WO2024219332A1 - Accumulator and method for manufacturing same - Google Patents
Accumulator and method for manufacturing same Download PDFInfo
- Publication number
- WO2024219332A1 WO2024219332A1 PCT/JP2024/014821 JP2024014821W WO2024219332A1 WO 2024219332 A1 WO2024219332 A1 WO 2024219332A1 JP 2024014821 W JP2024014821 W JP 2024014821W WO 2024219332 A1 WO2024219332 A1 WO 2024219332A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- refrigerant
- pipe
- circumferential surface
- header
- cylindrical portion
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 20
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 9
- 239000003507 refrigerant Substances 0.000 claims abstract description 192
- 239000007788 liquid Substances 0.000 claims abstract description 67
- 238000004891 communication Methods 0.000 claims description 22
- 238000013459 approach Methods 0.000 claims description 8
- 238000000926 separation method Methods 0.000 claims description 8
- 230000007423 decrease Effects 0.000 abstract description 8
- 230000002093 peripheral effect Effects 0.000 description 24
- 239000003921 oil Substances 0.000 description 16
- 239000007791 liquid phase Substances 0.000 description 14
- 239000012071 phase Substances 0.000 description 13
- 229910052751 metal Inorganic materials 0.000 description 11
- 239000002184 metal Substances 0.000 description 11
- 239000002274 desiccant Substances 0.000 description 9
- 238000005057 refrigeration Methods 0.000 description 8
- 238000012986 modification Methods 0.000 description 7
- 230000004048 modification Effects 0.000 description 7
- 238000002788 crimping Methods 0.000 description 6
- 229910000838 Al alloy Inorganic materials 0.000 description 5
- 230000000149 penetrating effect Effects 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- 229920003002 synthetic resin Polymers 0.000 description 4
- 239000000057 synthetic resin Substances 0.000 description 4
- 238000005520 cutting process Methods 0.000 description 3
- 238000000465 moulding Methods 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 230000002745 absorbent Effects 0.000 description 2
- 239000002250 absorbent Substances 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 239000010725 compressor oil Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 238000005304 joining Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000010726 refrigerant oil Substances 0.000 description 2
- 239000010802 sludge Substances 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Definitions
- the present invention relates to an accumulator and a method for manufacturing the same.
- Receiver tanks and accumulators are used to separate the refrigerant circulating through the refrigeration cycle into gas and liquid and store it.
- the high-pressure gas-phase refrigerant discharged from the compressor flows into the condenser where it exchanges heat with outside air, is cooled, and condensed.
- the liquid refrigerant condensed in the condenser is then reduced in pressure by a pressure reducing device to become mist-like gas-liquid phase.
- the low-pressure refrigerant after pressure reduction absorbs heat from the air blown by the air conditioner blower in the evaporator and evaporates.
- the air blown by the evaporator is temperature-adjusted in a heater core section (not shown) before being blown into the passenger compartment, for example.
- the refrigerant that passes through the evaporator is separated into gas and liquid in an accumulator before being drawn into the compressor.
- the accumulator header is formed with a refrigerant inlet and a refrigerant outlet that communicate with the inside of the accumulator.
- the refrigerant inlet is connected to the evaporator via piping, and the refrigerant outlet is connected to the compressor via piping.
- the diameter of the refrigerant outlet formed in the header is determined according to the piping that constitutes the flow path downstream of the accumulator, and this piping is often designed by the manufacturer that assembles the refrigeration cycle.
- the specifications of the refrigerant outlet of the accumulator are determined by the size of the designed piping, which creates the problem that it is difficult to use an outlet pipe with a large inner diameter regardless of the size of the piping connected to it.
- the present invention was made in consideration of these problems, and aims to provide an accumulator that can increase the amount of refrigerant passing through, and a method for manufacturing the same.
- the accumulator comprises: a body portion having an opening at at least one end; a header having a refrigerant inlet and a refrigerant outlet and closing one end of the body portion; a gas-liquid separating member accommodated in the body portion, the gas-liquid separating member having a communication portion formed in a portion facing the refrigerant outflow hole, the communication portion communicating the header side with an opposite side; an outflow pipe that is accommodated in the body portion, a portion of which is disposed in the communication portion, and which is connected to the refrigerant outflow hole, the outflow pipe has a small cylinder portion inserted into and fixed to the refrigerant outflow hole, a large cylinder portion disposed within the body portion and having a cross-sectional area larger than that of the small cylinder portion, and a tapered cylinder portion connecting the small cylinder portion and the large cylinder portion,
- the inner circumferential surface of the outflow pipe has, along a flow direction of the refrig
- a method for manufacturing an accumulator includes the steps of: A header having a refrigerant outlet hole; an outflow pipe connected to the refrigerant outflow hole; a gas-liquid separating member disposed opposite the header and having a communication portion through which a portion of the outflow pipe is disposed;
- a method for manufacturing an accumulator having the following features: forming the outflow pipe having a small cylindrical portion, a large cylindrical portion having a cross-sectional area larger than that of the small cylindrical portion, and a tapered cylindrical portion connecting the small cylindrical portion and the large cylindrical portion by subjecting the pipe to a drawing process or a tube expansion process; an extension portion is formed on a main body portion of the gas-liquid separating member, the main body portion being a portion that faces the header, the extension portion extending in a direction away from the main body portion; With the small cylinder portion of the outflow pipe disposed in the communication portion, the extension portion and the tapered cylinder portion are brought close to each other so that the
- the present invention provides an accumulator that can increase the amount of refrigerant passing through it, and a method for manufacturing the same.
- FIG. 1 is a vertical cross-sectional view of an accumulator according to a first embodiment.
- FIG. 2 is a cross-sectional view showing the header, the cup, and the inner pipe in an exploded state.
- FIG. 3 is a bottom view of the cup.
- FIG. 4 is an enlarged cross-sectional view showing the lower end of the inner pipe of this embodiment.
- FIG. 5 is a bottom view of a cup according to a first modified example.
- FIG. 6 is a vertical cross-sectional view of a cup according to a first modified example.
- FIG. 7 is an enlarged cross-sectional view showing the lower end of an inner pipe according to a second modified example.
- FIG. 8 is an enlarged cross-sectional view showing a lower end of an inner pipe according to a third modified example.
- FIG. 9 is an enlarged cross-sectional view showing a lower end of an inner pipe according to a fourth modified example.
- FIG. 10 is a vertical cross-sectional view of an accumulator according to the second embodiment.
- FIG. 11 is a vertical cross-sectional view of an accumulator according to the third embodiment.
- FIG. 12 is a vertical cross-sectional view of an accumulator according to the fourth embodiment.
- (First embodiment) 1 is a vertical cross-sectional view of an accumulator 1 according to a first embodiment, with only the left half of the strainer shown in cross section.
- the accumulator 1 has a tank body 2, a double pipe 5 arranged in the tank body 2, a bag 11 containing a desiccant (moisture absorbent) DA, a cup (also called a gas-liquid separating member) 16, and a strainer 20.
- a desiccant moisture absorbent
- cup also called a gas-liquid separating member
- the tank body 2 includes a body 3 and a header 4.
- the body 3 is formed in a cylindrical shape with at least an opening at the top end, and as an example, is formed in a cylindrical shape with a bottom, and is a body portion with an opening at at least one end.
- the header 4 closes the opening at one end of the body 3.
- the header 4 is joined to the body 3 by circumferential joining, for example, via a weld 10, and closes the opening of the body 3.
- the body 3 and the header 4 are both formed of a metal such as an aluminum alloy.
- the header 4 side is referred to as the upper side
- the bottom side of the body 3 is referred to as the lower side.
- the body 3 may be a cylinder with openings at both ends. In this configuration, one opening is closed by the header 4, and the other opening is closed by a member separate from the body 3. In this configuration, the member that closes the other opening of the body 3 is formed of a metal such as an aluminum alloy.
- the header 4 is formed in a roughly disk-like shape, and has a refrigerant inlet hole 8 and a refrigerant outlet hole 9 formed to penetrate from top to bottom.
- An inner pipe (also called an outlet pipe) 6 that extends close to the inside bottom of the body 3 is connected to the refrigerant outlet hole 9.
- An outer pipe 7 is fitted to the outside of the inner pipe 6, thereby forming a double pipe 5.
- a cup 16 is provided below the header 4, to separate the mixed refrigerant (a mixture of gas and liquid phase refrigerant) from the refrigerant inlet 8 into high density liquid phase refrigerant and compressor oil (hereinafter referred to as "oil"), and low density gas phase refrigerant.
- the cup 16 is made of, for example, resin.
- the cup 16 has, for example, a cylindrical shape with a top, and is positioned opposite the refrigerant inlet 8 and the refrigerant outlet 9.
- the inner pipe 6 is made of, for example, a metal, and an aluminum alloy is one example of the metal.
- the lower end of the inner pipe 6 is open, and the upper end is connected to the refrigerant outlet hole 9 of the header 4 by press-fitting, as described below.
- the outer periphery of the inner pipe 6 is fitted inside a number of pipe ribs 7a protruding from the inner periphery of the outer pipe 7, so that the inner pipe 6 is stably held within the outer pipe 7 with a gap therebetween.
- the outer pipe 7 is made of, for example, synthetic resin, and is attached inside the body 3 with its upper end open.
- a cylindrical strainer 20 is provided at the bottom of the outer pipe 7.
- the strainer 20 is composed of a cylindrical case 21 with a bottom made of synthetic resin, and a cylindrical mesh filter 22 integrated with the case 21 by insert molding or the like.
- the strainer 20 may be abutted against, for example, the bottom surface of the internal space of the body 3. When the strainer 20 abuts against the bottom surface of the internal space of the body 3, the cup 16 is clamped between the body 3 and the header 4 via the inner pipe 6.
- a bag 11 containing a desiccant DA is placed between the outer pipe 7 and the inner circumference of the body 3.
- FIG. 2 is a cross-sectional view showing the header 4, cup 16, and inner pipe 6 in an exploded state.
- FIG. 3 is a bottom view of the cup 16.
- the axis of the inner pipe 6 is designated as L.
- the header 4 is made up of a large cylindrical portion 4a and a thin-walled annular portion 4b, which is smaller in diameter than the large cylindrical portion 4a, stacked in series, and a step 4c is formed between the large cylindrical portion 4a and the thin-walled annular portion 4b, with which the outer periphery of the upper end of the body 3 engages.
- the upper surface of the large cylindrical portion 4a is formed, for example, as a plane perpendicular to the vertical direction.
- a cylindrical boss 4d is formed on the underside of the header 4, protruding downward from the large cylindrical portion 4a.
- a refrigerant outlet hole 9 is formed through the boss 4d, penetrating the header 4 from top to bottom, and a refrigerant inlet hole 8 is formed adjacent to the boss 4d, penetrating the header 4 from top to bottom.
- the underside of the boss 4d is formed, for example, on a plane that is in surface contact with the upper surface of the top wall 16b of the cup 16, which will be described later.
- the underside of the boss 4d is formed, for example, on a plane that is perpendicular to the axis L of the inner pipe 6.
- the refrigerant outlet hole 9 has a large diameter hole 9a formed at the top and a small diameter hole 9b formed at the bottom.
- the inner diameter of the large diameter hole 9a is larger than the inner diameter of the small diameter hole 9b.
- the cup 16 has a cup body (also simply called the body) 16e and an extension 16d.
- the cup body 16e faces the header 4 inside the body 3.
- the cup body 16e is formed by connecting a side wall 16a and a top wall 16b.
- a through hole 16c is formed in the top wall 16b.
- the through hole 16c is an example of a communication part in which a part of the inner pipe 6 is arranged.
- the communication part is formed in the cup body 16e in a shape that communicates the header 4 side with the opposite side, in other words, the bottom side of the body 3.
- the communication part is not limited to a through hole.
- the communication part may be a notch that penetrates the cup body 16e and opens to the side of the cup body 16e.
- one or more ribs 16b1 are formed on the upper surface of the top wall 16b in a shape that protrudes upward. The ribs 16b1 form part of the upper surface of the top wall.
- an extension portion 16d is formed around the through hole 16c, for example, on the edge of the through hole 16c.
- the extension portion 16d is formed in a shape that extends from the cup body 16e to the tapered tube portion 6c and abuts against the tapered tube portion 6c of the inner pipe 6.
- a plurality of extension portions 16d for example, four extension portions 16d, are formed.
- the extension portions 16d are formed in a wall shape.
- the extension portions 16d are described as retaining walls 16d.
- the four retaining walls 16d are arranged, for example, at equal intervals on the edge of the through hole 16c.
- the retaining walls 16d are formed to be connected to the cup body 16e.
- the underside of the top wall 16b, excluding the retaining walls 16d, is flat.
- Top wall 16b faces both refrigerant inlet hole 8 and refrigerant outlet hole 9. Furthermore, top wall 16b is a portion against which the refrigerant flowing in from refrigerant inlet hole 8 collides. Furthermore, top wall 16b faces the entire refrigerant inlet hole 8. The facing direction is the axial direction of refrigerant inlet hole 8. Furthermore, the gap between the header 4 and the top wall 16b and the gap between the side wall 16a and the inner circumferential surface of the body 3 are approximately the same. Here, “approximately the same” may include an error in addition to being completely the same.
- the refrigerant flowing in from the refrigerant inlet hole 8 collides with the top wall 16b and flows downstream, it flows through the gap between the top wall 16b and the header 4 and the gap between the inner circumferential surface of the body 3 and the side wall 16a. If these gaps are "the same", the smooth flow of the refrigerant is maintained. In addition, if there is a small error in these gaps, the state in which the refrigerant flows smoothly can be maintained. The error is an error that can maintain the flow of the refrigerant smoothly in this way.
- the retaining wall 16d has a shape that corresponds to, for example, the inner pipe 6.
- the corresponding shape means a shape that follows the outer peripheral surface of the inner pipe 6, that is, the surface of the retaining wall 16d that faces and abuts against the inner pipe 6 is formed to have the same shape or approximately the same shape as the outer peripheral surface of the inner pipe 6.
- the retaining wall 16d has a shape that is point-symmetrical with respect to the axis of the through hole 16c (which coincides with the axis L when assembled), and specifically consists of a rectangular plate-shaped base 16d1 on the top wall 16b side, a rectangular plate-shaped tip 16d2 on the lower end side, and a right-angled trapezoidal plate-shaped intermediate portion 16d3 that connects the base 16d1 and tip 16d2.
- the outer surfaces of the base 16d1, the intermediate portion 16d3, and the tip portion 16d2 on the side away from the axis of the through hole 16c are, for example, parallel to the axis of the through hole 16c.
- the distances between the inner surfaces of the base 16d1 and tip 16d2 on the side closer to the axis of the through hole 16c and the axis of the through hole 16c are R1 and R2, respectively, where R1 ⁇ R2. That is, the inner surface of the base 16d1 has the same shape or approximately the same shape as a part of the outer periphery of a cylinder with a radius of R1. The inner surface of the tip 16d2 has the same shape or approximately the same shape as a part of the outer periphery of a cylinder with a radius of R2. Therefore, the inner surface of the middle portion 16d3 close to the axis of the through hole 16c is inclined at an angle ⁇ 1 with respect to the axis of the through hole 16c.
- the inner surface of the middle portion 16d3 has the same shape or approximately the same shape as a part of the outer periphery of a truncated cone with a radius of R2 at the bottom and a radius of R1 at the top.
- the inner diameter of the small diameter hole 9b and the through hole 16c is 2 ⁇ R1.
- the area of the upper surface of the top wall 16b of the cup 16 that contacts the lower surface of the boss 4d of the header 4 is formed in a plane that is in surface contact with the lower surface of the boss 4d.
- the area of the upper surface of the top wall 16b of the cup 16 that contacts the lower surface of the boss 4d of the header 4 is formed in a plane that is perpendicular to the axis of the inner pipe 6, for example.
- a part of the rib 16b1 may be formed in the area of the upper surface of the top wall 16b of the cup 16 that contacts the lower surface of the boss 4d of the header 4.
- a recess is formed in the lower surface of the boss 4d of the header 4 in which part of the rib 16b1 is disposed. This recess has a shape that, for example, fits into the rib 16b1.
- the inner pipe 6 is made up of a small diameter cylindrical section (also called a small tube section) 6a, which is inserted into and fixed in the small diameter hole 9b of the refrigerant outflow hole 9, and a large diameter cylindrical section (also called a large tube section) 6b, which is larger in diameter than the small diameter cylindrical section 6a and is placed inside the body 3, connected by a tapered tube section 6c.
- a small diameter cylindrical section also called a small tube section
- 6b large diameter cylindrical section
- the inner pipe 6 is formed by drawing a pipe made of metal, for example aluminum.
- the outer diameter of the small diameter cylindrical portion 6a is smaller than the outer diameter of the large diameter cylindrical portion 6b, but by drawing the pipe, the fiber flow in the metal structure of the inner pipe 6 is continuous across the small diameter cylindrical portion 6a, the tapered tube portion 6c, and the large diameter cylindrical portion 6b. This continuous fiber flow can be seen by cutting the inner pipe 6 in the axial direction, and is therefore visible.
- the outer circumferential radii of the small diameter cylindrical portion 6a and the large diameter cylindrical portion 6b are r1 and r2, respectively.
- r1 is equal to R1, or r1 is approximately equal to R1.
- r1 is approximately equal to R1” includes cases where r1 is smaller than R1 and cases where r1 is larger than R1.
- r2 is equal to R2, or r2 is approximately equal to R2.
- R2 includes cases where r2 is smaller than R2 and cases where r2 is larger than R2.
- the outer peripheral surface of the tapered tube portion 6c is a truncated cone outer peripheral surface with a radius of r2 at the bottom end and a radius of r1 at the top end, or a curved surface substantially similar to the outer peripheral surface of a truncated cone with a radius of r2 at the bottom end and a radius of r1 at the top end.
- the inner pipe 6 has a small diameter inner circumferential surface (small inner circumferential surface) 6e extending inside the small diameter cylindrical portion 6a, a tapered inner circumferential surface (intermediate inner circumferential surface) 6f extending inside the tapered tube portion 6c, and a large diameter inner circumferential surface (large inner circumferential surface) 6g extending inside the large diameter cylindrical portion 6b. Since the flow direction of the refrigerant inside the inner pipe 6 is from the lower end to the upper end, the large diameter inner circumferential surface 6g, the tapered inner circumferential surface 6f, and the small diameter inner circumferential surface 6e are arranged in this order along the flow direction of the refrigerant. Since the inner pipe 6 is formed by drawing, the small diameter inner circumferential surface 6e, the tapered inner circumferential surface 6f, and the large diameter inner circumferential surface 6g are smoothly connected to each other.
- the outer peripheral surface of the tapered tube portion 6c is inclined at an angle ⁇ 2 with respect to the axis L of the inner pipe 6.
- ⁇ 2 is equal to ⁇ 1 or approximately equal to ⁇ 1. It is preferable that the angles ⁇ 1 and ⁇ 2 are, for example, 40 degrees ⁇ 10 degrees.
- the tapered tube portion 6c abuts against the middle portion 16d3 of the retaining wall 16.
- the outer peripheral surface of the tapered tube portion 6c and the inner surface of the middle portion 16d3 may be formed as curved surfaces that are in surface contact with each other. For example, when r1 is equal to R1 and r2 is equal to R2, the outer peripheral surface of the tapered tube portion 6c is a curved surface that is in surface contact with the inner surface of the middle portion 16d3.
- the tapered tube portion 6c abuts against the middle portion 16d3 and the large diameter cylindrical portion 6b abuts against the tip portion 16d2, improving the accuracy of positioning the cup 16 relative to the inner pipe 6.
- the retaining wall 16d is not shaped to abut against the inner pipe 6 only on a single plane, but the boundary portion (corner or corner) between the base portion 16d1, middle portion 16d3, and tip portion 16d2 fits into the boundary portion (corner or corner) between the small diameter cylindrical portion 6e, tapered tube portion 6c, and large diameter cylindrical portion 6b of the inner pipe 6, improving the accuracy of positioning the cup 16 relative to the inner pipe 6.
- the boundary portion between the base 16d1 and the intermediate portion 16d3 of the retaining wall 16d does not match the boundary portion between the small diameter cylindrical portion 6e and the tapered tube portion 6c of the inner pipe 6, or the boundary portion between the intermediate portion 16d3 and the tip portion 16d2 of the retaining wall 16d does not match the boundary portion between the tapered tube portion 6c and the large diameter cylindrical portion 6b of the inner pipe 6.
- the intermediate portion 16d3 of the retaining wall 16d abuts against the tapered tube portion 6c of the inner pipe 6 and the tip portion 16d2 of the retaining wall 16d abuts against the large diameter cylindrical portion 6b of the inner pipe 6, improving the accuracy of positioning the cup 16 with respect to the inner pipe portion 6.
- the middle portion 16d3 and the tip portion 16d2 of the retaining wall 16d function as a guide when inserting the inner pipe 6 into the refrigerant outlet hole 9 of the header 4, making it easier to fix the inner pipe 6 to the refrigerant outlet hole 9.
- Figure 4 is an enlarged cross-sectional view of the lower end of the inner pipe 6 of this embodiment.
- the large-diameter inner circumferential surface 6g maintains a cylindrical shape
- the outer circumferential surface of the large-diameter cylindrical portion 6b also maintains a cylindrical shape.
- the lower end 6h is an end surface that is perpendicular to the axis L.
- a pressure equalizing hole 6q is formed in the tapered cylindrical portion 6c of the inner pipe 6.
- the pressure equalizing hole 6q penetrates the inside and outside of the inner pipe 6.
- the pressure equalizing hole 6q is a hole that prevents the liquid phase refrigerant that has accumulated in the inner pipe 6 from being sucked up by the compressor when the compressor is started again after the refrigeration cycle has stopped (after the compressor has stopped operating).
- the pressure equalizing hole 6q allows not only the liquid phase refrigerant in the inner pipe 6 but also the gas phase refrigerant outside the inner pipe 6 to be sucked up by the compressor, thereby preventing the liquid phase refrigerant from being sucked up.
- the inner pipe 6 is brought close to the cup 16 from below.
- the small diameter cylindrical portion 6a of the inner pipe 6 is then inserted into the through hole 16c and press-fitted into the small diameter hole 9b of the header 4.
- the retaining wall 16d also functions to guide the small diameter cylindrical portion 6a as it enters the small diameter hole 9b.
- the outer peripheral surface of the tapered tube portion 6c abuts and engages with the inner surface of the middle portion 16d3 of the retaining wall 16d, so that the inner pipe 6 is locked and does not proceed any further toward the header 4.
- the tapered tube portion 6c abuts against the middle portion 16d3 and the large diameter cylindrical portion 6b abuts against the tip portion 16d2, improving the accuracy of positioning the cup 16 relative to the inner pipe 6. This allows the cup 16 to be held in an appropriate position.
- the small diameter cylindrical portion 6a is supported by abutting against the inner surfaces of the base portions 16d1 of the four retaining walls 16d, except for the portion pressed into the small diameter hole 9b.
- the outer peripheral surface of the tapered tube portion 6c is supported by abutting against the inner surfaces of the middle portions 16d3 of the four retaining walls 16d.
- the upper outer peripheral surface of the large diameter cylindrical portion 6b is supported by abutting against the inner surfaces of the tip portions 16d2 of the four retaining walls 16d. This allows the inner pipe 6 to be firmly held against the header 4 and cup 16, thereby suppressing vibrations, etc.
- the outer pipe 7 and strainer 20 are attached to the inner pipe 6 of the assembly thus formed, and the accumulator 1 is completed by installing it inside the body 3 in which the bag 11 is arranged, and welding it to the header 4. Unless otherwise specified, the order of the above steps is not limited to the order described.
- the small diameter cylindrical portion 6a of the inner pipe 6 is inserted into the small diameter hole 9b of the header 4 while the tapered tube portion 6c of the inner pipe 6 and the middle portion 16d3 of the retaining wall 16d are brought closer together, so that the small diameter cylindrical portion 6a of the inner pipe 6 is fixed to the small diameter hole 9b of the header 4 and the tapered tube portion 6c of the inner pipe 6 is brought into contact with the middle portion 16d3 of the retaining wall 16d, thereby clamping the cup 16 between the inner pipe 6 and the header 4.
- the small diameter cylindrical portion 6a of the inner pipe 6 may be inserted into the through hole 16c to bring the tapered tube portion 6c and the middle portion 16d3 closer together so that the tapered tube portion 6c and the middle portion 16d3 are in contact with each other, and then while maintaining this contact state, the small diameter cylindrical portion 6a may be inserted into the small diameter hole 9b to fix the small diameter cylindrical portion 6a to the small diameter hole 9b, thereby clamping the cup 16 between the inner pipe 6 and the header 4.
