WO2024214626A1 - Heat treatment device and heat treatment method - Google Patents
Heat treatment device and heat treatment method Download PDFInfo
- Publication number
- WO2024214626A1 WO2024214626A1 PCT/JP2024/013902 JP2024013902W WO2024214626A1 WO 2024214626 A1 WO2024214626 A1 WO 2024214626A1 JP 2024013902 W JP2024013902 W JP 2024013902W WO 2024214626 A1 WO2024214626 A1 WO 2024214626A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- heat treatment
- heating
- substrate
- unit
- gas
- Prior art date
Links
- 238000010438 heat treatment Methods 0.000 title claims abstract description 208
- 238000000034 method Methods 0.000 title claims description 46
- 239000000758 substrate Substances 0.000 claims abstract description 49
- 229910052751 metal Inorganic materials 0.000 claims abstract description 26
- 239000002184 metal Substances 0.000 claims abstract description 26
- 239000000463 material Substances 0.000 claims abstract description 21
- 238000012545 processing Methods 0.000 claims description 142
- 238000001816 cooling Methods 0.000 claims description 54
- 230000008569 process Effects 0.000 claims description 26
- 239000010935 stainless steel Substances 0.000 claims description 17
- 229910001220 stainless steel Inorganic materials 0.000 claims description 17
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 12
- 229910000990 Ni alloy Inorganic materials 0.000 claims description 6
- 229910052759 nickel Inorganic materials 0.000 claims description 6
- 239000007789 gas Substances 0.000 description 138
- 235000012431 wafers Nutrition 0.000 description 129
- 238000012546 transfer Methods 0.000 description 50
- 230000002093 peripheral effect Effects 0.000 description 40
- 238000000576 coating method Methods 0.000 description 32
- 239000011248 coating agent Substances 0.000 description 30
- 230000032258 transport Effects 0.000 description 23
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 21
- 229910001873 dinitrogen Inorganic materials 0.000 description 19
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 13
- 229910052804 chromium Inorganic materials 0.000 description 13
- 239000011651 chromium Substances 0.000 description 13
- 238000010586 diagram Methods 0.000 description 10
- 239000007788 liquid Substances 0.000 description 9
- 238000011161 development Methods 0.000 description 7
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 description 5
- 229910000423 chromium oxide Inorganic materials 0.000 description 5
- 238000004891 communication Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 239000000470 constituent Substances 0.000 description 4
- 238000005530 etching Methods 0.000 description 4
- 238000005192 partition Methods 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- QDOXWKRWXJOMAK-UHFFFAOYSA-N dichromium trioxide Chemical compound O=[Cr]O[Cr]=O QDOXWKRWXJOMAK-UHFFFAOYSA-N 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 229910001026 inconel Inorganic materials 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 238000004528 spin coating Methods 0.000 description 2
- 230000007723 transport mechanism Effects 0.000 description 2
- 230000002411 adverse Effects 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 229910000856 hastalloy Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000001151 other effect Effects 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000007669 thermal treatment Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/027—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
Definitions
- This disclosure relates to a heat treatment device and a heat treatment method.
- the heat treatment unit disclosed in Patent Document 1 includes a heating section that supports and heats a substrate on which a coating is formed, a chamber having a peripheral wall that surrounds the heating section, and a lid that covers the heating section with a gap between the peripheral wall and the lid to form a treatment space above the heating section.
- the heat treatment unit also includes a housing that houses the heating section and the chamber, a first gas supply section that supplies a first gas having an oxygen concentration lower than the atmosphere to the treatment space, and an exhaust section that exhausts the treatment space at an exhaust rate greater than the supply rate of the first gas.
- the heat treatment unit also includes a second gas supply section that supplies a second gas having an oxygen concentration lower than the atmosphere to the gap between the peripheral wall and the lid, and a third gas supply section that supplies a third gas having an oxygen concentration lower than the atmosphere to the outside of the chamber within the housing.
- the technology disclosed herein prevents the generation of gas containing the metal that constitutes a component from the surface of the component exposed to high temperatures in a heat treatment device.
- One aspect of the present disclosure is a chamber including a heating unit that supports a substrate and heats it at a high temperature of 500° C. or more, a lid unit that covers the heating unit to form a processing space above the heating unit and has a surface facing the processing space made of a metal-containing material, and an exhaust unit that exhausts the processing space,
- the chamber is a heat treatment apparatus having a gas supply unit that supplies a low-humidity gas having a humidity lower than that of the atmosphere to the treatment space.
- FIG. 1 is an explanatory diagram showing an outline of an internal configuration of a coating and developing system as a substrate processing system including a heat treatment apparatus according to an embodiment of the present invention
- 1 is a diagram showing an outline of the internal configuration of a coating and developing system from the front side
- 2 is a diagram showing an outline of the internal configuration of the coating and developing system on the rear side.
- FIG. 1 is a vertical cross-sectional view showing a schematic configuration of a high-temperature heat treatment apparatus.
- FIG. 2 is a vertical cross-sectional view showing a schematic outline of the configuration within a heating region.
- 4 is a flowchart for explaining an example of a process performed by the coating and developing system.
- FIG. 2 is an explanatory diagram showing the operation of the high-temperature heat treatment apparatus.
- FIG. 1 is a diagram showing an outline of the internal configuration of a coating and developing system from the front side
- 2 is a diagram showing an outline of the internal configuration of the coating and developing system on the rear side.
- FIG. 2 is an explanatory diagram showing the operation of the high-temperature heat treatment apparatus.
- FIG. 2 is an explanatory diagram showing the operation of the high-temperature heat treatment apparatus.
- FIG. 2 is an explanatory diagram showing the operation of the high-temperature heat treatment apparatus.
- a photolithography process is performed on a substrate such as a semiconductor wafer (hereafter referred to as "wafer"), and a resist pattern is formed on the substrate. Then, using this resist pattern as a mask, the layer to be processed is etched, and the desired pattern is formed in the layer to be processed.
- wafer semiconductor wafer
- etching with a high aspect ratio is required when etching the layers to be processed.
- One known technique for achieving this is to form a hard mask layer with higher etching resistance than a resist film underneath the resist film, and then etch using the hard mask layer as a mask.
- there is a demand for hard mask layers with higher etching resistance there is a demand for hard mask layers with higher etching resistance.
- the hard mask layer may be formed by a CVD method, or may be formed by applying a mask layer forming treatment liquid and heating, which has a higher throughput, and in the latter case, may require heating the substrate at a high temperature of 500° C. or more.
- gas containing the metal constituting the member may be generated from the surface of the member exposed to the high temperature in the heat treatment device used for heating.
- gas containing chromium in stainless steel which is the material of the chamber, may be generated from the chamber that supports the substrate and forms a processing space on the hot plate.
- the gas containing the metal may adversely affect the substrate and the device related to the substrate.
- the technology disclosed herein suppresses the generation of gas containing metals constituting a component from the surface of the component exposed to high temperatures in a heat treatment apparatus.
- the inventors have conducted intensive research and found that when heating at a high temperature of 500°C or higher, if the gas supplied to the processing space is changed from a temperature and humidity adjusting gas containing moisture to nitrogen gas or dry air, which has a lower humidity than the atmosphere, the amount of chromium detected is significantly reduced. .
- the amount of chromium detected on the front surface of the wafer W was about 8.5 ⁇ 10 10 atoms/cm 2 in the case of a temperature and humidity adjusting gas, but about 0.1 ⁇ 10 10 atoms/cm 2 in the case of nitrogen gas or dry air.
- the reason for this phenomenon is considered to be as follows. That is, when heating at a high temperature of 500°C or higher, if a gas containing moisture is supplied to the processing space, a chromium oxide (Cr 2 O 3 ) film formed on the surface of the chamber by natural oxidation of stainless steel reacts with moisture (water vapor) and the like to generate a gas containing chromium (specifically, CrO 2 (OH) 2 ). On the other hand, if the gas supplied to the processing space does not contain moisture, the above-mentioned reaction does not occur, and the generation of gas containing chromium is suppressed.
- the following embodiments are based on the above findings.
- FIG. 1 is an explanatory diagram showing an outline of the internal configuration of a coating and developing system as a substrate processing system including a heat treatment apparatus according to the present embodiment.
- Fig. 2 and Fig. 3 are diagrams showing an outline of the internal configuration of the coating and developing system from the front side and the rear side, respectively.
- the coating and developing system 1 has a cassette station 2 where cassettes C, which are containers capable of housing multiple wafers W, are loaded and unloaded, and a processing station 3 equipped with multiple processing devices that perform predetermined processes such as resist coating.
- the coating and developing system 1 has a configuration in which the cassette station 2, the processing station 3, and an interface station 5 that transfers the wafer W between them and an exposure device 4 adjacent to the processing station 3 are integrally connected.
- the cassette station 2 is divided, for example, into a cassette loading/unloading section 10 and a wafer transport section 11.
- the cassette loading/unloading section 10 is provided at the end of the coating and developing system 1 on the negative Y-direction side (left direction in FIG. 1).
- the cassette loading/unloading section 10 is provided with a cassette mounting table 12.
- a plurality of, for example, four mounting plates 13 are provided on the cassette mounting table 12.
- the mounting plates 13 are arranged in a row in the horizontal X-direction (up and down direction in FIG. 1).
- the cassettes C can be placed on these mounting plates 13 when they are loaded or unloaded from the outside of the coating and developing system 1.
- the wafer transport section 11 is provided with a transport device 20 that transports the wafer W.
- the transport device 20 is configured to be freely movable on a transport path 21 that extends in the X direction.
- the transport device 20 is also freely movable in the vertical direction and around the vertical axis ( ⁇ direction), and can transport the wafer W between the cassette C on each mounting plate 13 and a transfer device in the third block G3 of the processing station 3, which will be described later.
- the processing station 3 is provided with multiple blocks, for example, four blocks G1, G2, G3, and G4, each equipped with various devices.
- the first block G1 is provided on the front side of the processing station 3 (the negative X-direction side in FIG. 1)
- the second block G2 is provided on the rear side of the processing station 3 (the positive X-direction side in FIG. 1).
- the third block G3 is provided on the cassette station 2 side of the processing station 3 (the negative Y-direction side in FIG. 1)
- the fourth block G4 is provided on the interface station 5 side of the processing station 3 (the positive Y-direction side in FIG. 1).
- a plurality of liquid processing devices for example, a development processing device 30, a hard mask film forming device 31, and a resist coating device 32, are arranged in this order from the bottom.
- the development processing device 30 performs a development process on the wafer W. Specifically, the development processing device 30 develops the resist film on the wafer W that has been subjected to a post-exposure bake process (PEB process).
- the hard mask film forming device 31 performs a hard mask formation process in which a process liquid for forming a hard mask film is applied onto the wafer W to form a hard mask film.
- the hard mask film is, for example, a zirconium oxide film.
- the resist coating device 32 performs a resist coating process in which a resist liquid is applied onto the wafer W to form a resist film.
- three developing treatment devices 30, three hard mask film forming devices 31, and three resist coating devices 32 are arranged horizontally.
- the number and arrangement of the developing treatment devices 30, the hard mask film forming devices 31, and the resist coating devices 32 can be selected arbitrarily.
- a predetermined processing liquid is applied onto the wafer W, for example, by a spin coating method.
- the processing liquid is discharged onto the wafer W from a discharge nozzle, and the wafer W is rotated to diffuse the processing liquid onto the surface of the wafer W.
- a heat treatment device 40 for performing heat treatment on the wafer W and a high-temperature heat treatment device 41 for performing heat treatment on the wafer W including heat treatment at a high temperature of 500° C. or more are arranged vertically and horizontally.
- the number and arrangement of the heat treatment devices 40 and high-temperature heat treatment devices 41 can be selected as desired.
- the heat treatment device 40 performs a hard mask pre-bake process for heating the wafer W after the hard mask formation process and before the heat treatment by the high-temperature heat treatment device.
- the heat treatment device 40 also performs a pre-baking process (hereinafter referred to as "PAB process”) for heating the wafer W after the resist coating process, a PEB process for heating the wafer W after the exposure process, and a post-baking process (hereinafter referred to as "POST process”) for heating the wafer W after the development process.
- the high-temperature heat treatment device 41 also performs a high-temperature heat treatment for heating the wafer W after the hard mask pre-bake process at a high temperature of 500° C. or more.
- multiple transfer devices 50, 51, 52, 53, 54, 55, and 56 are provided in order from the bottom.
- multiple transfer devices 60, 61, and 62 are provided in order from the bottom.
- a wafer transport area D is formed in the area surrounded by the first block G1 to the fourth block G4.
- a transport device 70 is disposed, which serves as a substrate transport device for transporting a wafer W, for example.
- the transfer device 70 has a transfer arm 70a that can move freely, for example, in the Y direction, the ⁇ direction, and the vertical direction.
- the transfer device 70 moves the transfer arm 70a holding the wafer W within the wafer transfer area D, and can transfer the wafer W to a predetermined device in the surrounding first block G1, second block G2, third block G3, and fourth block G4.
- multiple transfer devices 70 are arranged vertically as shown in Figure 3, and can transfer the wafer W to a predetermined device at approximately the same height in each of the blocks G1 to G4.
- a shuttle transport device 80 is provided in the wafer transport area D to transport the wafer W linearly between the third block G3 and the fourth block G4.
- the shuttle transport device 80 moves the supported wafer W linearly in the Y direction, and can transport the wafer W between the transfer device 52 of the third block G3 and the transfer device 62 of the fourth block G4, which are at approximately the same height.
- a transfer device 90 is provided on the positive X-direction side of the third block G3.
- the transfer device 90 has a transfer arm 90a that can move, for example, in the ⁇ direction and in the vertical direction.
- the transfer device 90 moves the transfer arm 90a holding the wafer W up and down, and can transfer the wafer W to each transfer device in the third block G3.
- the interface station 5 is provided with a transfer device 100 and a delivery device 101.
- the transfer device 100 has a transfer arm 100a that can move freely, for example, in the ⁇ direction and in the vertical direction.
- the transfer device 100 holds a wafer W on the transfer arm 100a and can transfer the wafer W between each delivery device in the fourth block G4, the delivery device 101, and the exposure device 4.
- the coating and developing system 1 described above is provided with at least one control unit 200 as shown in FIG. 1.
- the control unit 200 processes computer-executable instructions that cause the coating and developing system 1 to perform the various processes described in this disclosure.
- the control unit 200 may be configured to control each element of the coating and developing system 1 to perform the various processes described herein. In one embodiment, a part or all of the control unit 200 may be included in the coating and developing system 1.
- the control unit 200 may include a processing unit, a storage unit, and a communication interface.
- the control unit 200 is realized, for example, by a computer.
- the processing unit may be configured to read a program that provides logic or routines that enable various control operations to be performed from the storage unit, and to perform various control operations by executing the read program.
- This program may be stored in the storage unit in advance, or may be acquired via a medium when necessary.
- the acquired program is stored in the storage unit, and is read from the storage unit by the processing unit and executed.
- the medium may be various computer-readable storage media H, or may be a communication line connected to the communication interface.
- the storage medium H may be temporary or non-temporary.
- the processing unit may be a CPU (Central Processing Unit) or one or more circuits.
- the storage unit may include a RAM (Random Access Memory), a ROM (Read Only Memory), a HDD (Hard Disk Drive), an SSD (Solid State Drive), or a combination thereof.
- the communication interface may communicate with the coating and developing system 1 via a communication line such as a LAN (Local Area Network).
- Fig. 4 is a vertical cross-sectional view showing a schematic outline of the configuration of the high-temperature heat treatment device 41.
- Fig. 5 is a vertical cross-sectional view showing a schematic outline of the configuration within a heating region 310 described below.
- the high-temperature heat treatment device 41 has a processing vessel 300 as a housing whose interior can be closed.
- a loading/unloading port 301 for the wafer W is formed in the side wall of the processing vessel 300 on the wafer transfer area D side, and an opening/closing shutter 302 is provided at the loading/unloading port 301.
- the interior of the processing vessel 300 is divided into an upper space S1 and a lower space S2 by a partition wall 303.
- the upper space S1 is provided with a heating area 310 for heating the wafer W and a cooling area 311 for cooling the wafer W.
- the heating area 310 and the cooling area 311 are arranged side by side in the depth direction of the apparatus (Y direction in the figure), and the cooling area 311 is located closer to the load/unload port 301 than the heating area 310.
- the heating region 310 is provided with a hot plate 320 as a heating section that supports the wafer W and heats it at a high temperature of 500° C. or more.
- the hot plate 320 has a thick, circular plate-shaped section 321.
- the diameter of the plate-shaped section 321 is larger than the diameter of the wafer W.
- the plate-shaped section 321 has a built-in heater 322, for example.
- the plate-shaped section 321 is made of, for example, silicon carbide, which has high thermal conductivity.
- the temperature of the hot plate 320 (specifically, the temperature of the plate-shaped section 321) is controlled by, for example, the control section 200, and heating is performed by the heater 322 so that the wafer W placed on the hot plate 320 or the plate-shaped section 321 of the hot plate 320 reaches a predetermined temperature of 500° C. or more.
- the heat plate 320 is supported on the supporting bottom wall 324 via, for example, a heat shield plate 323.
- Both the heat shield plate 323 and the supporting bottom wall 324 are formed in a disk shape.
- the diameter of the heat shield plate 323 is approximately the same as the diameter of the heat plate 320.
- the diameter of the supporting bottom wall 324 is larger than the diameter of the heat plate 320.
- the supporting bottom wall 324 is disposed above the partition wall 303 with a gap therebetween, as shown in FIG. 4.
- the supporting bottom wall 324 may be fixed to the partition wall 303 via a fixing member (not shown).
- the hot plate 320 is provided with a plurality of (e.g., three) lift pins 330 for supporting and lifting the wafer W from below.
- the plurality of lift pins 330 are raised and lowered by a lift drive unit 331 having a drive source such as a motor.
- Each of the lift pins 330 is inserted into a corresponding through hole 332 and can pass through the through hole 332 and protrude from the upper surface of the hot plate 320.
- Each of the through holes 332 is formed to pass through, for example, the hot plate 320, the heat shield plate 323, the support bottom wall 324, and the partition wall 303 in the vertical direction.
- the lifting and lowering drive unit 331 can lift and lower the wafer W by lifting and lowering the plurality of lifting pins 330 supporting the wafer W.
- the lifting and lowering drive unit 331 is provided in, for example, the lower space S2.
- an exhaust device 334 such as a vacuum pump is connected to each of the through holes 332 via an exhaust pipe 333.
- the exhaust pipe 333 is provided with an exhaust device group 335 having a valve or the like that switches the exhaust through the through holes 332 (hereinafter referred to as pin exhaust) on and off.
- the exhaust device 334 and the exhaust device group 335 are controlled by the control unit 200.
- the heating region 310 is also provided with a chamber 340.
- the chamber 340 has a peripheral wall portion 341 and an upper chamber 342 serving as a lid portion.
- the peripheral wall portion 341 is arranged with a gap g1 between it and the heat plate 320 (specifically, between the heat plate 320 and the side surface of the heat shield plate 323).
- This peripheral wall portion 341 is formed to extend upward from the peripheral edge of the support bottom wall 324, and is formed in a circular ring shape in a plan view.
- the inner peripheral surface of the peripheral wall portion 341 faces the outer peripheral surfaces of the heat plate 320 and the heat shield plate 323.
- the gap g1 is formed in a circular ring shape in a plan view.
- the peripheral wall portion 341 is also provided with a peripheral exhaust section 350 that exhausts the processing space S3 described below through the gap g1.
- the peripheral exhaust section 350 has a plurality of exhaust holes 351 that open into the gap g1.
- the plurality of exhaust holes 351 are arranged at a predetermined interval on the inner peripheral surface of the peripheral wall portion 341 along the circumferential direction of the peripheral wall portion 341.
- the peripheral exhaust section 350 further has an exhaust path 352 formed inside the peripheral wall portion 341.
- the exhaust path 352 is connected to the end of the exhaust hole 351 on the opposite side to the gap g1.
- the exhaust path 352 is formed in a circular ring shape in a plan view so as to extend along the peripheral wall portion 341.
- the exhaust path 352 is also connected to an exhaust device 354, such as a vacuum pump, via an exhaust pipe 353.
- the exhaust pipe 353 is provided with an exhaust device group 355 having a valve or the like that switches the exhaust by the peripheral exhaust section 350 on and off.
- the exhaust device 354 and the exhaust equipment group 355 are controlled by the control unit 200.
- the upper chamber 342 covers the heat plate 320 to form a processing space S3 above the heat plate 320.
- the upper chamber 342 is configured to be movable up and down by a lifting drive unit (not shown). The upper chamber 342 is lowered until it is close to the peripheral wall portion 341, thereby forming the processing space S3.
- the upper chamber 342 also has, for example, a top wall portion 343 and a side wall portion 344 .
- the top wall portion 343 is formed in a disk shape having a diameter approximately equal to that of the supporting bottom wall 324 , and is disposed so as to face the upper surface of the hot plate 320 .
- the side wall portion 344 is formed in a cylindrical shape so as to extend downward from the outer edge of the top wall portion 343 , and is disposed so that its lower end surface faces the upper end surface of the peripheral wall portion 341 .
- a gap g2 is formed between the upper end surface of the side wall portion 348 and the lower end surface of the peripheral wall portion 341.
- the gap g2 is formed in an annular shape so as to surround the periphery of the processing space S3.
- the upper chamber 342 is configured to be heated.
- a heater (not shown) is built into the top wall 343, and the heater is controlled by the control unit 200 to adjust the upper surface of the top wall 343 to a predetermined temperature lower than that of the hot plate 320 (for example, 350° C. to 400° C.).
- This upper chamber 342 is made of a metal material, specifically stainless steel, and more specifically SUS304. Therefore, the surface of the upper chamber 342 facing the processing space S3 is made of a metal-containing material, specifically a chromium oxide film formed by the natural oxidation of stainless steel.
- the chamber 340 also has a shower head 360 as a gas supply unit.
