposition
  • ALD atomic layer deposition
  • the second step may include a step 2-1 of exposing the substrate to a precursor adsorption inhibitor; and a step 2-2 of exposing the substrate to an inert gas.
  • the above step 2-1 can be performed at a temperature of 100 to 800°C and a pressure of 0.1 to 100 Torr.
  • the above precursor adsorption inhibitor may be an adsorption inhibitor capable of reducing the thin film deposition rate by 10% or more.
  • the precursor adsorption inhibitor may be a substance having less than 1% of impurities remaining due to the adsorption inhibitor.
  • the precursor anti-adsorption agent may be an alkyl halide having an alkyl group having 1 to 10 carbon atoms, or one or more oxygen (O) and carbon (C).
  • the third step may be performed including a step 3-1 of exposing the substrate to a precursor compound; and a step 3-2 of exposing the substrate to an inert gas.
  • the above step 3-1 can be performed at a temperature of 100 to 800°C and a pressure of 0.1 to 100 Torr.
  • the above precursor compound may be a metal precursor compound for electrode wiring or a compound capable of forming an oxide film or nitride film for gap-fill.
  • the fourth step may include a step 4-1 of exposing the substrate to a ligand exchange agent; a step 4-2 of exposing the substrate to an inert gas; a step 4-3 of exposing the substrate to a reaction gas; and a step 4-4 of exposing the substrate to an inert gas.
  • the above step 4-1 can be performed at a temperature of 100 to 800°C and a pressure of 0.1 to 100 Torr.
  • the above ligand exchange agent may be an alkyl iodide having an alkyl group having 1 to 10 carbon atoms, or hydrogen iodide.
  • the above step 4-3 is performed at a temperature of 100 to 800°C and a pressure of 0.1 to 100 Torr, and the reaction gas may be at least one selected from hydrogen (H 2 ), nitrogen (N 2 ), hydrazine (N 2 H 4 ), nitrogen dioxide (NO 2 ), ammonia (NH 3 ), oxygen (O 2 ), and ozone (O 3 ).
  • the present invention provides a thin film characterized in that it has a structure in which a hole or trench structure of a substrate is spatially divided, wherein the hole or trench structure of the substrate has one or more features formed on the surface of the substrate, and has different surfaces of the top wall, the side walls, and the bottom, and a precursor adsorption prevention layer and a precursor adsorption layer are disposed on different surfaces of the side walls and the bottom surface, and a ligand exchange layer is disposed on the precursor adsorption layer.
  • the above precursor adsorption prevention layer may be disposed on the uppermost wall surface of the side walls of the one or more features, or on the uppermost wall surface and the upper side wall surface.
  • the above precursor adsorption layer may be disposed on surfaces that do not overlap with the above precursor adsorption prevention layer.
  • the above ligand exchange layer may be disposed on the precursor adsorption layer.
  • the above hole or trench may have an aspect ratio (ratio of the depth of the feature to the width of the feature) of 5:1 or greater.
  • the above thin film can be a seam free and void free thin film.
  • the thin film formed on the upper surface of the hole or trench of the substrate and the thin film formed on the lower surface provide a closed structure, and can be independently selected from a molybdenum film, a tungsten film, a ruthenium film, a cobalt film, a silicon nitride film, a silicon oxide film, a titanium nitride film, a titanium oxide film, a tungsten nitride film, a molybdenum nitride film, a ruthenium nitride film, a cobalt nitride film, a hafnium oxide film, a zirconium oxide film, a tungsten oxide film, a ruthenium oxide film, a cobalt oxide film, or an aluminum oxide film.
  • the present invention provides a thin film characterized by spatially dividing a hole or trench structure of a substrate, wherein the hole or trench structure of the substrate has one or more features formed on a surface of the substrate, and has different surfaces of the top wall, the side walls, and the bottom, and includes a precursor adsorption prevention layer disposed on the top wall surface of the side walls of the one or more features, or the top wall surface and the upper side wall surface; a precursor adsorption layer disposed on surfaces that do not overlap with the precursor adsorption prevention layer; and a ligand exchange layer disposed on the precursor adsorption layer.
  • the above thin film can be used as a diffusion barrier film, an etching stop film, an electrode film, a dielectric film, a gate insulating film, a block oxide film, or a charge trap.
  • the present invention comprises a substrate; and a thin film formed on the substrate;
  • the above substrate includes a hole or trench structure having a width of 100 nm or less and an aspect ratio of 5:1 or greater, and the thin film is characterized by being the above-described thin film.
  • the present invention provides a semiconductor device including the semiconductor substrate described above.
  • a method for manufacturing a thin film in which thickness non-uniformity according to hole or trench location of a substrate is eliminated without voids or seams inside the hole or trench by performing a selective deposition process by spatially dividing high aspect ratio holes or trenches of a semiconductor device.
  • Figure 1 is a cross-sectional view showing a seam and void formed inside a substrate hole or trench according to a prior art.
  • FIG. 2 is a process flow diagram for providing a substrate structure that eliminates void and seam occurrence by spatially dividing a hole or trench structure according to one embodiment of the present invention.
  • Figure 3 is a schematic diagram showing the structural changes in each process step of a thin film obtained according to the process flow diagram of Figure 2.
  • Figure 4 is a schematic diagram showing the structure of a thin film obtained in the present invention.
  • Figure 5 is a schematic diagram and photograph confirming the thickness difference according to the upper, middle, and lower positions of the TiN thin film obtained in Example 1 of the present invention.
  • Ref TiN is the result of analyzing the impurity content and film thickness change of a thin film manufactured by a conventional method, and the result of analyzing a 10 nm thick TiN thin film to which both an adsorption inhibitor and a ligand exchanger were applied according to the present invention is shown as (c), the result of analyzing a 10 nm thick TiN thin film to which only an adsorption inhibitor was applied is shown as (a), and the result of analyzing a 10 nm thick TiN thin film to which only a ligand exchanger was applied is shown as (b).
  • the present inventors performed a selective deposition process by spatially dividing a hole or trench structure of a substrate, and the selective deposition process provides a precursor adsorption prevention layer, a precursor adsorption layer, and a ligand exchange layer generated by the deposition process by utilizing different surfaces of the hole or trench, thereby manufacturing a thin film that resolves thickness non-uniformity according to the hole or trench location of the substrate without a seam on the top of the hole or trench or a void inside the hole or trench, and as a result, confirmed that the thin film has a high density and improved deposition speed and electrical characteristics, and based on this, devoted themselves to research and completed the present invention.
  • a method for manufacturing a thin film having a structure for gap-filling semiconductor device features, such as high aspect ratio holes or trenches, without seams or voids is provided.
  • a substrate is placed in a processing chamber, the substrate having features formed on a first surface of the substrate.
  • the substrate may include, but is not limited to, one or more substrates selected from the group consisting of, for example, glass, silicon, metal polyester (PE), polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polycarbonate (PC), polyetherimide (PEI), polyether sulfone (PES), polyether ether ketone (PEEK), and polyimide (PI).
  • PE metal polyester
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PC polycarbonate
  • PEI polyetherimide
  • PES polyether sulfone
  • PEEK polyether ether ketone
  • PI polyimide
  • An insulating layer or dielectric layer may be formed on the above substrate as needed.
  • the above insulating layer and dielectric layer can each be manufactured according to methods known in the art, and therefore separate description is omitted.
  • a selective deposition process is performed by spatially dividing the hole or trench structure of the above substrate.
  • the hole or trench structure of the substrate has one or more features formed on the surface of the substrate, and has different surfaces of the top wall, side walls, and bottom.
  • the deposition process is performed to provide a precursor adsorption barrier layer, a precursor adsorption layer and a ligand exchange layer formed by using different surfaces on the sidewalls of the features and the exposed lowermost surface of the substrate between the features.
  • features refer to intentional surface irregularities.
  • the above features may have shapes including, but not limited to, holes or trenches and cylindrical vias.
  • the above features include, for example, holes or trenches having a top, two side walls and a bottom, and peaks having a top and two side walls.
  • the above features can independently have a predetermined aspect ratio, or ratio of the depth of the feature to the width of the feature.
  • the above aspect ratio may be, for example, greater than 5:1, greater than 6:1, greater than 10:1, greater than 15:1, greater than 20:1, greater than 25:1, greater than 30:1, greater than 40:1, or greater than 100:1. In this case, it is sufficient for applications such as metal wiring or gapfill.
  • the width between the above features i.e. the hole or trench structure
  • the methods described herein perform selective deposition processes in a four-step process to achieve gap fill between features with high-quality thin films that are seam-free and void-free.
  • FIG. 2 is a process flow diagram for providing a substrate structure that eliminates voids and seams by spatially dividing a hole or trench structure according to one embodiment of the present invention
  • FIG. 3 is a schematic diagram showing the structural changes in each process step of a thin film obtained according to the process flow diagram of FIG. 2.
  • the above thin film manufacturing method is performed as a selective deposition process by spatially dividing a hole or trench structure of a substrate.
  • the selective deposition process includes a step of loading a substrate having one or more features formed on a surface of the substrate, the one or more features having sidewalls (14, 16) and a lowermost surface (12) into a chamber (hereinafter referred to as “step 1”).
  • the above chamber can be an ALD chamber, a CVD chamber, a PEALD chamber or a PECVD chamber.
  • a step of depositing a precursor adsorption prevention layer (20) on the upper surface and the top surface (10) of the side walls (14, 16) of one or more of the above features (hereinafter referred to as the second step).
  • the second step may include, for example, a step of exposing the substrate to a precursor adsorption inhibitor; and a step of exposing the substrate to an inert gas.
  • step 2-1 the step of exposing the substrate to the precursor adsorption inhibitor corresponds to the step indicated by symbol 1 in Fig. 2 and is referred to as step 2-1.
  • the substrate is exposed to a precursor adsorption inhibitor and then a deposition process is performed to form a precursor adsorption inhibitor layer (20).
  • the above step 2-1 can be performed at a temperature of 100 to 800°C and a pressure of 0.1 to 100 Torr.
  • the above precursor adsorption inhibitor may be an adsorption inhibitor capable of reducing the thin film deposition rate by 10% or more.
  • the precursor adsorption inhibitor may be a substance having less than 1% of impurities remaining due to the adsorption inhibitor.
  • the above precursor anti-adsorption agent may be an alkyl halide having an alkyl group having 1 to 10 carbon atoms, or a carbon compound having one or more oxygen (O) and carbon (C) atoms and having a carbon content of less than 1% doped by the anti-adsorption agent, wherein the halide is characterized in that it excludes iodine.
  • the alkyl halide having an alkyl group having 1 to 10 carbon atoms can be represented by (CH)3CX, CH3CH2(CH3)2CX, etc., where X can be fluorine, bromine, or chlorine.
  • the above alkyl halide is more preferably one having a tertiary benzyl, tertiary allyl, secondary benzyl, secondary allyl, tertiary linear alkyl or cyclic alkyl halide structure in terms of not leaving carbon impurities inside the thin film.
  • tertiary benzyl, tertiary allyl, secondary benzyl, secondary allyl, tertiary linear alkyl or cyclic alkyl halide may contain, in addition to the halide, a functional group having good leaving group properties, such as S, N, P, or Se.
  • the carbon compound having one or more oxygen (O) and carbon (C) and having a carbon content of less than 1% doped with an anti-adsorption agent is not limited thereto, but may be at least one selected from glyme, diglyme, dimethyl carbonate, and diethyl carbonate.
  • the H functional group on the upper substrate surface of the hole or trench reacts with bromine and is removed as HBr, and a tert-butyl functional group composed of carbon can be attached to the upper substrate surface of the hole or trench, and the functional group attached in this way can perform a precursor adsorption prevention function.
  • the precursor adsorption inhibitor can be introduced into the gas phase through a vaporizer at 100° C. or higher for 100 seconds or less, 100 seconds or less, 30 seconds or less, 10 seconds or less, or 5 seconds or less.
  • the hydrocarbon functional group is attached to the upper portion of the hole or trench, thereby providing the upper surface of the hole or trench of the substrate to which the hydrocarbon group is sufficiently attached as the precursor adsorption prevention functional group on the surface.
  • the above precursor adsorption inhibitor can be transported into the chamber by the VFC method, the DLI method, or the LDS method.
  • the step of exposing the substrate to an inert gas to purge the unreacted precursor adsorption inhibitor may be included.
  • step 2-2 corresponds to the step indicated by symbol 2 in Fig. 2 and is referred to as step 2-2.
  • the above inert gas may be a known substance such as nitrogen or argon, and the time of injection may be 5 times or less, 1 to 5 times, or 1.5 to 3.5 times the time of injection of the above-mentioned deposition compound.
  • the residual precursor adsorption inhibitor may be removed while maintaining the precursor adsorption inhibitor functional group formed on the upper surface of the hole or trench.
  • a step of depositing a precursor adsorption layer (22) on the lower surface and the lowermost surface (12) of the side walls (14, 16) of the one or more features is included (hereinafter referred to as the third step).
  • the third step may include: exposing the substrate to a precursor compound; exposing the substrate to an inert gas; exposing the substrate to a reaction gas; and exposing the substrate to an inert gas.
  • step 3-1 the step of exposing the substrate to the precursor compound corresponds to the step indicated by symbol 3 in Fig. 2 and is referred to as step 3-1.
  • the above step 3-1 can be performed at a temperature of 100 to 800°C and a pressure of 0.1 to 100 Torr.
  • the precursor compound used in the above step 3-1 provides a precursor adsorption layer through chemical bonding on the lower surface of the hole or trench of the substrate to which the precursor adsorption-preventing functional group formed on the upper surface of the hole or trench of the substrate in advance is bound or not adsorbed.
  • the precursor compound may have, for example, a central metal selected from Al, Si, Ti, V, Co, Ni, Cu, Zn, Ga, Ge, Se, Zr, Nb, Mo, Ru, Rh, In, Sn, Sb, Te, Hf, Ta, W, Re, Os, Ir, La, Ce and Nd, and a ligand including at least one of -H, -X, -R, -OR, or -NR2, wherein -X is F, Cl, Br, or I, and -R is a C1-C10 alkyl, a C1-C10 alkene, or a C1-C10 alkane, which may be linear or cyclic.
  • a central metal selected from Al, Si, Ti, V, Co, Ni, Cu, Zn, Ga, Ge, Se, Zr, Nb, Mo, Ru, Rh, In, Sn, Sb, Te, Hf, Ta, W, Re, Os, Ir, La, Ce and Nd
  • the above-mentioned central metal includes a type of metal used in a metal wiring process, and specific examples thereof include molybdenum (Mo), tungsten (W), aluminum (Al), titanium (Ti), cobalt (Co), copper (Cu), etc.
  • the ligand of the above precursor compound may be H, C, N, O, P or S, or a ligand composed of a combination of two or more selected from the group consisting of H, C, N, O and P.
  • the thin film crystallinity is improved, side reactions are suppressed, and the effect of reducing process by-products is further enhanced.
  • the ligand of the above precursor compound may be a halogen element, preferably fluorine, chlorine, bromine or iodine, more preferably fluorine, chlorine or bromine, and within this range, there is an advantage of further improving the reduction of process by-products and the adsorption capacity to the substrate.
  • the N may be, for example, fluorine or chlorine, and in this case, there is an advantage of further improving the thin film crystallinity and suppressing side reactions, thereby further improving the effect of reducing process by-products.
  • the above precursor compound is not particularly limited if it is a thin film precursor compound for metal wiring typically used in ALD (atomic layer deposition).
  • the injection time of the precursor compound may be, for example, 1 to 30 seconds, preferably 1 to 20 seconds, and more preferably 2 to 10 seconds, and within this range, as illustrated in FIG. 3 below, the precursor compound is directly bonded to the substrate surface or the like on the upper surface of the hole or trench of the substrate to provide a thin film.
  • the above precursor compound can be deposited by mixing it with an inert gas.
  • the injection time of the above inert gas may be, for example, 2 to 60 seconds, preferably 2 to 40 seconds, and more preferably 4 to 20 seconds, and within this range, there is an effect of improving the properties of the thin film.
  • the above deposition can be performed using, for example, a time-division deposition device that sequentially supplies deposition materials and deposits them.
  • a space-divided deposition device can be used in which a substrate rotates and reciprocates between a space filled with gas of one raw material and a space filled with gas of another raw material.
  • the substrate is a polymer substrate in a roll shape
  • a roll-to-roll deposition device that rolls the substrate into a roll shape can be used.
  • the above precursor compound can be transported into the chamber by the VFC method, the DLI method, or the LDS method.
  • the above deposition process can be carried out, for example, at a deposition temperature of 100 to 800°C.
  • the deposition temperature can be 50 to 800°C, preferably 170 to 600°C, and more preferably 250 to 600°C.
  • relatively high-temperature deposition is possible, so that process efficiency can be improved, and there is an excellent effect of greatly improving the stability and productivity of the deposition process by reducing decomposition due to heat of compounds used in the deposition process.
  • the step of exposing the substrate to an inert gas to purge unreacted precursor compounds may be included.
  • step 3-2 corresponds to the step indicated by symbol 2' in Fig. 2 and is referred to as step 3-2.
  • the above step 3-2 can be performed under the same conditions and with the same type of inert gas as the above step 2-2 unless otherwise specified.
  • the inert gas may be a known substance such as nitrogen or argon, and the injection time may be 5 times or less, 1 to 5 times, or 1.5 to 3.5 times the injection time of the above-mentioned precursor compound.
  • the residual deposition compound may be removed while maintaining the adsorption of the precursor formed on the lower surface of the hole or trench.
  • step 4 a step of depositing a ligand exchange layer (24) on the precursor adsorption layer (22) and forming a seam-free deposition film (26) is included (hereinafter referred to as step 4).
  • the fourth step may include: exposing the substrate to a ligand exchange agent; and exposing the substrate to an inert gas.
  • step 4-1 the step of exposing the substrate to the ligand exchange agent corresponds to the step indicated by symbol 4 in Fig. 2 and is referred to as step 4-1.
  • the above step 4-1 can be performed at a temperature of 100 to 800°C and a pressure of 0.1 to 100 Torr.
  • the above ligand exchange agent may be a halogen compound that is not reactive with the above-mentioned precursor adsorption inhibitor.
  • the ligand exchange agent may be an alkyl iodide or hydrogen iodide having an alkyl group having 1 to 10 carbon atoms.
  • the ligand of the precursor can be effectively exchanged with the ligand included in the ligand exchange agent.
  • the alkyl iodide having an alkyl group having 1 to 10 carbon atoms may be a type used as the precursor adsorption inhibitor described above or a non-reactive type.
  • the above hydrogen iodide is, for example, a single hydrogen iodide having a purity of 3N to 15N, a gaseous mixture comprising 1 to 99 wt% of hydrogen iodide having a purity of 3N to 15N and the remainder of an inert gas such that the total amount becomes 100 wt%, or an aqueous mixture comprising 0.5 to 70 wt% of hydrogen iodide having a purity of 3N to 15N and the remainder of water such that the total amount becomes 100 wt%, wherein the inert gas may be nitrogen, helium or argon having a purity of 4N to 9N.
  • the above ligand exchange agent can be transported into the chamber by the VFC method, the DLI method, or the LDS method.
  • the step of exposing the substrate to an inert gas to purge unreacted ligand exchange agent may be included.
  • step 4-2 The above purging step corresponds to the step indicated by symbol 2" in Fig. 2 and is referred to as step 4-2.
  • step 4-2 can be performed under the same conditions and with the same type of inert gas as the above step 2-2 unless otherwise specified.
  • it may include a step of performing deposition by exposing the substrate to a reaction gas.
  • the method may include a step of exposing the substrate to a reaction gas; and a step of exposing the substrate to an inert gas.
  • step 4-3 the step of exposing the substrate to the reaction gas corresponds to the step indicated by symbol 5 in Fig. 2 and is referred to as step 4-3.
  • the above step 4-3 can be performed at a temperature of 100 to 800°C and a pressure of 0.1 to 100 Torr.
  • the above reaction gas may be at least one selected from hydrogen (H 2 ), nitrogen (N 2 ), hydrazine (N 2 H 4 ), nitrogen dioxide (NO 2 ), ammonia (NH 3 ), oxygen (O 2 ), and ozone (O 3 ).
  • a deposition film can be effectively formed through deposition of a ligand-exchanged precursor.
  • the deposition film formed at this time can be a film with improved high-density electrical characteristics.
  • the above reaction gas can be injected into the hole or trench of the above-mentioned substrate for 100 seconds or less, 100 seconds or less, 30 seconds or less, or 15 seconds or less.
  • the reaction gas binds to the ligand of the precursor metal adsorbed or bound to the lower surface of the hole or trench in which a thin film is formed without a seam on the upper surface, thereby forming a ligand exchange layer in the form of a metal film, a nitride film, or an oxide film, thereby eliminating the occurrence of seams or voids.
  • a deposition film (26) is provided by forming molybdenum dioxide (MoO2) by combining with a functional group attached to the upper portion of a hole or trench in advance, as shown in FIG. 2 below.
  • the deposition film (26) corresponds to a layer to be sacrificed later if necessary, there is no need to manufacture it with a sufficient thickness.
  • the precursor adsorption prevention layer (20) is not reactive with the ligand exchange agent for providing the ligand exchange layer (24) described below, a uniform structure is continuously provided without any seam or additional adsorption on top of the hole or trench, as shown in FIG. 2 below.
  • the method may include a step of exposing the substrate to an inert gas to purge unreacted reaction gas.
  • step 4-4 The above purging step is not shown in Fig. 2 and is referred to as step 4-4.
  • step 4-4 can be performed under the same conditions and with the same type of inert gas as the above step 2-2 unless otherwise specified.
  • the inert gas may be a known substance such as nitrogen or argon, and the injection time may be 5 times or less, 1 to 5 times, or 1.5 to 3.5 times the injection time of the above-mentioned reaction gas.
  • the ligand exchange layer formed inside the hole or trench can be maintained while removing the residual reaction gas.
  • a ligand exchange layer (24) of a molybdenum nitride film is formed on the lower surface of a hole or trench in which a seamless molybdenum film is formed on the upper surface without generating voids.
  • the aforementioned second metal precursor compound and reaction gas it is sufficient to use the aforementioned second metal precursor compound and reaction gas to manufacture the ligand exchange layer (24) to a thickness that can be completely filled without generating voids.
  • the above ligand exchange layer (24) formation process can be repeated several dozen times or more, for example, with the above steps as one cycle, until a thin film of a desired thickness is formed.
  • the number of repetitions of the cycle can be 10 to 1,000 times, preferably 100 to 300 times, in which case the thickness of the thin film can be appropriately implemented, and the process efficiency can be increased.
  • the above-described thin film manufacturing method can repeat the first to fifth steps as one cycle, and the cycle can be repeated n or more times, for example, ten or more times, until a thin film of a desired thickness is formed.
  • the number of repetitions of the cycle can be 10 to 100 times, preferably 10 to 100 times, in which case the thickness of the thin film can be appropriately implemented, and the process efficiency can be increased.
  • the method for manufacturing the above thin film can be carried out including the following steps:
  • a step of forming a precursor adsorption prevention layer by injecting a precursor adsorption prevention agent into the reaction chamber and adsorbing or bonding on the upper surface of the hole or trench of the substrate, i.e., the uppermost wall surface of the side walls of the feature, or the uppermost wall surface and the upper side wall surface;
  • a step of forming a precursor adsorption layer by injecting the precursor compound of the present invention into the reaction chamber and adsorbing or bonding on the lower surface of the hole or trench of the substrate, that is, the sidewall surface and the lowermost surface excluding the upper sidewall of the feature, free from the precursor adsorption inhibitor adsorbed or bonded to the hole or trench;
  • a step of forming a deposition film by injecting a reaction gas into the reaction chamber to react with the exchanged ligand of the precursor adsorbed or bound on the lower surface of the hole or trench of the substrate, i.e., the sidewall surface and the lowermost surface excluding the upper sidewall of the feature;
  • a fifth purging step for discharging by-products and unreacted substances generated by the reaction of the exchanged ligand of the adsorbed or bound precursor with the reaction gas outside the reaction chamber.
  • the method for manufacturing the above thin film comprises steps a) to j) as one cycle, and the cycle can be performed repeatedly.
  • the number of repetitions of the cycle can be 10 to 1000 times, preferably 100 to 300 times.
  • the thickness of the thin film can be appropriately implemented, and the process efficiency can be increased.
  • the method for manufacturing the thin film may be such that steps a) to e) are made into a first cycle, the cycle is repeatedly performed, and then steps f) to j) are made into a second cycle, the cycle is repeatedly performed.
  • the number of repetitions of the cycle may be 10 to 1000 times, preferably 100 to 300 times, for the first cycle, and 10 to 100 times, preferably 10 to 100 times, for the second cycle.
  • the thickness of the thin film may be appropriately implemented, and the process efficiency may be increased.
  • the method for manufacturing the above thin film may further include, for example, a step of depositing the thin film formed on the substrate using plasma, in which case a high-quality thin film can be obtained even under deposition conditions at relatively low temperatures.
  • the plasma may be, for example, oxygen plasma, but is not limited thereto.
  • the above selective deposition process forms a deposition film (26) by using, for example, different surfaces of a hole or trench, a precursor adsorption prevention layer (20), a precursor adsorption layer (22), and a ligand exchange layer (24) generated by the above deposition process.
  • the above selective deposition process may be performed by, for example, chemical vapor deposition (CVD), metalorganic chemical vapor deposition (MOCVD), low pressure vapor deposition (LPCVD), plasma enhanced vapor deposition (PECVD), atomic layer deposition (ALD), or plasma enhanced atomic layer deposition (PEALD), and is preferably performed by, but not limited to, chemical vapor deposition (CVD) or atomic layer deposition (ALD).
  • CVD chemical vapor deposition
  • MOCVD metalorganic chemical vapor deposition
  • LPCVD low pressure vapor deposition
  • PECVD plasma enhanced vapor deposition
  • ALD atomic layer deposition
  • PEALD plasma enhanced atomic layer deposition
  • the above chemical vapor deposition method or atomic layer deposition method has the advantage of being able to form a film of uniform thickness even on the surface of a structure with a large aspect ratio by supplying raw materials to the substrate in a gaseous state, for example, and being able to form a uniform film even on a large area or roll-shaped substrate.
  • the thin film deposited by the selective deposition process described above is characterized in that it has a structure in which a hole or trench structure of a substrate is spatially divided, wherein the hole or trench structure of the substrate has one or more features (10, 12, 14, 16) formed on a surface of the substrate, and the one or more features have sidewalls (14, 16), a top surface (10), and a bottom surface (12), and a precursor adsorption prevention layer and a precursor adsorption layer are disposed on different surfaces of the sidewalls and the bottom surface, and a ligand exchange layer is disposed on the precursor adsorption layer.
  • the precursor adsorption prevention layer (20) may be disposed on the upper surface and the top surface (10) of the side walls (14, 16) of one or more of the features, and the precursor adsorption layer (22) may be disposed on surfaces that do not overlap with the precursor adsorption prevention layer.
  • the above ligand exchange layer (24) can be arranged on the precursor adsorption layer (22) to provide a deposition film (26).
  • a thin film according to one embodiment of the present invention may be a seam free and void free thin film.
  • the thin film (20) formed on the upper surface of the hole or trench of the substrate and the thin film (26) formed on the lower surface can provide a closed structure that is seam free and void free.
  • the above closed structure means, as described above, a structure in which the inside of holes or trenches is completely filled with a ligand exchange layer without voids, but is not limited thereto.
  • the thin film (20) formed on the upper surface of the hole or trench of the above substrate and the thin film (26) formed on the lower surface may be independently selected from a molybdenum film, a tungsten film, a ruthenium film, a cobalt film, a silicon nitride film, a silicon oxide film, a titanium nitride film, a titanium oxide film, a tungsten nitride film, a molybdenum nitride film, a ruthenium nitride film, a cobalt nitride film, a hafnium oxide film, a zirconium oxide film, a tungsten oxide film, a ruthenium oxide film, a cobalt oxide film, or an aluminum oxide film.
  • a thin film according to one embodiment of the present invention may include a substrate having a hole or trench structure spatially divided into a substrate surface, wherein the hole or trench structure has one or more features (10, 12, 14, 16) formed on a surface of the substrate, the one or more features having sidewalls (14, 16) and a lowermost surface (12), a precursor adsorption-preventing layer (20) disposed on an upper surface and an uppermost surface (10) of the sidewalls (14, 16) of the one or more features; a precursor adsorption layer (22) disposed on a lower surface that does not overlap with the precursor adsorption-preventing layer (20); and a ligand exchange layer (24) disposed on the precursor adsorption layer.
  • the above ligand exchange layer (24) exchanges the precursor ligand of the precursor adsorption layer (22), thereby forming a deposition film (26).
  • Figure 4 below is a schematic diagram showing the structure of the thin film obtained in the present invention.
  • the above thin film may have a multilayer structure of two or three layers.
  • a high-quality thin film for gap-filling high aspect ratio holes or trenches of semiconductor devices is provided.
  • the above thin film may be free of seams and voids due to the effect of a precursor adsorption inhibitor, may have a carbon impurity doping amount of 1% or less in the thin film, and may have a deposition speed improved by more than 10% compared to conventional thin film manufacturing due to a ligand exchange agent.
  • These thin films are free of seams and voids, contain less than 1% carbon impurities in the thin film, and have a deposition rate improved by more than 10% compared to conventional thin film manufacturing, resulting in improved electrical properties with high density and no leakage.
  • the thin films with improved electrical properties and no voids and high density can improve overall device performance by reducing or eliminating voiding in high aspect ratio holes or trenches.
  • the above thin film can be used as a diffusion barrier film, an etching stop film, an electrode film, a dielectric film, a gate insulating film, a block oxide film, or a charge trap.
  • a substrate and a thin film formed on the substrate; including,
  • a semiconductor substrate can be provided, characterized in that the substrate includes a hole or trench structure having a width of 100 nm or less and an aspect ratio of 50:1 or greater, and the thin film is the thin film described above.
  • a semiconductor device characterized by including the above-described substrate can be provided.
  • the above semiconductor device satisfies high integration as performance is improved, and solves all problems such as substrate thickness unevenness, seams, and voids, and provides a device with improved device reliability, step coverage, resistivity, surface roughness, and other physical properties.
  • TiCl4 was used as a Ti precursor, NH3 gas was used as a reaction gas, 2-chloro-2-methyl butane was used as an anti-adsorption agent, and hydrogen iodide was used as a ligand exchange agent.
  • the present invention utilizes an anti-adsorption agent (GPC reducer) and a ligand exchange agent (GPC promoter) to maximize the difference in deposition rate according to the trench position, so it is not desirable for the characteristics of the anti-adsorption agent and the ligand exchange agent to have a negative effect on the properties of the thin film to be manufactured.
  • a trench substrate was used having an aspect ratio of 22:1.
  • the TiCl4 precursor was injected at 50 sccm for 1 second by heating the canister to 35 degrees to secure sufficient vapor pressure, and the NH3 reaction gas was injected at a flow rate of 1000 sccm for 3 seconds.
  • 2-chloro-2-methyl butane was supplied at a rate of 10 to 200 sccm for 1 second.
  • hydrogen iodide was supplied at a flow rate of 100 sccm for 3 seconds.
  • the reaction gas NH3 was supplied to the chamber at a flow rate of 1,000 sccm.
  • the thin film forming material vaporized in a vapor phase from the vaporizer was introduced into the deposition chamber loaded with the substrate for 2 seconds to perform a reduction reaction.
  • the pressure in the reaction chamber was controlled to 2 Torr.
  • the deposition temperature was maintained at 350°C, and this process was repeated 100 to 400 times to form a self-limiting atomic layer thin film with a thickness of 10 nm.
  • an inert gas (N2) was injected at 3000 sccm for 6 seconds to remove physically adsorbed or unreacted by-products.
  • the thickness of the deposited film was measured using an ellipsometer, a device that can measure optical properties such as the thickness or refractive index of a metal film using the polarization characteristics of light, and the thickness of the film deposited per cycle was calculated by dividing the thickness of the deposited film by the number of cycles.
  • the surface resistance was measured using the 4-probe measurement method, and the measured thickness was used to calculate the resistivity value, and the unit is u ⁇ -cm.
  • the deposition rate (GPC) of a thin film with a thickness of 3 to 30 nm was measured for the obtained deposited film using an ellipsometer, and the unit is ⁇ /cycle.
  • the adsorption inhibitor causes a difference in deposition rate by location because the amount of adsorption is different from the top to the bottom of the trench. That is, the adsorption inhibitor should be adsorbed the most at the top of the trench so that the GPC converges to 0, and it is most desirable to prevent adsorption at the bottom. Accordingly, it was confirmed that the process conditions (short time at optimal flow rate) under which the adsorption inhibitor can be adsorbed only at the top of the trench are desirable, whereas the ligand exchange agent should be supplied at a sufficient flow rate and time so that it can affect the entire trench from the top to the bottom.
  • Bis(tert-butylimido)bis(dimethylamido)molybdenum was used as a Mo precursor
  • NH3 gas was used as a reactant gas
  • 2-chloro-2-methyl butane was used as an anti-adsorption agent
  • hydrogen iodide was used as a ligand exchange agent.
  • a trench substrate having an aspect ratio of 22:1 was used.
  • 2-chloro-2-methyl butane was supplied for 1 to 5 seconds at a rate ranging from 10 to 200 sccm to control the deposition rate.
  • the prepared precursor compound was placed in a separate canister and supplied to a separate vaporizer heated to 150°C at a flow rate of 0.1 g/min using a Liquid Mass Flow Controller (LMFC) at room temperature.
  • LMFC Liquid Mass Flow Controller
  • the BTBMMo precursor vaporized in a vapor phase from a vaporizer was introduced into the deposition chamber for 3 seconds. At this time, the pressure inside the reaction chamber was controlled at 2 Torr.
  • hydrogen iodide was supplied as a ligand exchange agent at a flow rate of 100 sccm for 3 seconds.
  • the reaction gas NH3 was supplied to the chamber at a flow rate of 1,000 sccm.
  • the thin film forming material vaporized in a vapor phase from the vaporizer was introduced into the deposition chamber loaded with the substrate for 2 seconds to perform a reduction reaction.
  • the pressure in the reaction chamber was controlled to 2 Torr.
  • the deposition temperature was maintained at 350°C, and this process was repeated 100 to 400 times to form a self-limiting atomic layer thin film with a thickness of 10 nm.
  • Example 1 the application order was performed as described in Table 2 below, and the deposition rate, resistivity, thickness, etc. were measured as in Example 1.
  • a MoN thin film was evaluated as an example of a conductive thin film containing Mo, and it was confirmed that not only was the deposition rate reduced, but also the resistivity was improved. Therefore, it was confirmed that the present technology can also be applied to a conductive thin film containing Mo.
  • Ref TiN is the result of analyzing the impurity content and film thickness change of a thin film manufactured by a conventional method
  • the result of analyzing a 10 nm thick TiN thin film to which both an adsorption inhibitor and a ligand exchanger were applied according to the present invention is shown as (c)
  • the result of analyzing a 10 nm thick TiN thin film to which only an adsorption inhibitor was applied is shown as (a)
  • the result of analyzing a 10 nm thick TiN thin film to which only a ligand exchanger was applied is shown as (b).
  • the thin film obtained according to the present invention has a deposition speed improved by more than 10% compared to conventional thin film manufacturing due to the ligand exchange agent while the amount of impurities such as carbon and iodine doping in the thin film is 1% or less.
  • a method for manufacturing a thin film using a precursor adsorption prevention agent and a ligand exchange agent can be provided, which can resolve the thickness non-uniformity according to the hole or trench location of the substrate without a seam on the top of the hole or trench or a void inside the hole or trench, and including this, there is an effect of providing a thin film manufactured with a minimum thickness, which resolves the thickness non-uniformity according to the hole or trench location of the substrate without a void or seam inside the hole or trench and has improved high-density electrical characteristics.

