[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2024214639A1 - Binder for electrode of secondary battery provided with secondary battery electrode containing carbon nanotubes, and use thereof - Google Patents

Binder for electrode of secondary battery provided with secondary battery electrode containing carbon nanotubes, and use thereof Download PDF

Info

Publication number
WO2024214639A1
WO2024214639A1 PCT/JP2024/014033 JP2024014033W WO2024214639A1 WO 2024214639 A1 WO2024214639 A1 WO 2024214639A1 JP 2024014033 W JP2024014033 W JP 2024014033W WO 2024214639 A1 WO2024214639 A1 WO 2024214639A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
secondary battery
meth
electrode
binder
Prior art date
Application number
PCT/JP2024/014033
Other languages
French (fr)
Japanese (ja)
Inventor
萌衣 内山
直彦 斎藤
剛史 長谷川
Original Assignee
東亞合成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東亞合成株式会社 filed Critical 東亞合成株式会社
Publication of WO2024214639A1 publication Critical patent/WO2024214639A1/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an electrode binder for a secondary battery having a secondary battery electrode containing carbon nanotubes, and its use.
  • the electrodes used in these secondary batteries are prepared by applying a composition for forming an electrode mixture layer containing an active material and a binder, etc., to a current collector and drying it.
  • a composition for forming an electrode mixture layer containing an active material and a binder, etc. for example, an aqueous binder containing styrene butadiene rubber (SBR) latex and carboxymethyl cellulose (CMC) is used as the binder used in the negative electrode mixture layer composition.
  • SBR styrene butadiene rubber
  • CMC carboxymethyl cellulose
  • a binder containing an aqueous solution or aqueous dispersion of an acrylic acid-based polymer is known as a binder with excellent dispersibility and binding properties.
  • NMP N-methyl-2-pyrrolidone
  • PVDF polyvinylidene fluoride
  • a binder using the above-mentioned acrylic acid polymer has been proposed as a binder that has good binding properties and is effective in improving durability, and it is known that adding a conductive assistant to the slurry used to manufacture the negative electrode improves electrical contact between the active materials and improves battery performance.
  • Patent Documents 1 and 2 disclose that an electrode obtained from an electrode mixture layer composition containing a silicon-containing active material, a conductive assistant, and a binder containing a monomer unit derived from acrylic acid and a monomer unit of a specific structure has excellent charge/discharge capacity. It is specifically described that the use of ketjen black or acetylene black as the conductive assistant results in a high capacity retention rate after 10 or 30 charge/discharge cycles.
  • the binders disclosed in Patent Documents 1 and 2 are both capable of imparting good binding properties, and as described above, can achieve a high capacity retention rate if the number of charge/discharge cycles is as small as 10 to 30.
  • the structure of the negative electrode deteriorates significantly due to the expansion and contraction of the silicon-based active material, making it impossible to maintain a conductive path between the active materials, resulting in a problem of capacity deterioration.
  • the present invention was made in consideration of these circumstances, and aims to provide a binder for secondary battery electrodes that can suppress expansion and contraction due to charging and discharging and exhibit a high capacity retention rate over longer periods of use than before, even when using silicon-based active materials that are considered to expand and contract significantly due to charging and discharging.
  • the present invention also aims to provide a composition for secondary battery electrode mixture layers that contains the binder, and a secondary battery electrode and secondary battery obtained using the composition.
  • a binder containing a carboxyl group-containing crosslinked polymer or a salt thereof as an electrode binder for a secondary battery having a secondary battery electrode containing carbon nanotubes (hereinafter also referred to as "CNT") as a conductive additive, it is possible to suppress expansion and contraction due to charging and discharging, and to exhibit an excellent charge and discharge capacity retention rate, even when the secondary battery is used at a higher number of cycles than before, and thus completed the present invention.
  • CNT carbon nanotubes
  • the present invention is as follows.
  • a secondary electrode comprising a mixture layer formed on a surface of a current collector from the composition for a secondary battery electrode mixture layer according to any one of [3] to [7].
  • a secondary battery comprising the secondary electrode according to [8].
  • the electrode binder of the present invention makes it possible to obtain a secondary battery that exhibits an excellent charge/discharge capacity retention rate while suppressing expansion and contraction due to charging and discharging during longer-term use than conventional batteries.
  • the binder for secondary battery electrodes of the present invention contains a carboxyl group-containing crosslinked polymer (hereinafter also referred to as “the crosslinked polymer”) or a salt thereof (hereinafter also referred to as “the crosslinked polymer salt”), and can be mixed with carbon nanotubes (hereinafter also referred to as "CNT”), an active material, and water to form a composition for secondary battery electrode mixture layer (hereinafter also referred to as "the composition”).
  • the above composition is preferably an electrode slurry in a slurry state that can be applied to a current collector in terms of achieving the effects of the present invention, but it may be prepared in a wet powder state so that it can be applied to the current collector surface.
  • the secondary battery electrode of the present invention is obtained by forming a mixture layer formed from the above composition on the surface of a current collector such as copper foil or aluminum foil.
  • the present binder is preferable in that when it is used in a secondary battery electrode mixture layer composition containing a silicon-based active material described below as an active material, the effects of the present invention are particularly large.
  • (meth)acrylic means acrylic and/or methacrylic
  • (meth)acrylate means acrylate and/or methacrylate
  • (meth)acryloyl group means acryloyl group and/or methacryloyl group.
  • Carbon nanotubes The carbon nanotubes (CNTs) used in the composition have high electrical conductivity and chemical stability, and are used as a conductive assistant to ensure electrical contact between active materials in the electrode mixture layer.
  • CNTs are flat graphite rolled into a cylindrical shape, and the type of CNT is not particularly limited, and single-layer CNTs (hereinafter also referred to as "single-layer CNTs") or multi-layer CNTs (hereinafter also referred to as “multi-layer CNTs”) can be used. These can be used alone or in combination of two or more types.
  • the CNT it is preferable that the CNT contains a single-walled CNT, since the effect of the present invention is particularly large.
  • a single-walled CNT has a structure in which one layer of graphite is rolled up, whereas a multi-walled CNT has a structure in which two or more layers of graphite are rolled up.
  • the sidewalls of the CNTs do not have to have a graphite structure, and CNTs having sidewalls with an amorphous structure are also included in the CNTs of this specification.
  • the shape of the CNT is not limited. Examples of such shapes include needle-like, cylindrical tube-like, fishbone-like (fishbone or cup stack type), trump-like (platelet) and coil-like. Of these, the shape of the CNT is preferably needle-like or cylindrical tube-like.
  • the CNT may be a single shape or a combination of two or more shapes.
  • CNTs may have the following forms: graphite whiskers, filamentous carbon, graphite fibers, ultrafine carbon tubes, carbon tubes, carbon fibrils, carbon microtubes, and carbon nanofibers. CNTs may have any of these forms alone or in combination of two or more of them.
  • the average outer diameter of the CNTs is preferably 1 nm or more, more preferably 5 nm or less, and even more preferably 3 nm or less.
  • the average outer diameter of the CNTs can be calculated by first observing and photographing the CNTs using a transmission electron microscope, then randomly selecting 300 CNTs from the photograph and measuring the outer diameter of each.
  • the average fiber length of the CNTs is preferably 0.5 ⁇ m or more, more preferably 0.8 ⁇ m or more, more preferably 1.0 ⁇ m or more, and even more preferably 5.0 ⁇ m or more. It is also preferably 20 ⁇ m or less, and more preferably 10 ⁇ m or less.
  • the average fiber length of the CNTs can be calculated by first observing and photographing the CNTs using a scanning electron microscope, randomly selecting 300 CNTs from the photograph, and measuring the fiber length of each.
  • the aspect ratio is the fiber length of a CNT divided by its outer diameter.
  • a representative aspect ratio can be calculated using the average fiber length and the average outer diameter.
  • the higher the aspect ratio of the conductive additive, the higher the conductivity that can be obtained when an electrode is formed, and the aspect ratio of the CNT is preferably 30 or more, more preferably 50 or more, and even more preferably 80 or more. Also, it is preferably 10,000 or less, more preferably 3,000 or less, and even more preferably 1,000 or less.
  • the specific surface area of the CNT is preferably 100 m 2 /g or more, more preferably 150 m 2 /g or more, and even more preferably 200 m 2 /g or more. Also, it is preferably 1200 m 2 /g or less, and more preferably 1000 m 2 /g or less.
  • the specific surface area of the CNT can be calculated by the BET method using nitrogen adsorption measurement. When the average outer diameter, average fiber length, aspect ratio and specific surface area of the CNTs are within the above ranges, a well-developed conductive path is easily formed in the electrode.
  • the carbon purity of CNT is expressed as the content (mass%) of carbon atoms in the CNT.
  • the carbon purity is preferably 80 mass% or more, more preferably 90 mass% or more, even more preferably 95 mass% or more, and particularly preferably 98 mass% or more.
  • the CNT may be surface-treated CNT.
  • the CNT may be a CNT derivative to which a functional group, such as a carboxyl group, has been added.
  • CNT that encapsulates organic compounds, metal atoms, or substances, such as fullerenes, may also be used.
  • CNTs can be produced by, but are not limited to, laser ablation, arc discharge, thermal CVD, plasma CVD, and combustion.
  • CNTs can be produced by contacting a carbon source with a catalyst at 500 to 1000° C. in an atmosphere with an oxygen concentration of 1% by volume or less.
  • the carbon source may be a hydrocarbon and/or an alcohol.
  • the present crosslinked polymer can have a structural unit derived from an ethylenically unsaturated carboxylic acid monomer (hereinafter also referred to as "component (a)"), and can be introduced into the polymer by precipitation polymerization or dispersion polymerization of a monomer component containing component (a).
  • component (a) an ethylenically unsaturated carboxylic acid monomer
  • the crosslinked polymer having a carboxyl group contained in the binder may have a structural unit derived from an ethylenically unsaturated carboxylic acid monomer (hereinafter also referred to as the "component (a)").
  • component (a) ethylenically unsaturated carboxylic acid monomer
  • the component (a) can be introduced into the polymer by, for example, polymerizing a monomer containing an ethylenically unsaturated carboxylic acid monomer. Alternatively, it can be obtained by (co)polymerizing a (meth)acrylic acid ester monomer and then hydrolyzing it. In addition, it can be obtained by polymerizing (meth)acrylamide and (meth)acrylonitrile, etc., and then treating them with a strong alkali, or by reacting a polymer having a hydroxyl group with an acid anhydride.
  • ethylenically unsaturated carboxylic acid monomers include (meth)acrylic acid, itaconic acid, crotonic acid, maleic acid, and fumaric acid; (meth)acrylamidoalkyl carboxylic acids such as (meth)acrylamidohexanoic acid and (meth)acrylamidododecanoic acid; carboxyl group-containing ethylenically unsaturated monomers such as monohydroxyethyl succinate (meth)acrylate, ⁇ -carboxy-caprolactone mono(meth)acrylate, and ⁇ -carboxyethyl (meth)acrylate, or (partially) alkali-neutralized products thereof.
  • One of these may be used alone, or two or more may be used in combination.
  • compounds having an acryloyl group as a polymerizable functional group are preferred, in that they have a high polymerization rate, resulting in a polymer with a long primary chain length, and the binding strength of the binder is good, and acrylic acid is particularly preferred.
  • acrylic acid is used as the ethylenically unsaturated carboxylic acid monomer, a polymer with a high carboxyl group content can be obtained.
  • the content of component (a) in the crosslinked polymer may be 50% by mass or more and 100% by mass or less based on the total structural units of the crosslinked polymer. By including component (a) in this range, excellent adhesion to the current collector can be easily ensured.
  • the lower limit is 50% by mass or more, the dispersion stability of the composition is good and a higher binding strength can be obtained, which is preferable, and the lower limit may be 60% by mass or more, 70% by mass or more, or 80% by mass or more.
  • the upper limit is, for example, 99.9% by mass or less, for example, 99.5% by mass or less, for example, 99% by mass or less, for example, 98% by mass or less, for example, 95% by mass or less, for example, 90% by mass or less, or for example, 80% by mass or less.
  • the crosslinked polymer may contain a structural unit derived from another ethylenically unsaturated monomer copolymerizable therewith (hereinafter also referred to as "component (b)").
  • component (b) include structural units derived from hydroxyl-containing ethylenically unsaturated monomers (monomers represented by the following formula (1) and (2)), ethylenically unsaturated monomer compounds having anionic groups other than carboxyl groups such as sulfonic acid groups and phosphoric acid groups, or nonionic ethylenically unsaturated monomers.
  • These structural units can be introduced by copolymerizing a monomer containing a hydroxyl-containing ethylenically unsaturated monomer, an ethylenically unsaturated monomer compound having anionic groups other than carboxyl groups such as sulfonic acid groups and phosphoric acid groups, or a nonionic ethylenically unsaturated monomer.
  • CH 2 C(R 1 )COOR 2 (1)
  • R 1 represents a hydrogen atom or a methyl group
  • R 2 represents a monovalent organic group having 1 to 8 carbon atoms and a hydroxyl group
  • R 3 represents an alkylene group having 2 to 4 carbon atoms
  • R 4 represents an alkylene group having 1 to 8 carbon atoms
  • m represents an integer of 2 to 15
  • n represents an integer of 1 to 15.
  • CH2 C( R5 ) CONR6R7 ( 2 )
  • R5 represents a hydrogen atom or a methyl group
  • R6 represents a hydroxyl group or a hydroxyalkyl group having 1 to 8 carbon atoms
  • R7 represents a hydrogen atom or a monovalent organic group.
  • the proportion of the (b) component can be 0% by mass or more and 50% by mass or less based on all structural units of the non-crosslinked polymer.
  • the proportion of the (b) component may be 0.1% by mass or more and 40% by mass or less, 0.5% by mass or more and 30% by mass or less, 1.0% by mass or more and 20% by mass or less, 2% by mass or more and 12.5% by mass or less, or 3% by mass or more and 10% by mass or less.
  • the affinity to the electrolyte is improved, and therefore the effect of improving lithium ion conductivity can also be expected.
  • the hydroxyl-containing ethylenically unsaturated monomer is preferred as component (b) in that it provides excellent binding properties to the binder containing the present crosslinked polymer salt.
  • a structural unit derived from a nonionic ethylenically unsaturated monomer is preferred.
  • the nonionic ethylenically unsaturated monomer include (meth)acrylamide and its derivatives, nitrile group-containing ethylenically unsaturated monomers, and alicyclic structure-containing ethylenically unsaturated monomers.
  • the monomer represented by the formula (1) is a (meth)acrylate compound having a hydroxyl group.
  • R 2 is a monovalent organic group having 1 to 8 carbon atoms having a hydroxyl group, the number of the hydroxyl groups may be only one or may be two or more.
  • the monovalent organic group is not particularly limited, and examples thereof include an alkyl group that may have a linear, branched or cyclic structure, an aryl group and an alkoxyalkyl group.
  • R 2 is (R 3 O) m H or R 4 O[CO(CH 2 ) 5 O] n H
  • the alkylene group represented by R 3 or R 4 may be linear or branched.
  • Examples of monomers represented by the above formula (1) include hydroxyalkyl (meth)acrylates having a hydroxyalkyl group having 1 to 8 carbon atoms, such as 2-hydroxyethyl (meth)acrylate, 3-hydroxypropyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate, hydroxyhexyl (meth)acrylate, and hydroxyoctyl (meth)acrylate; polyalkylene glycol mono(meth)acrylates, such as polyethylene glycol mono(meth)acrylate, polypropylene glycol mono(meth)acrylate, polybutylene glycol mono(meth)acrylate, and polyethylene glycol-polypropylene glycol mono(meth)acrylate; dihydroxyalkyl (meth)acrylates, such as glycerin mono(meth)acrylate; caprolactone-modified hydroxymethacrylates (manufactured by Daicel Corporation, product names "Placcel FM1", "Placcel FM5", etc.
  • the monomer represented by the above formula (2) is a (meth)acrylamide derivative having a hydroxyl group or a hydroxyalkyl group having 1 to 8 carbon atoms.
  • R 7 represents a hydrogen atom or a monovalent organic group.
  • the monovalent organic group is not particularly limited, but examples thereof include an alkyl group that may have a linear, branched, or cyclic structure, as well as an aryl group and an alkoxyalkyl group, and is preferably an organic group having 1 to 8 carbon atoms.
  • R 7 may be a hydroxyl group or a hydroxyalkyl group having 1 to 8 carbon atoms.
  • Examples of the monomer represented by the above formula (2) include hydroxy(meth)acrylamide; (meth)acrylamide derivatives having a hydroxyalkyl group having 1 to 8 carbon atoms, such as N-hydroxyethyl(meth)acrylamide, N-(2-hydroxypropyl)(meth)acrylamide, N-hydroxybutyl(meth)acrylamide, N-hydroxyhexyl(meth)acrylamide, and N-hydroxyoctyl(meth)acrylamide, N-methylhydroxyethyl(meth)acrylamide, and N-ethylhydroxyethyl(meth)acrylamide; and N,N-dihydroxyalkyl(meth)acrylamides, such as N,N-dihydroxyethyl(meth)acrylamide and N,N-dihydroxyethyl(meth)acrylamide.
  • the monomer represented by the above formula (2) may be used alone or in combination of two or more.
  • Examples of (meth)acrylamide derivatives include N-alkyl (meth)acrylamide compounds such as N-isopropyl (meth)acrylamide and N-t-butyl (meth)acrylamide; N-alkoxyalkyl (meth)acrylamide compounds such as N-n-butoxymethyl (meth)acrylamide and N-isobutoxymethyl (meth)acrylamide; and N,N-dialkyl (meth)acrylamide compounds such as N,N-dimethyl (meth)acrylamide and N,N-diethyl (meth)acrylamide. One of these may be used alone, or two or more may be used in combination.
  • nitrile group-containing ethylenically unsaturated monomers include (meth)acrylonitrile; (meth)acrylic acid cyanoalkyl ester compounds such as cyanomethyl (meth)acrylate and cyanoethyl (meth)acrylate; cyano group-containing unsaturated aromatic compounds such as 4-cyanostyrene and 4-cyano- ⁇ -methylstyrene; vinylidene cyanide; and the like.
  • One of these may be used alone, or two or more may be used in combination.
  • acrylonitrile is preferred because of its high nitrile group content.
  • Examples of alicyclic structure-containing ethylenically unsaturated monomers include (meth)acrylic acid cycloalkyl esters which may have an aliphatic substituent, such as cyclopentyl (meth)acrylate, cyclohexyl (meth)acrylate, methylcyclohexyl (meth)acrylate, t-butylcyclohexyl (meth)acrylate, cyclodecyl (meth)acrylate, and cyclododecyl (meth)acrylate; isobornyl (meth)acrylate, adamantyl (meth)acrylate, cyclopentenyl (meth)acrylate, dicyclopentenyloxyethyl (meth)acrylate, dicyclopentanyl (meth)acrylate, and cycloalkyl polyalcohol mono(meth)acrylates such as cyclohexanedimethanol mono(meth)acrylate and cyclodecan
  • component (b) when a structural unit derived from a hydrophobic ethylenically unsaturated monomer having a solubility in water of 1 g/100 ml or less is introduced as component (b), it is possible to achieve a strong interaction with the electrode material and to exhibit good binding properties to the active material. This makes it possible to obtain a robust electrode mixture layer with good integrity, and therefore, as the above-mentioned "hydrophobic ethylenically unsaturated monomer having a solubility in water of 1 g/100 ml or less", an alicyclic structure-containing ethylenically unsaturated monomer is particularly preferred.
  • (meth)acrylic acid esters may be used.
  • the (meth)acrylic acid esters include (meth)acrylic acid alkyl ester compounds such as methyl (meth)acrylate, ethyl (meth)acrylate, n-butyl (meth)acrylate, isobutyl (meth)acrylate, and 2-ethylhexyl (meth)acrylate;
  • Aromatic (meth)acrylic acid ester compounds such as phenyl (meth)acrylate, phenylmethyl (meth)acrylate, phenylethyl (meth)acrylate, and phenoxyethyl (meth)acrylate
  • alkoxyalkyl ester compounds include (meth)acrylic acid alkoxyalkyl ester compounds such as 2-methoxyethyl (meth)acrylate and 2-ethoxyethyl (meth)acrylate.
  • the polyfunctional polymerizable monomer is a compound having two or more polymerizable functional groups, such as (meth)acryloyl groups and alkenyl groups, in the molecule, and examples thereof include polyfunctional (meth)acryloyl compounds, polyfunctional alkenyl compounds, and compounds having both (meth)acryloyl groups and alkenyl groups. These compounds may be used alone or in combination of two or more. Among these, polyfunctional alkenyl compounds are preferred in that they easily produce a uniform crosslinked structure, and polyfunctional allyl ether compounds having two or more allyl ether groups in the molecule are particularly preferred.
  • the monomer having a self-crosslinkable crosslinking functional group include a hydrolyzable silyl group-containing vinyl monomer, N-methoxyalkyl(meth)acrylamide, etc. These compounds can be used alone or in combination of two or more.
  • the amount of the crosslinkable monomer used is 0.01 parts by mass or more, the conductive path between the active materials is well maintained while suppressing expansion and contraction due to charging and discharging during use for a longer period than before, and as a result, an excellent charge and discharge capacity retention rate can be exhibited, which is preferable. If it is 5.0 parts by mass or less, the stability of precipitation polymerization or dispersion polymerization tends to be high. In particular, if the amount is 1.0 parts by mass or less, the water-swelling particle size in the electrode slurry becomes favorable, and the binding area to the active material becomes large, which is preferable in that excellent battery performance can be maintained even during long-term use.
  • the amount of the crosslinkable monomer used is preferably 0.001 mol% or more and 2.5 mol% or less, more preferably 0.01 mol% or more and 2.0 mol% or less, even more preferably 0.05 mol% or more and 1.75 mol% or less, even more preferably 0.05 mol% or more and 1.5 mol% or less, and even more preferably 0.1 mol% or more and 1.0 mol% or less, based on the total amount of monomers other than the crosslinkable monomer (non-crosslinkable monomers).
  • the crosslinked polymer salt is in the form of a salt in which some or all of the carboxyl groups contained in the polymer have been neutralized.
  • the type of salt is not particularly limited, but examples include alkali metal salts such as lithium salts, sodium salts, and potassium salts; alkaline earth metal salts such as magnesium salts, calcium salts, and barium salts; other metal salts such as aluminum salts; ammonium salts, and organic amine salts.
  • alkali metal salts and alkaline earth metal salts are preferred because they are less likely to adversely affect the battery characteristics, and alkali metal salts are more preferred.
  • the crosslinked polymer is preferably used in the form of a salt in which acid groups such as carboxyl groups derived from ethylenically unsaturated carboxylic acid monomers are neutralized so that the degree of neutralization is 20 mol% or more in the composition.
  • acid groups such as carboxyl groups derived from ethylenically unsaturated carboxylic acid monomers are neutralized so that the degree of neutralization is 20 mol% or more in the composition.
  • the degree of neutralization is 20 mol% or more, it is preferable in that the water swelling property is good and the dispersion stabilization effect is easily obtained.
  • the degree of neutralization is more preferably 50 mol% or more, even more preferably 70 mol% or more, even more preferably 75 mol% or more, even more preferably 80 mol% or more, and particularly preferably 85 mol% or more, in terms of being able to exhibit a superior charge/discharge capacity retention rate in long-term use compared to conventional methods.
  • the upper limit of the degree of neutralization is 100 mol%, and may be 98 mol% or 95 mol%.
  • the degree of neutralization can be calculated by calculation from the charge amount of a monomer having an acid group such as a carboxyl group and a neutralizing agent used for neutralization.
  • the present crosslinked polymer salt is not present as large particle size lumps (secondary aggregates) but is well dispersed as water-swellable particles having an appropriate particle size, because this allows a binder containing the crosslinked polymer salt to exhibit good binding performance.
  • the crosslinked polymer preferably has a particle size (water-swollen particle size) in the volume-based median size range of 0.1 ⁇ m or more and 10.0 ⁇ m or less when the crosslinked polymer has a degree of neutralization based on the carboxyl groups of 80 to 100 mol% and is dispersed in water.
  • a more preferred range of the particle size is 0.15 ⁇ m or more and 8.0 ⁇ m or less, an even more preferred range is 0.20 ⁇ m or more and 6.0 ⁇ m or less, an even more preferred range is 0.25 ⁇ m or more and 4.0 ⁇ m or less, and an even more preferred range is 0.30 ⁇ m or more and 2.0 ⁇ m or less.
  • the particle size is in the range of 0.30 ⁇ m or more and 2.0 ⁇ m or less, the particles are present in the composition at a suitable size and uniformly, so that the composition is highly stable and can exhibit excellent binding properties. If the particle size exceeds 10.0 ⁇ m, there is a risk that the binding properties will be insufficient as described above. In addition, it is difficult to obtain a smooth coating surface, and there is a risk that the coating properties will be insufficient. On the other hand, if the particle size is less than 0.1 ⁇ m, there are concerns from the perspective of stable production.
  • the crosslinked polymer can be produced by known polymerization methods such as solution polymerization, precipitation polymerization, suspension polymerization, and emulsion polymerization, but precipitation polymerization and suspension polymerization (reverse phase suspension polymerization) are preferred from the viewpoint of productivity.
  • precipitation polymerization and suspension polymerization are preferred from the viewpoint of productivity.
  • Heterogeneous polymerization methods such as precipitation polymerization, suspension polymerization, and emulsion polymerization are preferred from the viewpoint of obtaining better performance in terms of binding properties, etc., and among these, precipitation polymerization is more preferred.
  • Precipitation polymerization is a method for producing a polymer by carrying out a polymerization reaction in a solvent that dissolves the raw material unsaturated monomer but does not substantially dissolve the resulting polymer.
  • the polymer particles grow larger through aggregation and growth, and a dispersion of polymer particles is obtained in which primary particles of several tens to hundreds of nm are secondary aggregated to several ⁇ m to several tens of ⁇ m.
  • a dispersion stabilizer can also be used to control the particle size of the polymer.
  • the secondary aggregation can be suppressed by selecting a dispersion stabilizer, a polymerization solvent, etc.
  • precipitation polymerization in which secondary aggregation is suppressed is also called dispersion polymerization.
  • the polymerization solvent can be selected from water and various organic solvents, taking into consideration the type of monomer used, etc. In order to obtain a polymer with a longer primary chain length, it is preferable to use a solvent with a small chain transfer constant.
  • Specific polymerization solvents include water-soluble solvents such as methanol, t-butyl alcohol, acetone, methyl ethyl ketone, acetonitrile, and tetrahydrofuran, as well as benzene, ethyl acetate, dichloroethane, n-hexane, cyclohexane, and n-heptane, and these can be used alone or in combination of two or more. Alternatively, these can be used as a mixed solvent with water.
  • the water-soluble solvent refers to a solvent having a solubility in water at 20° C. of more than 10 g/100 ml.
  • methyl ethyl ketone and acetonitrile are preferred because they have good polymerization stability with little generation of coarse particles and little adhesion to the reactor, the precipitated polymer fine particles are not prone to secondary aggregation (or even if secondary aggregation does occur, it is easily disintegrated in an aqueous medium), they give polymers with small chain transfer constants and large degrees of polymerization (primary chain lengths), and they are easy to operate during the neutralization step described below.
  • the polymerization initiator may be any known polymerization initiator such as an azo compound, organic peroxide, or inorganic peroxide, but is not particularly limited.
  • the conditions of use can be adjusted so that an appropriate amount of radicals is generated using known methods such as thermal initiation, redox initiation using a reducing agent, or UV initiation. To obtain a crosslinked polymer with a long primary chain length, it is preferable to set the conditions so that the amount of radicals generated is as small as possible within the allowable range of production time.
  • the preferred amount of polymerization initiator used is, for example, 0.001 to 2 parts by mass, or, for example, 0.005 to 1 part by mass, or, for example, 0.01 to 0.1 parts by mass, when the total amount of the monomer components used is 100 parts by mass. If the amount of polymerization initiator used is 0.001 parts by mass or more, the polymerization reaction can be carried out stably, and if it is 2 parts by mass or less, a polymer with a long primary chain length is easily obtained.
  • the polymerization temperature depends on the type and concentration of the monomers used, but is preferably 0 to 100°C, more preferably 20 to 80°C.
  • the polymerization temperature may be constant or may vary over the course of the polymerization reaction.
  • the polymerization time is preferably 1 minute to 20 hours, more preferably 1 hour to 10 hours.
  • the crosslinked polymer can contain 50% by mass or more and 100% by mass or less of ethylenically unsaturated carboxylic acid monomer.
  • the type of ethylenically unsaturated carboxylic acid monomer is as described above.
  • composition for secondary battery electrode mixture layer of the present invention contains the present binder, carbon nanotubes (CNTs), an active material, and water.
  • the amount of the binder used in the composition is preferably 0.5 parts by mass or more and 7.0 parts by mass or less with respect to 100 parts by mass of the total amount of the active material.
  • the amount is, for example, 0.8 parts by mass or more and 3.0 parts by mass or less, for example, 1.0 parts by mass or more and 2.5 parts by mass or less, and for example, 1.2 parts by mass or more and 1.5 parts by mass or less. If the amount of the binder used is 0.5 parts by mass or more, sufficient binding property can be obtained.
  • the dispersion stability of the active material and the like can be ensured, and a uniform mixture layer can be formed. If the amount of the binder used is 1.5 parts by mass or less, the composition does not become highly viscous, and the coatability to the current collector can be ensured. As a result, a mixture layer having a uniform and smooth surface can be formed.
  • the amount of CNT used in this composition is, for example, 0.01 parts by mass or more and 0.5 parts by mass or less, relative to 100 parts by mass of the total amount of active material.
  • the above content is, for example, 0.05 parts by mass or more and 0.3 parts by mass or less, and for example, 0.1 parts by mass or more and 0.2 parts by mass or less. If the CNT content is 0.01 parts by mass or more, a sufficient conductive path can be formed. If the CNT content is 0.2 parts by mass or less, the composition does not become highly viscous, and coatability onto the current collector can be ensured. Furthermore, no aggregation of CNTs occurs, and as a result, an electrode with a uniform and smooth surface can be formed.
  • the positive electrode active material can be a lithium salt of a transition metal oxide, for example, a layered rock salt type and a spinel type lithium-containing metal oxide can be used.
  • a spinel type positive electrode active material lithium manganate and the like can be mentioned.
  • phosphates In addition to oxides, phosphates, silicates, sulfur, and the like can be used, and as a phosphate, olivine type lithium iron phosphate and the like can be mentioned.
  • the positive electrode active material one of the above may be used alone, or two or more may be combined and used as a mixture or composite.
  • a positive electrode active material containing a layered rock salt type lithium-containing metal oxide When a positive electrode active material containing a layered rock salt type lithium-containing metal oxide is dispersed in water, the lithium ions on the active material surface are exchanged with hydrogen ions in the water, causing the dispersion to become alkaline. This may cause corrosion of aluminum foil (Al), which is a common positive electrode current collector material. In such cases, it is preferable to neutralize the alkali content eluted from the active material by using the unneutralized or partially neutralized present crosslinked polymer as a binder.
  • the unneutralized or partially neutralized present crosslinked polymer in such an amount that the amount of unneutralized carboxyl groups in the present crosslinked polymer is equivalent to or greater than the amount of alkali eluted from the active material.
  • a conductive assistant other than carbon nanotubes may be added.
  • the conductive assistant include carbon-based materials such as carbon black, carbon fiber, graphite powder, and carbon fiber. Of these, carbon black and carbon fiber are preferred because they are easy to obtain excellent conductivity. As carbon black, ketjen black and acetylene black are preferred.
  • the conductive assistant may be one of the above alone or two or more may be used in combination.
  • the amount of the conductive assistant other than carbon nanotubes may be, for example, 0.2 to 20 parts by mass, or, for example, 0.2 to 10 parts by mass, per 100 parts by mass of the total amount of the active material, from the viewpoint of achieving both electrical conductivity and energy density.
  • the positive electrode active material may be surface-coated with a carbon-based material having electrical conductivity.
  • examples of the negative electrode active material include carbon-based materials, lithium metal, lithium alloys, and metal oxides, and one or more of these can be used in combination.
  • active materials made of carbon-based materials such as natural graphite, artificial graphite, hard carbon, and soft carbon (hereinafter also referred to as "carbon-based active materials") are preferred, and graphite such as natural graphite and artificial graphite, and hard carbon are more preferred.
  • graphite spherical graphite is preferably used from the viewpoint of battery performance, and the preferred range of the particle size is, for example, 1 to 20 ⁇ m, and, for example, 5 to 15 ⁇ m.
  • silicon has a higher capacity than graphite
  • active materials made of silicon-based materials such as silicon, silicon alloys, and silicon oxides such as silicon monoxide (SiO) (hereinafter also referred to as "silicon-based active materials") can be used.
  • the amount of silicon-based active material used is 5.0% by mass or more, for example, 10.0% by mass or more, and can be, for example, 20.0% by mass or more, based on the total amount of active materials, from the viewpoint of improving the electric capacity of the secondary battery.
  • the amount used is, from the viewpoint of energy density, for example, 10 parts by mass or less, and for example, 5 parts by mass or less, per 100 parts by mass of the total amount of active material.
  • the amount of active material used is, for example, in the range of 10 to 75 mass %, or, for example, in the range of 30 to 65 mass %, based on the total amount of the composition. If the amount of active material used is 10 mass % or more, migration of binders and the like is suppressed, and it is also advantageous in terms of the cost of drying the medium. On the other hand, if it is 75 mass % or less, the fluidity and coatability of the composition can be ensured, and a uniform mixture layer can be formed.
  • This composition uses water as a medium.
  • it may be mixed with lower alcohols such as methanol and ethanol, carbonates such as ethylene carbonate, ketones such as acetone, tetrahydrofuran, N-methyl-2-pyrrolidone, and other water-soluble organic solvents.
  • the proportion of water in the mixed medium is, for example, 50% by mass or more, and, for example, 70% by mass or more.
  • the content of the water-containing medium in the entire composition can be, for example, in the range of 25 to 60 mass %, and can be, for example, 35 to 60 mass %, from the viewpoints of the coatability of the slurry, the energy cost required for drying, and productivity.
  • the composition may further contain other binder components such as styrene butadiene rubber (SBR) latex, carboxymethyl cellulose (CMC), acrylic latex, and polyvinylidene fluoride latex.
  • SBR styrene butadiene rubber
  • CMC carboxymethyl cellulose
  • acrylic latex acrylic latex
  • polyvinylidene fluoride latex polyvinylidene fluoride latex.
  • the amount of the binder components used may be, for example, 0.1 to 5 parts by mass or less, or, for example, 0.1 to 2 parts by mass or less, or, for example, 0.1 to 1 part by mass or less, relative to 100 parts by mass of the total amount of the active material. If the amount of the other binder components used exceeds 5 parts by mass, the resistance increases and the high-rate characteristics may become insufficient.
  • SBR latex and CMC are preferred in terms of the excellent balance between binding strength and flex resistance, and it is more preferable to use SBR latex and CMC
  • the SBR latex refers to an aqueous dispersion of a copolymer having structural units derived from an aromatic vinyl monomer such as styrene and structural units derived from an aliphatic conjugated diene monomer such as 1,3-butadiene.
  • aromatic vinyl monomer include ⁇ -methylstyrene, vinyltoluene, divinylbenzene, and the like, in addition to styrene, and one or more of these can be used.
  • the structural units derived from the aromatic vinyl monomer in the copolymer can be, for example, in the range of 20 to 70% by mass, or, for example, in the range of 30 to 60% by mass, mainly from the viewpoint of binding properties.
  • Examples of the aliphatic conjugated diene monomer include 2-methyl-1,3-butadiene, 2,3-dimethyl-1,3-butadiene, 2-chloro-1,3-butadiene, and the like in addition to 1,3-butadiene, and one or more of these can be used.
  • the structural unit derived from the aliphatic conjugated diene monomer in the copolymer can be in the range of, for example, 30 to 70% by mass, or, for example, 40 to 60% by mass, in terms of improving the binding property of the binder and the flexibility of the resulting electrode.
  • the styrene/butadiene-based latex may use other monomers as copolymerization monomers, such as nitrile group-containing monomers such as (meth)acrylonitrile, carboxyl group-containing monomers such as (meth)acrylic acid, itaconic acid, maleic acid, and ester group-containing monomers such as methyl (meth)acrylate, in order to further improve performance such as binding property.
  • the content of the structural units derived from the other monomers in the copolymer can be, for example, in the range of 0 to 30% by mass, and can be, for example, in the range of 0 to 20% by mass.
  • the above CMC refers to a nonionic cellulose-based semisynthetic polymer compound substituted with a carboxymethyl group and its salt.
  • the nonionic cellulose-based semisynthetic polymer compound include alkyl celluloses such as methyl cellulose, methyl ethyl cellulose, ethyl cellulose, and microcrystalline cellulose; hydroxyethyl cellulose, hydroxybutyl methyl cellulose, hydroxypropyl cellulose, hydroxypropyl methyl cellulose, hydroxyethyl methyl cellulose, hydroxypropyl methyl cellulose stearoxy ether, carboxymethyl hydroxyethyl cellulose, alkyl hydroxyethyl cellulose, and nonoxynyl hydroxyethyl cellulose.
  • the composition for secondary battery electrode mixture layer of the present invention is essentially composed of the binder, CNT, active material and water, and is obtained by mixing the components using known means.
  • the method of mixing the components is not particularly limited, and known methods can be used, but a method of dry blending powder components such as the active material, conductive assistant and binder, and then mixing with a dispersion medium such as water and dispersing and kneading is preferred.
  • a dispersion medium such as water and dispersing and kneading
  • a mixing means known mixers such as a planetary mixer, a thin film swirling mixer and a self-revolving mixer can be used, but it is preferable to use a thin film swirling mixer in order to obtain a good dispersion state in a short time.
  • a thin film swirling mixer it is preferable to perform preliminary dispersion in advance with a stirrer such as a disperser.
  • the pH of the above slurry is not particularly limited as long as the effects of the present invention are achieved, but it is preferably less than 12.5.
  • CMC when CMC is added, it is more preferable that it is less than 11.5 in terms of the small concern of hydrolysis, and even more preferable that it is less than 10.5.
  • the viscosity of the slurry is not particularly limited as long as it provides the effects of the present invention, but can be, for example, in the range of 100 to 30,000 mPa ⁇ s, or, for example, 500 to 20,000 mPa ⁇ s, or, for example, 1,000 to 10,000 mPa ⁇ s, as the B-type viscosity (25°C) at 20 rpm. If the viscosity of the slurry is within the above range, good coatability can be ensured.
  • the secondary battery electrode of the present invention comprises a mixture layer formed from the composition for secondary battery electrode mixture layer of the present invention on the surface of a current collector such as copper or aluminum.
  • the mixture layer is formed by applying the composition to the surface of the current collector and then drying and removing the medium such as water.
  • the method for applying the composition is not particularly limited, and known methods such as doctor blade method, dip method, roll coating method, comma coating method, curtain coating method, gravure coating method and extrusion method can be adopted.
  • the drying can be performed by known methods such as hot air blowing, reduced pressure, (far) infrared radiation, and microwave irradiation.
  • the mixture layer obtained after drying is subjected to a compression treatment using a mold press, a roll press, or the like. Compression brings the active material and the binder into close contact with each other, and improves the strength of the mixture layer and its adhesion to the current collector.
  • the thickness of the mixture layer can be adjusted by compression to, for example, about 30 to 80% of the thickness before compression, and the thickness of the mixture layer after compression is generally about 4 to 200 ⁇ m.
  • a secondary battery can be produced by providing the secondary battery electrode of the present invention with a separator and an electrolyte.
  • the electrolyte may be in a liquid or gel form.
  • the separator is disposed between the positive and negative electrodes of the battery, and serves to prevent short circuits caused by contact between the electrodes and to retain the electrolyte to ensure ionic conductivity.
  • the separator is preferably a film-like insulating microporous membrane having good ion permeability and mechanical strength. Specific examples of the material that can be used include polyolefins such as polyethylene and polypropylene, and polytetrafluoroethylene.
  • the electrolyte may be a known one that is generally used depending on the type of active material.
  • specific solvents include cyclic carbonates with high dielectric constant and high electrolyte dissolving ability such as propylene carbonate and ethylene carbonate, and chain carbonates with low viscosity such as ethyl methyl carbonate, dimethyl carbonate and diethyl carbonate, which may be used alone or as a mixed solvent.
  • the electrolyte is used by dissolving lithium salts such as LiPF 6 , LiSbF 6 , LiBF 4 , LiClO 4 and LiAlO 4 in these solvents.
  • an aqueous potassium hydroxide solution may be used as the electrolyte.
  • the secondary battery is obtained by storing a positive electrode plate and a negative electrode plate separated by a separator in a spiral or stacked structure in a case or the like.
  • the binder for secondary battery electrodes disclosed in this specification provides excellent toughness of the binder coating film after immersion in electrolyte, and the electrode mixture layer of a secondary battery obtained using an electrode slurry containing the binder exhibits electrolyte resistance. Furthermore, a secondary battery equipped with an electrode obtained using the binder can ensure good integrity and exhibits good durability (cycle characteristics) even after repeated charging and discharging, making it suitable for use as a secondary battery for vehicles, etc.
  • AA acrylic acid
  • Neoallyl T-20 trimethylolpropane diallyl ether
  • the resulting polymerization reaction solution was centrifuged to settle the polymer particles, and the supernatant was removed.
  • the precipitate was then redispersed in acetonitrile of the same weight as the polymerization reaction solution, and the polymer particles were centrifuged to settle and the supernatant was removed. This washing procedure was repeated twice.
  • the precipitate was collected and dried at 80°C for 3 hours under reduced pressure to remove the volatiles, yielding a powder of carboxyl group-containing polymer salt R-1. Since crosslinked polymer salt R-1 is hygroscopic, it was sealed and stored in a container with water vapor barrier properties.
  • AA acrylic acid
  • HEA 2-hydroxyethyl acrylate
  • T-20 trimethylolpropane diallyl ether (manufactured by Osaka Soda Co., Ltd., product name "Neoallyl T-20")
  • TEA triethylamine
  • AcN acetonitrile
  • V-65 2,2'-azobis(2,4-dimethylvaleronitrile) (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., product name "V-65”)
  • LiOH.H 2 O Lithium hydroxide monohydrate
  • NaOH Sodium hydroxide
  • Example 1 Preparation of electrode mixture layer composition (electrode slurry)
  • the active materials used were artificial graphite (manufactured by Showa Denko K.K., product name "SCMG-CF”) and SiO (manufactured by Osaka Titanium Technologies Co., Ltd., 5 ⁇ m).
  • the binder used was a mixture of crosslinked polymer R-1, styrene/butadiene-based latex (SBR), and sodium carboxymethyl cellulose (CMC).
  • the conductive assistant used was single-walled CNT (manufactured by OCSiAl K.K., product name "TuballBATT H 2 O” (solvent: water, single-walled CNT content: 0.4% by mass).
  • the electrode slurry was applied onto a 16.5 ⁇ m-thick current collector (copper foil) using a variable applicator, and dried in a ventilated dryer at 80° C. for 15 minutes to form a mixture layer. After that, the mixture layer was rolled to a thickness of 50 ⁇ 5 ⁇ m and a mixture density of 1.60 ⁇ 0.10 g/cm 3 , and then punched out into a 3 cm square to obtain a negative electrode plate for battery evaluation.
  • NMP N-methylpyrrolidone
  • the positive electrode mixture layer composition was applied to an aluminum current collector (thickness: 20 ⁇ m) and dried to form a mixture layer. Thereafter, the mixture layer was rolled to a thickness of 125 ⁇ m and a mixture density of 3.0 g/cm 3 , and then punched into a 3 cm square to obtain a positive electrode plate for battery evaluation.
  • EC ethylene carbonate
  • DMC dimethyl carbonate
  • FEC fluoroethylene carbonate
  • the battery was constructed by attaching lead terminals to the positive and negative electrodes, and placing the electrodes facing each other through a separator (made of polyethylene: film thickness 16 ⁇ m, porosity 47%) in an aluminum laminate battery exterior, injecting electrolyte, and sealing the battery to prepare a test battery.
  • the design capacity of this prototype battery was 50 mAh.
  • the design capacity of the battery was based on the charge cut-off voltage of 4.2 V.
  • the lithium ion secondary battery of the laminated cell prepared above was charged and discharged at a charge/discharge rate of 0.1 C under conditions of 2.5 to 4.2 V by CC charging/discharging in an environment of 45° C., and the initial capacity C 0 was measured. Furthermore, charging/discharging was repeated at a charge/discharge rate of 0.5 C under conditions of 2.5 to 4.2 V by CC charging/discharging in an environment of 45° C., and the capacity C 100 after 100 cycles and the capacity C 300 after 300 cycles were measured.
  • the cycle characteristic ( ⁇ C) was calculated by the following formula.
  • C Charge/discharge capacity retention rate is 70% or more and less than 80%.
  • D Charge/discharge capacity retention rate is less than 70% (criteria for determining cycle characteristic ⁇ C 300 ).
  • Examples 2 to 14 and Comparative Examples 1 to 2 Electrode slurries were prepared in the same manner as in Example 1, except that the compositions were as shown in Table 2. The cycle characteristics and electrode expansion rate of the negative electrode plates obtained using each electrode slurry were evaluated, and the results are shown in Table 2.
  • SBR Styrene butadiene rubber
  • CMC Sodium carboxymethyl cellulose
  • AB Acetylene black
  • Example 1 when comparing the amount of carbon nanotubes used, the results showed that when 0.1 part by mass (Example 1) and 0.2 part by mass (Example 2) were used relative to 100 parts by mass of the total amount of the active material, the capacity retention rate and expansion inhibition effect at 300 cycles were superior to when 0.05 part by mass of single-walled CNTs was used (Example 3).
  • This is thought to be due to the effect that, in response to the increase in the distance between active materials due to the expansion of the negative electrode caused by repeated charging and discharging, the more carbon nanotubes with a high aspect ratio structure are used, the more locations where conductive paths are formed, making the capacity less likely to deteriorate.
  • the results showed that the battery performance was superior when the degree of neutralization of the polymer was 80 mol % (Example 4) compared to when the degree of neutralization of the polymer was 60 mol % (Example 5). This is believed to be because, as the degree of neutralization of the carboxyl group-containing crosslinked polymer increases, the glass transition point of the polymer increases, suppressing fusion of the polymer during the heating and drying step in the electrode production process, thereby enabling the production of a uniform electrode.
  • the results showed that the battery characteristics were better when the content of the structural unit derived from the crosslinkable monomer in the carboxyl group-containing crosslinked polymer was low (the degree of crosslinking was low) (Example 1) than when the content of the structural unit was high (the degree of crosslinking of the crosslinked polymer was increased) (Example 6).
  • This is believed to be because an increase in the degree of crosslinking of the carboxyl group-containing crosslinked polymer reduces the degree of swelling in water in the electrode slurry, and the number of contact points with the active material decreases, resulting in a slight decrease in adhesion and making the polymer more susceptible to the effects of swelling and shrinkage of the active material due to repeated charging and discharging.
  • the battery performance was equivalent to that when the neutralization salt was changed to a Li salt (Example 1). This is believed to be because in a 45° C. environment, the neutralized salt of the crosslinked polymer exhibits the same binding properties and rigidity regardless of the type.
  • the result showed that when the amount of the carboxyl group-containing crosslinked polymer salt used was 1.0 part by mass (Example 1) relative to 100 parts by mass of the total amount of the active material, the capacity retention rate at 300 cycles and the expansion suppression effect were more excellent than when the amount of the carboxyl group-containing crosslinked polymer salt used was 0.5 parts by mass (Example 9), 1.5 parts by mass (Example 10), and 3.0 parts by mass (Example 11). This is believed to be because the smaller the amount of carboxyl group-containing crosslinked polymer salt used, the fewer the bonding points in the electrode, which makes it easier for the distance between the active materials to increase due to high cycle charging and discharging.
  • Example 12 Even when it was increased from Example 1 to 29.1 parts by mass (Example 12), or when it was decreased from Example 1 to 9.7 parts by mass (Example 13), or to 4.9 parts by mass (Example 14), good capacity retention and expansion suppression effects were observed. This is believed to be because the combination of this crosslinked polymer salt and single-walled CNTs makes it possible to perform repeated charging and discharging while suppressing structural destruction and conductive path disconnection in the composite layer, regardless of the amount of silicon particles used.
  • a secondary battery equipped with an electrode obtained using the binder for secondary battery electrodes disclosed in this specification can ensure good integrity, and when used for a longer period of time than before, exhibits good durability (cycle characteristics) even when repeatedly charged and discharged while suppressing expansion and contraction due to charging and discharging, and is therefore expected to contribute to increasing the capacity of vehicle-mounted secondary batteries, etc.
  • the binder for secondary battery electrodes of the present invention can be suitably used in particular for electrodes of non-aqueous electrolyte secondary batteries, and is particularly useful for non-aqueous electrolyte lithium ion secondary batteries having high energy density.

