WO2024219376A1 - Glass sheet production method - Google Patents
Glass sheet production method Download PDFInfo
- Publication number
- WO2024219376A1 WO2024219376A1 PCT/JP2024/015073 JP2024015073W WO2024219376A1 WO 2024219376 A1 WO2024219376 A1 WO 2024219376A1 JP 2024015073 W JP2024015073 W JP 2024015073W WO 2024219376 A1 WO2024219376 A1 WO 2024219376A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- etching
- hole
- glass plate
- main surface
- etching solution
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C15/00—Surface treatment of glass, not in the form of fibres or filaments, by etching
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C23/00—Other surface treatment of glass not in the form of fibres or filaments
Definitions
- the present invention relates to a method for manufacturing a glass plate having a through hole.
- glass plates with minute through-holes for wiring are used as substrates for tiling displays (micro LEDs, etc.), bezel-less displays, glass interposers, etc.
- a method for manufacturing a glass plate having this type of through hole includes, for example, a modification step in which the portion of the glass plate where the through hole is to be formed is modified by irradiating the portion with laser light, and an etching step in which a through hole is formed in the portion by etching after the modification step (see, for example, Patent Document 1).
- the modified portion modified in the modification process has a higher etching speed (etching rate) than the unmodified portion not modified in the modification process. Therefore, the modified portion is preferentially removed in the etching process. Therefore, if a modified portion is formed in the portion where a through hole is to be formed, a through hole can be formed in the portion by etching.
- the taper angle of the through hole is the angle between the direction perpendicular to the plate thickness direction and the inner wall surface of the through hole (see ⁇ 2 in Figure 6 described below).
- the objective of the present invention is to increase the taper angle of through holes formed in glass plates.
- the inventor has made the following findings as a result of intensive research. That is, by reducing the etching rate in the etching process, it is possible to increase the selectivity ratio (etching rate of modified part/etching rate of non-modified part) of the etching rate of the modified part in the diffusion rate-limited state to the etching rate of the non-modified part in the reaction rate-limited state.
- the selectivity ratio is increased, the preferential removal of the modified part is promoted, and the taper angle of the through hole can be increased.
- the selectivity ratio does not always increase monotonically with a decrease in the etching reaction rate.
- the modified part also becomes the etching reaction rate-limited, and the selectivity ratio changes from an increasing trend to a decreasing trend.
- the concentration of the etching solution at which the diffusion rate-limited state transitions to the reaction rate-limited state also differs depending on the temperature of the etching solution. Therefore, it is necessary to select the optimum concentration of the etching solution according to the temperature of the etching solution.
- the present invention has been invented to solve the above problems. It is a method for manufacturing a glass plate having a first main surface, a second main surface, and a through hole penetrating between the first and second main surfaces, and includes a modification step of modifying a portion where a through hole is to be formed by irradiating the portion with laser light, and an etching step of forming a through hole in the portion where the through hole is to be formed by immersing the glass plate in an etching solution containing HF after the modification step.
- the etching step includes a first etching step of forming an initial through hole in the portion where the through hole is to be formed, and a second etching step of enlarging the initial through hole to form a through hole, and is characterized in that in the first etching step, the relational expression -0.04x+2.4 ⁇ y ⁇ -0.04x+3.2 holds when the temperature of the etching solution is x [°C] and the HF concentration of the etching solution is y [mol/L].
- the etching steps can be performed with a simple device configuration and control method.
- the temperature of the etching solution is preferably 5°C or higher and 30°C or lower.
- the temperature of the etching solution is too low, it may freeze, making it impossible to carry out the etching process.
- the temperature of the etching solution is too high, it may vaporize, making it difficult to maintain a constant concentration of the etching solution.
- the temperature of the etching solution is kept within the above numerical range, the occurrence of these problems can be suppressed. In other words, the concentration of the etching solution can be stabilized while preventing the etching solution from freezing.
- the etching solution further contains HCl.
- fluorides containing glass components are generated as insoluble by-products. Fluorides can be a factor in reducing productivity, such as slowing down the etching rate and causing defects. However, if a mixed acid of HF and HCl is used as the etching solution as described above, the fluorides can be replaced with soluble chlorides and efficiently removed, preventing a decrease in productivity.
- the selectivity ratio (V1/V2) between V1 and V2 is 3.0 or more.
- the glass plate is preferably non-alkali glass.
- the present invention which has been invented to solve the above problems, is a method for manufacturing a glass plate having a first main surface, a second main surface, and a through hole penetrating between the first main surface and the second main surface, comprising a modification step of modifying a portion where a through hole is to be formed by irradiating the portion with laser light, and an etching step of immersing the glass plate in an etching solution containing HF after the modification step to form a through hole in the portion where the through hole is to be formed, characterized in that the etching step satisfies the relational expression -0.04x + 2.4 ⁇ y ⁇ -0.04x + 3.2, where x [°C] is the temperature of the etching solution and y [mol/L] is the HF concentration of the etching solution.
- the large taper angle makes it possible to form a high density of through holes.
- the present invention which was invented to solve the above problems, is a glass plate having a first main surface, a second main surface, and a through hole penetrating between the first main surface and the second main surface, the plate thickness being 25 ⁇ m or more and 2500 ⁇ m or less, the diameter of the through hole in the first main surface or the second main surface being 3 ⁇ m or more and 500 ⁇ m or less, and the angle between the direction perpendicular to the plate thickness direction and the inner wall surface of the through hole being 75° or more.
- the large taper angle makes it possible to form a high density of through holes.
- FIG. 2 is a flow diagram showing a method for producing a glass plate according to an embodiment of the present invention.
- FIG. 10A to 10C are cross-sectional views showing an etching step.
- 4 is a cross-sectional view of the glass plate in a first etching step, illustrating a state before a portion to be formed in the glass plate is penetrated.
- FIG. FIG. 4 is a cross-sectional view of the glass plate in a first etching step, showing a state when a portion to be formed in the glass plate has penetrated therethrough to form an initial through hole.
- FIG. 4 is a cross-sectional view of the glass plate in a second etching step, showing a state in which an initial through hole has been enlarged to form a glass plate having a through hole.
- 1 is a graph showing the relationship between the HF concentration of an etching solution and a selectivity ratio. 1 is a graph showing the relationship between the HF concentration of an etching solution and the taper angle of a through hole. 1 is a graph showing the relationship between the temperature of an etching solution and the optimum HF concentration of the etching solution.
- the method for manufacturing a glass plate according to this embodiment includes a modification process S1 and an etching process S2.
- the modification step S1 is a step of modifying a through-hole formation planned portion 3 in the glass plate 2 by a laser light L irradiated from a laser device 1.
- the formation planned portion 3 includes a modified portion 4 that has been modified by the modification step S1.
- the modified portion 4 extends along the plate thickness direction and has a property of being more easily etched than the unmodified non-modified portion 5 that has not been modified.
- the modified portion 4 is a portion that differs from the unmodified portion 5 in density, refractive index, stress, etc.
- the diameter of the modified portion 4 is, for example, 2 ⁇ m or more and 10 ⁇ m or less.
- the modified portion 4 may also include a non-through hole or a minute crack.
- the modified portion 4 is preferably formed continuously along the plate thickness direction, but may be formed intermittently along the plate thickness direction.
- a plurality of through holes 10 are formed in the glass plate 2
- a plurality of formation planned portions 3 including the modified portion 4 are also formed.
- the type and irradiation conditions of the laser light L are not particularly limited as long as it is capable of forming the modified portion 4 in the portion to be formed 3.
- the laser light L is a short-pulse laser light (picosecond laser light, nanosecond laser light, femtosecond laser light).
- the diameter W of the modified portion 4 can be adjusted by the spot diameter of the laser light L, for example.
- the spot diameter of the laser light L is, for example, 2 ⁇ m or more and 10 ⁇ m or less.
- the output of the laser light L is, for example, 1 W or more and 20 W or less.
- the focus of the laser light L is set, for example, at the middle part in the thickness direction of the glass plate 2, but is not limited to this position.