Landscapes

  • Chemical Vapour Deposition (AREA)

Abstract

The present invention relates to a thin film manufacturing method, a thin film obtained therefrom, and a semiconductor substrate and a semiconductor element including the thin film. According to the present invention, it is possible to provide a thin film manufacturing method, a thin film obtained therefrom, and a semiconductor substrate and a semiconductor element formed according to same, wherein the thin film manufacturing method can spatially divide high-aspect-ratio holes or trenches of the semiconductor element and perform a selective deposition process, thereby eliminating the thickness non-uniformity of a substrate at each hole or trench location without holes, voids inside the trenches, or seams.

Description

박막 제조방법, 이로부터 수득된 박막, 박막을 포함하는 반도체 기판 및 반도체 소자 Thin film manufacturing method, thin film obtained thereby, semiconductor substrate and semiconductor device including thin film
본 발명은 박막 제조방법, 이로부터 수득된 박막, 박막을 포함하는 반도체 기판 및 반도체 소자에 관한 것으로, 보다 상세하게는 반도체 소자의 고종횡비 홀 또는 트렌치들을 공간 분할하여 선택적 증착 공정을 수행하여 홀 또는 트렌치 내부의 보이드 또는 시임 없이 기판의 홀 또는 트렌치 위치별 두께 불균일도를 해소할 수 있는 박막 제조방법, 이로부터 수득된 박막, 이에 따라 형성된 반도체 기판 및 반도체 소자에 관한 것이다. The present invention relates to a method for manufacturing a thin film, a thin film obtained thereby, a semiconductor substrate and a semiconductor device including the thin film, and more specifically, to a method for manufacturing a thin film capable of resolving thickness non-uniformity according to hole or trench positions of a substrate without voids or seams inside the holes or trenches by spatially dividing high aspect ratio holes or trenches of a semiconductor device and performing a selective deposition process, a thin film obtained thereby, and a semiconductor substrate and semiconductor device formed thereby.
반도체 소자 구조들의 치수들이 계속해서 저감되고 종횡비들은 증가됨에 따라 반도체 소자 제조 공정에서 보이드(void) 또는 시임(seam) 없이 충전하기 어려울 뿐 아니라 누설 등 효과가 저감되는 문제가 있으므로, 고품질 박막이면서 반도체 소자의 홀 또는 트렌치들 전체에 걸쳐 누설이 매우 낮아야 하는 반도체 소자 제조 공정에서 일예로 10:1 초과의 높은 종횡비를 갖는 좁은 홀 또는 트렌치들을 보이드(void) 또는 시임(seam) 없이 충전할 필요가 있다.As the dimensions of semiconductor device structures continue to decrease and aspect ratios increase, it is difficult to fill semiconductor device manufacturing processes without voids or seams, and there is also a problem of reduced effectiveness such as leakage. Therefore, in a semiconductor device manufacturing process that requires a high-quality thin film and very low leakage throughout the holes or trenches of a semiconductor device, it is necessary to fill narrow holes or trenches with a high aspect ratio of, for example, greater than 10:1 without voids or seams.
실제로, 원자층 퇴적(ALD)을 이용한 막 충전시 홀 또는 트렌치 패턴의 표면 상에 균일하게 컨포멀 막을 퇴적하기 때문에, 홀 또는 트렌치 상부의 시임(seam) 및 내부의 보이드(void)가 필연적으로 생성되게 된다(도 1 참조). In fact, since a conformal film is uniformly deposited on the surface of a hole or trench pattern during film filling using atomic layer deposition (ALD), a seam on top of the hole or trench and a void inside are inevitably created (see Fig. 1).
하기 도 1은 종래 기술에 따라 기판 홀 또는 트렌치 상부 표면에 시임(Seam)이 발생하고, 홀 또는 트렌치의 하부 표면(내부)에 보이드(void)가 발생한 단면도를 나타낸 도면이다. The following drawing 1 is a cross-sectional view showing a seam formed on the upper surface of a substrate hole or trench and a void formed on the lower surface (inside) of the hole or trench according to a prior art.
시임, 보이드, 기판의 홀 또는 트렌치 위치별 두께 불균일 등이 발생할 경우 집적 회로의 성능저하와 직결되므로 고종횡비 홀 또는 트렌치들에서 시임, 보이드, 기판의 홀 또는 트렌치 위치별 두께 불균일 등의 발생을 방지하는 기술 개발이 필요하다. Since the occurrence of seams, voids, and thickness non-uniformity in holes or trenches on a substrate directly leads to a deterioration in the performance of integrated circuits, it is necessary to develop a technology to prevent the occurrence of seams, voids, and thickness non-uniformity in holes or trenches on a substrate in high aspect ratio holes or trenches.
[선행기술문헌][Prior art literature]
[특허문헌][Patent Document]
한국 공개특허 제2018-0005630호 Korean Publication Patent No. 2018-0005630
이에 본 발명의 목적은 반도체 소자의 고종횡비 홀 또는 트렌치들을 공간 분할하여 선택적 증착 공정을 수행하여 제조하는 박막 제조방법을 제공하는 것이다.Accordingly, the purpose of the present invention is to provide a method for manufacturing a thin film by performing a selective deposition process by spatially dividing high aspect ratio holes or trenches of a semiconductor device.
또한, 본 발명은 홀 또는 트렌치의 보이드 또는 시임, 기판의 홀 또는 트렌치 위치별 두께 불균일도 등이 해소된 박막을 제공하려는 것이다. In addition, the present invention aims to provide a thin film in which voids or seams in holes or trenches, thickness unevenness according to hole or trench location in a substrate, etc. are eliminated.
나아가, 본 발명은 상기 박막을 사용하여 형성된 반도체 기판과 반도체 소자를 제공하려는 것이다. Furthermore, the present invention aims to provide a semiconductor substrate and a semiconductor device formed using the above thin film.
본 발명의 상기 목적 및 기타 목적들은 하기 설명된 본 발명에 의하여 모두 달성될 수 있다.The above objects and other objects of the present invention can all be achieved by the present invention described below.
상기의 목적을 달성하기 위하여, 본 발명은 기판의 홀 또는 트렌치 구조를 공간적으로 나누어 선택적 증착 공정을 수행하되, 상기 선택적 증착 공정은 홀 또는 트렌치의 서로 다른 표면을 이용하여 상기 증착 공정에 의해 생성된 전구체 흡착방지층, 전구체 흡착층과 리간드 교환층을 제공하도록 수행되는 것을 특징으로 하는 박막의 제조방법을 제공한다. In order to achieve the above object, the present invention provides a method for manufacturing a thin film, characterized in that a selective deposition process is performed by spatially dividing a hole or trench structure of a substrate, and the selective deposition process is performed to provide a precursor adsorption prevention layer, a precursor adsorption layer, and a ligand exchange layer generated by the deposition process by utilizing different surfaces of the hole or trench.
또한, 본 발명은 기판의 홀 또는 트렌치 구조를 공간적으로 나누어 선택적 증착 공정을 수행하되, 상기 기판의 홀 또는 트렌치 구조는 기판 표면에 형성된 하나 이상의 피처(feature)를 갖고, 최상부 벽, 측벽, 최하부의 서로 다른 표면을 가지며, 상기 선택적 증착 공정은 상기 최상부 벽, 측벽, 최하부의 서로 다른 표면을 이용하여 전구체 흡착방지층, 전구체 흡착층과 리간드 교환층을 제공하도록 수행되는 것을 특징으로 하는 박막의 제조방법을 제공한다. In addition, the present invention provides a method for manufacturing a thin film, characterized in that a hole or trench structure of a substrate is spatially divided to perform a selective deposition process, wherein the hole or trench structure of the substrate has one or more features formed on the surface of the substrate and has different surfaces of a top wall, a side wall, and a bottom, and the selective deposition process is performed to provide a precursor adsorption prevention layer, a precursor adsorption layer, and a ligand exchange layer by utilizing the different surfaces of the top wall, the side wall, and the bottom.
상기 선택적 증착 공정은, 기판 표면에 형성된 하나 이상의 피처(feature)를 갖고, 최상부 벽, 측벽, 최하부의 서로 다른 표면을 갖는 기판을 챔버에 로딩하는 제1 단계; 상기 하나 이상의 피처의 측벽들 최상부 벽 표면, 또는 최상부 벽 표면과 상부 측벽 표면 위에 전구체 흡착방지층을 증착하는 제2 단계; 상기 하나 이상의 피처의 상기 상부 측벽을 제외한 측벽 표면 및 최하부 표면 위에 전구체 흡착층을 증착하는 제3 단계; 및 상기 전구체 흡착층에 리간드 교환층을 증착하고, 시임-프리(seam-free) 박막을 형성하는 제4 단계;를 포함할 수 있다. The above selective deposition process may include a first step of loading a substrate having one or more features formed on a surface of the substrate and having different surfaces of a top wall, a side wall, and a bottom wall into a chamber; a second step of depositing a precursor adsorption barrier layer on the top wall surface of the sidewalls of the one or more features, or the top wall surface and the upper sidewall surface; a third step of depositing a precursor adsorption layer on the sidewall surface and the bottom surface excluding the upper sidewall of the one or more features; and a fourth step of depositing a ligand exchange layer on the precursor adsorption layer to form a seam-free thin film.
상기 선택적 증착 공정은 화학 기상 증착법(CVD) 또는 원자층 증착법(ALD)에 의해 수행될 수 있다. The above selective deposition process can be performed by chemical vapor deposition (CVD) or atomic layer deposition (ALD).
상기 제2 단계는, 상기 기판을 전구체 흡착방지제에 노출시키는 제2-1 단계; 및 상기 기판을 불활성가스에 노출시키는 제2-2 단계;를 포함할 수 있다. The second step may include a step 2-1 of exposing the substrate to a precursor adsorption inhibitor; and a step 2-2 of exposing the substrate to an inert gas.
상기 제2-1 단계는, 100 내지 800℃의 온도 및 0.1 내지 100 Torr의 압력에서 수행할 수 있다.The above step 2-1 can be performed at a temperature of 100 to 800°C and a pressure of 0.1 to 100 Torr.
상기 전구체 흡착방지제는 박막 증착속도를 10% 이상 저감시킬 수 있는 흡착저해물질일 수 있다. The above precursor adsorption inhibitor may be an adsorption inhibitor capable of reducing the thin film deposition rate by 10% or more.
다만, 상기 전구체 흡착방지제는 상기 흡착저해물질에 의해 잔류되는 불순물이 1% 미만인 물질일 수 있다. However, the precursor adsorption inhibitor may be a substance having less than 1% of impurities remaining due to the adsorption inhibitor.
구체적인 예로, 상기 전구체 흡착방지제는 탄소수가 1 내지 10인 알킬기를 갖는 알킬 할라이드, 또는 하나 이상의 산소(O)와 탄소(C)를 갖고 흡착방지제에 의해 도핑되는 탄소함량이 1% 미만인 탄소 화합물이며, 여기서 할라이드는 염소, 불소 및 브롬 중에서 선택된 1종 이상일 수 있다. As a specific example, the precursor anti-adsorption agent may be an alkyl halide having an alkyl group having 1 to 10 carbon atoms, or one or more oxygen (O) and carbon (C). A carbon compound having a carbon content of less than 1% doped with an anti-adsorption agent, wherein the halide may be at least one selected from chlorine, fluorine and bromine.
상기 제3 단계는, 상기 기판을 전구체 화합물에 노출시키는 제3-1 단계; 및 상기 기판을 불활성가스에 노출시키는 제3-2 단계;를 포함하여 수행할 수 있다. The third step may be performed including a step 3-1 of exposing the substrate to a precursor compound; and a step 3-2 of exposing the substrate to an inert gas.
상기 제3-1 단계는, 100 내지 800℃의 온도 및 0.1 내지 100 Torr의 압력에서 수행할 수 있다. The above step 3-1 can be performed at a temperature of 100 to 800°C and a pressure of 0.1 to 100 Torr.
상기 전구체 화합물은 전극 배선용 금속 전구체 화합물 또는 갭필(gap-fill) 용 산화막 또는 질화막을 형성할 수 있는 화합물일 수 있다. The above precursor compound may be a metal precursor compound for electrode wiring or a compound capable of forming an oxide film or nitride film for gap-fill.
상기 제4 단계는, 상기 기판을 리간드 교환제에 노출시키는 제4-1 단계; 상기 기판을 불활성가스에 노출시키는 제4-2 단계; 상기 기판을 반응가스에 노출시키는 제4-3 단계; 및 상기 기판을 불활성가스에 노출시키는 제4-4 단계;를 포함할 수 있다. The fourth step may include a step 4-1 of exposing the substrate to a ligand exchange agent; a step 4-2 of exposing the substrate to an inert gas; a step 4-3 of exposing the substrate to a reaction gas; and a step 4-4 of exposing the substrate to an inert gas.
상기 제4-1 단계는, 100 내지 800℃의 온도 및 0.1 내지 100 Torr의 압력에서 수행할 수 있다. The above step 4-1 can be performed at a temperature of 100 to 800°C and a pressure of 0.1 to 100 Torr.
상기 리간드 교환제는 탄소수가 1 내지 10인 알킬기를 갖는 알킬 요오드화물, 또는 요오드화 수소일 수 있다. The above ligand exchange agent may be an alkyl iodide having an alkyl group having 1 to 10 carbon atoms, or hydrogen iodide.
상기 제4-3 단계는, 100 내지 800℃의 온도 및 0.1 내지 100 Torr의 압력에서 수행하고, 상기 반응 가스는 수소(H2), 질소(N2), 히드라진(N2H4), 이산화질소(NO2), 암모니아(NH3), 산소(O2), 및 오존(O3) 중에서 선택되는 1종 이상일 수 있다. The above step 4-3 is performed at a temperature of 100 to 800°C and a pressure of 0.1 to 100 Torr, and the reaction gas may be at least one selected from hydrogen (H 2 ), nitrogen (N 2 ), hydrazine (N 2 H 4 ), nitrogen dioxide (NO 2 ), ammonia (NH 3 ), oxygen (O 2 ), and ozone (O 3 ).
또한, 본 발명은 기판의 홀 또는 트렌치 구조를 공간 분할하되, 상기 기판의 홀 또는 트렌치 구조는 기판 표면에 형성된 하나 이상의 피처(feature)를 갖고, 상기 최상부 벽, 측벽, 최하부의 서로 다른 표면을 가지며, 상기 측벽들과 최하부 표면의 서로 다른 면 위에 전구체 흡착방지층과 전구체 흡착층이 배치되고, 상기 전구체 흡착층 상에 리간드 교환층이 배치된 구조를 갖는 것을 특징으로 하는 박막을 제공한다. In addition, the present invention provides a thin film characterized in that it has a structure in which a hole or trench structure of a substrate is spatially divided, wherein the hole or trench structure of the substrate has one or more features formed on the surface of the substrate, and has different surfaces of the top wall, the side walls, and the bottom, and a precursor adsorption prevention layer and a precursor adsorption layer are disposed on different surfaces of the side walls and the bottom surface, and a ligand exchange layer is disposed on the precursor adsorption layer.
상기 전구체 흡착방지층은 상기 하나 이상의 피처의 측벽들 최상부 벽 표면, 또는 최상부 벽 표면과 상부 측벽 표면 위에 배치된 것일 수 있다. The above precursor adsorption prevention layer may be disposed on the uppermost wall surface of the side walls of the one or more features, or on the uppermost wall surface and the upper side wall surface.
상기 전구체 흡착층은 상기 전구체 흡착방지층과 중첩되지 않는 표면들 위에 배치된 것일 수 있다. The above precursor adsorption layer may be disposed on surfaces that do not overlap with the above precursor adsorption prevention layer.
상기 리간드 교환층은 상기 전구체 흡착층에 배치된 것일 수 있다. The above ligand exchange layer may be disposed on the precursor adsorption layer.
상기 홀 또는 트렌치는 종횡비(피처의 깊이 대 피처의 폭의 비율)가 5:1 이상일 수 있다. The above hole or trench may have an aspect ratio (ratio of the depth of the feature to the width of the feature) of 5:1 or greater.
상기 박막은 시임 프리(seam free) 및 보이드 프리(void free) 박막일 수 있다. The above thin film can be a seam free and void free thin film.
상기 기판의 홀 또는 트렌치 상부 표면에 형성된 박막과 하부 표면에 형성된 박막은 폐쇄된 구조를 제공하며, 서로 독립적으로 몰리브덴막, 텅스텐막, 루테늄막, 코발트막 질화실리콘막, 산화실리콘막, 질화티탄막, 산화티탄막, 질화텅스텐막, 질화몰리브덴막, 질화루테늄막, 질화코발트막, 산화하프늄막, 산화지르코늄막, 산화텅스텐막, 산화루테늄막, 산화코발트막 또는 산화알미늄막 중에서 선택될 수 있다. The thin film formed on the upper surface of the hole or trench of the substrate and the thin film formed on the lower surface provide a closed structure, and can be independently selected from a molybdenum film, a tungsten film, a ruthenium film, a cobalt film, a silicon nitride film, a silicon oxide film, a titanium nitride film, a titanium oxide film, a tungsten nitride film, a molybdenum nitride film, a ruthenium nitride film, a cobalt nitride film, a hafnium oxide film, a zirconium oxide film, a tungsten oxide film, a ruthenium oxide film, a cobalt oxide film, or an aluminum oxide film.
또한, 본 발명은 기판의 홀 또는 트렌치 구조를 공간 분할하되, 상기 기판의 홀 또는 트렌치 구조는 기판 표면에 형성된 하나 이상의 피처(feature)를 갖고, 상기 최상부 벽, 측벽, 최하부의 서로 다른 표면을 가지며, 상기 하나 이상의 피처의 측벽들 최상부 벽 표면, 또는 최상부 벽 표면과 상부 측벽 표면 위에 배치된 전구체 흡착방지층; 상기 전구체 흡착방지층과 중첩되지 않는 표면들 위에 배치된 전구체 흡착층; 및 상기 전구체 흡착층에 배치된 리간드 교환층;을 포함하는 것을 특징으로 하는 박막을 제공한다. In addition, the present invention provides a thin film characterized by spatially dividing a hole or trench structure of a substrate, wherein the hole or trench structure of the substrate has one or more features formed on a surface of the substrate, and has different surfaces of the top wall, the side walls, and the bottom, and includes a precursor adsorption prevention layer disposed on the top wall surface of the side walls of the one or more features, or the top wall surface and the upper side wall surface; a precursor adsorption layer disposed on surfaces that do not overlap with the precursor adsorption prevention layer; and a ligand exchange layer disposed on the precursor adsorption layer.
상기 박막은 확산방지막, 에칭정지막, 전극막, 유전막, 게이트절연막, 블럭산화막 또는 차지트랩 용도일 수 있다. The above thin film can be used as a diffusion barrier film, an etching stop film, an electrode film, a dielectric film, a gate insulating film, a block oxide film, or a charge trap.
또한, 본 발명은 기판; 및 상기 기판 상에 형성된 박막;을 포함하되, In addition, the present invention comprises a substrate; and a thin film formed on the substrate;
상기 기판은 100 nm 이하의 폭과 5:1 이상의 종횡비를 갖는 홀 또는 트렌치 구조를 포함하고, 상기 박막은 전술한 박막인 것을 특징으로 하는 반도체 기판을 제공한다. The above substrate includes a hole or trench structure having a width of 100 nm or less and an aspect ratio of 5:1 or greater, and the thin film is characterized by being the above-described thin film.
또한, 본 발명은 전술한 반도체 기판을 포함하는 반도체 소자를 제공한다. In addition, the present invention provides a semiconductor device including the semiconductor substrate described above.
본 발명에 따르면, 반도체 소자의 고종횡비 홀 또는 트렌치들을 공간 분할하여 선택적 증착 공정을 수행하여 홀 또는 트렌치 내부의 보이드 또는 시임 없이 기판의 홀 또는 트렌치 위치별 두께 불균일도를 해소한 박막을 제조하는 방법을 제공한다. According to the present invention, a method is provided for manufacturing a thin film in which thickness non-uniformity according to hole or trench location of a substrate is eliminated without voids or seams inside the hole or trench by performing a selective deposition process by spatially dividing high aspect ratio holes or trenches of a semiconductor device.