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

The present invention provides a binder for a secondary battery electrode capable of exhibiting high capacity retention while suppressing expansion and contraction caused by charging and discharging over a longer than period of use than existing binders even when using a silicon-based active material known to undergo significant expansion and contraction caused by charging and discharging. The present invention also provides: a composition for a secondary battery electrode composite layer containing the abovementioned binder; a secondary battery electrode obtained using said composition; and a secondary battery. This binder for a an electrode of a secondary battery provided with a secondary battery electrode containing carbon nanotubes includes a carboxyl group-containing crosslinked polymer or a salt thereof.

Description

カーボンナノチューブを含む二次電池電極を備える二次電池の電極用バインダー及びその利用Binder for secondary battery with secondary battery electrode containing carbon nanotubes and use thereof
 本発明は、カーボンナノチューブを含む二次電池電極を備える二次電池の電極用バインダー及びその利用に関する。 The present invention relates to an electrode binder for a secondary battery having a secondary battery electrode containing carbon nanotubes, and its use.
 二次電池として、ニッケル水素二次電池、リチウムイオン二次電池、電気二重層キャパシタ等の様々な蓄電デバイスが実用化されている。これらの二次電池に使用される電極は、活物質及びバインダー等を含む電極合剤層を形成するための組成物を集電体上に塗布・乾燥等することにより作製される。例えばリチウムイオン二次電池では、負極合剤層用組成物に用いられるバインダーとして、スチレンブタジエンゴム(SBR)ラテックス及びカルボキシメチルセルロース(CMC)を含む水系のバインダーが使用されている。また、分散性及び結着性に優れるバインダーとして、アクリル酸系重合体水溶液又は水分散液を含むバインダーが知られている。一方、正極合剤層に用いられるバインダーとしては、ポリフッ化ビニリデン(PVDF)のN-メチル-2-ピロリドン(NMP)溶液が広く使用されている。 Various types of secondary batteries, such as nickel-hydrogen secondary batteries, lithium-ion secondary batteries, and electric double-layer capacitors, have been put to practical use. The electrodes used in these secondary batteries are prepared by applying a composition for forming an electrode mixture layer containing an active material and a binder, etc., to a current collector and drying it. For example, in lithium-ion secondary batteries, an aqueous binder containing styrene butadiene rubber (SBR) latex and carboxymethyl cellulose (CMC) is used as the binder used in the negative electrode mixture layer composition. In addition, a binder containing an aqueous solution or aqueous dispersion of an acrylic acid-based polymer is known as a binder with excellent dispersibility and binding properties. On the other hand, an N-methyl-2-pyrrolidone (NMP) solution of polyvinylidene fluoride (PVDF) is widely used as the binder used in the positive electrode mixture layer.
 近年、各種二次電池の用途が拡大するにつれて、エネルギー密度、信頼性及び耐久性向上への要求が強まる傾向にある。例えば、リチウムイオン二次電池の電気容量を高める目的で、負極用活物質としてシリコン系の活物質を用いる仕様が増えてきている。しかしながら、シリコン系活物質は充放電時の体積変化が大きいことが知られており、繰り返し使用するにつれて電極合剤層の剥離又は脱落等が生じ、その結果、電池の容量が低下し、サイクル特性(耐久性)が悪化するという問題があった。このような不具合を抑制するためには、一般的にはバインダーの結着性を高めることが有効であり、耐久性を改善する目的で、バインダーの結着性向上に関する検討が行われている。 In recent years, as the applications of various secondary batteries expand, there has been a growing demand for improved energy density, reliability, and durability. For example, in order to increase the electrical capacity of lithium-ion secondary batteries, there has been an increase in the use of silicon-based active materials as negative electrode active materials. However, silicon-based active materials are known to have large volume changes during charging and discharging, and repeated use can cause the electrode mixture layer to peel or fall off, resulting in a decrease in battery capacity and a deterioration in cycle characteristics (durability). In order to prevent such problems, it is generally effective to increase the binding properties of the binder, and studies are being conducted to improve the binding properties of binders in order to improve durability.
 良好な結着性を有し、耐久性向上に効果を奏するバインダーとして、上記アクリル酸系重合体を利用したバインダーが提案されており、負極製造用スラリーに導電助剤を添加することにより、活物質間の電気的接触が良好になり、電池性能が向上することが知られている。 A binder using the above-mentioned acrylic acid polymer has been proposed as a binder that has good binding properties and is effective in improving durability, and it is known that adding a conductive assistant to the slurry used to manufacture the negative electrode improves electrical contact between the active materials and improves battery performance.
 例えば、特許文献1及び2には、シリコンを含有する活物質、導電助剤、並びに、アクリル酸由来のモノマー単位及び特定構造のモノマー単位を含むバインダーを含む電極合剤層組成物によって得られる電極が、充放電容量が優れることが開示されている。導電助剤としてはケッチェンブラックやアセチレンブラックを用いることで、10サイクルあるいは30サイクルの充放電後の容量維持率が高いことが具体的に記載されている。 For example, Patent Documents 1 and 2 disclose that an electrode obtained from an electrode mixture layer composition containing a silicon-containing active material, a conductive assistant, and a binder containing a monomer unit derived from acrylic acid and a monomer unit of a specific structure has excellent charge/discharge capacity. It is specifically described that the use of ketjen black or acetylene black as the conductive assistant results in a high capacity retention rate after 10 or 30 charge/discharge cycles.
国際公開第2015/163302号International Publication No. 2015/163302 特開2018-029069号公報JP 2018-029069 A
特許文献1及び2に開示されるバインダーは、いずれも良好な結着性を付与し得るものであり、上記の通り10~30サイクル程度の少ない充放電回数であれば高い容量維持率を発現することができるものの、充放電を重ねるごとに、シリコン系活物質の膨張収縮による負極の構造劣化が大きくなり、活物質間の導電パスを保持できず、容量劣化を引き起こすという問題があった。 The binders disclosed in Patent Documents 1 and 2 are both capable of imparting good binding properties, and as described above, can achieve a high capacity retention rate if the number of charge/discharge cycles is as small as 10 to 30. However, with each charge/discharge cycle, the structure of the negative electrode deteriorates significantly due to the expansion and contraction of the silicon-based active material, making it impossible to maintain a conductive path between the active materials, resulting in a problem of capacity deterioration.
 本発明は、このような事情に鑑みてなされたものであり、充放電による膨張収縮が大きいとされるシリコン系活物質を使用する際においても、従来よりも長期間の使用において、充放電による膨張収縮を抑制しつつ、高い容量維持率を示すことが可能な二次電池電極用バインダーを提供することを目的とする。また、併せて、上記バインダーを含む二次電池電極合剤層用組成物、当該組成物を用いて得られる二次電池電極及び二次電池を提供することである。 The present invention was made in consideration of these circumstances, and aims to provide a binder for secondary battery electrodes that can suppress expansion and contraction due to charging and discharging and exhibit a high capacity retention rate over longer periods of use than before, even when using silicon-based active materials that are considered to expand and contract significantly due to charging and discharging. In addition, the present invention also aims to provide a composition for secondary battery electrode mixture layers that contains the binder, and a secondary battery electrode and secondary battery obtained using the composition.
 本発明者らは、上記課題を解決するために鋭意検討した結果、導電助剤であるカーボンナノチューブ(以下、「CNT」ともいう。)を含む二次電池電極を備える二次電池の電極用バインダーとして、カルボキシル基含有架橋重合体又はその塩を含むバインダーを用いることで、従来より高サイクル回数での二次電池の使用においても、充放電による膨張収縮を抑制しつつ、優れた充放電容量維持率を発揮することができることを見出し、本発明を完成した。 As a result of intensive research into solving the above problems, the inventors discovered that by using a binder containing a carboxyl group-containing crosslinked polymer or a salt thereof as an electrode binder for a secondary battery having a secondary battery electrode containing carbon nanotubes (hereinafter also referred to as "CNT") as a conductive additive, it is possible to suppress expansion and contraction due to charging and discharging, and to exhibit an excellent charge and discharge capacity retention rate, even when the secondary battery is used at a higher number of cycles than before, and thus completed the present invention.
 本発明は以下の通りである。
〔1〕カーボンナノチューブを含む二次電池電極を備える二次電池の電極用バインダーであって、カルボキシル基含有架橋重合体又はその塩を含む、電極用バインダー。
〔2〕前記カルボキシル基含有架橋重合体は、その全構造単位に対し、エチレン性不飽和カルボン酸単量体に由来する構造単位を50質量%以上100質量%以下含む、〔1〕に記載の電極用バインダー。
〔3〕〔1〕又は〔2〕に記載の電極用バインダー、カーボンナノチューブ、活物質及び水を含む、二次電池電極合剤層用組成物。
〔4〕ケイ素系活物質の含有量は、前記活物質の全量に対して5.0質量%以上である、〔3〕に記載の二次電池電極合剤層用組成物。
〔5〕前記電極用バインダーの含有量は、前記活物質の全量100質量部に対して1.0質量部以上2.5質量部以下である、〔3〕又は〔4〕に記載の二次電池電極合剤層用組成物。
〔6〕前記カーボンナノチューブの含有量は、前記活物質の全量100質量部に対して0.1質量部以上である、〔3〕~〔5〕のいずれか一に記載の二次電池電極合剤層用組成物。
〔7〕前記カーボンナノチューブは、単層構造体を含む、〔3〕~〔6〕のいずれか一に記載の二次電池電極合剤層用組成物。
〔8〕集電体表面に、〔3〕~〔7〕のいずれか一に記載の二次電池電極合剤層用組成物から形成される合剤層を備える、二次電極。
〔9〕〔8〕に記載の二次電極を備える、二次電池。
The present invention is as follows.
[1] An electrode binder for a secondary battery having a secondary battery electrode containing carbon nanotubes, the electrode binder comprising a carboxyl group-containing crosslinked polymer or a salt thereof.
[2] The electrode binder according to [1], wherein the carboxyl group-containing crosslinked polymer contains 50% by mass or more and 100% by mass or less of structural units derived from an ethylenically unsaturated carboxylic acid monomer based on the total structural units thereof.
[3] A composition for a secondary battery electrode mixture layer, comprising the electrode binder according to [1] or [2], carbon nanotubes, an active material, and water.
[4] The composition for secondary battery electrode mixture layer according to [3], wherein the content of the silicon-based active material is 5.0 mass% or more based on the total amount of the active material.
[5] The composition for secondary battery electrode mixture layer according to [3] or [4], wherein the content of the electrode binder is 1.0 part by mass or more and 2.5 parts by mass or less with respect to 100 parts by mass of a total amount of the active material.
[6] The composition for secondary battery electrode mixture layer according to any one of [3] to [5], wherein the content of the carbon nanotubes is 0.1 parts by mass or more per 100 parts by mass of a total amount of the active material.
[7] The composition for a secondary battery electrode mixture layer according to any one of [3] to [6], wherein the carbon nanotubes include a single-layer structure.
[8] A secondary electrode comprising a mixture layer formed on a surface of a current collector from the composition for a secondary battery electrode mixture layer according to any one of [3] to [7].
[9] A secondary battery comprising the secondary electrode according to [8].
 本発明の電極用バインダーによれば、従来よりも長期間の使用において、充放電による膨張収縮を抑制しつつ、優れた充放電容量維持率を発揮する二次電池を得ることができる。 The electrode binder of the present invention makes it possible to obtain a secondary battery that exhibits an excellent charge/discharge capacity retention rate while suppressing expansion and contraction due to charging and discharging during longer-term use than conventional batteries.
 本発明の二次電池電極用バインダー(以下、「本バインダー」ともいう。)は、カルボキシル基含有架橋重合体(以下、「本架橋重合体」ともいう。)又はその塩(以下、「本架橋重合体塩」ともいう。)を含み、カーボンナノチューブ(以下、「CNT」ともいう。)、活物質及び水と混合することにより二次電池電極合剤層用組成物(以下、「本組成物」ともいう。)とすることができる。上記の組成物は、集電体への塗工が可能なスラリー状態の電極スラリーであることが、本発明の効果を奏する点で好ましいが、湿粉状態として調製し、集電体表面へのプレス加工に対応できるようにしてもよい。銅箔又はアルミニウム箔等の集電体表面に上記組成物から形成される合剤層を形成することにより、本発明の二次電池電極が得られる。
 ここで、本バインダーは、活物質として後述のケイ素系活物質を含む二次電池電極合剤層用組成物に用いる場合、本発明の奏する効果が特に大きい点で好ましい。
The binder for secondary battery electrodes of the present invention (hereinafter also referred to as "the binder") contains a carboxyl group-containing crosslinked polymer (hereinafter also referred to as "the crosslinked polymer") or a salt thereof (hereinafter also referred to as "the crosslinked polymer salt"), and can be mixed with carbon nanotubes (hereinafter also referred to as "CNT"), an active material, and water to form a composition for secondary battery electrode mixture layer (hereinafter also referred to as "the composition"). The above composition is preferably an electrode slurry in a slurry state that can be applied to a current collector in terms of achieving the effects of the present invention, but it may be prepared in a wet powder state so that it can be applied to the current collector surface. The secondary battery electrode of the present invention is obtained by forming a mixture layer formed from the above composition on the surface of a current collector such as copper foil or aluminum foil.
Here, the present binder is preferable in that when it is used in a secondary battery electrode mixture layer composition containing a silicon-based active material described below as an active material, the effects of the present invention are particularly large.
 以下に、カーボンナノチューブ、本架橋重合体及びその製造方法、本バインダーを用いて得られる二次電池電極合剤層用組成物、二次電池電極及び二次電池の各々について、詳細に説明する。
 尚、本明細書において、「(メタ)アクリル」とは、アクリル及び/又はメタクリルを意味し、「(メタ)アクリレート」とは、アクリレート及び/又はメタクリレートを意味する。また、「(メタ)アクリロイル基」とは、アクリロイル基及び/又はメタクリロイル基を意味する。
 本明細書に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよく、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
The carbon nanotubes, the present crosslinked polymer and its production method, the secondary battery electrode mixture layer composition obtained using the present binder, the secondary battery electrode, and the secondary battery will each be described in detail below.
In this specification, "(meth)acrylic" means acrylic and/or methacrylic, "(meth)acrylate" means acrylate and/or methacrylate, and "(meth)acryloyl group" means acryloyl group and/or methacryloyl group.
In the numerical ranges described in stages in this specification, the upper or lower limit value described in one numerical range may be replaced by the upper or lower limit value of another numerical range described in stages, and the upper or lower limit value of that numerical range may be replaced by a value shown in the examples.
1.カーボンナノチューブ
 本組成物に用いられるカーボンナノチューブ(CNT)は、高い導電性及び化学的安定性を有し、電極合剤層における活物質同士の電気的接触を確保するための導電助剤として用いられる。CNTは、平面的なグラファイトを円筒状に巻いた形状であり、CNTの種類としては特に限定されることなく、単層構造体のCNT(以下、「単層CNT」ともいう。)又は多層構造体のCNT(以下、「多層CNT」ともいう。)などを用いることができる。これらは1種単独あるいは2種以上を組み合わせて用いることができる。
 CNTとしては、単層CNTを含むことが、本発明の奏する効果が特に大きい点で好ましい。
 単層CNTは、一層のグラファイトが巻かれた構造を有し、多層CNTは、二又は三以上の層のグラファイトが巻かれた構造を有する。
 ここで、CNTの側壁はグラファイト構造でなくともよく、アモルファス構造を有する側壁を備えるCNTも本明細書ではCNTである。
1. Carbon nanotubes The carbon nanotubes (CNTs) used in the composition have high electrical conductivity and chemical stability, and are used as a conductive assistant to ensure electrical contact between active materials in the electrode mixture layer. CNTs are flat graphite rolled into a cylindrical shape, and the type of CNT is not particularly limited, and single-layer CNTs (hereinafter also referred to as "single-layer CNTs") or multi-layer CNTs (hereinafter also referred to as "multi-layer CNTs") can be used. These can be used alone or in combination of two or more types.
As the CNT, it is preferable that the CNT contains a single-walled CNT, since the effect of the present invention is particularly large.
A single-walled CNT has a structure in which one layer of graphite is rolled up, whereas a multi-walled CNT has a structure in which two or more layers of graphite are rolled up.
Here, the sidewalls of the CNTs do not have to have a graphite structure, and CNTs having sidewalls with an amorphous structure are also included in the CNTs of this specification.
 CNTの形状は限定されない。係る形状としては、針状、円筒チューブ状、魚骨状(フィッシュボーン又はカップ積層型)、トランプ状(プレートレット)及びコイル状を含む様々な形状が挙げられる。中でも、CNTの形状は、針状、又は、円筒チューブ状であることが好ましい。CNTは、単独の形状あるいは2種以上の形状の組合せであってもよい。 The shape of the CNT is not limited. Examples of such shapes include needle-like, cylindrical tube-like, fishbone-like (fishbone or cup stack type), trump-like (platelet) and coil-like. Of these, the shape of the CNT is preferably needle-like or cylindrical tube-like. The CNT may be a single shape or a combination of two or more shapes.
 CNTの形態は、例えば、グラファイトウィスカー、フィラメンタスカーボン、グラファイトファイバー、極細炭素チューブ、カーボンチューブ、カーボンフィブリル、カーボンマイクロチューブ及びカーボンナノファイバー等が挙げられる。CNTは、これらの単独の形態あるいは2種以上を組み合わせた形態を有していてもよい。 CNTs may have the following forms: graphite whiskers, filamentous carbon, graphite fibers, ultrafine carbon tubes, carbon tubes, carbon fibrils, carbon microtubes, and carbon nanofibers. CNTs may have any of these forms alone or in combination of two or more of them.
 CNTの平均外径は1nm以上であることが好ましく、5nm以下であることがより好ましい。また、3nm以下であることがさらに好ましい。なお、CNTの平均外径は、まず透過型電子顕微鏡によって、CNTを観測するとともに撮像し、観測写真において、任意の300個のCNTを選び、それぞれの外径を計測することで算出できる。 The average outer diameter of the CNTs is preferably 1 nm or more, more preferably 5 nm or less, and even more preferably 3 nm or less. The average outer diameter of the CNTs can be calculated by first observing and photographing the CNTs using a transmission electron microscope, then randomly selecting 300 CNTs from the photograph and measuring the outer diameter of each.
 CNTの平均繊維長は0.5μm以上であることが好ましく、0.8μm以上であることがより好ましく、1.0μm以上であることがより好ましく、5.0μm以上であることがさらに好ましい。また、20μm以下であることが好ましく、10μm以下であることがより好ましい。なお、CNTの平均繊維長は、まず走査型電子顕微鏡によって、CNTを観測するとともに撮像し、観測写真において、任意の300個のCNTを選び、それぞれの繊維長を計測することで算出できる。 The average fiber length of the CNTs is preferably 0.5 μm or more, more preferably 0.8 μm or more, more preferably 1.0 μm or more, and even more preferably 5.0 μm or more. It is also preferably 20 μm or less, and more preferably 10 μm or less. The average fiber length of the CNTs can be calculated by first observing and photographing the CNTs using a scanning electron microscope, randomly selecting 300 CNTs from the photograph, and measuring the fiber length of each.
 CNTの繊維長を、外径で除した値がアスペクト比である。平均繊維長と平均外径の値を用いて、代表的なアスペクト比を求めることができる。
 アスペクト比が高い導電助剤ほど、電極を形成した際に高い導電性を得ることができ、CNTのアスペクト比は、30以上であることが好ましく、50以上であることがより好ましく、80以上であることがさらに好ましい。また、10,000以下であることが好ましく、3,000以下であることがより好ましく、1,000以下であることがさらに好ましい。
The aspect ratio is the fiber length of a CNT divided by its outer diameter. A representative aspect ratio can be calculated using the average fiber length and the average outer diameter.
The higher the aspect ratio of the conductive additive, the higher the conductivity that can be obtained when an electrode is formed, and the aspect ratio of the CNT is preferably 30 or more, more preferably 50 or more, and even more preferably 80 or more. Also, it is preferably 10,000 or less, more preferably 3,000 or less, and even more preferably 1,000 or less.
 CNTの比表面積は100m/g以上であることが好ましく、150m/g以上であることがより好ましく、200m/g以上であることがさらに好ましい。また、1200m/g以下であることが好ましく、1000m/g以下であることがより好ましい。なお、CNTの比表面積は窒素吸着測定によるBET法で算出できる。
 CNTの平均外径、平均繊維長、アスペクト比及び比表面積が上記範囲内であると、電極中で発達した導電パスを形成しやすくなる。
The specific surface area of the CNT is preferably 100 m 2 /g or more, more preferably 150 m 2 /g or more, and even more preferably 200 m 2 /g or more. Also, it is preferably 1200 m 2 /g or less, and more preferably 1000 m 2 /g or less. The specific surface area of the CNT can be calculated by the BET method using nitrogen adsorption measurement.
When the average outer diameter, average fiber length, aspect ratio and specific surface area of the CNTs are within the above ranges, a well-developed conductive path is easily formed in the electrode.
 CNTの炭素純度はCNT中の炭素原子の含有率(質量%)で表される。炭素純度はCNT100質量%に対して、80質量%以上であることが好ましく、90質量%以上であることがより好ましく、95質量%以上であることがさらに好ましく、98質量%以上であることが特に好ましい。炭素純度を上記範囲にすることにより、金属触媒等の不純物によってデンドライトが形成されショートが起こる等の不具合を防ぐことができる。 The carbon purity of CNT is expressed as the content (mass%) of carbon atoms in the CNT. For 100 mass% CNT, the carbon purity is preferably 80 mass% or more, more preferably 90 mass% or more, even more preferably 95 mass% or more, and particularly preferably 98 mass% or more. By keeping the carbon purity within the above range, it is possible to prevent problems such as short circuits caused by the formation of dendrites due to impurities such as metal catalysts.
 CNTは、表面処理を行ったCNTでもよい。CNTは、カルボキシ基に代表される官能基が付与されたCNT誘導体であってもよい。また、有機化合物、金属原子、又はフラーレンに代表される物質を内包させたCNTも用いることができる。 The CNT may be surface-treated CNT. The CNT may be a CNT derivative to which a functional group, such as a carboxyl group, has been added. CNT that encapsulates organic compounds, metal atoms, or substances, such as fullerenes, may also be used.
 CNTは、レーザーアブレーション法、アーク放電法、熱CVD法、プラズマCVD法及び燃焼法により製造できるが、これらに限定されない。例えば、酸素濃度が1体積%以下の雰囲気中、500~1000℃にて、炭素源を触媒と接触反応させることでCNTを製造することができる。
 炭素源は炭化水素及びアルコールの少なくともいずれか一方でもよい。
CNTs can be produced by, but are not limited to, laser ablation, arc discharge, thermal CVD, plasma CVD, and combustion. For example, CNTs can be produced by contacting a carbon source with a catalyst at 500 to 1000° C. in an atmosphere with an oxygen concentration of 1% by volume or less.
The carbon source may be a hydrocarbon and/or an alcohol.
2.本架橋重合体
 本架橋重合体は、エチレン性不飽和カルボン酸単量体に由来する構造単位(以下、「(a)成分」ともいう。)を有することができ、(a)成分を含む単量体成分を沈殿重合若しくは分散重合することにより重合体に導入することができる。
2. The present crosslinked polymer The present crosslinked polymer can have a structural unit derived from an ethylenically unsaturated carboxylic acid monomer (hereinafter also referred to as "component (a)"), and can be introduced into the polymer by precipitation polymerization or dispersion polymerization of a monomer component containing component (a).
<エチレン性不飽和カルボン酸単量体に由来する構造単位>
 本バインダーに含まれるカルボキシル基を有する架橋重合体(以下、「本架橋重合体」ともいう。)は、エチレン性不飽和カルボン酸単量体に由来する構造単位(以下、「(a)成分」ともいう。)を有していてもよい。本架橋重合体が、係る構造単位を有することによりカルボキシル基を有する場合、集電体への接着性が向上するとともに、リチウムイオンの脱溶媒和効果及びイオン伝導性に優れるため、抵抗が小さく、ハイレート特性に優れた電極が得られる。また、水膨潤性が付与されるため、本組成物中における活物質等の分散安定性を高めることができる。
 上記(a)成分は、例えば、エチレン性不飽和カルボン酸単量体を含む単量体を重合することにより重合体に導入することができる。その他にも、(メタ)アクリル酸エステル単量体を(共)重合した後、加水分解することによっても得られる。また、(メタ)アクリルアミド及び(メタ)アクリロニトリル等を重合した後、強アルカリで処理してもよいし、水酸基を有する重合体に酸無水物を反応させる方法であってもよい。
<Structural Unit Derived from Ethylenically Unsaturated Carboxylic Acid Monomer>
The crosslinked polymer having a carboxyl group contained in the binder (hereinafter also referred to as the "crosslinked polymer") may have a structural unit derived from an ethylenically unsaturated carboxylic acid monomer (hereinafter also referred to as the "component (a)"). When the crosslinked polymer has a carboxyl group due to the structural unit, the adhesion to the current collector is improved, and the desolvation effect of lithium ions and ion conductivity are excellent, so that an electrode having low resistance and excellent high-rate characteristics can be obtained. In addition, water swelling is imparted, so that the dispersion stability of the active material in the composition can be improved.