- the glass plate 2 may be, for example, a glass plate made of alkali-free glass, and the glass composition preferably contains, in mass %, 58-68% SiO 2 , 15-23% Al 2 O 3 (particularly 17-21%), 3-9% B 2 O 3 (particularly 5-7%), 0-1% or less of Li 2 O + Na 2 O + K 2 O (particularly 0-0.5%), 1-6% MgO (particularly 1-4%), 3-13% CaO (particularly 5-10%), 0-10% SrO (particularly 0.1-3%), and 0-10% BaO (particularly 2-7%).
- the glass plate can be suitably used as a glass substrate for a display.
- the lower limit of the thickness of the glass plate 2 before the etching process is preferably 30 ⁇ m or more, more preferably 200 ⁇ m or more, and even more preferably 400 ⁇ m or more.
- the upper limit of the thickness of the glass plate 2 before the etching process is preferably 3000 ⁇ m or less, more preferably 2400 ⁇ m or less, and even more preferably 1200 ⁇ m or less.
- the etching step S2 is a step of forming a through hole 10 penetrating in the plate thickness direction between the first main surface 2a and the second main surface 2b of the glass plate 2 in the formation-intended portion 3 including the modified portion 4.
- the etching step S2 includes a first etching step S2a of forming an initial through hole 9 in the formation-intended portion 3, and a second etching step S2b of enlarging the initial through hole 9 to form the through hole 10.
- the glass plate 2 is immersed in an etching solution 6 containing HF.
- the etching solution 6 is stored in an etching tank 7.
- etching proceeds simultaneously from both the first main surface 2a and the second main surface 2b of the glass plate 2.
- the etching solution 6 containing HF may be, for example, an aqueous solution containing only HF as an acid, or an aqueous solution containing HF and at least one acid selected from HCl, HNO3 , and H2SO4 .
- a mixed acid of HCl or the like and HF as the etching solution 6 in this way, the poorly soluble fluorides generated as by-products during etching can be replaced with soluble chlorides and efficiently removed, thereby suppressing a decrease in productivity.
- the modified area 4 is preferentially removed because the etching rate of the modified area 4 is faster than that of the non-modified area 5.
- the area to be formed 3, including the modified area 4 is gradually removed by etching.
- the symbols 2ao and 2b indicate the positions of the main surfaces 2a and 2b before etching.
- the portion 3 to be formed does not penetrate in the plate thickness direction, and a bottomed recess 8 having a tapered inner wall surface 8a whose opening area becomes smaller toward the center in the plate thickness direction is formed on each of the first main surface 2a side and the second main surface 2b side of the portion to be formed 3.
- the portion to be formed 3 is penetrated in the plate thickness direction to form an initial through hole 9.
- the initial through hole 9 has a tapered first inner wall surface 9a whose opening area decreases from the first main surface 2a side toward the center in the plate thickness direction, and a tapered second inner wall surface 9b whose opening area decreases from the second main surface 2b side toward the center in the plate thickness direction, and both inner wall surfaces 9a, 9b are connected to each other at the center in the plate thickness direction.
- the diameter of the initial through hole 9 is enlarged, and finally, a through hole 10 having a tapered first inner wall surface 10a and a tapered second inner wall surface 10b as shown in FIG. 6 is formed.
- the optimal HF concentration of the etching solution 6 can be selected according to the temperature of the etching solution 6. Therefore, the selection ratio (V1/V2) between the etching speed V1 [ ⁇ m/min] in the thickness direction of the modified portion 4 and the etching speed V2 [ ⁇ m/min] in the thickness direction of the non-modified portion 5 can be increased.
- the taper angle ⁇ 1 of the initial through hole 9 when the portion to be formed 3 penetrates becomes large.
- the taper angle ⁇ 2 of the through hole 10 that is finally formed is largely dependent on the taper angle ⁇ 1 of the initial through hole 9, so if the taper angle ⁇ 1 of the initial through hole 9 becomes large, the taper angle ⁇ 2 of the through hole 10 will inevitably become large.
- the relationship -0.04x+2.4 ⁇ y ⁇ -0.04x+3.2 is established in both the first etching step S2a and the second etching step S2b, but this relationship may be established only in the first etching step S2a.
- the first etching step S2a is performed, and then the second etching step S2b is performed consecutively. That is, after the first etching step S2a is performed, the second etching step S2b is performed in the same etching tank 7 without changing the etching conditions.
- the taper angle ⁇ 1 of the initial through hole 9 is preferably 75° or more, more preferably 80° or more, and even more preferably 84° or more.
- the taper angle ⁇ 1 of the initial through hole 9 is ideally 90°, but when the productivity of the glass plate 2 is taken into consideration, it can be, for example, 85° or less.
- the temperature of the etching solution 6 is preferably 5°C or higher.
- the temperature of the etching solution 6 is preferably 30°C or lower, more preferably 20°C or lower, and even more preferably 15°C or lower. In this way, it is possible to prevent problems such as the etching solution 6 freezing due to the etching solution 6 becoming too cold, or the etching solution 6 becoming too hot, causing a large change in the HF concentration. Note that changes in the HF concentration can occur due to evaporation of the HF and moisture contained in the etching solution 6.
- the selection ratio (V1/V2) is preferably 3.0 or more, more preferably 6.0 or more, and even more preferably 10.0 or more. In this way, preferential removal of the modified portion 4 is promoted, and an initial through hole 9 having a good taper angle ⁇ 1 can be formed. As a result, it becomes easier to form a through hole 10 having a large taper angle ⁇ 2.
- the upper limit of the selection ratio can be set to, for example, 12 or less.
- the selection ratio (V1/V2) can be obtained, for example, as shown in FIG.
- etching amount E1 in the plate thickness direction of the modified portion 4 when the initial through hole 9 is formed and the planned formation portion 3 is penetrated by the ratio (E1/E2) of the etching amount E1 in the plate thickness direction of the modified portion 4 when the initial through hole 9 is formed and the planned formation portion 3 is penetrated to the etching amount E2 in the plate thickness direction of the non-modified portion 5 when the initial through hole 9 is formed and the planned formation portion 3 is penetrated.
- the etching amounts E1 and E2 are obtained based on the position 2a0 of the main surface 2a and/or the position 2b of the main surface 2b of the glass plate 2 before etching.
- the etching amount E1 of the modified portion 4 can be calculated by (thickness of the glass plate 2 before etching)/2
- the etching amount E2 of the non-modified portion 5 can be calculated by [(thickness of the glass plate 2 before etching)-(thickness of the glass plate 2 when the portion to be formed 3 penetrates)]/2.
- the etching amounts E1 and E2 may be calculated from one glass plate 2, or, if the processing conditions are the same, the etching amounts E1 and E2 may be calculated from two glass plates 2, respectively.
- the second etching process S2b also maintains substantially the same selectivity as the first etching process S2a.
- the lower limit of the thickness of the glass plate 2 after the etching process is preferably 25 ⁇ m or more, more preferably 150 ⁇ m or more, and even more preferably 300 ⁇ m or more.
- the upper limit of the thickness of the glass plate 2 after the etching process is preferably 2500 ⁇ m or less, more preferably 2000 ⁇ m or less, and even more preferably 1000 ⁇ m or less.
- the glass plate 2 can be used as a substrate for a tiling display (micro LED, etc.), a bezel-less display, a glass interposer, etc., or as a core substrate for a semiconductor package.
- a tiling display micro LED, etc.
- a bezel-less display a glass interposer, etc.
- a core substrate for a semiconductor package a substrate for a semiconductor package.
- the lower limit of the diameter of the through hole 10 is preferably 3 ⁇ m or more, more preferably 20 ⁇ m or more, and even more preferably 40 ⁇ m or more on the first main surface 2a and the second main surface 2b.
- the upper limit of the diameter of the through hole 10 is preferably 500 ⁇ m or less, more preferably 400 ⁇ m or less, and even more preferably 200 ⁇ m or less on the first main surface 2a and the second main surface 2b. If the through hole 10 is in such a range, it can be suitably used as a substrate for a tiling display (micro LED, etc.), a bezel-less display, a glass interposer, or a core substrate for a semiconductor package.