또한, 고온 증착 공정 도중 개선된 열 안정성을 나타내며 일정한 증기압을 나타내어 조성이 일정하게 유지됨으로써 균일한 박막을 최소한의 두께로 제조한 고밀도의 전기적 특성이 개선된 박막과, 이에 따라 성능이 개선된 반도체 기판 및 반도체 소자를 제공하는 효과가 있다. In addition, it has the effect of providing a thin film with improved electrical properties and high density, manufactured with a minimum thickness by maintaining a constant composition while exhibiting improved thermal stability during a high-temperature deposition process and exhibiting a constant vapor pressure, and thus a semiconductor substrate and semiconductor device with improved performance.
도 1은 종래 기술에 따라 기판 홀 또는 트렌치 내부에 시임(Seam)과 보이드(void)가 발생한 단면도를 나타낸 도면이다. Figure 1 is a cross-sectional view showing a seam and void formed inside a substrate hole or trench according to a prior art.
도 2는 본 발명의 일 구현예에 따른 홀 또는 트렌치 구조를 공간 분할하여 보이드 및 시임 발생을 해소한 기판 구조를 제공하는 공정 흐름도이다. FIG. 2 is a process flow diagram for providing a substrate structure that eliminates void and seam occurrence by spatially dividing a hole or trench structure according to one embodiment of the present invention.
도 3은 도 2의 공정 흐름도에 따라 수득된 박막의 공정 단계별 구조 변화를 나타낸 모식도이다. Figure 3 is a schematic diagram showing the structural changes in each process step of a thin film obtained according to the process flow diagram of Figure 2.
도 4는 본 발명에서 수득된 박막의 구조를 나타낸 모식도이다. Figure 4 is a schematic diagram showing the structure of a thin film obtained in the present invention.
도 5는 본 발명의 실시예 1에서 수득된 TiN 박막의 상부, 중부, 하부의 위치별 두께 차이를 확인한 모식도 및 사진이다. Figure 5 is a schematic diagram and photograph confirming the thickness difference according to the upper, middle, and lower positions of the TiN thin film obtained in Example 1 of the present invention.
도 6에서, Ref TiN은 종래 방식으로 제작된 박막의 불순물 함량과 막 두께 변화를 분석한 결과이고, 본 발명에 따라 흡착 방지제와 리간드 교환제를 모두 적용한 두께 10 nm의 TiN 박막을 분석한 결과를 (c)로서 나타내었으며, 흡착 방지제만 적용한 두께 10nm의 TiN 박막에 대한 분석 결과는 (a)로서 나타내었으며, 리간드 교환제만 적용한 두께 10nm의 TiN 박막에 대한 분석 결과는 (b)로서 나타내었다. In Fig. 6, Ref TiN is the result of analyzing the impurity content and film thickness change of a thin film manufactured by a conventional method, and the result of analyzing a 10 nm thick TiN thin film to which both an adsorption inhibitor and a ligand exchanger were applied according to the present invention is shown as (c), the result of analyzing a 10 nm thick TiN thin film to which only an adsorption inhibitor was applied is shown as (a), and the result of analyzing a 10 nm thick TiN thin film to which only a ligand exchanger was applied is shown as (b).
이하, 첨부된 도면을 참조하여 본 발명에 따른 박막의 제조방법, 수득된 박막, 이에 따른 반도체 기판과 반도체 소자를 상세하게 설명한다.Hereinafter, with reference to the attached drawings, a method for manufacturing a thin film according to the present invention, the thin film obtained, and a semiconductor substrate and semiconductor element according to the same will be described in detail.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야 한다.The terms or words used in this specification and claims should not be interpreted as limited to their usual or dictionary meanings, but should be interpreted as having meanings and concepts that conform to the technical idea of the present invention, based on the principle that the inventor can appropriately define the concept of the term in order to explain his or her own invention in the best manner.
본 명세서에 있어서, 어떤 부재가 다른 부재 '상에' 위치하고 있다고 할 때, 이는 어떤 부재가 다른 부재에 접해 있는 경우뿐만 아니라 두 부재 사이에 또 다른 부재가 존재하는 경우도 포함한다.In this specification, when it is said that a certain member is located 'on' another member, this includes not only cases where a certain member is in contact with another member, but also cases where another member exists between the two members.
본 명세서에 있어서, 어떤 부분이 어떤 구성요소를 '포함'한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다. In this specification, when a part is said to 'include' a certain component, this does not mean that other components are excluded, but rather that other components may be included, unless otherwise specifically stated.
본 발명자들은 기판의 홀 또는 트렌치 구조를 공간 분할하여 선택적 증착 공정을 수행하되, 상기 선택적 증착 공정은 홀 또는 트렌치의 서로 다른 표면을 이용하여 상기 증착 공정에 의해 생성된 전구체 흡착방지층, 전구체 흡착층 및 리간드 교환층을 제공함으로써 홀 또는 트렌치 상부의 시임(seam) 또는 홀 또는 트렌치 내부의 보이드(void) 없이 기판의 홀 또는 트렌치 위치별 두께 불균일도를 해소한 박막을 제조할 수 있으며, 그 결과 고밀도이면서 증착 속도와 전기적 특성이 개선되는 것을 확인하고, 이를 토대로 연구에 매진하여 본 발명을 완성하게 되었다.The present inventors performed a selective deposition process by spatially dividing a hole or trench structure of a substrate, and the selective deposition process provides a precursor adsorption prevention layer, a precursor adsorption layer, and a ligand exchange layer generated by the deposition process by utilizing different surfaces of the hole or trench, thereby manufacturing a thin film that resolves thickness non-uniformity according to the hole or trench location of the substrate without a seam on the top of the hole or trench or a void inside the hole or trench, and as a result, confirmed that the thin film has a high density and improved deposition speed and electrical characteristics, and based on this, devoted themselves to research and completed the present invention.
즉, 반도체 소자 피처들, 예를 들어 고종횡비 홀 또는 트렌치들을 시임과 보이드 없이 갭 충전하는 구조를 갖는 박막 제조방법이 제공된다. That is, a method for manufacturing a thin film having a structure for gap-filling semiconductor device features, such as high aspect ratio holes or trenches, without seams or voids is provided.
우선, 기판이 프로세싱 챔버에 재치되며, 해당 기판은 기판의 제1 표면에 형성된 피처들을 갖는다. First, a substrate is placed in a processing chamber, the substrate having features formed on a first surface of the substrate.
상기 기판은 일례로 유리, 실리콘, 금속 폴리에스테르(Polyester, PE), 폴리에틸렌테레프탈레이트(Polyethyleneterephthalate, PET), 폴리에틸렌나프탈레이트(Polyethylenenapthalate, PEN), 폴리카르보네이트(Polycarbonate, PC), 폴리에테르이미드(Polyetherimide, PEI), 폴리에테르설폰(Polyethersulfone, PES), 폴리에테르에테르케톤(Polyetheretherketone, PEEK) 및 폴리이미드(Polyimide, PI)로 이루어진 군으로부터 선택된 1종 이상의 기판을 포함할 수 있으나, 이에 제한되는 것은 아니다.The substrate may include, but is not limited to, one or more substrates selected from the group consisting of, for example, glass, silicon, metal polyester (PE), polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polycarbonate (PC), polyetherimide (PEI), polyether sulfone (PES), polyether ether ketone (PEEK), and polyimide (PI).
상기 기판 상에는 필요에 따라 절연층, 유전층이 형성되어 있을 수 있다. An insulating layer or dielectric layer may be formed on the above substrate as needed.
상기 절연층과 유전층은 각각 이 기술분야에서 공지된 방법에 따라 제조될 수 있어 별도의 기재는 생략한다. The above insulating layer and dielectric layer can each be manufactured according to methods known in the art, and therefore separate description is omitted.
상기 기판의 홀 또는 트렌치 구조를 공간적으로 나누어 선택적 증착 공정을 수행한다. A selective deposition process is performed by spatially dividing the hole or trench structure of the above substrate.
상기 기판의 홀 또는 트렌치 구조는 기판 표면에 형성된 하나 이상의 피처(feature)를 갖고, 상기 최상부 벽, 측벽, 최하부의 서로 다른 표면을 가진다. The hole or trench structure of the substrate has one or more features formed on the surface of the substrate, and has different surfaces of the top wall, side walls, and bottom.
피처들의 측벽들 및 피처들 사이의 기판의 노출된 최하부 표면 상에 서로 다른 표면을 이용하여 상기 증착 공정에 의해 생성된 전구체 흡착방지층, 전구체 흡착층과 리간드 교환층을 제공하도록 수행된다.The deposition process is performed to provide a precursor adsorption barrier layer, a precursor adsorption layer and a ligand exchange layer formed by using different surfaces on the sidewalls of the features and the exposed lowermost surface of the substrate between the features.
여기서 피처는 의도적인 표면 불규칙성을 의미한다.Here, features refer to intentional surface irregularities.
상기 피처는 홀 또는 트렌치들 및 원통형 비아(via)를 포함하는 형상을 가질 수 있으나, 이에 한정되는 것은 아니다. The above features may have shapes including, but not limited to, holes or trenches and cylindrical vias.
상기 피처들은 일례로 최상부, 2개의 측벽들 및 최하부를 갖는 홀 또는 트렌치들, 최상부 및 2개의 측벽들을 갖는 피크들을 포함한다. The above features include, for example, holes or trenches having a top, two side walls and a bottom, and peaks having a top and two side walls.
상기 피처들은 서로 독립적으로 소정의 종횡비, 또는 피처의 깊이 대 피처의 폭의 비율을 가질 수 있다. The above features can independently have a predetermined aspect ratio, or ratio of the depth of the feature to the width of the feature.
상기 종횡비는 일례로, 5:1 초과, 6:1 이상, 10:1 이상, 15:1 이상, 20:1 이상, 25:1 이상, 30:1 이상, 40:1 이상, 또는 100:1 이상일 수 있다. 이 경우에 금속 배선 또는 갭필 등의 용도로 적용하기에 충분하다. The above aspect ratio may be, for example, greater than 5:1, greater than 6:1, greater than 10:1, greater than 15:1, greater than 20:1, greater than 25:1, greater than 30:1, greater than 40:1, or greater than 100:1. In this case, it is sufficient for applications such as metal wiring or gapfill.
상기 피처들간 폭, 즉 홀 또는 트렌치 구조는 일례로 100 nm 이하의 폭, 1 내지 10 nm의 폭, 또는 3 내지 10 nm의 폭을 가질 수 있다. 이 경우에 금속 배선 또는 갭필 등의 용도로 적용하기에 충분하다. The width between the above features, i.e. the hole or trench structure, can have, for example, a width of less than 100 nm, a width of 1 to 10 nm, or a width of 3 to 10 nm. In this case, it is sufficient for applications such as metal wiring or gapfill.
본 기재에서 설명된 방법들은, 4-단계 프로세스에 의해 선택적 증착 공정을 수행하여, 고품질의 박막으로 피처들 사이에서 시임-프리 및 보이드-프리의 갭 충전을 구현한다. The methods described herein perform selective deposition processes in a four-step process to achieve gap fill between features with high-quality thin films that are seam-free and void-free.
하기 도 2는 본 발명의 일 구현예에 따른 홀 또는 트렌치 구조를 공간 분할하여 보이드 및 시임 발생을 해소한 기판 구조를 제공하는 공정 흐름도이고, 하기 도 3은 도 2의 공정 흐름도에 따라 수득된 박막의 공정 단계별 구조 변화를 나타낸 모식도이다. The following FIG. 2 is a process flow diagram for providing a substrate structure that eliminates voids and seams by spatially dividing a hole or trench structure according to one embodiment of the present invention, and the following FIG. 3 is a schematic diagram showing the structural changes in each process step of a thin film obtained according to the process flow diagram of FIG. 2.
상기 박막 제조방법은 기판의 홀 또는 트렌치 구조를 공간적으로 나누어 선택적 증착 공정으로 수행된다. The above thin film manufacturing method is performed as a selective deposition process by spatially dividing a hole or trench structure of a substrate.
하기 도 2 및 도 3에서 보듯이, 상기 선택적 증착 공정은, 기판 표면에 형성된 하나 이상의 피처(feature)를 갖고, 상기 하나 이상의 피처는 측벽들(14, 16)과 최하부 표면(12)을 갖는 기판을 챔버에 로딩하는 단계를 포함한다(이하 제1 단계라 함). As shown in FIGS. 2 and 3 below, the selective deposition process includes a step of loading a substrate having one or more features formed on a surface of the substrate, the one or more features having sidewalls (14, 16) and a lowermost surface (12) into a chamber (hereinafter referred to as “step 1”).
상기 챔버는 ALD 챔버, CVD 챔버, PEALD 챔버 또는 PECVD 챔버일 수 있다. The above chamber can be an ALD chamber, a CVD chamber, a PEALD chamber or a PECVD chamber.
상기 하나 이상의 피처의 측벽들(14, 16) 상부 표면 및 최상부 표면(10) 위에 전구체 흡착방지층(20)을 증착하는 단계를 포함한다(이하 제2 단계라 함). A step of depositing a precursor adsorption prevention layer (20) on the upper surface and the top surface (10) of the side walls (14, 16) of one or more of the above features (hereinafter referred to as the second step).
상기 제2 단계는, 일례로 상기 기판을 전구체 흡착방지제에 노출시키는 단계; 및 상기 기판을 불활성가스에 노출시키는 단계를 포함할 수 있다. The second step may include, for example, a step of exposing the substrate to a precursor adsorption inhibitor; and a step of exposing the substrate to an inert gas.
여기서 기판을 전구체 흡착방지제에 노출시키는 단계는 도 2 내 부호 1로 나타낸 단계에 해당하며, 제2-1단계라 지칭한다.Here, the step of exposing the substrate to the precursor adsorption inhibitor corresponds to the step indicated by symbol 1 in Fig. 2 and is referred to as step 2-1.
상기 제2-1단계에서, 기판을 전구체 흡착방지제에 노출시킨 다음 증착 공정을 수행함에 따라 전구체 흡착방지층(20)을 형성하게 된다. In the above step 2-1, the substrate is exposed to a precursor adsorption inhibitor and then a deposition process is performed to form a precursor adsorption inhibitor layer (20).
구체적으로, 상기 제2-1 단계는, 100 내지 800℃의 온도 및 0.1 내지 100 Torr의 압력에서 수행할 수 있다. Specifically, the above step 2-1 can be performed at a temperature of 100 to 800°C and a pressure of 0.1 to 100 Torr.
상기 전구체 흡착방지제는 박막 증착속도를 10% 이상 저감시킬 수 있는 흡착저해물질일 수 있다. The above precursor adsorption inhibitor may be an adsorption inhibitor capable of reducing the thin film deposition rate by 10% or more.
다만, 상기 전구체 흡착방지제는 상기 흡착저해물질에 의해 잔류되는 불순물이 1% 미만인 물질일 수 있다. However, the precursor adsorption inhibitor may be a substance having less than 1% of impurities remaining due to the adsorption inhibitor.
상기 전구체 흡착방지제는 탄소수가 1 내지 10인 알킬기를 갖는 알킬 할라이드, 또는 하나 이상의 산소(O)와 탄소(C)를 갖고 흡착방지제에 의해 도핑되는 탄소함량이 1% 미만인 탄소 화합물일 수 있으며, 여기서 할라이드는 요오드를 제외하는 것을 특징으로 한다. The above precursor anti-adsorption agent may be an alkyl halide having an alkyl group having 1 to 10 carbon atoms, or a carbon compound having one or more oxygen (O) and carbon (C) atoms and having a carbon content of less than 1% doped by the anti-adsorption agent, wherein the halide is characterized in that it excludes iodine.
구체적인 예로, 상기 탄소수가 1 내지 10인 알킬기를 갖는 알킬 할라이드는 (CH)3CX, CH3CH2(CH3)2CX 등으로 나타낼 수 있으며, 여기서 X는 불소, 브롬, 또는 염소일 수 있다. As a specific example, the alkyl halide having an alkyl group having 1 to 10 carbon atoms can be represented by (CH)3CX, CH3CH2(CH3)2CX, etc., where X can be fluorine, bromine, or chlorine.
상기 알킬 할라이드는 3차 벤질, 3차 알릴, 2차 벤질, 2차 알릴, 3차 선형알킬 또는 환형알킬 할라이드 구조를 갖는 것이 박막내부의 탄소 불순물을 남기지 않는 측면에서 더욱 바람직하다. The above alkyl halide is more preferably one having a tertiary benzyl, tertiary allyl, secondary benzyl, secondary allyl, tertiary linear alkyl or cyclic alkyl halide structure in terms of not leaving carbon impurities inside the thin film.
상기 3차 벤질, 3차 알릴, 2차 벤질, 2차 알릴, 3차 선형알킬 또는 환형알킬 할라이드에서는 할라이드 외에도 S, N, P, Se 등으로 이루어진 좋은 이탈기 특성을 갖는 관능기를 포함할 수 있다. The above tertiary benzyl, tertiary allyl, secondary benzyl, secondary allyl, tertiary linear alkyl or cyclic alkyl halide may contain, in addition to the halide, a functional group having good leaving group properties, such as S, N, P, or Se.
또한, 하나 이상의 산소(O)와 탄소(C)를 갖고 흡착방지제에 의해 도핑되는 탄소함량이 1% 미만인 탄소 화합물은 이에 한정하는 것은 아니나, 글라임, 디글라임, 디메틸카보네이트 및 디에틸카보네이트 중에서 선택된 1종 이상일 수 있다. In addition, the carbon compound having one or more oxygen (O) and carbon (C) and having a carbon content of less than 1% doped with an anti-adsorption agent is not limited thereto, but may be at least one selected from glyme, diglyme, dimethyl carbonate, and diethyl carbonate.
일례로, tert-부틸 브로마이드를 사용하는 경우 홀 또는 트렌치 상부 기판 표면의 H 관능기와 브롬이 반응하여 HBr로 제거되고, 홀 또는 트렌치 상부 기판표면에 탄소로 이루어진 tert-부틸 관능기가 부착될 수 있으며, 이렇게 부착된 관능기가 전구체 흡착방지 작용을 수행할 수 있다. For example, when tert-butyl bromide is used, the H functional group on the upper substrate surface of the hole or trench reacts with bromine and is removed as HBr, and a tert-butyl functional group composed of carbon can be attached to the upper substrate surface of the hole or trench, and the functional group attached in this way can perform a precursor adsorption prevention function.
구체적인 예로, 상기 전구체 흡착방지제는 100℃ 이상의 기화기를 거쳐 기상 상태로 100 초 이하, 100초 이하, 30초 이하, 10초 이하, 또는 5초 이하로 투입할 수 있다. 이 경우에, 하기 도 2에 도시한 바와 같이, 상기 탄화수소 관능기를 홀 또는 트렌치 상부에 부착하여 표면에 전구체 흡착방지 관능기로서 탄화수소기가 충분하게 부착된 기판의 홀 또는 트렌치 상부 표면을 제공하게 된다. As a specific example, the precursor adsorption inhibitor can be introduced into the gas phase through a vaporizer at 100° C. or higher for 100 seconds or less, 100 seconds or less, 30 seconds or less, 10 seconds or less, or 5 seconds or less. In this case, as illustrated in FIG. 2 below, the hydrocarbon functional group is attached to the upper portion of the hole or trench, thereby providing the upper surface of the hole or trench of the substrate to which the hydrocarbon group is sufficiently attached as the precursor adsorption prevention functional group on the surface.
상기 전구체 흡착방지제는 VFC 방식, DLI 방식 또는 LDS 방식으로 챔버 내로 이송될 수 있다. The above precursor adsorption inhibitor can be transported into the chamber by the VFC method, the DLI method, or the LDS method.
이어서, 상기 기판을 불활성가스에 노출시켜 미반응 전구체 흡착방지제를 퍼징하는 단계를 포함할 수 있다. Next, the step of exposing the substrate to an inert gas to purge the unreacted precursor adsorption inhibitor may be included.
상기 퍼징 단계는 도 2 내 부호 2로 나타낸 단계에 해당하며, 제2-2단계라 지칭한다. The above purging step corresponds to the step indicated by symbol 2 in Fig. 2 and is referred to as step 2-2.