- a small diameter cylindrical portion 6a is formed to match the refrigerant outflow hole 9 of the header 4, and a large diameter cylindrical portion 6b is formed to obtain a flow rate according to the performance required of the accumulator 1, and further, the cup 16 can be fixed to the header 4 using the inner pipe 6. Therefore, it is possible to provide an accumulator 1 that can hold the gas-liquid separator and increase the amount of refrigerant passing through while preventing an increase in the number of parts.
- the inner pipe 6 is fixed to the header 4 by pressing the small diameter cylindrical portion 6a into the small diameter hole 9b, which eliminates the need for crimping the inner pipe 6, for example (no crimping portion is provided inside the refrigerant outflow hole 9).
- the cup 16 is attached to the header 4 by being sandwiched between the tapered cylindrical portion 6c formed on the inner pipe 6 and the boss 4d of the header 4, eliminating the need for bulge processing of the inner pipe 6. This reduces the resistance of the refrigerant flowing through the inner pipe 6 and suppresses the occurrence of turbulence, ensuring a smooth flow of the refrigerant.
- the inner pipe 6 may be fixed to the header 4 by forming a female thread on the inner circumference of the small diameter hole 9b and a male thread on the outer circumference of the small diameter cylindrical portion 6a and screwing the female thread and the male thread together.
- the male thread of the small diameter cylindrical portion 6a is preferably formed by rolling, but may be formed by cutting.
- tapered inner peripheral surface 6f of the inner pipe 6 and the outer peripheral surface of the tapered tube portion 6c are not limited to a shape with a uniform inclination angle with respect to the axis, and it is sufficient if the shape is such that the diameter decreases toward the header 4 side.
- the refrigerant When the refrigerant is discharged from the evaporator, it is transported to the accumulator 1 through a connecting pipe (not shown). After reaching the accumulator 1, the refrigerant flows into the body 3 through the refrigerant inlet 8, and then collides with the upper surface of the cup 16, where it is separated into high-density liquid-phase refrigerant and oil, and low-density gas-phase refrigerant (gas refrigerant).
- the liquid refrigerant and oil are stored in the body 3 due to their own weight. During this process, the liquid refrigerant and oil continue to separate, and the oil accumulates below the liquid refrigerant. At this time, the liquid level of the liquid refrigerant reaches a height position where part of the desiccant-containing bag 11 is immersed. Therefore, both the moisture contained in the liquid refrigerant and the humidity contained in the gas refrigerant are absorbed by the desiccant DA.
- the gas-phase refrigerant that has been separated into gas and liquid flows in from the upper opening of the outer pipe 7 and descends inside the outer pipe 7. It then turns around at the bottom of the outer pipe 7, passes over the lower end of the inner pipe 6, and flows inside, rising inside the inner pipe 6 and being led to the refrigerant outlet hole 9.
- the inner pipe 6 is formed with a tapered inner surface 6f, so the inner diameter gradually decreases toward the small-diameter inner surface 6e on the refrigerant outlet side, reducing pressure loss and ensuring an even smoother flow of the refrigerant.
- the oil that accumulates at the bottom of the body 3 together with the liquid refrigerant moves to the bottom side of the body 3 due to differences in specific gravity and properties compared to the liquid refrigerant, and is sucked into the gas refrigerant that is sucked into the compressor suction side, passing through the mesh filter 22 of the strainer 20, the oil return hole 7e, and the internal space of the inner pipe 6, in that order, before being returned to the compressor suction side together with the gas refrigerant and circulated.
- foreign matter such as sludge is captured and removed from the circulating refrigerant (including oil).
- Fig. 5 is a bottom view of the cup 16A according to the first modified example.
- Fig. 6 is a vertical cross-sectional view of the cup 16A according to the first modified example.
- the extensions instead of the configuration in which a plurality of extensions (retaining walls) are provided, the extensions are formed in a cylindrical shape. More specifically, as the extensions, a retaining cylinder 16Ad is formed on the underside of the top wall 16b around the through hole 16c, for example, on the edge of the through hole 16c.
- Other configurations are the same as those in the above-mentioned embodiment, so repeated explanations will be omitted.
- the outer diameter of the retaining cylinder 16Ad is uniform.
- the inner radii of the cylindrical base 16Ad1 and the tip cylindrical portion 16Ad2 are R1 and R2, respectively, where R1 ⁇ R2.
- the inner circumference of the intermediate cylindrical portion 16Ad3 is inclined at an angle ⁇ 1 with respect to the axis of the through hole 16c.
- the holding cylinder 16Ad of the cup 16A abuts against the outer peripheral surface of the inner pipe 6 all around. Specifically, except for the portion pressed into the small diameter hole 9b of the small diameter cylindrical portion 6a of the inner pipe 6, the holding cylinder 16Ad abuts against and is supported by the inner peripheral surface of the cylindrical base portion 16Ad1.
- the outer peripheral surface of the tapered cylindrical portion 6c abuts against and is supported by the inner peripheral surface of the intermediate cylindrical portion 16Ad3.
- the upper end outer peripheral surface of the large diameter cylindrical portion 6b abuts against and is supported by the inner peripheral surface of the tip cylindrical portion 16Ad2.
- Fig. 7 is an enlarged cross-sectional view of the lower end of the inner pipe 6B according to the second modification.
- the outer circumferential surface of the large-diameter cylindrical portion 6Bb has a cylindrical shape up to the lower end 6Bh of the inner pipe 6B, but the large-diameter inner circumferential surface 6Bg gradually expands in diameter from the vicinity of the lower end 6Bh toward the lower end 6Bh, and intersects with the outer circumferential surface of the large-diameter cylindrical portion 6Bb at the lower end 6Bh.
- the large-diameter inner circumferential surface 6Bg near the lower end 6Bh preferably has an arc shape.
- Fig. 9 is an enlarged cross-sectional view of the lower end of the inner pipe 6D according to the fourth modified example.
- the large-diameter inner circumferential surface 6Dg gradually expands in diameter from the vicinity of the lower end 6Dh of the inner pipe 6D toward the lower end 6Dh
- the outer circumferential surface of the large-diameter cylindrical portion 6Db gradually decreases in diameter from the vicinity of the lower end 6Dh toward the lower end 6Dh
- the large-diameter inner circumferential surface 6Dg and the outer circumferential surface of the large-diameter cylindrical portion 6Db intersect at the lower end 6Dh.
- the lower end wall of the large-diameter cylindrical portion 6Cb near the lower end 6Dh preferably has a semicircular arc shape.
- the gas-liquid separated gas-phase refrigerant when the gas-liquid separated gas-phase refrigerant turns around at the bottom of the outer pipe 7 and heads toward the lower end 6Dh of the inner pipe 6D, it flows along the outer peripheral surface of the gradually narrowing large diameter cylindrical portion 6Db, and when it passes the lower end 6Dh of the inner pipe 6D and flows inward, it flows along the gradually expanding large diameter inner peripheral surface 6Dg, ensuring a smooth flow of the refrigerant.
- Fig. 10 is a vertical cross-sectional view of an accumulator 1F according to a second embodiment.
- the outflow pipe 6F is U-shaped and does not have an outer pipe.
- Fig. 10 omits a strainer and a bag containing a desiccant.
- the configuration of the outflow pipe 6F is different from that of the above-mentioned embodiment, and other configurations are the same as those of the above-mentioned embodiment, so duplicated explanations will be omitted.
- the outflow pipe 6F in this embodiment is composed of a small diameter cylindrical section 6Fa and a large diameter U-shaped cylindrical section 6Fb bent into a U shape, connected by a tapered cylindrical section 6Fc.
- the outer diameter of the small diameter cylindrical section 6Fa is approximately equal to the inner diameter of the small diameter hole 9b.
- the small diameter cylindrical section 6Fa, the tapered cylindrical section 6Fc, and the upper end of the large diameter U-shaped cylindrical section 6Fb have the same shapes as in the above-mentioned embodiment.
- the outflow pipe 6F can be formed by drawing the end of a U-shaped pipe.
- the small diameter cylindrical portion 6Fa of the outflow pipe 6F is inserted into the through hole 16c, and then the small diameter cylindrical portion 6Fa is fixed by press fitting into the small diameter hole 9b of the header 4.
- the cup 16 is clamped and fixed between the retaining wall 16d and the lower end of the boss 4d.
- the outflow pipe 6F can be attached by moving it linearly without rotating it relative to the header 4, so that the free end of the outflow pipe 6F can be positioned inside the cup 16 in the assembly position shown in Figure 10.
- Third Embodiment 11 is a vertical cross-sectional view of an accumulator 1G according to the third embodiment.
- the accumulator 1G of this embodiment is different from the accumulator 1F of the second embodiment in the shape of the outflow pipe 6G.
- the bending radius of the bent portion of the large-diameter U-shaped cylindrical portion 6Gb of the outflow pipe 6G is larger than the bending radius of the corresponding portion of the outflow pipe 6F of the third embodiment.
- the rest of the configuration is the same as that of the above-mentioned embodiment.
- the small diameter cylindrical portion 6Ga, the tapered tube portion 6Gc, and the upper end of the large diameter U-shaped tube portion 6Gb have the same shapes as in the first embodiment.
- the outflow pipe 6G can be formed by drawing the end of a U-shaped pipe.
- the outflow pipe 6G has a small diameter inner circumferential surface 6Ge extending within the small diameter cylindrical portion 6Ga, a tapered inner circumferential surface 6Gf extending within the tapered tubular portion 6Gc, and a large diameter inner circumferential surface 6Gg extending within the large diameter U-shaped tubular portion 6Gb.
- the outflow pipe 6G has a pressure equalizing hole 6Gq in the tapered inner circumferential surface 6Gf, similar to the above-mentioned embodiment.
- the header 104 is formed in a roughly disk shape, and a refrigerant inlet hole 108 and a refrigerant outlet hole 109 are formed penetrating vertically.
- An inner pipe (also called an outlet pipe) 106 that extends close to the inside bottom of the body 3 is connected to the refrigerant outlet hole 109.
- An outer pipe 107 is fitted on the outside of the inner pipe 106, thereby forming a double pipe 105.
- a cup 116 is provided as a gas-liquid separating member that separates the mixed refrigerant (a mixture of gas and liquid phase refrigerant) from the refrigerant inlet 108 into high density liquid phase refrigerant and compressor oil (hereinafter referred to as "oil") and low density gas phase refrigerant.
- the cup 116 is made of, for example, resin.
- the cup 116 has, for example, a cylindrical shape with a top, and is positioned opposite the refrigerant inlet 108 and the refrigerant outlet 109.
- the inner pipe 106 is made of, for example, a metal, and an aluminum alloy is used as one example.
- the lower end of the inner pipe 106 is open, and the upper end is screwed into the refrigerant outlet hole 109 of the header 104, as described below.
- the outer periphery of the inner pipe 106 is fitted inside a number of pipe ribs 107a protruding from the inner periphery of the outer pipe 107, so that the inner pipe 106 is stably held within the outer pipe 107 with a gap therebetween.
- the outer pipe 107 is made of, for example, synthetic resin, and is attached inside the body 3 with its upper end open.
- a cylindrical strainer 120 is provided at the bottom of the outer pipe 107.
- the strainer 120 is composed of a cylindrical case 121 with a bottom made of synthetic resin, and a cylindrical mesh filter 122 that is integrated with the case 121 by insert molding or the like.
- a bag 111 containing a desiccant DA is placed between the outer pipe 107 and the inner circumference of the body 103.
- the header 104 is made up of a large cylindrical portion 104a and a thin annular portion 104b, which is smaller in diameter than the large cylindrical portion 104a, stacked in series, and a step portion 104c is formed between the large cylindrical portion 104a and the thin annular portion 104b, with which the outer periphery of the upper end of the body 103 engages.
- the upper surface of the large cylindrical portion 104a is formed, for example, as a plane perpendicular to the vertical direction.
- a cylindrical boss 104d is formed on the underside of the header 104, protruding downward from the large cylindrical portion 104a.
- a refrigerant outlet hole 109 is formed through the boss 104d and penetrating the header 104 from top to bottom, and a refrigerant inlet hole 108 is formed adjacent to the boss 104d and penetrating the header 104 from top to bottom.
- the underside of the boss 104d is formed, for example, on a plane that is in surface contact with the bottom surface of a cylindrical recess (also called a recess) 116c of the cup 116, which will be described later.
- the underside of the boss 104d is formed, for example, on a plane that is perpendicular to the axis L of the inner pipe 106.
- the refrigerant outlet hole 109 has a large diameter hole 109a formed at the top and a small diameter hole 109b formed at the bottom, and a female thread 109c is formed in the small diameter hole 109b.
- the inner diameter of the large diameter hole 109a is larger than the thread diameter of the female thread 109c.
- the cup 116 of this embodiment can be formed, for example, by press-forming a metal plate.
- the cup 116 is formed by connecting a side wall 116a and a top wall 116b.
- a portion of the top wall 116b is plastically deformed so as to shift downward in correspondence with the boss 104d, thereby forming a cylindrical recess 116c.
- the inner diameter of the cylindrical recess 116c is approximately equal to the outer diameter of the boss 104d.
- one or more ribs may be formed on the upper surface of the top wall 116b.
- a circular hole 116d is formed through the bottom wall of the cylindrical recess 116c.
- the inner diameter of the circular hole 116d is slightly larger than the inner diameter of the small diameter hole 109b.
- the bottom surface of the cylindrical recess 116c of the cup 116 is formed in a plane that is in surface contact with the lower surface of the boss 104d of the header 104.
- the bottom surface of the cylindrical recess 116c of the cup 116 is formed in a plane that is perpendicular to the axis of the inner pipe 106, for example, in the range where the lower surface of the boss 104d of the header 104 abuts.
- the inner pipe 106 is made of a metal pipe of uniform diameter that is expanded near the upper end by bulging, and compressed in the axial direction to form a flange 106a that protrudes radially outward from the entire outer periphery.
- a male thread 106b is also formed on the outer periphery of the upper end of the inner pipe 106.
- the method of forming the flange 106a is not limited to bulging.
- the flange 106a may be formed by bead processing (string processing).
- a pressure equalizing hole 106q is formed below the flange 106a.
- the pressure equalizing hole 106q penetrates the inside and outside of the inner pipe 106.
- the pressure equalizing hole 106q is a hole that prevents the liquid phase refrigerant that has accumulated in the inner pipe 106 from being sucked up by the compressor when the compressor is started again after the refrigeration cycle has stopped (after the compressor has stopped operating).
- the pressure equalizing hole 106q allows not only the liquid phase refrigerant in the inner pipe 106 but also the gas phase refrigerant outside the inner pipe 106 to be sucked up by the compressor, thereby preventing the liquid phase refrigerant from being sucked up.
- the inner pipe 106 may have a flat surface at its lower end perpendicular to the axis L, as in the embodiment shown in FIG. 4, or the inner diameter surface may expand as it approaches the lower end, as in the embodiment shown in FIG. 7, the outer diameter surface may decrease as it approaches the lower end, as in the embodiment shown in FIG. 8, or the inner diameter surface may expand and the outer diameter surface may decrease as it approaches the lower end, as in the embodiment shown in FIG. 9.
- the boss 104d of the header 104 is inserted into the cylindrical recess 116c of the cup 116, and the lower end of the boss 104d is brought into contact with the bottom surface of the cylindrical recess 116c. This causes the small diameter hole 109b and the circular hole 116d to be coaxially aligned.
- the inner pipe 106 is brought close to the cup 116 from below.
- the upper end of the inner pipe 106 is then inserted into the circular hole 116d, and the male thread 106b is screwed into the female thread 109c of the small diameter hole 109b of the header 104.
- the flange 106a approaches the header 4 and comes into contact with the underside of the cylindrical recess 116c.
- the inner pipe 106 is locked with the cup 116 sandwiched between it and does not approach any further toward the header 104.
- the cup 116 is sandwiched between the underside of the boss 104d of the header 104 and the flange 106a of the inner pipe 106 and is held stably. This allows the cup 116 to be held in an appropriate position.
- the outer pipe 107 and strainer 120 are attached to the inner pipe 106 of the assembly formed in this manner, and the assembly is installed inside the body 103 in which the bag 111 is arranged, and then welded to the header 104 to complete the accumulator 101.
- the inner pipe 106 is fixed to the header 104 by screwing the male thread 106a into the female thread 109c of the small diameter hole 109b, which means that, for example, crimping of the inner pipe 106 is not necessary (no crimping portion is provided inside the refrigerant outflow hole 109).
- the refrigerant When the refrigerant is discharged from the evaporator, it is transported to the accumulator 101 through a connecting pipe (not shown). After reaching the accumulator 101, the refrigerant flows into the body 103 through the refrigerant inlet hole 108, and then collides with the upper surface of the cup 116, where it is separated into high-density liquid-phase refrigerant and oil, and low-density gas-phase refrigerant (gas refrigerant).
- the annular retaining cylinder 16A is described as one example of an extension portion, but the retaining cylinder 16A is not limited to being formed in a continuous annular shape.
- the retaining cylinder 16A may be formed in a C-shape in a plan view.
- the retaining cylinder 16A has an outer shape formed in a cylindrical shape, but is not limited to a cylindrical shape.
- the outer shape may be a polygonal prism, such as a square prism.
- the inner surface of the tip portion 16d2 is formed as a flat surface
- the inner surface of the tip portion 16d2 is formed as a flat surface that abuts against the large diameter cylindrical portion 6b of the inner pipe 6 and the large diameter U-shaped tubular portion 6Fb of the outflow pipes 6F, 6G, thereby obtaining the same effect as described above.
- the cups 16, 116 are one example of a gas-liquid separating member.
- the gas-liquid separating member faces both the refrigerant inlet holes 8, 108 and the refrigerant outlet holes 9, 109.
- the gas-liquid separating member has a portion with which the refrigerant flowing in from the refrigerant inlet holes 8, 108 collides.
- the gas-liquid separating member preferably faces the entire area of the refrigerant inlet holes 8, 108.
- the facing direction is the axial direction of the refrigerant inlet holes 8, 108.
- the gas-liquid separation member preferably has a top wall facing both the entire refrigerant inlet holes 8, 108 and the refrigerant outlet holes 9, 109, and a cylindrical side wall facing the inner circumferential surface of the body 3, 103.
- the gap between the header 4, 104 and the top wall and the gap between the inner circumferential surface of the body 3, 103 and the side wall are approximately the same.
- approximately the same means that in addition to being completely the same, it may include an error. That is, when the refrigerant flowing in from the refrigerant inlet hole 8, 108 collides with the top wall and flows downstream, it flows through the gap between the top wall and the header 4, 104 and the gap between the inner circumferential surface of the body 3, 103 and the side wall.
- the top wall of the gas-liquid separating member is not limited to being in the form of a plate having a constant thickness. Furthermore, another example of the gas-liquid separating member has a structure that does not include a side wall.
- a body portion having an opening at at least one end; a header having a refrigerant inlet and a refrigerant outlet and closing one end of the body portion; a gas-liquid separating member accommodated in the body portion, the gas-liquid separating member having a communication portion formed in a portion facing the refrigerant outflow hole, the communication portion communicating the header side with an opposite side; an outflow pipe that is accommodated in the body portion, a portion of which is disposed in the communication portion, and which is connected to the refrigerant outflow hole, the outflow pipe has a small cylinder portion inserted into and fixed to the refrigerant outflow hole, a large cylinder portion disposed within the body portion and having a cross-sectional area larger than that of the small cylinder portion, and a tapered cylinder portion connecting the small cylinder portion and the large cylinder portion,
- the inner circumferential surface of the outflow pipe has, along a flow direction of the refrigerant,
- the outflow pipe is formed into a cylindrical shape having a circular cross-sectional shape. 12.
- the extension portion is provided in a plurality of portions in a circumferential direction of the outflow pipe.
- the accumulator according to any one of the first to third aspects, characterized in that
- the outflow pipe is formed by drawing or expanding the pipe.
- the outflow pipe is press-fitted into the refrigerant outflow hole.
- a body portion having an opening at at least one end; a header having a refrigerant inlet and a refrigerant outlet and closing one end of the body portion; an outflow pipe housed in the body portion and connected to the refrigerant outflow hole,
- the outlet pipe has a male thread formed at an end thereof,
- the refrigerant outlet hole has a female thread,
- the outflow pipe is attached to the header by threading the male thread into the female thread.
- a gas-liquid separating member accommodated in the body portion the gas-liquid separating member having a communication portion formed in a portion facing the refrigerant outflow hole, the communication portion communicating the header side with the opposite side;
- the outflow pipe has a flange portion protruding radially outward from an outer circumferential surface in the vicinity of the male thread, a portion of the outflow pipe is disposed in the communication portion, The gas-liquid separating member is held between the flange portion and the header in a state in which the outflow pipe is attached to the header.
- the header has a boss portion around the refrigerant outlet hole, the gas-liquid separating member has a recess that fits into the boss portion, When the outflow pipe is attached to the header, a bottom wall of the recess is held between the flange portion and the boss portion.
- the gas-liquid separation member is formed by press-molding a metal plate material. 14.
Landscapes
- Compressor (AREA)
Abstract
Provided are an accumulator with which it is possible to increase an amount of refrigerant that passes through the accumulator, and a method for manufacturing the same. In the accumulator, an outflow pipe includes a small cylindrical portion which is inserted into and fixed to a refrigerant outflow hole, a large cylindrical portion which is disposed within a body portion and which has a cross-sectional area greater than that of the small cylindrical portion, and a tapered cylindrical portion connecting the small cylindrical portion and the large cylindrical portion, wherein: an inner circumferential surface of the outflow pipe has, along a refrigerant flow direction, a large inner circumferential surface, an intermediate inner circumferential surface connected to the large inner circumferential surface, and a small inner circumferential surface which is connected to the intermediate inner circumferential surface and which has a cross-sectional area smaller than the cross-sectional area of the large inner circumferential surface; the intermediate inner circumferential surface has a shape having a cross-sectional area that gradually decreases toward the small inner circumferential surface side; a gas-liquid separating member includes a main body that has a communicating portion and that faces a header, and an extension portion that extends from the main body to the tapered cylindrical portion; and the extension portion is sandwiched between the header and the outflow pipe in a state in which the extension part is in contact with the tapered cylindrical portion.
Description
本発明は、アキュームレータおよびその製造方法に関する。
The present invention relates to an accumulator and a method for manufacturing the same.
冷凍サイクルを循環する冷媒を気液分離して貯留するため、レシーバタンクやアキュームレータ等が用いられる。
Receiver tanks and accumulators are used to separate the refrigerant circulating through the refrigeration cycle into gas and liquid and store it.
冷凍サイクルにおいて、圧縮機から吐出された高圧の気相冷媒は、凝縮器に流入してここで外気と熱交換して冷却されて凝縮される。凝縮器で凝縮された液冷媒は、次に減圧装置にて減圧されて霧状の気液相状態となる。減圧後の低圧冷媒は、蒸発器において空調送風機の送風空気から吸熱して蒸発する。蒸発器で冷却された送風空気は、周知のごとく図示しないヒータコア部で温度調整された後に例えば車室内へ吹き出される。蒸発器を通過した冷媒は、アキュームレータにて気液分離された後に圧縮機に吸入される。
In the refrigeration cycle, the high-pressure gas-phase refrigerant discharged from the compressor flows into the condenser where it exchanges heat with outside air, is cooled, and condensed. The liquid refrigerant condensed in the condenser is then reduced in pressure by a pressure reducing device to become mist-like gas-liquid phase. The low-pressure refrigerant after pressure reduction absorbs heat from the air blown by the air conditioner blower in the evaporator and evaporates. As is well known, the air blown by the evaporator is temperature-adjusted in a heater core section (not shown) before being blown into the passenger compartment, for example. The refrigerant that passes through the evaporator is separated into gas and liquid in an accumulator before being drawn into the compressor.
このため、アキュームレータのヘッダには、アキュームレータ内部に連通する冷媒流入口と冷媒流出口とが形成されている。冷媒流入口は配管を介して蒸発器につながり、また冷媒流出口は配管を介して圧縮機につながっている。
For this reason, the accumulator header is formed with a refrigerant inlet and a refrigerant outlet that communicate with the inside of the accumulator. The refrigerant inlet is connected to the evaporator via piping, and the refrigerant outlet is connected to the compressor via piping.
また、特許文献1のように、冷媒流入口から流入した冷媒を液相冷媒と気相冷媒とに分離する気液分離部材(カップ)を有するアキュームレータも知られている。
Also known is an accumulator having a gas-liquid separation member (cup) that separates the refrigerant flowing in from the refrigerant inlet into liquid-phase refrigerant and gas-phase refrigerant, as disclosed in Patent Document 1.