- the present invention is not limited to the configuration of the above embodiment, nor is it limited to the above-mentioned effects. Various modifications of the present invention are possible without departing from the gist of the present invention.
- the etching process S2 may include a measurement process for measuring the temperature of the etching solution 6 and the HF concentration of the etching solution 6, and an adjustment process for adjusting at least one of the temperature and the HF concentration of the etching solution 6 based on the results of the measurement process. In this way, it is possible to reliably maintain the optimal HF concentration of the etching solution 6 in accordance with the temperature of the etching solution 6.
- the etching step S2 may include a cleaning step in which the glass plate 2 is removed from the etching solution 6 and cleaned. In this way, impurities such as fluoride formed in the etching step S2 can be efficiently removed.
- the multiple through holes 10 may be formed regularly and at high density.
- the etching solution 6 may be stirred while the etching step S2 is being performed.
- Methods of stirring the etching solution 6 include vibrating the etching solution 6 with ultrasonic waves, and stirring the etching solution 6 by rotating or vibrating a stirring member.
- the output of ultrasonic waves or the rotation speed or vibration frequency of the stirring member may be changed while the etching step S2 is being performed.
- the first etching step S2a is followed by the second etching step S2b, but this is not limited to the above.
- the etching conditions may be changed between the first etching step S2a and the second etching step S2b.
- the initial through hole 9 is not formed, so the etching liquid in the recess 8 cannot move in the plate thickness direction. Therefore, even if the stirring speed of the etching liquid 6 is increased in the first etching step S2a, the exchange efficiency of the etching liquid 6 in the recess 8 is difficult to improve.
- the glass plate 2 may be transferred to another etching tank 7, and the second etching step S2b may be performed. This allows the change in etching conditions to be completed quickly when changing the etching conditions between the first etching process S2a and the second etching process S2b.
- a glass plate made of alkali-free glass (OA-11 manufactured by Nippon Electric Glass Co., Ltd.) with a thickness of 500 ⁇ m before etching was prepared.
- a modified portion was formed by irradiating the intended formation portion of the prepared glass plate with short-pulse laser light using an LPKF Vitrion 5510 device. After that, the glass plate with the modified portion formed was immersed in an etching solution containing HF and etched to form a through hole in the intended formation portion.
- the temperature of the etching solution was 5°C, 10°C, 20°C, and 30°C, and the HF concentration of the etching solution was changed to evaluate how the selectivity ratio (etching speed V1 in the thickness direction of the modified area/etching speed V2 in the thickness direction of the unmodified area) changed.
- the results of the first evaluation test are shown in Figure 7.
- the results in Figure 8 also confirm that, regardless of whether the etching solution temperature is 5°C, 10°C, 20°C, or 30°C, the taper angle reaches a maximum peak as the HF concentration of the etching solution decreases.
- the change in taper angle in Figure 8 corresponds to the change in selectivity in Figure 7. In other words, regardless of whether the etching solution temperature is 5°C, 10°C, 20°C, or 30°C, it can be confirmed that the taper angle increases as the selectivity increases.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Surface Treatment Of Glass (AREA)
Abstract
Description
本発明は、貫通孔を有するガラス板の製造方法に関する。 The present invention relates to a method for manufacturing a glass plate having a through hole.
例えば、タイリングディスプレイ(マイクロLED等)、ベゼルレスディスプレイ、ガラスインターポーザなどの基板として、配線(貫通電極等)用の微細な貫通孔を有するガラス板が利用されている。 For example, glass plates with minute through-holes for wiring (through electrodes, etc.) are used as substrates for tiling displays (micro LEDs, etc.), bezel-less displays, glass interposers, etc.
この種の貫通孔を有するガラス板の製造方法としては、例えば、ガラス板における貫通孔の形成予定部をレーザ光の照射により改質する改質工程と、改質工程の後に、エッチングにより形成予定部に貫通孔を形成するエッチング工程とを備える(例えば、特許文献1を参照)。 A method for manufacturing a glass plate having this type of through hole includes, for example, a modification step in which the portion of the glass plate where the through hole is to be formed is modified by irradiating the portion with laser light, and an etching step in which a through hole is formed in the portion by etching after the modification step (see, for example, Patent Document 1).
改質工程で改質された改質部は、改質工程で改質されなかった非改質部よりもエッチング速度(エッチングレート)が高い。そのため、エッチング工程において、改質部が優先的に除去される。したがって、貫通孔の形成予定部に改質部を形成すれば、エッチングにより形成予定部に貫通孔を形成できる。 The modified portion modified in the modification process has a higher etching speed (etching rate) than the unmodified portion not modified in the modification process. Therefore, the modified portion is preferentially removed in the etching process. Therefore, if a modified portion is formed in the portion where a through hole is to be formed, a through hole can be formed in the portion by etching.
上記のように貫通孔を形成する場合、ガラス板の主面に近い部分ほど、長時間エッチング液と接するためにエッチングされやすく、貫通孔の孔径は、主面に近い部分が板厚方向の中央部よりも大きくなり、貫通孔の内壁面はテーパ状となる。そして、貫通孔のテーパ角度が小さくなると、ガラス板の主面の孔径が大きくなりすぎ、貫通孔を高密度に形成できず、ガラス板の主面に高精細なパターンが形成できないなどの不具合が生じる場合がある。ここで、貫通孔のテーパ角度とは、板厚方向と直交する方向と貫通孔の内壁面とがなす角度(後述の図6のθ2参照)である。 When forming through holes as described above, the closer to the main surface of the glass plate, the more easily it is etched due to the longer contact with the etching solution, and the diameter of the through hole closer to the main surface is larger than that of the central portion in the plate thickness direction, and the inner wall surface of the through hole becomes tapered. If the taper angle of the through hole becomes small, the hole diameter of the main surface of the glass plate becomes too large, which may result in problems such as the inability to form high density through holes and the inability to form a high-definition pattern on the main surface of the glass plate. Here, the taper angle of the through hole is the angle between the direction perpendicular to the plate thickness direction and the inner wall surface of the through hole (see θ2 in Figure 6 described below).
本発明は、ガラス板に形成される貫通孔のテーパ角度を大きくすることを課題とする。 The objective of the present invention is to increase the taper angle of through holes formed in glass plates.
本発明者は鋭意研究の結果、以下の知見を得た。すなわち、エッチング工程において、エッチング速度を低減することにより、反応律速状態にある非改質部のエッチング速度に対する、拡散律速状態にある改質部のエッチング速度の選択比(改質部のエッチング速度/非改質部のエッチング速度)を大きくすることができる。選択比が大きくなると、改質部の優先的な除去が促進され、貫通孔のテーパ角度を大きくできる。しかしながら、エッチング反応速度の低下に伴って、選択比は常に単調に増加するわけではない。つまり、エッチング反応速度を低下させすぎると、ある時点で改質部もエッチング反応律速となり、選択比が増加傾向から減少傾向に転ずる。また、拡散速度と反応速度とは互いに温度依存性が異なるため、エッチング液の温度により、拡散律速が反応律速に移行するエッチング液の濃度も異なる。したがって、エッチング液の温度に合わせた最適なエッチング液の濃度を選択する必要がある。 The inventor has made the following findings as a result of intensive research. That is, by reducing the etching rate in the etching process, it is possible to increase the selectivity ratio (etching rate of modified part/etching rate of non-modified part) of the etching rate of the modified part in the diffusion rate-limited state to the etching rate of the non-modified part in the reaction rate-limited state. When the selectivity ratio is increased, the preferential removal of the modified part is promoted, and the taper angle of the through hole can be increased. However, the selectivity ratio does not always increase monotonically with a decrease in the etching reaction rate. In other words, if the etching reaction rate is reduced too much, at a certain point the modified part also becomes the etching reaction rate-limited, and the selectivity ratio changes from an increasing trend to a decreasing trend. In addition, since the diffusion rate and the reaction rate have different temperature dependencies, the concentration of the etching solution at which the diffusion rate-limited state transitions to the reaction rate-limited state also differs depending on the temperature of the etching solution. Therefore, it is necessary to select the optimum concentration of the etching solution according to the temperature of the etching solution.