상기 불활성가스로는 질소, 아르곤 등 공지된 물질을 사용할 수 있고, 그 투입 시간은 전술한 증착 화합물의 투입 시간의 5배 이하, 1 내지 5배, 또는 1.5 내지 3.5배 동안 투입할 수 있다. 이 경우 잔류한 전구체 흡착방지제는 제거하면서 홀 또는 트렌치 상부 표면에 형성된 전구체 흡착방지 관능기를 유지시킬 수 있다. The above inert gas may be a known substance such as nitrogen or argon, and the time of injection may be 5 times or less, 1 to 5 times, or 1.5 to 3.5 times the time of injection of the above-mentioned deposition compound. In this case, the residual precursor adsorption inhibitor may be removed while maintaining the precursor adsorption inhibitor functional group formed on the upper surface of the hole or trench.
그런 다음, 상기 하나 이상의 피처의 측벽들(14,16) 하부 표면 및 최하부 표면(12) 위에 전구체 흡착층(22)을 증착하는 단계를 포함한다(이하 제3 단계라 함). Then, a step of depositing a precursor adsorption layer (22) on the lower surface and the lowermost surface (12) of the side walls (14, 16) of the one or more features is included (hereinafter referred to as the third step).
상기 제3 단계는, 상기 기판을 전구체 화합물에 노출시키는 단계; 상기 기판을 불활성가스에 노출시키는 단계; 상기 기판을 반응가스에 노출시키는 단계; 및 상기 기판을 불활성가스에 노출시키는 단계;를 포함할 수 있다. The third step may include: exposing the substrate to a precursor compound; exposing the substrate to an inert gas; exposing the substrate to a reaction gas; and exposing the substrate to an inert gas.
여기서 상기 기판을 전구체 화합물에 노출시키는 단계는 도 2 내 부호 3으로 나타낸 단계에 해당하며, 제3-1단계라 지칭한다.Here, the step of exposing the substrate to the precursor compound corresponds to the step indicated by symbol 3 in Fig. 2 and is referred to as step 3-1.
상기 제3-1 단계는, 100 내지 800℃의 온도 및 0.1 내지 100 Torr의 압력에서 수행할 수 있다. The above step 3-1 can be performed at a temperature of 100 to 800°C and a pressure of 0.1 to 100 Torr.
상기 제3-1 단계에서 사용하는 전구체 화합물은 미리 기판의 홀 또는 트렌치 상부 표면에 형성된 전구체 흡착방지 관능기가 결합 또는 흡착되지 않은 기판의 홀 또는 트렌치 하부 표면 위에 화학적 결합을 통해 전구체 흡착층을 제공하게 된다. The precursor compound used in the above step 3-1 provides a precursor adsorption layer through chemical bonding on the lower surface of the hole or trench of the substrate to which the precursor adsorption-preventing functional group formed on the upper surface of the hole or trench of the substrate in advance is bound or not adsorbed.
구체적인 예로, 상기 전구체 화합물은 일례로 중심금속이 Al, Si, Ti, V, Co, Ni, Cu, Zn, Ga, Ge, Se, Zr, Nb, Mo, Ru, Rh, In, Sn, Sb, Te, Hf, Ta, W, Re, Os, Ir, La, Ce 및 Nd 중에서 선택된 1종 이상이고, 리간드는 -H, -X, -R, -OR, 또는 -NR2를 1종 이상 포함하되, 여기서 -X는 F, Cl, Br, 또는 I이고, -R은 C1-C10의 알킬, C1-C10의 알켄, 또는 C1-C10의 알칸으로 선형, 또는 환형일 수 있다.As a specific example, the precursor compound may have, for example, a central metal selected from Al, Si, Ti, V, Co, Ni, Cu, Zn, Ga, Ge, Se, Zr, Nb, Mo, Ru, Rh, In, Sn, Sb, Te, Hf, Ta, W, Re, Os, Ir, La, Ce and Nd, and a ligand including at least one of -H, -X, -R, -OR, or -NR2, wherein -X is F, Cl, Br, or I, and -R is a C1-C10 alkyl, a C1-C10 alkene, or a C1-C10 alkane, which may be linear or cyclic.
상기 중심금속이 금속 배선 공정에 사용되는 금속 종류를 포함하는 것이 바람직하며, 구체적인 예로 몰리브덴(Mo), 텅스텐(W), 알루미늄(Al), 티타늄(Ti), 코발트(Co), 구리(Cu) 등을 사용할 수 있다.It is preferable that the above-mentioned central metal includes a type of metal used in a metal wiring process, and specific examples thereof include molybdenum (Mo), tungsten (W), aluminum (Al), titanium (Ti), cobalt (Co), copper (Cu), etc.
상기 전구체 화합물의 리간드는 H, C, N, O, P 또는 S이거나, H, C, N, O 및 P로 이루어진 군에서 선택된 2종 이상의 조합으로 이루어진 리간드를 사용할 수 있고, 이 경우 이 경우 박막 결정성이 개선되고 부반응을 억제하여 공정 부산물 감소 효과가 더욱 뛰어난 이점이 있다. The ligand of the above precursor compound may be H, C, N, O, P or S, or a ligand composed of a combination of two or more selected from the group consisting of H, C, N, O and P. In this case, the thin film crystallinity is improved, side reactions are suppressed, and the effect of reducing process by-products is further enhanced.
상기 전구체 화합물의 리간드는 할로겐 원소로, 바람직하게는 불소, 염소, 브롬 또는 아이오딘일 수 있고, 보다 바람직하게는 불소, 염소 또는 브롬일 수 있으며, 이 범위 내에서 공정 부산물 감소 및 기판에의 흡착력이 더욱 뛰어난 이점이 있다. 또한, 상기 N은 일례로 불소 또는 염소일 수 있고, 이 경우 박막 결정성이 개선되고 부반응을 억제하여 공정 부산물 감소 효과가 더욱 뛰어난 이점이 있다. The ligand of the above precursor compound may be a halogen element, preferably fluorine, chlorine, bromine or iodine, more preferably fluorine, chlorine or bromine, and within this range, there is an advantage of further improving the reduction of process by-products and the adsorption capacity to the substrate. In addition, the N may be, for example, fluorine or chlorine, and in this case, there is an advantage of further improving the thin film crystallinity and suppressing side reactions, thereby further improving the effect of reducing process by-products.
상기 전구체 화합물은 통상적으로 ALD(원자층 증착법)에 사용되는 금속 배선용 박막 전구체 화합물인 경우 특별히 제한되지 않는다. The above precursor compound is not particularly limited if it is a thin film precursor compound for metal wiring typically used in ALD (atomic layer deposition).
상기 전구체 화합물의 주입 시간은 일례로 1 내지 30 초, 바람직하게는 1 내지 20초, 더욱 바람직하게는 2 내지 10초일 수 있고, 이 범위 내에서 하기 도 3에 도시한 바와 같이, 기판의 홀 또는 트렌치 상부 표면 위에 기판 표면 등과 직접 결합하여 박막을 제공하게 된다. The injection time of the precursor compound may be, for example, 1 to 30 seconds, preferably 1 to 20 seconds, and more preferably 2 to 10 seconds, and within this range, as illustrated in FIG. 3 below, the precursor compound is directly bonded to the substrate surface or the like on the upper surface of the hole or trench of the substrate to provide a thin film.
필요에 따라 상기 전구체 화합물을 불활성가스와 혼합하여 증착시킬 수 있다.If necessary, the above precursor compound can be deposited by mixing it with an inert gas.
상기 불활성가스의 주입 시간은 일례로 2 내지 60 초, 바람직하게는 2 내지 40초, 더욱 바람직하게는 4 내지 20초일 수 있고, 이 범위 내에서 박막의 물성이 향상되는 효과가 있다.The injection time of the above inert gas may be, for example, 2 to 60 seconds, preferably 2 to 40 seconds, and more preferably 4 to 20 seconds, and within this range, there is an effect of improving the properties of the thin film.
상기 증착은 일례로 증착 원료들을 순차적으로 공급하여 증착하는 시분할 증착 장치를 사용할 수 있다.The above deposition can be performed using, for example, a time-division deposition device that sequentially supplies deposition materials and deposits them.
다른 일례로, 한 가지 원료의 기체가 채워져 있는 공간과, 다른 원료 기체가 채워져 있는 공간을 기판이 회전하며 왕복하는 방식의 공간분할 증착 장치를 사용할 수 있다.As another example, a space-divided deposition device can be used in which a substrate rotates and reciprocates between a space filled with gas of one raw material and a space filled with gas of another raw material.
또 다른 일례로, 상기 기판이 롤 형태의 고분자 기재인 경우에는 롤 형태로 감는 롤투롤(roll-to-roll) 증착 장치를 사용할 수 있다.As another example, if the substrate is a polymer substrate in a roll shape, a roll-to-roll deposition device that rolls the substrate into a roll shape can be used.
상기 전구체 화합물은 VFC 방식, DLI 방식 또는 LDS 방식으로 챔버 내로 이송될 수 있다. The above precursor compound can be transported into the chamber by the VFC method, the DLI method, or the LDS method.
상기 증착 공정은 일례로 증착 온도 100 내지 800℃ 하에서 실시될 수 있다. 상기 증착 온도는 구체적으로는 50 내지 800℃, 바람직하게는 170 내지 600℃, 더욱 바람직하게는 250 내지 600℃일 수 있고, 이 경우 상대적으로 고온 증착이 가능하여 공정 효율이 향상될 수 있고 증착 공정에 사용되는 화합물들의 열에 의한 분해를 감소시켜 증착 공정의 안정성 및 생산성이 크게 개선되는 우수한 효과가 있다.The above deposition process can be carried out, for example, at a deposition temperature of 100 to 800°C. Specifically, the deposition temperature can be 50 to 800°C, preferably 170 to 600°C, and more preferably 250 to 600°C. In this case, relatively high-temperature deposition is possible, so that process efficiency can be improved, and there is an excellent effect of greatly improving the stability and productivity of the deposition process by reducing decomposition due to heat of compounds used in the deposition process.
이어서, 상기 기판을 불활성가스에 노출시켜 미반응 전구체 화합물을 퍼징하는 단계를 포함할 수 있다. Subsequently, the step of exposing the substrate to an inert gas to purge unreacted precursor compounds may be included.
상기 퍼징 단계는 도 2 내 부호 2'로 나타낸 단계에 해당하며, 제3-2단계라 지칭한다. The above purging step corresponds to the step indicated by symbol 2' in Fig. 2 and is referred to as step 3-2.
상기 제3-2단계는 달리 특정하지 않는 한 전술한 제2-2단계와 동일한 조건 및 비활성가스 종류로 수행할 수 있다. The above step 3-2 can be performed under the same conditions and with the same type of inert gas as the above step 2-2 unless otherwise specified.
구체적인 예로, 상기 불활성가스로는 질소, 아르곤 등 공지된 물질을 사용할 수 있고, 그 투입 시간은 전술한 전구체 화합물의 투입 시간의 5배 이하, 1 내지 5배, 또는 1.5 내지 3.5배 동안 투입할 수 있다. 이 경우 잔류한 증착 화합물은 제거하면서 홀 또는 트렌치 하부 표면 위에 형성된 전구체의 흡착을 유지시킬 수 있다As a specific example, the inert gas may be a known substance such as nitrogen or argon, and the injection time may be 5 times or less, 1 to 5 times, or 1.5 to 3.5 times the injection time of the above-mentioned precursor compound. In this case, the residual deposition compound may be removed while maintaining the adsorption of the precursor formed on the lower surface of the hole or trench.
그런 다음 상기 전구체 흡착층(22)에 리간드 교환층(24)을 증착하고, 시임-프리(seam-free) 증착막(26)을 형성하는 단계를 포함한다(이하 제4 단계라 함). Then, a step of depositing a ligand exchange layer (24) on the precursor adsorption layer (22) and forming a seam-free deposition film (26) is included (hereinafter referred to as step 4).
상기 제4 단계는, 상기 기판을 리간드 교환제에 노출시키는 단계; 및 상기 기판을 불활성가스에 노출시키는 단계;를 포함할 수 있다. The fourth step may include: exposing the substrate to a ligand exchange agent; and exposing the substrate to an inert gas.
여기서 상기 기판을 리간드 교환제에 노출시키는 단계는 도 2 내 부호 4로 나타낸 단계에 해당하며, 제4-1단계라 지칭한다.Here, the step of exposing the substrate to the ligand exchange agent corresponds to the step indicated by symbol 4 in Fig. 2 and is referred to as step 4-1.
상기 제4-1 단계는, 100 내지 800℃의 온도 및 0.1 내지 100 Torr의 압력에서 수행할 수 있다. The above step 4-1 can be performed at a temperature of 100 to 800°C and a pressure of 0.1 to 100 Torr.
상기 리간드 교환제는 전술한 전구체 흡착방지제와 반응성이 없는 할로겐 화합물일 수 있다. The above ligand exchange agent may be a halogen compound that is not reactive with the above-mentioned precursor adsorption inhibitor.
구체적인 예로, 상기 리간드 교환제는 탄소수가 1 내지 10인 알킬기를 갖는 알킬 요오드화물 또는 요오드화 수소일 수 있다. 이 경우에 전구체의 리간드를 리간드 교환제에 포함된 리간드와 효과적으로 교환할 수 있다. As a specific example, the ligand exchange agent may be an alkyl iodide or hydrogen iodide having an alkyl group having 1 to 10 carbon atoms. In this case, the ligand of the precursor can be effectively exchanged with the ligand included in the ligand exchange agent.
상기 탄소수가 1 내지 10인 알킬기를 갖는 알킬 요오드화물은 전술한 전구체 흡착방지제로 사용한 종류와 반응성이 없는 종류를 사용할 수 있다. The alkyl iodide having an alkyl group having 1 to 10 carbon atoms may be a type used as the precursor adsorption inhibitor described above or a non-reactive type.
상기 요오드화 수소는 일례로 3N 내지 15N의 아이오딘화 수소 단일물, 3N 내지 15N의 아이오딘화 수소 1 내지 99 중량% 및 총량이 100 중량%가 되도록 하는 불활성기체 잔량의 기체 혼합물, 또는 3N 내지 15N의 아이오딘화 수소 0.5 내지 70 중량% 및 총량이 100 중량%가 되도록 하는 물 잔량의 수용액 혼합물이며, 여기서 불활성기체는 4N 내지 9N의 순도를 갖는 질소, 헬륨 또는 아르곤일 수 있다. The above hydrogen iodide is, for example, a single hydrogen iodide having a purity of 3N to 15N, a gaseous mixture comprising 1 to 99 wt% of hydrogen iodide having a purity of 3N to 15N and the remainder of an inert gas such that the total amount becomes 100 wt%, or an aqueous mixture comprising 0.5 to 70 wt% of hydrogen iodide having a purity of 3N to 15N and the remainder of water such that the total amount becomes 100 wt%, wherein the inert gas may be nitrogen, helium or argon having a purity of 4N to 9N.
상기 리간드 교환제는 VFC 방식, DLI 방식 또는 LDS 방식으로 챔버 내로 이송될 수 있다. The above ligand exchange agent can be transported into the chamber by the VFC method, the DLI method, or the LDS method.
이어서, 상기 기판을 불활성가스에 노출시켜 미반응 리간드 교환제를 퍼징하는 단계를 포함할 수 있다. Subsequently, the step of exposing the substrate to an inert gas to purge unreacted ligand exchange agent may be included.
상기 퍼징 단계는 도 2 내 부호 2"로 나타낸 단계에 해당하며, 제4-2단계라 지칭한다. The above purging step corresponds to the step indicated by symbol 2" in Fig. 2 and is referred to as step 4-2.
상기 제4-2단계는 달리 특정하지 않는 한 전술한 제2-2단계와 동일한 조건 및 비활성가스 종류로 수행할 수 있다. The above step 4-2 can be performed under the same conditions and with the same type of inert gas as the above step 2-2 unless otherwise specified.
그런 다음, 상기 기판을 반응가스에 노출시켜 증착을 수행하는 단계를 포함할 수 있다. Then, it may include a step of performing deposition by exposing the substrate to a reaction gas.
구체적인 예로, 상기 기판을 반응 가스에 노출시키는 단계; 및 상기 기판을 불활성가스에 노출시키는 단계;를 포함할 수 있다. As a specific example, the method may include a step of exposing the substrate to a reaction gas; and a step of exposing the substrate to an inert gas.
여기서 상기 기판을 반응 가스에 노출시키는 단계는 도 2 내 부호 5로 나타낸 단계에 해당하며, 제4-3단계라 지칭한다.Here, the step of exposing the substrate to the reaction gas corresponds to the step indicated by symbol 5 in Fig. 2 and is referred to as step 4-3.
상기 제4-3 단계는, 100 내지 800℃의 온도 및 0.1 내지 100 Torr의 압력에서 수행할 수 있다. The above step 4-3 can be performed at a temperature of 100 to 800°C and a pressure of 0.1 to 100 Torr.
상기 반응 가스는 수소(H2), 질소(N2), 히드라진(N2H4), 이산화질소(NO2), 암모니아(NH3), 산소(O2), 및 오존(O3) 중에서 선택되는 1종 이상일 수 있다. 이 경우에 리간드 교환된 전구체의 증착을 통하여 효과적으로 증착막을 형성할 수 있다. 이때 형성된 증착막은 고밀도의 전기적 특성이 개선된 막일 수 있다. The above reaction gas may be at least one selected from hydrogen (H 2 ), nitrogen (N 2 ), hydrazine (N 2 H 4 ), nitrogen dioxide (NO 2 ), ammonia (NH 3 ), oxygen (O 2 ), and ozone (O 3 ). In this case, a deposition film can be effectively formed through deposition of a ligand-exchanged precursor. The deposition film formed at this time can be a film with improved high-density electrical characteristics.
상기 반응 가스는 전술한 기판의 홀 또는 트렌치에 100 초 이하, 100초 이하, 30초 이하, 또는 15초 이하로 투입할 수 있다. 이 경우에, 하기 도 3에 도시한 바와 같이, 상부 표면에 시임(seam)없이 박막이 형성된 홀 또는 트렌치의 하부 표면에 흡착 또는 결합된 전구체 금속의 리간드에 반응 가스가 결합하여 금속막, 질화막 또는 산화막의 형태로 리간드 교환층을 형성함으로써 시임 또는 보이드의 발생을 해소할 수 있다.The above reaction gas can be injected into the hole or trench of the above-mentioned substrate for 100 seconds or less, 100 seconds or less, 30 seconds or less, or 15 seconds or less. In this case, as illustrated in FIG. 3 below, the reaction gas binds to the ligand of the precursor metal adsorbed or bound to the lower surface of the hole or trench in which a thin film is formed without a seam on the upper surface, thereby forming a ligand exchange layer in the form of a metal film, a nitride film, or an oxide film, thereby eliminating the occurrence of seams or voids.
본 발명의 일 구현예로서 몰리브데넘 디클로라이드 디옥사이드(MoO2Cl2)를 사용하고 반응 가스로서 수소(H2)를 사용하는 경우 하기 도 2에 도시된 바와 같이, 미리 홀 또는 트렌치 상부에 부착된 관능기와 결합하여 이산화 몰리브덴(MoO2)을 형성함에 따라 증착막(26)을 제공하게 된다. As an embodiment of the present invention, when molybdenum dichloride dioxide (MoO2Cl2) is used and hydrogen (H2) is used as a reaction gas, a deposition film (26) is provided by forming molybdenum dioxide (MoO2) by combining with a functional group attached to the upper portion of a hole or trench in advance, as shown in FIG. 2 below.
이때 증착막(26)은 추후 필요에 따라서는 희생될 층에 해당하므로 두께를 충분히 두껍게 제작할 필요가 없으며, 일례로 100 nm 이하, 바람직하게는 30 nm 이하, 보다 바람직하게는 25 nm 이하로 형성할 정도로 전술한 전구체 화합물과 리간드 교환제를 사용하면 충분하다. At this time, since the deposition film (26) corresponds to a layer to be sacrificed later if necessary, there is no need to manufacture it with a sufficient thickness. For example, it is sufficient to use the above-described precursor compound and ligand exchange agent to form it to a thickness of 100 nm or less, preferably 30 nm or less, and more preferably 25 nm or less.
또한, 상기 전구체 흡착방지층(20)은 후술하는 리간드 교환층(24)을 제공하기 위한 리간드 교환제와 반응성이 없으므로 하기 도 2에 도시된 바와 같이, 홀 또는 트렌치 상부에 시임(seam) 또는 추가 흡착이 전혀 없이 균일한 구조를 계속 제공하게 된다. In addition, since the precursor adsorption prevention layer (20) is not reactive with the ligand exchange agent for providing the ligand exchange layer (24) described below, a uniform structure is continuously provided without any seam or additional adsorption on top of the hole or trench, as shown in FIG. 2 below.
이어서, 상기 기판을 불활성가스에 노출시켜 미반응 반응 가스를 퍼징하는 단계를 포함할 수 있다. Next, the method may include a step of exposing the substrate to an inert gas to purge unreacted reaction gas.
상기 퍼징 단계는 도 2에 미도시하였으며, 제4-4단계라 지칭한다. The above purging step is not shown in Fig. 2 and is referred to as step 4-4.
상기 제4-4단계는 달리 특정하지 않는 한 전술한 제2-2단계와 동일한 조건 및 비활성가스 종류로 수행할 수 있다. The above step 4-4 can be performed under the same conditions and with the same type of inert gas as the above step 2-2 unless otherwise specified.