The component (a) can be introduced into the polymer by, for example, polymerizing a monomer containing an ethylenically unsaturated carboxylic acid monomer. Alternatively, it can be obtained by (co)polymerizing a (meth)acrylic acid ester monomer and then hydrolyzing it. In addition, it can be obtained by polymerizing (meth)acrylamide and (meth)acrylonitrile, etc., and then treating them with a strong alkali, or by reacting a polymer having a hydroxyl group with an acid anhydride.
 エチレン性不飽和カルボン酸単量体としては、例えば、(メタ)アクリル酸、イタコン酸、クロトン酸、マレイン酸、フマル酸;(メタ)アクリルアミドヘキサン酸及び(メタ)アクリルアミドドデカン酸等の(メタ)アクリルアミドアルキルカルボン酸;コハク酸モノヒドロキシエチル(メタ)アクリレート、ω-カルボキシ-カプロラクトンモノ(メタ)アクリレート、β-カルボキシエチル(メタ)アクリレート等のカルボキシル基含有エチレン性不飽和単量体又はそれらの(部分)アルカリ中和物が挙げられ、これらの内の1種を単独で使用してもよいし、2種以上を組み合わせて使用してもよい。上記の中でも、重合速度が大きいために一次鎖長の長い重合体が得られ、バインダーの結着力が良好となる点で重合性官能基としてアクリロイル基を有する化合物が好ましく、特に好ましくはアクリル酸である。エチレン性不飽和カルボン酸単量体としてアクリル酸を用いた場合、カルボキシル基含有量の高い重合体を得ることができる。 Examples of ethylenically unsaturated carboxylic acid monomers include (meth)acrylic acid, itaconic acid, crotonic acid, maleic acid, and fumaric acid; (meth)acrylamidoalkyl carboxylic acids such as (meth)acrylamidohexanoic acid and (meth)acrylamidododecanoic acid; carboxyl group-containing ethylenically unsaturated monomers such as monohydroxyethyl succinate (meth)acrylate, ω-carboxy-caprolactone mono(meth)acrylate, and β-carboxyethyl (meth)acrylate, or (partially) alkali-neutralized products thereof. One of these may be used alone, or two or more may be used in combination. Among the above, compounds having an acryloyl group as a polymerizable functional group are preferred, in that they have a high polymerization rate, resulting in a polymer with a long primary chain length, and the binding strength of the binder is good, and acrylic acid is particularly preferred. When acrylic acid is used as the ethylenically unsaturated carboxylic acid monomer, a polymer with a high carboxyl group content can be obtained.
 本架橋重合体における(a)成分の含有量は、本架橋重合体の全構造単位に対して50質量%以上、100質量%以下含むことができる。係る範囲で(a)成分を含有することで、集電体に対する優れた接着性を容易に確保することができる。下限が50質量%以上の場合、本組成物の分散安定性が良好となり、より高い結着力が得られるため好ましく、60質量%以上であってもよく、70質量%以上であってもよく、80質量%以上であってもよい。また、上限は、例えば、99.9質量%以下であり、また例えば99.5質量%以下であり、また例えば99質量%以下であり、また例えば98質量%以下であり、また例えば95質量%以下であり、また例えば90質量%以下であり、また例えば80質量%以下である。 The content of component (a) in the crosslinked polymer may be 50% by mass or more and 100% by mass or less based on the total structural units of the crosslinked polymer. By including component (a) in this range, excellent adhesion to the current collector can be easily ensured. When the lower limit is 50% by mass or more, the dispersion stability of the composition is good and a higher binding strength can be obtained, which is preferable, and the lower limit may be 60% by mass or more, 70% by mass or more, or 80% by mass or more. The upper limit is, for example, 99.9% by mass or less, for example, 99.5% by mass or less, for example, 99% by mass or less, for example, 98% by mass or less, for example, 95% by mass or less, for example, 90% by mass or less, or for example, 80% by mass or less.
<その他の構造単位>
 本架橋重合体は、(a)成分以外に、これらと共重合可能な他のエチレン性不飽和単量体に由来する構造単位(以下、「(b)成分」ともいう。)を含むことができる。(b)成分としては、例えば、水酸基含有エチレン性不飽和単量体(以下の式(1)で表される単量体、式(2)で表される単量体)、スルホン酸基及びリン酸基等のカルボキシル基以外のアニオン性基を有するエチレン性不飽和単量体化合物、又は非イオン性のエチレン性不飽和単量体等に由来する構造単位が挙げられる。これらの構造単位は、水酸基含有エチレン性不飽和単量体、スルホン酸基及びリン酸基等のカルボキシル基以外のアニオン性基を有するエチレン性不飽和単量体化合物、又は非イオン性のエチレン性不飽和単量体を含む単量体を共重合することにより導入することができる。
 CH=C(R)COOR   (1)
[式中、Rは水素原子又はメチル基を表し、Rは水酸基を有する炭素原子数1~8の一価の有機基、(RO)H又はRO[CO(CHO]Hを表す。なお、Rは炭素原子数2~4のアルキレン基を表し、Rは炭素原子数1~8のアルキレン基を表し、mは2~15の整数を表し、nは1~15の整数を表す。]
 CH=C(R)CONR   (2)
[式中、Rは水素原子又はメチル基を表し、Rは水酸基又は炭素原子数1~8のヒドロキシアルキル基を表し、Rは水素原子又は1価の有機基を表す。]
<Other structural units>
In addition to the component (a), the crosslinked polymer may contain a structural unit derived from another ethylenically unsaturated monomer copolymerizable therewith (hereinafter also referred to as "component (b)"). Examples of the component (b) include structural units derived from hydroxyl-containing ethylenically unsaturated monomers (monomers represented by the following formula (1) and (2)), ethylenically unsaturated monomer compounds having anionic groups other than carboxyl groups such as sulfonic acid groups and phosphoric acid groups, or nonionic ethylenically unsaturated monomers. These structural units can be introduced by copolymerizing a monomer containing a hydroxyl-containing ethylenically unsaturated monomer, an ethylenically unsaturated monomer compound having anionic groups other than carboxyl groups such as sulfonic acid groups and phosphoric acid groups, or a nonionic ethylenically unsaturated monomer.
CH 2 =C(R 1 )COOR 2 (1)
[In the formula, R 1 represents a hydrogen atom or a methyl group, R 2 represents a monovalent organic group having 1 to 8 carbon atoms and a hydroxyl group, (R 3 O) m H or R 4 O[CO(CH 2 ) 5 O] n H. In addition, R 3 represents an alkylene group having 2 to 4 carbon atoms, R 4 represents an alkylene group having 1 to 8 carbon atoms, m represents an integer of 2 to 15, and n represents an integer of 1 to 15.]
CH2 =C( R5 ) CONR6R7 ( 2 )
[In the formula, R5 represents a hydrogen atom or a methyl group, R6 represents a hydroxyl group or a hydroxyalkyl group having 1 to 8 carbon atoms, and R7 represents a hydrogen atom or a monovalent organic group.]
 (b)成分の割合は、本非架橋重合体の全構造単位に対し、0質量%以上、50質量%以下とすることができる。(b)成分の割合は、0.1質量%以上、40質量%以下であってもよく、0.5質量%以上、30質量%以下であってもよく、1.0質量%以上、20質量%以下であってもよく、2質量%以上、12.5質量%以下であってもよく、3質量%以上、10質量%以下であってもよい。また、本架橋重合体の全構造単位に対して(b)成分を0.1質量%以上含む場合、電解液への親和性が向上するため、リチウムイオン伝導性が向上する効果も期待できる。 The proportion of the (b) component can be 0% by mass or more and 50% by mass or less based on all structural units of the non-crosslinked polymer. The proportion of the (b) component may be 0.1% by mass or more and 40% by mass or less, 0.5% by mass or more and 30% by mass or less, 1.0% by mass or more and 20% by mass or less, 2% by mass or more and 12.5% by mass or less, or 3% by mass or more and 10% by mass or less. In addition, when the (b) component is contained at 0.1% by mass or more based on all structural units of the crosslinked polymer, the affinity to the electrolyte is improved, and therefore the effect of improving lithium ion conductivity can also be expected.
 (b)成分としては、前記した中でも、本架橋重合体塩を含むバインダーの結着性に優れる点で、水酸基含有エチレン性不飽和単量体が好ましい。
 また、耐屈曲性が良好な電極が得られる観点から非イオン性のエチレン性不飽和単量体に由来する構造単位が好ましい。
 非イオン性のエチレン性不飽和単量体としては、(メタ)アクリルアミド及びその誘導体、ニトリル基含有エチレン性不飽和単量体、脂環構造含有エチレン性不飽和単量体等が挙げられる。
Of the above-mentioned components, the hydroxyl-containing ethylenically unsaturated monomer is preferred as component (b) in that it provides excellent binding properties to the binder containing the present crosslinked polymer salt.
Moreover, from the viewpoint of obtaining an electrode having good resistance to bending, a structural unit derived from a nonionic ethylenically unsaturated monomer is preferred.
Examples of the nonionic ethylenically unsaturated monomer include (meth)acrylamide and its derivatives, nitrile group-containing ethylenically unsaturated monomers, and alicyclic structure-containing ethylenically unsaturated monomers.
 上記式(1)で表される単量体は、水酸基を有する(メタ)アクリレート化合物である。Rが水酸基を有する炭素原子数1~8の一価の有機基である場合、当該水酸基の数は、1個のみでもよいし、2個以上であってもよい。上記一価の有機基としては、特段制限されるものではないが、例えば、直鎖状、分岐状又は環状構造を有していてもよいアルキル基、並びに、アリール基及びアルコキシアルキル基等が挙げられる。また、Rが(RO)H又はRO[CO(CHO]Hである場合、R又はRが表すアルキレン基は、直鎖状であってもよいし分岐状であってもよい。 The monomer represented by the formula (1) is a (meth)acrylate compound having a hydroxyl group. When R 2 is a monovalent organic group having 1 to 8 carbon atoms having a hydroxyl group, the number of the hydroxyl groups may be only one or may be two or more. The monovalent organic group is not particularly limited, and examples thereof include an alkyl group that may have a linear, branched or cyclic structure, an aryl group and an alkoxyalkyl group. When R 2 is (R 3 O) m H or R 4 O[CO(CH 2 ) 5 O] n H, the alkylene group represented by R 3 or R 4 may be linear or branched.
 上記式(1)で表される単量体としては、例えば、2-ヒドロキシエチル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、ヒドロキシヘキシル(メタ)アクリレート及びヒドロキシオクチル(メタ)アクリレート等の炭素原子数1~8のヒドロキシアルキル基を有するヒドロキシアルキル(メタ)アクリレート;ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート、ポリブチレングリコールモノ(メタ)アクリレート及びポリエチレングリコール-ポリプロピレングリコールモノ(メタ)アクリレート等のポリアルキレングリコールモノ(メタ)アクリレート;グリセリンモノ(メタ)アクリレート等のジヒドロキシアルキル(メタ)アクリレート;カプロラクトン変性ヒドロキシメタクリレート(ダイセル社製、商品名「プラクセルFM1」、「プラクセルFM5」等)、カプロラクトン変性ヒドロキシアクリレート(ダイセル社製、商品名「プラクセルFA1」、「プラクセルFA10L」等)等が挙げられる。上記式(1)で表される単量体は、これらの内の1種を単独で使用してもよいし、2種以上を組み合わせて使用してもよい。 Examples of monomers represented by the above formula (1) include hydroxyalkyl (meth)acrylates having a hydroxyalkyl group having 1 to 8 carbon atoms, such as 2-hydroxyethyl (meth)acrylate, 3-hydroxypropyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate, hydroxyhexyl (meth)acrylate, and hydroxyoctyl (meth)acrylate; polyalkylene glycol mono(meth)acrylates, such as polyethylene glycol mono(meth)acrylate, polypropylene glycol mono(meth)acrylate, polybutylene glycol mono(meth)acrylate, and polyethylene glycol-polypropylene glycol mono(meth)acrylate; dihydroxyalkyl (meth)acrylates, such as glycerin mono(meth)acrylate; caprolactone-modified hydroxymethacrylates (manufactured by Daicel Corporation, product names "Placcel FM1", "Placcel FM5", etc.), caprolactone-modified hydroxyacrylates (manufactured by Daicel Corporation, product names "Placcel FA1", "Placcel FA10L", etc.), etc. The monomer represented by the above formula (1) may be used alone or in combination of two or more.
 上記式(2)で表される単量体は、水酸基又は炭素原子数1~8のヒドロキシアルキル基を有する(メタ)アクリルアミド誘導体である。式(2)において、Rは水素原子又は1価の有機基を表す。上記1価の有機基としては、特段制限されるものではないが、例えば、直鎖状、分岐状又は環状構造を有していてもよいアルキル基、並びに、アリール基及びアルコキシアルキル基等が挙げられ、炭素原子数1~8の有機基であることが好ましい。その他に、Rは、水酸基又は炭素原子数1~8のヒドロキシアルキル基であってもよい。 The monomer represented by the above formula (2) is a (meth)acrylamide derivative having a hydroxyl group or a hydroxyalkyl group having 1 to 8 carbon atoms. In formula (2), R 7 represents a hydrogen atom or a monovalent organic group. The monovalent organic group is not particularly limited, but examples thereof include an alkyl group that may have a linear, branched, or cyclic structure, as well as an aryl group and an alkoxyalkyl group, and is preferably an organic group having 1 to 8 carbon atoms. Alternatively, R 7 may be a hydroxyl group or a hydroxyalkyl group having 1 to 8 carbon atoms.
 上記式(2)で表される単量体としては、例えば、ヒドロキシ(メタ)アクリルアミド;N-ヒドロキシエチル(メタ)アクリルアミド、N-(2-ヒドロキシプロピル)(メタ)アクリルアミド、N-ヒドロキシブチル(メタ)アクリルアミド、N-ヒドロキシへキシル(メタ)アクリルアミド及びN-ヒドロキシオクチル(メタ)アクリルアミド、N-メチルヒドロキシエチル(メタ)アクリルアミド及びN-エチルヒドロキシエチル(メタ)アクリルアミド等の炭素原子数1~8のヒドロキシアルキル基を有する(メタ)アクリルアミド誘導体;N,N-ジヒドロキシエチル(メタ)アクリルアミド及びN,N-ジヒドロキシエチル(メタ)アクリルアミド等のN,N-ジ-ヒドロキシアルキル(メタ)アクリルアミド等が挙げられる。上記式(2)で表される単量体は、これらの内の1種を単独で使用してもよいし、2種以上を組み合わせて使用してもよい。 Examples of the monomer represented by the above formula (2) include hydroxy(meth)acrylamide; (meth)acrylamide derivatives having a hydroxyalkyl group having 1 to 8 carbon atoms, such as N-hydroxyethyl(meth)acrylamide, N-(2-hydroxypropyl)(meth)acrylamide, N-hydroxybutyl(meth)acrylamide, N-hydroxyhexyl(meth)acrylamide, and N-hydroxyoctyl(meth)acrylamide, N-methylhydroxyethyl(meth)acrylamide, and N-ethylhydroxyethyl(meth)acrylamide; and N,N-dihydroxyalkyl(meth)acrylamides, such as N,N-dihydroxyethyl(meth)acrylamide and N,N-dihydroxyethyl(meth)acrylamide. The monomer represented by the above formula (2) may be used alone or in combination of two or more.
 (メタ)アクリルアミド誘導体としては、例えば、N-イソプロピル(メタ)アクリルアミド、N-t-ブチル(メタ)アクリルアミド等のN-アルキル(メタ)アクリルアミド化合物;N-n-ブトキシメチル(メタ)アクリルアミド、N-イソブトキシメチル(メタ)アクリルアミド等のN-アルコキシアルキル(メタ)アクリルアミド化合物;N,N-ジメチル(メタ)アクリルアミド、N,N-ジエチル(メタ)アクリルアミド等のN,N-ジアルキル(メタ)アクリルアミド化合物が挙げられ、これらの内の1種を単独で使用してもよいし、2種以上を組み合わせて使用してもよい。 Examples of (meth)acrylamide derivatives include N-alkyl (meth)acrylamide compounds such as N-isopropyl (meth)acrylamide and N-t-butyl (meth)acrylamide; N-alkoxyalkyl (meth)acrylamide compounds such as N-n-butoxymethyl (meth)acrylamide and N-isobutoxymethyl (meth)acrylamide; and N,N-dialkyl (meth)acrylamide compounds such as N,N-dimethyl (meth)acrylamide and N,N-diethyl (meth)acrylamide. One of these may be used alone, or two or more may be used in combination.
 ニトリル基含有エチレン性不飽和単量体としては、例えば、(メタ)アクリロニトリル;(メタ)アクリル酸シアノメチル、(メタ)アクリル酸シアノエチル等の(メタ)アクリル酸シアノアルキルエステル化合物;4-シアノスチレン、4-シアノ-α-メチルスチレン等のシアノ基含有不飽和芳香族化合物;シアン化ビニリデン等が挙げられ、これらの内の1種を単独で使用してもよいし、2種以上を組み合わせて使用してもよい。上記の中でも、ニトリル基含有量が多い点でアクリロニトリルが好ましい。 Examples of nitrile group-containing ethylenically unsaturated monomers include (meth)acrylonitrile; (meth)acrylic acid cyanoalkyl ester compounds such as cyanomethyl (meth)acrylate and cyanoethyl (meth)acrylate; cyano group-containing unsaturated aromatic compounds such as 4-cyanostyrene and 4-cyano-α-methylstyrene; vinylidene cyanide; and the like. One of these may be used alone, or two or more may be used in combination. Among the above, acrylonitrile is preferred because of its high nitrile group content.
 脂環構造含有エチレン性不飽和単量体としては、例えば、シクロペンチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、メチルシクロヘキシル(メタ)アクリレート、t-ブチルシクロヘキシル(メタ)アクリレート、シクロデシル(メタ)アクリレート及びシクロドデシル(メタ)アクリレート等の脂肪族置換基を有していてもよい(メタ)アクリル酸シクロアルキルエステル;イソボルニル(メタ)アクリレート、アダマンチル(メタ)アクリレート、シクロペンテニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、並びに、シクロヘキサンジメタノールモノ(メタ)アクリレート及びシクロデカンジメタノールモノ(メタ)アクリレート等のシクロアルキルポリアルコールモノ(メタ)アクリレート等が挙げられ、これらの内の1種を単独で使用してもよいし、2種以上を組み合わせて使用してもよい。 Examples of alicyclic structure-containing ethylenically unsaturated monomers include (meth)acrylic acid cycloalkyl esters which may have an aliphatic substituent, such as cyclopentyl (meth)acrylate, cyclohexyl (meth)acrylate, methylcyclohexyl (meth)acrylate, t-butylcyclohexyl (meth)acrylate, cyclodecyl (meth)acrylate, and cyclododecyl (meth)acrylate; isobornyl (meth)acrylate, adamantyl (meth)acrylate, cyclopentenyl (meth)acrylate, dicyclopentenyloxyethyl (meth)acrylate, dicyclopentanyl (meth)acrylate, and cycloalkyl polyalcohol mono(meth)acrylates such as cyclohexanedimethanol mono(meth)acrylate and cyclodecanedimethanol mono(meth)acrylate. One of these may be used alone, or two or more may be used in combination.
 本架橋重合体は、バインダーの結着性が優れる点で、上記式(1)で表される単量体、上記式(2)で表される単量体、(メタ)アクリルアミド及びその誘導体、並びに、ニトリル基含有エチレン性不飽和単量体、脂環構造含有エチレン性不飽和単量体等に由来する構造単位を含むことが好ましい。これらの中でも、(b)成分としては、本バインダーの結着性向上効果に優れる点で、上記式(1)で表される単量体及び上記式(2)で表される単量体に由来する構造単位がより好ましい。
 上記式(1)で表される単量体の中でも、炭素原子数1~8のヒドロキシアルキル基を有するヒドロキシアルキル(メタ)アクリレートがさらに好ましく、2-ヒドロキシエチル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート及び4-ヒドロキシブチル(メタ)アクリレートが一層好ましい。また、上記式(2)で表される単量体の中でも、炭素原子数1~8のヒドロキシアルキル基を有する(メタ)アクリルアミド誘導体がさらに好ましく、N-ヒドロキシエチル(メタ)アクリルアミド、N-(2-ヒドロキシプロピル)(メタ)アクリルアミド、N-ヒドロキシブチル(メタ)アクリルアミドが一層好ましい。
In view of the excellent binding property of the binder, the present crosslinked polymer preferably contains structural units derived from the monomer represented by the above formula (1), the monomer represented by the above formula (2), (meth)acrylamide and its derivatives, as well as nitrile group-containing ethylenically unsaturated monomers, alicyclic structure-containing ethylenically unsaturated monomers, etc. Among these, as the component (b), structural units derived from the monomer represented by the above formula (1) and the monomer represented by the above formula (2) are more preferable in view of the excellent effect of improving the binding property of the present binder.
Among the monomers represented by the above formula (1), hydroxyalkyl (meth)acrylates having a hydroxyalkyl group with 1 to 8 carbon atoms are more preferred, with 2-hydroxyethyl (meth)acrylate, 3-hydroxypropyl (meth)acrylate and 4-hydroxybutyl (meth)acrylate being even more preferred. Also, among the monomers represented by the above formula (2), (meth)acrylamide derivatives having a hydroxyalkyl group with 1 to 8 carbon atoms are more preferred, with N-hydroxyethyl (meth)acrylamide, N-(2-hydroxypropyl) (meth)acrylamide and N-hydroxybutyl (meth)acrylamide being even more preferred.
 また、(b)成分しては、水中への溶解性が1g/100ml以下の疎水性のエチレン性不飽和単量体に由来する構造単位を導入した場合、電極材料と強い相互作用を奏することができ、活物質に対して良好な結着性を発揮することができる。これにより、堅固で一体性の良好な電極合剤層を得ることができるため、前記した「水中への溶解性が1g/100ml以下の疎水性のエチレン性不飽和単量体」としては、特に脂環構造含有エチレン性不飽和単量体が好ましい。 Furthermore, when a structural unit derived from a hydrophobic ethylenically unsaturated monomer having a solubility in water of 1 g/100 ml or less is introduced as component (b), it is possible to achieve a strong interaction with the electrode material and to exhibit good binding properties to the active material. This makes it possible to obtain a robust electrode mixture layer with good integrity, and therefore, as the above-mentioned "hydrophobic ethylenically unsaturated monomer having a solubility in water of 1 g/100 ml or less", an alicyclic structure-containing ethylenically unsaturated monomer is particularly preferred.
 また、その他の非イオン性のエチレン性不飽和単量体としては、例えば(メタ)アクリル酸エステルを用いてもよい。(メタ)アクリル酸エステルとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート等の(メタ)アクリル酸アルキルエステル化合物;
フェニル(メタ)アクリレート、フェニルメチル(メタ)アクリレート、フェニルエチル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート等の芳香族(メタ)アクリル酸エステル化合物;
2-メトキシエチル(メタ)アクリレート、2-エトキシエチル(メタ)アクリレート等の(メタ)アクリル酸アルコキシアルキルエステル化合物等が挙げられ、これらの内の1種を単独で使用してもよいし、2種以上を組み合わせて使用してもよい。
As other nonionic ethylenically unsaturated monomers, for example, (meth)acrylic acid esters may be used. Examples of the (meth)acrylic acid esters include (meth)acrylic acid alkyl ester compounds such as methyl (meth)acrylate, ethyl (meth)acrylate, n-butyl (meth)acrylate, isobutyl (meth)acrylate, and 2-ethylhexyl (meth)acrylate;
Aromatic (meth)acrylic acid ester compounds such as phenyl (meth)acrylate, phenylmethyl (meth)acrylate, phenylethyl (meth)acrylate, and phenoxyethyl (meth)acrylate;
Examples of the alkoxyalkyl ester compounds include (meth)acrylic acid alkoxyalkyl ester compounds such as 2-methoxyethyl (meth)acrylate and 2-ethoxyethyl (meth)acrylate. One of these compounds may be used alone, or two or more of them may be used in combination.
 活物質との結着性及びサイクル特性の観点からは、芳香族(メタ)アクリル酸エステル化合物を好ましく用いることができる。リチウムイオン伝導性及びハイレート特性がより向上する観点から、2-メトキシエチル(メタ)アクリレート及び2-エトキシエチル(メタ)アクリレートなどの(メタ)アクリル酸アルコキシアルキルエステル等、エーテル結合を有する化合物が好ましく、2-メトキシエチル(メタ)アクリレートがより好ましい。 From the viewpoint of binding to the active material and cycle characteristics, aromatic (meth)acrylic acid ester compounds can be preferably used. From the viewpoint of further improving lithium ion conductivity and high rate characteristics, compounds having an ether bond, such as (meth)acrylic acid alkoxyalkyl esters such as 2-methoxyethyl (meth)acrylate and 2-ethoxyethyl (meth)acrylate, are preferred, with 2-methoxyethyl (meth)acrylate being more preferred.
 非イオン性のエチレン性不飽和単量体の中でも、重合速度が速いために一次鎖長の長い重合体が得られ、バインダーの結着力が良好となる点でアクリロイル基を有する化合物が好ましい。また、非イオン性のエチレン性不飽和単量体としては、得られる電極の耐屈曲性が良好となる点でホモポリマーのガラス転移温度(Tg)が0℃以下の化合物が好ましい。 Among non-ionic ethylenically unsaturated monomers, compounds having an acryloyl group are preferred because they have a fast polymerization rate, resulting in a polymer with a long primary chain length, and because they provide good binding strength for the binder. In addition, as non-ionic ethylenically unsaturated monomers, compounds whose homopolymer glass transition temperature (Tg) is 0°C or less are preferred because they provide good bending resistance for the resulting electrode.
 本架橋重合体は、架橋構造を有する架橋重合体である。本架橋重合体における架橋方法は特に制限されるものではなく、例えば以下の方法による態様が例示される。
1)架橋性単量体の共重合
2)ラジカル重合時のポリマー鎖への連鎖移動を利用
 本架橋重合体が架橋構造を有することにより、当該架橋重合体又はその塩を含むバインダーは、優れた結着力を有することができる。上記の内でも、操作が簡便であり、架橋の程度を制御し易い点から架橋性単量体の共重合による方法が好ましい。
The present crosslinked polymer is a crosslinked polymer having a crosslinked structure. The crosslinking method for the present crosslinked polymer is not particularly limited, and examples thereof include the following methods.
1) Copolymerization of a crosslinkable monomer 2) Utilization of chain transfer to a polymer chain during radical polymerization Since the present crosslinked polymer has a crosslinked structure, a binder containing the crosslinked polymer or a salt thereof can have excellent binding strength. Among the above, the method using copolymerization of a crosslinkable monomer is preferred from the viewpoints of simple operation and easy control of the degree of crosslinking.
<架橋性単量体>
 架橋性単量体としては、2個以上の重合性不飽和基を有する多官能重合性単量体、及び加水分解性シリル基等の自己架橋可能な架橋性官能基を有する単量体等が挙げられる。
<Crosslinkable Monomer>
Examples of the crosslinkable monomer include polyfunctional polymerizable monomers having two or more polymerizable unsaturated groups, and monomers having a self-crosslinkable crosslinkable functional group such as a hydrolyzable silyl group.
 上記多官能重合性単量体は、(メタ)アクリロイル基、アルケニル基等の重合性官能基を分子内に2つ以上有する化合物であり、多官能(メタ)アクリロイル化合物、多官能アルケニル化合物、(メタ)アクリロイル基及びアルケニル基の両方を有する化合物等が挙げられる。これらの化合物は、1種のみを単独で用いてもよいし、2種以上を組み合わせて用いてもよい。これらの内でも、均一な架橋構造を得やすい点で多官能アルケニル化合物が好ましく、分子内に2個以上のアリルエーテル基を有する多官能アリルエーテル化合物が特に好ましい。 The polyfunctional polymerizable monomer is a compound having two or more polymerizable functional groups, such as (meth)acryloyl groups and alkenyl groups, in the molecule, and examples thereof include polyfunctional (meth)acryloyl compounds, polyfunctional alkenyl compounds, and compounds having both (meth)acryloyl groups and alkenyl groups. These compounds may be used alone or in combination of two or more. Among these, polyfunctional alkenyl compounds are preferred in that they easily produce a uniform crosslinked structure, and polyfunctional allyl ether compounds having two or more allyl ether groups in the molecule are particularly preferred.