(1) 上記の課題を解決するために創案された本発明は、上記の知見に基づき、第一主面と、第二主面と、第一主面と第二主面との間を貫通する貫通孔とを有するガラス板の製造方法であって、貫通孔の形成予定部をレーザ光の照射により改質する改質工程と、改質工程の後に、HFを含むエッチング液にガラス板を浸漬して形成予定部に貫通孔を形成するエッチング工程を備え、エッチング工程は、形成予定部に初期貫通孔を形成する第一エッチング工程と、初期貫通孔を拡大して貫通孔を形成する第二エッチング工程とを含み、第一エッチング工程では、エッチング液の温度をx[℃]、エッチング液のHF濃度をy[mol/L]としたとき、-0.04x+2.4≦y≦-0.04x+3.2の関係式が成立することを特徴とする。 (1) Based on the above findings, the present invention has been invented to solve the above problems. It is a method for manufacturing a glass plate having a first main surface, a second main surface, and a through hole penetrating between the first and second main surfaces, and includes a modification step of modifying a portion where a through hole is to be formed by irradiating the portion with laser light, and an etching step of forming a through hole in the portion where the through hole is to be formed by immersing the glass plate in an etching solution containing HF after the modification step. The etching step includes a first etching step of forming an initial through hole in the portion where the through hole is to be formed, and a second etching step of enlarging the initial through hole to form a through hole, and is characterized in that in the first etching step, the relational expression -0.04x+2.4≦y≦-0.04x+3.2 holds when the temperature of the etching solution is x [°C] and the HF concentration of the etching solution is y [mol/L].
このように第一エッチング工程において、上記の関係式が成立するようにエッチングを行うことで、エッチング液の温度に合わせた最適なエッチング液のHF濃度を選択できる。その結果、テーパ角度の大きい初期貫通孔を形成でき、さらにはテーパ角度の大きい貫通孔を形成できる。 In this way, by performing etching in the first etching step so that the above relationship holds, it is possible to select the optimal HF concentration of the etching solution to match the temperature of the etching solution. As a result, it is possible to form an initial through hole with a large taper angle, and it is also possible to form a through hole with an even larger taper angle.
(2) 上記の(1)の構成において、第一エッチング工程及び第二エッチング工程の両方で、-0.04x+2.4≦y≦-0.04x+3.2の関係式が成立する。 (2) In the configuration of (1) above, the relationship -0.04x+2.4≦y≦-0.04x+3.2 holds true in both the first etching process and the second etching process.
このようにすれば、第一エッチング工程と第二エッチング工程とで、エッチング液の温度及びエッチング液のHF濃度を変更する必要が無い。このため、簡易な装置構成及び制御方法で、エッチング工程を行うことができる。 In this way, there is no need to change the temperature of the etching solution or the HF concentration of the etching solution between the first and second etching steps. Therefore, the etching steps can be performed with a simple device configuration and control method.
(3) 上記の(1)又は(2)の構成において、エッチング液の温度は、5℃以上30℃以下であることが好ましい。 (3) In the above configuration (1) or (2), the temperature of the etching solution is preferably 5°C or higher and 30°C or lower.
エッチング液の温度が低すぎると、エッチング液が凍結し、エッチング工程が実行できないおそれがある。一方、エッチング液の温度が高すぎると、エッチング液の気化が生じてエッチング液の濃度を一定に保つことが難しくなる。これに対し、エッチング液の温度を上記の数値範囲とすれば、これら不具合の発生を抑制できる。つまり、エッチング液の凍結を防止しつつ、エッチング液の濃度を安定させることができる。 If the temperature of the etching solution is too low, it may freeze, making it impossible to carry out the etching process. On the other hand, if the temperature of the etching solution is too high, it may vaporize, making it difficult to maintain a constant concentration of the etching solution. By contrast, if the temperature of the etching solution is kept within the above numerical range, the occurrence of these problems can be suppressed. In other words, the concentration of the etching solution can be stabilized while preventing the etching solution from freezing.
(4) 上記の(1)~(3)のいずれかの構成において、エッチング液は、HClをさらに含むことが好ましい。 (4) In any of the above configurations (1) to (3), it is preferable that the etching solution further contains HCl.
HFを含むエッチング液を用いたエッチングでは、ガラス成分を含むフッ化物が難溶性の副産物として生成される。フッ化物は、エッチング速度の低下や欠陥の発生などの生産性を低下する要因となり得る。しかしながら、エッチング液として、上記のようにHFとHClとの混酸を用いれば、フッ化物を可溶性の塩化物に置換して効率良く除去することができ、生産性の低下を抑制できる。 When etching is performed using an etching solution containing HF, fluorides containing glass components are generated as insoluble by-products. Fluorides can be a factor in reducing productivity, such as slowing down the etching rate and causing defects. However, if a mixed acid of HF and HCl is used as the etching solution as described above, the fluorides can be replaced with soluble chlorides and efficiently removed, preventing a decrease in productivity.
(5) 上記(1)~(4)のいずれかの構成において、第一エッチング工程では、改質工程で改質された改質部の板厚方向のエッチング速度をV1[μm/分]、改質工程で改質されなかった非改質部の板厚方向のエッチング速度をV2[μm/分]としたとき、V1とV2との選択比(V1/V2)が、3.0以上であることが好ましい。 (5) In any of the configurations (1) to (4) above, in the first etching step, when the etching speed in the plate thickness direction of the modified portion modified in the modification step is V1 [μm/min] and the etching speed in the plate thickness direction of the unmodified portion not modified in the modification step is V2 [μm/min], it is preferable that the selectivity ratio (V1/V2) between V1 and V2 is 3.0 or more.
このようにすれば、改質部の優先的な除去が促進され、良好なテーパ角度を有する貫通孔を形成できる。 This promotes preferential removal of the modified area, resulting in the formation of a through hole with a good taper angle.
(6) 上記(1)~(5)のいずれかの構成において、ガラス板は、無アルカリガラスであることが好ましい。 (6) In any of the above configurations (1) to (5), the glass plate is preferably non-alkali glass.
このようにすれば、ディスプレイ用途に最適な貫通孔を有するガラス板を製造できる。 In this way, it is possible to produce glass plates with through holes that are ideal for display applications.
(7) 上記の課題を解決するために創案された本発明は、第一主面と、第二主面と、第一主面と第二主面との間を貫通する貫通孔とを有するガラス板の製造方法であって、貫通孔の形成予定部をレーザ光の照射により改質する改質工程と、改質工程の後に、HFを含むエッチング液にガラス板を浸漬し、形成予定部に貫通孔を形成するエッチング工程を備え、エッチング工程では、エッチング液の温度をx[℃]、エッチング液のHF濃度をy[mol/L]としたとき、-0.04x+2.4≦y≦-0.04x+3.2の関係式が成立することを特徴とする。 (7) The present invention, which has been invented to solve the above problems, is a method for manufacturing a glass plate having a first main surface, a second main surface, and a through hole penetrating between the first main surface and the second main surface, comprising a modification step of modifying a portion where a through hole is to be formed by irradiating the portion with laser light, and an etching step of immersing the glass plate in an etching solution containing HF after the modification step to form a through hole in the portion where the through hole is to be formed, characterized in that the etching step satisfies the relational expression -0.04x + 2.4≦y≦-0.04x + 3.2, where x [°C] is the temperature of the etching solution and y [mol/L] is the HF concentration of the etching solution.
このようにすれば、上記(1)の構成と同様の効果を奏することができる。 In this way, the same effect as the configuration (1) above can be achieved.
(8) 上記(1)~(6)のいずれかの構成のガラス板の製造方法で製造されるガラス板であって、板厚は、25μm以上2500μm以下であり、第一主面又は第二主面における貫通孔の直径は、3μm以上500μm以下であり、板厚方向と直交する方向と貫通孔の内壁面とのなす角度は、75°以上であることを特徴とする。 (8) A glass plate manufactured by the method for manufacturing a glass plate having any of the configurations (1) to (6) above, characterized in that the plate thickness is 25 μm or more and 2500 μm or less, the diameter of the through hole in the first main surface or the second main surface is 3 μm or more and 500 μm or less, and the angle between the direction perpendicular to the plate thickness direction and the inner wall surface of the through hole is 75° or more.