- the upper chamber 342 has a shower head 360.
- the shower head 360 supplies low-humidity gas, which has a humidity lower than that of the atmosphere, to the processing space S3.
- the low-humidity gas is, for example, dry air or nitrogen gas.
- the humidity of the low-humidity gas is adjusted so that the humidity in the processing space S3 is, for example, 0.01% or less.
- the shower head 360 constitutes, for example, at least a part of the ceiling wall portion 343.
- the shower head 360 has a plurality of gas discharge holes 361 formed on its underside.
- the plurality of gas discharge holes 361 are uniformly arranged on the underside of the shower head 360 except for the exhaust port 371 described later.
- a gas supply pipe 362 is connected to the shower head 360.
- a gas supply source 363 that supplies low-humidity gas to the shower head 360 is connected to the gas supply pipe 362.
- the gas supply pipe 362 is provided with a supply device group 364 including a valve that switches the supply of low-humidity gas to the shower head 360 on and off, a flow rate control valve, and the like.
- the supply device group 364 is controlled by the control unit 200.
- the low-humidity gas supplied to the shower head 360 from the gas supply source 363 via the gas supply pipe 362 is discharged downward from the gas discharge hole 361.
- the shower head 360 is provided with a central exhaust section 370 and a peripheral exhaust section 380.
- the central exhaust section 370 exhausts the processing space S3 from above the center of the heat plate 320.
- the central exhaust section 370 has an exhaust port 371.
- the exhaust port 371 is provided in the center of the underside of the shower head 360 and opens downward.
- the central exhaust section 370 exhausts the processing space S3 via this exhaust port 371.
- the central exhaust section 370 also has a central exhaust path 372 formed to extend upward from the exhaust port 371.
- An exhaust device 374 such as a vacuum pump is connected to the central exhaust path 372 via an exhaust pipe 373.
- the exhaust device 374 and the exhaust device group 375 are controlled by the control unit 200.
- the peripheral exhaust section 380 exhausts the processing space S3 from above the outer periphery of the heat plate 320 (specifically, for example, from above a portion slightly outside the peripheral edge of the wafer W).
- the peripheral exhaust section 380 has an exhaust port 381.
- the exhaust port 381 opens downward from the underside of the ceiling wall section 343 so as to surround the outer periphery of the shower head 360.
- the exhaust port 381 may be a plurality of exhaust holes arranged along the outer periphery of the shower head 360.
- the peripheral exhaust section 380 exhausts the processing space S3 via this exhaust port 381.
- the outer peripheral exhaust section 380 also has an outer peripheral exhaust path 382 that leads to the exhaust port 381.
- An exhaust device 384 such as a vacuum pump is connected to the outer peripheral exhaust path 382 via an exhaust pipe 383.
- An exhaust device group 385 having a valve or the like for switching exhaust ON/OFF is provided on the exhaust pipe 383. The exhaust device 384 and the exhaust device group 385 are controlled by the control unit 200.
- the cooling region 311 is provided with a cooling plate 400 as a cooling unit that supports and cools the wafer W.
- the cooling plate 400 is formed, for example, in the shape of a thick disk.
- the cooling plate 400 has built-in temperature adjustment members (not shown), such as cooling water or a Peltier element.
- the temperature of the cooling plate 400 is controlled, for example, by the control unit 200, and the wafer W placed on the cooling plate 400 is cooled to a predetermined temperature.
- the cooling plate 400 is provided with a plurality of (e.g., three) lift pins 410 for supporting and lifting the wafer W from below.
- the plurality of lift pins 410 are raised and lowered by a lift driver 411 having a drive source such as a motor.
- Each of the lift pins 410 is inserted into a through hole (not shown) formed in the cooling plate 400 and can protrude from the upper surface of the cooling plate 400 through the through hole.
- the lifting and lowering drive unit 411 can lift and lower the wafer W by lifting and lowering the plurality of lifting pins 410 supporting the wafer W.
- the lifting and lowering drive unit 411 is provided in, for example, the cooling region 311 in the upper space S1.
- a transport mechanism 420 is provided within the processing vessel 300 to transport the wafer W between the heating region 310 and the cooling region 311.
- the transport mechanism 420 has a holding arm 421 and a drive unit 422.
- the holding arm 421 is provided in the space above the heating plate 320 and the cooling plate 400 in the upper space S1, and holds the wafer W horizontally.
- the holding arm 421 is configured to be able to transfer the wafer W between the multiple lift pins 330 or the multiple lift pins 410.
- the drive unit 422 has a drive source such as a motor, and moves the holding arm 421 along the device depth direction (Y direction in the figure).
- the gas supply unit 430 that supplies a low-humidity gas to a space outside the chamber 340 within the processing vessel 300 .
- the gas supply unit 430 has a shower head 431 as a cooling region gas supply unit, and a shower header 432 as a heating region gas supply unit.
- the types of low-humidity gas supplied from the shower head 360, the shower head 431, and the shower header 432 may be the same or different. In the following description, it is assumed that the types of low-humidity gas supplied from the shower head 360, the shower head 431, and the shower header 432 are the same.
- the shower head 431 supplies low-humidity gas to the cooling region 311.
- the shower head 431 is provided in the cooling region 311, specifically, above the cooling plate 400 in the cooling region 311.
- a plurality of gas discharge holes 433 are formed on the lower surface of the shower head 431.
- the plurality of gas discharge holes 433 are uniformly arranged on the lower surface of the shower head 431.
- a gas supply pipe 434 is connected to the shower head 431.
- a gas supply source 435 that supplies low-humidity gas to the shower head 431 is connected to the gas supply pipe 434.
- the gas supply pipe 434 is provided with a supply device group 436 including a valve that switches ON/OFF of the supply of low-humidity gas to the shower head 431 and a flow rate control valve.
- the supply device group 436 is controlled by the control unit 200.
- the low-humidity gas supplied to the shower head 431 from the gas supply source 435 via the gas supply pipe 434 is discharged downward from the gas
- the shower header 432 supplies low-humidity gas to the heating area 310.
- the shower header 432 is provided in the heating area 310. Specifically, the shower header 432 is provided between the hot plate 320 and the cooling plate 400 in the device depth direction (Y direction in the figure) in the heating area in a plan view.
- the shower header 432 is also provided above the upper chamber 342.
- the shower header 432 is formed in a rod shape so as to extend in a direction perpendicular to the device depth direction (Y direction in the figure) and the vertical direction.
- the shower header 432 is provided with a plurality of gas discharge holes 437.
- the plurality of gas discharge holes 437 are formed, for example, on the surface of the shower header 432 opposite the cooling region 311 side.
- the plurality of gas discharge holes 437 are also arranged at predetermined intervals along the extension direction of the shower header 432.
- a gas supply pipe 438 is connected to the shower header 432. Further, a gas supply source 439 that supplies low-humidity gas to the shower header 432 is connected to the gas supply pipe 438. Also, a supply equipment group 440 including a valve that switches the supply of low-humidity gas to the shower header 432 on and off and a flow rate control valve is provided on the gas supply pipe 438. The supply equipment group 440 is controlled by the control unit 200. The low-humidity gas supplied to the shower header 432 from the gas supply source 439 via the gas supply pipe 438 is discharged from the gas discharge hole 437 toward the space above the upper chamber 342.
- FIG. 6 is a flow chart for explaining an example of processing by the coating and developing system 1.
- FIGS. 7 to 10 are explanatory diagrams showing the operation of the high-temperature heat treatment device 41. Note that the following processing is performed under the control of the control unit 200. In the following, it is assumed that the coating and developing system 1 has one high-temperature heat treatment device 41.
- the idle state is a state in which the temperature of the heat plate 320 is elevated (for example, elevated to 500° C. or higher) and no processing of the wafer W by the high-temperature heat treatment device 41 is scheduled.
- the upper chamber 342 is lowered so that the processing space S3 is formed. Furthermore, the processing space S3 is exhausted by the central exhaust section 370, the outer peripheral exhaust section 380, the peripheral exhaust section 350, and pin exhaust, and in this state, nitrogen gas is supplied as a low-humidity gas from the shower head 360. Furthermore, in the idle state, the total amount of exhaust from the processing space S3 is set to be greater than the amount of nitrogen supplied from the shower head 360 to the processing space S3. Therefore, the processing space S3 has a negative pressure relative to the space outside the chamber 340.
- the humidity in the processing space S3 can be maintained low by supplying low-humidity gas into the processing space S3 from the shower head 360. Furthermore, by creating a negative pressure in the processing space S3 as described above, even if gas containing a constituent metal of the upper chamber 342 (specifically, chromium) is generated, the gas can be prevented from leaking out of the chamber 340. In the idle state, the low-humidity gas is not supplied from the shower head 431 and the shower header 432 in order to reduce the consumption of the low-humidity gas.
- step S2 When a recipe for using the high-temperature heat treatment device 41 is read by the control unit 200 and processing of the wafer W is reserved for the high-temperature heat treatment device 41 (step S2), the idle state of the high-temperature heat treatment device 41 is released, and the gas supply unit 430 starts to supply nitrogen gas as a low-humidity gas to the outside of the chamber 340 in the processing container 300 (step S3).
- the supply of nitrogen gas is started from both the shower head 431 and the shower header 432 of the gas supply unit 430.
- the wafer W to be processed is taken out of the cassette C by the transfer device 20 and transferred to the delivery device 53 in the third block G 3 of the processing station 3 .
- evacuation of the processing space S3 and supply of nitrogen gas from the shower head 360 to the processing space S3 are performed in the same manner as during the idle state, and the total amount of exhaust from the processing space S3 is set to be greater than the amount of nitrogen gas supplied from the shower head 360.
- a hard mask film is formed on the wafer W (step S4).
- the wafer W is transported by the transport device 70 to the heat treatment device 40 in the second block G2 and subjected to a temperature adjustment process. Thereafter, the wafer W is transported by the transport device 70 to, for example, the hard mask film forming device 31 in the first block G1, where a coating film of a treatment liquid for forming a chromium oxide film is formed on the wafer W.
- the wafer W is transported by the transport device 70 to the heat treatment device 40 in the second block G2, where a hard mask pre-bake process is performed, whereby the coating film of the treatment liquid for forming a chromium oxide film on the wafer W is solidified, and a chromium oxide film as a hard mask film is formed.
- the wafer W is returned to the transfer device 53 in the third block G3.
- the wafer W is transported by the transfer device 90 to the transfer device 54 in the same third block G3.
- step S5 the supply of nitrogen gas to the outside of the chamber 340 in the processing vessel 300 is stopped, and the wafer W is loaded into the processing vessel 300 of the high-temperature heat treatment device 41.
- the wafer W is transported by the transport device 70 to the load/unload port 301 of the high-temperature heat treatment device 41, which is closed by the opening/closing shutter 302.
- the supply of nitrogen gas from the shower head 431 and the shower header 432 is stopped.
- the load/unload port 301 is opened by the opening/closing shutter 302, and the wafer W is transported into the processing vessel 300 through the load/unload port 301 and handed over from the transport device 70 to the lift pins 410 in the cooling area 311.
- the load/unload port 301 is closed by the opening/closing shutter 302, and the processing vessel 300 is sealed.
- step S6 the supply of nitrogen gas to the outside of the chamber 340 in the processing vessel 300 is resumed, and the exhaust by the central exhaust section 370 is stopped, and then the wafer W is transferred from the cooling region 311 to the heating region 310 (step S6).
- the supply of nitrogen gas from the shower head 431 and the shower header 432 is resumed.
- exhaust by the central exhaust unit 370 is stopped.
- the exhaust amount by the peripheral exhaust unit 380 and the like are set so that the total amount of exhaust from the processing space S3 remains greater than the amount of nitrogen gas supplied from the shower head 360 even after exhaust by the central exhaust unit 370 is stopped.
- the wafer W is transferred from the lift pins 410 to the holding arm 421 of the transfer mechanism 420.
- the upper chamber 342 is raised, and the holding arm 421 holding the wafer W is moved from the cooling region 311 to the heating region 310, and the wafer W is transferred from the holding arm 421 to the heating plate 320 via the lift pins 330.
- step S6 after the supply of nitrogen gas is resumed, the wafer W may be made to wait for a predetermined time in the cooling region 311. Note that this waiting is not necessary when dry air is used as the low humidity gas.
- step S7 the wafer W is heated to a high temperature of 500°C or higher.
- the upper chamber 342 is lowered to form the processing space S3, and heating of the wafer W at a high temperature is started. Even during this high temperature heating, the total amount of exhaust gas from the processing space S 3 is kept greater than the amount of nitrogen gas supplied from the shower head 360 .
- exhaust by the central exhaust unit 370 is started. At this time, the exhaust amount by the central exhaust unit 370 and the like are set so that the total amount of exhaust from the processing space S3 is larger than the amount of nitrogen gas supplied from the shower head 360.
- the wafer W is raised to the intermediate position by the lift pins 330. In this state, sublimate material from the hard mask film on the wafer W is collected.
- the exhaust by the central exhaust unit 370 is stopped.
- the upper chamber 342 is elevated. After that, the wafer W is elevated to the delivery position by the lift pins 330.
- the delivery position is a position where the wafer W is delivered between the lift pins 330 and the holding arm 421 of the transfer mechanism 420.
- the flow rate of low humidity gas supplied to the processing space S3 is set so that the humidity in the processing space S3 remains below 0.01% during this high-temperature heating.
- the wafer W is transported from the heating area 310 to the cooling area 311 (step S8).
- the wafer W is transferred from the lift pins 330 to the holding arm 421 of the transfer mechanism 420.
- the holding arm 421 holding the wafer W is moved from the heating region 310 to the cooling region 311, and the wafer W is transferred from the holding arm 421 to the cooling plate 400 via the lift pins 410.
- the wafer W is placed on the cooling plate 400, as shown in FIG. 10.
- the upper chamber 342 is lowered, and the processing space S3 is formed.
- the wafer W is cooled (step S9). Specifically, after the wafer W is placed on the cooling plate 400, it is left waiting for a predetermined time.
- step S10 the supply of nitrogen gas to the outside of the chamber 340 in the processing vessel 300 is stopped, and the wafer W is unloaded from the processing vessel 300 of the high-temperature heat treatment device 41.
- the supply of nitrogen gas from the shower head 431 and the shower header 432 is stopped.
- the loading/unloading port 301 is opened by the opening/closing shutter 302, and the wafer W is transferred from the cooling plate 400 to the transfer device 70 via the lifting pins 410.
- the wafer W is then unloaded from the processing vessel 300 via the loading/unloading port 301.
- the loading/unloading port 301 is closed by the opening/closing shutter 302, and the processing vessel 300 is again sealed.
- step S11 the wafer W is subjected to subsequent processing.
- the wafer W is transferred by the transfer device 70 to the resist coating device 32, where a resist film is formed on the wafer W. Thereafter, the wafer W is transferred by the transfer device 70 to the heat treatment device 40, where the PAB treatment is performed. Thereafter, the wafer W is transferred by the transfer device 70 to the delivery device 55 in the third block G3. Next, the wafer W is transferred to the delivery device 52 by the transfer device 90, and then transferred to the delivery device 62 in the fourth block G4 by the shuttle transfer device 80. Thereafter, the wafer W is transferred to the exposure device 4 by the transfer device 100 in the interface station 5, and is exposed to a predetermined pattern. Next, the wafer W is transferred to the delivery device 60 in the fourth block G4 by the transfer device 100.
- the wafer W is transferred to the thermal treatment device 40 by the transfer device 70, and is subjected to the PEB treatment. Subsequently, the wafer W is transferred by the transfer device 70 to the developing treatment device 30, where it is developed. After the development is completed, the wafer W is transferred by the transfer device 70 to the heat treatment device 40, where it is subjected to POST treatment. Thereafter, the wafer W is transferred by the transfer device 70 to the delivery device 50 in the third block G3, and then transferred by the transfer device 20 in the cassette station 2 to the cassette C on a predetermined mounting plate 13.
- Fig. 11 is a partially enlarged cross-sectional view of the hot plate 320.
- the hot plate 320 has a support member 500.
- a plurality of support members 500 are provided on the plate-shaped part 321 of the hot plate 320.
- Each support member 500 is provided in a downwardly recessed part 600 that is individually formed on the plate-shaped part 321.
- a step part 601 is formed on the bottom part of the recessed part 600 along the inner peripheral surface of the recessed part 600.
- the supporting member 500 supports the wafer W by contacting the rear surface of the wafer W.
- the support member 500 includes a main body portion 510, a washer 520, and a snap ring 530 as components.
- the main body 510 has a flange 511 at its lower end.
- the main body 510 is inserted into the recess 600 of the heat plate 320 when in use.
- the main body 510 When inserted into the recess 600, the main body 510 is supported on the bottom surface of the recess 600, and its upper end protrudes from the upper surface of the plate-like portion 321.
- the upper end of the main body 510 abuts against the rear surface of the wafer W.
- the thickness of the flange 511 is approximately equal to the height of the step portion 601.
- the washer 520 is provided so as to cover the upper surface of the flange 511 in the recess 600 and the upper surface of the step portion 601 .
- the snap ring 530 fixes the support member 500 to the recess 600 via the washer 520 .
- the exposed portion of the support member 500 including the above-mentioned components is made of a material other than stainless steel.
- a portion of the support member 500 is made of nickel.
- a portion of the support member 500 may be made of a nickel alloy that has higher heat resistance than stainless steel.
- the main body 510 of the support member 500 is made of alumina
- the washer 520 is made of nickel
- the snap ring 530 is made of a nickel alloy (specifically, Inconel or Hastelloy) that has higher heat resistance than stainless steel.
- the washer 520 may be made of the nickel alloy.
- the high-temperature heat treatment apparatus 41 includes the hot plate 320 that supports the wafer W and heats it at a high temperature of 500° C. or more, the chamber 340 including the upper chamber 342 that covers the hot plate 320 to form a processing space S3 on the hot plate 320 and has a surface on the processing space S3 side made of a metal-containing material, and an exhaust unit that exhausts the processing space S3.
- the chamber 340 has a shower head 360 that supplies a low-humidity gas with a humidity lower than that of the atmosphere to the processing space S3.
- a low-humidity gas is supplied into the processing space S3 from the shower head 360. Therefore, compared to the case in which a low-humidity gas is not supplied into the processing space S3 in the idle state unlike the present embodiment, it is possible to suppress adhesion of a constituent metal (specifically, chromium) of the upper chamber 342 to the front surface of the wafer W during high-temperature heat treatment by the high-temperature heat treatment device 41 from an early stage after the idle state is released. Furthermore, unlike this embodiment, when low-humidity gas is not supplied into the processing space S3 in the idle state, the humid atmosphere in the processing space S3 stagnates around the gas ejection holes 361.
- the gas supply unit 430 supplies low-humidity gas to the space outside the chamber 340 in the processing vessel 300 even when no wafer W is present in the processing vessel 300.
- the processing space S3 is at a negative pressure relative to the space outside the chamber 340, the atmosphere of the outer space flows into the processing space S3 through the gap g2. Therefore, as described above, when the gas supply unit 430 supplies low-humidity gas to the outer space even when no wafer W is present in the processing vessel 300, the moisture concentration of the atmosphere in the processing space S3 can be lowered immediately after the wafer W is loaded into the processing space S3, compared to when the gas supply unit 430 does not supply low-humidity gas. Therefore, the generation of gas containing the metal that constitutes the upper chamber 342 can be suppressed.
- the gas supply unit 430 supplies low-humidity gas to the space outside the chamber 340 in the processing vessel 300 of the high-temperature heat treatment device 41 from the time when the processing of the wafer W is reserved for the high-temperature heat treatment device 41.
- the gas supply unit 430 supplies low-humidity gas to the space outside the chamber 340 continuously from the time when the processing of the wafer W is reserved for the high-temperature heat treatment device 41 and the idle state is released.
- the supply of low-humidity gas from the gas supply unit 430 to the space outside the chamber 340 in the processing vessel 300 is stopped when the wafer W is loaded into the processing vessel 300. Therefore, it is possible to prevent the low-humidity gas from leaking from the processing vessel 300 to the wafer transfer region D when the wafer is loaded into the processing vessel 300. This is particularly useful when the low-humidity gas is nitrogen gas.
- the exposed portion of the support member 500 is made of a material other than stainless steel.
- a portion of the support member 500 is made of nickel or a nickel alloy that has higher heat resistance than stainless steel. This makes it possible to prevent the constituent metal (specifically chromium) of the upper chamber 342 from adhering to the back surface of the wafer W.
- the amount of chromium detected on the back surface of the wafer W was approximately 2.4 ⁇ 10 10 atoms/cm 2.
- the amount was approximately 0.2 ⁇ 10 10 atoms/cm 2 .
- a heating unit that supports a substrate and heats it to a high temperature of 500° C. or higher; a chamber including a lid portion that covers the heating portion to form a processing space above the heating portion and has a surface facing the processing space that is made of a metal-containing material; an exhaust unit that exhausts the processing space,
- the chamber has a gas supply unit that supplies a low-humidity gas having a humidity lower than that of the atmosphere to the processing space.
- the heat treatment apparatus executes a process of supplying the low-humidity gas from the gas supply unit into the processing space when the heating unit is in a heated state and no substrate processing is scheduled for the heat treatment apparatus.
- the heat treatment device executes a step of (B) supplying the low-humidity gas from the separate gas supply unit to a space outside the chamber in the housing;
- the heating unit further includes a cooling unit that is provided in a cooling region adjacent to the heating region in the housing and supports and cools a substrate
- the other gas supply unit has a heating region gas supply unit that supplies the low-humidity gas to the heating region, and a cooling region gas supply unit that supplies the low-humidity gas to the cooling region
- the heat treatment apparatus according to any one of (4) to (6), wherein in the step (B), the low-humidity gas is supplied from at least one of the heating region gas supply unit and the cooling region gas supply unit.
- the heating unit has a support member that contacts a rear surface of the substrate to support the substrate,
- the heat treatment device according to any one of (1) to (7), wherein the exposed portion of the support member is made of a material other than stainless steel.