ところで、冷凍サイクルの性能向上のため、アキュームレータを通過する冷媒の量を増大させたいという要請がある。アキュームレータを通過する冷媒の量を増大させるには、アキュームレータ内に配置されてヘッダの冷媒流出口に接続される流出管として、内径が大きな流出管を用いることが一案である。
In order to improve the performance of the refrigeration cycle, there is a demand to increase the amount of refrigerant passing through the accumulator. One idea for increasing the amount of refrigerant passing through the accumulator is to use an outlet pipe with a large inner diameter that is placed inside the accumulator and connected to the refrigerant outlet of the header.
しかしながら、ヘッダに形成される冷媒流出口の径は、アキュームレータの下流側の流路を構成する配管に応じて決定されており、この配管は、冷凍サイクルを組み立てるメーカー側で設計することが多い。このように、アキュームレータの冷媒流出口の仕様は、設計された配管のサイズにより決定されるという実情があり、このため、流出管に接続される配管のサイズに関わりなく内径が大径となる流出管を用いることが難しいという問題がある。
However, the diameter of the refrigerant outlet formed in the header is determined according to the piping that constitutes the flow path downstream of the accumulator, and this piping is often designed by the manufacturer that assembles the refrigeration cycle. In this way, the specifications of the refrigerant outlet of the accumulator are determined by the size of the designed piping, which creates the problem that it is difficult to use an outlet pipe with a large inner diameter regardless of the size of the piping connected to it.
本発明は、かかる問題に鑑みてなされたものであり、通過する冷媒の量を増大させることができるアキュームレータおよびその製造方法を提供することを目的とする。
The present invention was made in consideration of these problems, and aims to provide an accumulator that can increase the amount of refrigerant passing through, and a method for manufacturing the same.
上記目的を達成すべく、本発明に係るアキュームレータは、
少なくとも一端に開口を有する胴部と、
冷媒流入孔及び冷媒流出孔を備え、前記胴部の一端を塞ぐヘッダと、
前記胴部内に収容される気液分離部材であって、前記冷媒流出孔と対向する部分に、前記ヘッダ側及びその反対側を連通する連通部が形成された気液分離部材と、
前記胴部内に収容されて一部が前記連通部に配置され、前記冷媒流出孔に接続された流出管と、を有し、
前記流出管は、前記冷媒流出孔に挿入されて固定される小筒部と、前記胴部内に配置され、前記小筒部より断面積が大きい大筒部と、前記小筒部と前記大筒部とを連結するテーパ筒部とを有し、
前記流出管の内周面は、冷媒の流れ方向に沿って、大内周面と、前記大内周面につながる中間内周面と、前記中間内周面につながり前記大内周面の断面積よりも小さい断面積を有する小内周面とを有し、前記中間内周面は、前記小内周面側に向かうにつれて断面積が漸次小さくなる形状を有し、
前記気液分離部材は、前記連通部を有し、前記ヘッダと対向する本体と、前記本体から前記テーパ筒部まで延びる延出部と、を有し、前記延出部が前記テーパ筒部に当接した状態で、前記ヘッダ及び前記流出管に挟持される、
ことを特徴とする。 In order to achieve the above object, the accumulator according to the present invention comprises:
a body portion having an opening at at least one end;
a header having a refrigerant inlet and a refrigerant outlet and closing one end of the body portion;
a gas-liquid separating member accommodated in the body portion, the gas-liquid separating member having a communication portion formed in a portion facing the refrigerant outflow hole, the communication portion communicating the header side with an opposite side;
an outflow pipe that is accommodated in the body portion, a portion of which is disposed in the communication portion, and which is connected to the refrigerant outflow hole,
the outflow pipe has a small cylinder portion inserted into and fixed to the refrigerant outflow hole, a large cylinder portion disposed within the body portion and having a cross-sectional area larger than that of the small cylinder portion, and a tapered cylinder portion connecting the small cylinder portion and the large cylinder portion,
The inner circumferential surface of the outflow pipe has, along a flow direction of the refrigerant, a large inner circumferential surface, an intermediate inner circumferential surface connected to the large inner circumferential surface, and a small inner circumferential surface connected to the intermediate inner circumferential surface and having a cross-sectional area smaller than that of the large inner circumferential surface, and the cross-sectional area of the intermediate inner circumferential surface is gradually reduced toward the small inner circumferential surface,
the gas-liquid separating member has the communicating portion, and includes a main body facing the header, and an extension portion extending from the main body to the tapered cylindrical portion, and is sandwiched between the header and the outflow pipe with the extension portion abutting against the tapered cylindrical portion.
It is characterized by:
少なくとも一端に開口を有する胴部と、
冷媒流入孔及び冷媒流出孔を備え、前記胴部の一端を塞ぐヘッダと、
前記胴部内に収容される気液分離部材であって、前記冷媒流出孔と対向する部分に、前記ヘッダ側及びその反対側を連通する連通部が形成された気液分離部材と、
前記胴部内に収容されて一部が前記連通部に配置され、前記冷媒流出孔に接続された流出管と、を有し、
前記流出管は、前記冷媒流出孔に挿入されて固定される小筒部と、前記胴部内に配置され、前記小筒部より断面積が大きい大筒部と、前記小筒部と前記大筒部とを連結するテーパ筒部とを有し、
前記流出管の内周面は、冷媒の流れ方向に沿って、大内周面と、前記大内周面につながる中間内周面と、前記中間内周面につながり前記大内周面の断面積よりも小さい断面積を有する小内周面とを有し、前記中間内周面は、前記小内周面側に向かうにつれて断面積が漸次小さくなる形状を有し、
前記気液分離部材は、前記連通部を有し、前記ヘッダと対向する本体と、前記本体から前記テーパ筒部まで延びる延出部と、を有し、前記延出部が前記テーパ筒部に当接した状態で、前記ヘッダ及び前記流出管に挟持される、
ことを特徴とする。 In order to achieve the above object, the accumulator according to the present invention comprises:
a body portion having an opening at at least one end;
a header having a refrigerant inlet and a refrigerant outlet and closing one end of the body portion;
a gas-liquid separating member accommodated in the body portion, the gas-liquid separating member having a communication portion formed in a portion facing the refrigerant outflow hole, the communication portion communicating the header side with an opposite side;
an outflow pipe that is accommodated in the body portion, a portion of which is disposed in the communication portion, and which is connected to the refrigerant outflow hole,
the outflow pipe has a small cylinder portion inserted into and fixed to the refrigerant outflow hole, a large cylinder portion disposed within the body portion and having a cross-sectional area larger than that of the small cylinder portion, and a tapered cylinder portion connecting the small cylinder portion and the large cylinder portion,
The inner circumferential surface of the outflow pipe has, along a flow direction of the refrigerant, a large inner circumferential surface, an intermediate inner circumferential surface connected to the large inner circumferential surface, and a small inner circumferential surface connected to the intermediate inner circumferential surface and having a cross-sectional area smaller than that of the large inner circumferential surface, and the cross-sectional area of the intermediate inner circumferential surface is gradually reduced toward the small inner circumferential surface,
the gas-liquid separating member has the communicating portion, and includes a main body facing the header, and an extension portion extending from the main body to the tapered cylindrical portion, and is sandwiched between the header and the outflow pipe with the extension portion abutting against the tapered cylindrical portion.
It is characterized by:
上記目的を達成すべく、本発明に係るアキュームレータの製造方法は、
冷媒流出孔を備えたヘッダと、
前記冷媒流出孔に接続される流出管と、
前記ヘッダと対向配置され、前記流出管の一部を配置する連通部を有する気液分離部材と、
を有するアキュームレータの製造方法であって、
パイプに絞り加工または拡管加工を施すことにより、小筒部と、前記小筒部より断面積が大きい大筒部と、前記小筒部と前記大筒部とを連結するテーパ筒部を有する前記流出管を形成し、
前記気液分離部材の前記ヘッダと対向配置される部分となる本体部分に、前記本体部分から離れる方向に延出する延出部を形成し、
前記流出管の前記小筒部を前記連通部に配置した状態で前記延出部及び前記テーパ筒部を近づけることで前記延出部を前記テーパ筒部に当接させ、
前記小筒部が前記ヘッダの前記冷媒流出孔に固定され、かつ前記延出部が前記テーパ筒部に当接した状態とすることで、前記気液分離部材を前記ヘッダ及び前記流出管間に挟持させる、ことを特徴とする。 In order to achieve the above object, a method for manufacturing an accumulator according to the present invention includes the steps of:
A header having a refrigerant outlet hole;
an outflow pipe connected to the refrigerant outflow hole;
a gas-liquid separating member disposed opposite the header and having a communication portion through which a portion of the outflow pipe is disposed;
A method for manufacturing an accumulator having the following features:
forming the outflow pipe having a small cylindrical portion, a large cylindrical portion having a cross-sectional area larger than that of the small cylindrical portion, and a tapered cylindrical portion connecting the small cylindrical portion and the large cylindrical portion by subjecting the pipe to a drawing process or a tube expansion process;
an extension portion is formed on a main body portion of the gas-liquid separating member, the main body portion being a portion that faces the header, the extension portion extending in a direction away from the main body portion;
With the small cylinder portion of the outflow pipe disposed in the communication portion, the extension portion and the tapered cylinder portion are brought close to each other so that the extension portion abuts against the tapered cylinder portion;
The small cylindrical portion is fixed to the refrigerant outflow hole of the header and the extension portion is abutted against the tapered cylindrical portion, thereby sandwiching the gas-liquid separation member between the header and the outflow pipe.
冷媒流出孔を備えたヘッダと、
前記冷媒流出孔に接続される流出管と、
前記ヘッダと対向配置され、前記流出管の一部を配置する連通部を有する気液分離部材と、
を有するアキュームレータの製造方法であって、
パイプに絞り加工または拡管加工を施すことにより、小筒部と、前記小筒部より断面積が大きい大筒部と、前記小筒部と前記大筒部とを連結するテーパ筒部を有する前記流出管を形成し、
前記気液分離部材の前記ヘッダと対向配置される部分となる本体部分に、前記本体部分から離れる方向に延出する延出部を形成し、
前記流出管の前記小筒部を前記連通部に配置した状態で前記延出部及び前記テーパ筒部を近づけることで前記延出部を前記テーパ筒部に当接させ、
前記小筒部が前記ヘッダの前記冷媒流出孔に固定され、かつ前記延出部が前記テーパ筒部に当接した状態とすることで、前記気液分離部材を前記ヘッダ及び前記流出管間に挟持させる、ことを特徴とする。 In order to achieve the above object, a method for manufacturing an accumulator according to the present invention includes the steps of:
A header having a refrigerant outlet hole;
an outflow pipe connected to the refrigerant outflow hole;
a gas-liquid separating member disposed opposite the header and having a communication portion through which a portion of the outflow pipe is disposed;
A method for manufacturing an accumulator having the following features:
forming the outflow pipe having a small cylindrical portion, a large cylindrical portion having a cross-sectional area larger than that of the small cylindrical portion, and a tapered cylindrical portion connecting the small cylindrical portion and the large cylindrical portion by subjecting the pipe to a drawing process or a tube expansion process;
an extension portion is formed on a main body portion of the gas-liquid separating member, the main body portion being a portion that faces the header, the extension portion extending in a direction away from the main body portion;
With the small cylinder portion of the outflow pipe disposed in the communication portion, the extension portion and the tapered cylinder portion are brought close to each other so that the extension portion abuts against the tapered cylinder portion;
The small cylindrical portion is fixed to the refrigerant outflow hole of the header and the extension portion is abutted against the tapered cylindrical portion, thereby sandwiching the gas-liquid separation member between the header and the outflow pipe.
本発明によれば、通過する冷媒の量を増大させることができるアキュームレータおよびその製造方法を提供することができる。
The present invention provides an accumulator that can increase the amount of refrigerant passing through it, and a method for manufacturing the same.
以下、本発明の実施形態のアキュームレータについて、添付図面を参照しながら説明する。
The accumulator according to an embodiment of the present invention will be described below with reference to the attached drawings.
(第1の実施形態)
図1は、第1の実施形態にかかるアキュームレータ1の縦断面図であるが、ストレーナは左側半分のみ断面で示す。アキュームレータ1は、タンク本体2と、タンク本体2内に配置された二重管5と、乾燥剤(吸湿剤)DAを内包したバッグ11と、カップ(気液分離部材ともいう)16と、ストレーナ20とを有する。 (First embodiment)
1 is a vertical cross-sectional view of anaccumulator 1 according to a first embodiment, with only the left half of the strainer shown in cross section. The accumulator 1 has a tank body 2, a double pipe 5 arranged in the tank body 2, a bag 11 containing a desiccant (moisture absorbent) DA, a cup (also called a gas-liquid separating member) 16, and a strainer 20.
図1は、第1の実施形態にかかるアキュームレータ1の縦断面図であるが、ストレーナは左側半分のみ断面で示す。アキュームレータ1は、タンク本体2と、タンク本体2内に配置された二重管5と、乾燥剤(吸湿剤)DAを内包したバッグ11と、カップ(気液分離部材ともいう)16と、ストレーナ20とを有する。 (First embodiment)
1 is a vertical cross-sectional view of an
タンク本体2は、胴体3と、ヘッダ4と、を備える。胴体3は、少なくとも上端が開口する筒状に形成され、一例として有底円筒状に形成され、少なくとも一端に開口を有する胴部である。ヘッダ4は、胴体3の一端の開口部を塞ぐ。ヘッダ4は、例えば溶接部10を介して胴体3と周接合により接合されて胴体3の開口を塞ぐ。これら胴体3及びヘッダ4は、例えば、いずれもアルミニウム合金等の金属によって形成される。本明細書において、ヘッダ4側を上方とし、胴体3の底側を下方とする。胴体3の他の例として、胴体3は、両端が開口する筒状であってもよい。この構成の場合、一方の開口がヘッダ4で塞がれ、他方の開口が胴体3と別部材で塞がれる。この構成の場合、胴体3の他方の開口を塞ぐ部材は、アルミニウム合金等の金属によって形成される。
The tank body 2 includes a body 3 and a header 4. The body 3 is formed in a cylindrical shape with at least an opening at the top end, and as an example, is formed in a cylindrical shape with a bottom, and is a body portion with an opening at at least one end. The header 4 closes the opening at one end of the body 3. The header 4 is joined to the body 3 by circumferential joining, for example, via a weld 10, and closes the opening of the body 3. The body 3 and the header 4 are both formed of a metal such as an aluminum alloy. In this specification, the header 4 side is referred to as the upper side, and the bottom side of the body 3 is referred to as the lower side. As another example of the body 3, the body 3 may be a cylinder with openings at both ends. In this configuration, one opening is closed by the header 4, and the other opening is closed by a member separate from the body 3. In this configuration, the member that closes the other opening of the body 3 is formed of a metal such as an aluminum alloy.
例えば略円盤状に形成されたヘッダ4には、冷媒流入孔8及び冷媒流出孔9が、上下に貫通して形成されている。冷媒流出孔9には、胴体3の内底部の近くまで延伸するインナーパイプ(流出管ともいう)6が接続されている。インナーパイプ6の外側に、アウターパイプ7が外装されており、これにより二重管5が形成される。
For example, the header 4 is formed in a roughly disk-like shape, and has a refrigerant inlet hole 8 and a refrigerant outlet hole 9 formed to penetrate from top to bottom. An inner pipe (also called an outlet pipe) 6 that extends close to the inside bottom of the body 3 is connected to the refrigerant outlet hole 9. An outer pipe 7 is fitted to the outside of the inner pipe 6, thereby forming a double pipe 5.
ヘッダ4の下方には、冷媒流入孔8からの混合冷媒(気相分と液相分が混在した冷媒)を、密度の高い液相冷媒及びコンプレッサオイル(以下、「オイル」という)と、密度の低い気相冷媒とに分離するカップ16が設けられる。カップ16は、例えば樹脂製である。カップ16は、例えば有頂円筒形状を有し、冷媒流入孔8及び冷媒流出孔9に対向して配置される。
Below the header 4, a cup 16 is provided to separate the mixed refrigerant (a mixture of gas and liquid phase refrigerant) from the refrigerant inlet 8 into high density liquid phase refrigerant and compressor oil (hereinafter referred to as "oil"), and low density gas phase refrigerant. The cup 16 is made of, for example, resin. The cup 16 has, for example, a cylindrical shape with a top, and is positioned opposite the refrigerant inlet 8 and the refrigerant outlet 9.
インナーパイプ6は、例えば金属製であり、金属の一例としてアルミニウム合金が用いられる。インナーパイプ6は、その下端部が開口すると共に、後述するようにして、その上端部がヘッダ4の冷媒流出孔9に圧入により連結される。また、インナーパイプ6の外周は、アウターパイプ7の内周面に突設された複数のパイプリブ7aの内側に嵌入され、これにより、アウターパイプ7内においてインナーパイプ6が隙間を開けて安定して保持される。
The inner pipe 6 is made of, for example, a metal, and an aluminum alloy is one example of the metal. The lower end of the inner pipe 6 is open, and the upper end is connected to the refrigerant outlet hole 9 of the header 4 by press-fitting, as described below. The outer periphery of the inner pipe 6 is fitted inside a number of pipe ribs 7a protruding from the inner periphery of the outer pipe 7, so that the inner pipe 6 is stably held within the outer pipe 7 with a gap therebetween.
アウターパイプ7は、例えば合成樹脂からなり、上端部が開口した状態で胴体3内に取り付けられる。アウターパイプ7の底部には、円筒状のストレーナ20が設けられている。ストレーナ20は、合成樹脂製の有底円筒状のケース21と、該ケース21にインサート成形等により一体化された円筒状の網目フィルタ22とから構成されている。ストレーナ20を、例えば、胴体3の内部空間の底面に当接させてもよい。ストレーナ20が胴体3の内部空間の底面に当接することで、カップ16は、インナーパイプ6を介して、胴体3及びヘッダ4によって挟持される。
The outer pipe 7 is made of, for example, synthetic resin, and is attached inside the body 3 with its upper end open. A cylindrical strainer 20 is provided at the bottom of the outer pipe 7. The strainer 20 is composed of a cylindrical case 21 with a bottom made of synthetic resin, and a cylindrical mesh filter 22 integrated with the case 21 by insert molding or the like. The strainer 20 may be abutted against, for example, the bottom surface of the internal space of the body 3. When the strainer 20 abuts against the bottom surface of the internal space of the body 3, the cup 16 is clamped between the body 3 and the header 4 via the inner pipe 6.
アウターパイプ7と胴体3の内周との間には、乾燥剤DAを内包したバッグ11が配置されている。
A bag 11 containing a desiccant DA is placed between the outer pipe 7 and the inner circumference of the body 3.
図2は、ヘッダ4と、カップ16と、インナーパイプ6とを分解した状態で示す断面図である。図3は、カップ16の下面図である。インナーパイプ6の軸線をLとする。
FIG. 2 is a cross-sectional view showing the header 4, cup 16, and inner pipe 6 in an exploded state. FIG. 3 is a bottom view of the cup 16. The axis of the inner pipe 6 is designated as L.
図2に示すように、ヘッダ4は、大円筒部4aと、大円筒部4aより小径の薄肉環状部4bとを積層して連設してなり、大円筒部4aと薄肉環状部4bとの間には、胴体3の上端外周が係合する段部4cが形成されている。大円筒部4aの上面は、例えば上下方向に直交する平面に形成されている。
As shown in FIG. 2, the header 4 is made up of a large cylindrical portion 4a and a thin-walled annular portion 4b, which is smaller in diameter than the large cylindrical portion 4a, stacked in series, and a step 4c is formed between the large cylindrical portion 4a and the thin-walled annular portion 4b, with which the outer periphery of the upper end of the body 3 engages. The upper surface of the large cylindrical portion 4a is formed, for example, as a plane perpendicular to the vertical direction.
ヘッダ4の下面には、大円筒部4aから下方に突出する円筒状のボス4dが形成されている。ボス4dを通りヘッダ4を上下に貫通するようにして、冷媒流出孔9が形成され、またボス4dに隣接してヘッダ4を上下に貫通するようにして、冷媒流入孔8が形成されている。ボス4dの下面は、例えば、後述するカップ16の頂壁16bの上面と面接触する平面に形成される。ボス4dの下面は、例えば、インナーパイプ6の軸線Lに直交する平面に形成される。
A cylindrical boss 4d is formed on the underside of the header 4, protruding downward from the large cylindrical portion 4a. A refrigerant outlet hole 9 is formed through the boss 4d, penetrating the header 4 from top to bottom, and a refrigerant inlet hole 8 is formed adjacent to the boss 4d, penetrating the header 4 from top to bottom. The underside of the boss 4d is formed, for example, on a plane that is in surface contact with the upper surface of the top wall 16b of the cup 16, which will be described later. The underside of the boss 4d is formed, for example, on a plane that is perpendicular to the axis L of the inner pipe 6.
冷媒流出孔9は、上部に形成された大径孔9aと、下部に形成された小径孔9bとを有する。大径孔9aの内径は、小径孔9bの内径より大きくなっている。
The refrigerant outlet hole 9 has a large diameter hole 9a formed at the top and a small diameter hole 9b formed at the bottom. The inner diameter of the large diameter hole 9a is larger than the inner diameter of the small diameter hole 9b.
カップ16は、カップ本体(単に本体ともいう)16eと、延出部16dとを有する。カップ本体16eは、胴体3内でヘッダ4に対向する。カップ本体16eは、側壁16aと頂壁16bとを連結してなる。頂壁16bには、貫通孔16cが形成されている。貫通孔16cは、インナーパイプ6の一部を配置する連通部の一例である。連通部は、カップ本体16eにおいて、ヘッダ4側とその反対側、換言すると胴体3の底面側とを連通する形状に形成されている。連通部は、貫通孔に限定されない。他の例では、連通部は、カップ本体16eを貫通するとともにカップ本体16eの側面に開口する切り欠きであってもよい。頂壁16bの上面には例えば1つまたは複数のリブ16b1が、上方に突出する形状に形成されている。リブ16b1は、頂壁の上面の一部を構成する。
The cup 16 has a cup body (also simply called the body) 16e and an extension 16d. The cup body 16e faces the header 4 inside the body 3. The cup body 16e is formed by connecting a side wall 16a and a top wall 16b. A through hole 16c is formed in the top wall 16b. The through hole 16c is an example of a communication part in which a part of the inner pipe 6 is arranged. The communication part is formed in the cup body 16e in a shape that communicates the header 4 side with the opposite side, in other words, the bottom side of the body 3. The communication part is not limited to a through hole. In another example, the communication part may be a notch that penetrates the cup body 16e and opens to the side of the cup body 16e. For example, one or more ribs 16b1 are formed on the upper surface of the top wall 16b in a shape that protrudes upward. The ribs 16b1 form part of the upper surface of the top wall.
頂壁16bの下面において、貫通孔16cの周囲、例えば貫通孔16cの縁に、延出部16dが形成される。延出部16dは、カップ本体16eからテーパ筒部6cまで延びてインナーパイプ6のテーパ筒部6cに当接する形状に形成される。延出部16dは、複数例えば4つ形成される。延出部16dは、一例として壁状に形成されている。本実施形態では、延出部16dを、保持壁16dとして説明する。4つの保持壁16dは、貫通孔16cの縁に例えば等間隔離間して配置されている。保持壁16dは、カップ本体16eに連設して形成されている。保持壁16dを除く頂壁16bの下面は、平面である。
On the underside of the top wall 16b, an extension portion 16d is formed around the through hole 16c, for example, on the edge of the through hole 16c. The extension portion 16d is formed in a shape that extends from the cup body 16e to the tapered tube portion 6c and abuts against the tapered tube portion 6c of the inner pipe 6. A plurality of extension portions 16d, for example, four extension portions 16d, are formed. As an example, the extension portions 16d are formed in a wall shape. In this embodiment, the extension portions 16d are described as retaining walls 16d. The four retaining walls 16d are arranged, for example, at equal intervals on the edge of the through hole 16c. The retaining walls 16d are formed to be connected to the cup body 16e. The underside of the top wall 16b, excluding the retaining walls 16d, is flat.
頂壁16bは、冷媒流入孔8と冷媒流出孔9との双方と対向する。さらに、頂壁16bは、冷媒流入孔8から流入した冷媒が衝突する部位となる。さらに、頂壁16bは、冷媒流入孔8の全域と対向する。対向する方向は、冷媒流入孔8の軸方向である。
さらに、ヘッダ4と頂壁16bとの間の隙間と、側壁16aと胴体3の内周面との間の隙間が、略同じである。ここで、略同じとは、完全に同じであることに加えて、誤差を含んでもよい。すなわち、冷媒流入孔8から流入した冷媒が頂壁16bに衝突して下流に流れる際に、頂壁16bとヘッダ4との間の隙間と、胴体3の内周面と側壁16aとの間の隙間とを流れる。これら隙間が「同じ」であると、冷媒のスムーズな流れが維持される。加えて、これら隙間の誤差が多少であれば、冷媒がスムーズに流れる状態を維持できる。誤差は、このように、冷媒の流れをスムーズな流れに維持できる程度の誤差である。Top wall 16b faces both refrigerant inlet hole 8 and refrigerant outlet hole 9. Furthermore, top wall 16b is a portion against which the refrigerant flowing in from refrigerant inlet hole 8 collides. Furthermore, top wall 16b faces the entire refrigerant inlet hole 8. The facing direction is the axial direction of refrigerant inlet hole 8.