このようなガラス板であれば、テーパ角度が大きいことで、貫通孔を高密度に形成することができる。 With such a glass plate, the large taper angle makes it possible to form a high density of through holes.
(9) 上記の課題を解決するために創案された本発明は、第一主面と、第二主面と、第一主面と第二主面との間を貫通する貫通孔とを有するガラス板であって、板厚は、25μm以上2500μm以下であり、第一主面又は第二主面における貫通孔の直径は、3μm以上500μm以下であり、板厚方向と直交する方向と貫通孔の内壁面とのなす角度は、75°以上であるであることを特徴とする。 (9) The present invention, which was invented to solve the above problems, is a glass plate having a first main surface, a second main surface, and a through hole penetrating between the first main surface and the second main surface, the plate thickness being 25 μm or more and 2500 μm or less, the diameter of the through hole in the first main surface or the second main surface being 3 μm or more and 500 μm or less, and the angle between the direction perpendicular to the plate thickness direction and the inner wall surface of the through hole being 75° or more.
このようなガラス板であれば、テーパ角度が大きいことで、貫通孔を高密度に形成することができる。 With such a glass plate, the large taper angle makes it possible to form a high density of through holes.
本発明によれば、ガラス板に形成される貫通孔のテーパ角度を大きくすることができる。 According to the present invention, it is possible to increase the taper angle of the through hole formed in the glass plate.
以下、本発明を実施するための形態について図面を参照しながら説明する。 Below, the form for implementing the present invention will be explained with reference to the drawings.
図1に示すように、本実施形態に係るガラス板の製造方法は、改質工程S1と、エッチング工程S2とを備える。 As shown in FIG. 1, the method for manufacturing a glass plate according to this embodiment includes a modification process S1 and an etching process S2.
(改質工程)
図2に示すように、改質工程S1は、レーザ装置1から照射されるレーザ光Lにより、ガラス板2における貫通孔の形成予定部3を改質する工程である。改質工程S1により、形成予定部3は、改質された改質部4を含む。改質部4は、板厚方向に沿って延び、改質されなかった非改質部5よりもエッチングされやすい性質を有する。改質部4は、密度、屈折率、応力等が非改質部5とは異なる部位である。改質部4の直径は、例えば2μm以上10μm以下である。また、改質部4は、非貫通の孔や、微小な亀裂を含んでもよい。改質部4は、板厚方向に沿って連続的に形成されていることが好ましいが、板厚方向に沿って断続的に形成されていてもよい。ガラス板2に貫通孔10(後述する図6を参照)を複数形成する場合、改質部4を含む形成予定部3も複数形成される。
(Modification process)
As shown in FIG. 2, the modification step S1 is a step of modifying a through-hole formation planned
レーザ光Lは、形成予定部3に改質部4を形成できる限り、その種類及び照射条件は特に限定されない。本実施形態では、レーザ光Lは、短パルスレーザ光(ピコ秒レーザ光、ナノ秒レーザ光、フェムト秒レーザ光)である。改質部4の径Wは、レーザ光Lのスポット径などによって調整できる。レーザ光Lのスポット径は、例えば2μm以上10μm以下である。また、レーザ光Lの出力は、例えば1W以上20W以下である。レーザ光Lの焦点は、例えばガラス板2の板厚方向における中間部に設定されるが、この位置に限定されない。
The type and irradiation conditions of the laser light L are not particularly limited as long as it is capable of forming the modified
ガラス板2は、例えば無アルカリガラスからなるガラス板を用いることができ、ガラス組成として、質量%で、SiO2 58~68%、Al2O3 15~23%(特に17~21%)、B2O3 3~9%(特に5~7%)、Li2O+Na2O+K2O 0~1%未満(特に0~0.5%)、MgO 1~6%(特に1~4%)、CaO 3~13%(特に5~10%)、SrO 0~10%(特に0.1~3%)、BaO 0~10%(特に2~7%)を含有することが好ましい。このようにすれば、ディスプレイ用ガラス基板として好適に用いることができる。
The
エッチング工程を実行する前のガラス板2の板厚の下限値は、好ましくは30μm以上、より好ましくは200μm以上、さらに好ましくは400μm以上である。エッチング工程を実行する前のガラス板2の板厚の上限値は、好ましくは3000μm以下、より好ましくは2400μm以下、さらに好ましくは1200μm以下である。
The lower limit of the thickness of the
(エッチング工程)
エッチング工程S2は、改質部4を含む形成予定部3に、ガラス板2の第一主面2aと第二主面2bとの間を板厚方向に貫通する貫通孔10を形成する工程である。図1に示すように、エッチング工程S2は、形成予定部3に初期貫通孔9を形成する第一エッチング工程S2aと、初期貫通孔9を拡大して貫通孔10を形成する第二エッチング工程S2bとを含む。
(Etching process)
The etching step S2 is a step of forming a through
図3に示すように、エッチング工程S2では、HFを含むエッチング液6にガラス板2を浸漬する。エッチング液6は、エッチング槽7内に貯留されている。本実施形態では、ガラス板2の第一主面2a及び第二主面2bの両側から同時にエッチングが進行する。
As shown in FIG. 3, in the etching step S2, the
HFを含むエッチング液6としては、例えば、酸としてHFのみを含む水溶液、あるいは、HCl、HNO3及びH2SO4の中から選択される少なくとも一種の酸とHFとを含む水溶液などを用いることができる。このようにエッチング液6として、HCl等とHFとの混酸を用いることで、エッチング時の副産物として生成される難溶性のフッ化物を可溶性の塩化物に置換して効率良く除去することができ、生産性の低下を抑制できる。特に、エッチング液6としては、HClとHFとの混酸を用いることが好ましい。
The
改質工程S1後にエッチング工程S2を行うと、改質部4は非改質部5よりもエッチング速度が高いため、改質部4が優先的に除去される。これにより、図4~図6に示すように、改質部4を含む形成予定部3はエッチングにより徐々に除去される。なお、図4~図6において、符号2aо,2bоはエッチング前の主面2a,2bの位置を示している。
When the etching process S2 is performed after the modification process S1, the modified
詳細には、図4に示すように、第一エッチング工程S2aの序盤では、形成予定部3は板厚方向に貫通しておらず、形成予定部3には、第一主面2a側と第二主面2b側のそれぞれに、板厚方向の中央部に向かって開口面積が小さくなるテーパ状の内壁面8aを有する底付きの凹部8が形成される。
In detail, as shown in FIG. 4, in the early stage of the first etching step S2a, the
底付きの凹部8が形成された後、図5に示すように、第一エッチング工程S2aでは、形成予定部3が板厚方向に貫通し、初期貫通孔9が形成される。初期貫通孔9は、第一主面2a側から板厚方向の中央部に向かって開口面積が小さくなるテーパ状の第一内壁面9aと、第二主面2b側から板厚方向の中央部に向かって開口面積が小さくなるテーパ状の第二内壁面9bとを有し、両内壁面9a,9bが板厚方向の中央部で互いに連結している。
After the bottomed
初期貫通孔9が形成された後、第二エッチング工程S2bでは、初期貫通孔9の孔径の拡大を伴いながら、最終的に図6に示すようなテーパ状の第一内壁面10a及び第二内壁面10bを有する貫通孔10が形成される。
After the initial through
第一エッチング工程S2aでは、エッチング液6の温度をx[℃]、エッチング液6のHF濃度をy[mol/L]としたとき、-0.04x+2.4≦y≦-0.04x+3.2の関係式が成立するようになっている。このようにすれば、エッチング液6の温度に合わせた最適なエッチング液6のHF濃度を選択できる。そのため、改質部4の板厚方向のエッチング速度V1[μm/分]と、非改質部5の板厚方向のエッチング速度V2[μm/分]との選択比(V1/V2)を大きくできる。その結果、形成予定部3が貫通したときの初期貫通孔9のテーパ角度θ1が大きくなる。最終的に形成される貫通孔10のテーパ角度θ2は、初期貫通孔9のテーパ角度θ1に大きく依存するため、初期貫通孔9のテーパ角度θ1が大きくなれば、貫通孔10のテーパ角度θ2も必然的に大きくなる。本実施形態では、第一エッチング工程S2a及び第二エッチング工程S2bの両方で、-0.04x+2.4≦y≦-0.04x+3.2の関係式が成立するようになっているが、第一エッチング工程S2aのみで当該関係式が成立するようにしてもよい。