- a method for heat treating a substrate using a heat treatment apparatus comprising the steps of:
- the heat treatment device includes: a heating unit that supports the substrate and heats it at a high temperature; a chamber including a lid portion that covers the heating portion to form a processing space above the heating portion and has a surface facing the processing space that is made of a metal-containing material; an exhaust unit that exhausts the processing space, (a) heating the substrate to a high temperature of 500° C. or higher by the heating unit; (b) supplying a low-humidity gas having a humidity lower than that of the atmosphere to the processing space.
- the heat treatment apparatus further includes a housing that houses the heating unit and the chamber, (c) supplying the low humidity gas to a space outside the chamber within the enclosure; The heat treatment method according to (12) above, wherein the step (c) is performed even in a state where no substrate is present in the housing.
- the heat treatment method according to (14), wherein the (c) step is stopped when the substrate is carried into the housing.
- the heat treatment device comprises: a cooling unit that is provided in a cooling region adjacent to a heating region in which the heating unit is provided in the housing and that supports and cools a substrate; a heating region gas supply unit for supplying the low humidity gas to the heating region; a cooling region gas supply unit for supplying the low humidity gas to the cooling region;
- the heat treatment method according to any one of (13) to (15), wherein in the step (c), the low-humidity gas is supplied from at least one of the heating region gas supply unit and the cooling region gas supply unit.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Furnace Details (AREA)
Abstract
This heat treatment device comprises: a heating unit that supports a substrate and heats the substrate at a high temperature of 500°C or higher; a chamber which includes a lid part that covers the heating unit to form a treatment space on the heating unit, and a surface of which on the side of the heat treatment space is formed by a metal-containing material; and an exhaust unit that exhausts the treatment space, wherein the chamber has a gas supply unit that supplies a low humidity gas having a lower humidity than the atmosphere to the treatment space.
Description
本開示は、熱処理装置及び熱処理方法に関する。
This disclosure relates to a heat treatment device and a heat treatment method.
特許文献1に開示の熱処理ユニットは、被膜が形成された基板を支持して加熱する加熱部と、加熱部の周囲を囲む周壁部と、周壁部との間に隙間を設けた状態で加熱部を覆うことで加熱部上に処理空間を形成する蓋部とを有するチャンバと、を備える。また、熱処理ユニットは、加熱部及びチャンバを収容する筐体と、大気よりも酸素濃度が低い第1ガスを処理空間に供給する第1ガス供給部と、第1ガスの供給量よりも多い排気量で処理空間を排気する排気部と、を備える。さらに、熱処理ユニットは、大気よりも酸素濃度が低い第2ガスを周壁部と蓋部との間の隙間に供給する第2ガス供給部と、大気よりも酸素濃度が低い第3ガスを、筐体内においてチャンバの外に供給する第3ガス供給部と、を備える。
The heat treatment unit disclosed in Patent Document 1 includes a heating section that supports and heats a substrate on which a coating is formed, a chamber having a peripheral wall that surrounds the heating section, and a lid that covers the heating section with a gap between the peripheral wall and the lid to form a treatment space above the heating section. The heat treatment unit also includes a housing that houses the heating section and the chamber, a first gas supply section that supplies a first gas having an oxygen concentration lower than the atmosphere to the treatment space, and an exhaust section that exhausts the treatment space at an exhaust rate greater than the supply rate of the first gas. The heat treatment unit also includes a second gas supply section that supplies a second gas having an oxygen concentration lower than the atmosphere to the gap between the peripheral wall and the lid, and a third gas supply section that supplies a third gas having an oxygen concentration lower than the atmosphere to the outside of the chamber within the housing.
本開示にかかる技術は、熱処理装置内の高温に晒された部材の表面から、当該部材を構成する金属を含むガスが生じるのを抑制する。
The technology disclosed herein prevents the generation of gas containing the metal that constitutes a component from the surface of the component exposed to high temperatures in a heat treatment device.
本開示の一態様は、基板を支持して500℃以上の高温で加熱する加熱部と、前記加熱部を覆うことで前記加熱部上に処理空間を形成し前記処理空間側の面が金属含有材料で構成された蓋部を含むチャンバと、前記処理空間を排気する排気部と、を備え、
前記チャンバは、大気よりも湿度が低い低湿度ガスを前記処理空間に供給するガス供給部を有する、熱処理装置である。 One aspect of the present disclosure is a chamber including a heating unit that supports a substrate and heats it at a high temperature of 500° C. or more, a lid unit that covers the heating unit to form a processing space above the heating unit and has a surface facing the processing space made of a metal-containing material, and an exhaust unit that exhausts the processing space,
The chamber is a heat treatment apparatus having a gas supply unit that supplies a low-humidity gas having a humidity lower than that of the atmosphere to the treatment space.
前記チャンバは、大気よりも湿度が低い低湿度ガスを前記処理空間に供給するガス供給部を有する、熱処理装置である。 One aspect of the present disclosure is a chamber including a heating unit that supports a substrate and heats it at a high temperature of 500° C. or more, a lid unit that covers the heating unit to form a processing space above the heating unit and has a surface facing the processing space made of a metal-containing material, and an exhaust unit that exhausts the processing space,
The chamber is a heat treatment apparatus having a gas supply unit that supplies a low-humidity gas having a humidity lower than that of the atmosphere to the treatment space.
本開示によれば、熱処理装置内の高温に晒された部材の表面から、当該部材を構成する金属を含むガスが生じるのを抑制することができる。
According to the present disclosure, it is possible to suppress the generation of gas containing the metal that constitutes a component from the surface of the component exposed to high temperatures in a heat treatment device.
半導体デバイス等の製造工程では、半導体ウェハ(以下、「ウェハ」という。)等の基板に対して、フォトリソグラフィー処理が行われ、基板上にレジストパターンが形成される。そして、このレジストパターンをマスクとして、処理対象層のエッチングが行われ、当該処理対象層に所望のパターンが形成される。
In the manufacturing process of semiconductor devices, etc., a photolithography process is performed on a substrate such as a semiconductor wafer (hereafter referred to as "wafer"), and a resist pattern is formed on the substrate. Then, using this resist pattern as a mask, the layer to be processed is etched, and the desired pattern is formed in the layer to be processed.
ところで、半導体デバイスの微細化等に伴い、処理対象層のエッチングに際し、高アスペクト比でのエッチングが求められている。このための技術として、レジスト膜よりエッチング耐性の高いハードマスク層を、レジスト膜の下層に形成し、当該ハードマスク層をマスクとしてエッチングする技術が知られている。また、3D NANDデバイスの出現等に伴い、よりエッチング耐性が高いハードマスク層が求められている。
Incidentally, with the miniaturization of semiconductor devices, etching with a high aspect ratio is required when etching the layers to be processed. One known technique for achieving this is to form a hard mask layer with higher etching resistance than a resist film underneath the resist film, and then etch using the hard mask layer as a mask. In addition, with the emergence of 3D NAND devices, there is a demand for hard mask layers with higher etching resistance.
ハードマスク層は、CVD法により形成される場合もあるが、よりスループットが高い、マスク層形成用の処理液の塗布と加熱により形成される場合もある。また、後者の場合、基板を500℃以上の高温で加熱することを要求されることがある。
しかし、500℃以上の高温で加熱すると、加熱に用いる熱処理装置内の高温に晒された部材の表面から、当該部材を構成する金属を含むガスが生じることがある。具体的には、例えば、基板を支持して熱板上に処理空間を形成するチャンバから、チャンバの材料であるステンレス鋼中のクロムを含有するガスが生じることがある。そして、上記金属(具体的にはクロム)を含むガスは基板や当該基板に関わる装置に悪影響を及ぼすおそれがある。 The hard mask layer may be formed by a CVD method, or may be formed by applying a mask layer forming treatment liquid and heating, which has a higher throughput, and in the latter case, may require heating the substrate at a high temperature of 500° C. or more.
However, when heated at a high temperature of 500° C. or higher, gas containing the metal constituting the member may be generated from the surface of the member exposed to the high temperature in the heat treatment device used for heating. Specifically, for example, gas containing chromium in stainless steel, which is the material of the chamber, may be generated from the chamber that supports the substrate and forms a processing space on the hot plate. The gas containing the metal (specifically, chromium) may adversely affect the substrate and the device related to the substrate.
しかし、500℃以上の高温で加熱すると、加熱に用いる熱処理装置内の高温に晒された部材の表面から、当該部材を構成する金属を含むガスが生じることがある。具体的には、例えば、基板を支持して熱板上に処理空間を形成するチャンバから、チャンバの材料であるステンレス鋼中のクロムを含有するガスが生じることがある。そして、上記金属(具体的にはクロム)を含むガスは基板や当該基板に関わる装置に悪影響を及ぼすおそれがある。 The hard mask layer may be formed by a CVD method, or may be formed by applying a mask layer forming treatment liquid and heating, which has a higher throughput, and in the latter case, may require heating the substrate at a high temperature of 500° C. or more.
However, when heated at a high temperature of 500° C. or higher, gas containing the metal constituting the member may be generated from the surface of the member exposed to the high temperature in the heat treatment device used for heating. Specifically, for example, gas containing chromium in stainless steel, which is the material of the chamber, may be generated from the chamber that supports the substrate and forms a processing space on the hot plate. The gas containing the metal (specifically, chromium) may adversely affect the substrate and the device related to the substrate.
そこで、本開示にかかる技術は、熱処理装置内の高温に晒された部材の表面から、当該部材を構成する金属を含むガスが生じるのを抑制する。
この点に関し、本発明者らが、鋭意検討したところ、500℃以上の高温で加熱する場合、処理空間に供給するガスを、水分を含む温湿度調整ガスから、大気よりも湿度が低い窒素ガスまたはドライエアに変更すると、クロムの検出量が大幅に減ることが分かった。。具体的には、ウェハWの表(おもて)面上のクロムの検出量は、温湿度調整ガスの場合、約8.5×1010atoms/cm2であったが、窒素ガスまたはドライエアの場合、約0.1×1010atoms/cm2であった。このような現象が生じるのは、以下が理由として考えられる。すなわち、500℃以上の高温で加熱する場合、処理空間に水分を含むガスを供給すると、ステンレス鋼が自然酸化することによりチャンバの表面に形成される酸化クロム(Cr2O3)膜が、水分(水蒸気)等と反応して、クロムを含有するガス(具体的にはCrO2(OH)2)が生じる。一方、処理空間に供給するガスに水分が含まれないと、上述の反応が生じないので、クロムを含有するガスの発生が抑えられる。これが理由として考えられる。
以下の実施の形態は、上述の知見に基づくものである。 In view of this, the technology disclosed herein suppresses the generation of gas containing metals constituting a component from the surface of the component exposed to high temperatures in a heat treatment apparatus.
Regarding this point, the inventors have conducted intensive research and found that when heating at a high temperature of 500°C or higher, if the gas supplied to the processing space is changed from a temperature and humidity adjusting gas containing moisture to nitrogen gas or dry air, which has a lower humidity than the atmosphere, the amount of chromium detected is significantly reduced. . Specifically, the amount of chromium detected on the front surface of the wafer W was about 8.5×10 10 atoms/cm 2 in the case of a temperature and humidity adjusting gas, but about 0.1×10 10 atoms/cm 2 in the case of nitrogen gas or dry air. The reason for this phenomenon is considered to be as follows. That is, when heating at a high temperature of 500°C or higher, if a gas containing moisture is supplied to the processing space, a chromium oxide (Cr 2 O 3 ) film formed on the surface of the chamber by natural oxidation of stainless steel reacts with moisture (water vapor) and the like to generate a gas containing chromium (specifically, CrO 2 (OH) 2 ). On the other hand, if the gas supplied to the processing space does not contain moisture, the above-mentioned reaction does not occur, and the generation of gas containing chromium is suppressed.
The following embodiments are based on the above findings.
この点に関し、本発明者らが、鋭意検討したところ、500℃以上の高温で加熱する場合、処理空間に供給するガスを、水分を含む温湿度調整ガスから、大気よりも湿度が低い窒素ガスまたはドライエアに変更すると、クロムの検出量が大幅に減ることが分かった。。具体的には、ウェハWの表(おもて)面上のクロムの検出量は、温湿度調整ガスの場合、約8.5×1010atoms/cm2であったが、窒素ガスまたはドライエアの場合、約0.1×1010atoms/cm2であった。このような現象が生じるのは、以下が理由として考えられる。すなわち、500℃以上の高温で加熱する場合、処理空間に水分を含むガスを供給すると、ステンレス鋼が自然酸化することによりチャンバの表面に形成される酸化クロム(Cr2O3)膜が、水分(水蒸気)等と反応して、クロムを含有するガス(具体的にはCrO2(OH)2)が生じる。一方、処理空間に供給するガスに水分が含まれないと、上述の反応が生じないので、クロムを含有するガスの発生が抑えられる。これが理由として考えられる。
以下の実施の形態は、上述の知見に基づくものである。 In view of this, the technology disclosed herein suppresses the generation of gas containing metals constituting a component from the surface of the component exposed to high temperatures in a heat treatment apparatus.
Regarding this point, the inventors have conducted intensive research and found that when heating at a high temperature of 500°C or higher, if the gas supplied to the processing space is changed from a temperature and humidity adjusting gas containing moisture to nitrogen gas or dry air, which has a lower humidity than the atmosphere, the amount of chromium detected is significantly reduced. . Specifically, the amount of chromium detected on the front surface of the wafer W was about 8.5×10 10 atoms/cm 2 in the case of a temperature and humidity adjusting gas, but about 0.1×10 10 atoms/cm 2 in the case of nitrogen gas or dry air. The reason for this phenomenon is considered to be as follows. That is, when heating at a high temperature of 500°C or higher, if a gas containing moisture is supplied to the processing space, a chromium oxide (Cr 2 O 3 ) film formed on the surface of the chamber by natural oxidation of stainless steel reacts with moisture (water vapor) and the like to generate a gas containing chromium (specifically, CrO 2 (OH) 2 ). On the other hand, if the gas supplied to the processing space does not contain moisture, the above-mentioned reaction does not occur, and the generation of gas containing chromium is suppressed.
The following embodiments are based on the above findings.
以下、本実施形態にかかる熱処理装置及び熱処理方法を、図面を参照して説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する要素においては、同一の符号を付することにより重複説明を省略する。
The heat treatment apparatus and heat treatment method according to this embodiment will be described below with reference to the drawings. Note that in this specification and the drawings, elements having substantially the same functional configuration are given the same reference numerals to avoid redundant description.
<塗布現像システム>
図1は、本実施形態にかかる熱処理装置を含む、基板処理システムとしての塗布現像システムの内部構成の概略を示す説明図である。図2及び図3はそれぞれ、塗布現像システムの正面側と背面側の内部構成の概略を示す図である。 <Coating and developing system>
Fig. 1 is an explanatory diagram showing an outline of the internal configuration of a coating and developing system as a substrate processing system including a heat treatment apparatus according to the present embodiment. Fig. 2 and Fig. 3 are diagrams showing an outline of the internal configuration of the coating and developing system from the front side and the rear side, respectively.
図1は、本実施形態にかかる熱処理装置を含む、基板処理システムとしての塗布現像システムの内部構成の概略を示す説明図である。図2及び図3はそれぞれ、塗布現像システムの正面側と背面側の内部構成の概略を示す図である。 <Coating and developing system>
Fig. 1 is an explanatory diagram showing an outline of the internal configuration of a coating and developing system as a substrate processing system including a heat treatment apparatus according to the present embodiment. Fig. 2 and Fig. 3 are diagrams showing an outline of the internal configuration of the coating and developing system from the front side and the rear side, respectively.
塗布現像システム1は、図1~図3に示すように、ウェハWを複数収容可能な容器であるカセットCが搬入出されるカセットステーション2と、レジスト塗布処理等の所定の処理を施す各種処理装置を複数備えた処理ステーション3と、を有する。そして、塗布現像システム1は、カセットステーション2と、処理ステーション3と、処理ステーション3に隣接する露光装置4との間でウェハWの受け渡しを行うインターフェイスステーション5とを一体に接続した構成を有している。
As shown in Figures 1 to 3, the coating and developing system 1 has a cassette station 2 where cassettes C, which are containers capable of housing multiple wafers W, are loaded and unloaded, and a processing station 3 equipped with multiple processing devices that perform predetermined processes such as resist coating. The coating and developing system 1 has a configuration in which the cassette station 2, the processing station 3, and an interface station 5 that transfers the wafer W between them and an exposure device 4 adjacent to the processing station 3 are integrally connected.
カセットステーション2は、例えばカセット搬入出部10とウェハ搬送部11に分かれている。例えばカセット搬入出部10は、塗布現像システム1のY方向負方向(図1の左方向)側の端部に設けられている。カセット搬入出部10には、カセット載置台12が設けられている。カセット載置台12上には、複数、例えば4つの載置板13が設けられている。載置板13は、水平方向のX方向(図1の上下方向)に一列に並べて設けられている。これらの載置板13には、塗布現像システム1の外部に対してカセットCを搬入出する際に、カセットCを載置することができる。
The cassette station 2 is divided, for example, into a cassette loading/unloading section 10 and a wafer transport section 11. For example, the cassette loading/unloading section 10 is provided at the end of the coating and developing system 1 on the negative Y-direction side (left direction in FIG. 1). The cassette loading/unloading section 10 is provided with a cassette mounting table 12. A plurality of, for example, four mounting plates 13 are provided on the cassette mounting table 12. The mounting plates 13 are arranged in a row in the horizontal X-direction (up and down direction in FIG. 1). The cassettes C can be placed on these mounting plates 13 when they are loaded or unloaded from the outside of the coating and developing system 1.
ウェハ搬送部11には、ウェハWを搬送する搬送装置20が設けられている。搬送装置20は、X方向に延びる搬送路21を移動自在に構成されている。搬送装置20は、上下方向及び鉛直軸周り(θ方向)にも移動自在であり、各載置板13上のカセットCと、後述する処理ステーション3の第3のブロックG3の受け渡し装置との間でウェハWを搬送できる。
The wafer transport section 11 is provided with a transport device 20 that transports the wafer W. The transport device 20 is configured to be freely movable on a transport path 21 that extends in the X direction. The transport device 20 is also freely movable in the vertical direction and around the vertical axis (θ direction), and can transport the wafer W between the cassette C on each mounting plate 13 and a transfer device in the third block G3 of the processing station 3, which will be described later.
処理ステーション3には、各種装置を備えた複数、例えば第1~第4の4つのブロックG1、G2、G3、G4が設けられている。例えば処理ステーション3の正面側(図1のX方向負方向側)には、第1のブロックG1が設けられ、処理ステーション3の背面側(図1のX方向正方向側)には、第2のブロックG2が設けられている。また、処理ステーション3のカセットステーション2側(図1のY方向負方向側)には、第3のブロックG3が設けられ、処理ステーション3のインターフェイスステーション5側(図1のY方向正方向側)には、第4のブロックG4が設けられている。
The processing station 3 is provided with multiple blocks, for example, four blocks G1, G2, G3, and G4, each equipped with various devices. For example, the first block G1 is provided on the front side of the processing station 3 (the negative X-direction side in FIG. 1), and the second block G2 is provided on the rear side of the processing station 3 (the positive X-direction side in FIG. 1). Furthermore, the third block G3 is provided on the cassette station 2 side of the processing station 3 (the negative Y-direction side in FIG. 1), and the fourth block G4 is provided on the interface station 5 side of the processing station 3 (the positive Y-direction side in FIG. 1).
第1のブロックG1には、図2に示すように複数の液処理装置、例えば現像処理装置30、ハードマスク膜形成装置31、レジスト塗布装置32が下からこの順に配置されている。現像処理装置30は、ウェハWに現像処理を施す。具体的には、現像処理装置30は、露光後加熱処理(PEB処理)が施されたウェハW上のレジスト膜に現像処理を現像する。ハードマスク膜形成装置31は、ウェハW上にハードマスク膜形成用の処理液を塗布してハードマスク膜を形成するハードマスク形成処理を行う。ハードマスク膜は例えば酸化ジルコニウム膜である。レジスト塗布装置32は、ウェハWにレジスト液を塗布してレジスト膜を形成するレジスト塗布処理を行う。
In the first block G1, as shown in FIG. 2, a plurality of liquid processing devices, for example, a development processing device 30, a hard mask film forming device 31, and a resist coating device 32, are arranged in this order from the bottom. The development processing device 30 performs a development process on the wafer W. Specifically, the development processing device 30 develops the resist film on the wafer W that has been subjected to a post-exposure bake process (PEB process). The hard mask film forming device 31 performs a hard mask formation process in which a process liquid for forming a hard mask film is applied onto the wafer W to form a hard mask film. The hard mask film is, for example, a zirconium oxide film. The resist coating device 32 performs a resist coating process in which a resist liquid is applied onto the wafer W to form a resist film.
例えば現像処理装置30、ハードマスク膜形成装置31、レジスト塗布装置32は、それぞれ水平方向に3つ並べて配置されている。なお、これら現像処理装置30、ハードマスク膜形成装置31、レジスト塗布装置32の数や配置は、任意に選択できる。
For example, three developing treatment devices 30, three hard mask film forming devices 31, and three resist coating devices 32 are arranged horizontally. The number and arrangement of the developing treatment devices 30, the hard mask film forming devices 31, and the resist coating devices 32 can be selected arbitrarily.
現像処理装置30、ハードマスク膜形成装置31、レジスト塗布装置32では、例えばスピン塗布法でウェハW上に所定の処理液を塗布する。スピン塗布法では、例えば吐出ノズルからウェハW上に処理液を吐出すると共に、ウェハWを回転させて、処理液をウェハWの表面に拡散させる。
In the development processing device 30, the hard mask film forming device 31, and the resist coating device 32, a predetermined processing liquid is applied onto the wafer W, for example, by a spin coating method. In the spin coating method, for example, the processing liquid is discharged onto the wafer W from a discharge nozzle, and the wafer W is rotated to diffuse the processing liquid onto the surface of the wafer W.