 多官能(メタ)アクリロイル化合物としては、例えば、エチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート等の2価アルコールのジ(メタ)アクリレート類;トリメチロールプロパントリ(メタ)アクリレート、トリメチロールプロパンエチレンオキサイド変性体のトリ(メタ)アクリレート、グリセリントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート等の3価以上の多価アルコールのトリ(メタ)アクリレート、テトラ(メタ)アクリレート等のポリ(メタ)アクリレート;メチレンビスアクリルアミド、ヒドロキシエチレンビスアクリルアミド等のビスアミド類等を挙げることができる。 Examples of polyfunctional (meth)acryloyl compounds include di(meth)acrylates of dihydric alcohols such as ethylene glycol di(meth)acrylate, propylene glycol di(meth)acrylate, 1,6-hexanediol di(meth)acrylate, polyethylene glycol di(meth)acrylate, and polypropylene glycol di(meth)acrylate; tri(meth)acrylates of trihydric or higher polyhydric alcohols such as trimethylolpropane tri(meth)acrylate, tri(meth)acrylate of trimethylolpropane ethylene oxide modified product, glycerin tri(meth)acrylate, pentaerythritol tri(meth)acrylate, and pentaerythritol tetra(meth)acrylate; and poly(meth)acrylates such as tetra(meth)acrylate; and bisamides such as methylene bisacrylamide and hydroxyethylene bisacrylamide.
 多官能アルケニル化合物としては、例えば、トリメチロールプロパンジアリルエーテル、トリメチロールプロパントリアリルエーテル、ペンタエリスリトールジアリルエーテル、ペンタエリスリトールトリアリルエーテル、テトラアリルオキシエタン、ポリアリルサッカロース等の多官能アリルエーテル化合物;ジアリルフタレート等の多官能アリル化合物;ジビニルベンゼン等の多官能ビニル化合物等を挙げることができる。 Examples of polyfunctional alkenyl compounds include polyfunctional allyl ether compounds such as trimethylolpropane diallyl ether, trimethylolpropane triallyl ether, pentaerythritol diallyl ether, pentaerythritol triallyl ether, tetraallyloxyethane, and polyallyl saccharose; polyfunctional allyl compounds such as diallyl phthalate; and polyfunctional vinyl compounds such as divinylbenzene.
 (メタ)アクリロイル基及びアルケニル基の両方を有する化合物としては、例えば、(メタ)アクリル酸アリル、(メタ)アクリル酸イソプロペニル、(メタ)アクリル酸ブテニル、(メタ)アクリル酸ペンテニル、(メタ)アクリル酸2-(2-ビニロキシエトキシ)エチル等を挙げることができる。 Examples of compounds having both a (meth)acryloyl group and an alkenyl group include allyl (meth)acrylate, isopropenyl (meth)acrylate, butenyl (meth)acrylate, pentenyl (meth)acrylate, and 2-(2-vinyloxyethoxy)ethyl (meth)acrylate.
 上記自己架橋可能な架橋性官能基を有する単量体の具体的な例としては、加水分解性シリル基含有ビニル単量体、N-メトキシアルキル(メタ)アクリルアミド等が挙げられる。これらの化合物は、1種単独であるいは2種以上を組み合わせて用いることができる。 Specific examples of the monomer having a self-crosslinkable crosslinking functional group include a hydrolyzable silyl group-containing vinyl monomer, N-methoxyalkyl(meth)acrylamide, etc. These compounds can be used alone or in combination of two or more.
 加水分解性シリル基含有ビニル単量体としては、加水分解性シリル基を少なくとも1個有するビニル単量体であれば、特に限定されない。例えば、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルメチルジメトキシシラン、ビニルジメチルメトキシシランン等のビニルシラン類;アクリル酸トリメトキシシリルプロピル、アクリル酸トリエトキシシリルプロピル、アクリル酸メチルジメトキシシリルプロピル等のシリル基含有アクリル酸エステル類;メタクリル酸トリメトキシシリルプロピル、メタクリル酸トリエトキシシリルプロピル、メタクリル酸メチルジメトキシシリルプロピル、メタクリル酸ジメチルメトキシシリルプロピル等のシリル基含有メタクリル酸エステル類;トリメトキシシリルプロピルビニルエーテル等のシリル基含有ビニルエーテル類;トリメトキシシリルウンデカン酸ビニル等のシリル基含有ビニルエステル類等を挙げることができる。 The hydrolyzable silyl group-containing vinyl monomer is not particularly limited as long as it is a vinyl monomer having at least one hydrolyzable silyl group. For example, vinyl silanes such as vinyl trimethoxysilane, vinyl triethoxysilane, vinyl methyl dimethoxysilane, vinyl dimethyl methoxysilane, etc.; silyl group-containing acrylic acid esters such as trimethoxysilylpropyl acrylate, triethoxysilylpropyl acrylate, methyl dimethoxysilylpropyl acrylate, etc.; silyl group-containing methacrylic acid esters such as trimethoxysilylpropyl methacrylate, triethoxysilylpropyl methacrylate, methyl dimethoxysilylpropyl methacrylate, dimethyl methoxysilylpropyl methacrylate, etc.; silyl group-containing vinyl ethers such as trimethoxysilylpropyl vinyl ether; silyl group-containing vinyl esters such as vinyl trimethoxysilyl undecanoate, etc. can be mentioned.
 本架橋重合体が架橋性単量体により架橋されたものである場合、当該架橋性単量体の使用量は、架橋性単量体以外の単量体(非架橋性単量体)の総量100質量部に対して好ましくは0.01質量部以上5.0質量部以下であり、より好ましくは0.05質量部以上3.0質量部以下であり、さらに好ましくは0.1質量部以上2.0質量部以下であり、一層好ましくは0.1質量部以上1.7質量部以下であり、より一層好ましくは0.5質量部以上1.5質量部以下である。架橋性単量体の使用量が0.01質量部以上であれば、従来よりも長期間の使用において、充放電による膨張収縮を抑制しつつ、活物質間の導電パスが良好に保たれる結果、優れた充放電容量維持率を発揮できる点で好ましい。5.0質量部以下であれば、沈殿重合若しくは分散重合の安定性が高くなる傾向がある。特に、1.0質量部以下であれば、電極スラリー中での水膨潤粒径が好適となり、活物質への結着面積が広くなるため、優れた長期間の使用においても電池性能を維持できる点で好ましい。 When the crosslinked polymer is crosslinked by a crosslinkable monomer, the amount of the crosslinkable monomer used is preferably 0.01 parts by mass or more and 5.0 parts by mass or less, more preferably 0.05 parts by mass or more and 3.0 parts by mass or less, even more preferably 0.1 parts by mass or more and 2.0 parts by mass or less, even more preferably 0.1 parts by mass or more and 1.7 parts by mass or less, and even more preferably 0.5 parts by mass or more and 1.5 parts by mass or less, relative to 100 parts by mass of the total amount of monomers other than the crosslinkable monomer (non-crosslinkable monomers). If the amount of the crosslinkable monomer used is 0.01 parts by mass or more, the conductive path between the active materials is well maintained while suppressing expansion and contraction due to charging and discharging during use for a longer period than before, and as a result, an excellent charge and discharge capacity retention rate can be exhibited, which is preferable. If it is 5.0 parts by mass or less, the stability of precipitation polymerization or dispersion polymerization tends to be high. In particular, if the amount is 1.0 parts by mass or less, the water-swelling particle size in the electrode slurry becomes favorable, and the binding area to the active material becomes large, which is preferable in that excellent battery performance can be maintained even during long-term use.
 同様の理由から、上記架橋性単量体の使用量は、架橋性単量体以外の単量体(非架橋性単量体)の総量に対して0.001モル%以上2.5モル%以下であることが好ましく、0.01モル%以上2.0モル%以下であることがより好ましく、0.05モル%以上1.75モル%以下であることがさらに好ましく、0.05モル%以上1.5モル%以下であることが一層好ましく、0.1モル%以上1.0モル%以下であることがより一層好ましい。 For the same reason, the amount of the crosslinkable monomer used is preferably 0.001 mol% or more and 2.5 mol% or less, more preferably 0.01 mol% or more and 2.0 mol% or less, even more preferably 0.05 mol% or more and 1.75 mol% or less, even more preferably 0.05 mol% or more and 1.5 mol% or less, and even more preferably 0.1 mol% or more and 1.0 mol% or less, based on the total amount of monomers other than the crosslinkable monomer (non-crosslinkable monomers).
 本架橋重合体塩は、当該重合体中に含まれるカルボキシル基の一部又は全部が中和された塩の形態である。塩の種類としては特に限定しないが、リチウム塩、ナトリウム塩及びカリウム塩等のアルカリ金属塩;マグネシウム塩、カルシウム塩及びバリウム塩等のアルカリ土類金属塩;アルミニウム塩等のその他の金属塩;アンモニウム塩及び有機アミン塩等が挙げられる。これらの中でも電池特性への悪影響が生じにくい点からアルカリ金属塩及びアルカリ土類金属塩が好ましく、アルカリ金属塩がより好ましい。 The crosslinked polymer salt is in the form of a salt in which some or all of the carboxyl groups contained in the polymer have been neutralized. The type of salt is not particularly limited, but examples include alkali metal salts such as lithium salts, sodium salts, and potassium salts; alkaline earth metal salts such as magnesium salts, calcium salts, and barium salts; other metal salts such as aluminum salts; ammonium salts, and organic amine salts. Among these, alkali metal salts and alkaline earth metal salts are preferred because they are less likely to adversely affect the battery characteristics, and alkali metal salts are more preferred.
本架橋重合体塩の特性について
 本架橋重合体は、本組成物中において、中和度が20モル%以上となるように、エチレン性不飽和カルボン酸単量体由来のカルボキシル基等の酸基が中和され、塩の態様として用いることが好ましい。中和度が20モル%以上の場合、水膨潤性が良好となり分散安定化効果が得やすいという点で好ましい。
 上記中和度は、従来よりも長期間の使用において、優れた充放電容量維持率を発揮できる点で、より好ましくは50モル%以上であり、さらに好ましくは70モル%以上であり、一層好ましくは75モル%以上であり、より一層好ましくは80モル%以上であり、特に好ましくは85モル%以上である。中和度の上限値は100モル%であり、98モル%であってもよく95モル%であってもよい。本明細書では、上記中和度は、カルボキシル基等の酸基を有する単量体及び中和に用いる中和剤の仕込み値から計算により算出することができる。なお、中和度は架橋重合体塩を、減圧条件下、80℃で3時間乾燥処理後の粉末をIR測定し、カルボン酸のC=O基由来のピークとカルボン酸塩のC=O基由来のピークの強度比より確認することができる。
Regarding the characteristics of the crosslinked polymer salt , the crosslinked polymer is preferably used in the form of a salt in which acid groups such as carboxyl groups derived from ethylenically unsaturated carboxylic acid monomers are neutralized so that the degree of neutralization is 20 mol% or more in the composition. When the degree of neutralization is 20 mol% or more, it is preferable in that the water swelling property is good and the dispersion stabilization effect is easily obtained.
The degree of neutralization is more preferably 50 mol% or more, even more preferably 70 mol% or more, even more preferably 75 mol% or more, even more preferably 80 mol% or more, and particularly preferably 85 mol% or more, in terms of being able to exhibit a superior charge/discharge capacity retention rate in long-term use compared to conventional methods. The upper limit of the degree of neutralization is 100 mol%, and may be 98 mol% or 95 mol%. In this specification, the degree of neutralization can be calculated by calculation from the charge amount of a monomer having an acid group such as a carboxyl group and a neutralizing agent used for neutralization. The degree of neutralization can be confirmed by IR measurement of the powder of the crosslinked polymer salt after drying treatment at 80 ° C. for 3 hours under reduced pressure conditions, and the intensity ratio of the peak derived from the C = O group of the carboxylic acid and the peak derived from the C = O group of the carboxylate salt.
<本架橋重合体塩の粒子径>
 本組成物において、本架橋重合体塩は大粒径の塊(二次凝集体)として存在することなく、適度な粒子径を有する水膨潤粒子として良好に分散していることが、当該架橋重合体塩を含むバインダーが良好な結着性能を発揮し得るため好ましい。
<Particle size of the present crosslinked polymer salt>
In the present composition, it is preferable that the present crosslinked polymer salt is not present as large particle size lumps (secondary aggregates) but is well dispersed as water-swellable particles having an appropriate particle size, because this allows a binder containing the crosslinked polymer salt to exhibit good binding performance.
 本架橋重合体は、当該架橋重合体が有するカルボキシル基に基づく中和度が80~100モル%であるものを水中に分散させた際の粒子径(水膨潤粒子径)が、体積基準メジアン径で0.1μm以上、10.0μm以下の範囲にあることが好ましい。上記粒子径のより好ましい範囲は0.15μm以上、8.0μm以下であり、さらに好ましい範囲は0.20μm以上、6.0μm以下であり、一層好ましい範囲は0.25μm以上、4.0μm以下であり、より一層好ましい範囲は0.30μm以上、2.0μm以下である。粒子径が0.30μm以上、2.0μm以下の範囲であれば、本組成物中において好適な大きさで均一に存在するため、本組成物の安定性が高く、優れた結着性を発揮することが可能となる。粒子径が10.0μmを超えると、上記の通り結着性が不十分となる虞がある。また、平滑性な塗面が得られにくい点で、塗工性が不十分となる虞がある。一方、粒子径が0.1μm未満の場合には、安定製造性の観点において懸念される。 The crosslinked polymer preferably has a particle size (water-swollen particle size) in the volume-based median size range of 0.1 μm or more and 10.0 μm or less when the crosslinked polymer has a degree of neutralization based on the carboxyl groups of 80 to 100 mol% and is dispersed in water. A more preferred range of the particle size is 0.15 μm or more and 8.0 μm or less, an even more preferred range is 0.20 μm or more and 6.0 μm or less, an even more preferred range is 0.25 μm or more and 4.0 μm or less, and an even more preferred range is 0.30 μm or more and 2.0 μm or less. If the particle size is in the range of 0.30 μm or more and 2.0 μm or less, the particles are present in the composition at a suitable size and uniformly, so that the composition is highly stable and can exhibit excellent binding properties. If the particle size exceeds 10.0 μm, there is a risk that the binding properties will be insufficient as described above. In addition, it is difficult to obtain a smooth coating surface, and there is a risk that the coating properties will be insufficient. On the other hand, if the particle size is less than 0.1 μm, there are concerns from the perspective of stable production.
3.本架橋重合体の製造方法
 本架橋重合体は、溶液重合、沈殿重合、懸濁重合、乳化重合等の公知の重合方法を使用することが可能であるが、生産性の点で沈殿重合及び懸濁重合(逆相懸濁重合)が好ましい。結着性等に関してより良好な性能が得られる点で、沈殿重合、懸濁重合、乳化重合等の不均一系の重合法が好ましく、中でも沈殿重合法がより好ましい。
 沈殿重合は、原料である不飽和単量体を溶解するが、生成する重合体を実質溶解しない溶媒中で重合反応を行うことにより重合体を製造する方法である。重合の進行とともにポリマー粒子は凝集及び成長により大きくなり、数十nm~数百nmの一次粒子が数μm~数十μmに二次凝集したポリマー粒子の分散液が得られる。ポリマーの粒子サイズを制御するために分散安定剤を使用することもできる。
 尚、分散安定剤や重合溶剤等を選定することにより上記二次凝集を抑制することもできる。一般に、二次凝集を抑制した沈殿重合は、分散重合とも呼ばれる。
3. Method for Producing the Crosslinked Polymer The crosslinked polymer can be produced by known polymerization methods such as solution polymerization, precipitation polymerization, suspension polymerization, and emulsion polymerization, but precipitation polymerization and suspension polymerization (reverse phase suspension polymerization) are preferred from the viewpoint of productivity. Heterogeneous polymerization methods such as precipitation polymerization, suspension polymerization, and emulsion polymerization are preferred from the viewpoint of obtaining better performance in terms of binding properties, etc., and among these, precipitation polymerization is more preferred.
Precipitation polymerization is a method for producing a polymer by carrying out a polymerization reaction in a solvent that dissolves the raw material unsaturated monomer but does not substantially dissolve the resulting polymer. As the polymerization proceeds, the polymer particles grow larger through aggregation and growth, and a dispersion of polymer particles is obtained in which primary particles of several tens to hundreds of nm are secondary aggregated to several μm to several tens of μm. A dispersion stabilizer can also be used to control the particle size of the polymer.
The secondary aggregation can be suppressed by selecting a dispersion stabilizer, a polymerization solvent, etc. In general, precipitation polymerization in which secondary aggregation is suppressed is also called dispersion polymerization.
 沈殿重合の場合、重合溶媒は、使用する単量体の種類等を考慮して水及び各種有機溶剤等から選択される溶媒を使用することができる。より一次鎖長の長い重合体を得るためには、連鎖移動定数の小さい溶媒を使用することが好ましい。 In the case of precipitation polymerization, the polymerization solvent can be selected from water and various organic solvents, taking into consideration the type of monomer used, etc. In order to obtain a polymer with a longer primary chain length, it is preferable to use a solvent with a small chain transfer constant.
 具体的な重合溶媒としては、メタノール、t-ブチルアルコール、アセトン、メチルエチルケトン、アセトニトリル及びテトラヒドロフラン等の水溶性溶剤の他、ベンゼン、酢酸エチル、ジクロロエタン、n-ヘキサン、シクロヘキサン及びn-ヘプタン等が挙げられ、これらの1種を単独であるいは2種以上を組み合わせて用いることができる。又は、これらと水との混合溶媒として用いてもよい。本発明において水溶性溶剤とは、20℃における水への溶解度が10g/100mlより大きいものを指す。
 上記の内、粗大粒子の生成や反応器への付着が小さく重合安定性が良好であること、析出した重合体微粒子が二次凝集しにくい(若しくは二次凝集が生じても水媒体中で解れやすい)こと、連鎖移動定数が小さく重合度(一次鎖長)の大きい重合体が得られること、及び後述する工程中和の際に操作が容易であること等の点で、メチルエチルケトン及びアセトニトリルが好ましい。
Specific polymerization solvents include water-soluble solvents such as methanol, t-butyl alcohol, acetone, methyl ethyl ketone, acetonitrile, and tetrahydrofuran, as well as benzene, ethyl acetate, dichloroethane, n-hexane, cyclohexane, and n-heptane, and these can be used alone or in combination of two or more. Alternatively, these can be used as a mixed solvent with water. In the present invention, the water-soluble solvent refers to a solvent having a solubility in water at 20° C. of more than 10 g/100 ml.
Of the above, methyl ethyl ketone and acetonitrile are preferred because they have good polymerization stability with little generation of coarse particles and little adhesion to the reactor, the precipitated polymer fine particles are not prone to secondary aggregation (or even if secondary aggregation does occur, it is easily disintegrated in an aqueous medium), they give polymers with small chain transfer constants and large degrees of polymerization (primary chain lengths), and they are easy to operate during the neutralization step described below.
 重合開始剤は、アゾ系化合物、有機過酸化物、無機過酸化物等の公知の重合開始剤を用いることができるが、特に限定されるものではない。熱開始、還元剤を併用したレドックス開始、UV開始等、公知の方法で適切なラジカル発生量となるように使用条件を調整することができる。一次鎖長の長い架橋重合体を得るためには、製造時間が許容される範囲内で、ラジカル発生量がより少なくなるように条件を設定することが好ましい。 The polymerization initiator may be any known polymerization initiator such as an azo compound, organic peroxide, or inorganic peroxide, but is not particularly limited. The conditions of use can be adjusted so that an appropriate amount of radicals is generated using known methods such as thermal initiation, redox initiation using a reducing agent, or UV initiation. To obtain a crosslinked polymer with a long primary chain length, it is preferable to set the conditions so that the amount of radicals generated is as small as possible within the allowable range of production time.
 重合開始剤の好ましい使用量は、用いる単量体成分の総量を100質量部としたときに、例えば、0.001~2質量部であり、また例えば、0.005~1質量部であり、また例えば、0.01~0.1質量部である。重合開始剤の使用量が0.001質量部以上であれば重合反応を安定的に行うことができ、2質量部以下であれば一次鎖長の長い重合体を得やすい。 The preferred amount of polymerization initiator used is, for example, 0.001 to 2 parts by mass, or, for example, 0.005 to 1 part by mass, or, for example, 0.01 to 0.1 parts by mass, when the total amount of the monomer components used is 100 parts by mass. If the amount of polymerization initiator used is 0.001 parts by mass or more, the polymerization reaction can be carried out stably, and if it is 2 parts by mass or less, a polymer with a long primary chain length is easily obtained.
 重合温度は、使用する単量体の種類及び濃度等の条件にもよるが、0~100℃が好ましく、20~80℃がより好ましい。重合温度は一定であってもよいし、重合反応の期間において変化するものであってもよい。また、重合時間は1分間~20時間が好ましく、1時間~10時間がより好ましい。 The polymerization temperature depends on the type and concentration of the monomers used, but is preferably 0 to 100°C, more preferably 20 to 80°C. The polymerization temperature may be constant or may vary over the course of the polymerization reaction. The polymerization time is preferably 1 minute to 20 hours, more preferably 1 hour to 10 hours.
 ここで、本架橋重合体は、エチレン性不飽和カルボン酸単量体を50質量%以上100質量%以下含むことができる。エチレン性不飽和カルボン酸単量体の種類は、前記の通りである。 Here, the crosslinked polymer can contain 50% by mass or more and 100% by mass or less of ethylenically unsaturated carboxylic acid monomer. The type of ethylenically unsaturated carboxylic acid monomer is as described above.
4.二次電池電極合剤層用組成物
 本発明の二次電池電極合剤層用組成物は、本バインダー、カーボンナノチューブ(CNT)、活物質及び水を含む。
 本組成物における本バインダーの使用量は、活物質の全量100質量部に対して0.5質量部以上7.0質量部以下であることが好ましい。上記使用量は、また例えば、0.8質量部以上3.0質量部以下であり、また例えば1.0質量部以上2.5質量部以下であり、また例えば1.2質量部以上1.5質量部以下である。バインダーの使用量が0.5質量部以上であれば、十分な結着性を得ることができる。また、活物質等の分散安定性を確保することができ、均一な合剤層を形成することができる。バインダーの使用量が1.5質量部以下であれば、本組成物が高粘度となることはなく、集電体への塗工性を確保することができる。その結果、均一で平滑な表面を有する合剤層を形成することができる。
4. Composition for secondary battery electrode mixture layer The composition for secondary battery electrode mixture layer of the present invention contains the present binder, carbon nanotubes (CNTs), an active material, and water.
The amount of the binder used in the composition is preferably 0.5 parts by mass or more and 7.0 parts by mass or less with respect to 100 parts by mass of the total amount of the active material. The amount is, for example, 0.8 parts by mass or more and 3.0 parts by mass or less, for example, 1.0 parts by mass or more and 2.5 parts by mass or less, and for example, 1.2 parts by mass or more and 1.5 parts by mass or less. If the amount of the binder used is 0.5 parts by mass or more, sufficient binding property can be obtained. In addition, the dispersion stability of the active material and the like can be ensured, and a uniform mixture layer can be formed. If the amount of the binder used is 1.5 parts by mass or less, the composition does not become highly viscous, and the coatability to the current collector can be ensured. As a result, a mixture layer having a uniform and smooth surface can be formed.
 本組成物におけるCNTの使用量は、活物質の全量100質量部に対して、例えば、0.01質量部以上0.5質量部以下である。上記含有量は、また例えば、0.05質量部以上0.3質量部以下であり、また例えば0.1質量部以上0.2質量部以下である。CNTの含有量が0.01質量部以上あれば、十分な導電パスを形成することができる。CNTの含有量が0.2質量部以下であれば、本組成物が高粘度となることはなく、集電体への塗工性を確保することができる。またCNTの凝集等も発生せず、その結果、均一で平滑な表面を有する電極を形成することができる。 The amount of CNT used in this composition is, for example, 0.01 parts by mass or more and 0.5 parts by mass or less, relative to 100 parts by mass of the total amount of active material. The above content is, for example, 0.05 parts by mass or more and 0.3 parts by mass or less, and for example, 0.1 parts by mass or more and 0.2 parts by mass or less. If the CNT content is 0.01 parts by mass or more, a sufficient conductive path can be formed. If the CNT content is 0.2 parts by mass or less, the composition does not become highly viscous, and coatability onto the current collector can be ensured. Furthermore, no aggregation of CNTs occurs, and as a result, an electrode with a uniform and smooth surface can be formed.
 上記活物質の内、正極活物質としては、遷移金属酸化物のリチウム塩を用いることができ、例えば、層状岩塩型及びスピネル型のリチウム含有金属酸化物を使用することができる。層状岩塩型の正極活物質の具体的な化合物としては、コバルト酸リチウム、ニッケル酸リチウム、並びに、三元系と呼ばれるNCM{Li(Ni,Co,Mn)、x+y+z=1}及びNCA{Li(Ni1-a-bCoAlb)}等が挙げられる。また、スピネル型の正極活物質としては、マンガン酸リチウム等が挙げられる。酸化物以外にもリン酸塩、ケイ酸塩及び硫黄等が使用され、リン酸塩としては、オリビン型のリン酸鉄リチウム等が挙げられる。正極活物質としては、上記のうちの1種を単独で使用してもよく、2種以上を組み合わせて混合物又は複合物として使用してもよい。 Among the above active materials, the positive electrode active material can be a lithium salt of a transition metal oxide, for example, a layered rock salt type and a spinel type lithium-containing metal oxide can be used. Specific compounds of the layered rock salt type positive electrode active material include lithium cobalt oxide, lithium nickel oxide, and ternary NCM {Li (Ni x , Co y , Mn z ), x + y + z = 1} and NCA {Li (Ni 1-a-b Co a Al b )}. In addition, as a spinel type positive electrode active material, lithium manganate and the like can be mentioned. In addition to oxides, phosphates, silicates, sulfur, and the like can be used, and as a phosphate, olivine type lithium iron phosphate and the like can be mentioned. As the positive electrode active material, one of the above may be used alone, or two or more may be combined and used as a mixture or composite.