In the first etching step S2a, when the temperature of the
本実施形態では、第一エッチング工程S2aを実行した後に、連続して第二エッチング工程S2bを実行する。すなわち、第一エッチング工程S2aを実行した後に、同じエッチング槽7内で、エッチング条件を変更せずに、第二エッチング工程S2bを実行する。これにより、簡易な装置構成及び制御方法で、エッチング工程S2を行うことができるとともに、ガラス板2を他のエッチング槽7に移し替えたり、エッチング条件を変更したりする時間をかけずに、エッチング工程S2を行うことができる。
In this embodiment, the first etching step S2a is performed, and then the second etching step S2b is performed consecutively. That is, after the first etching step S2a is performed, the second etching step S2b is performed in the same etching tank 7 without changing the etching conditions. This allows the etching step S2 to be performed with a simple device configuration and control method, and allows the etching step S2 to be performed without the time required to transfer the
初期貫通孔9のテーパ角度θ1は、75°以上であることが好ましく、80°以上であることがより好ましく、84°以上であることがさらに好ましい。なお、初期貫通孔9のテーパ角度θ1は、理想的には90°であるが、ガラス板2の生産性を考慮した場合、例えば85°以下とすることができる。
The taper angle θ1 of the initial through
エッチング液6の温度は、5℃以上であることが好ましい。エッチング液6の温度は、30℃以下であることが好ましく、20℃以下であることがより好ましく、15℃以下であることがさらに好ましい。このようにすれば、エッチング液6が低温になりすぎてエッチング液6が凍結したり、エッチング液6が高温になりすぎてHF濃度が大きく変化したりする不具合の発生を抑制できる。なお、HF濃度の変化は、エッチング液6に含まれるHFや水分が気化することにより生じ得る。
The temperature of the
第一エッチング工程S2aでは、選択比(V1/V2)は、3.0以上であることが好ましく、6.0以上であることがより好ましく、10.0以上であることがさらに好ましい。このようにすれば、改質部4の優先的な除去が促進され、良好なテーパ角度θ1を有する初期貫通孔9を形成できる。その結果、大きなテーパ角度θ2を有する貫通孔10をより形成しやすくなる。一方、選択比の上限は、例えば12以下とすることができる。ここで、選択比(V1/V2)は、例えば、図5に示すように、初期貫通孔9が形成されて形成予定部3が貫通したときの改質部4の板厚方向のエッチング量E1に対する、初期貫通孔9が形成されて形成予定部3が貫通したときの非改質部5の板厚方向のエッチング量E2の比(E1/E2)により求めることができる。なお、エッチング量E1,E2は、エッチング前のガラス板2の主面2aの位置2aо及び/又は主面2bの位置2bоを基準として求められる。具体的には、例えば、改質部4のエッチング量E1は、(エッチング前のガラス板2の板厚)/2で求めることができ、非改質部5のエッチング量E2は、[(エッチング前のガラス板2の板厚)-(形成予定部3貫通時のガラス板2の板厚)]/2で求めることができる。なお、選択比(V1/V2)を求める際は、1枚のガラス板2からエッチング量E1とE2を求めてもよく、処理条件が同じであれば、2枚のガラス板2からエッチング量E1とE2をそれぞれ求めてもよい。本実施形態では、第二エッチング工程S2bも、第一エッチング工程S2aと実質的に同じ選択比を維持する。
In the first etching step S2a, the selection ratio (V1/V2) is preferably 3.0 or more, more preferably 6.0 or more, and even more preferably 10.0 or more. In this way, preferential removal of the modified
エッチング工程を実行した後のガラス板2の板厚の下限値は、好ましくは25μm以上、より好ましくは150μm以上、さらに好ましくは300μm以上である。エッチング工程を実行した後のガラス板2の板厚の上限値は、好ましくは2500μm以下、より好ましくは2000μm以下、さらに好ましくは1000μm以下である。
The lower limit of the thickness of the
ガラス板2は、タイリングディスプレイ(マイクロLED等)、ベゼルレスディスプレイ、ガラスインターポーザなどの基板として、又は半導体パッケージ用コア基板として用いることができる。
The
貫通孔10の直径の下限値は、第一主面2a及び第二主面2bにおいて、好ましくは3μm以上、より好ましくは20μm以上、さらに好ましくは40μm以上である。貫通孔10の直径の上限値は、第一主面2a及び第二主面2bにおいて、好ましくは500μm以下、より好ましくは400μm以下、さらに好ましくは200μm以下である。貫通孔10がこのような範囲であれば、タイリングディスプレイ(マイクロLED等)、ベゼルレスディスプレイ、ガラスインターポーザなどの基板、又は半導体パッケージ用コア基板として好適に用いることができる。
The lower limit of the diameter of the through
なお、本発明は、上記の実施形態の構成に限定されるものではなく、上記した作用効果に限定されるものでもない。本発明は、本発明の要旨を逸脱しない範囲で種々の変更が可能である。 The present invention is not limited to the configuration of the above embodiment, nor is it limited to the above-mentioned effects. Various modifications of the present invention are possible without departing from the gist of the present invention.
上記の実施形態において、エッチング工程S2は、エッチング液6の温度及びエッチング液6のHF濃度を測定する測定工程と、測定工程の結果に基づいてエッチング液6の温度及びHF濃度の少なくとも一方を調整する調整工程とを含んでいてもよい。このようにすれば、エッチング液6の温度に合わせた最適なエッチング液6のHF濃度を確実に維持できる。
In the above embodiment, the etching process S2 may include a measurement process for measuring the temperature of the
上記の実施形態において、エッチング工程S2は、ガラス板2をエッチング液6から取り出して洗浄する洗浄工程を含んでいてもよい。このようにすれば、エッチング工程S2で形成されるフッ化物などの不純物を効率よく除去できる。
In the above embodiment, the etching step S2 may include a cleaning step in which the
上記の実施形態において、貫通孔10を複数個形成する場合には、複数個の貫通孔10を高密度で規則的に形成してもよい。
In the above embodiment, when multiple through
上記の実施形態において、エッチング工程S2を実行中に、エッチング液6を撹拌してもよい。エッチング液6を撹拌する方法としては、超音波によりエッチング液6を振動させる方法や、撹拌部材を回転または振動させることで、エッチング液6を撹拌する方法を採用することができる。また、エッチング工程S2の実行中に、超音波の出力や、撹拌部材の回転速度または振動数を変動させてもよい。
In the above embodiment, the
上記の実施形態において、第一エッチング工程S2aを実行した後に、連続して第二エッチング工程S2bを実行していたが、これに限定されない。第一エッチング工程S2aと第二エッチング工程S2bとで、エッチング条件を変更してもよい。例えば、第一エッチング工程S2aでは、初期貫通孔9が形成されていないため、凹部8内のエッチング液が板厚方向に往来できない。したがって、第一エッチング工程S2aにおいて、エッチング液6の撹拌速度を高くしたとしても、凹部8内のエッチング液6の交換効率は向上し難い。一方で、第二エッチング工程S2bでは、初期貫通孔9が形成されているため、初期貫通孔9内のエッチング液6が板厚方向に往来することができる。したがって、第二エッチング工程S2bにおいて、エッチング液6の撹拌速度を大きくすることで、初期貫通孔9内のエッチング液の交換効率を向上させることができる。また、第一エッチング工程S2aを実行した後に、ガラス板2を他のエッチング槽7に移し替え、第二エッチング工程S2bを実行してもよい。これにより、第一エッチング工程S2aと第二エッチング工程S2bとでエッチング条件を変更する場合に、速やかにエッチング条件の変更を完了することができる。
In the above embodiment, the first etching step S2a is followed by the second etching step S2b, but this is not limited to the above. The etching conditions may be changed between the first etching step S2a and the second etching step S2b. For example, in the first etching step S2a, the initial through
以下、本発明を実施例に基づいて詳細に説明するが、本発明はこれらの実施例に限定されない。 The present invention will be described in detail below based on examples, but the present invention is not limited to these examples.