例えば第2のブロックG2には、図3に示すように、ウェハWに熱処理を施す熱処理装置40と、500℃以上の高温での加熱処理を含む熱処理をウェハWに熱処理を施す高温用熱処理装置41と、が上下方向と水平方向に並べて設けられている。これら熱処理装置40、高温用熱処理装置41の数や配置についても、任意に選択できる。なお、熱処理装置40では、ハードマスク形成処理後且つ高温用熱処理装置による熱処理前のウェハWを加熱処理するハードマスク用プリベーク処理を行う。また、熱処理装置40は、レジスト塗布処理後のウェハWを加熱処理するプリベーキング処理(以下、「PAB処理」という。)、露光処理後のウェハWを加熱処理するPEB処理、現像処理後のウェハWを加熱処理するポストベーキング処理(以下、「POST処理」という。)等を行う。また、高温用熱処理装置41は、ハードマスク用プリベーク処理後のウェハWを500℃以上の高温で加熱処理する高温加熱処理を行う。
For example, in the second block G2, as shown in FIG. 3, a heat treatment device 40 for performing heat treatment on the wafer W and a high-temperature heat treatment device 41 for performing heat treatment on the wafer W including heat treatment at a high temperature of 500° C. or more are arranged vertically and horizontally. The number and arrangement of the heat treatment devices 40 and high-temperature heat treatment devices 41 can be selected as desired. The heat treatment device 40 performs a hard mask pre-bake process for heating the wafer W after the hard mask formation process and before the heat treatment by the high-temperature heat treatment device. The heat treatment device 40 also performs a pre-baking process (hereinafter referred to as "PAB process") for heating the wafer W after the resist coating process, a PEB process for heating the wafer W after the exposure process, and a post-baking process (hereinafter referred to as "POST process") for heating the wafer W after the development process. The high-temperature heat treatment device 41 also performs a high-temperature heat treatment for heating the wafer W after the hard mask pre-bake process at a high temperature of 500° C. or more.
例えば第3のブロックG3には、複数の受け渡し装置50、51、52、53、54、55、56が下から順に設けられている。また、第4のブロックG4には、複数の受け渡し装置60、61、62が下から順に設けられている。
For example, in the third block G3, multiple transfer devices 50, 51, 52, 53, 54, 55, and 56 are provided in order from the bottom. Also, in the fourth block G4, multiple transfer devices 60, 61, and 62 are provided in order from the bottom.
図1に示すように第1のブロックG1~第4のブロックG4に囲まれた領域には、ウェハ搬送領域Dが形成されている。ウェハ搬送領域Dには、例えばウェハWを搬送する基板搬送装置としての搬送装置70が配置されている。
As shown in FIG. 1, a wafer transport area D is formed in the area surrounded by the first block G1 to the fourth block G4. In the wafer transport area D, a transport device 70 is disposed, which serves as a substrate transport device for transporting a wafer W, for example.
搬送装置70は、例えばY方向、θ方向及び上下方向に移動自在な搬送アーム70aを有している。搬送装置70は、ウェハWを保持した搬送アーム70aをウェハ搬送領域D内で移動させ、周囲の第1のブロックG1、第2のブロックG2、第3のブロックG3及び第4のブロックG4内の所定の装置に、ウェハWを搬送できる。搬送装置70は、例えば図3に示すように上下に複数台配置され、例えば各ブロックG1~G4の同程度の高さの所定の装置にウェハWを搬送できる。
The transfer device 70 has a transfer arm 70a that can move freely, for example, in the Y direction, the θ direction, and the vertical direction. The transfer device 70 moves the transfer arm 70a holding the wafer W within the wafer transfer area D, and can transfer the wafer W to a predetermined device in the surrounding first block G1, second block G2, third block G3, and fourth block G4. For example, multiple transfer devices 70 are arranged vertically as shown in Figure 3, and can transfer the wafer W to a predetermined device at approximately the same height in each of the blocks G1 to G4.
また、ウェハ搬送領域Dには、第3のブロックG3と第4のブロックG4との間で直線的にウェハWを搬送するシャトル搬送装置80が設けられている。
In addition, a shuttle transport device 80 is provided in the wafer transport area D to transport the wafer W linearly between the third block G3 and the fourth block G4.
シャトル搬送装置80は、支持したウェハWをY方向に直線的に移動させ、同程度の高さの第3のブロックG3の受け渡し装置52と第4のブロックG4の受け渡し装置62との間でウェハWを搬送できる。
The shuttle transport device 80 moves the supported wafer W linearly in the Y direction, and can transport the wafer W between the transfer device 52 of the third block G3 and the transfer device 62 of the fourth block G4, which are at approximately the same height.
図1に示すように第3のブロックG3のX方向正方向側には、搬送装置90が設けられている。搬送装置90は、例えばθ方向及び上下方向に移動自在な搬送アーム90aを有している。搬送装置90は、ウェハWを保持した搬送アーム90aを上下に移動させ、第3のブロックG3内の各受け渡し装置に、ウェハWを搬送できる。
As shown in FIG. 1, a transfer device 90 is provided on the positive X-direction side of the third block G3. The transfer device 90 has a transfer arm 90a that can move, for example, in the θ direction and in the vertical direction. The transfer device 90 moves the transfer arm 90a holding the wafer W up and down, and can transfer the wafer W to each transfer device in the third block G3.
インターフェイスステーション5には、搬送装置100と受け渡し装置101が設けられている。搬送装置100は、例えばθ方向及び上下方向に移動自在な搬送アーム100aを有している。搬送装置100は、搬送アーム100aにウェハWを保持して、第4のブロックG4内の各受け渡し装置、受け渡し装置101及び露光装置4との間でウェハWを搬送できる。
The interface station 5 is provided with a transfer device 100 and a delivery device 101. The transfer device 100 has a transfer arm 100a that can move freely, for example, in the θ direction and in the vertical direction. The transfer device 100 holds a wafer W on the transfer arm 100a and can transfer the wafer W between each delivery device in the fourth block G4, the delivery device 101, and the exposure device 4.
以上の塗布現像システム1には、図1に示すように少なくとも1つの制御部200が設けられている。制御部200は、本開示において述べられる種々の工程を塗布現像システム1に実行させるコンピュータ実行可能な命令を処理する。制御部200は、ここで述べられる種々の工程を実行するように塗布現像システム1の各要素を制御するように構成され得る。一実施形態において、制御部200の一部又は全てが塗布現像システム1に含まれてもよい。制御部200は、処理部、記憶部及び通信インターフェースを含んでもよい。制御部200は、例えばコンピュータにより実現される。処理部は、記憶部から種々の制御動作を行うことを可能にするロジック又はルーチンを提供するプログラムを読み出し、読み出されたプログラムを実行することにより種々の制御動作を行うように構成され得る。このプログラムは、予め記憶部に格納されていてもよく、必要なときに、媒体を介して取得されてもよい。取得されたプログラムは、記憶部に格納され、処理部によって記憶部から読み出されて実行される。媒体は、コンピュータに読み取り可能な種々の記憶媒体Hであってもよく、通信インターフェースに接続されている通信回線であってもよい。記憶媒体Hは、一時的なものであっても非一時的なものであってもよい。処理部は、CPU(Central Processing Unit)であってもよく、1つ又は複数の回路であってもよい。記憶部は、RAM(Random Access Memory)、ROM(Read Only Memory)、HDD(Hard Disk Drive)、SSD(Solid State Drive)、又はこれらの組み合わせを含んでもよい。通信インターフェースは、LAN(Local Area Network)等の通信回線を介して塗布現像システム1との間で通信してもよい。
The coating and developing system 1 described above is provided with at least one control unit 200 as shown in FIG. 1. The control unit 200 processes computer-executable instructions that cause the coating and developing system 1 to perform the various processes described in this disclosure. The control unit 200 may be configured to control each element of the coating and developing system 1 to perform the various processes described herein. In one embodiment, a part or all of the control unit 200 may be included in the coating and developing system 1. The control unit 200 may include a processing unit, a storage unit, and a communication interface. The control unit 200 is realized, for example, by a computer. The processing unit may be configured to read a program that provides logic or routines that enable various control operations to be performed from the storage unit, and to perform various control operations by executing the read program. This program may be stored in the storage unit in advance, or may be acquired via a medium when necessary. The acquired program is stored in the storage unit, and is read from the storage unit by the processing unit and executed. The medium may be various computer-readable storage media H, or may be a communication line connected to the communication interface. The storage medium H may be temporary or non-temporary. The processing unit may be a CPU (Central Processing Unit) or one or more circuits. The storage unit may include a RAM (Random Access Memory), a ROM (Read Only Memory), a HDD (Hard Disk Drive), an SSD (Solid State Drive), or a combination thereof. The communication interface may communicate with the coating and developing system 1 via a communication line such as a LAN (Local Area Network).
<高温用熱処理装置41>
次に、高温用熱処理装置41について説明する。図4は、高温用熱処理装置41の構成の概略を模式的に示す縦断面図である。図5は、後述の加熱領域310内の構成の概略を模式的に示す縦断面図である。 <High-temperatureheat treatment device 41>
Next, a description will be given of the high-temperatureheat treatment device 41. Fig. 4 is a vertical cross-sectional view showing a schematic outline of the configuration of the high-temperature heat treatment device 41. Fig. 5 is a vertical cross-sectional view showing a schematic outline of the configuration within a heating region 310 described below.
次に、高温用熱処理装置41について説明する。図4は、高温用熱処理装置41の構成の概略を模式的に示す縦断面図である。図5は、後述の加熱領域310内の構成の概略を模式的に示す縦断面図である。 <High-temperature
Next, a description will be given of the high-temperature
高温用熱処理装置41は、図4に示すように、内部を閉鎖可能な筐体としての処理容器300を有している。処理容器300のウェハ搬送領域D側の側壁には、ウェハWの搬入出口301が形成され、この搬入出口301には開閉シャッタ302が設けられている。
As shown in FIG. 4, the high-temperature heat treatment device 41 has a processing vessel 300 as a housing whose interior can be closed. A loading/unloading port 301 for the wafer W is formed in the side wall of the processing vessel 300 on the wafer transfer area D side, and an opening/closing shutter 302 is provided at the loading/unloading port 301.
処理容器300の内部は、隔壁303により上部空間S1と下部空間S2に分けられている。上部空間S1には、ウェハWを加熱する加熱領域310と、ウェハWを冷却する冷却領域311が設けられている。加熱領域310と冷却領域311は装置奥行き方向(図のY方向)に並ぶように設けられ、加熱領域310より冷却領域311の方が搬入出口301側に位置する。
The interior of the processing vessel 300 is divided into an upper space S1 and a lower space S2 by a partition wall 303. The upper space S1 is provided with a heating area 310 for heating the wafer W and a cooling area 311 for cooling the wafer W. The heating area 310 and the cooling area 311 are arranged side by side in the depth direction of the apparatus (Y direction in the figure), and the cooling area 311 is located closer to the load/unload port 301 than the heating area 310.
図5に示すように、加熱領域310には、ウェハWを支持して500℃以上の高温で加熱する加熱部としての熱板320が設けられている。熱板320は、厚みのある円板状の板状部321を有する。板状部321の直径は、ウェハWの直径よりも大きい。板状部321には、例えばヒータ322が内蔵されている。また、板状部321は、例えば、熱伝導率が高い炭化ケイ素によって構成されている。熱板320の温度(具体的には板状部321の温度)は例えば制御部200により制御され、熱板320上に載置されたウェハWまたは熱板320の板状部321が500℃以上の所定の温度になるように、ヒータ322による加熱が行われる。
As shown in FIG. 5, the heating region 310 is provided with a hot plate 320 as a heating section that supports the wafer W and heats it at a high temperature of 500° C. or more. The hot plate 320 has a thick, circular plate-shaped section 321. The diameter of the plate-shaped section 321 is larger than the diameter of the wafer W. The plate-shaped section 321 has a built-in heater 322, for example. The plate-shaped section 321 is made of, for example, silicon carbide, which has high thermal conductivity. The temperature of the hot plate 320 (specifically, the temperature of the plate-shaped section 321) is controlled by, for example, the control section 200, and heating is performed by the heater 322 so that the wafer W placed on the hot plate 320 or the plate-shaped section 321 of the hot plate 320 reaches a predetermined temperature of 500° C. or more.
また、熱板320は、例えば、遮熱板323を介して支持底壁324に支持される。遮熱板323及び支持底壁324は共に円板状に形成されている。遮熱板323の直径は熱板320の直径と同程度である。一方、支持底壁324の直径は、熱板320の直径よりも大きい。支持底壁324は、図4に示すように、隔壁303の上方に間隔を設けて配置されている。支持底壁324は、固定部材(図示せず)を介して隔壁303に固定されてもよい。
Furthermore, the heat plate 320 is supported on the supporting bottom wall 324 via, for example, a heat shield plate 323. Both the heat shield plate 323 and the supporting bottom wall 324 are formed in a disk shape. The diameter of the heat shield plate 323 is approximately the same as the diameter of the heat plate 320. On the other hand, the diameter of the supporting bottom wall 324 is larger than the diameter of the heat plate 320. The supporting bottom wall 324 is disposed above the partition wall 303 with a gap therebetween, as shown in FIG. 4. The supporting bottom wall 324 may be fixed to the partition wall 303 via a fixing member (not shown).
熱板320に対しては、ウェハWを下方から支持し昇降させる昇降ピン330が複数(例えば3本)設けられている。複数の昇降ピン330は、モータ等の駆動源を有する昇降駆動部331により昇降する。また、昇降ピン330はそれぞれ、対応する貫通孔332に挿通されており、貫通孔332を通過し熱板320の上面から突出可能になっている。貫通孔332はそれぞれ、例えば、熱板320、遮熱板323、支持底壁324、隔壁303を上下方向に貫通するように形成されている。
昇降駆動部331は、ウェハWを支持した複数の昇降ピン330を昇降させることで、ウェハWを昇降させることができる。昇降駆動部331は例えば下部空間S2に設けられる。 Thehot plate 320 is provided with a plurality of (e.g., three) lift pins 330 for supporting and lifting the wafer W from below. The plurality of lift pins 330 are raised and lowered by a lift drive unit 331 having a drive source such as a motor. Each of the lift pins 330 is inserted into a corresponding through hole 332 and can pass through the through hole 332 and protrude from the upper surface of the hot plate 320. Each of the through holes 332 is formed to pass through, for example, the hot plate 320, the heat shield plate 323, the support bottom wall 324, and the partition wall 303 in the vertical direction.
The lifting and loweringdrive unit 331 can lift and lower the wafer W by lifting and lowering the plurality of lifting pins 330 supporting the wafer W. The lifting and lowering drive unit 331 is provided in, for example, the lower space S2.
昇降駆動部331は、ウェハWを支持した複数の昇降ピン330を昇降させることで、ウェハWを昇降させることができる。昇降駆動部331は例えば下部空間S2に設けられる。 The
The lifting and lowering
また、貫通孔332を介して後述の処理空間S3を排気するため、貫通孔332はそれぞれ、排気管333を介して、例えば真空ポンプ等の排気装置334が接続されている。排気管333には、貫通孔332を介した排気(以下、ピン排気という。)のON/OFFを切り替えるバルブ等を有する排気機器群335が設けられている。排気装置334及び排気機器群335は制御部200により制御される。
Furthermore, in order to exhaust the processing space S3 described below through the through holes 332, an exhaust device 334 such as a vacuum pump is connected to each of the through holes 332 via an exhaust pipe 333. The exhaust pipe 333 is provided with an exhaust device group 335 having a valve or the like that switches the exhaust through the through holes 332 (hereinafter referred to as pin exhaust) on and off. The exhaust device 334 and the exhaust device group 335 are controlled by the control unit 200.
また、加熱領域310には、チャンバ340が設けられている。チャンバ340は、周壁部341と、蓋部としての上チャンバ342と、を有する。
The heating region 310 is also provided with a chamber 340. The chamber 340 has a peripheral wall portion 341 and an upper chamber 342 serving as a lid portion.
周壁部341は、図5に示すように、熱板320との間に(具体的には熱板320及び遮熱板323の側面との間に)隙間g1を設けた状態で、配置されている。この周壁部341は、支持底壁324の周縁部から上方に延びるように形成されると共に、平面視円環状に形成されている。周壁部341の内周面は、熱板320及び遮熱板323の外周面と対向している。なお、隙間g1は平面視円環状に形成されている。
As shown in FIG. 5, the peripheral wall portion 341 is arranged with a gap g1 between it and the heat plate 320 (specifically, between the heat plate 320 and the side surface of the heat shield plate 323). This peripheral wall portion 341 is formed to extend upward from the peripheral edge of the support bottom wall 324, and is formed in a circular ring shape in a plan view. The inner peripheral surface of the peripheral wall portion 341 faces the outer peripheral surfaces of the heat plate 320 and the heat shield plate 323. The gap g1 is formed in a circular ring shape in a plan view.
また、周壁部341には、隙間g1を介して後述の処理空間S3を排気する周縁排気部350が設けられている。周縁排気部350は、隙間g1に開口する複数の排気孔351を有する。複数の排気孔351は、周壁部341の内周面に、周壁部341の周方向に沿って、所定の間隔で配列されている。周縁排気部350は、周壁部341の内部に形成された排気路352をさらに有する。排気路352は、排気孔351における隙間g1とは反対側の端部に接続されている。排気路352は、周壁部341に沿って延びるように平面視円環状に形成されている。また、排気路352は、排気管353を介して、例えば真空ポンプ等の排気装置354が接続されている。排気管353には、周縁排気部350による排気のON/OFFを切り替えるバルブ等を有する排気機器群355が設けられている。排気装置354及び排気機器群355は制御部200により制御される。
The peripheral wall portion 341 is also provided with a peripheral exhaust section 350 that exhausts the processing space S3 described below through the gap g1. The peripheral exhaust section 350 has a plurality of exhaust holes 351 that open into the gap g1. The plurality of exhaust holes 351 are arranged at a predetermined interval on the inner peripheral surface of the peripheral wall portion 341 along the circumferential direction of the peripheral wall portion 341. The peripheral exhaust section 350 further has an exhaust path 352 formed inside the peripheral wall portion 341. The exhaust path 352 is connected to the end of the exhaust hole 351 on the opposite side to the gap g1. The exhaust path 352 is formed in a circular ring shape in a plan view so as to extend along the peripheral wall portion 341. The exhaust path 352 is also connected to an exhaust device 354, such as a vacuum pump, via an exhaust pipe 353. The exhaust pipe 353 is provided with an exhaust device group 355 having a valve or the like that switches the exhaust by the peripheral exhaust section 350 on and off. The exhaust device 354 and the exhaust equipment group 355 are controlled by the control unit 200.
上チャンバ342は、熱板320を覆うことで熱板320上に処理空間S3を形成する。上チャンバ342は昇降駆動部(図示せず)により昇降可能に構成されている。上チャンバ342が、周壁部341に近接するまで下降することで、処理空間S3が形成される。
The upper chamber 342 covers the heat plate 320 to form a processing space S3 above the heat plate 320. The upper chamber 342 is configured to be movable up and down by a lifting drive unit (not shown). The upper chamber 342 is lowered until it is close to the peripheral wall portion 341, thereby forming the processing space S3.
また、上チャンバ342は、例えば、天壁部343と側壁部344とを有する。
天壁部343は、支持底壁324と同程度の直径を有する円板状に形成され、熱板320の上面と対向するように配置されている。
側壁部344は、天壁部343の外縁から下方に延びるように円筒状に形成され、その下端面が周壁部341の上端面と対向するように配置されている。 Theupper chamber 342 also has, for example, a top wall portion 343 and a side wall portion 344 .
Thetop wall portion 343 is formed in a disk shape having a diameter approximately equal to that of the supporting bottom wall 324 , and is disposed so as to face the upper surface of the hot plate 320 .
Theside wall portion 344 is formed in a cylindrical shape so as to extend downward from the outer edge of the top wall portion 343 , and is disposed so that its lower end surface faces the upper end surface of the peripheral wall portion 341 .
天壁部343は、支持底壁324と同程度の直径を有する円板状に形成され、熱板320の上面と対向するように配置されている。
側壁部344は、天壁部343の外縁から下方に延びるように円筒状に形成され、その下端面が周壁部341の上端面と対向するように配置されている。 The
The
The
上チャンバ342が周壁部341に近接した状態において、側壁部348の上端面と周壁部341の下端面との間には隙間g2が形成される。隙間g2は、処理空間S3の周囲を囲むように円環状に形成される。
また、上チャンバ342は加熱されるように構成されている。例えば、天壁部343にヒータ(図示せず)が内蔵され、このヒータが制御部200により制御され、天壁部343の上面が、熱板320より低温(例えば350℃~400℃)の所定の温度に調整される。 With theupper chamber 342 in close proximity to the peripheral wall portion 341, a gap g2 is formed between the upper end surface of the side wall portion 348 and the lower end surface of the peripheral wall portion 341. The gap g2 is formed in an annular shape so as to surround the periphery of the processing space S3.
Theupper chamber 342 is configured to be heated. For example, a heater (not shown) is built into the top wall 343, and the heater is controlled by the control unit 200 to adjust the upper surface of the top wall 343 to a predetermined temperature lower than that of the hot plate 320 (for example, 350° C. to 400° C.).
また、上チャンバ342は加熱されるように構成されている。例えば、天壁部343にヒータ(図示せず)が内蔵され、このヒータが制御部200により制御され、天壁部343の上面が、熱板320より低温(例えば350℃~400℃)の所定の温度に調整される。 With the
The
この上チャンバ342は、金属材料で構成され、具体的にはステンレス鋼で構成され、より具体的にはSUS304で構成されている。そのため、上チャンバ342の処理空間S3側の面が、金属含有材料で構成され、具体的には、ステンレス鋼が自然酸化することにより形成される酸化クロム膜で構成されている。
This upper chamber 342 is made of a metal material, specifically stainless steel, and more specifically SUS304. Therefore, the surface of the upper chamber 342 facing the processing space S3 is made of a metal-containing material, specifically a chromium oxide film formed by the natural oxidation of stainless steel.