Furthermore, the gap between theheader 4 and the top wall 16b and the gap between the side wall 16a and the inner circumferential surface of the body 3 are approximately the same. Here, "approximately the same" may include an error in addition to being completely the same. That is, when the refrigerant flowing in from the refrigerant inlet hole 8 collides with the top wall 16b and flows downstream, it flows through the gap between the top wall 16b and the header 4 and the gap between the inner circumferential surface of the body 3 and the side wall 16a. If these gaps are "the same", the smooth flow of the refrigerant is maintained. In addition, if there is a small error in these gaps, the state in which the refrigerant flows smoothly can be maintained. The error is an error that can maintain the flow of the refrigerant smoothly in this way.
さらに、ヘッダ4と頂壁16bとの間の隙間と、側壁16aと胴体3の内周面との間の隙間が、略同じである。ここで、略同じとは、完全に同じであることに加えて、誤差を含んでもよい。すなわち、冷媒流入孔8から流入した冷媒が頂壁16bに衝突して下流に流れる際に、頂壁16bとヘッダ4との間の隙間と、胴体3の内周面と側壁16aとの間の隙間とを流れる。これら隙間が「同じ」であると、冷媒のスムーズな流れが維持される。加えて、これら隙間の誤差が多少であれば、冷媒がスムーズに流れる状態を維持できる。誤差は、このように、冷媒の流れをスムーズな流れに維持できる程度の誤差である。
Furthermore, the gap between the
保持壁16dは、例えば、インナーパイプ6に対応した形状を有する。ここで、対応した形状とは、インナーパイプ6の外周面に沿う形状であり、すなわち、保持壁16dにおいてインナーパイプ6に対向し当接する面は、インナーパイプ6の外周面と同形状、または、略同形状に形成される。
The retaining wall 16d has a shape that corresponds to, for example, the inner pipe 6. Here, the corresponding shape means a shape that follows the outer peripheral surface of the inner pipe 6, that is, the surface of the retaining wall 16d that faces and abuts against the inner pipe 6 is formed to have the same shape or approximately the same shape as the outer peripheral surface of the inner pipe 6.
保持壁16dは、貫通孔16cの軸線(組付けた時に軸線Lに一致する)に対して点対称の形状を有し、具体的には頂壁16b側の矩形板状の基部16d1と、下端側の矩形板状の先端部16d2と、基部16d1と先端部16d2とを連結する直角台形板状の中間部16d3とからなる。
The retaining wall 16d has a shape that is point-symmetrical with respect to the axis of the through hole 16c (which coincides with the axis L when assembled), and specifically consists of a rectangular plate-shaped base 16d1 on the top wall 16b side, a rectangular plate-shaped tip 16d2 on the lower end side, and a right-angled trapezoidal plate-shaped intermediate portion 16d3 that connects the base 16d1 and tip 16d2.
貫通孔16cの軸線を通る断面において、貫通孔16cの軸線から離れた側における基部16d1、中間部16d3、および先端部16d2の外側面は、貫通孔16cの軸線に例えば平行である。
In a cross section passing through the axis of the through hole 16c, the outer surfaces of the base 16d1, the intermediate portion 16d3, and the tip portion 16d2 on the side away from the axis of the through hole 16c are, for example, parallel to the axis of the through hole 16c.
また、貫通孔16cの軸線に近い側における基部16d1および先端部16d2の内側面と、貫通孔16cの軸線との距離は、それぞれR1、R2であり、R1<R2である。すなわち、基部16d1の内側面は、半径R1とする円柱の外周面の一部と同形状または略同形状である。先端部16d2の内側面は、半径R2とする円柱の外周面の一部と同形状または略同形状である。このため、中間部16d3における貫通孔16cの軸線に近い内側面は、貫通孔16cの軸線に対して角度θ1で傾斜している。中間部16d3の内側面は、下端の半径をR2とし、上端の半径をR1とする円錐台形の外周面の一部と同形状または略同形状となる。なお、小径孔9bおよび貫通孔16cの内径は、2×R1である。
The distances between the inner surfaces of the base 16d1 and tip 16d2 on the side closer to the axis of the through hole 16c and the axis of the through hole 16c are R1 and R2, respectively, where R1<R2. That is, the inner surface of the base 16d1 has the same shape or approximately the same shape as a part of the outer periphery of a cylinder with a radius of R1. The inner surface of the tip 16d2 has the same shape or approximately the same shape as a part of the outer periphery of a cylinder with a radius of R2. Therefore, the inner surface of the middle portion 16d3 close to the axis of the through hole 16c is inclined at an angle θ1 with respect to the axis of the through hole 16c. The inner surface of the middle portion 16d3 has the same shape or approximately the same shape as a part of the outer periphery of a truncated cone with a radius of R2 at the bottom and a radius of R1 at the top. The inner diameter of the small diameter hole 9b and the through hole 16c is 2×R1.
カップ16の頂壁16bの上面のうち、ヘッダ4のボス4dの下面が当接する範囲は、ボス4dの下面と面接触する平面に形成される。カップ16の頂壁16bの上面のうち、ヘッダ4のボス4dの下面が当接する範囲は、例えば、インナーパイプ6の軸線に直交する平面に形成される。または、カップ16の頂壁16bの上面のうち、ヘッダ4のボス4dの下面が当接する範囲に、リブ16b1の一部が形成されてもよい。この構成の場合、ヘッダ4のボス4dの下面には、リブ16b1の一部を配置する凹部が形成される。この凹部は、例えば、リブ16b1が嵌合する形状を有している。
The area of the upper surface of the top wall 16b of the cup 16 that contacts the lower surface of the boss 4d of the header 4 is formed in a plane that is in surface contact with the lower surface of the boss 4d. The area of the upper surface of the top wall 16b of the cup 16 that contacts the lower surface of the boss 4d of the header 4 is formed in a plane that is perpendicular to the axis of the inner pipe 6, for example. Alternatively, a part of the rib 16b1 may be formed in the area of the upper surface of the top wall 16b of the cup 16 that contacts the lower surface of the boss 4d of the header 4. In this configuration, a recess is formed in the lower surface of the boss 4d of the header 4 in which part of the rib 16b1 is disposed. This recess has a shape that, for example, fits into the rib 16b1.
インナーパイプ6は、冷媒流出孔9の小径孔9bに挿入されて固定される小径円筒部(小筒部ともいう)6aと、小径円筒部6aより大径であり胴体3内に配置される大径円筒部(大筒部ともいう)6bとを、テーパ筒部6cにより連結してなる。
The inner pipe 6 is made up of a small diameter cylindrical section (also called a small tube section) 6a, which is inserted into and fixed in the small diameter hole 9b of the refrigerant outflow hole 9, and a large diameter cylindrical section (also called a large tube section) 6b, which is larger in diameter than the small diameter cylindrical section 6a and is placed inside the body 3, connected by a tapered tube section 6c.
インナーパイプ6は、例えば金属製、その一例としてアルミニウム製のパイプを絞り加工することにより形成されている。小径円筒部6aの外径は、大径円筒部6bの外径より小さいが、パイプを絞り加工することにより、インナーパイプ6の金属組織におけるファイバーフローは、小径円筒部6a、テーパ筒部6c、および大径円筒部6bにわたって連続する。このように連続したファイバーフローは、インナーパイプ6を軸線方向に切断することにより視認できるため、いわゆる顕現性がある。
The inner pipe 6 is formed by drawing a pipe made of metal, for example aluminum. The outer diameter of the small diameter cylindrical portion 6a is smaller than the outer diameter of the large diameter cylindrical portion 6b, but by drawing the pipe, the fiber flow in the metal structure of the inner pipe 6 is continuous across the small diameter cylindrical portion 6a, the tapered tube portion 6c, and the large diameter cylindrical portion 6b. This continuous fiber flow can be seen by cutting the inner pipe 6 in the axial direction, and is therefore visible.
小径円筒部6aと大径円筒部6bの外周面半径は、それぞれr1、r2である。r1はR1と等しく、または、r1はR1と略等しい。r1がR1と略等しいとは、r1がR1より小さい場合、及びr1がR1よりより大きい場合を含む。r2は、R2と等しく、または、r2はR2と略等しい。r2がR2と略等しいとは、r2がR2より小さい場合、及び、r2がR2より大きい場合を含む。
The outer circumferential radii of the small diameter cylindrical portion 6a and the large diameter cylindrical portion 6b are r1 and r2, respectively. r1 is equal to R1, or r1 is approximately equal to R1. "r1 is approximately equal to R1" includes cases where r1 is smaller than R1 and cases where r1 is larger than R1. r2 is equal to R2, or r2 is approximately equal to R2. "r2 is approximately equal to R2" includes cases where r2 is smaller than R2 and cases where r2 is larger than R2.
テーパ筒部6cの外周面は、下端の半径をr2とし、上端の半径をr1とする円錐台形の外周面となる、または、下端の半径をr2とし、上端の半径をr1とする円錐台形の外周面と略同様の曲面となる。
The outer peripheral surface of the tapered tube portion 6c is a truncated cone outer peripheral surface with a radius of r2 at the bottom end and a radius of r1 at the top end, or a curved surface substantially similar to the outer peripheral surface of a truncated cone with a radius of r2 at the bottom end and a radius of r1 at the top end.
さらにインナーパイプ6は、小径円筒部6a内を延在する小径内周面(小内周面)6eと、テーパ筒部6c内を延在するテーパ内周面(中間内周面)6fと、大径円筒部6b内を延在する大径内周面(大内周面)6gとを有する。インナーパイプ6内における冷媒の流れ方向は、下端から上端に向かう方向であるため、大径内周面6gと、テーパ内周面6fと、小径内周面6eとが、この順序で冷媒の流れ方向に沿って配設される。インナーパイプ6が絞り加工により形成されているため、小径内周面6eと、テーパ内周面6fと、大径内周面6gとは、相互に滑らかに接続されている。
Furthermore, the inner pipe 6 has a small diameter inner circumferential surface (small inner circumferential surface) 6e extending inside the small diameter cylindrical portion 6a, a tapered inner circumferential surface (intermediate inner circumferential surface) 6f extending inside the tapered tube portion 6c, and a large diameter inner circumferential surface (large inner circumferential surface) 6g extending inside the large diameter cylindrical portion 6b. Since the flow direction of the refrigerant inside the inner pipe 6 is from the lower end to the upper end, the large diameter inner circumferential surface 6g, the tapered inner circumferential surface 6f, and the small diameter inner circumferential surface 6e are arranged in this order along the flow direction of the refrigerant. Since the inner pipe 6 is formed by drawing, the small diameter inner circumferential surface 6e, the tapered inner circumferential surface 6f, and the large diameter inner circumferential surface 6g are smoothly connected to each other.
貫通孔16cの軸線を通る断面において、テーパ筒部6cの外周面は、インナーパイプ6の軸線Lに対して角度θ2で傾斜している。θ2はθ1と等しく、または、θ2はθ1と略等しい。角度θ1、θ2は、例えば40度±10度であると好ましい。
In a cross section passing through the axis of the through hole 16c, the outer peripheral surface of the tapered tube portion 6c is inclined at an angle θ2 with respect to the axis L of the inner pipe 6. θ2 is equal to θ1 or approximately equal to θ1. It is preferable that the angles θ1 and θ2 are, for example, 40 degrees ± 10 degrees.
テーパ筒部6cは、保持壁16の中間部16d3に当接する。なお、テーパ筒部6cの外周面、及び、中間部16d3の内側面は、互いに面接触する曲面に形成されてもよい。例えば、r1がR1と等しく、r2がR2と等しい場合、テーパ筒部6cの外周面は、中間部16d3の内側面と面接触する曲面となる。
The tapered tube portion 6c abuts against the middle portion 16d3 of the retaining wall 16. The outer peripheral surface of the tapered tube portion 6c and the inner surface of the middle portion 16d3 may be formed as curved surfaces that are in surface contact with each other. For example, when r1 is equal to R1 and r2 is equal to R2, the outer peripheral surface of the tapered tube portion 6c is a curved surface that is in surface contact with the inner surface of the middle portion 16d3.
テーパ筒部6cが中間部16d3に当接し、かつ、大径円筒部6bが先端部16d2に当接することで、インナーパイプ6に対するカップ16の位置決めの精度が向上する。すなわち、保持壁16dは、単一の平面のみでインナーパイプ6に当接する形状ではなく、基部16d1、中間部16d3、先端部16d2の間の境界部分(角部または隅部)が、インナーパイプ6の小径円筒部6e、テーパ筒部6c、大径円筒部6bの間の境界部(角部または隅部)に合わさることで、インナーパイプ6に対するカップ16の位置決めの精度が向上する。
The tapered tube portion 6c abuts against the middle portion 16d3 and the large diameter cylindrical portion 6b abuts against the tip portion 16d2, improving the accuracy of positioning the cup 16 relative to the inner pipe 6. In other words, the retaining wall 16d is not shaped to abut against the inner pipe 6 only on a single plane, but the boundary portion (corner or corner) between the base portion 16d1, middle portion 16d3, and tip portion 16d2 fits into the boundary portion (corner or corner) between the small diameter cylindrical portion 6e, tapered tube portion 6c, and large diameter cylindrical portion 6b of the inner pipe 6, improving the accuracy of positioning the cup 16 relative to the inner pipe 6.
なお、テーパ筒部6cの形状が、インナーパイプ6の形状に対して同一ではなく、略同一である場合、例えば寸法が異なる場合では、保持壁16dの基部16d1及び中間部16d3の間の境界部分と、インナーパイプ6の小径円筒部6e及びテーパ筒部6cの間の境界部分とが合わさらない場合が生じえるし、または、保持壁16dの中間部16d3及び先端部16d2間の境界部分と、インナーパイプ6のテーパ筒部6c及び大径円筒部6bの間の境界部とが合わさらない場合も生じえるが、そのような場合であっても、保持壁16dの中間部16d3がインナーパイプ6のテーパ筒部6cに当接し、保持壁16dの先端部16d2が、インナーパイプ6の大径円筒部6bに当接することで、インナーパイプ部6に対するカップ16の位置決めの精度が向上する。さらに、保持壁16dの中間部16d3及び先端部16d2が、インナーパイプ6をヘッダ4の冷媒流出孔9に挿入する際のガイドとして機能するので、インナーパイプ6を冷媒流出孔9に固定する作業を行いやすくなる。
In addition, if the shape of the tapered tube portion 6c is not identical to the shape of the inner pipe 6 but is approximately the same, for example if the dimensions are different, it may be the case that the boundary portion between the base 16d1 and the intermediate portion 16d3 of the retaining wall 16d does not match the boundary portion between the small diameter cylindrical portion 6e and the tapered tube portion 6c of the inner pipe 6, or the boundary portion between the intermediate portion 16d3 and the tip portion 16d2 of the retaining wall 16d does not match the boundary portion between the tapered tube portion 6c and the large diameter cylindrical portion 6b of the inner pipe 6. However, even in such cases, the intermediate portion 16d3 of the retaining wall 16d abuts against the tapered tube portion 6c of the inner pipe 6 and the tip portion 16d2 of the retaining wall 16d abuts against the large diameter cylindrical portion 6b of the inner pipe 6, improving the accuracy of positioning the cup 16 with respect to the inner pipe portion 6. Furthermore, the middle portion 16d3 and the tip portion 16d2 of the retaining wall 16d function as a guide when inserting the inner pipe 6 into the refrigerant outlet hole 9 of the header 4, making it easier to fix the inner pipe 6 to the refrigerant outlet hole 9.
図4は、本実施形態のインナーパイプ6の下端を拡大して示す断面図である。本実施形態のインナーパイプ6の下端6hまで、大径内周面6gは円筒形状を維持し、また大径円筒部6bの外周面も円筒形状を維持する。さらに、下端6hは、軸線Lに直交する端面である。
Figure 4 is an enlarged cross-sectional view of the lower end of the inner pipe 6 of this embodiment. Up to the lower end 6h of the inner pipe 6 of this embodiment, the large-diameter inner circumferential surface 6g maintains a cylindrical shape, and the outer circumferential surface of the large-diameter cylindrical portion 6b also maintains a cylindrical shape. Furthermore, the lower end 6h is an end surface that is perpendicular to the axis L.
図2において、インナーパイプ6のテーパ筒部6cには、均圧孔6qが形成されている。均圧孔6qは、インナーパイプ6の内外を貫通している。均圧孔6qは、冷凍サイクルが停止した後(コンプレッサの動作が停止した後)に再びコンプレッサが起動された際に、インナーパイプ6内に溜まっている液相の冷媒がコンプレッサに吸い上げられることを抑制する為の孔である。すなわち、均圧孔6qによって、インナーパイプ6内の液相冷媒だけでなく、インナーパイプ6外の気相冷媒もコンプレッサに吸い上げられる為、液相の冷媒が吸い上げられることが抑制される。
In FIG. 2, a pressure equalizing hole 6q is formed in the tapered cylindrical portion 6c of the inner pipe 6. The pressure equalizing hole 6q penetrates the inside and outside of the inner pipe 6. The pressure equalizing hole 6q is a hole that prevents the liquid phase refrigerant that has accumulated in the inner pipe 6 from being sucked up by the compressor when the compressor is started again after the refrigeration cycle has stopped (after the compressor has stopped operating). In other words, the pressure equalizing hole 6q allows not only the liquid phase refrigerant in the inner pipe 6 but also the gas phase refrigerant outside the inner pipe 6 to be sucked up by the compressor, thereby preventing the liquid phase refrigerant from being sucked up.
(アキュームレータの組付工程)
切削加工等により形成したヘッダ4と、樹脂材から形成したカップ16と、絞り加工により形成したインナーパイプ6とを組み付ける工程の一例を説明する。まずヘッダ4のボス4dの下端を、カップ16の上面であって貫通孔16cの周囲に当接させ、小径孔9bと貫通孔16cとを略同軸に整列させる。なお、頂壁16bの上面では、リブ16b1は、一例として、ボス4dが当接する範囲を避けた位置に形成されている。このため、本実施形態では、ボス4dの下端は、頂壁16bの上面の平面部分に面接触する。 (Accumulator assembly process)
An example of a process for assembling theheader 4 formed by cutting or the like, the cup 16 formed from a resin material, and the inner pipe 6 formed by drawing will be described. First, the lower end of the boss 4d of the header 4 is brought into contact with the upper surface of the cup 16 around the through hole 16c, and the small diameter hole 9b and the through hole 16c are aligned approximately coaxially. On the upper surface of the top wall 16b, the rib 16b1 is formed, for example, at a position that avoids the area where the boss 4d comes into contact. Therefore, in this embodiment, the lower end of the boss 4d comes into surface contact with the flat portion of the upper surface of the top wall 16b.
切削加工等により形成したヘッダ4と、樹脂材から形成したカップ16と、絞り加工により形成したインナーパイプ6とを組み付ける工程の一例を説明する。まずヘッダ4のボス4dの下端を、カップ16の上面であって貫通孔16cの周囲に当接させ、小径孔9bと貫通孔16cとを略同軸に整列させる。なお、頂壁16bの上面では、リブ16b1は、一例として、ボス4dが当接する範囲を避けた位置に形成されている。このため、本実施形態では、ボス4dの下端は、頂壁16bの上面の平面部分に面接触する。 (Accumulator assembly process)
An example of a process for assembling the
次いで、インナーパイプ6をカップ16の下方から接近させる。さらにインナーパイプ6の小径円筒部6aを貫通孔16cに挿通させ、ヘッダ4の小径孔9bに圧入により嵌合させる。保持壁16dは、小径円筒部6aの小径孔9bへの進入をガイドする機能も有する。
Then, the inner pipe 6 is brought close to the cup 16 from below. The small diameter cylindrical portion 6a of the inner pipe 6 is then inserted into the through hole 16c and press-fitted into the small diameter hole 9b of the header 4. The retaining wall 16d also functions to guide the small diameter cylindrical portion 6a as it enters the small diameter hole 9b.
小径孔9bに向かって小径円筒部6aを押し込んでゆくと、テーパ筒部6cの外周面が、保持壁16dの中間部16d3の内側面に当接して係合するため、インナーパイプ6が係止され、それ以上ヘッダ4側に進行することがない。かかる状態で、テーパ筒部6cが中間部16d3に当接し、かつ、大径円筒部6bが先端部16d2に当接することで、インナーパイプ6に対するカップ16の位置決めの精度が向上する。これにより、カップ16を適切な姿勢で保持することができる。
When the small diameter cylindrical portion 6a is pushed toward the small diameter hole 9b, the outer peripheral surface of the tapered tube portion 6c abuts and engages with the inner surface of the middle portion 16d3 of the retaining wall 16d, so that the inner pipe 6 is locked and does not proceed any further toward the header 4. In this state, the tapered tube portion 6c abuts against the middle portion 16d3 and the large diameter cylindrical portion 6b abuts against the tip portion 16d2, improving the accuracy of positioning the cup 16 relative to the inner pipe 6. This allows the cup 16 to be held in an appropriate position.
このとき、図1に示すように、小径円筒部6aの小径孔9bに圧入された部位以外は、4つの保持壁16dの基部16d1の内側面に当接して支持される。また、テーパ筒部6cの外周面は、4つの保持壁16dの中間部16d3の内側面に当接して支持される。さらに、大径円筒部6bの上端側外周面は、4つの保持壁16dの先端部16d2の内側面に当接して支持される。これにより、ヘッダ4およびカップ16に対してインナーパイプ6を強固に保持することができ、それにより振動などを抑制できる。
At this time, as shown in FIG. 1, the small diameter cylindrical portion 6a is supported by abutting against the inner surfaces of the base portions 16d1 of the four retaining walls 16d, except for the portion pressed into the small diameter hole 9b. The outer peripheral surface of the tapered tube portion 6c is supported by abutting against the inner surfaces of the middle portions 16d3 of the four retaining walls 16d. Furthermore, the upper outer peripheral surface of the large diameter cylindrical portion 6b is supported by abutting against the inner surfaces of the tip portions 16d2 of the four retaining walls 16d. This allows the inner pipe 6 to be firmly held against the header 4 and cup 16, thereby suppressing vibrations, etc.
このようにして形成された組立体に対して、インナーパイプ6にアウターパイプ7及びストレーナ20を組み込み、バッグ11が配置された胴体3内に設置し、ヘッダ4と溶接することでアキュームレータ1が完成する。以上の工程については、特に明記しない限り、その順序は記載順に限られない。
The outer pipe 7 and strainer 20 are attached to the inner pipe 6 of the assembly thus formed, and the accumulator 1 is completed by installing it inside the body 3 in which the bag 11 is arranged, and welding it to the header 4. Unless otherwise specified, the order of the above steps is not limited to the order described.
なお、上述の例では、インナーパイプ6の小径円筒部6aをヘッダ4の小径孔9bに挿入しつつ、インナーパイプ6のテーパ筒部6c及び保持壁16dの中間部16d3を近づけることで、インナーパイプ6の小径円筒部6aがヘッダ4の小径孔9bに固定され、かつインナーパイプ6のテーパ筒部6cが保持壁16dの中間部16d3に当接した状態にし、結果、カップ16をインナーパイプ6及びヘッダ4に挟持させた。このように、インナーパイプ6のテーパ筒部6c及び保持壁16dの中間部16d3を近づける動作と、インナーパイプ6の小径円筒部6aをヘッダ4の小径孔9bに挿入し、小径円筒部6aを小径孔9bに固定する動作とを、同時に行うことに限定されない。他の例では、インナーパイプ6の小径円筒部6aを貫通孔16cに挿入してテーパ筒部6c及び中間部16d3を近づけてテーパ筒部6c及び中間部16d3を当接させた後、当該当接した状態を維持しつつ小径円筒部6aを小径孔9bに挿入して小径円筒部6aを小径孔9bに固定することで、カップ16をインナーパイプ6及びヘッダ4に挟持させてもよい。
In the above example, the small diameter cylindrical portion 6a of the inner pipe 6 is inserted into the small diameter hole 9b of the header 4 while the tapered tube portion 6c of the inner pipe 6 and the middle portion 16d3 of the retaining wall 16d are brought closer together, so that the small diameter cylindrical portion 6a of the inner pipe 6 is fixed to the small diameter hole 9b of the header 4 and the tapered tube portion 6c of the inner pipe 6 is brought into contact with the middle portion 16d3 of the retaining wall 16d, thereby clamping the cup 16 between the inner pipe 6 and the header 4. In this way, it is not limited to simultaneously carrying out the operation of bringing the tapered tube portion 6c of the inner pipe 6 and the middle portion 16d3 of the retaining wall 16d closer to each other and the operation of inserting the small diameter cylindrical portion 6a of the inner pipe 6 into the small diameter hole 9b of the header 4 and fixing the small diameter cylindrical portion 6a to the small diameter hole 9b. In another example, the small diameter cylindrical portion 6a of the inner pipe 6 may be inserted into the through hole 16c to bring the tapered tube portion 6c and the middle portion 16d3 closer together so that the tapered tube portion 6c and the middle portion 16d3 are in contact with each other, and then while maintaining this contact state, the small diameter cylindrical portion 6a may be inserted into the small diameter hole 9b to fix the small diameter cylindrical portion 6a to the small diameter hole 9b, thereby clamping the cup 16 between the inner pipe 6 and the header 4.