エッチング前の板厚が500μmの無アルカリガラス(日本電気硝子株式会社製のOA-11)からなるガラス板を準備した。次に、準備したガラス板の形成予定部に、LPKF製Vitrion5510装置を用いて短パルスレーザ光を照射することで、改質部を形成した。その後、改質部が形成されたガラス板を、HFを含むエッチング液に浸漬してエッチングすることにより、形成予定部に貫通孔を形成した。 A glass plate made of alkali-free glass (OA-11 manufactured by Nippon Electric Glass Co., Ltd.) with a thickness of 500 μm before etching was prepared. Next, a modified portion was formed by irradiating the intended formation portion of the prepared glass plate with short-pulse laser light using an LPKF Vitrion 5510 device. After that, the glass plate with the modified portion formed was immersed in an etching solution containing HF and etched to form a through hole in the intended formation portion.
第一評価試験として、上記のように貫通孔を形成する際に、エッチング液の温度が5℃、10℃、20℃、30℃の場合のそれぞれにつき、エッチング液のHF濃度を変化させた場合に選択比(改質部の板厚方向のエッチング速度V1/非改質部の板厚方向のエッチング速度V2)がどのように変化するかを評価した。第一評価試験の結果を図7に示す。 In the first evaluation test, when forming through holes as described above, the temperature of the etching solution was 5°C, 10°C, 20°C, and 30°C, and the HF concentration of the etching solution was changed to evaluate how the selectivity ratio (etching speed V1 in the thickness direction of the modified area/etching speed V2 in the thickness direction of the unmodified area) changed. The results of the first evaluation test are shown in Figure 7.
また、第二評価試験として、上記のように貫通孔を形成する際に、エッチング液の温度が5℃、10℃、20℃、30℃の場合のそれぞれにつき、エッチング液のHF濃度を変化させた場合に初期貫通孔のテーパ角度がどのように変化するかを評価した。第二評価試験の結果を図8に示す。 In addition, as a second evaluation test, when forming the through holes as described above, the temperature of the etching solution was 5°C, 10°C, 20°C, and 30°C, and an evaluation was performed to see how the taper angle of the initial through holes changed when the HF concentration of the etching solution was changed. The results of the second evaluation test are shown in Figure 8.
図7の結果からも、エッチング液の温度が5℃、10℃、20℃、30℃のいずれの場合も、エッチング液のHF濃度が低下する過程で、選択比が最大となるピークを有することが確認できる。これは、エッチング液のHF濃度の低下に伴って、改質部におけるエッチング反応が拡散律速から反応律速に移行するためである。つまり、改質部におけるエッチング反応が拡散律速から反応律速に移行したHF濃度にて、選択比が最大となるピークを示すことになる。 The results in Figure 7 also confirm that, regardless of whether the temperature of the etching solution is 5°C, 10°C, 20°C, or 30°C, there is a peak at which the selectivity is maximum as the HF concentration of the etching solution decreases. This is because, as the HF concentration of the etching solution decreases, the etching reaction in the modified area transitions from diffusion-limited to reaction-limited. In other words, the selectivity peaks at a maximum at the HF concentration at which the etching reaction in the modified area transitions from diffusion-limited to reaction-limited.
また、図8の結果からも、エッチング液の温度が5℃、10℃、20℃、30℃のいずれの場合も、エッチング液のHF濃度の低下する過程で、テーパ角度が最大となるピークを有することが確認できる。付言すれば、図8のテーパ角度の変化の態様は、図7の選択比の変化の態様に対応している。つまり、エッチング液の温度が5℃、10℃、20℃、30℃のいずれの場合も、選択比の上昇に伴ってテーパ角度が上昇することが確認できる。 The results in Figure 8 also confirm that, regardless of whether the etching solution temperature is 5°C, 10°C, 20°C, or 30°C, the taper angle reaches a maximum peak as the HF concentration of the etching solution decreases. In addition, the change in taper angle in Figure 8 corresponds to the change in selectivity in Figure 7. In other words, regardless of whether the etching solution temperature is 5°C, 10°C, 20°C, or 30°C, it can be confirmed that the taper angle increases as the selectivity increases.
そして、図8の結果において、エッチング液の温度が5℃、10℃、20℃、30℃のそれぞれのデータを二次関数でフィッティングし、それぞれの温度につき、テーパ角度が最大となったときのエッチング液のHF濃度(最適HF濃度)を求めた。図9は、エッチング液の温度(液温)と、エッチング液の最適HF濃度との関係を示す。 Then, in the results of Figure 8, the data for etching solution temperatures of 5°C, 10°C, 20°C, and 30°C were fitted with a quadratic function to determine the HF concentration of the etching solution (optimum HF concentration) at which the taper angle was maximum for each temperature. Figure 9 shows the relationship between the temperature of the etching solution (liquid temperature) and the optimal HF concentration of the etching solution.
エッチング液の温度をx[℃]、エッチング液の最適HF濃度をy[mol/L]とすると、図9に示したエッチング液の最適HF濃度とエッチング液の温度との関係は、下記の式(1)で近似できる。
y=-0.04x+2.8 (1)
When the temperature of the etching solution is x [° C.] and the optimum HF concentration of the etching solution is y [mol/L], the relationship between the optimum HF concentration of the etching solution and the temperature of the etching solution shown in FIG. 9 can be approximated by the following formula (1).
y=-0.04x+2.8 (1)
そして、図8の結果において、エッチング液の最適HF濃度の±0.4[mol/L]の範囲であれば、初期貫通孔のテーパ角度の低下は0.1°以下となった。したがって、エッチング液の最適HF濃度とエッチング液の温度との関係が、下記の式(2)を満たせば、初期貫通孔のテーパ角度を大きく維持できることが分かる。
-0.04x+2.4≦y≦-0.04x+3.2 (2)
8, if the optimum HF concentration of the etching solution is within ±0.4 [mol/L] of the optimum HF concentration of the etching solution, the decrease in the taper angle of the initial through hole is 0.1° or less. Therefore, it can be seen that if the relationship between the optimum HF concentration of the etching solution and the temperature of the etching solution satisfies the following formula (2), the taper angle of the initial through hole can be maintained large.
-0.04x+2.4≦y≦-0.04x+3.2 (2)
なお、図8において、エッチング液の温度が5℃の場合は、左から4点のデータが式(2)を満たさない比較例となり、右から2点のデータが(2)式を満たす実施例となる。エッチング液の温度が10℃の場合は、左から3点のデータ及び右から1点のデータが式(2)を満たさない比較例となり、これらの間の2点のデータが(2)式を満たす実施例となる。エッチング液の温度が20℃の場合は、左から3点のデータ及び右から2点のデータが式(2)を満たさない比較例となり、これらの間の1点のデータが(2)式を満たす実施例となる。エッチング液の温度が30℃の場合は、左から2点のデータ及び右から2点のデータが式(2)を満たさない比較例となり、これらの間の2点のデータが(2)式を満たす実施例となる。 In FIG. 8, when the temperature of the etching solution is 5° C., the four data points from the left are comparative examples that do not satisfy formula (2), and the two data points from the right are working examples that satisfy formula (2). When the temperature of the etching solution is 10° C., the three data points from the left and the one data point from the right are comparative examples that do not satisfy formula (2), and the two data points between them are working examples that satisfy formula (2). When the temperature of the etching solution is 20° C., the three data points from the left and the two data points from the right are comparative examples that do not satisfy formula (2), and the one data point between them is working examples that satisfy formula (2). When the temperature of the etching solution is 30° C., the two data points from the left and the two data points from the right are comparative examples that do not satisfy formula (2), and the two data points between them are working examples that satisfy formula (2).