구체적인 예로, 상기 불활성가스로는 질소, 아르곤 등 공지된 물질을 사용할 수 있고, 그 투입 시간은 전술한 반응 가스의 투입 시간의 5배 이하, 1 내지 5배, 또는 1.5 내지 3.5배 동안 투입할 수 있다. 이 경우 잔류 반응 가스는 제거하면서 홀 또는 트렌치 내부에 형성된 리간드 교환층은 유지시킬 수 있다. As a specific example, the inert gas may be a known substance such as nitrogen or argon, and the injection time may be 5 times or less, 1 to 5 times, or 1.5 to 3.5 times the injection time of the above-mentioned reaction gas. In this case, the ligand exchange layer formed inside the hole or trench can be maintained while removing the residual reaction gas.
본 발명의 일 구현예로서 MoO2Cl2 및 NH3를 사용하는 경우 하기 도 3에 도시된 바와 같이, 상부 표면에 시임(seam)없는 몰리브덴 박막을 형성한 홀 또는 트렌치의 하부 표면에 보이드(void) 발생 없이 몰리브덴 질화막의 리간드 교환층(24)을 형성하게 된다. As one embodiment of the present invention, when MoO2Cl2 and NH3 are used, as shown in FIG. 3 below, a ligand exchange layer (24) of a molybdenum nitride film is formed on the lower surface of a hole or trench in which a seamless molybdenum film is formed on the upper surface without generating voids.
이때 리간드 교환층(24)은 보이드(void) 발생 없이 모두 채울 수 있는 정도의 두께로 제작할 정도로 전술한 제2 금속 전구체 화합물와 반응 가스를 사용하면 충분하다. At this time, it is sufficient to use the aforementioned second metal precursor compound and reaction gas to manufacture the ligand exchange layer (24) to a thickness that can be completely filled without generating voids.
상기 리간드 교환층(24) 형성 공정은 일례로 상기 단계들을 1 사이클로 하여, 원하는 두께의 박막이 형성될 때까지 상기 사이클을 수십회 이상 반복할 수 있다. 구체적으로 상기 사이클 반복 회수는 10 내지 1000회, 바람직하게는 100 내지 300회일 수 있으며, 이 경우 박막의 두께가 적절히 구현되고, 공정 효율이 상승될 수 있다.The above ligand exchange layer (24) formation process can be repeated several dozen times or more, for example, with the above steps as one cycle, until a thin film of a desired thickness is formed. Specifically, the number of repetitions of the cycle can be 10 to 1,000 times, preferably 100 to 300 times, in which case the thickness of the thin film can be appropriately implemented, and the process efficiency can be increased.
전술한 박막 제조방법은 하기 도 2에서도 보듯이, 상기 제1 단계 내지 제5 단계를 1사이클로 하여 원하는 두께의 박막이 형성될 때까지 상기 사이클을 n회 이상, 일례로 십회 이상 반복할 수 있다. 구체적으로 상기 사이클 반복 회수는 10 내지 100회, 바람직하게는 10 내지 100회일 수 있으며, 이 경우 박막의 두께가 적절히 구현되고, 공정 효율이 상승될 수 있다.As shown in Fig. 2 below, the above-described thin film manufacturing method can repeat the first to fifth steps as one cycle, and the cycle can be repeated n or more times, for example, ten or more times, until a thin film of a desired thickness is formed. Specifically, the number of repetitions of the cycle can be 10 to 100 times, preferably 10 to 100 times, in which case the thickness of the thin film can be appropriately implemented, and the process efficiency can be increased.
구체적인 일례로, 상기 박막의 제조방법은 다음 단계들을 포함하여 실시될 수 있다:As a specific example, the method for manufacturing the above thin film can be carried out including the following steps:
a) 반응 챔버 내부에 기판을 반입하여 소성 온도로 유지하는 단계;a) A step of introducing a substrate into a reaction chamber and maintaining it at a sintering temperature;
b) 상기 반응 챔버 내부에 불활성가스를 주입하는 1차 퍼징 단계;b) A first purging step of injecting an inert gas into the reaction chamber;
c) 상기 반응 챔버 내부에 전구체 흡착방지제를 주입하여 상기 기판의 홀 또는 트렌치 상부 표면, 즉 피처의 측벽들 최상부 벽 표면, 또는 최상부 벽 표면과 상부 측벽 표면 위에 흡착 또는 결합하는 전구체 흡착방지층 형성 단계;c) a step of forming a precursor adsorption prevention layer by injecting a precursor adsorption prevention agent into the reaction chamber and adsorbing or bonding on the upper surface of the hole or trench of the substrate, i.e., the uppermost wall surface of the side walls of the feature, or the uppermost wall surface and the upper side wall surface;
d) 상기 반응 챔버 내부로 불활성가스를 주입하여 기재 상에 잔류한 전구체 흡착방지제는 제거하는 2차 퍼징 단계;d) A second purging step of removing the precursor adsorption inhibitor remaining on the substrate by injecting an inert gas into the reaction chamber;
e) 상기 반응 챔버 내부에 본 발명의 전구체 화합물을 주입하여 상기 기판의 홀 또는 트렌치에 흡착 또는 결합된 전구체 흡착방지제가 없는 홀 또는 트렌치 하부 표면, 즉 피처의 상기 상부 측벽을 제외한 측벽 표면 및 최하부 표면 위에 흡착 또는 결합하는 전구체 흡착층 형성 단계; e) a step of forming a precursor adsorption layer by injecting the precursor compound of the present invention into the reaction chamber and adsorbing or bonding on the lower surface of the hole or trench of the substrate, that is, the sidewall surface and the lowermost surface excluding the upper sidewall of the feature, free from the precursor adsorption inhibitor adsorbed or bonded to the hole or trench;
f) 상기 반응 챔버 내부로 불활성가스를 주입하여 미반응 전구체 화합물을 제거하는 3차 퍼징 단계; f) A third purging step of removing unreacted precursor compounds by injecting an inert gas into the reaction chamber;
g) 상기 반응 챔버 내부에 리간드 교환제를 주입하여 상기 기판의 홀 또는 트렌치 하부 표면의 전구체 흡착층의 리간드와 교환하는 단계; g) a step of injecting a ligand exchange agent into the reaction chamber to exchange it with the ligand of the precursor adsorption layer on the lower surface of the hole or trench of the substrate;
h) 상기 반응 챔버 내부로 불활성가스를 주입하여 미반응 리간드 교환제를 제거하는 4차 퍼징 단계;h) A fourth purging step of removing unreacted ligand exchange agent by injecting an inert gas into the reaction chamber;
i) 상기 반응 챔버 내부로 반응 가스를 주입하여 상기 기판의 홀 또는 트렌치 하부 표면, 즉 피처의 상기 상부 측벽을 제외한 측벽 표면 및 최하부 표면 위에 흡착 또는 결합된 전구체의 교환된 리간드와 반응시켜 증착막을 형성하는 단계; 및i) a step of forming a deposition film by injecting a reaction gas into the reaction chamber to react with the exchanged ligand of the precursor adsorbed or bound on the lower surface of the hole or trench of the substrate, i.e., the sidewall surface and the lowermost surface excluding the upper sidewall of the feature; and
j) 상기 흡착 또는 결합된 전구체의 교환된 리간드와 반응 가스의 반응에 의해 생성된 부산물 및 미반응 물질을 상기 반응 챔버 외부로 방출시키는 5차 퍼징 단계.j) A fifth purging step for discharging by-products and unreacted substances generated by the reaction of the exchanged ligand of the adsorbed or bound precursor with the reaction gas outside the reaction chamber.
상기 박막의 제조방법은 상기 단계 a) 내지 j)를 1 사이클로 하여, 상기 사이클은 반복 수행될 수 있다. 구체적으로 상기 사이클 반복 회수는 10 내지 1000회, 바람직하게는 100 내지 300회일 수 있으며, 이 경우 박막의 두께가 적절히 구현되고, 공정 효율이 상승될 수 있다.The method for manufacturing the above thin film comprises steps a) to j) as one cycle, and the cycle can be performed repeatedly. Specifically, the number of repetitions of the cycle can be 10 to 1000 times, preferably 100 to 300 times. In this case, the thickness of the thin film can be appropriately implemented, and the process efficiency can be increased.
구체적인 예로, 상기 박막의 제조방법은 상기 단계 a) 내지 e)를 제1 사이클로 하여, 상기 사이클은 반복 수행된 다음 상기 단계 f) 내지 j)를 제2 사이클로 하여, 상기 사이클은 반복 수행될 수 있다. 구체적으로 상기 사이클 반복 회수는 제1 사이클의 경우 10 내지 1000회, 바람직하게는 100 내지 300회일 수 있고 제2 사이클의 경우 10 내지 100회, 바람직하게는 10 내지 100회일 수 있으며, 이 경우 박막의 두께가 적절히 구현되고, 공정 효율이 상승될 수 있다.As a specific example, the method for manufacturing the thin film may be such that steps a) to e) are made into a first cycle, the cycle is repeatedly performed, and then steps f) to j) are made into a second cycle, the cycle is repeatedly performed. Specifically, the number of repetitions of the cycle may be 10 to 1000 times, preferably 100 to 300 times, for the first cycle, and 10 to 100 times, preferably 10 to 100 times, for the second cycle. In this case, the thickness of the thin film may be appropriately implemented, and the process efficiency may be increased.
상기 박막의 제조방법은 일례로 상기 기판 상에 형성된 박막 위에 플라즈마를 이용하여 증착하는 단계를 더 포함할 수 있고, 이 경우 상대적으로 낮은 온도의 증착 조건에서도 고품질의 박막을 얻을 수 있다. 상기 플라즈마는 일례로 산소 플라즈마일 수 있으나, 이에 제한되는 것은 아니다.The method for manufacturing the above thin film may further include, for example, a step of depositing the thin film formed on the substrate using plasma, in which case a high-quality thin film can be obtained even under deposition conditions at relatively low temperatures. The plasma may be, for example, oxygen plasma, but is not limited thereto.
상기 선택적 증착 공정은 일례로 홀 또는 트렌치의 서로 다른 표면을 이용하여 상기 증착 공정에 의해 생성된 전구체 흡착방지층(20), 전구체 흡착층(22), 리간드 교환층(24)에 의해 증착막(26)을 형성한다. The above selective deposition process forms a deposition film (26) by using, for example, different surfaces of a hole or trench, a precursor adsorption prevention layer (20), a precursor adsorption layer (22), and a ligand exchange layer (24) generated by the above deposition process.
상기 선택적 증착 공정은 일례로 화학 기상 증착법(CVD), 유기금속 화학기상 증착법(MOCVD), 저압 기상 증착법(LPCVD), 플라즈마 강화 기상 증착법 (PECVD), 원자층 증착법(ALD), 또는 플라즈마 강화 원자층 증착법(PEALD)으로 실시될 수 있고, 바람직하게는 화학 기상 증착법(CVD) 또는 원자층 증착법(ALD)에 의해 실시될 수 있으나, 이에 한정되는 것은 아니다. The above selective deposition process may be performed by, for example, chemical vapor deposition (CVD), metalorganic chemical vapor deposition (MOCVD), low pressure vapor deposition (LPCVD), plasma enhanced vapor deposition (PECVD), atomic layer deposition (ALD), or plasma enhanced atomic layer deposition (PEALD), and is preferably performed by, but not limited to, chemical vapor deposition (CVD) or atomic layer deposition (ALD).
상기 화학 기상 증착법 또는 원자층 증착법은 일례로 원료를 기체 상태로 기판에 공급함으로써 종횡비가 큰 구조의 표면에도 균일한 두께의 막을 형성할 수 있으며, 대면적 또는 롤 형태의 기판에도 균일한 막을 형성할 수 있는 이점이 있다.The above chemical vapor deposition method or atomic layer deposition method has the advantage of being able to form a film of uniform thickness even on the surface of a structure with a large aspect ratio by supplying raw materials to the substrate in a gaseous state, for example, and being able to form a uniform film even on a large area or roll-shaped substrate.
전술한 선택적 증착 공정에 의해 증착된 박막은, 기판의 홀 또는 트렌치 구조를 공간 분할하되, 상기 기판의 홀 또는 트렌치 구조는 기판 표면에 형성된 하나 이상의 피처(10, 12, 14, 16)를 갖고, 상기 하나 이상의 피처는 측벽들(14,16)과 최상부 표면(10), 최하부 표면(12)을 가지며, 상기 측벽들과 최하부 표면의 서로 다른 면 위에 전구체 흡착방지층과 전구체 흡착층이 배치되고, 상기 전구체 흡착층 상에 리간드 교환층이 배치된 구조를 갖는 것을 특징으로 한다. The thin film deposited by the selective deposition process described above is characterized in that it has a structure in which a hole or trench structure of a substrate is spatially divided, wherein the hole or trench structure of the substrate has one or more features (10, 12, 14, 16) formed on a surface of the substrate, and the one or more features have sidewalls (14, 16), a top surface (10), and a bottom surface (12), and a precursor adsorption prevention layer and a precursor adsorption layer are disposed on different surfaces of the sidewalls and the bottom surface, and a ligand exchange layer is disposed on the precursor adsorption layer.
하기 도 3에서 보듯이, 상기 전구체 흡착방지층(20)은 상기 하나 이상의 피처의 측벽들(14, 16) 상부 표면 및 최상부 표면(10) 위에 배치될 수 있고, 상기 전구체 흡착층(22)은 상기 전구체 흡착방지층과 중첩되지 않는 표면들 위에 배치될 수 있다.As shown in FIG. 3 below, the precursor adsorption prevention layer (20) may be disposed on the upper surface and the top surface (10) of the side walls (14, 16) of one or more of the features, and the precursor adsorption layer (22) may be disposed on surfaces that do not overlap with the precursor adsorption prevention layer.
상기 리간드 교환층(24)은 상기 전구체 흡착층(22)에 배치되어 증착막(26)을 제공할 수 있다. The above ligand exchange layer (24) can be arranged on the precursor adsorption layer (22) to provide a deposition film (26).
본 발명의 일 구현예에 따른 박막은 시임 프리(seam free) 및 보이드 프리(void free) 박막일 수 있다. A thin film according to one embodiment of the present invention may be a seam free and void free thin film.
즉, 상기 기판의 홀 또는 트렌치 상부 표면에 형성된 박막(20)과 하부 표면에 형성된 박막(26)은 시임 프리(seam free) 및 보이드 프리(void free)의 폐쇄된 구조를 제공할 수 있다. That is, the thin film (20) formed on the upper surface of the hole or trench of the substrate and the thin film (26) formed on the lower surface can provide a closed structure that is seam free and void free.
상기 폐쇄된 구조란 전술한 바와 같이, 이에 한정하는 것은 아니나 리간드 교환층으로 충진되어 보이드(void) 없이 홀 또는 트렌치 내부가 모두 메꿔진 구조를 의미한다. The above closed structure means, as described above, a structure in which the inside of holes or trenches is completely filled with a ligand exchange layer without voids, but is not limited thereto.
상기 기판의 홀 또는 트렌치 상부 표면에 형성된 박막(20)과 하부 표면에 형성된 박막(26)은 서로 독립적으로 몰리브덴막, 텅스텐막, 루테늄막, 코발트막 질화실리콘막, 산화실리콘막, 질화티탄막, 산화티탄막, 질화텅스텐막, 질화몰리브덴막, 질화루테늄막, 질화코발트막, 산화하프늄막, 산화지르코늄막, 산화텅스텐막, 산화루테늄막, 산화코발트막 또는 산화알미늄막 중에서 선택될 수 있다. The thin film (20) formed on the upper surface of the hole or trench of the above substrate and the thin film (26) formed on the lower surface may be independently selected from a molybdenum film, a tungsten film, a ruthenium film, a cobalt film, a silicon nitride film, a silicon oxide film, a titanium nitride film, a titanium oxide film, a tungsten nitride film, a molybdenum nitride film, a ruthenium nitride film, a cobalt nitride film, a hafnium oxide film, a zirconium oxide film, a tungsten oxide film, a ruthenium oxide film, a cobalt oxide film, or an aluminum oxide film.
바람직한 예로, 본 발명의 일 구현예에 따른 박막은 기판의 홀 또는 트렌치 구조를 공간 분할하되, 상기 기판의 홀 또는 트렌치 구조는 기판 표면에 형성된 하나 이상의 피처(10,12,14,16)를 갖고, 상기 하나 이상의 피처는 측벽들(14,16)과 최하부 표면(12)을 가지며, 상기 하나 이상의 피처의 측벽들(14,16) 상부 표면 및 최상부 표면(10) 위에 배치된 전구체 흡착방지층(20); 상기 전구체 흡착방지층(20)과 중첩되지 않는 하부 표면 위에 배치된 전구체 흡착층(22); 및 상기 전구체 흡착층에 배치된 리간드 교환층(24);을 포함할 수 있다. As a preferred example, a thin film according to one embodiment of the present invention may include a substrate having a hole or trench structure spatially divided into a substrate surface, wherein the hole or trench structure has one or more features (10, 12, 14, 16) formed on a surface of the substrate, the one or more features having sidewalls (14, 16) and a lowermost surface (12), a precursor adsorption-preventing layer (20) disposed on an upper surface and an uppermost surface (10) of the sidewalls (14, 16) of the one or more features; a precursor adsorption layer (22) disposed on a lower surface that does not overlap with the precursor adsorption-preventing layer (20); and a ligand exchange layer (24) disposed on the precursor adsorption layer.
상기 리간드 교환층(24)은 상기 전구체 흡착층(22)의 전구체 리간드를 교환시켜 결과적으로 증착막(26)을 형성하게 된다. The above ligand exchange layer (24) exchanges the precursor ligand of the precursor adsorption layer (22), thereby forming a deposition film (26).
결과 수득된 박막을 하기 도 4에 나타내었다. 하기 도 4는 본 발명에서 수득된 박막의 구조를 나타낸 모식도이다. The resulting thin film is shown in Figure 4 below. Figure 4 below is a schematic diagram showing the structure of the thin film obtained in the present invention.
상기 박막은 2층 또는 3층의 다층 구조일 수 있다. The above thin film may have a multilayer structure of two or three layers.
본 발명의 일 구현예에 따르면, 반도체 소자들의 고종횡비 홀 또는 트렌치들을 갭충전하기 위한 고품질 박막을 제공한다. According to one embodiment of the present invention, a high-quality thin film for gap-filling high aspect ratio holes or trenches of semiconductor devices is provided.
상기 박막은 전구체 흡착 방지제로 인한 효과로 시임과 보이드가 없고, 박막 내 탄소 불순물 도프량이 1% 이하이면서 리간드 교환제로 인하여 증착 속도가 종래 박막 제조 대비 10% 이상 개선된 것일 수 있다. The above thin film may be free of seams and voids due to the effect of a precursor adsorption inhibitor, may have a carbon impurity doping amount of 1% or less in the thin film, and may have a deposition speed improved by more than 10% compared to conventional thin film manufacturing due to a ligand exchange agent.
이러한 시임과 보이드가 없고, 박막 내 탄소 불순물 도프량이 1% 이하이면서 증착 속도가 종래 박막 제조 대비 10% 이상 개선된 박막은 고밀도이면서 누설 없이 전기적 특성 개선을 초래한다. These thin films are free of seams and voids, contain less than 1% carbon impurities in the thin film, and have a deposition rate improved by more than 10% compared to conventional thin film manufacturing, resulting in improved electrical properties with high density and no leakage.
부가적으로, 시임과 보이드가 없고 고밀도의 전기적 특성이 개선된 박막은 고종횡비 홀 또는 트렌치들에서의 공극화를 감소시키거나 제거하여 전체적인 소자 성능을 개선할 수 있다. Additionally, the thin films with improved electrical properties and no voids and high density can improve overall device performance by reducing or eliminating voiding in high aspect ratio holes or trenches.
상기 박막은 확산방지막, 에칭정지막, 전극막, 유전막, 게이트절연막, 블럭산화막 또는 차지트랩 용도일 수 있다. The above thin film can be used as a diffusion barrier film, an etching stop film, an electrode film, a dielectric film, a gate insulating film, a block oxide film, or a charge trap.
또한, 본 발명에 따르면, 기판; 및 상기 기판 상에 형성된 박막;을 포함하되, In addition, according to the present invention, a substrate; and a thin film formed on the substrate; including,