本実施形態によれば、ヘッダ4の冷媒流出孔9に合わせて小径円筒部6aを形成するとともに、アキュームレータ1に求められる性能に応じた流量が得られるように大径円筒部6bを形成し、さらに、インナーパイプ6を用いてカップ16をヘッダ4に対して固定できる。このため、部品点数が増大することを防止しつつ、気液分離体の保持、及び、通過する冷媒の量を増大させることができるアキュームレータ1を提供できる。
According to this embodiment, a small diameter cylindrical portion 6a is formed to match the refrigerant outflow hole 9 of the header 4, and a large diameter cylindrical portion 6b is formed to obtain a flow rate according to the performance required of the accumulator 1, and further, the cup 16 can be fixed to the header 4 using the inner pipe 6. Therefore, it is possible to provide an accumulator 1 that can hold the gas-liquid separator and increase the amount of refrigerant passing through while preventing an increase in the number of parts.
本実施形態によれば、小径孔9bに小径円筒部6aを圧入することにより、ヘッダ4に対してインナーパイプ6が固定されるため、例えばインナーパイプ6のカシメ加工が不要となる(冷媒流出孔9内にカシメ部を設けない)。したがって、冷媒流出孔9にカシメ用の工具などを差し入れる必要がなくなり、また、インナーパイプ6の端部を塑性変形により拡径して冷媒流出孔9内の段差に係合させる必要もない。このため、冷媒流出孔9の内径にかかわらず、小径円筒部6aの内径を拡張することができ、インナーパイプ6内における圧損を減少させて、冷媒のスムーズな流れを確保できる。
In this embodiment, the inner pipe 6 is fixed to the header 4 by pressing the small diameter cylindrical portion 6a into the small diameter hole 9b, which eliminates the need for crimping the inner pipe 6, for example (no crimping portion is provided inside the refrigerant outflow hole 9). This eliminates the need to insert a crimping tool into the refrigerant outflow hole 9, and also eliminates the need to expand the diameter of the end of the inner pipe 6 by plastic deformation to engage with the step inside the refrigerant outflow hole 9. This allows the inner diameter of the small diameter cylindrical portion 6a to be expanded regardless of the inner diameter of the refrigerant outflow hole 9, reducing pressure loss inside the inner pipe 6 and ensuring a smooth flow of the refrigerant.
さらに、本実施形態によれば、インナーパイプ6に形成したテーパ筒部6cと、ヘッダ4のボス4dとで、カップ16を挟持することにより、カップ16をヘッダ4に取り付けているため、インナーパイプ6のバルジ加工等が不要となる。このため、インナーパイプ6内を流れる冷媒の抵抗を減少させ、乱流などの発生を抑制することができ、冷媒のスムーズな流れを確保できる。
Furthermore, according to this embodiment, the cup 16 is attached to the header 4 by being sandwiched between the tapered cylindrical portion 6c formed on the inner pipe 6 and the boss 4d of the header 4, eliminating the need for bulge processing of the inner pipe 6. This reduces the resistance of the refrigerant flowing through the inner pipe 6 and suppresses the occurrence of turbulence, ensuring a smooth flow of the refrigerant.
なお、小径孔9bの内周に雌ねじを形成し、小径円筒部6aの外周に雄ねじを形成し、該雌ねじと該雄ねじの螺合によって、インナーパイプ6をヘッダ4に固定してもよい。小径円筒部6aの雄ねじは、転造加工により形成すると好ましいが、切削加工で形成してもよい。特に、雄ねじを形成するのに適した肉厚になるように、絞り加工などの塑性加工により小径円筒部6aの肉厚を増大させると好ましい。かかる場合、小径円筒部6aの肉厚は、大径円筒部6bの肉厚よりも厚くなる。また、インナーパイプ6のテーパ内周面6f及びテーパ筒部6cの外周面は、軸線に対する傾斜角が一様な形状に限られず、ヘッダ4側に向かうにつれて縮径する形状であれば足りる。
The inner pipe 6 may be fixed to the header 4 by forming a female thread on the inner circumference of the small diameter hole 9b and a male thread on the outer circumference of the small diameter cylindrical portion 6a and screwing the female thread and the male thread together. The male thread of the small diameter cylindrical portion 6a is preferably formed by rolling, but may be formed by cutting. In particular, it is preferable to increase the thickness of the small diameter cylindrical portion 6a by plastic processing such as drawing so that the thickness is suitable for forming the male thread. In such a case, the thickness of the small diameter cylindrical portion 6a is thicker than the thickness of the large diameter cylindrical portion 6b. In addition, the tapered inner peripheral surface 6f of the inner pipe 6 and the outer peripheral surface of the tapered tube portion 6c are not limited to a shape with a uniform inclination angle with respect to the axis, and it is sufficient if the shape is such that the diameter decreases toward the header 4 side.
(アキュームレータの動作)
以上のように構成されるアキュームレータ1の動作について、図1を参照しながら説明する。なお、以下の説明においては、アキュームレータ1を冷凍サイクルの蒸発器と圧縮機との間に配置し、蒸発器からの冷媒に含まれる水分を除去してガス冷媒を生成し、これを圧縮機へ戻す場合を例にとって説明する。 (Accumulator operation)
The operation of theaccumulator 1 configured as above will be described with reference to Fig. 1. In the following description, an example will be described in which the accumulator 1 is disposed between the evaporator and compressor of a refrigeration cycle, moisture contained in the refrigerant from the evaporator is removed to generate gas refrigerant, and the gas refrigerant is returned to the compressor.
以上のように構成されるアキュームレータ1の動作について、図1を参照しながら説明する。なお、以下の説明においては、アキュームレータ1を冷凍サイクルの蒸発器と圧縮機との間に配置し、蒸発器からの冷媒に含まれる水分を除去してガス冷媒を生成し、これを圧縮機へ戻す場合を例にとって説明する。 (Accumulator operation)
The operation of the
蒸発器から冷媒が排出されると、接続配管(不図示)を通じてアキュームレータ1に搬送される。アキュームレータ1に到達した冷媒は、冷媒流入孔8から胴体3の内部に流入した後、カップ16の上面に衝突し、密度の高い液相冷媒及びオイルと、密度の低い気相冷媒(ガス冷媒)とに分離される。
When the refrigerant is discharged from the evaporator, it is transported to the accumulator 1 through a connecting pipe (not shown). After reaching the accumulator 1, the refrigerant flows into the body 3 through the refrigerant inlet 8, and then collides with the upper surface of the cup 16, where it is separated into high-density liquid-phase refrigerant and oil, and low-density gas-phase refrigerant (gas refrigerant).
気液分離後の液相冷媒及びオイルは、自重により胴体3内に貯留される。その過程で、液相冷媒とオイルとの分離が進み、オイルは液相冷媒の下方に溜まる。このとき、液相冷媒の液面は、乾燥剤入りバッグ11の一部が浸漬する高さ位置にまで達する。したがって、液相冷媒に含まれる水分も気相冷媒に含まれる湿分も乾燥剤DAによって吸湿される。
After gas-liquid separation, the liquid refrigerant and oil are stored in the body 3 due to their own weight. During this process, the liquid refrigerant and oil continue to separate, and the oil accumulates below the liquid refrigerant. At this time, the liquid level of the liquid refrigerant reaches a height position where part of the desiccant-containing bag 11 is immersed. Therefore, both the moisture contained in the liquid refrigerant and the humidity contained in the gas refrigerant are absorbed by the desiccant DA.
一方、気液分離された気相冷媒は、アウターパイプ7の上端開口部から流入し、アウターパイプ7内を下降する。その後、アウターパイプ7の底部で折り返されインナーパイプ6の下端を超えて内側に流入し、インナーパイプ6内を上昇して冷媒流出孔9に導かれる。
Meanwhile, the gas-phase refrigerant that has been separated into gas and liquid flows in from the upper opening of the outer pipe 7 and descends inside the outer pipe 7. It then turns around at the bottom of the outer pipe 7, passes over the lower end of the inner pipe 6, and flows inside, rising inside the inner pipe 6 and being led to the refrigerant outlet hole 9.
このとき、本実施形態によれば、インナーパイプ6にテーパ内周面6fを形成しているため、冷媒の出口側である小径内周面6eに向かって内径を徐々に減少させることにより圧損を低減し、冷媒のさらにスムーズな流れを確保できる。
In this embodiment, the inner pipe 6 is formed with a tapered inner surface 6f, so the inner diameter gradually decreases toward the small-diameter inner surface 6e on the refrigerant outlet side, reducing pressure loss and ensuring an even smoother flow of the refrigerant.
液相冷媒とともに胴体3の下部に溜まるオイルは、液相冷媒との比重や性状の相違等により胴体3の底部側に移動していき、圧縮機吸入側に吸入される気相冷媒に吸引されて、ストレーナ20の網目フィルタ22、オイル戻し孔7e、インナーパイプ6の内空間の順に通過して、気相冷媒とともに圧縮機吸入側に戻されて循環する。網目フィルタ22を通る際にはスラッジ等の異物が捕捉され、異物は、循環する冷媒(オイルを含む)から取り除かれる。
The oil that accumulates at the bottom of the body 3 together with the liquid refrigerant moves to the bottom side of the body 3 due to differences in specific gravity and properties compared to the liquid refrigerant, and is sucked into the gas refrigerant that is sucked into the compressor suction side, passing through the mesh filter 22 of the strainer 20, the oil return hole 7e, and the internal space of the inner pipe 6, in that order, before being returned to the compressor suction side together with the gas refrigerant and circulated. As it passes through the mesh filter 22, foreign matter such as sludge is captured and removed from the circulating refrigerant (including oil).
(第1の変形例)
図5は、第1の変形例にかかるカップ16Aの下面図である。図6は、第1の変形例にかかるカップ16Aの縦断面図である。本変形例において、上述した実施形態に対して異なる点は、延出部(保持壁)が複数設けられる構成である代わりに、延出部が筒状に形成される点である。より具体的には、延出部として、保持円筒16Adを貫通孔16cの周囲における頂壁16bの下面、例えば貫通孔16cの縁に形成した点である。それ以外の構成については、上述した実施形態と同様であるため、重複説明を省略する。 (First Modification)
Fig. 5 is a bottom view of thecup 16A according to the first modified example. Fig. 6 is a vertical cross-sectional view of the cup 16A according to the first modified example. In this modified example, instead of the configuration in which a plurality of extensions (retaining walls) are provided, the extensions are formed in a cylindrical shape. More specifically, as the extensions, a retaining cylinder 16Ad is formed on the underside of the top wall 16b around the through hole 16c, for example, on the edge of the through hole 16c. Other configurations are the same as those in the above-mentioned embodiment, so repeated explanations will be omitted.
図5は、第1の変形例にかかるカップ16Aの下面図である。図6は、第1の変形例にかかるカップ16Aの縦断面図である。本変形例において、上述した実施形態に対して異なる点は、延出部(保持壁)が複数設けられる構成である代わりに、延出部が筒状に形成される点である。より具体的には、延出部として、保持円筒16Adを貫通孔16cの周囲における頂壁16bの下面、例えば貫通孔16cの縁に形成した点である。それ以外の構成については、上述した実施形態と同様であるため、重複説明を省略する。 (First Modification)
Fig. 5 is a bottom view of the
保持円筒16Adは、貫通孔16cの軸線Lに対して同軸又は略同軸の形状を有し、具体的には頂壁16b側の円筒基部16Ad1と、下端側の先端円筒部16Ad2と、円筒基部16Ad1と先端円筒部16Ad2とを連結する中間円筒部16Ad3とからなる。
The retaining cylinder 16Ad has a shape that is coaxial or approximately coaxial with the axis L of the through hole 16c, and specifically consists of a cylindrical base portion 16Ad1 on the top wall 16b side, a tip cylindrical portion 16Ad2 on the lower end side, and an intermediate cylindrical portion 16Ad3 that connects the cylindrical base portion 16Ad1 and the tip cylindrical portion 16Ad2.
保持円筒16Adの外径は一様である。また、円筒基部16Ad1および先端円筒部16Ad2の内周半径は、それぞれR1、R2であり、R1<R2である。中間円筒部16Ad3の内周は、貫通孔16cの軸線に対して角度θ1で傾斜している。
The outer diameter of the retaining cylinder 16Ad is uniform. The inner radii of the cylindrical base 16Ad1 and the tip cylindrical portion 16Ad2 are R1 and R2, respectively, where R1<R2. The inner circumference of the intermediate cylindrical portion 16Ad3 is inclined at an angle θ1 with respect to the axis of the through hole 16c.
本変形例によれば、カップ16Aの保持円筒16Adが、インナーパイプ6の外周面に対して全周で当接する。具体的には、インナーパイプ6の小径円筒部6aの小径孔9bに圧入された部位以外は、保持円筒16Adの円筒基部16Ad1の内周面に当接して支持される。また、テーパ筒部6cの外周面は、中間円筒部16Ad3の内周面に当接して支持される。さらに、大径円筒部6bの上端側外周面は、先端円筒部16Ad2の内周面に当接して支持される。したがって、カップ16Aは、ヘッダ4のボス4dの下面と、インナーパイプ6のテーパ筒部6cの外周面との間に挟持されて、さらに安定して保持される。これにより、カップ16Aを適切な姿勢で保持することができる。なお、図6に点線で示すように、保持円筒16Adの外周を、頂壁16bに近づくにつれて漸次拡径する形状(断面R形状)とすることで、アウターパイプ7の上端に向かう冷媒の流れを円滑にすることができる。
According to this modified example, the holding cylinder 16Ad of the cup 16A abuts against the outer peripheral surface of the inner pipe 6 all around. Specifically, except for the portion pressed into the small diameter hole 9b of the small diameter cylindrical portion 6a of the inner pipe 6, the holding cylinder 16Ad abuts against and is supported by the inner peripheral surface of the cylindrical base portion 16Ad1. The outer peripheral surface of the tapered cylindrical portion 6c abuts against and is supported by the inner peripheral surface of the intermediate cylindrical portion 16Ad3. Furthermore, the upper end outer peripheral surface of the large diameter cylindrical portion 6b abuts against and is supported by the inner peripheral surface of the tip cylindrical portion 16Ad2. Therefore, the cup 16A is sandwiched between the lower surface of the boss 4d of the header 4 and the outer peripheral surface of the tapered cylindrical portion 6c of the inner pipe 6, and is held even more stably. This allows the cup 16A to be held in an appropriate position. As shown by the dotted line in FIG. 6, the outer periphery of the holding cylinder 16Ad is shaped so that it gradually expands in diameter as it approaches the top wall 16b (a cross-sectional R-shape), which allows the refrigerant to flow smoothly toward the upper end of the outer pipe 7.
(第2の変形例)
図7は、第2の変形例にかかるインナーパイプ6Bの下端を拡大して示す断面図である。本変形例において、インナーパイプ6Bの下端6Bhまで、大径円筒部6Bbの外周面は円筒形状を有するが、大径内周面6Bgは、下端6Bhの近傍から下端6Bhに向かうにつれて漸次拡径し、下端6Bhにて大径円筒部6Bbの外周面と交差する。図7に示す断面において、下端6Bh近傍の大径内周面6Bgは、円弧形状を有すると好ましい。 (Second Modification)
Fig. 7 is an enlarged cross-sectional view of the lower end of theinner pipe 6B according to the second modification. In this modification, the outer circumferential surface of the large-diameter cylindrical portion 6Bb has a cylindrical shape up to the lower end 6Bh of the inner pipe 6B, but the large-diameter inner circumferential surface 6Bg gradually expands in diameter from the vicinity of the lower end 6Bh toward the lower end 6Bh, and intersects with the outer circumferential surface of the large-diameter cylindrical portion 6Bb at the lower end 6Bh. In the cross section shown in Fig. 7, the large-diameter inner circumferential surface 6Bg near the lower end 6Bh preferably has an arc shape.
図7は、第2の変形例にかかるインナーパイプ6Bの下端を拡大して示す断面図である。本変形例において、インナーパイプ6Bの下端6Bhまで、大径円筒部6Bbの外周面は円筒形状を有するが、大径内周面6Bgは、下端6Bhの近傍から下端6Bhに向かうにつれて漸次拡径し、下端6Bhにて大径円筒部6Bbの外周面と交差する。図7に示す断面において、下端6Bh近傍の大径内周面6Bgは、円弧形状を有すると好ましい。 (Second Modification)
Fig. 7 is an enlarged cross-sectional view of the lower end of the
図1を参照して、本変形例によれば、気液分離された気相冷媒がアウターパイプ7の底部で折り返されインナーパイプ6Bの下端6Bhを超えて内側に流入する際に、漸次拡径した大径内周面6Bgに沿って流れることで、冷媒のスムーズな流れを確保できる。
Referring to FIG. 1, in this modified example, when the gas-liquid separated gas-phase refrigerant turns around at the bottom of the outer pipe 7 and flows inward beyond the lower end 6Bh of the inner pipe 6B, it flows along the gradually expanding large-diameter inner circumferential surface 6Bg, ensuring a smooth flow of the refrigerant.
(第3の変形例)
図8は、第3の変形例にかかるインナーパイプ6Cの下端を拡大して示す断面図である。本変形例において、インナーパイプ6Cの下端6Chまで、大径内周面6Cgは円筒形状を有するが、大径円筒部6Cbの外周面は、下端6Chの近傍から下端6Chに向かうにつれて漸次縮径し、下端6Chにて大径内周面6Cgと交差する。図8に示す断面において、下端6Ch近傍の大径円筒部6Cbの外周面は、円弧形状を有すると好ましい。 (Third Modification)
Fig. 8 is an enlarged cross-sectional view of the lower end of theinner pipe 6C according to the third modified example. In this modified example, the large-diameter inner circumferential surface 6Cg has a cylindrical shape up to the lower end 6Ch of the inner pipe 6C, but the outer circumferential surface of the large-diameter cylindrical portion 6Cb gradually decreases in diameter from the vicinity of the lower end 6Ch toward the lower end 6Ch, and intersects with the large-diameter inner circumferential surface 6Cg at the lower end 6Ch. In the cross section shown in Fig. 8, the outer circumferential surface of the large-diameter cylindrical portion 6Cb near the lower end 6Ch is preferably arc-shaped.
図8は、第3の変形例にかかるインナーパイプ6Cの下端を拡大して示す断面図である。本変形例において、インナーパイプ6Cの下端6Chまで、大径内周面6Cgは円筒形状を有するが、大径円筒部6Cbの外周面は、下端6Chの近傍から下端6Chに向かうにつれて漸次縮径し、下端6Chにて大径内周面6Cgと交差する。図8に示す断面において、下端6Ch近傍の大径円筒部6Cbの外周面は、円弧形状を有すると好ましい。 (Third Modification)
Fig. 8 is an enlarged cross-sectional view of the lower end of the
図1を参照して、本変形例によれば、気液分離された気相冷媒がアウターパイプ7の底部で折り返されインナーパイプ6Cの下端6Chに向かう際に、漸次縮径した大径円筒部6Cbの外周面に沿って流れることで、冷媒のスムーズな流れを確保できる。
Referring to FIG. 1, in this modified example, when the gas-phase refrigerant that has been separated into gas and liquid is turned around at the bottom of the outer pipe 7 and flows toward the lower end 6Ch of the inner pipe 6C, it flows along the outer peripheral surface of the gradually reduced diameter large-diameter cylindrical portion 6Cb, ensuring a smooth flow of the refrigerant.
(第4の変形例)
図9は、第4の変形例にかかるインナーパイプ6Dの下端を拡大して示す断面図である。本変形例において、インナーパイプ6Dの下端6Dhの近傍から下端6Dhに向かうにつれて、大径内周面6Dgは漸次拡径し、また大径円筒部6Dbの外周面は、下端6Dhの近傍から下端6Dhに向かうにつれて漸次縮径し、下端6Dhにて大径内周面6Dgと大径円筒部6Dbの外周面とが交差する。図9に示す断面において、下端6Dh近傍の大径円筒部6Cbの下端壁は、半円弧形状を有すると好ましい。 (Fourth Modification)
Fig. 9 is an enlarged cross-sectional view of the lower end of theinner pipe 6D according to the fourth modified example. In this modified example, the large-diameter inner circumferential surface 6Dg gradually expands in diameter from the vicinity of the lower end 6Dh of the inner pipe 6D toward the lower end 6Dh, and the outer circumferential surface of the large-diameter cylindrical portion 6Db gradually decreases in diameter from the vicinity of the lower end 6Dh toward the lower end 6Dh, and the large-diameter inner circumferential surface 6Dg and the outer circumferential surface of the large-diameter cylindrical portion 6Db intersect at the lower end 6Dh. In the cross section shown in Fig. 9, the lower end wall of the large-diameter cylindrical portion 6Cb near the lower end 6Dh preferably has a semicircular arc shape.
図9は、第4の変形例にかかるインナーパイプ6Dの下端を拡大して示す断面図である。本変形例において、インナーパイプ6Dの下端6Dhの近傍から下端6Dhに向かうにつれて、大径内周面6Dgは漸次拡径し、また大径円筒部6Dbの外周面は、下端6Dhの近傍から下端6Dhに向かうにつれて漸次縮径し、下端6Dhにて大径内周面6Dgと大径円筒部6Dbの外周面とが交差する。図9に示す断面において、下端6Dh近傍の大径円筒部6Cbの下端壁は、半円弧形状を有すると好ましい。 (Fourth Modification)
Fig. 9 is an enlarged cross-sectional view of the lower end of the
図1を参照して、本変形例によれば、気液分離された気相冷媒がアウターパイプ7の底部で折り返されインナーパイプ6Dの下端6Dhに向かう際に、漸次縮径した大径円筒部6Dbの外周面に沿って流れ、またインナーパイプ6Dの下端6Dhを超えて内側に流入する際に、漸次拡径した大径内周面6Dgに沿って流れることで、冷媒のスムーズな流れを確保できる。
Referring to FIG. 1, according to this modified example, when the gas-liquid separated gas-phase refrigerant turns around at the bottom of the outer pipe 7 and heads toward the lower end 6Dh of the inner pipe 6D, it flows along the outer peripheral surface of the gradually narrowing large diameter cylindrical portion 6Db, and when it passes the lower end 6Dh of the inner pipe 6D and flows inward, it flows along the gradually expanding large diameter inner peripheral surface 6Dg, ensuring a smooth flow of the refrigerant.
(第2の実施形態)
図10は、第2の実施形態にかかるアキュームレータ1Fの縦断面図である。本実施形態のアキュームレータ1Fは、流出管6FがU字状となっており、アウターパイプを有していない。なお、図10ではストレーナや、乾燥剤を内包するバッグ等は省略する。本実施形態では、上述した実施形態に対して流出管6Fの構成が異なり、それ以外の構成は上述した実施形態と同様であるため、重複説明を省略する。 Second Embodiment
Fig. 10 is a vertical cross-sectional view of anaccumulator 1F according to a second embodiment. In the accumulator 1F of this embodiment, the outflow pipe 6F is U-shaped and does not have an outer pipe. Note that Fig. 10 omits a strainer and a bag containing a desiccant. In this embodiment, the configuration of the outflow pipe 6F is different from that of the above-mentioned embodiment, and other configurations are the same as those of the above-mentioned embodiment, so duplicated explanations will be omitted.