1 レーザ装置
2 ガラス板
3 形成予定部
4 改質部
5 非改質部
6 エッチング液
7 エッチング槽
8 凹部
9 初期貫通孔
10 貫通孔
L レーザ光
S1 改質工程
S2 エッチング工程
S2a 第一エッチング工程
S2b 第二エッチング工程
θ1 初期貫通孔のテーパ角度
θ2 貫通孔のテーパ角度
Claims (9)
前記貫通孔の形成予定部をレーザ光の照射により改質する改質工程と、前記改質工程の後に、HFを含むエッチング液に前記ガラス板を浸漬し、前記形成予定部に前記貫通孔を形成するエッチング工程を備え、
前記エッチング工程は、前記形成予定部に初期貫通孔を形成する第一エッチング工程と、前記初期貫通孔を拡大して前記貫通孔を形成する第二エッチング工程とを含み、
前記第一エッチング工程では、前記エッチング液の温度をx[℃]、前記エッチング液のHF濃度をy[mol/L]としたとき、-0.04x+2.4≦y≦-0.04x+3.2の関係式が成立することを特徴とするガラス板の製造方法。 A method for producing a glass plate having a first main surface, a second main surface, and a through hole penetrating between the first main surface and the second main surface, comprising:
a modification step of modifying a portion where the through hole is to be formed by irradiating the portion with laser light; and an etching step of immersing the glass plate in an etching solution containing HF after the modification step to form the through hole in the portion where the through hole is to be formed,
the etching step includes a first etching step of forming an initial through hole in the intended formation portion, and a second etching step of enlarging the initial through hole to form the through hole,
In the first etching step, when the temperature of the etching solution is x [°C] and the HF concentration of the etching solution is y [mol / L], a relational formula of -0.04x + 2.4 ≦ y ≦ -0.04x + 3.2 is satisfied. A method for producing a glass plate, characterized in that
前記貫通孔の形成予定部をレーザ光の照射により改質する改質工程と、前記改質工程の後に、HFを含むエッチング液に前記ガラス板を浸漬し、前記形成予定部に前記貫通孔を形成するエッチング工程を備え、
前記エッチング工程では、前記エッチング液の温度をx[℃]、前記エッチング液のHF濃度をy[mol/L]としたとき、-0.04x+2.4≦y≦-0.04x+3.2の関係式が成立することを特徴とするガラス板の製造方法。 A method for producing a glass plate having a first main surface, a second main surface, and a through hole penetrating between the first main surface and the second main surface, comprising:
a modification step of modifying a portion where the through hole is to be formed by irradiating the portion with laser light; and an etching step of immersing the glass plate in an etching solution containing HF after the modification step to form the through hole in the portion where the through hole is to be formed,
In the etching step, when the temperature of the etching solution is x [°C] and the HF concentration of the etching solution is y [mol / L], a relational expression of -0.04x + 2.4 ≦ y ≦ -0.04x + 3.2 is satisfied. A method for manufacturing a glass plate, characterized in that
板厚は、25μm以上2500μm以下であり、
前記第一主面又は前記第二主面における前記貫通孔の直径は、3μm以上500μm以下であり、
板厚方向と直交する方向と前記貫通孔の内壁面とのなす角度は、75°以上であることを特徴とするガラス板。 A glass plate manufactured by the manufacturing method according to claim 1 or 2,
The plate thickness is 25 μm or more and 2500 μm or less,
The diameter of the through hole in the first main surface or the second main surface is 3 μm or more and 500 μm or less,
A glass plate, wherein an angle between a direction perpendicular to a plate thickness direction and an inner wall surface of the through hole is 75° or more.
板厚は、25μm以上2500μm以下であり、
前記第一主面又は前記第二主面における前記貫通孔の直径は、3μm以上500μm以下であり、
板厚方向と直交する方向と前記貫通孔の内壁面とのなす角度は、75°以上であることを特徴とするガラス板。 A glass plate having a first main surface, a second main surface, and a through hole penetrating between the first main surface and the second main surface,
The plate thickness is 25 μm or more and 2500 μm or less,
The diameter of the through hole in the first main surface or the second main surface is 3 μm or more and 500 μm or less,
A glass plate, wherein an angle between a direction perpendicular to a plate thickness direction and an inner wall surface of the through hole is 75° or more.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023-069425 | 2023-04-20 | ||
JP2023069425 | 2023-04-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024219376A1 true WO2024219376A1 (en) | 2024-10-24 |
Family
ID=93152530
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2024/015073 WO2024219376A1 (en) | 2023-04-20 | 2024-04-16 | Glass sheet production method |
Country Status (2)
Country | Link |
---|---|
TW (1) | TW202506579A (en) |
WO (1) | WO2024219376A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016506351A (en) * | 2012-11-29 | 2016-03-03 | コーニング インコーポレイテッド | Method for manufacturing glass articles by laser damage and etching |
WO2020129553A1 (en) * | 2018-12-19 | 2020-06-25 | 日本板硝子株式会社 | Glass substrate having microstructure and production method for glass substrate having microstructure |
WO2020179312A1 (en) * | 2019-03-05 | 2020-09-10 | 株式会社Nsc | Glass etching solution and glass substrate manufacturing method |
WO2022075068A1 (en) * | 2020-10-06 | 2022-04-14 | 日本電気硝子株式会社 | Glass substrate having through hole |
-
2024
- 2024-04-16 WO PCT/JP2024/015073 patent/WO2024219376A1/en unknown
- 2024-04-18 TW TW113114394A patent/TW202506579A/en unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016506351A (en) * | 2012-11-29 | 2016-03-03 | コーニング インコーポレイテッド | Method for manufacturing glass articles by laser damage and etching |
WO2020129553A1 (en) * | 2018-12-19 | 2020-06-25 | 日本板硝子株式会社 | Glass substrate having microstructure and production method for glass substrate having microstructure |
WO2020179312A1 (en) * | 2019-03-05 | 2020-09-10 | 株式会社Nsc | Glass etching solution and glass substrate manufacturing method |
WO2022075068A1 (en) * | 2020-10-06 | 2022-04-14 | 日本電気硝子株式会社 | Glass substrate having through hole |
Also Published As
Publication number | Publication date |
---|---|
TW202506579A (en) | 2025-02-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7320456B2 (en) | Article having vias with geometry attributes and method of making same | |
US11952310B2 (en) | Silicate glass compositions useful for the efficient production of through glass vias | |
US10077206B2 (en) | Methods of etching glass substrates and glass substrates | |
TWI658024B (en) | Laser processing glass and manufacturing method of holed glass using the same | |
US20200354262A1 (en) | High silicate glass articles possessing through glass vias and methods of making and using thereof | |
TW201702201A (en) | Glass for laser processing, and method for producing glass with hole using said glass for laser processing | |
WO2022196510A1 (en) | Glass substrate, glass base-plate for through-hole formation, and glass substrate manufacturing method | |
CN113825585B (en) | Method and apparatus for laser processing of transparent materials | |
TW202120451A (en) | Microstructured glass substrate, electroconductive layer-equipped glass substrate, and microstructured glass substrate production method | |
JP7109739B2 (en) | Glass substrate for laser-assisted etching and method for manufacturing perforated glass substrate using the same | |
TW202212282A (en) | High boron oxide low alumina and alkali-free glasses for through glass via applications | |
JPWO2005033033A1 (en) | Glass component having through hole and method for manufacturing the same | |
KR102819853B1 (en) | Glass substrate with through holes | |
WO2024219376A1 (en) | Glass sheet production method | |
US20200399175A1 (en) | Glass articles comprising light extraction features and methods for making the same | |
KR20250088656A (en) | Glass substrate having through hole | |
JP7657398B2 (en) | Method for manufacturing a glass plate having a hole and a glass plate | |
US20250019294A1 (en) | Laser defined recesses in transparent laminate substrates | |
WO2025074782A1 (en) | Glass sheet production method | |
US20250157827A1 (en) | Method for producing glass sheet | |
US20250157812A1 (en) | Methods for forming through-glass vias | |
WO2024142807A1 (en) | Glass substrate | |
WO2024070835A1 (en) | Glass substrate and method for manufacturing glass substrate | |
WO2019136051A1 (en) | Methods of processing a substrate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 24792650 Country of ref document: EP Kind code of ref document: A1 |