상기 기판은 100 nm 이하의 폭과 50:1 이상의 종횡비를 갖는 홀 또는 트렌치 구조를 포함하고, 상기 박막은 전술한 박막인 것을 특징으로 하는 반도체 기판을 제공할 수 있다. A semiconductor substrate can be provided, characterized in that the substrate includes a hole or trench structure having a width of 100 nm or less and an aspect ratio of 50:1 or greater, and the thin film is the thin film described above.
나아가, 본 발명에 따르면 전술한 기판을 포함하는 것을 특징으로 하는 반도체 소자를 제공할 수 있다. Furthermore, according to the present invention, a semiconductor device characterized by including the above-described substrate can be provided.
상기 반도체 소자는 성능 고도화에 따라 높은 집적도를 만족하는 것으로, 기판의 두께 불균일성, 시임(seam), 보이드(void)등의 문제를 모두 해소하고 소자 신뢰성과 스텝 커버리지와 비저항, 표면 거칠기 등의 물성이 개선된 소자를 제공하게 된다. The above semiconductor device satisfies high integration as performance is improved, and solves all problems such as substrate thickness unevenness, seams, and voids, and provides a device with improved device reliability, step coverage, resistivity, surface roughness, and other physical properties.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예 및 도면을 제시하나, 하기 실시예 및 도면은 본 발명을 예시하는 것일 뿐 본 발명의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다.Hereinafter, preferred embodiments and drawings are presented to help understand the present invention. However, the following embodiments and drawings are only illustrative of the present invention, and it is obvious to those skilled in the art that various changes and modifications are possible within the scope and technical idea of the present invention, and it is also natural that such changes and modifications fall within the scope of the appended patent claims.
[실시예][Example]
실시예 1Example 1
TiN ALD 증착을 위해 Ti 전구체로 TiCl4를 활용, 반응가스로는 NH3 가스를 활용하였으며, 흡착방지제는 2-chloro-2-methyl butane를 사용하였으며, 리간드 교환제는 아이오딘화 수소를 사용하였다. 참고로, 본 발명은 트랜치 위치에 따른 증착속도 차이를 극대화하기 위해 흡착방지제 (GPC 저감제)와 리간드 교환제 (GPC 촉진제)를 활용한 것이므로 흡착방지제와 리간드 교환제의 특징은 제조하려는 박막 특성에 악영향을 주는 것은 바람직하지 않다. 트렌치 기판은 22:1 종횡비를 갖는 기판을 활용하였다.For TiN ALD deposition, TiCl4 was used as a Ti precursor, NH3 gas was used as a reaction gas, 2-chloro-2-methyl butane was used as an anti-adsorption agent, and hydrogen iodide was used as a ligand exchange agent. For reference, the present invention utilizes an anti-adsorption agent (GPC reducer) and a ligand exchange agent (GPC promoter) to maximize the difference in deposition rate according to the trench position, so it is not desirable for the characteristics of the anti-adsorption agent and the ligand exchange agent to have a negative effect on the properties of the thin film to be manufactured. A trench substrate was used having an aspect ratio of 22:1.
우선, TiCl4 전구체는 충분한 증기압을 확보하기 위해 캐니스터를 35도로 가온하여 50 sccm으로 1초 주입하였고, NH3 반응가스는 1000 sccm의 유량으로 3초간 주입하였다. First, the TiCl4 precursor was injected at 50 sccm for 1 second by heating the canister to 35 degrees to secure sufficient vapor pressure, and the NH3 reaction gas was injected at a flow rate of 1000 sccm for 3 seconds.
흡착방지제로서 2-chloro-2-methyl butane을 10~200 sccm의 구간으로 조절하여 1초간 공급하였다. 리간드 교환제로 아이오딘화수소를 100 sccm 유량으로 3초간 공급하였다. As an anti-adsorption agent, 2-chloro-2-methyl butane was supplied at a rate of 10 to 200 sccm for 1 second. As a ligand exchange agent, hydrogen iodide was supplied at a flow rate of 100 sccm for 3 seconds.
반응가스 NH3 1,000 sccm의 유속으로 챔버에 공급하였다. 기화기에서 증기상으로 기화된 박막 형성 물질을 2초 동안 기판이 로딩된 증착 챔버에 투입하여 환원 반응을 수행시켰다. 이때 반응 챔버내 압력은 2 Torr로 제어하였다. 증착온도는 350℃를 유지하여 이와 같은 공정을 100 내지 400회 반복하여 10 nm 두께의 자기-제한 원자층 박막을 형성하였다.The reaction gas NH3 was supplied to the chamber at a flow rate of 1,000 sccm. The thin film forming material vaporized in a vapor phase from the vaporizer was introduced into the deposition chamber loaded with the substrate for 2 seconds to perform a reduction reaction. At this time, the pressure in the reaction chamber was controlled to 2 Torr. The deposition temperature was maintained at 350°C, and this process was repeated 100 to 400 times to form a self-limiting atomic layer thin film with a thickness of 10 nm.
상술한 각각의 흡착방지제, 전구체, 리간드 교환제, 반응가스 주입 사이에는 물리 흡착되거나 미반응 부산물을 제거하기 위해서 불활성 가스 (N2)를 3000 sccm으로 6초간 주입하였다.Between each injection of the above-mentioned anti-adsorbent, precursor, ligand exchange agent, and reaction gas, an inert gas (N2) was injected at 3000 sccm for 6 seconds to remove physically adsorbed or unreacted by-products.
또한, 적용 순서는 하기 표 1에 기재된 바에 따라 수행하였다. Additionally, the application order was performed as described in Table 1 below.
제조된 증착막에 대하여 빛의 편광 특성을 이용하여 금속막의 두께나 굴절률과 같은 광학적 특성을 측정할 수 있는 장치인 엘립소미터(Ellipsometer)로 측정한 증착막의 두께를 사이클 횟수로 나누어 1 사이클당 증착되는 박막의 두께를 계산하였다. The thickness of the deposited film was measured using an ellipsometer, a device that can measure optical properties such as the thickness or refractive index of a metal film using the polarization characteristics of light, and the thickness of the film deposited per cycle was calculated by dividing the thickness of the deposited film by the number of cycles.
박막의 구성원소 정보를 확인하기 위해 X선 광전자 분광법을 활용하였다. X-ray photoelectron spectroscopy was used to confirm the constituent elements of the thin film.
그리고 4-probe measurement 법을 활용하여 면저항을 측정한 뒤, 측정된 두께를 활용하여 비저항 값으로 계산하였으며, uΩ-cm 단위를 사용한다. And then, the surface resistance was measured using the 4-probe measurement method, and the measured thickness was used to calculate the resistivity value, and the unit is uΩ-cm.
수득된 증착막에 대하여 엘립소미터 장비를 사용하여 3 내지 30 nm 두께의 박막 증착속도(GPC)를 측정하였으며, Å/cycle 단위를 사용한다.The deposition rate (GPC) of a thin film with a thickness of 3 to 30 nm was measured for the obtained deposited film using an ellipsometer, and the unit is Å/cycle.
공정 구분Process classification 흡착 방지제 유량Adsorption inhibitor flow rate 리간드 교환제 유량Ligand exchange agent flux cyclecycle 두께thickness 증착속도Deposition rate 비저항Resistivity
전구체 -> 반응 가스Precursor -> Reactant Gas 00 00 200200 110.4110.4 0.5520.552 146.4146.4
전구체 -> 리간드 교환제 -> 반응가스Precursor -> Ligand exchanger -> Reactant gas 00 100100 150150 129.3129.3 1.0351.035 91.191.1
흡착 방지제 -> 전구체 -> 반응 가스Adsorbent -> Precursor -> Reactant Gas 1010 00 235235 109.5109.5 0.4660.466 146.1146.1
흡착 방지제 -> 전구체 -> 반응 가스Adsorbent -> Precursor -> Reactant Gas 200200 00 235235 00 00 측정불가Immeasurable
흡착 방지제 -> 전구체 -> 리간드 교환제 -> 반응 가스 Adsorbent -> Precursor -> Ligand exchanger -> Reactant gas 1010 100100 106106 94.994.9 0.8960.896 111.9111.9
상기 표 2 및 도 5에서 보듯이, 상기 흡착방지제는 트렌치 상부에서 하부로 갈수록 흡착되는 양이 다르기 때문에 위치별로 증착속도 차이를 야기시키는 것으로 확인되었다. 즉, 트렌치 상부에서는 흡착방지제가 가장 많이 흡착되어 GPC 가 0에 수렴하게 해야 하며, 하부에서는 흡착을 방지하게끔 하는 것이 가장 바람직하다. 따라서 흡착방지제는 트렌치 상부에만 흡착할 수 있는 공정조건 (최적 유량에서의 짧은 시간)이 바람직한 것을 확인한 반면, 리간드 교환제는 트렌치 상부에서 하부까지 모두 영향을 미칠 수 있도록 충분한 유량과 시간동안 공급해야 바람직한 것으로 확인되었다. As shown in Table 2 and FIG. 5, it was confirmed that the adsorption inhibitor causes a difference in deposition rate by location because the amount of adsorption is different from the top to the bottom of the trench. That is, the adsorption inhibitor should be adsorbed the most at the top of the trench so that the GPC converges to 0, and it is most desirable to prevent adsorption at the bottom. Accordingly, it was confirmed that the process conditions (short time at optimal flow rate) under which the adsorption inhibitor can be adsorbed only at the top of the trench are desirable, whereas the ligand exchange agent should be supplied at a sufficient flow rate and time so that it can affect the entire trench from the top to the bottom.
흡착방지제 및 리간드교환제의 효과를 확인하기 위해 상기 표 1과 같이 흡착방지제 농도와 리간드 교환제의 유무에 따른 증착속도 변화와 비저항을 측정한 결과, 트렌치 상부, 측면, 하부에서 흡착방지제와 리간드 교환제의 영향으로 증착속도가 변화되고, 이에 따른 두께 차이를 확인할 수 있다(도 5 참조). In order to confirm the effects of the anti-adsorption agent and ligand exchange agent, as shown in Table 1 above, the deposition rate change and resistivity according to the concentration of the anti-adsorption agent and the presence or absence of the ligand exchange agent were measured. As a result, it was confirmed that the deposition rate changed due to the effects of the anti-adsorption agent and the ligand exchange agent at the top, side, and bottom of the trench, and the thickness difference caused by this changed (see Figure 5).
결과적으로, 본 발명에 따르면 bottom up gap fill 또는 seam less gap fill 구조를 구현할 수 있는 것으로 확인되었다. As a result, it was confirmed that a bottom up gap fill or seam less gap fill structure can be implemented according to the present invention.
실시예 2Example 2
MoN ALD 증착을 위해 Mo 전구체로 Bis(tert-butylimido)bis(dimethylamido)molybdenum을 활용하였고, 반응가스로는 NH3 가스를 활용하였으며, 흡착방지제는 2-chloro-2-methyl butane를 사용하였으며, 리간드 교환제는 아이오딘화 수소를 사용하였다. 트렌치 기판은 22:1 종횡비를 갖는 기판을 활용하였다.For MoN ALD deposition, Bis(tert-butylimido)bis(dimethylamido)molybdenum was used as a Mo precursor, NH3 gas was used as a reactant gas, 2-chloro-2-methyl butane was used as an anti-adsorption agent, and hydrogen iodide was used as a ligand exchange agent. A trench substrate having an aspect ratio of 22:1 was used.
구체적으로, 2-chloro-2-methyl butane을 증착속도 조절을 위해 10~200 sccm 의 구간에서 조절하여 1 내지 5초 공급하였다. Specifically, 2-chloro-2-methyl butane was supplied for 1 to 5 seconds at a rate ranging from 10 to 200 sccm to control the deposition rate.
준비된 전구체 화합물을 별도의 캐니스터에 담아 상온에서 LMFC(Liquid Mass Flow Controller)를 이용하여 0.1 g/min의 유속으로 150℃로 가열된 별도의 기화기로 공급하였다. The prepared precursor compound was placed in a separate canister and supplied to a separate vaporizer heated to 150°C at a flow rate of 0.1 g/min using a Liquid Mass Flow Controller (LMFC) at room temperature.
기화기에서 증기상으로 기화된 BTBMMo 전구체를 3초 동안 증착 챔버에 투입하였다. 이때 반응 챔버내 압력은 2 Torr로 제어하였다.The BTBMMo precursor vaporized in a vapor phase from a vaporizer was introduced into the deposition chamber for 3 seconds. At this time, the pressure inside the reaction chamber was controlled at 2 Torr.
또한 리간드 교환제로서 아이오딘화 수소를 100 sccm 유량으로 3초 공급하였다. Additionally, hydrogen iodide was supplied as a ligand exchange agent at a flow rate of 100 sccm for 3 seconds.
반응가스 NH3 1,000 sccm의 유속으로 챔버에 공급하였다. 기화기에서 증기상으로 기화된 박막 형성 물질을 2초 동안 기판이 로딩된 증착 챔버에 투입하여 환원 반응을 수행시켰다. 이때 반응 챔버내 압력은 2 Torr로 제어하였다. 증착온도는 350℃를 유지하여 이와 같은 공정을 100 내지 400회 반복하여 10 nm 두께의 자기-제한 원자층 박막을 형성하였다.The reaction gas NH3 was supplied to the chamber at a flow rate of 1,000 sccm. The thin film forming material vaporized in a vapor phase from the vaporizer was introduced into the deposition chamber loaded with the substrate for 2 seconds to perform a reduction reaction. At this time, the pressure in the reaction chamber was controlled to 2 Torr. The deposition temperature was maintained at 350°C, and this process was repeated 100 to 400 times to form a self-limiting atomic layer thin film with a thickness of 10 nm.
각각의 흡착방지제, 전구체, 리간드 교환제, 반응가스 주입 사이에는 물리흡착되거나 미반응 부산물을 제거하기 위해서 불활성 가스 (N2) 3000 sccm을 6초간 주입하였다.Between each injection of the anti-adsorbent, precursor, ligand exchanger, and reactant gas, 3000 sccm of inert gas (N2) was injected for 6 seconds to remove physically adsorbed or unreacted by-products.
또한, 적용 순서는 하기 표 2에 기재된 바에 따라 수행하였으며, 상기 실시예 1과 마찬가지로 증착속도, 비저항, 두께 등을 측정하였다. In addition, the application order was performed as described in Table 2 below, and the deposition rate, resistivity, thickness, etc. were measured as in Example 1.
공정 구분Process classification 흡착 방지제 유량Adsorption inhibitor flow rate 리간드 교환제 유량Ligand exchange agent flux cyclecycle 두께thickness 증착속도Deposition rate 비저항Resistivity
전구체 -> 반응 가스Precursor -> Reactant Gas 00 00 146146 105105 0.720.72 25212521
흡착 방지제 -> 전구체 -> 리간드 교환제 -> 반응 가스 Adsorbent -> Precursor -> Ligand exchanger -> Reactant gas 1010 100100 361361 112112 0.310.31 16671667
흡착 방지제 -> 전구체 -> 리간드 교환제 -> 반응 가스 Adsorbent -> Precursor -> Ligand exchanger -> Reactant gas 200200 100100 361361 00 00 --
상기 표 2에서 보듯이, Mo를 포함하는 전도성 박막의 실시예로써 MoN 박막평가를 진행하였고, 증착속도 저감은 물론 비저항도 개선됨을 확인하였다. 따라서, 본 기술이 Mo를 포함하는 전도성 박막에도 적용 가능함을 확인할 수 있었다. As shown in Table 2 above, a MoN thin film was evaluated as an example of a conductive thin film containing Mo, and it was confirmed that not only was the deposition rate reduced, but also the resistivity was improved. Therefore, it was confirmed that the present technology can also be applied to a conductive thin film containing Mo.
[실시예 3][Example 3]
각각의 막 내 불순물 함량을 확인하기 위하여, 종래 방식으로 제조된 박막 두께 10 nm의 TiN 박막, 흡착 방지제와 리간드 교환제를 모두 적용한 두께 10 nm의 TiN 박막, 흡착 방지제만 적용한 두께 10nm의 TiN 박막, 그리고 리간드 교환제만 적용한 두께 10nm의 TiN 박막 각각에 대하여 XPS 분석을 수행하여 불순물 함량을 측정하면서 막 두께 변화를 확인하고 하기 도 6에 나타내었다. In order to confirm the impurity content in each film, XPS analysis was performed on a 10 nm thick TiN film manufactured by a conventional method, a 10 nm thick TiN film to which both an anti-adsorption agent and a ligand exchange agent were applied, a 10 nm thick TiN film to which only an anti-adsorption agent was applied, and a 10 nm thick TiN film to which only a ligand exchange agent was applied, to measure the impurity content and confirm the change in film thickness, which is shown in Figure 6 below.
하기 도 6 중에서, Ref TiN은 종래 방식으로 제작된 박막의 불순물 함량과 막 두께 변화를 분석한 결과이고, 본 발명에 따라 흡착 방지제와 리간드 교환제를 모두 적용한 두께 10 nm의 TiN 박막을 분석한 결과는 (c)로서 나타내었고, 흡착 방지제만 적용한 두께 10nm의 TiN 박막에 대한 분석 결과는 (a)로서 나타내었으며, 리간드 교환제만 적용한 두께 10nm의 TiN 박막에 대한 분석 결과는 (b)로서 나타내었다. In the following Figure 6, Ref TiN is the result of analyzing the impurity content and film thickness change of a thin film manufactured by a conventional method, the result of analyzing a 10 nm thick TiN thin film to which both an adsorption inhibitor and a ligand exchanger were applied according to the present invention is shown as (c), the result of analyzing a 10 nm thick TiN thin film to which only an adsorption inhibitor was applied is shown as (a), and the result of analyzing a 10 nm thick TiN thin film to which only a ligand exchanger was applied is shown as (b).
하기 도 6에서 보듯이, Ref TiN 대비 (a), (b), (c) 각각에서 탄소, 아이오딘 등의 불순물은 미검출되는 것으로 확인되었다. 한편, (a)의 경우 막 두께는 상대적으로 저감된 결과를 확인할 수 있었으며, (b)의 경우에 막 두께는 상대적으로 증가된 결과를 확인할 수 있었다. As shown in Figure 6 below, it was confirmed that impurities such as carbon and iodine were not detected in (a), (b), and (c) compared to Ref TiN. Meanwhile, in the case of (a), it was confirmed that the film thickness was relatively reduced, and in the case of (b), it was confirmed that the film thickness was relatively increased.
따라서, 본 발명에 따라 수득된 박막은 박막 내 탄소, 아이오딘 등의 불순물 도프량이 1% 이하이면서 리간드 교환제로 인하여 증착 속도가 종래 박막 제조 대비 10% 이상 개선된 것임을 확인할 수 있었다.Accordingly, it was confirmed that the thin film obtained according to the present invention has a deposition speed improved by more than 10% compared to conventional thin film manufacturing due to the ligand exchange agent while the amount of impurities such as carbon and iodine doping in the thin film is 1% or less.
즉, 본 발명에 따르면 기판의 홀 또는 트렌치 구조를 공간적으로 나누어 선택적 증착 공정을 수행하여 서로 다른 표면에 전구체 흡착방지층, 전구체 흡착층과 리간드 교환층을 제공함으로써 홀 또는 트렌치 상부의 시임(seam) 또는 홀 또는 트렌치 내부의 보이드(void) 없이 기판의 홀 또는 트렌치 위치별 두께 불균일도를 해소할 수 있는 전구체 흡착방지제와 리간드 교환제를 이용한 박막의 제조방법을 제공할 수 있고, 이를 포함하여 홀 또는 트렌치 내부의 보이드 또는 시임 없이 기판의 홀 또는 트렌치 위치별 두께 불균일도를 해소하고 고밀도의 전기적 특성이 개선된 균일한 박막을 최소한의 두께로 제조한 박막을 제공하는 효과가 있다. That is, according to the present invention, by spatially dividing the hole or trench structure of the substrate and performing a selective deposition process to provide a precursor adsorption prevention layer, a precursor adsorption layer, and a ligand exchange layer on different surfaces, a method for manufacturing a thin film using a precursor adsorption prevention agent and a ligand exchange agent can be provided, which can resolve the thickness non-uniformity according to the hole or trench location of the substrate without a seam on the top of the hole or trench or a void inside the hole or trench, and including this, there is an effect of providing a thin film manufactured with a minimum thickness, which resolves the thickness non-uniformity according to the hole or trench location of the substrate without a void or seam inside the hole or trench and has improved high-density electrical characteristics.