図10は、第2の実施形態にかかるアキュームレータ1Fの縦断面図である。本実施形態のアキュームレータ1Fは、流出管6FがU字状となっており、アウターパイプを有していない。なお、図10ではストレーナや、乾燥剤を内包するバッグ等は省略する。本実施形態では、上述した実施形態に対して流出管6Fの構成が異なり、それ以外の構成は上述した実施形態と同様であるため、重複説明を省略する。 Second Embodiment
Fig. 10 is a vertical cross-sectional view of an
本実施形態の流出管6Fは、小径円筒部6Faと、U字状に曲がった大径U字状筒部6Fbとを、テーパ筒部6Fcにより連結してなる。小径円筒部6Faの外径は、小径孔9bの内径とほぼ等しい。小径円筒部6Faと、テーパ筒部6Fcと、大径U字状筒部6Fbの上端は、上述した実施形態と同様の形状である。流出管6Fは、U字状のパイプの端部を絞り加工することで形成できる。
The outflow pipe 6F in this embodiment is composed of a small diameter cylindrical section 6Fa and a large diameter U-shaped cylindrical section 6Fb bent into a U shape, connected by a tapered cylindrical section 6Fc. The outer diameter of the small diameter cylindrical section 6Fa is approximately equal to the inner diameter of the small diameter hole 9b. The small diameter cylindrical section 6Fa, the tapered cylindrical section 6Fc, and the upper end of the large diameter U-shaped cylindrical section 6Fb have the same shapes as in the above-mentioned embodiment. The outflow pipe 6F can be formed by drawing the end of a U-shaped pipe.
流出管6Fは、小径円筒部6Fa内を延在する小径内周面6Feと、テーパ筒部6Fc内を延在するテーパ内周面6Ffと、大径U字状筒部6Fb内を延在する大径内周面6Fgとを有する。流出管6Fは、テーパ内周面6Ffに、上述した実施形態と同様に均圧孔6Fqを有する。
The outflow pipe 6F has a small diameter inner circumferential surface 6Fe extending inside the small diameter cylindrical portion 6Fa, a tapered inner circumferential surface 6Ff extending inside the tapered tubular portion 6Fc, and a large diameter inner circumferential surface 6Fg extending inside the large diameter U-shaped tubular portion 6Fb. The outflow pipe 6F has a pressure equalizing hole 6Fq in the tapered inner circumferential surface 6Ff, similar to the above-mentioned embodiment.
本実施形態においては、ヘッダ4と流出管6Fとの間にてカップ16を配置した後、流出管6Fの小径円筒部6Faを貫通孔16cに挿通させ、さらにヘッダ4の小径孔9bに小径円筒部6Faを圧入により固定する。それによりカップ16は、保持壁16dとボス4dの下端との間に挟持されて固定される。
In this embodiment, after the cup 16 is placed between the header 4 and the outflow pipe 6F, the small diameter cylindrical portion 6Fa of the outflow pipe 6F is inserted into the through hole 16c, and then the small diameter cylindrical portion 6Fa is fixed by press fitting into the small diameter hole 9b of the header 4. As a result, the cup 16 is clamped and fixed between the retaining wall 16d and the lower end of the boss 4d.
本実施形態によれば、流出管6FがU字状であっても、ヘッダ4に対して流出管6Fを回転させることなく、直線的に移動させて取り付けることができるため、図10に示す組付位置において、流出管6Fの自由端をカップ16内に位置させることができる。
In this embodiment, even if the outflow pipe 6F is U-shaped, the outflow pipe 6F can be attached by moving it linearly without rotating it relative to the header 4, so that the free end of the outflow pipe 6F can be positioned inside the cup 16 in the assembly position shown in Figure 10.
(第3の実施形態)
図11は、第3の実施形態にかかるアキュームレータ1Gの縦断面図である。本実施形態のアキュームレータ1Gは、第2の実施形態のアキュームレータ1Fに対して、流出管6Gの形状が異なる。具体的には、流出管6Gの大径U字状筒部6Gbの曲げられた部位の曲げ半径が、第3の実施形態の流出管6Fにおける対応部位の曲げ半径より大きくなっている。それ以外の構成は上述した実施形態と同様である。 Third Embodiment
11 is a vertical cross-sectional view of anaccumulator 1G according to the third embodiment. The accumulator 1G of this embodiment is different from the accumulator 1F of the second embodiment in the shape of the outflow pipe 6G. Specifically, the bending radius of the bent portion of the large-diameter U-shaped cylindrical portion 6Gb of the outflow pipe 6G is larger than the bending radius of the corresponding portion of the outflow pipe 6F of the third embodiment. The rest of the configuration is the same as that of the above-mentioned embodiment.
図11は、第3の実施形態にかかるアキュームレータ1Gの縦断面図である。本実施形態のアキュームレータ1Gは、第2の実施形態のアキュームレータ1Fに対して、流出管6Gの形状が異なる。具体的には、流出管6Gの大径U字状筒部6Gbの曲げられた部位の曲げ半径が、第3の実施形態の流出管6Fにおける対応部位の曲げ半径より大きくなっている。それ以外の構成は上述した実施形態と同様である。 Third Embodiment
11 is a vertical cross-sectional view of an
小径円筒部6Gaと、テーパ筒部6Gcと、大径U字状筒部6Gbの上端は、第1の実施形態と同様の形状である。流出管6Gは、U字状のパイプの端部を絞り加工することで形成できる。
The small diameter cylindrical portion 6Ga, the tapered tube portion 6Gc, and the upper end of the large diameter U-shaped tube portion 6Gb have the same shapes as in the first embodiment. The outflow pipe 6G can be formed by drawing the end of a U-shaped pipe.
流出管6Gは、小径円筒部6Ga内を延在する小径内周面6Geと、テーパ筒部6Gc内を延在するテーパ内周面6Gfと、大径U字状筒部6Gb内を延在する大径内周面6Ggとを有する。流出管6Gは、テーパ内周面6Gfに、上述した実施形態と同様に均圧孔6Gqを有する。
The outflow pipe 6G has a small diameter inner circumferential surface 6Ge extending within the small diameter cylindrical portion 6Ga, a tapered inner circumferential surface 6Gf extending within the tapered tubular portion 6Gc, and a large diameter inner circumferential surface 6Gg extending within the large diameter U-shaped tubular portion 6Gb. The outflow pipe 6G has a pressure equalizing hole 6Gq in the tapered inner circumferential surface 6Gf, similar to the above-mentioned embodiment.
(第4の実施形態)
図12は、第4の実施形態にかかるアキュームレータ101の縦断面図であるが、ストレーナは左側半分のみ断面で示す。アキュームレータ101は、タンク本体102と、タンク本体102内に配置された二重管105と、乾燥剤(吸湿剤)DAを内包したバッグ111と、カップ116と、ストレーナ120とを有する。インナーパイプ106の軸線をLとする。 (Fourth embodiment)
12 is a vertical cross-sectional view of anaccumulator 101 according to the fourth embodiment, with only the left half of the strainer shown in cross section. The accumulator 101 has a tank body 102, a double pipe 105 arranged in the tank body 102, a bag 111 containing a desiccant (moisture absorbent) DA, a cup 116, and a strainer 120. The axis of the inner pipe 106 is designated as L.
図12は、第4の実施形態にかかるアキュームレータ101の縦断面図であるが、ストレーナは左側半分のみ断面で示す。アキュームレータ101は、タンク本体102と、タンク本体102内に配置された二重管105と、乾燥剤(吸湿剤)DAを内包したバッグ111と、カップ116と、ストレーナ120とを有する。インナーパイプ106の軸線をLとする。 (Fourth embodiment)
12 is a vertical cross-sectional view of an
タンク本体102は、胴体103と、ヘッダ104とを備える。胴体103は、少なくとも上端が開口する筒状に形成され、一例として上端が開口した有底円筒状に形成される。ヘッダ104は、胴体103の一端の開口部を塞ぐ。ヘッダ104は、例えば溶接部110を介して胴体103と周接合により接合されて胴体103の開口部を塞ぐ。これら胴体103及びヘッダ104は、例えば、いずれもアルミニウム合金等の金属によって形成される。本明細書において、ヘッダ104側を上方とし、胴体103の底側を下方とする。
The tank body 102 comprises a body 103 and a header 104. The body 103 is formed in a tubular shape with at least an open top end, and as an example, is formed in a bottomed cylindrical shape with an open top end. The header 104 closes the opening at one end of the body 103. The header 104 is joined to the body 103 by circumferential joining, for example via a weld 110, and closes the opening of the body 103. The body 103 and the header 104 are both formed from a metal such as an aluminum alloy. In this specification, the header 104 side is referred to as the upper side, and the bottom side of the body 103 is referred to as the lower side.
例えば略円盤状に形成されたヘッダ104には、冷媒流入孔108及び冷媒流出孔109が、上下に貫通して形成されている。冷媒流出孔109には、胴体3の内底部の近くまで延伸するインナーパイプ(流出管ともいう)106が接続されている。インナーパイプ106の外側に、アウターパイプ107が外装されており、これにより二重管105が形成される。
For example, the header 104 is formed in a roughly disk shape, and a refrigerant inlet hole 108 and a refrigerant outlet hole 109 are formed penetrating vertically. An inner pipe (also called an outlet pipe) 106 that extends close to the inside bottom of the body 3 is connected to the refrigerant outlet hole 109. An outer pipe 107 is fitted on the outside of the inner pipe 106, thereby forming a double pipe 105.
ヘッダ104の下方には、冷媒流入孔108からの混合冷媒(気相分と液相分が混在した冷媒)を、密度の高い液相冷媒及びコンプレッサオイル(以下、「オイル」という)と、密度の低い気相冷媒とに分離する気液分離部材としてのカップ116が設けられる。カップ116は、例えば樹脂製である。カップ116は、例えば有頂円筒形状を有し、冷媒流入孔108及び冷媒流出孔109に対向して配置される。
Below the header 104, a cup 116 is provided as a gas-liquid separating member that separates the mixed refrigerant (a mixture of gas and liquid phase refrigerant) from the refrigerant inlet 108 into high density liquid phase refrigerant and compressor oil (hereinafter referred to as "oil") and low density gas phase refrigerant. The cup 116 is made of, for example, resin. The cup 116 has, for example, a cylindrical shape with a top, and is positioned opposite the refrigerant inlet 108 and the refrigerant outlet 109.
インナーパイプ106は、例えば金属製であり、その一例としてアルミニウム合金が用いられる。インナーパイプ106は、その下端部が開口すると共に、後述するようにして、その上端部がヘッダ104の冷媒流出孔109にねじ締結される。また、インナーパイプ106の外周は、アウターパイプ107の内周面に突設された複数のパイプリブ107aの内側に嵌入され、これにより、アウターパイプ107内においてインナーパイプ106が隙間を開けて安定して保持される。
The inner pipe 106 is made of, for example, a metal, and an aluminum alloy is used as one example. The lower end of the inner pipe 106 is open, and the upper end is screwed into the refrigerant outlet hole 109 of the header 104, as described below. The outer periphery of the inner pipe 106 is fitted inside a number of pipe ribs 107a protruding from the inner periphery of the outer pipe 107, so that the inner pipe 106 is stably held within the outer pipe 107 with a gap therebetween.
アウターパイプ107は、例えば合成樹脂からなり、上端部が開口した状態で胴体3内に取り付けられる。アウターパイプ107の底部には、円筒状のストレーナ120が設けられている。ストレーナ120は、合成樹脂製の有底円筒状のケース121と、該ケース121にインサート成形等により一体化された円筒状の網目フィルタ122とから構成されている。
The outer pipe 107 is made of, for example, synthetic resin, and is attached inside the body 3 with its upper end open. A cylindrical strainer 120 is provided at the bottom of the outer pipe 107. The strainer 120 is composed of a cylindrical case 121 with a bottom made of synthetic resin, and a cylindrical mesh filter 122 that is integrated with the case 121 by insert molding or the like.
アウターパイプ107と胴体103の内周との間には、乾燥剤DAを内包したバッグ111が配置されている。
A bag 111 containing a desiccant DA is placed between the outer pipe 107 and the inner circumference of the body 103.
ヘッダ104は、大円筒部104aと、大円筒部104aより小径の薄肉環状部104bとを積層して連設してなり、大円筒部104aと薄肉環状部104bとの間には、胴体103の上端外周が係合する段部104cが形成されている。大円筒部104aの上面は、例えば上下方向に直交する平面に形成されている。
The header 104 is made up of a large cylindrical portion 104a and a thin annular portion 104b, which is smaller in diameter than the large cylindrical portion 104a, stacked in series, and a step portion 104c is formed between the large cylindrical portion 104a and the thin annular portion 104b, with which the outer periphery of the upper end of the body 103 engages. The upper surface of the large cylindrical portion 104a is formed, for example, as a plane perpendicular to the vertical direction.
ヘッダ104の下面には、大円筒部104aから下方に突出する円筒状のボス104dが形成されている。ボス104dを通りヘッダ104を上下に貫通するようにして、冷媒流出孔109が形成され、またボス104dに隣接してヘッダ104を上下に貫通するようにして、冷媒流入孔108が形成されている。ボス104dの下面は、例えば、後述するカップ116の円筒凹部(凹部ともいう)116cの底面と面接触する平面に形成される。ボス104dの下面は、例えば、インナーパイプ106の軸線Lに直交する平面に形成される。
A cylindrical boss 104d is formed on the underside of the header 104, protruding downward from the large cylindrical portion 104a. A refrigerant outlet hole 109 is formed through the boss 104d and penetrating the header 104 from top to bottom, and a refrigerant inlet hole 108 is formed adjacent to the boss 104d and penetrating the header 104 from top to bottom. The underside of the boss 104d is formed, for example, on a plane that is in surface contact with the bottom surface of a cylindrical recess (also called a recess) 116c of the cup 116, which will be described later. The underside of the boss 104d is formed, for example, on a plane that is perpendicular to the axis L of the inner pipe 106.
冷媒流出孔109は、上部に形成された大径孔109aと、下部に形成された小径孔109bとを有し、小径孔109b内に雌ねじ109cが形成されている。大径孔109aの内径は、雌ねじ109cのねじ径より大きくなっている。
The refrigerant outlet hole 109 has a large diameter hole 109a formed at the top and a small diameter hole 109b formed at the bottom, and a female thread 109c is formed in the small diameter hole 109b. The inner diameter of the large diameter hole 109a is larger than the thread diameter of the female thread 109c.
本実施形態のカップ116は、例えば金属板材をプレス成形することによって形成できる。カップ116は、側壁116aと頂壁116bとを連結してなる。頂壁116bの一部は、ボス104dに対応して下方にシフトするよう塑性変形され、これにより円筒凹部116cが形成される。円筒凹部116cの内径は、ボス104dの外径に略等しい。頂壁116bの上面には例えば1つまたは複数のリブを形成してもよい。
The cup 116 of this embodiment can be formed, for example, by press-forming a metal plate. The cup 116 is formed by connecting a side wall 116a and a top wall 116b. A portion of the top wall 116b is plastically deformed so as to shift downward in correspondence with the boss 104d, thereby forming a cylindrical recess 116c. The inner diameter of the cylindrical recess 116c is approximately equal to the outer diameter of the boss 104d. For example, one or more ribs may be formed on the upper surface of the top wall 116b.
円筒凹部116cの底壁を貫通するようにして、円孔116dが形成される。円孔116dの内径は、小径孔109bの内径よりわずかに大きい。
A circular hole 116d is formed through the bottom wall of the cylindrical recess 116c. The inner diameter of the circular hole 116d is slightly larger than the inner diameter of the small diameter hole 109b.
カップ116の円筒凹部116cの底面は、ヘッダ104のボス104dの下面と面接触する平面に形成される。カップ116の円筒凹部116cの底面は、ヘッダ104のボス104dの下面が当接する範囲において、例えば、インナーパイプ106の軸線に直交する平面に形成される。
The bottom surface of the cylindrical recess 116c of the cup 116 is formed in a plane that is in surface contact with the lower surface of the boss 104d of the header 104. The bottom surface of the cylindrical recess 116c of the cup 116 is formed in a plane that is perpendicular to the axis of the inner pipe 106, for example, in the range where the lower surface of the boss 104d of the header 104 abuts.
インナーパイプ106において、均一な径の金属パイプの上端近傍にバルジ加工を施すことで膨径させるとともに軸線方向に圧縮し、外周面全周から径方向外方に突出した鍔部106aを形成する。また、インナーパイプ106の上端外周に、雄ねじ106bが形成される。なお、鍔部106aを形成する方法は、バルジ加工に限定されない。他の例としては、ビード加工(ひもだし加工)によって、鍔部106aを形成してもよい。
The inner pipe 106 is made of a metal pipe of uniform diameter that is expanded near the upper end by bulging, and compressed in the axial direction to form a flange 106a that protrudes radially outward from the entire outer periphery. A male thread 106b is also formed on the outer periphery of the upper end of the inner pipe 106. Note that the method of forming the flange 106a is not limited to bulging. As another example, the flange 106a may be formed by bead processing (string processing).
鍔部106aの下方に、均圧孔106qが形成されている。均圧孔106qは、インナーパイプ106の内外を貫通している。均圧孔106qは、冷凍サイクルが停止した後(コンプレッサの動作が停止した後)に再びコンプレッサが起動された際に、インナーパイプ106内に溜まっている液相の冷媒がコンプレッサに吸い上げられることを抑制する為の孔である。すなわち、均圧孔106qによって、インナーパイプ106内の液相冷媒だけでなく、インナーパイプ106外の気相冷媒もコンプレッサに吸い上げられる為、液相の冷媒が吸い上げられることが抑制される。
A pressure equalizing hole 106q is formed below the flange 106a. The pressure equalizing hole 106q penetrates the inside and outside of the inner pipe 106. The pressure equalizing hole 106q is a hole that prevents the liquid phase refrigerant that has accumulated in the inner pipe 106 from being sucked up by the compressor when the compressor is started again after the refrigeration cycle has stopped (after the compressor has stopped operating). In other words, the pressure equalizing hole 106q allows not only the liquid phase refrigerant in the inner pipe 106 but also the gas phase refrigerant outside the inner pipe 106 to be sucked up by the compressor, thereby preventing the liquid phase refrigerant from being sucked up.
インナーパイプ106は、図4に示す実施形態と同様に、下端が軸線Lに直交する平面であってもよいし、図7に示す実施形態と同様に、下端に近づくにつれて内径面が拡大してもよいし、図8に示す実施形態と同様に、下端に近づくにつれて外径面が減少してもよいし、図9に示す実施形態と同様に、下端に近づくにつれて内径面が拡大し、かつ外径面が減少してもよい。
The inner pipe 106 may have a flat surface at its lower end perpendicular to the axis L, as in the embodiment shown in FIG. 4, or the inner diameter surface may expand as it approaches the lower end, as in the embodiment shown in FIG. 7, the outer diameter surface may decrease as it approaches the lower end, as in the embodiment shown in FIG. 8, or the inner diameter surface may expand and the outer diameter surface may decrease as it approaches the lower end, as in the embodiment shown in FIG. 9.
ヘッダ104と、カップ116と、インナーパイプ106とを組み付ける作業の一例を説明する。まずヘッダ104のボス104dをカップ116の円筒凹部116cに挿入し、ボス104dの下端を円筒凹部116cの底面に当接させる。これにより、小径孔109bと円孔116dとが同軸に整列する。
An example of the work of assembling the header 104, cup 116, and inner pipe 106 will be described. First, the boss 104d of the header 104 is inserted into the cylindrical recess 116c of the cup 116, and the lower end of the boss 104d is brought into contact with the bottom surface of the cylindrical recess 116c. This causes the small diameter hole 109b and the circular hole 116d to be coaxially aligned.
次いでインナーパイプ106をカップ116の下方から接近させる。さらにインナーパイプ106の上端を円孔116dに挿通させ、ヘッダ104の小径孔109bの雌ねじ109cに、雄ねじ106bを螺合させる。
Then, the inner pipe 106 is brought close to the cup 116 from below. The upper end of the inner pipe 106 is then inserted into the circular hole 116d, and the male thread 106b is screwed into the female thread 109c of the small diameter hole 109b of the header 104.
雌ねじ109cに対して雄ねじ106bを螺動させてゆくと、鍔部106aがヘッダ4に接近して円筒凹部116cの下面に当接する。このとき、カップ116を挟んだ状態でインナーパイプ106が係止され、それ以上ヘッダ104側に接近することがない。かかる状態で、カップ116は、ヘッダ104のボス104dの下面と、インナーパイプ106の鍔部106aとの間に挟持されて、安定して保持される。これにより、カップ116を適切な姿勢で保持することができる。
As the male thread 106b is screwed into the female thread 109c, the flange 106a approaches the header 4 and comes into contact with the underside of the cylindrical recess 116c. At this time, the inner pipe 106 is locked with the cup 116 sandwiched between it and does not approach any further toward the header 104. In this state, the cup 116 is sandwiched between the underside of the boss 104d of the header 104 and the flange 106a of the inner pipe 106 and is held stably. This allows the cup 116 to be held in an appropriate position.
このようにして形成された組立体に対して、インナーパイプ106にアウターパイプ107及びストレーナ120を組み込み、バッグ111が配置された胴体103内に設置し、ヘッダ104と溶接することでアキュームレータ101が完成する。
The outer pipe 107 and strainer 120 are attached to the inner pipe 106 of the assembly formed in this manner, and the assembly is installed inside the body 103 in which the bag 111 is arranged, and then welded to the header 104 to complete the accumulator 101.
本実施形態によれば、小径孔109bの雌ねじ109cに雄ねじ106aを螺合させることにより、ヘッダ104に対してインナーパイプ106が固定されるため、例えばインナーパイプ106のカシメ加工が不要となる(冷媒流出孔109内にカシメ部を設けない)。したがって、冷媒流出孔109にカシメ用の工具などを差し入れる必要がなくなり、また、インナーパイプ106の端部を塑性変形により拡径して、冷媒流出孔109内の段差に係合させる必要もない。
In this embodiment, the inner pipe 106 is fixed to the header 104 by screwing the male thread 106a into the female thread 109c of the small diameter hole 109b, which means that, for example, crimping of the inner pipe 106 is not necessary (no crimping portion is provided inside the refrigerant outflow hole 109). This means that there is no need to insert a crimping tool into the refrigerant outflow hole 109, and there is also no need to expand the diameter of the end of the inner pipe 106 by plastic deformation to engage with the step inside the refrigerant outflow hole 109.
(アキュームレータの動作)
以上のように構成されるアキュームレータ101の動作について、図12を参照しながら説明する。なお、以下の説明においては、アキュームレータ101を冷凍サイクルの蒸発器と圧縮機との間に配置し、蒸発器からの冷媒に含まれる水分を除去してガス冷媒を生成し、これを圧縮機へ戻す場合を例にとって説明する。 (Accumulator operation)
The operation of theaccumulator 101 configured as above will be described with reference to Fig. 12. In the following description, an example will be described in which the accumulator 101 is disposed between the evaporator and compressor of a refrigeration cycle, moisture contained in the refrigerant from the evaporator is removed to generate gas refrigerant, and the gas refrigerant is returned to the compressor.
以上のように構成されるアキュームレータ101の動作について、図12を参照しながら説明する。なお、以下の説明においては、アキュームレータ101を冷凍サイクルの蒸発器と圧縮機との間に配置し、蒸発器からの冷媒に含まれる水分を除去してガス冷媒を生成し、これを圧縮機へ戻す場合を例にとって説明する。 (Accumulator operation)
The operation of the
蒸発器から冷媒が排出されると、接続配管(不図示)を通じてアキュームレータ101に搬送される。アキュームレータ101に到達した冷媒は、冷媒流入孔108から胴体103の内部に流入した後、カップ116の上面に衝突し、密度の高い液相冷媒及びオイルと、密度の低い気相冷媒(ガス冷媒)とに分離される。
When the refrigerant is discharged from the evaporator, it is transported to the accumulator 101 through a connecting pipe (not shown). After reaching the accumulator 101, the refrigerant flows into the body 103 through the refrigerant inlet hole 108, and then collides with the upper surface of the cup 116, where it is separated into high-density liquid-phase refrigerant and oil, and low-density gas-phase refrigerant (gas refrigerant).
気液分離後の液相冷媒及びオイルは、自重により胴体103内に貯留される。その過程で、液相冷媒とオイルとの分離が進み、オイルは液相冷媒の下方に溜まる。このとき、液相冷媒の液面は、乾燥剤入りバッグ111の一部が浸漬する高さ位置にまで達する。したがって、液相冷媒に含まれる水分も気相冷媒に含まれる湿分も乾燥剤DAによって吸湿される。
After gas-liquid separation, the liquid refrigerant and oil are stored in the body 103 due to their own weight. During this process, the liquid refrigerant and oil continue to separate, and the oil accumulates below the liquid refrigerant. At this time, the liquid level of the liquid refrigerant reaches a height position where part of the desiccant-containing bag 111 is immersed. Therefore, both the moisture contained in the liquid refrigerant and the humidity contained in the gas refrigerant are absorbed by the desiccant DA.