また、チャンバ340は、ガス供給部としてのシャワーヘッド360を有する。具体的には、上チャンバ342は、シャワーヘッド360を有する。
The chamber 340 also has a shower head 360 as a gas supply unit. Specifically, the upper chamber 342 has a shower head 360.
シャワーヘッド360は、大気よりも湿度が低い低湿度ガスを処理空間S3に供給する。低湿度ガスは例えばドライエアまたは窒素ガスである。低湿度ガスの湿度は処理空間S3が例えば0.01%以下になるように調整される。シャワーヘッド360は例えば天壁部343の少なくとも一部を構成する。
The shower head 360 supplies low-humidity gas, which has a humidity lower than that of the atmosphere, to the processing space S3. The low-humidity gas is, for example, dry air or nitrogen gas. The humidity of the low-humidity gas is adjusted so that the humidity in the processing space S3 is, for example, 0.01% or less. The shower head 360 constitutes, for example, at least a part of the ceiling wall portion 343.
シャワーヘッド360の下面には、複数のガス吐出孔361が形成されている。複数のガス吐出孔361は、シャワーヘッド360の下面において、後述する排気口371以外の部分に均一に配置されている。シャワーヘッド360には、ガス供給管362が接続されている。さらに、ガス供給管362には、シャワーヘッド360に低湿度ガスを供給するガス供給源363が接続されている。また、ガス供給管362には、シャワーヘッド360への低湿度ガスの供給のON/OFFを切り替えるバルブや流量調節弁等を含む供給機器群364が設けられている。供給機器群364は制御部200により制御される。ガス供給源363からガス供給管362を介してシャワーヘッド360に供給された低湿度ガスは、ガス吐出孔361から下方に向けて吐出される。
The shower head 360 has a plurality of gas discharge holes 361 formed on its underside. The plurality of gas discharge holes 361 are uniformly arranged on the underside of the shower head 360 except for the exhaust port 371 described later. A gas supply pipe 362 is connected to the shower head 360. A gas supply source 363 that supplies low-humidity gas to the shower head 360 is connected to the gas supply pipe 362. The gas supply pipe 362 is provided with a supply device group 364 including a valve that switches the supply of low-humidity gas to the shower head 360 on and off, a flow rate control valve, and the like. The supply device group 364 is controlled by the control unit 200. The low-humidity gas supplied to the shower head 360 from the gas supply source 363 via the gas supply pipe 362 is discharged downward from the gas discharge hole 361.
さらに、シャワーヘッド360には、中央排気部370と外周排気部380が設けられている。これら中央排気部370及び外周排気部380と前述の周縁排気部350により、処理空間S3を排気する排気部が構成されている。
Furthermore, the shower head 360 is provided with a central exhaust section 370 and a peripheral exhaust section 380. The central exhaust section 370 and the peripheral exhaust section 380, together with the aforementioned peripheral exhaust section 350, constitute an exhaust section that exhausts the processing space S3.
中央排気部370は、熱板320の中央部の上方から、処理空間S3を排気する。中央排気部370は排気口371を有する。排気口371は、シャワーヘッド360の下面における中央に設けられており、下方に開口している。中央排気部370は、この排気口371を介して、処理空間S3を排気する。
The central exhaust section 370 exhausts the processing space S3 from above the center of the heat plate 320. The central exhaust section 370 has an exhaust port 371. The exhaust port 371 is provided in the center of the underside of the shower head 360 and opens downward. The central exhaust section 370 exhausts the processing space S3 via this exhaust port 371.
また、中央排気部370は、排気口371から上方向に延伸するように形成された中央排気路372を有する。中央排気路372には、排気管373を介して、真空ポンプ等の排気装置374が接続されている。排気管373には、中央排気部370による排気のON/OFFを切り替えるバルブ等を有する排気機器群375が設けられている。排気装置374及び排気機器群375は制御部200により制御される。
The central exhaust section 370 also has a central exhaust path 372 formed to extend upward from the exhaust port 371. An exhaust device 374 such as a vacuum pump is connected to the central exhaust path 372 via an exhaust pipe 373. An exhaust device group 375 having a valve or the like for switching the exhaust by the central exhaust section 370 on and off is provided on the exhaust pipe 373. The exhaust device 374 and the exhaust device group 375 are controlled by the control unit 200.
外周排気部380は、熱板320の外周部の上方から(具体的には例えばウェハWの周端のやや外側となる部分の上方から、処理空間S3を排気する。外周排気部380は、排気口381を有する。排気口381は、シャワーヘッド360の外周を囲むように、天壁部343の下面から、下方に開口している。排気口381は、複数の排気孔をシャワーヘッド360の外周に沿って並べたものであってもよい。外周排気部380は、この排気口381を介して、処理空間S3を排気する。
The peripheral exhaust section 380 exhausts the processing space S3 from above the outer periphery of the heat plate 320 (specifically, for example, from above a portion slightly outside the peripheral edge of the wafer W). The peripheral exhaust section 380 has an exhaust port 381. The exhaust port 381 opens downward from the underside of the ceiling wall section 343 so as to surround the outer periphery of the shower head 360. The exhaust port 381 may be a plurality of exhaust holes arranged along the outer periphery of the shower head 360. The peripheral exhaust section 380 exhausts the processing space S3 via this exhaust port 381.
また、外周排気部380は、排気口381に通ずる外周排気路382を有する。外周排気路382には、排気管383を介して、真空ポンプ等の排気装置384が接続されている。排気管383には、排気のON/OFFを切り替えるバルブ等を有する排気機器群385が設けられている。排気装置384及び排気機器群385は制御部200により制御される。
The outer peripheral exhaust section 380 also has an outer peripheral exhaust path 382 that leads to the exhaust port 381. An exhaust device 384 such as a vacuum pump is connected to the outer peripheral exhaust path 382 via an exhaust pipe 383. An exhaust device group 385 having a valve or the like for switching exhaust ON/OFF is provided on the exhaust pipe 383. The exhaust device 384 and the exhaust device group 385 are controlled by the control unit 200.
図4に示すように、冷却領域311には、ウェハWを支持して冷却する冷却部としての冷却板400が設けられている。冷却板400は、例えば、厚みのある円板状に形成される。冷却板400には、例えば冷却水やペルチェ素子等の温度調節部材(図示せず)が内蔵されている。冷却板400の温度は例えば制御部200により制御され、冷却板400上に載置されたウェハWが所定の温度で冷却される。
As shown in FIG. 4, the cooling region 311 is provided with a cooling plate 400 as a cooling unit that supports and cools the wafer W. The cooling plate 400 is formed, for example, in the shape of a thick disk. The cooling plate 400 has built-in temperature adjustment members (not shown), such as cooling water or a Peltier element. The temperature of the cooling plate 400 is controlled, for example, by the control unit 200, and the wafer W placed on the cooling plate 400 is cooled to a predetermined temperature.
冷却板400に対しては、ウェハWを下方から支持し昇降させる昇降ピン410が複数(例えば3本)設けられている。複数の昇降ピン410は、モータ等の駆動源を有する昇降駆動部411により昇降する。また、昇降ピン410はそれぞれ、冷却板400に形成された貫通孔(図示せず)に挿通されており、貫通孔を通過し冷却板400の上面から突出可能になっている。
昇降駆動部411は、ウェハWを支持した複数の昇降ピン410を昇降させることで、ウェハWを昇降させることができる。昇降駆動部411は例えば上部空間S1における冷却領域311に設けられる。 Thecooling plate 400 is provided with a plurality of (e.g., three) lift pins 410 for supporting and lifting the wafer W from below. The plurality of lift pins 410 are raised and lowered by a lift driver 411 having a drive source such as a motor. Each of the lift pins 410 is inserted into a through hole (not shown) formed in the cooling plate 400 and can protrude from the upper surface of the cooling plate 400 through the through hole.
The lifting and loweringdrive unit 411 can lift and lower the wafer W by lifting and lowering the plurality of lifting pins 410 supporting the wafer W. The lifting and lowering drive unit 411 is provided in, for example, the cooling region 311 in the upper space S1.
昇降駆動部411は、ウェハWを支持した複数の昇降ピン410を昇降させることで、ウェハWを昇降させることができる。昇降駆動部411は例えば上部空間S1における冷却領域311に設けられる。 The
The lifting and lowering
さらに、処理容器300内には、加熱領域310と冷却領域311との間でウェハWを搬送する搬送機構420が設けられている。搬送機構420は、保持アーム421と駆動部422とを有する。保持アーム421は、上部空間S1における、熱板320及び冷却板400よりも上方の空間に設けられ、ウェハWを水平に保持する。保持アーム421は、複数の昇降ピン330または複数の昇降ピン410との間でウェハWの受け渡しが可能なように構成されている。駆動部422は、モータ等の駆動源を有し、装置奥行き方向(図のY方向)に沿って、保持アーム421を移動させる。
Furthermore, a transport mechanism 420 is provided within the processing vessel 300 to transport the wafer W between the heating region 310 and the cooling region 311. The transport mechanism 420 has a holding arm 421 and a drive unit 422. The holding arm 421 is provided in the space above the heating plate 320 and the cooling plate 400 in the upper space S1, and holds the wafer W horizontally. The holding arm 421 is configured to be able to transfer the wafer W between the multiple lift pins 330 or the multiple lift pins 410. The drive unit 422 has a drive source such as a motor, and moves the holding arm 421 along the device depth direction (Y direction in the figure).
さらにまた、処理容器300内には、当該処理容器300内におけるチャンバ340の外側の空間に低湿度ガスを供給するガス供給部430を有する。
ガス供給部430は、冷却領域ガス供給部としてのシャワーヘッド431と、加熱領域ガス供給部としてのシャワーヘッダ432と、を有する。なお、シャワーヘッド360、シャワーヘッド431、シャワーヘッダ432から供給する低湿度ガスの種類は同じであってもよいし、異なっていてもよい。なお、以下の説明では、シャワーヘッド360、シャワーヘッド431、シャワーヘッダ432から供給する低湿度ガスの種類は同じであるものとする。 Furthermore, within theprocessing vessel 300 there is a gas supply unit 430 that supplies a low-humidity gas to a space outside the chamber 340 within the processing vessel 300 .
Thegas supply unit 430 has a shower head 431 as a cooling region gas supply unit, and a shower header 432 as a heating region gas supply unit. The types of low-humidity gas supplied from the shower head 360, the shower head 431, and the shower header 432 may be the same or different. In the following description, it is assumed that the types of low-humidity gas supplied from the shower head 360, the shower head 431, and the shower header 432 are the same.
ガス供給部430は、冷却領域ガス供給部としてのシャワーヘッド431と、加熱領域ガス供給部としてのシャワーヘッダ432と、を有する。なお、シャワーヘッド360、シャワーヘッド431、シャワーヘッダ432から供給する低湿度ガスの種類は同じであってもよいし、異なっていてもよい。なお、以下の説明では、シャワーヘッド360、シャワーヘッド431、シャワーヘッダ432から供給する低湿度ガスの種類は同じであるものとする。 Furthermore, within the
The
シャワーヘッド431は、冷却領域311に低湿度ガスを供給する。シャワーヘッド431は、冷却領域311に設けられ、具体的には、冷却領域311における冷却板400の上方に設けられている。シャワーヘッド431の下面には、複数のガス吐出孔433が形成されている。複数のガス吐出孔433は、シャワーヘッド431の下面において均一に配置されている。シャワーヘッド431には、ガス供給管434が接続されている。さらに、ガス供給管434には、シャワーヘッド431に低湿度ガスを供給するガス供給源435が接続されている。また、ガス供給管434には、シャワーヘッド431への低湿度ガスの供給のON/OFFを切り替えるバルブや流量調節弁等を含む供給機器群436が設けられている。供給機器群436は制御部200により制御される。ガス供給源435からガス供給管434を介してシャワーヘッド431に供給された低湿度ガスは、ガス吐出孔433から下方に向けて吐出される。
The shower head 431 supplies low-humidity gas to the cooling region 311. The shower head 431 is provided in the cooling region 311, specifically, above the cooling plate 400 in the cooling region 311. A plurality of gas discharge holes 433 are formed on the lower surface of the shower head 431. The plurality of gas discharge holes 433 are uniformly arranged on the lower surface of the shower head 431. A gas supply pipe 434 is connected to the shower head 431. A gas supply source 435 that supplies low-humidity gas to the shower head 431 is connected to the gas supply pipe 434. The gas supply pipe 434 is provided with a supply device group 436 including a valve that switches ON/OFF of the supply of low-humidity gas to the shower head 431 and a flow rate control valve. The supply device group 436 is controlled by the control unit 200. The low-humidity gas supplied to the shower head 431 from the gas supply source 435 via the gas supply pipe 434 is discharged downward from the gas discharge hole 433.
シャワーヘッダ432は、加熱領域310に低湿度ガスを供給する。シャワーヘッダ432は、加熱領域310に設けられている。具体的には、シャワーヘッダ432は、平面視で、加熱領域における、装置奥行き方向(図のY方向)にかかる熱板320と冷却板400との間に設けられている。また、シャワーヘッダ432は、上チャンバ342より上方に設けられている。
The shower header 432 supplies low-humidity gas to the heating area 310. The shower header 432 is provided in the heating area 310. Specifically, the shower header 432 is provided between the hot plate 320 and the cooling plate 400 in the device depth direction (Y direction in the figure) in the heating area in a plan view. The shower header 432 is also provided above the upper chamber 342.
さらに、シャワーヘッダ432は、装置奥行き方向(図のY方向)及び鉛直方向に対して直交する方向に沿って延びるように棒状に形成されている。シャワーヘッダ432には複数のガス吐出孔437が設けられている。複数のガス吐出孔437は、例えば、シャワーヘッダ432における冷却領域311側とは反対側の面に形成されている。また、複数のガス吐出孔437は、シャワーヘッダ432の延在方向に沿って所定の間隔で配列されている。
Furthermore, the shower header 432 is formed in a rod shape so as to extend in a direction perpendicular to the device depth direction (Y direction in the figure) and the vertical direction. The shower header 432 is provided with a plurality of gas discharge holes 437. The plurality of gas discharge holes 437 are formed, for example, on the surface of the shower header 432 opposite the cooling region 311 side. The plurality of gas discharge holes 437 are also arranged at predetermined intervals along the extension direction of the shower header 432.
さらに、シャワーヘッダ432には、ガス供給管438が接続されている。さらに、ガス供給管438には、シャワーヘッダ432に低湿度ガスを供給するガス供給源439が接続されている。また、ガス供給管438には、シャワーヘッダ432への低湿度ガスの供給のON/OFFを切り替えるバルブや流量調節弁等を含む供給機器群440が設けられている。供給機器群440は制御部200により制御される。ガス供給源439からガス供給管438を介してシャワーヘッダ432に供給された低湿度ガスは、ガス吐出孔437から上チャンバ342の上方の空間に向けて吐出される。
Furthermore, a gas supply pipe 438 is connected to the shower header 432. Further, a gas supply source 439 that supplies low-humidity gas to the shower header 432 is connected to the gas supply pipe 438. Also, a supply equipment group 440 including a valve that switches the supply of low-humidity gas to the shower header 432 on and off and a flow rate control valve is provided on the gas supply pipe 438. The supply equipment group 440 is controlled by the control unit 200. The low-humidity gas supplied to the shower header 432 from the gas supply source 439 via the gas supply pipe 438 is discharged from the gas discharge hole 437 toward the space above the upper chamber 342.
<ウェハ処理>
次に、高温用熱処理装置41による処理を中心に、塗布現像システム1による処理の一例について説明する。図6は、塗布現像システム1による処理の一例を説明するためのフローチャートである。図7~図10はそれぞれ、高温用熱処理装置41の動作を示す説明図である。なお、以下の処理は、制御部200の制御の下、行われる。また、以下では、塗布現像システム1が有する高温用熱処理装置41が1つであるものとする。 <Wafer Processing>
Next, an example of processing by the coating and developingsystem 1 will be described, focusing on processing by the high-temperature heat treatment device 41. FIG. 6 is a flow chart for explaining an example of processing by the coating and developing system 1. FIGS. 7 to 10 are explanatory diagrams showing the operation of the high-temperature heat treatment device 41. Note that the following processing is performed under the control of the control unit 200. In the following, it is assumed that the coating and developing system 1 has one high-temperature heat treatment device 41.
次に、高温用熱処理装置41による処理を中心に、塗布現像システム1による処理の一例について説明する。図6は、塗布現像システム1による処理の一例を説明するためのフローチャートである。図7~図10はそれぞれ、高温用熱処理装置41の動作を示す説明図である。なお、以下の処理は、制御部200の制御の下、行われる。また、以下では、塗布現像システム1が有する高温用熱処理装置41が1つであるものとする。 <Wafer Processing>
Next, an example of processing by the coating and developing
図6に示すように、高温用熱処理装置41では、アイドル状態においても、処理空間S3内にシャワーヘッド360から低湿度ガスが供給される(ステップS1)。アイドル状態とは、熱板320が昇温された状態(例えば500℃以上まで昇温された状態)且つ当該高温用熱処理装置41によるウェハWの処理が予約されていない状態である。
As shown in FIG. 6, in the high-temperature heat treatment device 41, even in an idle state, low-humidity gas is supplied from the shower head 360 into the processing space S3 (step S1). The idle state is a state in which the temperature of the heat plate 320 is elevated (for example, elevated to 500° C. or higher) and no processing of the wafer W by the high-temperature heat treatment device 41 is scheduled.
アイドル状態では、具体的には、図7(A)に示すように、処理空間S3が形成されるように上チャンバ342が下降される。また、処理空間S3について、中央排気部370による排気、外周排気部380による排気、周縁排気部350による排気及びピン排気が行われ、この状態で、シャワーヘッド360から低湿度ガスとして窒素ガスが供給される。さらに、アイドル状態では、処理空間S3からの排気量の総和が、シャワーヘッド360から処理空間S3への窒素の供給量よりも大きくなるように、設定されている。そのため、処理空間S3は、チャンバ340外の空間より陰圧となる。
In the idle state, specifically, as shown in FIG. 7A, the upper chamber 342 is lowered so that the processing space S3 is formed. Furthermore, the processing space S3 is exhausted by the central exhaust section 370, the outer peripheral exhaust section 380, the peripheral exhaust section 350, and pin exhaust, and in this state, nitrogen gas is supplied as a low-humidity gas from the shower head 360. Furthermore, in the idle state, the total amount of exhaust from the processing space S3 is set to be greater than the amount of nitrogen supplied from the shower head 360 to the processing space S3. Therefore, the processing space S3 has a negative pressure relative to the space outside the chamber 340.
このように、アイドル状態においても、処理空間S3内にシャワーヘッド360から低湿度ガスが供給されることで、処理空間S3内の湿度を低く維持することができる。また、上述のように処理空間S3を陰圧とすることで、上チャンバ342の構成金属(具体的にはクロム)を含有するガスが生じたとしても、このガスがチャンバ340外に漏れるのを抑制することができる。
なお、アイドル状態では、シャワーヘッド431からの低湿度ガスの供給、及び、シャワーヘッダ432からの低湿度ガスの供給は行われない。低湿度ガスの消費量を抑えるためである。 In this way, even in an idle state, the humidity in the processing space S3 can be maintained low by supplying low-humidity gas into the processing space S3 from theshower head 360. Furthermore, by creating a negative pressure in the processing space S3 as described above, even if gas containing a constituent metal of the upper chamber 342 (specifically, chromium) is generated, the gas can be prevented from leaking out of the chamber 340.
In the idle state, the low-humidity gas is not supplied from theshower head 431 and the shower header 432 in order to reduce the consumption of the low-humidity gas.
なお、アイドル状態では、シャワーヘッド431からの低湿度ガスの供給、及び、シャワーヘッダ432からの低湿度ガスの供給は行われない。低湿度ガスの消費量を抑えるためである。 In this way, even in an idle state, the humidity in the processing space S3 can be maintained low by supplying low-humidity gas into the processing space S3 from the
In the idle state, the low-humidity gas is not supplied from the
高温用熱処理装置41を使用するレシピが制御部200により読み込まれ、ウェハWの処理が高温用熱処理装置41に予約されると(ステップS2)、高温用熱処理装置41は、アイドル状態が解除され、処理容器300内におけるチャンバ340の外側に、ガス供給部430からの低湿度ガスとしての窒素ガスの供給が開始される(ステップS3)。例えば、図7(B)に示すように、ガス供給部430のシャワーヘッド431及びシャワーヘッダ432の両方から、窒素ガスの供給が開始される。
また、処理対象のウェハWが、搬送装置20によりカセットC内から取り出され、処理ステーション3の第3のブロックG3の受け渡し装置53に搬送される。
なお、アイドル状態解除後も、アイドル状態時と同様、処理空間S3の排気及びシャワーヘッド360から処理空間S3への窒素ガス供給が行われ、処理空間S3からの排気量の総和も、シャワーヘッド360から窒素ガスの供給量よりも大きくなるように、設定されている。 When a recipe for using the high-temperatureheat treatment device 41 is read by the control unit 200 and processing of the wafer W is reserved for the high-temperature heat treatment device 41 (step S2), the idle state of the high-temperature heat treatment device 41 is released, and the gas supply unit 430 starts to supply nitrogen gas as a low-humidity gas to the outside of the chamber 340 in the processing container 300 (step S3). For example, as shown in FIG. 7B, the supply of nitrogen gas is started from both the shower head 431 and the shower header 432 of the gas supply unit 430.
Furthermore, the wafer W to be processed is taken out of the cassette C by thetransfer device 20 and transferred to the delivery device 53 in the third block G 3 of the processing station 3 .
Even after the idle state is released, evacuation of the processing space S3 and supply of nitrogen gas from theshower head 360 to the processing space S3 are performed in the same manner as during the idle state, and the total amount of exhaust from the processing space S3 is set to be greater than the amount of nitrogen gas supplied from the shower head 360.