Claims (21)

  1. 기판의 홀 또는 트렌치 구조를 공간적으로 나누어 선택적 증착 공정을 수행하되, A selective deposition process is performed by spatially dividing the hole or trench structure of the substrate.
    상기 선택적 증착 공정은 홀 또는 트렌치의 서로 다른 표면을 이용하여 상기 증착 공정에 의해 생성된 전구체 흡착방지층, 전구체 흡착층과 리간드 교환층을 제공하도록 수행되는 것을 특징으로 하는 박막의 제조방법. A method for manufacturing a thin film, characterized in that the selective deposition process is performed to provide a precursor adsorption prevention layer, a precursor adsorption layer and a ligand exchange layer produced by the deposition process by utilizing different surfaces of a hole or trench.
  2. 기판의 홀 또는 트렌치 구조를 공간적으로 나누어 선택적 증착 공정을 수행하되, A selective deposition process is performed by spatially dividing the hole or trench structure of the substrate.
    상기 기판의 홀 또는 트렌치 구조는 기판 표면에 형성된 하나 이상의 피처(feature)를 갖고, 상기 최상부 벽, 측벽, 최하부의 서로 다른 표면을 가지며, The hole or trench structure of the substrate has one or more features formed on the substrate surface, and has different surfaces of the top wall, side walls, and bottom,
    상기 선택적 증착 공정은 상기 최상부 벽, 측벽, 최하부의 서로 다른 표면을 이용하여 전구체 흡착방지층, 전구체 흡착층과 리간드 교환층을 제공하도록 수행되는 것을 특징으로 하는 박막의 제조방법. A method for manufacturing a thin film, characterized in that the selective deposition process is performed to provide a precursor adsorption prevention layer, a precursor adsorption layer, and a ligand exchange layer by using different surfaces of the top wall, the side wall, and the bottom wall.
  3. 제1항 또는 제2항에 있어서, In paragraph 1 or 2,
    상기 선택적 증착 공정은, The above optional deposition process is,
    기판 표면에 형성된 하나 이상의 피처(feature)를 갖고, 상기 최상부 벽, 측벽, 최하부의 서로 다른 표면을 갖는 기판을 챔버에 로딩하는 제1 단계; A first step of loading a substrate having one or more features formed on a surface of the substrate and having different surfaces of the top wall, side walls, and bottom into a chamber;
    상기 하나 이상의 피처의 측벽들 최상부 벽 표면, 또는 최상부 벽 표면과 상부 측벽 표면 위에 전구체 흡착방지층을 증착하는 제2 단계; A second step of depositing a precursor adsorption prevention layer on the uppermost wall surface of the sidewalls of one or more of the features, or on the uppermost wall surface and the upper sidewall surface;
    상기 하나 이상의 피처의 상기 상부 측벽을 제외한 측벽 표면 및 최하부 표면 위에 전구체 흡착층을 증착하는 제3 단계; 및 A third step of depositing a precursor adsorption layer on the sidewall surface and the lowermost surface excluding the upper sidewall of the one or more features; and
    상기 전구체 흡착층에 리간드 교환층을 증착하고, 시임-프리(seam-free) 박막을 형성하는 제4 단계;를 포함하는 것을 특징으로 하는 박막 제조방법. A method for manufacturing a thin film, characterized by comprising a fourth step of depositing a ligand exchange layer on the precursor adsorption layer and forming a seam-free thin film.
  4. 제1항 또는 제2항에 있어서, In paragraph 1 or 2,
    상기 선택적 증착 공정은 화학 기상 증착법(CVD) 또는 원자층 증착법(ALD)에 의해 수행되는 것을 특징으로 하는 박막 제조방법. A method for manufacturing a thin film, characterized in that the above selective deposition process is performed by chemical vapor deposition (CVD) or atomic layer deposition (ALD).
  5. 제3항에 있어서, In the third paragraph,
    상기 제2 단계는, 상기 기판을 전구체 흡착방지제에 노출시키는 제2-1 단계; 및 상기 기판을 불활성가스에 노출시키는 제2-2 단계;를 포함하는 것을 특징으로 하는 박막 제조방법. A method for manufacturing a thin film, characterized in that the second step comprises a step 2-1 of exposing the substrate to a precursor adsorption inhibitor; and a step 2-2 of exposing the substrate to an inert gas.
  6. 제5항에 있어서, In paragraph 5,
    상기 제2-1 단계는, 100 내지 800℃의 온도 및 0.1 내지 100 Torr의 압력에서 수행하고, 상기 전구체 흡착방지제는 탄소수가 1 내지 10인 알킬기를 갖는 알킬 할라이드, 또는 하나 이상의 산소(O)와 탄소(C)를 갖고 흡착방지제에 의해 도핑되는 탄소함량이 1% 미만인 탄소 화합물이고, 여기서 할라이드는 불화물, 브롬화물, 또는 염소화물인 것을 특징으로 하는 박막 제조방법. The above step 2-1 is performed at a temperature of 100 to 800°C and a pressure of 0.1 to 100 Torr, and the precursor adsorption inhibitor is an alkyl halide having an alkyl group having 1 to 10 carbon atoms, or one or more oxygen (O) and carbon (C). A method for manufacturing a thin film, characterized in that the carbon compound is doped with an anti-adsorption agent and has a carbon content of less than 1%, wherein the halide is fluoride, bromide, or chloride.
  7. 제3항에 있어서, In the third paragraph,
    상기 제3 단계는, 상기 기판을 전구체 화합물에 노출시키는 제3-1 단계; 및 상기 기판을 불활성가스에 노출시키는 제3-2 단계;를 포함하여 수행하는 것을 특징으로 하는 박막 제조방법. A method for manufacturing a thin film, characterized in that the third step comprises: a third step of exposing the substrate to a precursor compound; and a third step of exposing the substrate to an inert gas.
  8. 제7항에 있어서, In Article 7,
    상기 제3-1 단계는, 100 내지 800℃의 온도 및 0.1 내지 100 Torr의 압력에서 수행하고, 상기 전구체 화합물은 전극 배선용 금속 전구체 화합물인 것을 특징으로 하는 박막 제조방법. A method for manufacturing a thin film, characterized in that the step 3-1 is performed at a temperature of 100 to 800°C and a pressure of 0.1 to 100 Torr, and the precursor compound is a metal precursor compound for electrode wiring.
  9. 제3항에 있어서, In the third paragraph,
    상기 제4 단계는, 상기 기판을 리간드 교환제에 노출시키는 제4-1 단계; 상기 기판을 불활성가스에 노출시키는 제4-2 단계; 상기 기판을 반응가스에 노출시키는 제4-3 단계; 및 상기 기판을 불활성가스에 노출시키는 제4-4 단계;를 포함하는 것을 특징으로 하는 박막 제조방법. A method for manufacturing a thin film, characterized in that the fourth step comprises: a fourth step of exposing the substrate to a ligand exchange agent; a fourth step of exposing the substrate to an inert gas; a fourth step of exposing the substrate to a reaction gas; and a fourth step of exposing the substrate to an inert gas.
  10. 제9항에 있어서, In Article 9,
    상기 제4-1 단계는, 100 내지 800℃의 온도 및 0.1 내지 100 Torr의 압력에서 수행하고, 상기 리간드 교환제는 탄소수가 1 내지 10인 알킬기를 갖는 알킬 요오드화물, 또는 요오드화 수소인 것을 특징으로 하는 박막 제조방법. A method for manufacturing a thin film, characterized in that the step 4-1 is performed at a temperature of 100 to 800°C and a pressure of 0.1 to 100 Torr, and the ligand exchange agent is an alkyl iodide having an alkyl group having 1 to 10 carbon atoms, or hydrogen iodide.
  11. 제9항에 있어서, In Article 9,
    상기 제4-3 단계는, 100 내지 800℃의 온도 및 0.1 내지 100 Torr의 압력에서 수행하고, 상기 반응 가스는 수소(H2), 질소(N2), 히드라진(N2H4), 이산화질소(NO2), 암모니아(NH3), 산소(O2), 및 오존(O3) 중에서 선택되는 1종 이상인 것을 특징으로 하는 박막 제조방법. A method for manufacturing a thin film, characterized in that the step 4-3 is performed at a temperature of 100 to 800°C and a pressure of 0.1 to 100 Torr, and the reaction gas is at least one selected from hydrogen (H 2 ), nitrogen (N 2 ), hydrazine (N 2 H 4 ), nitrogen dioxide (NO 2 ), ammonia (NH 3 ), oxygen (O 2 ), and ozone (O 3 ).
  12. 기판의 홀 또는 트렌치 구조를 공간 분할하되, 상기 기판의 홀 또는 트렌치 구조는 기판 표면에 형성된 하나 이상의 피처(feature)를 갖고, 상기 최상부 벽, 측벽, 최하부의 서로 다른 표면을 가지며, A hole or trench structure of a substrate is spatially divided, wherein the hole or trench structure of the substrate has one or more features formed on the surface of the substrate, and has different surfaces of the top wall, side walls, and bottom,
    상기 측벽들과 최하부 표면의 서로 다른 면 위에 전구체 흡착방지층과 전구체 흡착층이 배치되고, 상기 전구체 흡착층 상에 리간드 교환층이 배치된 구조를 갖는 것을 특징으로 하는 박막. A thin film characterized by having a structure in which a precursor adsorption prevention layer and a precursor adsorption layer are disposed on different surfaces of the side walls and the lowermost surface, and a ligand exchange layer is disposed on the precursor adsorption layer.
  13. 제12항에 있어서, In Article 12,
    상기 전구체 흡착방지층은 상기 하나 이상의 피처의 측벽들 최상부 벽 표면, 또는 최상부 벽 표면과 상부 측벽 표면 위에 배치된 것을 특징으로 하는 박막. A thin film characterized in that the precursor adsorption prevention layer is disposed on the uppermost wall surface of the side walls of the one or more features, or on the uppermost wall surface and the upper side wall surface.
  14. 제12항에 있어서, In Article 12,
    상기 전구체 흡착층은 상기 전구체 흡착방지층과 중첩되지 않는 표면들 위에 배치된 것을 특징으로 하는 박막. A thin film, characterized in that the precursor adsorption layer is disposed on surfaces that do not overlap with the precursor adsorption prevention layer.
  15. 제12항에 있어서, In Article 12,
    상기 리간드 교환층은 상기 전구체 흡착층에 배치된 것을 특징으로 하는 박막. A thin film, characterized in that the ligand exchange layer is disposed on the precursor adsorption layer.
  16. 제12항에 있어서,In Article 12,
    상기 홀 또는 트렌치(피처의 깊이 대 피처의 폭의 비율)는 종횡비 5:1 이상인 것을 특징으로 하는 박막. A thin film characterized in that the hole or trench (ratio of feature depth to feature width) has an aspect ratio of 5:1 or greater.
  17. 제12항에 있어서,In Article 12,
    상기 박막은 시임 프리(seam free) 및 보이드 프리(void free) 박막인 것을 특징으로 하는 박막. A thin film characterized in that the above thin film is a seam free and void free thin film.
  18. 제12항에 있어서,In Article 12,
    상기 기판의 홀 또는 트렌치 상부 표면에 형성된 박막과 하부 표면에 형성된 박막은 폐쇄된 구조를 제공하며, 서로 독립적으로 몰리브덴막, 텅스텐막, 루테늄막, 코발트막 질화실리콘막, 산화실리콘막, 질화티탄막, 산화티탄막, 질화텅스텐막, 질화몰리브덴막, 질화루테늄막, 질화코발트막, 산화하프늄막, 산화지르코늄막, 산화텅스텐막, 산화루테늄막, 산화코발트막 또는 산화알미늄막 중에서 선택된 것을 특징으로 하는 박막. A thin film formed on the upper surface of the hole or trench of the substrate and a thin film formed on the lower surface provide a closed structure, and is characterized in that the thin film is independently selected from a molybdenum film, a tungsten film, a ruthenium film, a cobalt film, a silicon nitride film, a silicon oxide film, a titanium nitride film, a titanium oxide film, a tungsten nitride film, a molybdenum nitride film, a ruthenium nitride film, a cobalt nitride film, a hafnium oxide film, a zirconium oxide film, a tungsten oxide film, a ruthenium oxide film, a cobalt oxide film, or an aluminum oxide film.
  19. 기판의 홀 또는 트렌치 구조를 공간 분할하되, 상기 기판의 홀 또는 트렌치 구조는 기판 표면에 형성된 하나 이상의 피처(feature)를 갖고, 상기 최상부 벽, 측벽, 최하부의 서로 다른 표면을 가지며, A hole or trench structure of a substrate is spatially divided, wherein the hole or trench structure of the substrate has one or more features formed on the surface of the substrate, and has different surfaces of the top wall, side walls, and bottom,
    상기 하나 이상의 피처의 측벽들 최상부 벽 표면, 또는 최상부 벽 표면과 상부 측벽 표면 위에 배치된 전구체 흡착방지층; A precursor adsorption-preventing layer disposed on the uppermost wall surface of one or more of the sidewalls of the feature, or on the uppermost wall surface and the upper sidewall surface;
    상기 전구체 흡착방지층과 중첩되지 않는 표면들 위에 배치된 전구체 흡착층; 및 A precursor adsorption layer disposed on surfaces that do not overlap with the above precursor adsorption prevention layer; and
    상기 전구체 흡착층에 배치된 리간드 교환층;을 포함하는 것을 특징으로 하는 박막. A thin film characterized by comprising a ligand exchange layer disposed on the precursor adsorption layer.
  20. 기판; 및 상기 기판 상에 형성된 박막;을 포함하되, A substrate; and a thin film formed on the substrate; including:
    상기 기판은 100 nm 이하의 폭과 5:1 이상의 종횡비를 갖는 홀 또는 트렌치 구조를 포함하고, 상기 박막은 제12항 내지 제19항 중 어느 한 항의 박막인 것을 특징으로 하는 반도체 기판. A semiconductor substrate, characterized in that the substrate includes a hole or trench structure having a width of 100 nm or less and an aspect ratio of 5:1 or greater, and the thin film is a thin film according to any one of claims 12 to 19.
  21. 제20항의 반도체 기판을 포함하는 반도체 소자. A semiconductor device comprising a semiconductor substrate according to claim 20.
PCT/KR2024/005319 2023-04-21 2024-04-19 Thin film manufacturing method, thin film obtained therefrom, and semiconductor substrate and semiconductor element including thin film WO2024219883A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR20230052513 2023-04-21
KR10-2023-0052513 2023-04-21
KR10-2023-0147440 2023-10-31
KR1020230147440A KR20240156272A (en) 2023-04-21 2023-10-31 Method for preparing thin film, thin film, semiconductor substrate and semiconductor device comprising the same
KR10-2024-0052687 2024-04-19
KR1020240052687A KR20240156321A (en) 2023-04-21 2024-04-19 Method for preparing thin film, thin film, semiconductor substrate and semiconductor device comprising the same