 尚、層状岩塩型のリチウム含有金属酸化物を含む正極活物質を水に分散させた場合、活物質表面のリチウムイオンと水中の水素イオンとが交換されることにより、分散液がアルカリ性を示す。このため、一般的な正極用集電体材料であるアルミ箔(Al)等が腐食される虞がある。このような場合には、バインダーとして未中和又は部分中和された本架橋重合体を用いることにより、活物質から溶出するアルカリ分を中和することが好ましい。また、未中和又は部分中和された本架橋重合体の使用量は、本架橋重合体の中和されていないカルボキシル基量が活物質から溶出するアルカリ量に対して当量以上となるように用いることが好ましい。 When a positive electrode active material containing a layered rock salt type lithium-containing metal oxide is dispersed in water, the lithium ions on the active material surface are exchanged with hydrogen ions in the water, causing the dispersion to become alkaline. This may cause corrosion of aluminum foil (Al), which is a common positive electrode current collector material. In such cases, it is preferable to neutralize the alkali content eluted from the active material by using the unneutralized or partially neutralized present crosslinked polymer as a binder. It is also preferable to use the unneutralized or partially neutralized present crosslinked polymer in such an amount that the amount of unneutralized carboxyl groups in the present crosslinked polymer is equivalent to or greater than the amount of alkali eluted from the active material.
 正極活物質はいずれも電気伝導性が低いため、カーボンナノチューブ以外の導電助剤を添加してもよく、当該導電助剤としては、カーボンブラック、カーボンファイバー、黒鉛微粉、炭素繊維等の炭素系材料が挙げられ、これらの内、優れた導電性を得やすい点からカーボンブラック及びカーボンファイバーが好ましい。また、カーボンブラックとしては、ケッチェンブラック及びアセチレンブラックが好ましい。導電助剤は、上記の1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。カーボンナノチューブ以外の導電助剤の使用量は、導電性とエネルギー密度を両立するという観点から、活物質の全量100質量部に対して、例えば、0.2~20質量部とすることができ、また例えば、0.2~10質量部とすることができる。また、正極活物質は導電性を有する炭素系材料で表面コーティングしたものを使用してもよい。 Since all positive electrode active materials have low electrical conductivity, a conductive assistant other than carbon nanotubes may be added. Examples of the conductive assistant include carbon-based materials such as carbon black, carbon fiber, graphite powder, and carbon fiber. Of these, carbon black and carbon fiber are preferred because they are easy to obtain excellent conductivity. As carbon black, ketjen black and acetylene black are preferred. The conductive assistant may be one of the above alone or two or more may be used in combination. The amount of the conductive assistant other than carbon nanotubes may be, for example, 0.2 to 20 parts by mass, or, for example, 0.2 to 10 parts by mass, per 100 parts by mass of the total amount of the active material, from the viewpoint of achieving both electrical conductivity and energy density. The positive electrode active material may be surface-coated with a carbon-based material having electrical conductivity.
 一方、負極活物質としては、例えば炭素系材料、リチウム金属、リチウム合金及び金属酸化物等が挙げられ、これらの内の1種又は2種以上を組み合わせて用いることができる。これらの内でも、天然黒鉛、人造黒鉛、ハードカーボン及びソフトカーボン等の炭素系材料からなる活物質(以下、「炭素系活物質」ともいう。)が好ましく、天然黒鉛及び人造黒鉛等の黒鉛、並びにハードカーボンがより好ましい。また、黒鉛の場合、電池性能の面から球形化黒鉛が好適に用いられ、その粒子サイズの好ましい範囲は、例えば、1~20μmであり、また例えば、5~15μmである。
 また、エネルギー密度を高くするために、ケイ素やスズなどのリチウムを吸蔵できる金属又は金属酸化物等を負極活物質として使用することもできる。その中でも、ケイ素は黒鉛に比べて高容量であり、ケイ素、ケイ素合金及び一酸化ケイ素(SiO)等のケイ素酸化物のようなケイ素系材料からなる活物質(以下、「ケイ素系活物質」ともいう。)を用いることができる。ケイ素系活物質の使用量は、二次電池の電気容量を向上できる点から、活物質の全量に対して5.0質量%以上である、また例えば、10.0質量%以上とすることができ、また例えば、20.0質量%以上とすることができる。
On the other hand, examples of the negative electrode active material include carbon-based materials, lithium metal, lithium alloys, and metal oxides, and one or more of these can be used in combination. Among these, active materials made of carbon-based materials such as natural graphite, artificial graphite, hard carbon, and soft carbon (hereinafter also referred to as "carbon-based active materials") are preferred, and graphite such as natural graphite and artificial graphite, and hard carbon are more preferred. In the case of graphite, spherical graphite is preferably used from the viewpoint of battery performance, and the preferred range of the particle size is, for example, 1 to 20 μm, and, for example, 5 to 15 μm.
In order to increase the energy density, metals or metal oxides capable of absorbing lithium, such as silicon and tin, can also be used as the negative electrode active material. Among them, silicon has a higher capacity than graphite, and active materials made of silicon-based materials such as silicon, silicon alloys, and silicon oxides such as silicon monoxide (SiO) (hereinafter also referred to as "silicon-based active materials") can be used. The amount of silicon-based active material used is 5.0% by mass or more, for example, 10.0% by mass or more, and can be, for example, 20.0% by mass or more, based on the total amount of active materials, from the viewpoint of improving the electric capacity of the secondary battery.
 炭素系活物質は、それ自身が良好な電気伝導性を有するため、必ずしもカーボンナノチューブ以外の導電助剤を添加する必要はない。抵抗をより低減する等の目的で導電助剤を添加する場合、エネルギー密度の観点からその使用量は活物質の全量100質量部に対して、例えば、10質量部以下であり、また例えば、5質量部以下である。 Because carbon-based active materials themselves have good electrical conductivity, it is not necessary to add conductive additives other than carbon nanotubes. When a conductive additive is added for the purpose of further reducing resistance, etc., the amount used is, from the viewpoint of energy density, for example, 10 parts by mass or less, and for example, 5 parts by mass or less, per 100 parts by mass of the total amount of active material.
 本組成物がスラリー状態の場合、活物質の使用量は、本組成物全量に対して、例えば、10~75質量%の範囲であり、また例えば、30~65質量%の範囲である。活物質の使用量が10質量%以上であればバインダー等のマイグレーションが抑えられるとともに、媒体の乾燥コストの面でも有利となる。一方、75質量%以下であれば、本組成物の流動性及び塗工性を確保することができ、均一な合剤層を形成することができる。 When the composition is in a slurry state, the amount of active material used is, for example, in the range of 10 to 75 mass %, or, for example, in the range of 30 to 65 mass %, based on the total amount of the composition. If the amount of active material used is 10 mass % or more, migration of binders and the like is suppressed, and it is also advantageous in terms of the cost of drying the medium. On the other hand, if it is 75 mass % or less, the fluidity and coatability of the composition can be ensured, and a uniform mixture layer can be formed.
 本組成物は、媒体として水を使用する。また、本組成物の性状及び乾燥性等を調整する目的で、メタノール及びエタノール等の低級アルコール類、エチレンカーボネート等のカーボネート類、アセトン等のケトン類、テトラヒドロフラン、N-メチル-2-ピロリドン等の水溶性有機溶剤との混合溶媒としてもよい。混合媒体中の水の割合は、例えば、50質量%以上であり、また例えば、70質量%以上である。 This composition uses water as a medium. In order to adjust the properties and drying properties of this composition, it may be mixed with lower alcohols such as methanol and ethanol, carbonates such as ethylene carbonate, ketones such as acetone, tetrahydrofuran, N-methyl-2-pyrrolidone, and other water-soluble organic solvents. The proportion of water in the mixed medium is, for example, 50% by mass or more, and, for example, 70% by mass or more.
 本組成物を塗工可能なスラリー状態とする場合、本組成物全体に占める水を含む媒体の含有量は、スラリーの塗工性、及び乾燥に必要なエネルギーコスト、生産性の観点から、例えば、25~60質量%の範囲とすることができ、また例えば、35~60質量%とすることができる。 When the composition is made into a coatable slurry state, the content of the water-containing medium in the entire composition can be, for example, in the range of 25 to 60 mass %, and can be, for example, 35 to 60 mass %, from the viewpoints of the coatability of the slurry, the energy cost required for drying, and productivity.
 本組成物は、さらに、スチレンブタジエンゴム(SBR)系ラテックス、カルボキシメチルセルロース(CMC)、アクリル系ラテックス及びポリフッ化ビニリデン系ラテックス等の他のバインダー成分を併用してもよい。他のバインダー成分を併用する場合、その使用量は、活物質の全量100質量部に対して、例えば、0.1~5質量部以下とすることができ、また例えば、0.1~2質量部以下とすることができ、また例えば、0.1~1質量部以下とすることができる。他のバインダー成分の使用量が5質量部を超えると抵抗が増大し、ハイレート特性が不十分なものとなる場合がある。上記の中でも、結着性及び耐屈曲性のバランスに優れる点で、SBR系ラテックス、CMCが好ましく、SBR系ラテックス及びCMCを併用する事がより好ましい。 The composition may further contain other binder components such as styrene butadiene rubber (SBR) latex, carboxymethyl cellulose (CMC), acrylic latex, and polyvinylidene fluoride latex. When other binder components are used in combination, the amount of the binder components used may be, for example, 0.1 to 5 parts by mass or less, or, for example, 0.1 to 2 parts by mass or less, or, for example, 0.1 to 1 part by mass or less, relative to 100 parts by mass of the total amount of the active material. If the amount of the other binder components used exceeds 5 parts by mass, the resistance increases and the high-rate characteristics may become insufficient. Among the above, SBR latex and CMC are preferred in terms of the excellent balance between binding strength and flex resistance, and it is more preferable to use SBR latex and CMC in combination.
 上記SBR系ラテックスとは、スチレン等の芳香族ビニル単量体に由来する構造単位及び1,3-ブタジエン等の脂肪族共役ジエン系単量体に由来する構造単位を有する共重合体の水系分散体を示す。上記芳香族ビニル単量体としては、スチレンの他にα-メチルスチレン、ビニルトルエン、ジビニルベンゼン等が挙げられ、これらの内の1種又は2種以上を用いることができる。上記共重合体中における上記芳香族ビニル単量体に由来する構造単位は、主に結着性の観点から、例えば、20~70質量%の範囲とすることができ、また例えば、30~60質量%の範囲とすることができる。
 上記脂肪族共役ジエン系単量体としては、例えば、1,3-ブタジエンの他に2-メチル-1,3-ブタジエン、2,3-ジメチル-1,3-ブタジエン、2-クロロ-1,3-ブタジエン等が挙げられ、これらの内の1種又は2種以上を用いることができる。上記共重合体中における上記脂肪族共役ジエン系単量体に由来する構造単位は、バインダーの結着性及び得られる電極の柔軟性が良好なものとなる点で、例えば、30~70質量%の範囲とすることができ、また例えば、40~60質量%の範囲とすることができる。
 スチレン/ブタジエン系ラテックスは、上記の単量体以外にも、結着性等の性能をさらに向上させるために、その他の単量体として(メタ)アクリロニトリル等のニトリル基含有単量体、(メタ)アクリル酸、イタコン酸、マレイン酸等のカルボキシル基含有単量体、(メタ)アクリル酸メチル等のエステル基含有単量体を共重合単量体として用いてもよい。
 上記共重合体中における上記その他の単量体に由来する構造単位は、例えば、0~30質量%の範囲とすることができ、また例えば、0~20質量%の範囲とすることができる。
The SBR latex refers to an aqueous dispersion of a copolymer having structural units derived from an aromatic vinyl monomer such as styrene and structural units derived from an aliphatic conjugated diene monomer such as 1,3-butadiene. Examples of the aromatic vinyl monomer include α-methylstyrene, vinyltoluene, divinylbenzene, and the like, in addition to styrene, and one or more of these can be used. The structural units derived from the aromatic vinyl monomer in the copolymer can be, for example, in the range of 20 to 70% by mass, or, for example, in the range of 30 to 60% by mass, mainly from the viewpoint of binding properties.
Examples of the aliphatic conjugated diene monomer include 2-methyl-1,3-butadiene, 2,3-dimethyl-1,3-butadiene, 2-chloro-1,3-butadiene, and the like in addition to 1,3-butadiene, and one or more of these can be used. The structural unit derived from the aliphatic conjugated diene monomer in the copolymer can be in the range of, for example, 30 to 70% by mass, or, for example, 40 to 60% by mass, in terms of improving the binding property of the binder and the flexibility of the resulting electrode.
In addition to the above-mentioned monomers, the styrene/butadiene-based latex may use other monomers as copolymerization monomers, such as nitrile group-containing monomers such as (meth)acrylonitrile, carboxyl group-containing monomers such as (meth)acrylic acid, itaconic acid, maleic acid, and ester group-containing monomers such as methyl (meth)acrylate, in order to further improve performance such as binding property.
The content of the structural units derived from the other monomers in the copolymer can be, for example, in the range of 0 to 30% by mass, and can be, for example, in the range of 0 to 20% by mass.
 上記CMCとは、ノニオン性セルロース系半合成高分子化合物をカルボキシメチル基により置換した置換体及びその塩を示す。上記ノニオン性セルロース系半合成高分子化合物としては、例えば、メチルセルロース、メチルエチルセルロース、エチルセルロース、マイクロクリスタリンセルロース等のアルキルセルロース;ヒドロキシエチルセルロース、ヒドロキシブチルメチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース、ヒドロキシエチルメチルセルロース、ヒドロキシプロピルメチルセルロースステアロキシエーテル、カルボキシメチルヒドロキシエチルセルロース、アルキルヒドロキシエチルセルロース、ノノキシニルヒドロキシエチルセルロース等のヒドロキシアルキルセルロースなどが挙げられる。 The above CMC refers to a nonionic cellulose-based semisynthetic polymer compound substituted with a carboxymethyl group and its salt. Examples of the nonionic cellulose-based semisynthetic polymer compound include alkyl celluloses such as methyl cellulose, methyl ethyl cellulose, ethyl cellulose, and microcrystalline cellulose; hydroxyethyl cellulose, hydroxybutyl methyl cellulose, hydroxypropyl cellulose, hydroxypropyl methyl cellulose, hydroxyethyl methyl cellulose, hydroxypropyl methyl cellulose stearoxy ether, carboxymethyl hydroxyethyl cellulose, alkyl hydroxyethyl cellulose, and nonoxynyl hydroxyethyl cellulose.
 本発明の二次電池電極合剤層用組成物は、上記のバインダー、CNT、活物質及び水を必須の構成成分とするものであり、公知の手段を用いて各成分を混合することにより得られる。各成分の混合方法は特段制限されるものではなく、公知の方法を採用することができるが、活物質、導電助剤及びバインダー等の粉末成分をドライブレンドした後、水等の分散媒と混合し、分散混練する方法が好ましい。本組成物をスラリー状態で得る場合、分散不良や凝集のないスラリーに仕上げることが好ましい。混合手段としては、プラネタリーミキサー、薄膜旋回式ミキサー及び自公転式ミキサー等の公知のミキサーを使用することができるが、短時間で良好な分散状態が得られる点で薄膜旋回式ミキサーを使用して行うことが好ましい。また、薄膜旋回式ミキサーを用いる場合は、予めディスパー等の攪拌機で予備分散を行うことが好ましい。上記スラリーのpHは、本発明の効果を奏する限り特に制限されないが、12.5未満であることが好ましく、例えば、CMCを配合する場合にはその加水分解の懸念が小さい点で、11.5未満であることがより好ましく、10.5未満であることがさらに好ましい。また、上記スラリーの粘度は、本発明の効果を奏する限り特に制限されないが、20rpmにおけるB型粘度(25℃)として、例えば、100~30,000mPa・sの範囲とすることができ、また例えば、500~20,000mPa・s、また例えば、1,000~10,000mPa・sの範囲とすることができる。スラリーの粘度が上記の範囲内であれば、良好な塗工性を確保することができる。 The composition for secondary battery electrode mixture layer of the present invention is essentially composed of the binder, CNT, active material and water, and is obtained by mixing the components using known means. The method of mixing the components is not particularly limited, and known methods can be used, but a method of dry blending powder components such as the active material, conductive assistant and binder, and then mixing with a dispersion medium such as water and dispersing and kneading is preferred. When obtaining the composition in a slurry state, it is preferable to finish the slurry without poor dispersion or aggregation. As a mixing means, known mixers such as a planetary mixer, a thin film swirling mixer and a self-revolving mixer can be used, but it is preferable to use a thin film swirling mixer in order to obtain a good dispersion state in a short time. In addition, when using a thin film swirling mixer, it is preferable to perform preliminary dispersion in advance with a stirrer such as a disperser. The pH of the above slurry is not particularly limited as long as the effects of the present invention are achieved, but it is preferably less than 12.5. For example, when CMC is added, it is more preferable that it is less than 11.5 in terms of the small concern of hydrolysis, and even more preferable that it is less than 10.5. The viscosity of the slurry is not particularly limited as long as it provides the effects of the present invention, but can be, for example, in the range of 100 to 30,000 mPa·s, or, for example, 500 to 20,000 mPa·s, or, for example, 1,000 to 10,000 mPa·s, as the B-type viscosity (25°C) at 20 rpm. If the viscosity of the slurry is within the above range, good coatability can be ensured.
5.二次電池電極
 本発明の二次電池電極は、銅又はアルミニウム等の集電体表面に本発明の二次電池電極合剤層用組成物から形成される合剤層を備えてなるものである。合剤層は、集電体の表面に本組成物を塗工した後、水等の媒体を乾燥除去することにより形成される。本組成物を塗工する方法は特に限定されず、ドクターブレード法、ディップ法、ロールコート法、コンマコート法、カーテンコート法、グラビアコート法及びエクストルージョン法などの公知の方法を採用することができる。また、上記乾燥は、温風吹付け、減圧、(遠)赤外線、マイクロ波照射等の公知の方法により行うことができる。
 通常、乾燥後に得られた合剤層には、金型プレス及びロールプレス等による圧縮処理が施される。圧縮することにより活物質及びバインダーを密着させ、合剤層の強度及び集電体への密着性を向上させることができる。圧縮により合剤層の厚みを、例えば、圧縮前の30~80%程度に調整することができ、圧縮後の合剤層の厚みは4~200μm程度が一般的である。
5. Secondary Battery Electrode The secondary battery electrode of the present invention comprises a mixture layer formed from the composition for secondary battery electrode mixture layer of the present invention on the surface of a current collector such as copper or aluminum. The mixture layer is formed by applying the composition to the surface of the current collector and then drying and removing the medium such as water. The method for applying the composition is not particularly limited, and known methods such as doctor blade method, dip method, roll coating method, comma coating method, curtain coating method, gravure coating method and extrusion method can be adopted. In addition, the drying can be performed by known methods such as hot air blowing, reduced pressure, (far) infrared radiation, and microwave irradiation.
Usually, the mixture layer obtained after drying is subjected to a compression treatment using a mold press, a roll press, or the like. Compression brings the active material and the binder into close contact with each other, and improves the strength of the mixture layer and its adhesion to the current collector. The thickness of the mixture layer can be adjusted by compression to, for example, about 30 to 80% of the thickness before compression, and the thickness of the mixture layer after compression is generally about 4 to 200 μm.
6.二次電池
 本発明の二次電池電極にセパレータ及び電解液を備えることにより、二次電池を作製することができる。電解液は液状であってもよく、ゲル状であってもよい。
 セパレータは電池の正極及び負極間に配され、両極の接触による短絡の防止や電解液を保持してイオン導電性を確保する役割を担う。セパレータにはフィルム状の絶縁性微多孔膜であって、良好なイオン透過性及び機械的強度を有するものが好ましい。具体的な素材としては、ポリエチレン及びポリプロピレン等のポリオレフィン、ポリテトラフルオロエチレン等を使用することができる。
6. Secondary Battery A secondary battery can be produced by providing the secondary battery electrode of the present invention with a separator and an electrolyte. The electrolyte may be in a liquid or gel form.
The separator is disposed between the positive and negative electrodes of the battery, and serves to prevent short circuits caused by contact between the electrodes and to retain the electrolyte to ensure ionic conductivity. The separator is preferably a film-like insulating microporous membrane having good ion permeability and mechanical strength. Specific examples of the material that can be used include polyolefins such as polyethylene and polypropylene, and polytetrafluoroethylene.
 電解液は、活物質の種類に応じて一般的に使用される公知のものを用いることができる。リチウムイオン二次電池では、具体的な溶媒として、プロピレンカーボネート及びエチレンカーボネート等の高誘電率で電解質の溶解能力の高い環状カーボネート、並びに、エチルメチルカーボネート、ジメチルカーボネート及びジエチルカーボネート等の粘性の低い鎖状カーボネート等が挙げられ、これらを単独で又は混合溶媒として使用することができる。電解液は、これらの溶媒にLiPF、LiSbF、LiBF、LiClO、LiAlO等のリチウム塩を溶解して使用される。ニッケル水素二次電池では、電解液として水酸化カリウム水溶液を使用することができる。二次電池は、セパレータで仕切られた正極板及び負極板を渦巻き状又は積層構造にしてケース等に収納することにより得られる。 The electrolyte may be a known one that is generally used depending on the type of active material. In the lithium ion secondary battery, specific solvents include cyclic carbonates with high dielectric constant and high electrolyte dissolving ability such as propylene carbonate and ethylene carbonate, and chain carbonates with low viscosity such as ethyl methyl carbonate, dimethyl carbonate and diethyl carbonate, which may be used alone or as a mixed solvent. The electrolyte is used by dissolving lithium salts such as LiPF 6 , LiSbF 6 , LiBF 4 , LiClO 4 and LiAlO 4 in these solvents. In the nickel-hydrogen secondary battery, an aqueous potassium hydroxide solution may be used as the electrolyte. The secondary battery is obtained by storing a positive electrode plate and a negative electrode plate separated by a separator in a spiral or stacked structure in a case or the like.
 本明細書に開示される二次電池電極用バインダーは、電解液浸漬後のバインダー塗膜の強靭性に優れるとともに、当該バインダーを含む電極スラリーを用いて得られる二次電池電極合剤層は耐電解液性を示す。さらに、上記バインダーを使用して得られた電極を備えた二次電池は、良好な一体性を確保でき、充放電を繰り返しても良好な耐久性(サイクル特性)を示すため、車載用二次電池等に好適である。 The binder for secondary battery electrodes disclosed in this specification provides excellent toughness of the binder coating film after immersion in electrolyte, and the electrode mixture layer of a secondary battery obtained using an electrode slurry containing the binder exhibits electrolyte resistance. Furthermore, a secondary battery equipped with an electrode obtained using the binder can ensure good integrity and exhibits good durability (cycle characteristics) even after repeated charging and discharging, making it suitable for use as a secondary battery for vehicles, etc.
 以下、実施例に基づいて本発明を具体的に説明する。尚、本発明は、これらの実施例により限定されるものではない。尚、以下において「部」及び「%」は、特に断らない限り質量部及び質量%を意味する。 The present invention will be specifically explained below based on examples. Note that the present invention is not limited to these examples. Note that in the following, "parts" and "%" refer to parts by mass and % by mass unless otherwise specified.
≪本架橋重合体塩の製造≫
(製造例1:カルボキシル基含有架橋重合体塩R-1の製造)
 重合には、攪拌翼、温度計、還流冷却器及び窒素導入管を備えた反応器を用いた。
 反応器内にアセトニトリル567部、イオン交換水2.20部、アクリル酸(以下、「AA」という)100.0部、トリメチロールプロパンジアリルエーテル(大阪ソーダ社製、商品名「ネオアリルT-20」)0.90部及び上記AAに対して1.0モル%に相当するトリエチルアミンを仕込んだ。反応器内を十分に窒素置換した後、加温して内温を55℃まで昇温した。内温が55℃で安定したことを確認した後、重合開始剤として2,2’-アゾビス(2,4-ジメチルバレロニトリル)(和光純薬工業社製、商品名「V-65」)0.040部を添加したところ、反応液に白濁が認められたため、この点を重合開始点とした。外温(水バス温度)を調整して内温を55℃に維持しながら重合反応を継続し、重合開始点から24時間経過した時点で反応液の冷却を開始し、内温が25℃まで低下した後、水酸化リチウム・一水和物(以下、「LiOH・HO」という)の粉末52.4部を添加した。添加後室温下12時間撹拌を継続して、カルボキシル基含有架橋重合体塩R-1(Li塩、中和度90モル%)の粒子が媒体に分散したスラリー状の重合反応液を得た。
<Production of the present crosslinked polymer salt>
(Production Example 1: Production of Carboxyl Group-Containing Crosslinked Polymer Salt R-1)
For the polymerization, a reactor equipped with a stirring blade, a thermometer, a reflux condenser and a nitrogen inlet tube was used.
Into a reactor, 567 parts of acetonitrile, 2.20 parts of ion-exchanged water, 100.0 parts of acrylic acid (hereinafter referred to as "AA"), 0.90 parts of trimethylolpropane diallyl ether (manufactured by Osaka Soda Co., Ltd., trade name "Neoallyl T-20"), and triethylamine equivalent to 1.0 mol% relative to the AA were charged. After the inside of the reactor was sufficiently replaced with nitrogen, the inside temperature was raised to 55°C by heating. After confirming that the inside temperature was stable at 55°C, 0.040 parts of 2,2'-azobis(2,4-dimethylvaleronitrile) (manufactured by Wako Pure Chemical Industries, Ltd., trade name "V-65") was added as a polymerization initiator, and the reaction solution became cloudy, so this point was determined as the polymerization initiation point. The polymerization reaction was continued while maintaining the internal temperature at 55° C. by adjusting the external temperature (water bath temperature), and cooling of the reaction solution was started 24 hours after the polymerization initiation point, and after the internal temperature had dropped to 25° C., 52.4 parts of lithium hydroxide monohydrate (hereinafter referred to as "LiOH.H 2 O") powder was added. After the addition, stirring was continued at room temperature for 12 hours to obtain a slurry-like polymerization reaction solution in which particles of the carboxyl group-containing crosslinked polymer salt R-1 (Li salt, neutralization degree 90 mol%) were dispersed in the medium.