また、処理対象のウェハWが、搬送装置20によりカセットC内から取り出され、処理ステーション3の第3のブロックG3の受け渡し装置53に搬送される。
なお、アイドル状態解除後も、アイドル状態時と同様、処理空間S3の排気及びシャワーヘッド360から処理空間S3への窒素ガス供給が行われ、処理空間S3からの排気量の総和も、シャワーヘッド360から窒素ガスの供給量よりも大きくなるように、設定されている。 When a recipe for using the high-temperature
Furthermore, the wafer W to be processed is taken out of the cassette C by the
Even after the idle state is released, evacuation of the processing space S3 and supply of nitrogen gas from the
次に、ウェハWにハードマスク膜が形成される(ステップS4)。
具体的には、ウェハWが、搬送装置70によって第2のブロックG2の熱処理装置40に搬送され温度調節処理される。その後、ウェハWは、搬送装置70によって例えば第1のブロックG1のハードマスク膜形成装置31に搬送され、ウェハW上に酸化クロム膜形成用の処理液の塗布膜が形成される。次いで、ウェハWは、搬送装置70によって第2のブロックG2の熱処理装置40に搬送され、ハードマスク用プリベーク処理が施され、ウェハW上の酸化クロム膜形成用の処理液の塗布膜が固化され、ハードマスク膜としての酸化クロム膜が形成される。次に、ウェハWは、ウェハWは、第3のブロックG3の受け渡し装置53に戻される。その後、ウェハWは、搬送装置90によって同じ第3のブロックG3の受け渡し装置54に搬送される。 Next, a hard mask film is formed on the wafer W (step S4).
Specifically, the wafer W is transported by thetransport device 70 to the heat treatment device 40 in the second block G2 and subjected to a temperature adjustment process. Thereafter, the wafer W is transported by the transport device 70 to, for example, the hard mask film forming device 31 in the first block G1, where a coating film of a treatment liquid for forming a chromium oxide film is formed on the wafer W. Next, the wafer W is transported by the transport device 70 to the heat treatment device 40 in the second block G2, where a hard mask pre-bake process is performed, whereby the coating film of the treatment liquid for forming a chromium oxide film on the wafer W is solidified, and a chromium oxide film as a hard mask film is formed. Next, the wafer W is returned to the transfer device 53 in the third block G3. Thereafter, the wafer W is transported by the transfer device 90 to the transfer device 54 in the same third block G3.
具体的には、ウェハWが、搬送装置70によって第2のブロックG2の熱処理装置40に搬送され温度調節処理される。その後、ウェハWは、搬送装置70によって例えば第1のブロックG1のハードマスク膜形成装置31に搬送され、ウェハW上に酸化クロム膜形成用の処理液の塗布膜が形成される。次いで、ウェハWは、搬送装置70によって第2のブロックG2の熱処理装置40に搬送され、ハードマスク用プリベーク処理が施され、ウェハW上の酸化クロム膜形成用の処理液の塗布膜が固化され、ハードマスク膜としての酸化クロム膜が形成される。次に、ウェハWは、ウェハWは、第3のブロックG3の受け渡し装置53に戻される。その後、ウェハWは、搬送装置90によって同じ第3のブロックG3の受け渡し装置54に搬送される。 Next, a hard mask film is formed on the wafer W (step S4).
Specifically, the wafer W is transported by the
続いて、処理容器300内におけるチャンバ340の外側への窒素ガスの供給が停止されると共に、ウェハWが、高温用熱処理装置41の処理容器300内に搬入される(ステップS5)。
Next, the supply of nitrogen gas to the outside of the chamber 340 in the processing vessel 300 is stopped, and the wafer W is loaded into the processing vessel 300 of the high-temperature heat treatment device 41 (step S5).
具体的には、ウェハWが、搬送装置70によって、高温用熱処理装置41の開閉シャッタ302により閉じられた状態の搬入出口301の前まで搬送される。また、シャワーヘッド431及びシャワーヘッダ432からの窒素ガスの供給が停止される。その後、図8(A)に示すように開閉シャッタ302により搬入出口301が開状態とされ、ウェハWが、搬入出口301を介して処理容器300内に搬入され、搬送装置70から冷却領域311内の昇降ピン410に受け渡される。そして、開閉シャッタ302により搬入出口301が閉状態とされ、処理容器300が密閉状態とされる。
Specifically, the wafer W is transported by the transport device 70 to the load/unload port 301 of the high-temperature heat treatment device 41, which is closed by the opening/closing shutter 302. The supply of nitrogen gas from the shower head 431 and the shower header 432 is stopped. Then, as shown in FIG. 8A, the load/unload port 301 is opened by the opening/closing shutter 302, and the wafer W is transported into the processing vessel 300 through the load/unload port 301 and handed over from the transport device 70 to the lift pins 410 in the cooling area 311. Then, the load/unload port 301 is closed by the opening/closing shutter 302, and the processing vessel 300 is sealed.
その後、処理容器300内におけるチャンバ340の外側への窒素ガスの供給が再開されると共に、中央排気部370による排気が停止された後、ウェハWが冷却領域311から加熱領域310に搬送される(ステップS6)。
Then, the supply of nitrogen gas to the outside of the chamber 340 in the processing vessel 300 is resumed, and the exhaust by the central exhaust section 370 is stopped, and then the wafer W is transferred from the cooling region 311 to the heating region 310 (step S6).
具体的には、まず、図8(B)に示すように、シャワーヘッド431及びシャワーヘッダ432からの窒素ガスの供給が再開される。それと共に、中央排気部370による排気が停止される。中央排気部370による排気停止後も、処理空間S3からの排気量の総和が、シャワーヘッド360から窒素ガスの供給量よりも大きくなるように、外周排気部380による排気量等が設定されている。
次に、ウェハWが、昇降ピン410から、搬送機構420の保持アーム421に受け渡される。続いて、上チャンバ342が上昇され、ウェハWを保持した保持アーム421が冷却領域311から加熱領域310に移動され、ウェハWが、昇降ピン330を介して、保持アーム421から熱板320に受け渡される。これにより、図9(A)に示すように、ウェハWが熱板320に載置される。
本ステップS6では、窒素ガスの供給の再開後、冷却領域311内でウェハWを所定時間待機させてもよい。なお、この待機は、低湿度ガスとしてドライエアを用いる場合は不要である。 8B , the supply of nitrogen gas from theshower head 431 and the shower header 432 is resumed. At the same time, exhaust by the central exhaust unit 370 is stopped. The exhaust amount by the peripheral exhaust unit 380 and the like are set so that the total amount of exhaust from the processing space S3 remains greater than the amount of nitrogen gas supplied from the shower head 360 even after exhaust by the central exhaust unit 370 is stopped.
Next, the wafer W is transferred from the lift pins 410 to the holdingarm 421 of the transfer mechanism 420. Subsequently, the upper chamber 342 is raised, and the holding arm 421 holding the wafer W is moved from the cooling region 311 to the heating region 310, and the wafer W is transferred from the holding arm 421 to the heating plate 320 via the lift pins 330. As a result, the wafer W is placed on the heating plate 320, as shown in FIG.
In step S6, after the supply of nitrogen gas is resumed, the wafer W may be made to wait for a predetermined time in thecooling region 311. Note that this waiting is not necessary when dry air is used as the low humidity gas.
次に、ウェハWが、昇降ピン410から、搬送機構420の保持アーム421に受け渡される。続いて、上チャンバ342が上昇され、ウェハWを保持した保持アーム421が冷却領域311から加熱領域310に移動され、ウェハWが、昇降ピン330を介して、保持アーム421から熱板320に受け渡される。これにより、図9(A)に示すように、ウェハWが熱板320に載置される。
本ステップS6では、窒素ガスの供給の再開後、冷却領域311内でウェハWを所定時間待機させてもよい。なお、この待機は、低湿度ガスとしてドライエアを用いる場合は不要である。 8B , the supply of nitrogen gas from the
Next, the wafer W is transferred from the lift pins 410 to the holding
In step S6, after the supply of nitrogen gas is resumed, the wafer W may be made to wait for a predetermined time in the
続いて、ウェハWが、500℃以上の高温で加熱される(ステップS7)。
Then, the wafer W is heated to a high temperature of 500°C or higher (step S7).
具体的には、図9(B)に示すように、上チャンバ342が下降し処理空間S3が形成されることで、ウェハWに対する高温での加熱が開始される。
この高温での加熱中も、処理空間S3からの排気量の総和が、シャワーヘッド360から窒素ガスの供給量よりも大きい状態とされる。
ウェハWに対する高温での加熱開始後、所定時間が経過すると、中央排気部370による排気が開始される。このときも、処理空間S3からの排気量の総和が、シャワーヘッド360から窒素ガスの供給量よりも大きくなるよう、中央排気部370による排気量等が設定される。
中央排気部370による排気開始後、所定時間が経過すると、ウェハWが昇降ピン330により中間位置まで上昇される。この状態で、ウェハW上のハードマスク膜からの昇華物が回収される。
中間位置までの上昇後、所定時間が経過すると、中央排気部370による排気が停止される。次いで、上チャンバ342が上昇される。その後、ウェハWが、昇降ピン330により、受渡位置まで上昇される。受渡位置は、昇降ピン330と搬送機構420の保持アーム421との間でウェハWが受け渡される位置である。 Specifically, as shown in FIG. 9B, theupper chamber 342 is lowered to form the processing space S3, and heating of the wafer W at a high temperature is started.
Even during this high temperature heating, the total amount of exhaust gas from theprocessing space S 3 is kept greater than the amount of nitrogen gas supplied from the shower head 360 .
When a predetermined time has elapsed since the wafer W has started to be heated at a high temperature, exhaust by thecentral exhaust unit 370 is started. At this time, the exhaust amount by the central exhaust unit 370 and the like are set so that the total amount of exhaust from the processing space S3 is larger than the amount of nitrogen gas supplied from the shower head 360.
When a predetermined time has elapsed after thecentral exhaust unit 370 starts exhausting, the wafer W is raised to the intermediate position by the lift pins 330. In this state, sublimate material from the hard mask film on the wafer W is collected.
When a predetermined time has elapsed after the elevation to the intermediate position, the exhaust by thecentral exhaust unit 370 is stopped. Next, the upper chamber 342 is elevated. After that, the wafer W is elevated to the delivery position by the lift pins 330. The delivery position is a position where the wafer W is delivered between the lift pins 330 and the holding arm 421 of the transfer mechanism 420.
この高温での加熱中も、処理空間S3からの排気量の総和が、シャワーヘッド360から窒素ガスの供給量よりも大きい状態とされる。
ウェハWに対する高温での加熱開始後、所定時間が経過すると、中央排気部370による排気が開始される。このときも、処理空間S3からの排気量の総和が、シャワーヘッド360から窒素ガスの供給量よりも大きくなるよう、中央排気部370による排気量等が設定される。
中央排気部370による排気開始後、所定時間が経過すると、ウェハWが昇降ピン330により中間位置まで上昇される。この状態で、ウェハW上のハードマスク膜からの昇華物が回収される。
中間位置までの上昇後、所定時間が経過すると、中央排気部370による排気が停止される。次いで、上チャンバ342が上昇される。その後、ウェハWが、昇降ピン330により、受渡位置まで上昇される。受渡位置は、昇降ピン330と搬送機構420の保持アーム421との間でウェハWが受け渡される位置である。 Specifically, as shown in FIG. 9B, the
Even during this high temperature heating, the total amount of exhaust gas from the
When a predetermined time has elapsed since the wafer W has started to be heated at a high temperature, exhaust by the
When a predetermined time has elapsed after the
When a predetermined time has elapsed after the elevation to the intermediate position, the exhaust by the
この高温での加熱中、処理空間S3内の湿度が0.01%以下になるように、処理空間S3への低湿度ガスの供給流量等は設定される。
The flow rate of low humidity gas supplied to the processing space S3 is set so that the humidity in the processing space S3 remains below 0.01% during this high-temperature heating.
次に、ウェハWが、加熱領域310から冷却領域311に搬送される(ステップS8)。
Next, the wafer W is transported from the heating area 310 to the cooling area 311 (step S8).
具体的には、ウェハWが、昇降ピン330から、搬送機構420の保持アーム421に受け渡される。その後、ウェハWを保持した保持アーム421が加熱領域310から冷却領域311に移動され、ウェハWが、昇降ピン410を介して、保持アーム421から冷却板400に受け渡される。これにより、図10に示すように、ウェハWが冷却板400に載置される。また、上チャンバ342が下降され、処理空間S3が形成される。
Specifically, the wafer W is transferred from the lift pins 330 to the holding arm 421 of the transfer mechanism 420. After that, the holding arm 421 holding the wafer W is moved from the heating region 310 to the cooling region 311, and the wafer W is transferred from the holding arm 421 to the cooling plate 400 via the lift pins 410. As a result, the wafer W is placed on the cooling plate 400, as shown in FIG. 10. In addition, the upper chamber 342 is lowered, and the processing space S3 is formed.
続いて、ウェハWが冷却される(ステップS9)。具体的には、冷却板400へのウェハWの載置後、所定時間待機される。
Then, the wafer W is cooled (step S9). Specifically, after the wafer W is placed on the cooling plate 400, it is left waiting for a predetermined time.
その後、処理容器300内におけるチャンバ340の外側への窒素ガスの供給が停止されると共に、ウェハWが、高温用熱処理装置41の処理容器300外へ搬出される(ステップS10)。
Then, the supply of nitrogen gas to the outside of the chamber 340 in the processing vessel 300 is stopped, and the wafer W is unloaded from the processing vessel 300 of the high-temperature heat treatment device 41 (step S10).
具体的には、シャワーヘッド431及びシャワーヘッダ432からの窒素ガスの供給が停止される。次に、開閉シャッタ302により搬入出口301が開状態とされ、ウェハWが、昇降ピン410を介して、冷却板400から搬送装置70に受け渡される。そして、ウェハWが、搬入出口301を介して、処理容器300外に搬出される。なお、その後、、開閉シャッタ302により搬入出口301が閉状態とされ、処理容器300は再び密閉状態とされる。
Specifically, the supply of nitrogen gas from the shower head 431 and the shower header 432 is stopped. Next, the loading/unloading port 301 is opened by the opening/closing shutter 302, and the wafer W is transferred from the cooling plate 400 to the transfer device 70 via the lifting pins 410. The wafer W is then unloaded from the processing vessel 300 via the loading/unloading port 301. After that, the loading/unloading port 301 is closed by the opening/closing shutter 302, and the processing vessel 300 is again sealed.
次いで、ウェハWに対し、後続の処理が順次施される(ステップS11)。
Then, the wafer W is subjected to subsequent processing (step S11).
具体的には、ウェハWが、搬送装置70によってレジスト塗布装置32に搬送され、ウェハW上にレジスト膜が形成される。その後、ウェハWは、搬送装置70によって熱処理装置40に搬送されて、PAB処理が施される。その後、ウェハWは、搬送装置70によって第3のブロックG3の受け渡し装置55に搬送される。
次に、ウェハWは、搬送装置90によって受け渡し装置52に搬送され、シャトル搬送装置80によって第4のブロックG4の受け渡し装置62に搬送される。その後、ウェハWは、インターフェイスステーション5の搬送装置100によって露光装置4に搬送され、所定のパターンで露光処理される。
次いで、ウェハWは、搬送装置100によって第4のブロックG4の受け渡し装置60に搬送される。その後、ウェハWは、搬送装置70によって熱処理装置40に搬送され、PEB処理が施される。
続いて、ウェハWは、搬送装置70によって現像処理装置30に搬送され、現像される。現像終了後、ウェハWは、搬送装置70によって熱処理装置40に搬送され、POST処理が施される。
その後、ウェハWは、搬送装置70によって第3のブロックG3の受け渡し装置50に搬送され、その後カセットステーション2の搬送装置20によって所定の載置板13のカセットCに搬送される。 Specifically, the wafer W is transferred by thetransfer device 70 to the resist coating device 32, where a resist film is formed on the wafer W. Thereafter, the wafer W is transferred by the transfer device 70 to the heat treatment device 40, where the PAB treatment is performed. Thereafter, the wafer W is transferred by the transfer device 70 to the delivery device 55 in the third block G3.
Next, the wafer W is transferred to thedelivery device 52 by the transfer device 90, and then transferred to the delivery device 62 in the fourth block G4 by the shuttle transfer device 80. Thereafter, the wafer W is transferred to the exposure device 4 by the transfer device 100 in the interface station 5, and is exposed to a predetermined pattern.
Next, the wafer W is transferred to thedelivery device 60 in the fourth block G4 by the transfer device 100. Thereafter, the wafer W is transferred to the thermal treatment device 40 by the transfer device 70, and is subjected to the PEB treatment.
Subsequently, the wafer W is transferred by thetransfer device 70 to the developing treatment device 30, where it is developed. After the development is completed, the wafer W is transferred by the transfer device 70 to the heat treatment device 40, where it is subjected to POST treatment.
Thereafter, the wafer W is transferred by thetransfer device 70 to the delivery device 50 in the third block G3, and then transferred by the transfer device 20 in the cassette station 2 to the cassette C on a predetermined mounting plate 13.
次に、ウェハWは、搬送装置90によって受け渡し装置52に搬送され、シャトル搬送装置80によって第4のブロックG4の受け渡し装置62に搬送される。その後、ウェハWは、インターフェイスステーション5の搬送装置100によって露光装置4に搬送され、所定のパターンで露光処理される。
次いで、ウェハWは、搬送装置100によって第4のブロックG4の受け渡し装置60に搬送される。その後、ウェハWは、搬送装置70によって熱処理装置40に搬送され、PEB処理が施される。
続いて、ウェハWは、搬送装置70によって現像処理装置30に搬送され、現像される。現像終了後、ウェハWは、搬送装置70によって熱処理装置40に搬送され、POST処理が施される。
その後、ウェハWは、搬送装置70によって第3のブロックG3の受け渡し装置50に搬送され、その後カセットステーション2の搬送装置20によって所定の載置板13のカセットCに搬送される。 Specifically, the wafer W is transferred by the
Next, the wafer W is transferred to the
Next, the wafer W is transferred to the
Subsequently, the wafer W is transferred by the
Thereafter, the wafer W is transferred by the
こうして、一連の塗布現像システム1による処理が終了する。
This completes the series of processes performed by the coating and developing system 1.
<支持部材の材料>
続いて、図11を用いて、熱板320の後述の支持部材の材料を説明する。図11は、熱板320の部分拡大断面図である。
図11に示すように、熱板320は、支持部材500を有する。支持部材500は、熱板320の板状部321に複数設けられる。各支持部材500は、板状部321に個別に形成された、下方に凹む凹部600に設けられている。凹部600内の底部には、凹部600の内周面に沿って段差部601が形成されている。 <Material of Support Member>
Next, the material of the support member of the hot plate 320 (to be described later) will be described with reference to Fig. 11. Fig. 11 is a partially enlarged cross-sectional view of thehot plate 320.
As shown in Fig. 11, thehot plate 320 has a support member 500. A plurality of support members 500 are provided on the plate-shaped part 321 of the hot plate 320. Each support member 500 is provided in a downwardly recessed part 600 that is individually formed on the plate-shaped part 321. A step part 601 is formed on the bottom part of the recessed part 600 along the inner peripheral surface of the recessed part 600.
続いて、図11を用いて、熱板320の後述の支持部材の材料を説明する。図11は、熱板320の部分拡大断面図である。
図11に示すように、熱板320は、支持部材500を有する。支持部材500は、熱板320の板状部321に複数設けられる。各支持部材500は、板状部321に個別に形成された、下方に凹む凹部600に設けられている。凹部600内の底部には、凹部600の内周面に沿って段差部601が形成されている。 <Material of Support Member>
Next, the material of the support member of the hot plate 320 (to be described later) will be described with reference to Fig. 11. Fig. 11 is a partially enlarged cross-sectional view of the
As shown in Fig. 11, the
支持部材500は、ウェハWの裏面に当接して当該ウェハWを支持するものである。
支持部材500は、本体部510と、ワッシャ520と、スナップリング530を部品として含む。 The supportingmember 500 supports the wafer W by contacting the rear surface of the wafer W.
Thesupport member 500 includes a main body portion 510, a washer 520, and a snap ring 530 as components.
支持部材500は、本体部510と、ワッシャ520と、スナップリング530を部品として含む。 The supporting
The
本体部510は、下端部にフランジ511を有する。本体部510は、熱板320の凹部600内に挿入されて用いられる。本体部510は、凹部600内に挿入された状態において、凹部600の底面に支持され、その上端が板状部321の上面から突出する。本体部510の上端はウェハWの裏面に当接する。フランジ511の厚さは段差部601の高さに略等しい。
The main body 510 has a flange 511 at its lower end. The main body 510 is inserted into the recess 600 of the heat plate 320 when in use. When inserted into the recess 600, the main body 510 is supported on the bottom surface of the recess 600, and its upper end protrudes from the upper surface of the plate-like portion 321. The upper end of the main body 510 abuts against the rear surface of the wafer W. The thickness of the flange 511 is approximately equal to the height of the step portion 601.
ワッシャ520は、凹部600内のフランジ511の上面と、段差部601の上面とを覆うように設けられる。
スナップリング530は、ワッシャ520を介して、支持部材500を凹部600に対して固定する。 Thewasher 520 is provided so as to cover the upper surface of the flange 511 in the recess 600 and the upper surface of the step portion 601 .
Thesnap ring 530 fixes the support member 500 to the recess 600 via the washer 520 .