Publications (1)

Publication Number Publication Date
WO2024219883A1 true WO2024219883A1 (en) 2024-10-24

Family

ID=93152854

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2024/005319 WO2024219883A1 (en) 2023-04-21 2024-04-19 Thin film manufacturing method, thin film obtained therefrom, and semiconductor substrate and semiconductor element including thin film

Country Status (1)

Country Link
WO (1) WO2024219883A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180066919A (en) * 2016-12-09 2018-06-20 주식회사 원익아이피에스 Method for Deposition of Thin Film
US20200279757A1 (en) * 2019-02-28 2020-09-03 Tokyo Electron Limited Substrate processing method and substrate processing apparatus
KR20220162068A (en) * 2021-05-31 2022-12-07 솔브레인 주식회사 Film forming material, film forming composition, film forming method using them, and semiconductor device prepared therefrom
KR20220162166A (en) * 2020-04-01 2022-12-07 램 리써치 코포레이션 Seam relief and integrated liner during gap filling
KR20230036943A (en) * 2021-09-08 2023-03-15 삼성전자주식회사 Method and apparatus for filling gap using atomic layer deposition

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180066919A (en) * 2016-12-09 2018-06-20 주식회사 원익아이피에스 Method for Deposition of Thin Film
US20200279757A1 (en) * 2019-02-28 2020-09-03 Tokyo Electron Limited Substrate processing method and substrate processing apparatus
KR20220162166A (en) * 2020-04-01 2022-12-07 램 리써치 코포레이션 Seam relief and integrated liner during gap filling
KR20220162068A (en) * 2021-05-31 2022-12-07 솔브레인 주식회사 Film forming material, film forming composition, film forming method using them, and semiconductor device prepared therefrom
KR20230036943A (en) * 2021-09-08 2023-03-15 삼성전자주식회사 Method and apparatus for filling gap using atomic layer deposition

Similar Documents

Publication Publication Date Title
WO2022015098A1 (en) Growth inhibitor for thin film formation, method for forming thin film by using same, and semiconductor substrate manufactured thereby
WO2021060864A1 (en) Thin film fabrication method
WO2022010214A1 (en) Growth inhibitor for forming pellicle protective thin film, method for forming pellicle protective thin film by using same, and mask manufactured therefrom
WO2021060860A1 (en) Method for manufacturing thin film
WO2012047035A2 (en) Substrate processing device for supplying reaction gas through symmetry-type inlet and outlet
WO2022015099A1 (en) Growth inhibitor for forming thin film, thin film forming method using same, and semiconductor substrate manufactured therefrom
WO2019088722A1 (en) Method for producing ruthenium-containing thin film, and ruthenium-containing thin film produced thereby
WO2019156451A1 (en) Group iv metal element-containing compound, preparation method therefor, precursor composition comprising same compound for film formation, and film forming method using same composition
WO2023195653A1 (en) Activator, thin film forming method using same, semiconductor substrate manufactured therefrom, and semiconductor device
WO2024219883A1 (en) Thin film manufacturing method, thin film obtained therefrom, and semiconductor substrate and semiconductor element including thin film
WO2022186644A1 (en) Metal thin film precursor composition, method for forming thin film by using same, and semiconductor substrate manufactured therefrom
WO2022255734A1 (en) Film forming material, film forming composition, film forming method using film forming material and film forming composition, and semiconductor device manufactured therefrom
WO2023195655A1 (en) Thin film shielding agent, method for forming thin film using same, and semiconductor substrate and semiconductor device manufactured therefrom
WO2023191360A1 (en) Step rate improver, method for forming thin film using same, and semiconductor substrate and semiconductor device manufactured therefrom
WO2022019712A1 (en) Niobium precursor compound, film-forming precursor composition comprising same, and method for forming niobium-containing film
WO2023195656A1 (en) Thin film forming method, semiconductor substrate manufactured therefrom, and semiconductor device
WO2012047034A2 (en) Substrate processing device equipped with semicircle shaped antenna
WO2023195657A1 (en) Thin film modification composition, method for forming thin film by using same, semiconductor substrate manufactured thereby, and semiconductor device
WO2024225831A1 (en) Deposition material for semimetal nitride film, method for forming semimetal nitride film, and semiconductor substrate and semiconductor device manufactured therefrom
WO2024076217A1 (en) Dielectric film activator, semiconductor substrate manufactured using same, and semiconductor device
WO2023195654A1 (en) Thin film modification composition, method for forming thin film by using same, and semiconductor substrate and semiconductor element manufactured therefrom
WO2022177403A1 (en) Auxiliary precursor, thin film precursor composition, method for forming thin film, and semiconductor substrate manufactured thereby
WO2023191361A1 (en) Thin film modification composition, method for forming thin film using same, and semiconductor substrate and semiconductor element, manufactured therefrom
WO2024090846A1 (en) Vacuum-based thin film modifier, thin film modifying composition comprising same, thin film forming method using same, and semiconductor substrate and semiconductor device manufactured therefrom
WO2023167483A1 (en) Thin film modification composition, method for forming thin film using same, and semiconductor substrate and semiconductor element manufactured therefrom