一方、気液分離された気相冷媒は、アウターパイプ107の上端開口部から流入し、アウターパイプ107内を下降する。その後、アウターパイプ107の底部で折り返されインナーパイプ106の下端を超えて内側に流入し、インナーパイプ106内を上昇して冷媒流出孔109に導かれる。
Meanwhile, the gas-phase refrigerant that has been separated into gas and liquid flows in from the upper end opening of the outer pipe 107 and flows down inside the outer pipe 107. It then turns around at the bottom of the outer pipe 107 and flows inside beyond the lower end of the inner pipe 106, then rises inside the inner pipe 106 and is led to the refrigerant outflow hole 109.
液相冷媒とともに胴体103の下部に溜まるオイルは、液相冷媒との比重や性状の相違等により胴体103の底部側に移動していき、圧縮機吸入側に吸入される気相冷媒に吸引されて、ストレーナ120の網目フィルタ122、オイル戻し孔107e、インナーパイプ106の内空間の順に通過して、気相冷媒とともに圧縮機吸入側に戻されて循環する。網目フィルタ122を通る際にはスラッジ等の異物が捕捉され、異物は、循環する冷媒(オイルを含む)から取り除かれる。
Oil that accumulates at the bottom of the body 103 together with the liquid refrigerant moves to the bottom side of the body 103 due to differences in specific gravity and properties compared to the liquid refrigerant, and is sucked into the gas refrigerant that is sucked into the compressor suction side, passing through the mesh filter 122 of the strainer 120, the oil return hole 107e, and the internal space of the inner pipe 106, in that order, before being returned to the compressor suction side together with the gas refrigerant and circulated. As it passes through the mesh filter 122, foreign matter such as sludge is captured and removed from the circulating refrigerant (including oil).
以上、実施形態を参照して本発明を説明したが、本発明は前記実施形態に限定されるものではなく、本発明の範囲内で種々の変形実施が可能である。例えば、第1の上記実施形態において、インナーパイプ6の上端は圧入により小径孔9cに固定されているが、小径孔9cに対してインナーパイプ6の上端を拡管して固定してもよい。
The present invention has been described above with reference to the embodiments, but the present invention is not limited to the above embodiments, and various modifications are possible within the scope of the present invention. For example, in the first embodiment, the upper end of the inner pipe 6 is fixed to the small diameter hole 9c by press fitting, but the upper end of the inner pipe 6 may be expanded and fixed to the small diameter hole 9c.
また、上述の実施形態では、インナーパイプ6及び流出管6F、6Gは、それぞれの軸線に直交する断面の外形が円となる筒状に形成される例が説明されたが、断面の外形は円以外の形状であってもよい。他の例について、インナーパイプ6を具体例として説明する。インナーパイプ6は、大径円筒部6bと、小径円筒部6aと、テーパ筒部6cとを有し、それぞれの断面の外形は円である。インナーパイプ6の大径円筒部6b、小径円筒部6a、テーパ筒部6cは、断面の外形が円であることに限定されない。小径筒部6aの断面積が大径円筒部の断面積よりも小さく、テーパ筒部6cの断面積が小径筒部6a側に向かって漸次小さくなる形状であればよい。例えば、小径円筒部6a、テーパ筒部6c、及び大径円筒部6b断面の外形が、相似となる形状であることが好ましい。他の例としては、大径円筒部6b、小径円筒部6a、及びテーパ筒部6cは、断面が矩形となる筒状であってもよい。流出管6F、6Gにおいても同様である。
In the above embodiment, the inner pipe 6 and the outflow pipes 6F, 6G are formed in a cylindrical shape with a circular cross-sectional shape perpendicular to their respective axes, but the cross-sectional shape may be a shape other than a circle. Other examples will be described using the inner pipe 6 as a specific example. The inner pipe 6 has a large diameter cylindrical portion 6b, a small diameter cylindrical portion 6a, and a tapered cylindrical portion 6c, and the cross-sectional shape of each is a circle. The large diameter cylindrical portion 6b, the small diameter cylindrical portion 6a, and the tapered cylindrical portion 6c of the inner pipe 6 are not limited to having a circular cross-sectional shape. It is sufficient that the cross-sectional area of the small diameter cylindrical portion 6a is smaller than that of the large diameter cylindrical portion, and the cross-sectional area of the tapered cylindrical portion 6c is gradually smaller toward the small diameter cylindrical portion 6a. For example, it is preferable that the cross-sectional shapes of the small diameter cylindrical portion 6a, the tapered cylindrical portion 6c, and the large diameter cylindrical portion 6b are similar to each other. As another example, the large diameter cylindrical portion 6b, the small diameter cylindrical portion 6a, and the tapered tube portion 6c may be cylindrical with a rectangular cross section. The same applies to the outflow pipes 6F and 6G.
また、上述の実施形態及び変形例では、延出部として、インナーパイプ6の外形に応じた形状に形成された保持壁16及び保持円筒16Aが説明された。他の例では、延出部は、少なくとも、中間部16d3、16Ad3が、インナーパイプ6のテーパ筒部6cに当接する形状であればよい。好ましい形態として、延出部は、テーパ筒部6cに加えて、小円筒部6e及び大径円筒部6bの少なくとも一方と当接する形状に形成される。さらに好ましい形態として、延出部は、保持壁16及び保持円筒16Aのように、インナーパイプ6の外形に対応して形状を有する。
In the above-mentioned embodiment and modified example, the extending portion is described as a retaining wall 16 and a retaining cylinder 16A formed in a shape corresponding to the outer shape of the inner pipe 6. In another example, the extending portion may have a shape in which at least the intermediate portions 16d3, 16Ad3 abut against the tapered cylindrical portion 6c of the inner pipe 6. In a preferred embodiment, the extending portion is formed in a shape that abuts against at least one of the small cylindrical portion 6e and the large diameter cylindrical portion 6b in addition to the tapered cylindrical portion 6c. In an even more preferred embodiment, the extending portion has a shape corresponding to the outer shape of the inner pipe 6, like the retaining wall 16 and the retaining cylinder 16A.
また、第2の実施形態では、延出部が1つの例として、環状の保持円筒16Aが説明されたが、保持円筒16Aは一周連続する環状に形成されることに限定されない。例えば、保持円筒16Aは、平面視でC字状に形成されてもよい。また、保持円筒16Aは、その外形が円柱状に形成されたが円柱状に限定されない。他の例では、外形は例えば四角柱等の多角柱状であってもよい。
In the second embodiment, the annular retaining cylinder 16A is described as one example of an extension portion, but the retaining cylinder 16A is not limited to being formed in a continuous annular shape. For example, the retaining cylinder 16A may be formed in a C-shape in a plan view. Also, the retaining cylinder 16A has an outer shape formed in a cylindrical shape, but is not limited to a cylindrical shape. In another example, the outer shape may be a polygonal prism, such as a square prism.
また、上述の実施形態では、インナーパイプ6及び流出管6F、6Gの内周面は、それぞれの軸線に直交する断面が円である例が説明されたが、内周面の断面は円以外であってもよい。他の例について、インナーパイプ6を具体例として説明する。インナーパイプ6は、大径内周面6gと、小径内周面6eと、テーパ内周面6fとを有し、それぞれの軸線に直交する断面が円であるが、これに限定されない。インナーパイプ6の内周面は、小径内周面6eの軸線に直交する断面積が大径内周面6gの軸線に直交する断面積よりも小さく、テーパ内周面6fの軸線に直交する断面積が小径内周面6eに向かって漸次小さくなる形状であればよい。例えば、小径内周面6e、テーパな周面6f、及び大径内周面6gのそれぞれの軸線に直交する断面の形状が、相似であることが好ましい。他の例では、インナーパイプ6の内周面は、軸線に直交する断面が矩形となる形状であってもよい。流出管6F,6Gにおいても同様である。
In the above embodiment, the inner circumferential surfaces of the inner pipe 6 and the outflow pipes 6F, 6G have been described as having a circular cross section perpendicular to their respective axes, but the cross section of the inner circumferential surfaces may be other than a circle. Other examples will be described using the inner pipe 6 as a specific example. The inner pipe 6 has a large diameter inner circumferential surface 6g, a small diameter inner circumferential surface 6e, and a tapered inner circumferential surface 6f, and each cross section perpendicular to its axis is a circle, but this is not limited to this. The inner circumferential surface of the inner pipe 6 may have a shape such that the cross-sectional area perpendicular to the axis of the small diameter inner circumferential surface 6e is smaller than the cross-sectional area perpendicular to the axis of the large diameter inner circumferential surface 6g, and the cross-sectional area perpendicular to the axis of the tapered inner circumferential surface 6f gradually decreases toward the small diameter inner circumferential surface 6e. For example, it is preferable that the shapes of the cross sections perpendicular to the axes of the small diameter inner circumferential surface 6e, the tapered surface 6f, and the large diameter inner circumferential surface 6g are similar to each other. In another example, the inner peripheral surface of the inner pipe 6 may have a rectangular cross section perpendicular to the axis. The same applies to the outflow pipes 6F and 6G.
また、上述の実施形態では、インナーパイプ6及び流出管6F、6Gは、絞り加工で形成される例が説明されたが、絞り加工以外の加工方法で形成されてもよい。他の例では、インナーパイプ6、流出管6F、6Gは、パイプに対して拡管加工を施すことで形成されてもよい。
In the above embodiment, the inner pipe 6 and the outflow pipes 6F, 6G are formed by drawing, but they may be formed by a processing method other than drawing. In another example, the inner pipe 6 and the outflow pipes 6F, 6G may be formed by performing pipe expansion processing on the pipes.
また、上述の実施形態では、保持壁16dの内側面が曲面に形成される例が説明されたが、他の例では、平面に形成されてもよい。中間部16d3の内側面が平面に形成される場合であっても、中間部16d3は、インナーパイプ6及び流出管6F、6Gのテーパ筒部に当接がすることで、上述した効果と同様の効果が得られる。先端部16d2の内側面が平面に形成される場合、先端部16d2の内側面は、インナーパイプ6の大径円筒部6b、及び流出管6F、6Gの大径U字状筒部6Fbに当接する平面に形成されることで、上述した効果と同様の効果が得られる。
In the above embodiment, an example was described in which the inner surface of the retaining wall 16d was formed as a curved surface, but in other examples, it may be formed as a flat surface. Even if the inner surface of the intermediate portion 16d3 is formed as a flat surface, the intermediate portion 16d3 abuts against the tapered tubular portions of the inner pipe 6 and the outflow pipes 6F, 6G, thereby obtaining the same effect as described above. If the inner surface of the tip portion 16d2 is formed as a flat surface, the inner surface of the tip portion 16d2 is formed as a flat surface that abuts against the large diameter cylindrical portion 6b of the inner pipe 6 and the large diameter U-shaped tubular portion 6Fb of the outflow pipes 6F, 6G, thereby obtaining the same effect as described above.
以上述べた実施形態および変形例において、カップ16、116は、気液分離部材の一例である。気液分離部材は、冷媒流入孔8、108と冷媒流出孔9、109との双方と対向する。そして、気液分離部材は、冷媒流入孔8、108から流入した冷媒が衝突する部位を有する。気液分離部材は、好ましくは、冷媒流入孔8、108の全域と対向する。対向する方向は、冷媒流入孔8、108の軸方向である。
気液分離部材は、好ましくは、冷媒流入孔8、108の全域と冷媒流出孔9、109との双方に対向する頂壁と、胴体3、103の内周面と対向する筒状の側壁と、を有する。
好ましくは、ヘッダ4、104と頂壁との間の隙間と、胴体3、103の内周面と側壁との間の隙間とは、略同じである。ここで、略同じとは、完全に同じであることに加えて、誤差を含んでもよいという意味である。すなわち、冷媒流入孔8、108から流入した冷媒が頂壁に衝突して下流に流れる際に、頂壁とヘッダ4、104との間の隙間と、胴体3、103の内周面と側壁との間の隙間とを流れる。これら隙間が「同じ」であると、冷媒のスムーズな流れが維持される。加えて、これら隙間の誤差が多少であれば、冷媒がスムーズに流れる状態を維持できる。誤差は、このように、冷媒の流れをスムーズな流れに維持できる程度の誤差である。
気液分離部材の頂壁は、厚み一定の板状に限定されない。
さらに、気液分離部材の他の例は、側壁を備えない構造である。 In the above-described embodiment and modified examples, the cups 16, 116 are one example of a gas-liquid separating member. The gas-liquid separating member faces both the refrigerant inlet holes 8, 108 and the refrigerant outlet holes 9, 109. The gas-liquid separating member has a portion with which the refrigerant flowing in from the refrigerant inlet holes 8, 108 collides. The gas-liquid separating member preferably faces the entire area of the refrigerant inlet holes 8, 108. The facing direction is the axial direction of the refrigerant inlet holes 8, 108.
The gas-liquid separation member preferably has a top wall facing both the entire refrigerant inlet holes 8, 108 and the refrigerant outlet holes 9, 109, and a cylindrical side wall facing the inner circumferential surface of the body 3, 103.
Preferably, the gap between the header 4, 104 and the top wall and the gap between the inner circumferential surface of the body 3, 103 and the side wall are approximately the same. Here, approximately the same means that in addition to being completely the same, it may include an error. That is, when the refrigerant flowing in from the refrigerant inlet hole 8, 108 collides with the top wall and flows downstream, it flows through the gap between the top wall and the header 4, 104 and the gap between the inner circumferential surface of the body 3, 103 and the side wall. If these gaps are "the same", the smooth flow of the refrigerant is maintained. In addition, if there is a small error in these gaps, the state in which the refrigerant flows smoothly can be maintained. The error is an error that can maintain the flow of the refrigerant smoothly in this way.
The top wall of the gas-liquid separating member is not limited to being in the form of a plate having a constant thickness.
Furthermore, another example of the gas-liquid separating member has a structure that does not include a side wall.
気液分離部材は、好ましくは、冷媒流入孔8、108の全域と冷媒流出孔9、109との双方に対向する頂壁と、胴体3、103の内周面と対向する筒状の側壁と、を有する。
好ましくは、ヘッダ4、104と頂壁との間の隙間と、胴体3、103の内周面と側壁との間の隙間とは、略同じである。ここで、略同じとは、完全に同じであることに加えて、誤差を含んでもよいという意味である。すなわち、冷媒流入孔8、108から流入した冷媒が頂壁に衝突して下流に流れる際に、頂壁とヘッダ4、104との間の隙間と、胴体3、103の内周面と側壁との間の隙間とを流れる。これら隙間が「同じ」であると、冷媒のスムーズな流れが維持される。加えて、これら隙間の誤差が多少であれば、冷媒がスムーズに流れる状態を維持できる。誤差は、このように、冷媒の流れをスムーズな流れに維持できる程度の誤差である。
気液分離部材の頂壁は、厚み一定の板状に限定されない。
さらに、気液分離部材の他の例は、側壁を備えない構造である。 In the above-described embodiment and modified examples, the
The gas-liquid separation member preferably has a top wall facing both the entire refrigerant inlet holes 8, 108 and the refrigerant outlet holes 9, 109, and a cylindrical side wall facing the inner circumferential surface of the
Preferably, the gap between the
The top wall of the gas-liquid separating member is not limited to being in the form of a plate having a constant thickness.
Furthermore, another example of the gas-liquid separating member has a structure that does not include a side wall.
本明細書は、以下の発明の開示を含む。
(第1の態様)
少なくとも一端に開口を有する胴部と、
冷媒流入孔及び冷媒流出孔を備え、前記胴部の一端を塞ぐヘッダと、
前記胴部内に収容される気液分離部材であって、前記冷媒流出孔と対向する部分に、前記ヘッダ側及びその反対側を連通する連通部が形成された気液分離部材と、
前記胴部内に収容されて一部が前記連通部に配置され、前記冷媒流出孔に接続された流出管と、を有し、
前記流出管は、前記冷媒流出孔に挿入されて固定される小筒部と、前記胴部内に配置され、前記小筒部より断面積が大きい大筒部と、前記小筒部と前記大筒部とを連結するテーパ筒部とを有し、
前記流出管の内周面は、冷媒の流れ方向に沿って、大内周面と、前記大内周面につながる中間内周面と、前記中間内周面につながり前記大内周面の断面積よりも小さい断面積を有する小内周面とを有し、前記中間内周面は、前記小内周面側に向かうにつれて断面積が漸次小さくなる形状を有し、
前記気液分離部材は、前記連通部を有し、前記ヘッダと対向する本体と、前記本体から前記テーパ筒部まで延びる延出部と、を有し、前記延出部が前記テーパ筒部に当接した状態で、前記ヘッダ及び前記流出管に挟持される、
ことを特徴とするアキュームレータ。 This specification includes the disclosure of the following inventions.
(First aspect)
a body portion having an opening at at least one end;
a header having a refrigerant inlet and a refrigerant outlet and closing one end of the body portion;
a gas-liquid separating member accommodated in the body portion, the gas-liquid separating member having a communication portion formed in a portion facing the refrigerant outflow hole, the communication portion communicating the header side with an opposite side;
an outflow pipe that is accommodated in the body portion, a portion of which is disposed in the communication portion, and which is connected to the refrigerant outflow hole,
the outflow pipe has a small cylinder portion inserted into and fixed to the refrigerant outflow hole, a large cylinder portion disposed within the body portion and having a cross-sectional area larger than that of the small cylinder portion, and a tapered cylinder portion connecting the small cylinder portion and the large cylinder portion,
The inner circumferential surface of the outflow pipe has, along a flow direction of the refrigerant, a large inner circumferential surface, an intermediate inner circumferential surface connected to the large inner circumferential surface, and a small inner circumferential surface connected to the intermediate inner circumferential surface and having a cross-sectional area smaller than that of the large inner circumferential surface, and the cross-sectional area of the intermediate inner circumferential surface is gradually reduced toward the small inner circumferential surface,
the gas-liquid separating member has the communicating portion, and includes a main body facing the header, and an extension portion extending from the main body to the tapered cylindrical portion, and is sandwiched between the header and the outflow pipe with the extension portion abutting against the tapered cylindrical portion.
1. An accumulator comprising:
(第1の態様)
少なくとも一端に開口を有する胴部と、
冷媒流入孔及び冷媒流出孔を備え、前記胴部の一端を塞ぐヘッダと、
前記胴部内に収容される気液分離部材であって、前記冷媒流出孔と対向する部分に、前記ヘッダ側及びその反対側を連通する連通部が形成された気液分離部材と、
前記胴部内に収容されて一部が前記連通部に配置され、前記冷媒流出孔に接続された流出管と、を有し、
前記流出管は、前記冷媒流出孔に挿入されて固定される小筒部と、前記胴部内に配置され、前記小筒部より断面積が大きい大筒部と、前記小筒部と前記大筒部とを連結するテーパ筒部とを有し、
前記流出管の内周面は、冷媒の流れ方向に沿って、大内周面と、前記大内周面につながる中間内周面と、前記中間内周面につながり前記大内周面の断面積よりも小さい断面積を有する小内周面とを有し、前記中間内周面は、前記小内周面側に向かうにつれて断面積が漸次小さくなる形状を有し、
前記気液分離部材は、前記連通部を有し、前記ヘッダと対向する本体と、前記本体から前記テーパ筒部まで延びる延出部と、を有し、前記延出部が前記テーパ筒部に当接した状態で、前記ヘッダ及び前記流出管に挟持される、
ことを特徴とするアキュームレータ。 This specification includes the disclosure of the following inventions.
(First aspect)
a body portion having an opening at at least one end;
a header having a refrigerant inlet and a refrigerant outlet and closing one end of the body portion;
a gas-liquid separating member accommodated in the body portion, the gas-liquid separating member having a communication portion formed in a portion facing the refrigerant outflow hole, the communication portion communicating the header side with an opposite side;
an outflow pipe that is accommodated in the body portion, a portion of which is disposed in the communication portion, and which is connected to the refrigerant outflow hole,
the outflow pipe has a small cylinder portion inserted into and fixed to the refrigerant outflow hole, a large cylinder portion disposed within the body portion and having a cross-sectional area larger than that of the small cylinder portion, and a tapered cylinder portion connecting the small cylinder portion and the large cylinder portion,
The inner circumferential surface of the outflow pipe has, along a flow direction of the refrigerant, a large inner circumferential surface, an intermediate inner circumferential surface connected to the large inner circumferential surface, and a small inner circumferential surface connected to the intermediate inner circumferential surface and having a cross-sectional area smaller than that of the large inner circumferential surface, and the cross-sectional area of the intermediate inner circumferential surface is gradually reduced toward the small inner circumferential surface,
the gas-liquid separating member has the communicating portion, and includes a main body facing the header, and an extension portion extending from the main body to the tapered cylindrical portion, and is sandwiched between the header and the outflow pipe with the extension portion abutting against the tapered cylindrical portion.
1. An accumulator comprising:
(第2の態様)
前記流出管は、断面形状が円となる筒状に形成される、
ことを特徴とする第1の態様のアキュームレータ。 (Second Aspect)
The outflow pipe is formed into a cylindrical shape having a circular cross-sectional shape.
12. The accumulator ofclaim 1,
前記流出管は、断面形状が円となる筒状に形成される、
ことを特徴とする第1の態様のアキュームレータ。 (Second Aspect)
The outflow pipe is formed into a cylindrical shape having a circular cross-sectional shape.
12. The accumulator of
(第3の態様)
前記延出部は、前記大筒部の外周面に当接する、
ことを特徴とする第1の態様又は第2の態様のアキュームレータ。 (Third Aspect)
The extension portion abuts against an outer circumferential surface of the large cylinder portion.
The accumulator according to the first or second aspect,
前記延出部は、前記大筒部の外周面に当接する、
ことを特徴とする第1の態様又は第2の態様のアキュームレータ。 (Third Aspect)
The extension portion abuts against an outer circumferential surface of the large cylinder portion.
The accumulator according to the first or second aspect,
(第4の態様)
前記延出部は、前記流出管の周方向に複数設けられる、
ことを特徴とする第1の態様~第3の態様のいずれかのアキュームレータ。 (Fourth aspect)
The extension portion is provided in a plurality of portions in a circumferential direction of the outflow pipe.
The accumulator according to any one of the first to third aspects, characterized in that
前記延出部は、前記流出管の周方向に複数設けられる、
ことを特徴とする第1の態様~第3の態様のいずれかのアキュームレータ。 (Fourth aspect)
The extension portion is provided in a plurality of portions in a circumferential direction of the outflow pipe.
The accumulator according to any one of the first to third aspects, characterized in that
(第5の態様)
前記延出部は、前記テーパ筒部に全周で当接する筒状に形成される、
ことを特徴とする第1の態様~第4の態様のいずれかのアキュームレータ。 (Fifth aspect)
The extension portion is formed in a cylindrical shape so as to abut on the tapered cylindrical portion over the entire circumference.
The accumulator according to any one of the first to fourth aspects,
前記延出部は、前記テーパ筒部に全周で当接する筒状に形成される、
ことを特徴とする第1の態様~第4の態様のいずれかのアキュームレータ。 (Fifth aspect)
The extension portion is formed in a cylindrical shape so as to abut on the tapered cylindrical portion over the entire circumference.
The accumulator according to any one of the first to fourth aspects,
(第6の態様)
前記胴部内に収容されて前記流出管を内側に配置する筒状に形成され、前記気液分離部材側の端部が開口するアウターパイプを有し、
前記延出部は、前記アウターパイプ外の前記冷媒を、前記アウターパイプの前記気液分離部材側の開口に導くガイド部を有し、前記ガイド部は、前記延出部の外周面により構成され、前記気液分離部材側に向かうにつれて拡径する形状を有する、
ことを特徴とする第5の態様のアキュームレータ。 (Sixth Aspect)
an outer pipe that is formed in a cylindrical shape and is accommodated in the body portion with the outflow pipe disposed inside, the outer pipe having an open end on the gas-liquid separating member side;
the extension portion has a guide portion that guides the refrigerant outside the outer pipe to an opening of the outer pipe on the gas-liquid separating member side, the guide portion being formed by an outer circumferential surface of the extension portion and having a shape that increases in diameter as it approaches the gas-liquid separating member side.
5. The accumulator ofclaim 4,
前記胴部内に収容されて前記流出管を内側に配置する筒状に形成され、前記気液分離部材側の端部が開口するアウターパイプを有し、
前記延出部は、前記アウターパイプ外の前記冷媒を、前記アウターパイプの前記気液分離部材側の開口に導くガイド部を有し、前記ガイド部は、前記延出部の外周面により構成され、前記気液分離部材側に向かうにつれて拡径する形状を有する、
ことを特徴とする第5の態様のアキュームレータ。 (Sixth Aspect)
an outer pipe that is formed in a cylindrical shape and is accommodated in the body portion with the outflow pipe disposed inside, the outer pipe having an open end on the gas-liquid separating member side;
the extension portion has a guide portion that guides the refrigerant outside the outer pipe to an opening of the outer pipe on the gas-liquid separating member side, the guide portion being formed by an outer circumferential surface of the extension portion and having a shape that increases in diameter as it approaches the gas-liquid separating member side.