 得られた重合反応液を遠心分離して重合体粒子を沈降させた後、上澄みを除去した。その後、重合反応液と同重量のアセトニトリルに沈降物を再分散させた後、遠心分離により重合体粒子を沈降させて上澄みを除去する洗浄操作を2回繰り返した。沈降物を回収し、減圧条件下、80℃で3時間乾燥処理を行い、揮発分を除去することにより、カルボキシル基含有重合体塩R-1の粉末を得た。架橋重合体塩R-1は吸湿性を有するため、水蒸気バリア性を有する容器に密封保管した。なお、架橋重合体塩R-1の粉末をIR測定し、カルボン酸のC=O基由来のピークとカルボン酸LiのC=O由来のピークの強度比より中和度を求めたところ、仕込みからの計算値に等しく90モル%であった。 The resulting polymerization reaction solution was centrifuged to settle the polymer particles, and the supernatant was removed. The precipitate was then redispersed in acetonitrile of the same weight as the polymerization reaction solution, and the polymer particles were centrifuged to settle and the supernatant was removed. This washing procedure was repeated twice. The precipitate was collected and dried at 80°C for 3 hours under reduced pressure to remove the volatiles, yielding a powder of carboxyl group-containing polymer salt R-1. Since crosslinked polymer salt R-1 is hygroscopic, it was sealed and stored in a container with water vapor barrier properties. The powder of crosslinked polymer salt R-1 was subjected to IR measurement, and the degree of neutralization was calculated from the intensity ratio of the peak derived from the C=O group of the carboxylic acid and the peak derived from the C=O of the Li carboxylate, which was 90 mol%, equal to the calculated value from the charge.
(製造例2~6:カルボキシル基含有架橋重合体塩R-2~R-6の製造)
 単量体、架橋性単量体、及び中和剤の仕込み量を表1に記載の通りとした以外は製造例1と同様の操作を行い、カルボキシル基含有架橋重合体塩R-2~R-6を含む重合反応液を得た。
 次いで、各重合反応液について製造例1と同様の操作を行い、粉末状の架橋重合体塩R-2~R-6を得た。各カルボキシル基含有架橋重合体塩は、水蒸気バリア性を有する容器に密封保管した。
(Production Examples 2 to 6: Production of Carboxyl Group-Containing Crosslinked Polymer Salts R-2 to R-6)
The same operation as in Production Example 1 was carried out except that the amounts of the monomer, crosslinkable monomer, and neutralizing agent charged were as shown in Table 1, to obtain polymerization reaction solutions containing carboxyl group-containing crosslinked polymer salts R-2 to R-6.
Next, the same operation as in Production Example 1 was carried out for each polymerization reaction solution to obtain powdered crosslinked polymer salts R-2 to R-6. Each carboxyl group-containing crosslinked polymer salt was stored in a sealed container having water vapor barrier properties.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1において用いた化合物の詳細を以下に示す。
・AA:アクリル酸
・HEA:2-ヒドロキシエチルアクリレート
・T-20:トリメチロールプロパンジアリルエーテル(大阪ソーダ社製、商品名「ネオアリルT-20」)
・TEA:トリエチルアミン
・AcN:アセトニトリル
・V-65:2,2’-アゾビス(2,4-ジメチルバレロニトリル)(富士フイルム和光純薬社製、商品名「V-65」)
・LiOH・HO:水酸化リチウム・一水和物
・NaOH:水酸化ナトリウム
Details of the compounds used in Table 1 are shown below.
AA: acrylic acid; HEA: 2-hydroxyethyl acrylate; T-20: trimethylolpropane diallyl ether (manufactured by Osaka Soda Co., Ltd., product name "Neoallyl T-20")
TEA: triethylamine AcN: acetonitrile V-65: 2,2'-azobis(2,4-dimethylvaleronitrile) (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., product name "V-65")
LiOH.H 2 O: Lithium hydroxide monohydrate NaOH: Sodium hydroxide
実施例1
(電極合剤層用組成物(電極スラリー)の調製)
 活物質としては人造黒鉛(昭和電工社製 商品名「SCMG-CF」)、SiO(大阪チタニウムテクノロジーズ社製 5μm)を用いた。バインダーとしては、架橋重合体R-1、スチレン/ブタジエン系ラテックス(SBR)及び、及びカルボキシメチルセルロースナトリウム(CMC)の混合物を用いた。導電助剤としては単層CNT(OCSiAl社製 商品名「TuballBATT HO」(溶媒:水、単層CNT含有量:0.4質量%))を使用した。
 プラネタリーミキサー(プライミクス社製 ハイビスミックス2P-03型)に電極合剤層用組成物の固形分濃度が53質量%となるように、水を希釈溶媒として、人造黒鉛:SiO:架橋重合体塩R-1:SBR:CMC:単層CNT=77.6:19.4:1.0:2.0:1.0:0.1(固形分)の質量比で添加して、1時間30分混合し、スラリー状態の電極合剤層用組成物(電極スラリー)を調製した。
Example 1
(Preparation of electrode mixture layer composition (electrode slurry))
The active materials used were artificial graphite (manufactured by Showa Denko K.K., product name "SCMG-CF") and SiO (manufactured by Osaka Titanium Technologies Co., Ltd., 5 μm). The binder used was a mixture of crosslinked polymer R-1, styrene/butadiene-based latex (SBR), and sodium carboxymethyl cellulose (CMC). The conductive assistant used was single-walled CNT (manufactured by OCSiAl K.K., product name "TuballBATT H 2 O" (solvent: water, single-walled CNT content: 0.4% by mass).
Water was used as a dilution solvent to add artificial graphite:SiO:crosslinked polymer salt R-1:SBR:CMC:single-walled CNT in a mass ratio of 77.6:19.4:1.0:2.0:1.0:0.1 (solids) to a planetary mixer (Hibismix 2P-03 model, manufactured by Primix Corporation) so that the solids concentration of the electrode mixture layer composition was 53 mass%, and the mixture was mixed for 1 hour and 30 minutes to prepare a slurry-state electrode mixture layer composition (electrode slurry).
(負極極板の作製)
 次いで、可変式アプリケーターを用いて、厚さ16.5μmの集電体(銅箔)上に上記電極スラリーを塗布し、通風乾燥機内で80℃×15分間の乾燥を行うことにより合剤層を形成した。その後、合剤層の厚みが50±5μm、合剤密度が1.60±0.10g/cmになるよう圧延した後、電池評価用に3cm正方に打ち抜いて負極極板を得た。
(Preparation of negative electrode plate)
Next, the electrode slurry was applied onto a 16.5 μm-thick current collector (copper foil) using a variable applicator, and dried in a ventilated dryer at 80° C. for 15 minutes to form a mixture layer. After that, the mixture layer was rolled to a thickness of 50±5 μm and a mixture density of 1.60±0.10 g/cm 3 , and then punched out into a 3 cm square to obtain a negative electrode plate for battery evaluation.
(正極極板の作製)
 N-メチルピロリドン(NMP)溶媒中、正極活物質としてLiNi0.5Co0.2Mn0.3(NCM)を100部、アセチレンブラックを2部、混合して添加し、正極用バインダーとしてポリフッ化ビニリデン(PVDF)を4部混合し、正極合剤層用組成物を調製した。アルミニウム集電体(厚み:20μm)に前記正極合剤層用組成物を塗布乾燥することにより合剤層を形成した。その後、合剤層の厚みが125μm、合剤密度が3.0g/cmになるように圧延した後、電池評価用に3cm正方に打ち抜いて正極極板を得た。
(Preparation of Positive Electrode Plate)
In N-methylpyrrolidone (NMP) solvent, 100 parts of LiNi 0.5 Co 0.2 Mn 0.3 O 2 (NCM) as a positive electrode active material, 2 parts of acetylene black, were mixed and added, and 4 parts of polyvinylidene fluoride (PVDF) were mixed as a positive electrode binder to prepare a positive electrode mixture layer composition. The positive electrode mixture layer composition was applied to an aluminum current collector (thickness: 20 μm) and dried to form a mixture layer. Thereafter, the mixture layer was rolled to a thickness of 125 μm and a mixture density of 3.0 g/cm 3 , and then punched into a 3 cm square to obtain a positive electrode plate for battery evaluation.
(電解液の調製)
 エチレンカーボネート(EC)とジメチルカーボネート(DMC)とからなる混合溶媒(体積比でEC:DMC=3:7)に、ビニレンカーボネート(VC)を1質量%、フルオロエチレンカーボネート(FEC)を2質量%になるように添加し、LiPFを1.2モル/リットル溶解して非水電解質を調製した。
(Preparation of Electrolyte)
Vinylene carbonate (VC) was added to a mixed solvent of ethylene carbonate (EC) and dimethyl carbonate (DMC) (volume ratio of EC:DMC=3:7), and fluoroethylene carbonate (FEC) was added to a concentration of 1 mass%. LiPF6 was dissolved at 1.2 mol/L to prepare a nonaqueous electrolyte.
(二次電池の作製)
 電池の構成は、正・負極それぞれにリード端子を取り付け、セパレータ(ポリエチレン製:膜厚16μm、空孔率47%)を介して対向させた電極体を電池外装体としてアルミニウムラミネートを用いたものに入れて注液を行い、封止して試験用電池とした。尚、本試作電池の設計容量は50mAhである。電池の設計容量としては、4.2Vまでの充電終止電圧を基準にして設計を行った。
(Preparation of secondary battery)
The battery was constructed by attaching lead terminals to the positive and negative electrodes, and placing the electrodes facing each other through a separator (made of polyethylene: film thickness 16 μm, porosity 47%) in an aluminum laminate battery exterior, injecting electrolyte, and sealing the battery to prepare a test battery. The design capacity of this prototype battery was 50 mAh. The design capacity of the battery was based on the charge cut-off voltage of 4.2 V.
<サイクル特性の評価>
 上記で作製したラミネート型セルのリチウムイオン二次電池を、45℃の環境下でCC充放電にて2.5から4.2Vの条件下、0.1Cの充放電レートにて充放電の操作を行い、初期容量Cを測定した。さらに、45℃の環境下で充放電をCC充放電にて2.5から4.2Vの条件下、0.5Cの充放電レートにて繰り返し、100サイクル後の容量C100と、300サイクル後の容量C300を測定した。
 ここで、以下の式によりサイクル特性(ΔC)を求めた。
 100サイクル後の充放電容量保持率ΔC100=C100/C×100(%)
 300サイクル後の充放電容量保持率ΔC300=C100/C×100(%)
 上記の式で算出されるΔC100は91.2%であり、以下の基準に基づくサイクル特性は「A」と評価された。
 また、上記の式で算出されるΔC300は82.6%であり、以下の基準に基づくサイクル特性は「A」と評価された。
 なお、ΔCの値が高いほどサイクル特性に優れることを示す。
(サイクル特性ΔC100の判定基準)
 A:充放電容量保持率が90%以上
 B:充放電容量保持率が80%以上90%未満
 C:充放電容量保持率が70%以上80%未満
 D:充放電容量保持率が70%未満
(サイクル特性ΔC300の判定基準)
 A:充放電容量保持率が80%以上
 B:充放電容量保持率が70%以上80%未満
 C:充放電容量保持率が60%以上70%未満
 D:充放電容量保持率が60%未満
<Evaluation of cycle characteristics>
The lithium ion secondary battery of the laminated cell prepared above was charged and discharged at a charge/discharge rate of 0.1 C under conditions of 2.5 to 4.2 V by CC charging/discharging in an environment of 45° C., and the initial capacity C 0 was measured. Furthermore, charging/discharging was repeated at a charge/discharge rate of 0.5 C under conditions of 2.5 to 4.2 V by CC charging/discharging in an environment of 45° C., and the capacity C 100 after 100 cycles and the capacity C 300 after 300 cycles were measured.
Here, the cycle characteristic (ΔC) was calculated by the following formula.
Charge/discharge capacity retention rate after 100 cycles ΔC 100 =C 100 /C 0 ×100(%)
Charge/discharge capacity retention rate after 300 cycles ΔC 300 =C 100 /C 0 ×100(%)
The ΔC 100 calculated by the above formula was 91.2%, and the cycle characteristics based on the following criteria were evaluated as "A".
Moreover, ΔC 300 calculated by the above formula was 82.6%, and the cycle characteristics based on the following criteria were evaluated as “A”.
A higher ΔC value indicates better cycle characteristics.
(Criteria for Cycle Characteristics ΔC 100 )
A: Charge/discharge capacity retention rate is 90% or more. B: Charge/discharge capacity retention rate is 80% or more and less than 90%. C: Charge/discharge capacity retention rate is 70% or more and less than 80%. D: Charge/discharge capacity retention rate is less than 70% (criteria for determining cycle characteristic ΔC 300 ).
A: Charge/discharge capacity retention rate is 80% or more. B: Charge/discharge capacity retention rate is 70% or more and less than 80%. C: Charge/discharge capacity retention rate is 60% or more and less than 70%. D: Charge/discharge capacity retention rate is less than 60%.
<電極の膨張率の評価>
 上記で300回のサイクル試験を実施したラミネート型セルのリチウムイオン二次電池を分解して、負極を回収した。各回収された負極をDMC(ジメチルカーボネート)溶媒で洗浄し、常温で1日自然乾燥させた後、厚さを測定した。これにより、測定された厚さを次の式に代入して、負極の膨張率を計算した。
 [電極の膨張率(%)]=100×{(電池の放電負極の厚さ)-(銅箔の厚さ)}/{(組み立て前の負極の厚さ)-(銅箔の厚さ)}
 上記の式で算出される電極の膨張率は162%であり、以下の基準に基づく当該膨張率は「A」と評価された。
 なお、電極の膨張率の値が低いほど電極の膨張抑制効果を発現しており、電池性能として優れることを示す。
(電極の膨張率の判定基準)
 A:電極の膨張率が180%未満
 B:電極の膨張率が180%以上200%未満
 C:電極の膨張率が200%以上250%未満
 D:電極の膨張率が250%以上
<Evaluation of electrode expansion rate>
The laminated cell lithium ion secondary battery that had been subjected to the 300 cycle test was disassembled to recover the negative electrode. Each recovered negative electrode was washed with a DMC (dimethyl carbonate) solvent, naturally dried at room temperature for one day, and then its thickness was measured. The measured thickness was then substituted into the following equation to calculate the expansion rate of the negative electrode.
[Expansion rate of electrode (%)]=100×{(Thickness of discharged negative electrode of battery)−(Thickness of copper foil)}/{(Thickness of negative electrode before assembly)−(Thickness of copper foil)}
The expansion rate of the electrode calculated by the above formula was 162%, and the expansion rate based on the following criteria was evaluated as "A".
The lower the expansion rate of the electrode, the greater the effect of suppressing the expansion of the electrode, which indicates superior battery performance.
(Criteria for electrode expansion rate)
A: The expansion rate of the electrode is less than 180%. B: The expansion rate of the electrode is 180% or more and less than 200%. C: The expansion rate of the electrode is 200% or more and less than 250%. D: The expansion rate of the electrode is 250% or more.
実施例2~14及び比較例1~2
 配合を表2の通り用いた以外は、実施例1と同様の操作を行うことにより電極スラリーを調製した。各電極スラリーを用いて得られた負極極板の電池のサイクル特性と電極の膨張率を評価し、結果を表2に示した。
Examples 2 to 14 and Comparative Examples 1 to 2
Electrode slurries were prepared in the same manner as in Example 1, except that the compositions were as shown in Table 2. The cycle characteristics and electrode expansion rate of the negative electrode plates obtained using each electrode slurry were evaluated, and the results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2において用いた化合物の詳細を以下に示す。
 SBR:スチレンブタジエンゴム
 CMC:カルボキシメチルセルロースナトリウム
 AB:アセチレンブラック
Details of the compounds used in Table 2 are shown below.
SBR: Styrene butadiene rubber CMC: Sodium carboxymethyl cellulose AB: Acetylene black
≪評価結果≫
 実施例1~14の結果から明らかなように、本発明の二次電池電極合剤層用組成物(電極スラリー)を使用して得られた電極を備えた二次電池は、100サイクルでの容量維持率が優れるだけでなく、300サイクルという高充放電回数での使用においても高い容量維持率を示した。また、試験後の負極の膨張抑制という効果もみられた。
 これらの中でも、カーボンナノチューブの使用量について比較すると、前記活物質の総量100質量部に対して0.1質量部の場合(実施例1)及び0.2質量部の場合(実施例2)が、単層CNTの使用量が0.05質量部の場合(実施例3)と比べて、300サイクル時点での容量維持率と膨張抑制効果に一層優れるという結果を示した。
 これは、繰り返しの充放電による負極の膨張による活物質間距離の増加に対して、高アスペクト比の構造を持つカーボンナノチューブの使用量が多いほど、導電パスの形成箇所が多くなり、容量が劣化しにくくなる効果であると考えられる。
<Evaluation Results>
As is clear from the results of Examples 1 to 14, the secondary battery provided with an electrode obtained using the composition for secondary battery electrode mixture layer (electrode slurry) of the present invention not only exhibited an excellent capacity retention rate at 100 cycles, but also showed a high capacity retention rate even when used at a high number of charge/discharge cycles of 300. In addition, the effect of suppressing the expansion of the negative electrode after the test was also observed.
Among these, when comparing the amount of carbon nanotubes used, the results showed that when 0.1 part by mass (Example 1) and 0.2 part by mass (Example 2) were used relative to 100 parts by mass of the total amount of the active material, the capacity retention rate and expansion inhibition effect at 300 cycles were superior to when 0.05 part by mass of single-walled CNTs was used (Example 3).
This is thought to be due to the effect that, in response to the increase in the distance between active materials due to the expansion of the negative electrode caused by repeated charging and discharging, the more carbon nanotubes with a high aspect ratio structure are used, the more locations where conductive paths are formed, making the capacity less likely to deteriorate.
 これに対して、導電助剤としてアセチレンブラック(AB)を使用した場合(比較例1)は、100サイクル時点の容量維持率が若干劣ることに加え、さらに充放電を繰り返した300サイクル時点の容量維持率は大きく下がる結果となった。 In contrast, when acetylene black (AB) was used as the conductive additive (Comparative Example 1), the capacity retention rate at 100 cycles was slightly lower, and after further repeated charging and discharging, the capacity retention rate at 300 cycles was significantly lower.
 次に、カルボキシル基含有架橋重合体の中和度に着目すると、当該重合体の中和度が60モル%の場合(実施例5)に対して、中和度80モル%の場合(実施例4)の方が電池性能に一層優れるという結果であった。
 これは、カルボキシル基含有架橋重合体の中和度が高いほど、当該重合体のガラス転移点が上昇し、電極作製工程における加熱乾燥工程において当該重合体の融着が抑制され、均一な電極を得ることができるためと考えられる。
Next, in terms of the degree of neutralization of the carboxyl group-containing crosslinked polymer, the results showed that the battery performance was superior when the degree of neutralization of the polymer was 80 mol % (Example 4) compared to when the degree of neutralization of the polymer was 60 mol % (Example 5).
This is believed to be because, as the degree of neutralization of the carboxyl group-containing crosslinked polymer increases, the glass transition point of the polymer increases, suppressing fusion of the polymer during the heating and drying step in the electrode production process, thereby enabling the production of a uniform electrode.
 また、カルボキシル基含有架橋重合体の架橋性単量体に由来する構造単位の含有量が多い(架橋重合体の架橋度を上昇させた)場合(実施例6)と比べて、当該構造単位の含有量が少ない(架橋度が低い)場合(実施例1)の方が電池特性に一層優れるという結果であった。
 これは、カルボキシル基含有架橋重合体の架橋度が上昇することで、電極スラリー中での水膨潤度が低下し、活物質との密着点が小さくなることで結着性がやや下がり、繰り返しの充放電による活物質の膨潤収縮の影響を受けやすくなるためと考えられる。
In addition, the results showed that the battery characteristics were better when the content of the structural unit derived from the crosslinkable monomer in the carboxyl group-containing crosslinked polymer was low (the degree of crosslinking was low) (Example 1) than when the content of the structural unit was high (the degree of crosslinking of the crosslinked polymer was increased) (Example 6).
This is believed to be because an increase in the degree of crosslinking of the carboxyl group-containing crosslinked polymer reduces the degree of swelling in water in the electrode slurry, and the number of contact points with the active material decreases, resulting in a slight decrease in adhesion and making the polymer more susceptible to the effects of swelling and shrinkage of the active material due to repeated charging and discharging.
 中和塩をNa塩に変更した場合(実施例7)もLi塩の場合(実施例1)と同等の電池性能を示した。
 これは、45℃環境下であれば、架橋重合体の中和塩を種類に依らず、等の結着性や剛性を示すためと考えられる。
When the neutralization salt was changed to a Na salt (Example 7), the battery performance was equivalent to that when the neutralization salt was changed to a Li salt (Example 1).
This is believed to be because in a 45° C. environment, the neutralized salt of the crosslinked polymer exhibits the same binding properties and rigidity regardless of the type.
 エチレン性不飽和カルボン酸単量体に由来する構造単位の含有量に着目すると、当該含有量が80質量%の場合(実施例8)と比べて、当該含有量が100質量%の場合(実施例1)の方が電池特性に一層優れるという結果であった。
 これは、架橋重合体中のカルボキシル基の含有量が多いほど活物質との結着性に優れることから、長期の電池使用においても電極構造の破壊を抑えることができるためと考えられる。
Focusing on the content of structural units derived from ethylenically unsaturated carboxylic acid monomers, the results showed that the battery characteristics were superior when the content was 100% by mass (Example 1) compared to when the content was 80% by mass (Example 8).
This is believed to be because the greater the content of carboxyl groups in the crosslinked polymer, the better the binding ability with the active material, and therefore the more likely it is that the destruction of the electrode structure can be suppressed even during long-term battery use.
 カルボキシル基含有架橋重合体塩の使用量について比較すると、前記活物質の総量100質量部に対して1.0質量部の場合(実施例1)の方が、カルボキシル基含有架橋重合体塩の使用量が0.5質量部の場合(実施例9)、1.5質量部の場合(実施例10)及び3.0質量部(実施例11)の場合と比べて、300サイクル時点での容量維持率と膨張抑制効果に一層優れるという結果を示した。
 これは、カルボキシル基含有架橋重合体塩の使用量が少ないほど、電極中での結着点が少なくなるため高サイクル回数の充放電による活物質間距離の増大が起こりやすくなるためと考えられる。また、カルボキシル基含有架橋重合体塩の使用量が多いほど、結着点は増加するが、当該重合体の脆性が電極物性に影響を及ぼすようになり、活物質の膨張収縮による応力の影響を受けやすくなり劣化につながるためと考えられる。
When comparing the amounts of the carboxyl group-containing crosslinked polymer salt used, the result showed that when the amount of the carboxyl group-containing crosslinked polymer salt used was 1.0 part by mass (Example 1) relative to 100 parts by mass of the total amount of the active material, the capacity retention rate at 300 cycles and the expansion suppression effect were more excellent than when the amount of the carboxyl group-containing crosslinked polymer salt used was 0.5 parts by mass (Example 9), 1.5 parts by mass (Example 10), and 3.0 parts by mass (Example 11).
This is believed to be because the smaller the amount of carboxyl group-containing crosslinked polymer salt used, the fewer the bonding points in the electrode, which makes it easier for the distance between the active materials to increase due to high cycle charging and discharging. Also, the larger the amount of carboxyl group-containing crosslinked polymer salt used, the more the bonding points increase, but the brittleness of the polymer affects the physical properties of the electrode, making it more susceptible to the stress caused by the expansion and contraction of the active materials, which leads to deterioration.
 ケイ素系活物質の使用量については、実施例1よりも増やして29.1質量部とした場合(実施例12)や、実施例1よりも減らして9.7質量部とした場合(実施例13)及び4.9質量部とした場合(実施例14)であっても、良好な容量維持率と膨張抑制効果を示した。
 これは、本架橋重合体塩と単層CNTを併用することで、ケイ素粒子の使用量によらず、合剤層中の構造破壊や導電パス切れを抑制しながら繰り返しの充放電を行うことができるためと考えられる。
Regarding the amount of silicon-based active material used, even when it was increased from Example 1 to 29.1 parts by mass (Example 12), or when it was decreased from Example 1 to 9.7 parts by mass (Example 13), or to 4.9 parts by mass (Example 14), good capacity retention and expansion suppression effects were observed.
This is believed to be because the combination of this crosslinked polymer salt and single-walled CNTs makes it possible to perform repeated charging and discharging while suppressing structural destruction and conductive path disconnection in the composite layer, regardless of the amount of silicon particles used.
 これらに対して、カルボキシル基含有架橋重合体塩を使用しなかった場合(比較例2)は100サイクル時点では良好なサイクル維持率を示したものの、300サイクルの繰り返し充放電を行った後には容量が大きく劣化する結果となった。
 これは100サイクル時点では、単層CNTの良好な導電性によって、活物質間の導電パスが維持され、容量が保たれているが、架橋重合体塩を使用しない場合は結着力が大きく劣るため、繰り返しの充放電回数が多くなるほど、活物質間距離も大きくなり、単層CNTによる導電パスも切断され、容量劣化につながったためと考えられる。
In contrast, when no carboxyl group-containing crosslinked polymer salt was used (Comparative Example 2), a good cycle retention rate was observed at the 100th cycle, but the capacity was significantly deteriorated after 300 cycles of repeated charging and discharging.
This is thought to be because at the 100th cycle, the conductive paths between the active materials were maintained and the capacity was preserved due to the good conductivity of the single-walled CNTs, but when the cross-linked polymer salt was not used, the binding strength was significantly inferior, and therefore the distance between the active materials increased with the number of repeated charge/discharge cycles, causing the conductive paths through the single-walled CNTs to be cut, leading to deterioration of the capacity.
 本明細書に開示される二次電池電極用バインダーを使用して得られた電極を備えた二次電池は、良好な一体性を確保でき、従来よりも長期間の使用において、充放電による膨張収縮を抑制しつつ、充放電を繰り返しても良好な耐久性(サイクル特性)を示すため、車載用二次電池等の高容量化への寄与が期待される。
 本発明の二次電池電極用バインダーは、特に非水電解質二次電池電極に好適に用いることができ、中でも、エネルギー密度が高い非水電解質リチウムイオン二次電池に有用である。
A secondary battery equipped with an electrode obtained using the binder for secondary battery electrodes disclosed in this specification can ensure good integrity, and when used for a longer period of time than before, exhibits good durability (cycle characteristics) even when repeatedly charged and discharged while suppressing expansion and contraction due to charging and discharging, and is therefore expected to contribute to increasing the capacity of vehicle-mounted secondary batteries, etc.
The binder for secondary battery electrodes of the present invention can be suitably used in particular for electrodes of non-aqueous electrolyte secondary batteries, and is particularly useful for non-aqueous electrolyte lithium ion secondary batteries having high energy density.