スナップリング530は、ワッシャ520を介して、支持部材500を凹部600に対して固定する。 The
The
以上の各部品を含む支持部材500の露出している部分は、ステンレス鋼以外の材料からなる。具体的には、支持部材500の一部は、ニッケルからなる。支持部材500の一部は、ステンレス鋼より耐熱性の高いニッケル合金からなっていてもよい。
より具体的には、例えば、支持部材500の本体部510はアルミナにより形成され、ワッシャ520はニッケルにより形成され、スナップリング530はステンレス鋼より耐熱性の高いニッケル合金(具体的には、インコネルまたはハステロイ)により形成される。ワッシャ520は、上記ニッケル合金により形成されてもよい。 The exposed portion of thesupport member 500 including the above-mentioned components is made of a material other than stainless steel. Specifically, a portion of the support member 500 is made of nickel. A portion of the support member 500 may be made of a nickel alloy that has higher heat resistance than stainless steel.
More specifically, for example, themain body 510 of the support member 500 is made of alumina, the washer 520 is made of nickel, and the snap ring 530 is made of a nickel alloy (specifically, Inconel or Hastelloy) that has higher heat resistance than stainless steel. The washer 520 may be made of the nickel alloy.
より具体的には、例えば、支持部材500の本体部510はアルミナにより形成され、ワッシャ520はニッケルにより形成され、スナップリング530はステンレス鋼より耐熱性の高いニッケル合金(具体的には、インコネルまたはハステロイ)により形成される。ワッシャ520は、上記ニッケル合金により形成されてもよい。 The exposed portion of the
More specifically, for example, the
<本実施形態の主な効果>
以上のように、本実施形態では、高温用熱処理装置41が、ウェハWを支持して500℃以上の高温で加熱する熱板320と、熱板320を覆うことで熱板320上に処理空間S3を形成し処理空間S3側の面が金属含有材料で構成された上チャンバ342を含むチャンバ340と、処理空間S3を排気する排気部と、を備える。そして、チャンバ340が、大気よりも湿度が低い低湿度ガスを処理空間S3に供給するシャワーヘッド360を有する。そのため、高温に晒された上チャンバ342の表面の金属含有材料と、水分が反応するのを抑制することができる。具体的には、高温に晒された上チャンバ342の表面の酸化クロム(Cr2O3)膜と水分が反応するのを抑制することができる。したがって、上チャンバ342を構成する金属を含むガスが生じるのを抑制することができる。具体的には、上チャンバ342の表面の酸化クロム膜中のクロムを含むガスが生じるのを抑制することができる。その結果、ウェハWに上記金属が付着するのを抑制することができ、より具体的には、ウェハWの表(おもて)面にクロムが付着するのを抑制することができる。 <Main Effects of the Present Embodiment>
As described above, in this embodiment, the high-temperatureheat treatment apparatus 41 includes the hot plate 320 that supports the wafer W and heats it at a high temperature of 500° C. or more, the chamber 340 including the upper chamber 342 that covers the hot plate 320 to form a processing space S3 on the hot plate 320 and has a surface on the processing space S3 side made of a metal-containing material, and an exhaust unit that exhausts the processing space S3. The chamber 340 has a shower head 360 that supplies a low-humidity gas with a humidity lower than that of the atmosphere to the processing space S3. Therefore, it is possible to suppress the reaction of the metal-containing material on the surface of the upper chamber 342 exposed to a high temperature with moisture. Specifically, it is possible to suppress the reaction of the chromium oxide (Cr 2 O 3 ) film on the surface of the upper chamber 342 exposed to a high temperature with moisture. Therefore, it is possible to suppress the generation of a gas containing a metal that constitutes the upper chamber 342. Specifically, it is possible to suppress the generation of a gas containing chromium in the chromium oxide film on the surface of the upper chamber 342. As a result, adhesion of the above-mentioned metals to the wafer W can be suppressed, and more specifically, adhesion of chromium to the front surface of the wafer W can be suppressed.
以上のように、本実施形態では、高温用熱処理装置41が、ウェハWを支持して500℃以上の高温で加熱する熱板320と、熱板320を覆うことで熱板320上に処理空間S3を形成し処理空間S3側の面が金属含有材料で構成された上チャンバ342を含むチャンバ340と、処理空間S3を排気する排気部と、を備える。そして、チャンバ340が、大気よりも湿度が低い低湿度ガスを処理空間S3に供給するシャワーヘッド360を有する。そのため、高温に晒された上チャンバ342の表面の金属含有材料と、水分が反応するのを抑制することができる。具体的には、高温に晒された上チャンバ342の表面の酸化クロム(Cr2O3)膜と水分が反応するのを抑制することができる。したがって、上チャンバ342を構成する金属を含むガスが生じるのを抑制することができる。具体的には、上チャンバ342の表面の酸化クロム膜中のクロムを含むガスが生じるのを抑制することができる。その結果、ウェハWに上記金属が付着するのを抑制することができ、より具体的には、ウェハWの表(おもて)面にクロムが付着するのを抑制することができる。 <Main Effects of the Present Embodiment>
As described above, in this embodiment, the high-temperature
また、本実施形態では、前述のアイドル状態においても、処理空間S3内にシャワーヘッド360から低湿度ガスが供給される。そのため、本実施形態と異なりアイドル状態において処理空間S3内に低湿度ガスが供給されない場合に比べて、アイドル状態解除後の早い時期から、高温用熱処理装置41による高温での熱処理時に、ウェハWの表(おもて)面に上チャンバ342の構成金属(具体的にはクロム)が付着するのを抑制することができる。
さらに、本実施形態と異なりアイドル状態において処理空間S3内に低湿度ガスが供給されない場合、ガス吐出孔361の周辺に、処理空間S3内の湿度を含む雰囲気が滞留する。滞留した湿度を含む雰囲気と上チャンバ342とが接触すると、上チャンバ342の構成金属(具体的にはクロム)を含むガスが生じるおそれがある。本実施形態のようにアイドル状態においても処理空間S3内にシャワーヘッド360から低湿度ガスが供給されることで、上述のような滞留を防ぐことができる。 In this embodiment, even in the idle state described above, a low-humidity gas is supplied into the processing space S3 from theshower head 360. Therefore, compared to the case in which a low-humidity gas is not supplied into the processing space S3 in the idle state unlike the present embodiment, it is possible to suppress adhesion of a constituent metal (specifically, chromium) of the upper chamber 342 to the front surface of the wafer W during high-temperature heat treatment by the high-temperature heat treatment device 41 from an early stage after the idle state is released.
Furthermore, unlike this embodiment, when low-humidity gas is not supplied into the processing space S3 in the idle state, the humid atmosphere in the processing space S3 stagnates around the gas ejection holes 361. When the stagnant humid atmosphere comes into contact with theupper chamber 342, there is a risk of gas containing a metal (specifically, chromium) constituting the upper chamber 342 being generated. By supplying low-humidity gas into the processing space S3 from the shower head 360 even in the idle state as in this embodiment, it is possible to prevent the above-mentioned stagnation.
さらに、本実施形態と異なりアイドル状態において処理空間S3内に低湿度ガスが供給されない場合、ガス吐出孔361の周辺に、処理空間S3内の湿度を含む雰囲気が滞留する。滞留した湿度を含む雰囲気と上チャンバ342とが接触すると、上チャンバ342の構成金属(具体的にはクロム)を含むガスが生じるおそれがある。本実施形態のようにアイドル状態においても処理空間S3内にシャワーヘッド360から低湿度ガスが供給されることで、上述のような滞留を防ぐことができる。 In this embodiment, even in the idle state described above, a low-humidity gas is supplied into the processing space S3 from the
Furthermore, unlike this embodiment, when low-humidity gas is not supplied into the processing space S3 in the idle state, the humid atmosphere in the processing space S3 stagnates around the gas ejection holes 361. When the stagnant humid atmosphere comes into contact with the
さらにまた、本実施形態では、処理容器300内におけるチャンバ340の外側の空間へガス供給部430から低湿度ガスを供給することが、処理容器300内にウェハWが存在しない状態でも行われる。処理空間S3がチャンバ340の外側の空間より陰圧とされている場合、隙間g2を介して上記外側の空間の雰囲気が処理空間S3に流入する。そのため、上述のように、上記外側の空間へガス供給部430から低湿度ガスを供給することが、処理容器300内にウェハWが存在しない状態でも行われる場合、行われない場合に比べて、処理空間S3にウェハWを搬入した直後から、処理空間S3内の雰囲気の水分濃度を低くすることができる。したがって、上チャンバ342を構成する金属を含むガスが生じるのを抑制することができる。
Furthermore, in this embodiment, the gas supply unit 430 supplies low-humidity gas to the space outside the chamber 340 in the processing vessel 300 even when no wafer W is present in the processing vessel 300. When the processing space S3 is at a negative pressure relative to the space outside the chamber 340, the atmosphere of the outer space flows into the processing space S3 through the gap g2. Therefore, as described above, when the gas supply unit 430 supplies low-humidity gas to the outer space even when no wafer W is present in the processing vessel 300, the moisture concentration of the atmosphere in the processing space S3 can be lowered immediately after the wafer W is loaded into the processing space S3, compared to when the gas supply unit 430 does not supply low-humidity gas. Therefore, the generation of gas containing the metal that constitutes the upper chamber 342 can be suppressed.
また、本実施形態では、高温用熱処理装置41の処理容器300内における上記チャンバ340の外側の空間へガス供給部430から低湿度ガスを供給することが、当該高温用熱処理装置41についてウェハWの処理が予約された時点から、行われる。具体的には、本実施形態では、高温用熱処理装置41が前述のアイドル状態となっていた場合、上記チャンバ340の外側の空間へガス供給部430から低湿度ガスを供給することが、当該高温用熱処理装置41についてウェハWの処理が予約されアイドル状態が解除された時点から、継続して行われる。すなわち、アイドル状態が解除された後、ウェハWが当該高温用熱処理装置41まで搬送される間も、上記チャンバ340の外側の空間へガス供給部430から低湿度ガスが供給される。そのため、ウェハWの処理が予約されアイドル状態が解除された後、当該高温用熱処理装置41にウェハWが搬入され熱処理が行われる時には、処理空間S3内の雰囲気の水分濃度がさらに低くなっている。したがって、アイドル状態解除後の早い時期から、高温用熱処理装置41による高温での熱処理時に、ウェハWの表(おもて)面に上チャンバ342の構成金属が付着するのをさらに抑制することができる。
In addition, in this embodiment, the gas supply unit 430 supplies low-humidity gas to the space outside the chamber 340 in the processing vessel 300 of the high-temperature heat treatment device 41 from the time when the processing of the wafer W is reserved for the high-temperature heat treatment device 41. Specifically, in this embodiment, when the high-temperature heat treatment device 41 is in the above-mentioned idle state, the gas supply unit 430 supplies low-humidity gas to the space outside the chamber 340 continuously from the time when the processing of the wafer W is reserved for the high-temperature heat treatment device 41 and the idle state is released. That is, after the idle state is released, low-humidity gas is supplied from the gas supply unit 430 to the space outside the chamber 340 while the wafer W is being transported to the high-temperature heat treatment device 41. Therefore, when the processing of the wafer W is reserved and the idle state is released, the moisture concentration of the atmosphere in the processing space S3 is further reduced when the wafer W is carried into the high-temperature heat treatment device 41 and heat treatment is performed. Therefore, from an early stage after the idle state is released, adhesion of the constituent metals of the upper chamber 342 to the front surface of the wafer W during high-temperature heat treatment by the high-temperature heat treatment device 41 can be further suppressed.
さらにまた、本実施形態では、処理容器300内における上記チャンバ340の外側の空間へガス供給部430から低湿度ガスを供給することは、処理容器300内にウェハWが搬入される時に停止される。そのため、処理容器300内へのウェハの搬入時に処理容器300からウェハ搬送領域Dに低湿度ガスが漏れるのを抑制することができる。これは、低湿度ガスが窒素ガスである場合に特に有用である。
Furthermore, in this embodiment, the supply of low-humidity gas from the gas supply unit 430 to the space outside the chamber 340 in the processing vessel 300 is stopped when the wafer W is loaded into the processing vessel 300. Therefore, it is possible to prevent the low-humidity gas from leaking from the processing vessel 300 to the wafer transfer region D when the wafer is loaded into the processing vessel 300. This is particularly useful when the low-humidity gas is nitrogen gas.
また、本実施形態では、支持部材500の露出している部分が、ステンレス以外の材料からなる。具体的には、支持部材500の一部は、ニッケルまたはステンレス鋼より耐熱性の高いニッケル合金からなっている。これにより、ウェハWの裏面に上チャンバ342の構成金属(具体的にはクロム)が付着するのを抑制することができる。
In addition, in this embodiment, the exposed portion of the support member 500 is made of a material other than stainless steel. Specifically, a portion of the support member 500 is made of nickel or a nickel alloy that has higher heat resistance than stainless steel. This makes it possible to prevent the constituent metal (specifically chromium) of the upper chamber 342 from adhering to the back surface of the wafer W.
本発明者らが、試験を重ねたところによれば、ワッシャ520及びスナップリング530が、SUS304により形成されている場合、ウェハWの裏面におけるクロムの検出量は、約2.4×1010atoms/cm2であった。それに対し、ワッシャ520がニッケルにより形成され、スナップリング530がインコネルにより形成されている場合、約0.2×1010atoms/cm2であった。
According to repeated testing by the inventors, when the washer 520 and the snap ring 530 are made of SUS304, the amount of chromium detected on the back surface of the wafer W was approximately 2.4×10 10 atoms/cm 2. In contrast, when the washer 520 is made of nickel and the snap ring 530 is made of Inconel, the amount was approximately 0.2×10 10 atoms/cm 2 .
<変形例>
以上の例では、ガス供給部430から低湿度ガスを供給する場合、シャワーヘッド431とシャワーヘッダ432との両方から供給していたが、いずれか一方のみから供給する <Modification>
In the above example, when the low humidity gas is supplied from thegas supply unit 430, it is supplied from both the shower head 431 and the shower header 432. However, it is possible to supply it from only one of them.
以上の例では、ガス供給部430から低湿度ガスを供給する場合、シャワーヘッド431とシャワーヘッダ432との両方から供給していたが、いずれか一方のみから供給する <Modification>
In the above example, when the low humidity gas is supplied from the
今回開示された実施形態はすべての点で例示であって制限的なものではないと考えられるべきである。上記の実施形態は、添付の請求の範囲及びその主旨を逸脱することなく、様々な形態で省略、置換、変更されてもよい。例えば、上記実施形態の構成要件は任意に組み合わせることができる。当該任意の組み合せからは、組み合わせにかかるそれぞれの構成要件についての作用及び効果が当然に得られるとともに、本明細書の記載から当業者には明らかな他の作用及び他の効果が得られる。
The embodiments disclosed herein should be considered to be illustrative and not restrictive in all respects. The above-described embodiments may be omitted, substituted, or modified in various ways without departing from the spirit and scope of the appended claims. For example, the components of the above-described embodiments may be combined in any manner. Such any combination will naturally provide the functions and effects of each of the components in the combination, as well as other functions and effects that will be apparent to a person skilled in the art from the description in this specification.
また、本明細書に記載された効果は、あくまで説明的または例示的なものであって限定的ではない。つまり、本開示に係る技術は、上記の効果とともに、又は、上記の効果に代えて、本明細書の記載から当業者には明らかな他の効果を奏しうる。
Furthermore, the effects described in this specification are merely descriptive or exemplary and are not limiting. In other words, the technology disclosed herein may achieve other effects that are apparent to a person skilled in the art from the description in this specification, in addition to or in place of the above effects.
なお、以下のような構成例も本開示の技術的範囲に属する。
(1)基板を支持して500℃以上の高温で加熱する加熱部と、
前記加熱部を覆うことで前記加熱部上に処理空間を形成し前記処理空間側の面が金属含有材料で構成された蓋部を含むチャンバと、
前記処理空間を排気する排気部と、を備え、
前記チャンバは、大気よりも湿度が低い低湿度ガスを前記処理空間に供給するガス供給部を有する、熱処理装置。
(2)前記金属含有材料はステンレス鋼である、前記(1)に記載の熱処理装置。
(3)制御部をさらに備え、
前記制御部の制御により、当該熱処理装置が、(A)前記加熱部が昇温した状態、且つ、当該熱処理装置について基板の処理が予約されていない状態で、前記処理空間内に前記ガス供給部から前記低湿度ガスを供給する工程を実行する、前記(1)または(2)に記載の熱処理装置。
(4)前記加熱部及び前記チャンバを収容する筐体と、
前記筐体内における前記チャンバの外側の空間に前記低湿度ガスを供給する別のガス供給部と、をさらに備え、
前記制御部の制御により、当該熱処理装置が、(B)前記筐体内における前記チャンバの外側の空間に前記別のガス供給部から前記低湿度ガスを供給する工程を実行し、
前記(B)工程は、前記筐体内に基板が存在しない状態でも行われる、前記(3)に記載の熱処理装置。
(5)前記(B)工程は、当該熱処理装置について基板の処理が予約された時点から、予約された前記基板の処理が完了するまで、行われる、前記(4)に記載の熱処理装置。
(6)前記(B)工程は、前記筐体内に基板が搬入される時に停止される、前記(5)に記載の熱処理装置。
(7)前記筐体内における前記加熱部が設けられた加熱領域に隣接する冷却領域に設けられ、基板を支持して冷却する冷却部をさらに備え、
前記別のガス供給部は、前記加熱領域に前記低湿度ガスを供給する加熱領域ガス供給部と、前記冷却領域に前記低湿度ガスを供給する冷却領域ガス供給部と、を有し、
前記(B)工程は、前記加熱領域ガス供給部または前記冷却領域ガス供給部の少なくともいずれか一方から前記低湿度ガスを供給する、前記(4)~(6)のいずれか1に記載の熱処理装置。
(8)前記加熱部は、基板の裏面に当接して当該基板を支持する支持部材を有し、
前記支持部材の露出している部分は、ステンレス鋼以外の材料からなる、前記(1)~(7)のいずれか1に記載の熱処理装置。
(9)前記支持部材の一部は、ニッケルまたはステンレス鋼より耐熱性の高いニッケル合金からなる、前記(8)に記載の熱処理装置。
(10)熱処理装置を用いた基板の熱処理方法であって、
前記熱処理装置は、
基板を支持して高温で加熱する加熱部と、
前記加熱部を覆うことで前記加熱部上に処理空間を形成し前記処理空間側の面が金属含有材料で構成された蓋部を含むチャンバと、
前記処理空間を排気する排気部と、を備え、
(a)前記加熱部により500℃以上の高温で基板を加熱する工程と、
(b)大気よりも湿度が低い低湿度ガスを前記処理空間に供給する工程と、を含む、熱処理方法。
(11)前記金属含有材料はステンレス鋼である、前記(10)に記載の熱処理方法。
(12)前記(b)工程は、前記加熱部が昇温した状態、且つ、前記熱処理装置について基板の処理が予約されていない状態でも、行われる、前記(10)または(11)に記載の熱処理方法。
(13)前記熱処理装置は、前記加熱部及び前記チャンバを収容する筐体をさらに備え、
(c)前記筐体内における前記チャンバの外側の空間に前記低湿度ガスを供給する工程をさらに含み、
前記(c)工程は、前記筐体内に基板が存在しない状態でも行われる、前記(12)に記載の熱処理方法。
(14)前記(c)工程は、前記熱処理装置について基板の処理が予約された時点から予約された前記基板の処理が完了するまで、行われる、前記(13)に記載の熱処理方法。
(15)前記(c)工程は、前記筐体内に基板が搬入される時に停止される、前記(14)に記載の熱処理方法。
(16)前記熱処理装置は、
前記筐体内における前記加熱部が設けられた加熱領域に隣接する冷却領域に設けられ、基板を支持して冷却する冷却部と、
前記加熱領域に前記低湿度ガスを供給する加熱領域ガス供給部と、
前記冷却領域に前記低湿度ガスを供給する冷却領域ガス供給部と、をさらに備え、
前記(c)工程は、前記加熱領域ガス供給部または前記冷却領域ガス供給部の少なくともいずれか一方から前記低湿度ガスを供給する、前記(13)~(15)のいずれか1に記載の熱処理方法。 Note that the following configuration examples also fall within the technical scope of the present disclosure.
(1) a heating unit that supports a substrate and heats it to a high temperature of 500° C. or higher;
a chamber including a lid portion that covers the heating portion to form a processing space above the heating portion and has a surface facing the processing space that is made of a metal-containing material;
an exhaust unit that exhausts the processing space,
The chamber has a gas supply unit that supplies a low-humidity gas having a humidity lower than that of the atmosphere to the processing space.
(2) The heat treatment apparatus according to (1) above, wherein the metal-containing material is stainless steel.
(3) further comprising a control unit;
The heat treatment apparatus according to claim 1 or 2, wherein, under the control of the control unit, the heat treatment apparatus (A) executes a process of supplying the low-humidity gas from the gas supply unit into the processing space when the heating unit is in a heated state and no substrate processing is scheduled for the heat treatment apparatus.
(4) a housing that houses the heating unit and the chamber;
and a separate gas supply unit that supplies the low humidity gas to a space outside the chamber in the housing,
Under the control of the control unit, the heat treatment device executes a step of (B) supplying the low-humidity gas from the separate gas supply unit to a space outside the chamber in the housing;
The heat treatment apparatus according to (3), wherein the step (B) is performed even in a state where no substrate is present in the housing.
(5) The heat treatment apparatus according to (4), wherein the step (B) is performed from the time when the heat treatment apparatus is reserved for substrate processing until the reserved substrate processing is completed.
(6) The heat treatment apparatus according to (5), wherein the step (B) is stopped when a substrate is carried into the housing.
(7) The heating unit further includes a cooling unit that is provided in a cooling region adjacent to the heating region in the housing and supports and cools a substrate,
The other gas supply unit has a heating region gas supply unit that supplies the low-humidity gas to the heating region, and a cooling region gas supply unit that supplies the low-humidity gas to the cooling region,
The heat treatment apparatus according to any one of (4) to (6), wherein in the step (B), the low-humidity gas is supplied from at least one of the heating region gas supply unit and the cooling region gas supply unit.
(8) The heating unit has a support member that contacts a rear surface of the substrate to support the substrate,
The heat treatment device according to any one of (1) to (7), wherein the exposed portion of the support member is made of a material other than stainless steel.