5. The accumulator of
(第7の態様)
パイプを絞り加工又は拡管加工することにより、前記流出管が形成される、
ことを特徴とする第2の態様のアキュームレータ。 (Seventh aspect)
The outflow pipe is formed by drawing or expanding the pipe.
The accumulator according to a second aspect,
パイプを絞り加工又は拡管加工することにより、前記流出管が形成される、
ことを特徴とする第2の態様のアキュームレータ。 (Seventh aspect)
The outflow pipe is formed by drawing or expanding the pipe.
The accumulator according to a second aspect,
(第8の態様)
前記流出管が前記冷媒流出孔に対して圧入される、
ことを特徴とする第1の態様~第7の態様のいずれかのアキュームレータ。 (Eighth aspect)
The outflow pipe is press-fitted into the refrigerant outflow hole.
The accumulator according to any one of the first to seventh aspects,
前記流出管が前記冷媒流出孔に対して圧入される、
ことを特徴とする第1の態様~第7の態様のいずれかのアキュームレータ。 (Eighth aspect)
The outflow pipe is press-fitted into the refrigerant outflow hole.
The accumulator according to any one of the first to seventh aspects,
(第9の態様)
前記流出管に形成された雄ねじと、前記冷媒流出孔に形成された雌ねじとが螺合されている、
ことを特徴とする第1の態様~第8の態様のいずれかのアキュームレータ。 (Ninth aspect)
A male thread formed on the outflow pipe and a female thread formed on the refrigerant outflow hole are screwed together.
The accumulator according to any one of the first to eighth aspects,
前記流出管に形成された雄ねじと、前記冷媒流出孔に形成された雌ねじとが螺合されている、
ことを特徴とする第1の態様~第8の態様のいずれかのアキュームレータ。 (Ninth aspect)
A male thread formed on the outflow pipe and a female thread formed on the refrigerant outflow hole are screwed together.
The accumulator according to any one of the first to eighth aspects,
(第10の態様)
冷媒流出孔を備えたヘッダと、
前記冷媒流出孔に接続される流出管と、
前記ヘッダと対向配置され、前記流出管の一部を配置する連通部を有する気液分離部材と、
を有するアキュームレータの製造方法であって、
パイプに絞り加工または拡管加工を施すことにより、小筒部と、前記小筒部より断面積が大きい大筒部と、前記小筒部と前記大筒部とを連結するテーパ筒部を有する前記流出管を形成し、
前記気液分離部材の前記ヘッダと対向配置される部分となる本体部分に、前記本体部分から離れる方向に延出するに延出部を形成し、
前記流出管の前記小筒部を前記連通部に配置した状態で前記延出部及び前記テーパ筒部を近づけることで前記延出部を前記テーパ筒部に当接させ、
前記小筒部が前記ヘッダの前記冷媒流出孔に固定され、かつ前記延出部が前記テーパ筒部に当接した状態とすることで、前記気液分離部材を前記ヘッダ及び前記流出管間に挟持させる、ことを特徴とするアキュームレータの製造方法。 (Tenth Aspect)
A header having a refrigerant outlet hole;
an outflow pipe connected to the refrigerant outflow hole;
a gas-liquid separating member disposed opposite the header and having a communication portion through which a portion of the outflow pipe is disposed;
A method for manufacturing an accumulator having the following features:
forming the outflow pipe having a small cylindrical portion, a large cylindrical portion having a cross-sectional area larger than that of the small cylindrical portion, and a tapered cylindrical portion connecting the small cylindrical portion and the large cylindrical portion by subjecting the pipe to a drawing process or a tube expansion process;
an extension portion is formed on a main body portion of the gas-liquid separating member, the main body portion being a portion that faces the header, the extension portion extending in a direction away from the main body portion;
With the small cylinder portion of the outflow pipe disposed in the communication portion, the extension portion and the tapered cylinder portion are brought close to each other so that the extension portion abuts against the tapered cylinder portion;
a small cylindrical portion fixed to the refrigerant outflow hole of the header and an extension portion abutting the tapered cylindrical portion, thereby sandwiching the gas-liquid separation member between the header and the outflow pipe.
冷媒流出孔を備えたヘッダと、
前記冷媒流出孔に接続される流出管と、
前記ヘッダと対向配置され、前記流出管の一部を配置する連通部を有する気液分離部材と、
を有するアキュームレータの製造方法であって、
パイプに絞り加工または拡管加工を施すことにより、小筒部と、前記小筒部より断面積が大きい大筒部と、前記小筒部と前記大筒部とを連結するテーパ筒部を有する前記流出管を形成し、
前記気液分離部材の前記ヘッダと対向配置される部分となる本体部分に、前記本体部分から離れる方向に延出するに延出部を形成し、
前記流出管の前記小筒部を前記連通部に配置した状態で前記延出部及び前記テーパ筒部を近づけることで前記延出部を前記テーパ筒部に当接させ、
前記小筒部が前記ヘッダの前記冷媒流出孔に固定され、かつ前記延出部が前記テーパ筒部に当接した状態とすることで、前記気液分離部材を前記ヘッダ及び前記流出管間に挟持させる、ことを特徴とするアキュームレータの製造方法。 (Tenth Aspect)
A header having a refrigerant outlet hole;
an outflow pipe connected to the refrigerant outflow hole;
a gas-liquid separating member disposed opposite the header and having a communication portion through which a portion of the outflow pipe is disposed;
A method for manufacturing an accumulator having the following features:
forming the outflow pipe having a small cylindrical portion, a large cylindrical portion having a cross-sectional area larger than that of the small cylindrical portion, and a tapered cylindrical portion connecting the small cylindrical portion and the large cylindrical portion by subjecting the pipe to a drawing process or a tube expansion process;
an extension portion is formed on a main body portion of the gas-liquid separating member, the main body portion being a portion that faces the header, the extension portion extending in a direction away from the main body portion;
With the small cylinder portion of the outflow pipe disposed in the communication portion, the extension portion and the tapered cylinder portion are brought close to each other so that the extension portion abuts against the tapered cylinder portion;
a small cylindrical portion fixed to the refrigerant outflow hole of the header and an extension portion abutting the tapered cylindrical portion, thereby sandwiching the gas-liquid separation member between the header and the outflow pipe.
(第11の態様)
少なくとも一端に開口を有する胴部と、
冷媒流入孔及び冷媒流出孔を備え、前記胴部の一端を塞ぐヘッダと、
前記胴部内に収容されて前記冷媒流出孔に接続された流出管と、を有し、
前記流出管は、端部に形成された雄ねじを有し、
前記冷媒流出孔は雌ねじを有し、
前記雄ねじを前記雌ねじに螺合させることにより、前記流出管は前記ヘッダに取り付けられる、
ことを特徴とするアキュームレータ。 (Eleventh aspect)
a body portion having an opening at at least one end;
a header having a refrigerant inlet and a refrigerant outlet and closing one end of the body portion;
an outflow pipe housed in the body portion and connected to the refrigerant outflow hole,
The outlet pipe has a male thread formed at an end thereof,
The refrigerant outlet hole has a female thread,
The outflow pipe is attached to the header by threading the male thread into the female thread.
1. An accumulator comprising:
少なくとも一端に開口を有する胴部と、
冷媒流入孔及び冷媒流出孔を備え、前記胴部の一端を塞ぐヘッダと、
前記胴部内に収容されて前記冷媒流出孔に接続された流出管と、を有し、
前記流出管は、端部に形成された雄ねじを有し、
前記冷媒流出孔は雌ねじを有し、
前記雄ねじを前記雌ねじに螺合させることにより、前記流出管は前記ヘッダに取り付けられる、
ことを特徴とするアキュームレータ。 (Eleventh aspect)
a body portion having an opening at at least one end;
a header having a refrigerant inlet and a refrigerant outlet and closing one end of the body portion;
an outflow pipe housed in the body portion and connected to the refrigerant outflow hole,
The outlet pipe has a male thread formed at an end thereof,
The refrigerant outlet hole has a female thread,
The outflow pipe is attached to the header by threading the male thread into the female thread.
1. An accumulator comprising:
(第12の態様)
前記胴部内に収容される気液分離部材であって、前記冷媒流出孔と対向する部分に、前記ヘッダ側及びその反対側を連通する連通部が形成された気液分離部材を有し、
前記流出管は、前記雄ねじの近傍にて、外周面から径方向外方に突出した鍔部を有し、
前記流出管は、一部が前記連通部に配置され、
前記気液分離部材は、前記流出管が前記ヘッダに取り付けられた状態で、前記鍔部と前記ヘッダとの間に保持される、
ことを特徴とする第11の態様のアキュームレータ。 (Twelfth Aspect)
a gas-liquid separating member accommodated in the body portion, the gas-liquid separating member having a communication portion formed in a portion facing the refrigerant outflow hole, the communication portion communicating the header side with the opposite side;
The outflow pipe has a flange portion protruding radially outward from an outer circumferential surface in the vicinity of the male thread,
a portion of the outflow pipe is disposed in the communication portion,
The gas-liquid separating member is held between the flange portion and the header in a state in which the outflow pipe is attached to the header.
The accumulator according to an eleventh aspect,
前記胴部内に収容される気液分離部材であって、前記冷媒流出孔と対向する部分に、前記ヘッダ側及びその反対側を連通する連通部が形成された気液分離部材を有し、
前記流出管は、前記雄ねじの近傍にて、外周面から径方向外方に突出した鍔部を有し、
前記流出管は、一部が前記連通部に配置され、
前記気液分離部材は、前記流出管が前記ヘッダに取り付けられた状態で、前記鍔部と前記ヘッダとの間に保持される、
ことを特徴とする第11の態様のアキュームレータ。 (Twelfth Aspect)
a gas-liquid separating member accommodated in the body portion, the gas-liquid separating member having a communication portion formed in a portion facing the refrigerant outflow hole, the communication portion communicating the header side with the opposite side;
The outflow pipe has a flange portion protruding radially outward from an outer circumferential surface in the vicinity of the male thread,
a portion of the outflow pipe is disposed in the communication portion,
The gas-liquid separating member is held between the flange portion and the header in a state in which the outflow pipe is attached to the header.
The accumulator according to an eleventh aspect,
(第13の態様)
前記ヘッダは、前記冷媒流出孔の周囲にボス部を有し、
前記気液分離部材は、前記ボス部に嵌合する凹部を有し、
前記流出管が前記ヘッダに取り付けられた状態で、前記凹部の底壁が、前記鍔部と前記ボス部との間に保持される、
ことを特徴とする第11の態様または第12の態様のアキュームレータ。 (Thirteenth aspect)
The header has a boss portion around the refrigerant outlet hole,
the gas-liquid separating member has a recess that fits into the boss portion,
When the outflow pipe is attached to the header, a bottom wall of the recess is held between the flange portion and the boss portion.
The accumulator according to the eleventh or twelfth aspect,
前記ヘッダは、前記冷媒流出孔の周囲にボス部を有し、
前記気液分離部材は、前記ボス部に嵌合する凹部を有し、
前記流出管が前記ヘッダに取り付けられた状態で、前記凹部の底壁が、前記鍔部と前記ボス部との間に保持される、
ことを特徴とする第11の態様または第12の態様のアキュームレータ。 (Thirteenth aspect)
The header has a boss portion around the refrigerant outlet hole,
the gas-liquid separating member has a recess that fits into the boss portion,
When the outflow pipe is attached to the header, a bottom wall of the recess is held between the flange portion and the boss portion.
The accumulator according to the eleventh or twelfth aspect,
(第14の態様)
前記気液分離部材は、金属板材をプレス成形することにより形成される、
ことを特徴とする第11乃至第13の態様のうちのいずれか1つのアキュームレータ。 (Fourteenth aspect)
The gas-liquid separation member is formed by press-molding a metal plate material.
14. The accumulator according to any one of the eleventh to thirteenth aspects,
前記気液分離部材は、金属板材をプレス成形することにより形成される、
ことを特徴とする第11乃至第13の態様のうちのいずれか1つのアキュームレータ。 (Fourteenth aspect)
The gas-liquid separation member is formed by press-molding a metal plate material.
14. The accumulator according to any one of the eleventh to thirteenth aspects,
1、101 アキュームレータ
2、102 タンク本体
3、103 胴体
4、104 ヘッダ
5、105 二重管
6、6B、6C、6D、106 インナーパイプ(流出管)
6F、6G U字状の流出管
6a、6Fa、6Ga 小径円筒部
6b 大径円筒部
6c、6Fc、6Gc テーパ筒部
106a 鍔部
7、107 アウターパイプ
8、108 冷媒流入孔
9、109 冷媒流出孔
11、111 バッグ
20、120 ストレーナ
21、121 ケース
22、122 網目フィルタ
1, 101 Accumulator 2, 102 Tank body 3, 103 Body 4, 104 Header 5, 105 Double pipe 6, 6B, 6C, 6D, 106 Inner pipe (outlet pipe)
6F, 6GU-shaped outflow pipe 6a, 6Fa, 6Ga Small diameter cylindrical portion 6b Large diameter cylindrical portion 6c, 6Fc, 6Gc Tapered tube portion 106a Flange portion 7, 107 Outer pipe 8, 108 Refrigerant inlet hole 9, 109 Refrigerant outlet hole 11, 111 Bag 20, 120 Strainer 21, 121 Case 22, 122 Mesh filter
2、102 タンク本体
3、103 胴体
4、104 ヘッダ
5、105 二重管
6、6B、6C、6D、106 インナーパイプ(流出管)
6F、6G U字状の流出管
6a、6Fa、6Ga 小径円筒部
6b 大径円筒部
6c、6Fc、6Gc テーパ筒部
106a 鍔部
7、107 アウターパイプ
8、108 冷媒流入孔
9、109 冷媒流出孔
11、111 バッグ
20、120 ストレーナ
21、121 ケース
22、122 網目フィルタ
1, 101
6F, 6G
Claims (10)
- 少なくとも一端に開口を有する胴部と、
冷媒流入孔及び冷媒流出孔を備え、前記胴部の一端を塞ぐヘッダと、
前記胴部内に収容される気液分離部材であって、前記冷媒流出孔と対向する部分に、前記ヘッダ側及びその反対側を連通する連通部が形成された気液分離部材と、
前記胴部内に収容されて一部が前記連通部に配置され、前記冷媒流出孔に接続された流出管と、を有し、
前記流出管は、前記冷媒流出孔に挿入されて固定される小筒部と、前記胴部内に配置され、前記小筒部より断面積が大きい大筒部と、前記小筒部と前記大筒部とを連結するテーパ筒部とを有し、
前記流出管の内周面は、冷媒の流れ方向に沿って、大内周面と、前記大内周面につながる中間内周面と、前記中間内周面につながり前記大内周面の断面積よりも小さい断面積を有する小内周面とを有し、前記中間内周面は、前記小内周面側に向かうにつれて断面積が漸次小さくなる形状を有し、
前記気液分離部材は、前記連通部を有し、前記ヘッダと対向する本体と、前記本体から前記テーパ筒部まで延びる延出部と、を有し、前記延出部が前記テーパ筒部に当接した状態で、前記ヘッダ及び前記流出管に挟持される、
ことを特徴とするアキュームレータ。 a body portion having an opening at at least one end;
a header having a refrigerant inlet and a refrigerant outlet and closing one end of the body portion;
a gas-liquid separating member accommodated in the body portion, the gas-liquid separating member having a communication portion formed in a portion facing the refrigerant outflow hole, the communication portion communicating the header side with an opposite side;
an outflow pipe that is accommodated in the body portion, a portion of which is disposed in the communication portion, and which is connected to the refrigerant outflow hole,
the outflow pipe has a small cylinder portion inserted into and fixed to the refrigerant outflow hole, a large cylinder portion disposed within the body portion and having a cross-sectional area larger than that of the small cylinder portion, and a tapered cylinder portion connecting the small cylinder portion and the large cylinder portion,
The inner circumferential surface of the outflow pipe has, along a flow direction of the refrigerant, a large inner circumferential surface, an intermediate inner circumferential surface connected to the large inner circumferential surface, and a small inner circumferential surface connected to the intermediate inner circumferential surface and having a cross-sectional area smaller than that of the large inner circumferential surface, and the cross-sectional area of the intermediate inner circumferential surface is gradually reduced toward the small inner circumferential surface,
the gas-liquid separating member has the communicating portion, and includes a main body facing the header, and an extension portion extending from the main body to the tapered cylindrical portion, and is sandwiched between the header and the outflow pipe with the extension portion abutting against the tapered cylindrical portion;
1. An accumulator comprising: - 前記流出管は、断面形状が円となる筒状に形成される、
ことを特徴とする請求項1に記載のアキュームレータ。 The outflow pipe is formed into a cylindrical shape having a circular cross-sectional shape.
2. The accumulator of claim 1 . - 前記延出部は、前記大筒部の外周面に当接する、
ことを特徴とする請求項1に記載のアキュームレータ。 The extension portion abuts against an outer circumferential surface of the large cylinder portion.
2. The accumulator of claim 1 . - 前記延出部は、前記流出管の周方向に複数設けられる、
ことを特徴とする請求項1に記載のアキュームレータ。 The extension portion is provided in a plurality of portions in a circumferential direction of the outflow pipe.
2. The accumulator of claim 1 . - 前記延出部は、前記テーパ筒部に全周で当接する筒状に形成される、
ことを特徴とする請求項1に記載のアキュームレータ。 The extension portion is formed in a cylindrical shape so as to abut on the tapered cylindrical portion over the entire circumference.
2. The accumulator of claim 1 . - 前記胴部内に収容されて前記流出管を内側に配置する筒状に形成され、前記気液分離部材側の端部が開口するアウターパイプを有し、
前記延出部は、前記アウターパイプ外の前記冷媒を、前記アウターパイプの前記気液分離部材側の開口に導くガイド部を有し、前記ガイド部は、前記延出部の外周面により構成され、前記気液分離部材側に向かうにつれて拡径する形状を有する、
ことを特徴とする請求項5に記載のアキュームレータ。 an outer pipe that is formed in a cylindrical shape and is accommodated in the body portion with the outflow pipe disposed inside, the outer pipe having an open end on the gas-liquid separating member side;
the extension portion has a guide portion that guides the refrigerant outside the outer pipe to an opening of the outer pipe on the gas-liquid separating member side, the guide portion being formed by an outer circumferential surface of the extension portion and having a shape that increases in diameter as it approaches the gas-liquid separating member side.
6. The accumulator according to claim 5. - パイプを絞り加工又は拡管加工することにより、前記流出管が形成される、
ことを特徴とする請求項2に記載のアキュームレータ。 The outflow pipe is formed by drawing or expanding the pipe.
3. The accumulator according to claim 2. - 前記流出管が前記冷媒流出孔に対して圧入される、
ことを特徴とする請求項1に記載のアキュームレータ。 The outflow pipe is press-fitted into the refrigerant outflow hole.
2. The accumulator of claim 1 . - 前記流出管に形成された雄ねじと、前記冷媒流出孔に形成された雌ねじとが螺合されている、
ことを特徴とする請求項1に記載のアキュームレータ。 A male thread formed on the outflow pipe and a female thread formed on the refrigerant outflow hole are screwed together.
2. The accumulator of claim 1 . - 冷媒流出孔を備えたヘッダと、
前記冷媒流出孔に接続される流出管と、
前記ヘッダと対向配置され、前記流出管の一部を配置する連通部を有する気液分離部材と、
を有するアキュームレータの製造方法であって、
パイプに絞り加工または拡管加工を施すことにより、小筒部と、前記小筒部より断面積が大きい大筒部と、前記小筒部と前記大筒部とを連結するテーパ筒部を有する前記流出管を形成し、
前記気液分離部材の前記ヘッダと対向配置される部分となる本体部分に、前記本体部分から離れる方向に延出する延出部を形成し、
前記流出管の前記小筒部を前記連通部に配置した状態で前記延出部及び前記テーパ筒部を近づけることで前記延出部を前記テーパ筒部に当接させ、
前記小筒部が前記ヘッダの前記冷媒流出孔に固定され、かつ前記延出部が前記テーパ筒部に当接した状態とすることで、前記気液分離部材を前記ヘッダ及び前記流出管間に挟持させる、ことを特徴とするアキュームレータの製造方法。
A header having a refrigerant outlet hole;
an outflow pipe connected to the refrigerant outflow hole;
a gas-liquid separating member disposed opposite the header and having a communication portion through which a portion of the outflow pipe is disposed;
A method for manufacturing an accumulator having the following features:
forming the outflow pipe having a small cylindrical portion, a large cylindrical portion having a cross-sectional area larger than that of the small cylindrical portion, and a tapered cylindrical portion connecting the small cylindrical portion and the large cylindrical portion by subjecting the pipe to a drawing process or a tube expansion process;
an extension portion is formed on a main body portion of the gas-liquid separating member, the main body portion being a portion that faces the header, the extension portion extending in a direction away from the main body portion;
With the small cylinder portion of the outflow pipe disposed in the communication portion, the extension portion and the tapered cylinder portion are brought close to each other so that the extension portion abuts against the tapered cylinder portion;
a small cylindrical portion fixed to the refrigerant outflow hole of the header and an extension portion abutting the tapered cylindrical portion, thereby sandwiching the gas-liquid separation member between the header and the outflow pipe.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023068652 | 2023-04-19 | ||
JP2023-068652 | 2023-04-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024219332A1 true WO2024219332A1 (en) | 2024-10-24 |
Family
ID=93152407
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2024/014821 WO2024219332A1 (en) | 2023-04-19 | 2024-04-12 | Accumulator and method for manufacturing same |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2024219332A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61127368U (en) * | 1985-01-29 | 1986-08-09 | ||
JPS6392167U (en) * | 1986-12-05 | 1988-06-15 | ||
JPH0457170U (en) * | 1990-09-21 | 1992-05-15 | ||
US6062039A (en) * | 1998-01-07 | 2000-05-16 | Parker-Hannifin Corporation | Universal accumulator for automobile air conditioning systems |
JP2014070869A (en) * | 2012-10-02 | 2014-04-21 | Fuji Koki Corp | Accumulator |
-
2024
- 2024-04-12 WO PCT/JP2024/014821 patent/WO2024219332A1/en unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61127368U (en) * | 1985-01-29 | 1986-08-09 | ||
JPS6392167U (en) * | 1986-12-05 | 1988-06-15 | ||
JPH0457170U (en) * | 1990-09-21 | 1992-05-15 | ||
US6062039A (en) * | 1998-01-07 | 2000-05-16 | Parker-Hannifin Corporation | Universal accumulator for automobile air conditioning systems |
JP2014070869A (en) * | 2012-10-02 | 2014-04-21 | Fuji Koki Corp | Accumulator |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5974326B2 (en) | Expansion valve and anti-vibration spring | |
US20080148768A1 (en) | Receiver tank for a condensor and method of manufacturing the same | |
US20040007012A1 (en) | Receiver-drier for air-conditioning system and method of manufacturing the same | |
US6568204B2 (en) | Baffle connection for an accumulator and related method of manufacturing | |
WO2024219332A1 (en) | Accumulator and method for manufacturing same | |
CN118565117A (en) | Gas-liquid separation device | |
JP2013134004A (en) | Accumulator and method of manufacturing the same | |
WO2024158023A1 (en) | Accumulator | |
EP1681500B1 (en) | Non-return valve | |
JP5566994B2 (en) | accumulator | |
JP2002295927A (en) | Accumureceiver, refrigeration system and method for manufacturing accumureceiver | |
US20230068291A1 (en) | Heat exchanger | |
EP3940279B1 (en) | Expansion valve | |
US4955210A (en) | Capillary tube assembly and method of manufacture | |
US12061025B2 (en) | Power element and expansion valve using same | |
JP3995452B2 (en) | Heat exchanger with receiver | |
JP2007232335A (en) | Refrigerant container and its manufacturing method | |
JP3299467B2 (en) | Refrigerant receiver for air conditioning | |
EP4067715A1 (en) | Power element and expansion valve using same | |
JP2022019265A (en) | Check valve and refrigeration cycle system | |
CN203810810U (en) | Liquid storage tank integrated condenser and liquid storage tank | |
CN105091432A (en) | Oil separator and air conditioner having the same | |
KR102379146B1 (en) | Dealing Structure of Refrigeration Cycle Pipes | |
WO2023017782A1 (en) | Accumulator | |
EP2123999A1 (en) | Expansion valve |