Claims (9)

  1.  カーボンナノチューブを含む二次電池電極を備える二次電池の電極用バインダーであって、
     カルボキシル基含有架橋重合体又はその塩を含む、電極用バインダー。
    An electrode binder for a secondary battery having a secondary battery electrode containing carbon nanotubes,
    An electrode binder comprising a carboxyl group-containing crosslinked polymer or a salt thereof.
  2.  前記カルボキシル基含有架橋重合体は、その全構造単位に対し、エチレン性不飽和カルボン酸単量体に由来する構造単位を50質量%以上100質量%以下含む、請求項1に記載の電極用バインダー。 The electrode binder according to claim 1, wherein the carboxyl group-containing crosslinked polymer contains 50% by mass or more and 100% by mass or less of structural units derived from ethylenically unsaturated carboxylic acid monomers relative to the total structural units of the polymer.
  3.  請求項1又は2に記載の電極用バインダー、カーボンナノチューブ、活物質及び水を含む、二次電池電極合剤層用組成物。 A composition for a secondary battery electrode mixture layer, comprising the electrode binder according to claim 1 or 2, carbon nanotubes, an active material, and water.
  4.  ケイ素系活物質の含有量は、前記活物質の全量に対して5.0質量%以上である、請求項3に記載の二次電池電極合剤層用組成物。 The composition for secondary battery electrode mixture layer according to claim 3, wherein the content of the silicon-based active material is 5.0 mass% or more based on the total amount of the active material.
  5.  前記電極用バインダーの含有量は、前記活物質の全量100質量部に対して1.0質量部以上2.5質量部以下である、請求項3に記載の二次電池電極合剤層用組成物。 The composition for secondary battery electrode mixture layer according to claim 3, wherein the content of the electrode binder is 1.0 parts by mass or more and 2.5 parts by mass or less per 100 parts by mass of the total amount of the active material.
  6.  前記カーボンナノチューブの含有量は、前記活物質の全量100質量部に対して0.1質量部以上である、請求項3に記載の二次電池電極合剤層用組成物。 The composition for secondary battery electrode mixture layer according to claim 3, wherein the content of the carbon nanotubes is 0.1 parts by mass or more per 100 parts by mass of the total amount of the active material.
  7.  前記カーボンナノチューブは、単層構造体を含む、請求項3に記載の二次電池電極合剤層用組成物。 The secondary battery electrode mixture layer composition according to claim 3, wherein the carbon nanotubes include a single-layer structure.
  8.  集電体表面に、請求項3に記載の二次電池電極合剤層用組成物から形成される合剤層を備える、二次電極。 A secondary electrode having a mixture layer formed from the secondary battery electrode mixture layer composition described in claim 3 on a collector surface.
  9.  請求項8に記載の二次電極を備える、二次電池。 A secondary battery comprising the secondary electrode according to claim 8.
PCT/JP2024/014033 2023-04-10 2024-04-05 Binder for electrode of secondary battery provided with secondary battery electrode containing carbon nanotubes, and use thereof WO2024214639A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2023-063755 2023-04-10
JP2023063755 2023-04-10

Publications (1)

Publication Number Publication Date
WO2024214639A1 true WO2024214639A1 (en) 2024-10-17

Family

ID=93059232

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2024/014033 WO2024214639A1 (en) 2023-04-10 2024-04-05 Binder for electrode of secondary battery provided with secondary battery electrode containing carbon nanotubes, and use thereof

Country Status (1)

Country Link
WO (1) WO2024214639A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013099990A1 (en) * 2011-12-27 2013-07-04 日本ゼオン株式会社 Positive electrode for secondary batteries, method for producing same, slurry composition, and secondary battery
WO2017073589A1 (en) * 2015-10-30 2017-05-04 東亞合成株式会社 Binder for nonaqueous electrolyte secondary cell electrode, method for producing binder, and use thereof
WO2022004540A1 (en) * 2020-06-30 2022-01-06 パナソニックIpマネジメント株式会社 Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013099990A1 (en) * 2011-12-27 2013-07-04 日本ゼオン株式会社 Positive electrode for secondary batteries, method for producing same, slurry composition, and secondary battery
WO2017073589A1 (en) * 2015-10-30 2017-05-04 東亞合成株式会社 Binder for nonaqueous electrolyte secondary cell electrode, method for producing binder, and use thereof
WO2022004540A1 (en) * 2020-06-30 2022-01-06 パナソニックIpマネジメント株式会社 Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery

Similar Documents

Publication Publication Date Title
JP6465323B2 (en) Nonaqueous electrolyte secondary battery electrode binder and use thereof
JP6665857B2 (en) Composition for non-aqueous electrolyte secondary battery electrode mixture layer, method for producing the same, and use thereof
KR20170078623A (en) Paste composition for negative electrode for lithium-ion rechargeable battery, composite particles for negative electrode for lithium-ion rechargeable battery, slurry composition for negative electrode for lithium-ion rechargeable battery, negative electrode for lithium-ion rechargeable battery, and lithium-ion rechargeable battery
JP6638747B2 (en) Binder for secondary battery electrode and its use
JP6388145B2 (en) Nonaqueous electrolyte secondary battery electrode mixture layer composition, method for producing the same, and use thereof
WO2017077940A1 (en) Binder for negative electrodes of lithium ion secondary batteries, slurry composition for negative electrodes, negative electrode, and lithium ion secondary battery
JPWO2018180812A1 (en) Method for producing crosslinked polymer or salt thereof
US20180151866A1 (en) Slurry composition for secondary battery negative electrode, negative electrode for secondary battery, and secondary battery
JP7234934B2 (en) Binder for secondary battery electrode and its use
WO2021111933A1 (en) Aqueous binder for secondary battery electrodes, composition for secondary battery electrode mixture layers, secondary battery electrode, and secondary battery
CN110462900B (en) Binder for nonaqueous electrolyte secondary battery electrode
JP7327404B2 (en) Binder for secondary battery electrode mixture layer, composition for secondary battery electrode mixture layer, and secondary battery electrode
WO2024214639A1 (en) Binder for electrode of secondary battery provided with secondary battery electrode containing carbon nanotubes, and use thereof
JP7480703B2 (en) Composition for secondary battery electrode mixture layer and secondary battery electrode
WO2024214640A1 (en) Electrode binder for secondary battery including secondary-battery electrodes including carbon nanotubes, and uses thereof
JP7211418B2 (en) Binder for secondary battery electrode and its use
WO2024024773A1 (en) Method for producing crosslinked polymer or salt thereof
JP7581782B2 (en) Conductive carbon material dispersion for lithium ion batteries, slurry for lithium ion battery electrodes, electrodes for lithium ion batteries, and lithium ion batteries
WO2024024772A1 (en) Binder for nonaqueous electrolyte secondary battery electrodes
WO2021100582A1 (en) Secondary battery electrode compound layer composition, secondary battery electrode, and secondary battery
WO2024034442A1 (en) Binder for electrode of secondary battery that comprises secondary battery negative electrode containing silicon-based active material, and use of same
KR20240088840A (en) Binder for secondary battery electrodes, its use, and manufacturing method of binder for secondary battery electrodes
WO2023008296A1 (en) Production method for slurry composition for secondary battery electrode, and production method for secondary battery electrode and secondary battery
WO2023013594A1 (en) Electrode binder, electrode mixture layer formation composition, lithium ion secondary battery electrode, and lithium ion secondary battery
WO2023090398A1 (en) Composition for forming electrode binder layer for use in lithium-sulfur secondary battery, electrode for lithium-sulfur secondary battery, and lithium-sulfur secondary battery