(9) The heat treatment apparatus according to (8), wherein a portion of the support member is made of nickel or a nickel alloy having higher heat resistance than stainless steel.
(10) A method for heat treating a substrate using a heat treatment apparatus, comprising the steps of:
The heat treatment device includes:
a heating unit that supports the substrate and heats it at a high temperature;
a chamber including a lid portion that covers the heating portion to form a processing space above the heating portion and has a surface facing the processing space that is made of a metal-containing material;
an exhaust unit that exhausts the processing space,
(a) heating the substrate to a high temperature of 500° C. or higher by the heating unit;
(b) supplying a low-humidity gas having a humidity lower than that of the atmosphere to the processing space.
(11) The heat treatment method according to (10) above, wherein the metal-containing material is stainless steel.
(12) The heat treatment method according to (10) or (11), wherein the step (b) is performed even when the heating unit is in a heated state and no substrate processing is scheduled for the heat treatment device.
(13) The heat treatment apparatus further includes a housing that houses the heating unit and the chamber,
(c) supplying the low humidity gas to a space outside the chamber within the enclosure;
The heat treatment method according to (12) above, wherein the step (c) is performed even in a state where no substrate is present in the housing.
(14) The heat treatment method according to (13), wherein the step (c) is performed from a time when the heat treatment apparatus is reserved for substrate treatment until the reserved substrate treatment is completed.
(15) The heat treatment method according to (14), wherein the (c) step is stopped when the substrate is carried into the housing.
(16) The heat treatment device comprises:
a cooling unit that is provided in a cooling region adjacent to a heating region in which the heating unit is provided in the housing and that supports and cools a substrate;
a heating region gas supply unit for supplying the low humidity gas to the heating region;
a cooling region gas supply unit for supplying the low humidity gas to the cooling region;
The heat treatment method according to any one of (13) to (15), wherein in the step (c), the low-humidity gas is supplied from at least one of the heating region gas supply unit and the cooling region gas supply unit.
(1)基板を支持して500℃以上の高温で加熱する加熱部と、
前記加熱部を覆うことで前記加熱部上に処理空間を形成し前記処理空間側の面が金属含有材料で構成された蓋部を含むチャンバと、
前記処理空間を排気する排気部と、を備え、
前記チャンバは、大気よりも湿度が低い低湿度ガスを前記処理空間に供給するガス供給部を有する、熱処理装置。
(2)前記金属含有材料はステンレス鋼である、前記(1)に記載の熱処理装置。
(3)制御部をさらに備え、
前記制御部の制御により、当該熱処理装置が、(A)前記加熱部が昇温した状態、且つ、当該熱処理装置について基板の処理が予約されていない状態で、前記処理空間内に前記ガス供給部から前記低湿度ガスを供給する工程を実行する、前記(1)または(2)に記載の熱処理装置。
(4)前記加熱部及び前記チャンバを収容する筐体と、
前記筐体内における前記チャンバの外側の空間に前記低湿度ガスを供給する別のガス供給部と、をさらに備え、
前記制御部の制御により、当該熱処理装置が、(B)前記筐体内における前記チャンバの外側の空間に前記別のガス供給部から前記低湿度ガスを供給する工程を実行し、
前記(B)工程は、前記筐体内に基板が存在しない状態でも行われる、前記(3)に記載の熱処理装置。
(5)前記(B)工程は、当該熱処理装置について基板の処理が予約された時点から、予約された前記基板の処理が完了するまで、行われる、前記(4)に記載の熱処理装置。
(6)前記(B)工程は、前記筐体内に基板が搬入される時に停止される、前記(5)に記載の熱処理装置。
(7)前記筐体内における前記加熱部が設けられた加熱領域に隣接する冷却領域に設けられ、基板を支持して冷却する冷却部をさらに備え、
前記別のガス供給部は、前記加熱領域に前記低湿度ガスを供給する加熱領域ガス供給部と、前記冷却領域に前記低湿度ガスを供給する冷却領域ガス供給部と、を有し、
前記(B)工程は、前記加熱領域ガス供給部または前記冷却領域ガス供給部の少なくともいずれか一方から前記低湿度ガスを供給する、前記(4)~(6)のいずれか1に記載の熱処理装置。
(8)前記加熱部は、基板の裏面に当接して当該基板を支持する支持部材を有し、
前記支持部材の露出している部分は、ステンレス鋼以外の材料からなる、前記(1)~(7)のいずれか1に記載の熱処理装置。
(9)前記支持部材の一部は、ニッケルまたはステンレス鋼より耐熱性の高いニッケル合金からなる、前記(8)に記載の熱処理装置。
(10)熱処理装置を用いた基板の熱処理方法であって、
前記熱処理装置は、
基板を支持して高温で加熱する加熱部と、
前記加熱部を覆うことで前記加熱部上に処理空間を形成し前記処理空間側の面が金属含有材料で構成された蓋部を含むチャンバと、
前記処理空間を排気する排気部と、を備え、
(a)前記加熱部により500℃以上の高温で基板を加熱する工程と、
(b)大気よりも湿度が低い低湿度ガスを前記処理空間に供給する工程と、を含む、熱処理方法。
(11)前記金属含有材料はステンレス鋼である、前記(10)に記載の熱処理方法。
(12)前記(b)工程は、前記加熱部が昇温した状態、且つ、前記熱処理装置について基板の処理が予約されていない状態でも、行われる、前記(10)または(11)に記載の熱処理方法。
(13)前記熱処理装置は、前記加熱部及び前記チャンバを収容する筐体をさらに備え、
(c)前記筐体内における前記チャンバの外側の空間に前記低湿度ガスを供給する工程をさらに含み、
前記(c)工程は、前記筐体内に基板が存在しない状態でも行われる、前記(12)に記載の熱処理方法。
(14)前記(c)工程は、前記熱処理装置について基板の処理が予約された時点から予約された前記基板の処理が完了するまで、行われる、前記(13)に記載の熱処理方法。
(15)前記(c)工程は、前記筐体内に基板が搬入される時に停止される、前記(14)に記載の熱処理方法。
(16)前記熱処理装置は、
前記筐体内における前記加熱部が設けられた加熱領域に隣接する冷却領域に設けられ、基板を支持して冷却する冷却部と、
前記加熱領域に前記低湿度ガスを供給する加熱領域ガス供給部と、
前記冷却領域に前記低湿度ガスを供給する冷却領域ガス供給部と、をさらに備え、
前記(c)工程は、前記加熱領域ガス供給部または前記冷却領域ガス供給部の少なくともいずれか一方から前記低湿度ガスを供給する、前記(13)~(15)のいずれか1に記載の熱処理方法。 Note that the following configuration examples also fall within the technical scope of the present disclosure.
(1) a heating unit that supports a substrate and heats it to a high temperature of 500° C. or higher;
a chamber including a lid portion that covers the heating portion to form a processing space above the heating portion and has a surface facing the processing space that is made of a metal-containing material;
an exhaust unit that exhausts the processing space,
The chamber has a gas supply unit that supplies a low-humidity gas having a humidity lower than that of the atmosphere to the processing space.
(2) The heat treatment apparatus according to (1) above, wherein the metal-containing material is stainless steel.
(3) further comprising a control unit;
The heat treatment apparatus according to
(4) a housing that houses the heating unit and the chamber;
and a separate gas supply unit that supplies the low humidity gas to a space outside the chamber in the housing,
Under the control of the control unit, the heat treatment device executes a step of (B) supplying the low-humidity gas from the separate gas supply unit to a space outside the chamber in the housing;
The heat treatment apparatus according to (3), wherein the step (B) is performed even in a state where no substrate is present in the housing.
(5) The heat treatment apparatus according to (4), wherein the step (B) is performed from the time when the heat treatment apparatus is reserved for substrate processing until the reserved substrate processing is completed.
(6) The heat treatment apparatus according to (5), wherein the step (B) is stopped when a substrate is carried into the housing.
(7) The heating unit further includes a cooling unit that is provided in a cooling region adjacent to the heating region in the housing and supports and cools a substrate,
The other gas supply unit has a heating region gas supply unit that supplies the low-humidity gas to the heating region, and a cooling region gas supply unit that supplies the low-humidity gas to the cooling region,
The heat treatment apparatus according to any one of (4) to (6), wherein in the step (B), the low-humidity gas is supplied from at least one of the heating region gas supply unit and the cooling region gas supply unit.
(8) The heating unit has a support member that contacts a rear surface of the substrate to support the substrate,
The heat treatment device according to any one of (1) to (7), wherein the exposed portion of the support member is made of a material other than stainless steel.
(9) The heat treatment apparatus according to (8), wherein a portion of the support member is made of nickel or a nickel alloy having higher heat resistance than stainless steel.
(10) A method for heat treating a substrate using a heat treatment apparatus, comprising the steps of:
The heat treatment device includes:
a heating unit that supports the substrate and heats it at a high temperature;
a chamber including a lid portion that covers the heating portion to form a processing space above the heating portion and has a surface facing the processing space that is made of a metal-containing material;
an exhaust unit that exhausts the processing space,
(a) heating the substrate to a high temperature of 500° C. or higher by the heating unit;
(b) supplying a low-humidity gas having a humidity lower than that of the atmosphere to the processing space.
(11) The heat treatment method according to (10) above, wherein the metal-containing material is stainless steel.
(12) The heat treatment method according to (10) or (11), wherein the step (b) is performed even when the heating unit is in a heated state and no substrate processing is scheduled for the heat treatment device.
(13) The heat treatment apparatus further includes a housing that houses the heating unit and the chamber,
(c) supplying the low humidity gas to a space outside the chamber within the enclosure;
The heat treatment method according to (12) above, wherein the step (c) is performed even in a state where no substrate is present in the housing.
(14) The heat treatment method according to (13), wherein the step (c) is performed from a time when the heat treatment apparatus is reserved for substrate treatment until the reserved substrate treatment is completed.
(15) The heat treatment method according to (14), wherein the (c) step is stopped when the substrate is carried into the housing.
(16) The heat treatment device comprises:
a cooling unit that is provided in a cooling region adjacent to a heating region in which the heating unit is provided in the housing and that supports and cools a substrate;
a heating region gas supply unit for supplying the low humidity gas to the heating region;
a cooling region gas supply unit for supplying the low humidity gas to the cooling region;
The heat treatment method according to any one of (13) to (15), wherein in the step (c), the low-humidity gas is supplied from at least one of the heating region gas supply unit and the cooling region gas supply unit.
41 高温用熱処理装置
320 熱板
340 チャンバ
342 上チャンバ
350 周縁排気部
370 中央排気部
380 外周排気部
381 排気口
S3 処理空間
W ウェハ 41 High temperatureheat treatment apparatus 320 Hot plate 340 Chamber 342 Upper chamber 350 Peripheral exhaust section 370 Central exhaust section 380 Peripheral exhaust section 381 Exhaust port S3 Processing space W Wafer
320 熱板
340 チャンバ
342 上チャンバ
350 周縁排気部
370 中央排気部
380 外周排気部
381 排気口
S3 処理空間
W ウェハ 41 High temperature
Claims (16)
- 基板を支持して500℃以上の高温で加熱する加熱部と、
前記加熱部を覆うことで前記加熱部上に処理空間を形成し前記処理空間側の面が金属含有材料で構成された蓋部を含むチャンバと、
前記処理空間を排気する排気部と、を備え、
前記チャンバは、大気よりも湿度が低い低湿度ガスを前記処理空間に供給するガス供給部を有する、熱処理装置。 a heating unit that supports the substrate and heats it at a high temperature of 500° C. or higher;
a chamber including a lid portion that covers the heating portion to form a processing space above the heating portion and has a surface facing the processing space that is made of a metal-containing material;
an exhaust unit that exhausts the processing space,
The chamber has a gas supply unit that supplies a low-humidity gas having a humidity lower than that of the atmosphere to the processing space. - 前記金属含有材料はステンレス鋼である、請求項1に記載の熱処理装置。 The heat treatment device of claim 1, wherein the metal-containing material is stainless steel.
- 制御部をさらに備え、
前記制御部の制御により、当該熱処理装置が、(A)前記加熱部が昇温した状態、且つ、当該熱処理装置について基板の処理が予約されていない状態で、前記処理空間内に前記ガス供給部から前記低湿度ガスを供給する工程を実行する、請求項1または2に記載の熱処理装置。 A control unit is further provided.
3. The heat treatment apparatus according to claim 1, wherein, under the control of the control unit, the heat treatment apparatus executes a step of (A) supplying the low-humidity gas from the gas supply unit into the processing space when the heating unit is in a raised temperature state and no substrate processing is scheduled for the heat treatment apparatus. - 前記加熱部及び前記チャンバを収容する筐体と、
前記筐体内における前記チャンバの外側の空間に前記低湿度ガスを供給する別のガス供給部と、をさらに備え、
前記制御部の制御により、当該熱処理装置が、(B)前記筐体内における前記チャンバの外側の空間に前記別のガス供給部から前記低湿度ガスを供給する工程を実行し、
前記(B)工程は、前記筐体内に基板が存在しない状態でも行われる、請求項3に記載の熱処理装置。 a housing that houses the heating unit and the chamber;
and a separate gas supply unit that supplies the low humidity gas to a space outside the chamber in the housing,
Under the control of the control unit, the heat treatment device executes a step of (B) supplying the low-humidity gas from the separate gas supply unit to a space outside the chamber in the housing;
The heat treatment apparatus according to claim 3 , wherein the step (B) is performed even in a state where no substrate is present within the housing. - 前記(B)工程は、当該熱処理装置について基板の処理が予約された時点から、予約された前記基板の処理が完了するまで、行われる、請求項4に記載の熱処理装置。 The heat treatment device according to claim 4, wherein the (B) step is performed from the time when the heat treatment device is reserved for substrate processing until the reserved substrate processing is completed.
- 前記(B)工程は、前記筐体内に基板が搬入される時に停止される、請求項5に記載の熱処理装置。 The heat treatment apparatus of claim 5, wherein the (B) step is stopped when the substrate is loaded into the housing.
- 前記筐体内における前記加熱部が設けられた加熱領域に隣接する冷却領域に設けられ、基板を支持して冷却する冷却部をさらに備え、
前記別のガス供給部は、前記加熱領域に前記低湿度ガスを供給する加熱領域ガス供給部と、前記冷却領域に前記低湿度ガスを供給する冷却領域ガス供給部と、を有し、
前記(B)工程は、前記加熱領域ガス供給部または前記冷却領域ガス供給部の少なくともいずれか一方から前記低湿度ガスを供給する、請求項4に記載の熱処理装置。 a cooling unit that is provided in a cooling region adjacent to the heating region in which the heating unit is provided in the housing and that supports and cools a substrate;
The other gas supply unit has a heating region gas supply unit that supplies the low-humidity gas to the heating region, and a cooling region gas supply unit that supplies the low-humidity gas to the cooling region,
The heat treatment apparatus according to claim 4 , wherein in the step (B), the low humidity gas is supplied from at least one of the heating region gas supply unit and the cooling region gas supply unit. - 前記加熱部は、基板の裏面に当接して当該基板を支持する支持部材を有し、
前記支持部材の露出している部分は、ステンレス鋼以外の材料からなる、請求項1または2に記載の熱処理装置。 the heating unit has a support member that supports the substrate by contacting the rear surface of the substrate,
3. The heat treatment apparatus according to claim 1, wherein the exposed portion of the support member is made of a material other than stainless steel. - 前記支持部材の一部は、ニッケルまたはステンレス鋼より耐熱性の高いニッケル合金からなる、請求項8に記載の熱処理装置。 The heat treatment device according to claim 8, wherein a portion of the support member is made of a nickel alloy having higher heat resistance than nickel or stainless steel.
- 熱処理装置を用いた基板の熱処理方法であって、
前記熱処理装置は、
基板を支持して高温で加熱する加熱部と、
前記加熱部を覆うことで前記加熱部上に処理空間を形成し前記処理空間側の面が金属含有材料で構成された蓋部を含むチャンバと、
前記処理空間を排気する排気部と、を備え、
(a)前記加熱部により500℃以上の高温で基板を加熱する工程と、
(b)大気よりも湿度が低い低湿度ガスを前記処理空間に供給する工程と、を含む、熱処理方法。 A method for heat treating a substrate using a heat treatment apparatus, comprising:
The heat treatment device includes:
a heating unit that supports the substrate and heats it at a high temperature;
a chamber including a lid portion that covers the heating portion to form a processing space above the heating portion and has a surface facing the processing space that is made of a metal-containing material;
an exhaust unit that exhausts the processing space,
(a) heating the substrate to a high temperature of 500° C. or higher by the heating unit;
(b) supplying a low-humidity gas having a humidity lower than that of the atmosphere to the processing space. - 前記金属含有材料はステンレス鋼である、請求項10に記載の熱処理方法。 The heat treatment method according to claim 10, wherein the metal-containing material is stainless steel.
- 前記(b)工程は、前記加熱部が昇温した状態、且つ、前記熱処理装置について基板の処理が予約されていない状態でも、行われる、請求項10または11に記載の熱処理方法。 The heat treatment method according to claim 10 or 11, wherein the step (b) is performed even when the heating unit is in a heated state and the heat treatment device is not scheduled to process a substrate.
- 前記熱処理装置は、前記加熱部及び前記チャンバを収容する筐体をさらに備え、
(c)前記筐体内における前記チャンバの外側の空間に前記低湿度ガスを供給する工程をさらに含み、
前記(c)工程は、前記筐体内に基板が存在しない状態でも行われる、請求項12に記載の熱処理方法。 The heat treatment device further includes a housing that houses the heating unit and the chamber,
(c) supplying the low humidity gas to a space outside the chamber within the enclosure;
The heat treatment method according to claim 12 , wherein the step (c) is performed even in a state where no substrate is present in the housing. - 前記(c)工程は、前記熱処理装置について基板の処理が予約された時点から予約された前記基板の処理が完了するまで、行われる、請求項13に記載の熱処理方法。 The heat treatment method according to claim 13, wherein the step (c) is performed from the time when the heat treatment apparatus is reserved for substrate processing until the reserved substrate processing is completed.
- 前記(c)工程は、前記筐体内に基板が搬入される時に停止される、請求項14に記載の熱処理方法。 The heat treatment method according to claim 14, wherein the step (c) is stopped when the substrate is loaded into the housing.
- 前記熱処理装置は、
前記筐体内における前記加熱部が設けられた加熱領域に隣接する冷却領域に設けられ、基板を支持して冷却する冷却部と、
前記加熱領域に前記低湿度ガスを供給する加熱領域ガス供給部と、
前記冷却領域に前記低湿度ガスを供給する冷却領域ガス供給部と、をさらに備え、
前記(c)工程は、前記加熱領域ガス供給部または前記冷却領域ガス供給部の少なくともいずれか一方から前記低湿度ガスを供給する、請求項13に記載の熱処理方法。 The heat treatment device includes:
a cooling unit that is provided in a cooling region adjacent to a heating region in which the heating unit is provided in the housing and that supports and cools a substrate;
a heating region gas supply unit for supplying the low humidity gas to the heating region;
a cooling region gas supply unit for supplying the low humidity gas to the cooling region;
The heat treatment method according to claim 13 , wherein in the step (c), the low humidity gas is supplied from at least one of the heating region gas supply part and the cooling region gas supply part.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023064296 | 2023-04-11 | ||
JP2023-064296 | 2023-04-11 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024214626A1 true WO2024214626A1 (en) | 2024-10-17 |
Family
ID=93059199
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2024/013902 WO2024214626A1 (en) | 2023-04-11 | 2024-04-04 | Heat treatment device and heat treatment method |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2024214626A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000124106A (en) * | 1998-10-16 | 2000-04-28 | Dainippon Screen Mfg Co Ltd | Substrate heat treatment device and method therefor |
JP2006004955A (en) * | 2003-05-30 | 2006-01-05 | Ebara Corp | Substrate processing apparatus and substrate processing method |
JP2008186934A (en) * | 2007-01-29 | 2008-08-14 | Dainippon Screen Mfg Co Ltd | Heat treatment apparatus and heat treatment method |
JP2009253061A (en) * | 2008-04-08 | 2009-10-29 | Sumitomo Electric Ind Ltd | Substrate support member |
JP2022007534A (en) * | 2020-06-26 | 2022-01-13 | 東京エレクトロン株式会社 | Heat treatment unit, substrate processing device, heat treatment method, and storage medium |
-
2024
- 2024-04-04 WO PCT/JP2024/013902 patent/WO2024214626A1/en unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000124106A (en) * | 1998-10-16 | 2000-04-28 | Dainippon Screen Mfg Co Ltd | Substrate heat treatment device and method therefor |
JP2006004955A (en) * | 2003-05-30 | 2006-01-05 | Ebara Corp | Substrate processing apparatus and substrate processing method |
JP2008186934A (en) * | 2007-01-29 | 2008-08-14 | Dainippon Screen Mfg Co Ltd | Heat treatment apparatus and heat treatment method |
JP2009253061A (en) * | 2008-04-08 | 2009-10-29 | Sumitomo Electric Ind Ltd | Substrate support member |
JP2022007534A (en) * | 2020-06-26 | 2022-01-13 | 東京エレクトロン株式会社 | Heat treatment unit, substrate processing device, heat treatment method, and storage medium |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101176238B1 (en) | Heating process apparatus, heating process method, and computer readable storage medium | |
KR20240010743A (en) | Heat treatment method and heat treatment apparatus | |
KR101088541B1 (en) | Heating apparatus and coating,developing apparatus | |
KR101878992B1 (en) | Hydrophobizing device, hydrophobizing method and recordable medium for computer | |
KR102707601B1 (en) | Heating treatment apparatus and heating treatment method | |
JP4148346B2 (en) | Heat treatment equipment | |
JP4450784B2 (en) | Coating and developing apparatus and method thereof | |
JP4519087B2 (en) | Heat treatment equipment | |
JP2004022805A (en) | Heat treatment device and heat treatment method | |
KR102386210B1 (en) | Method for cooling hot plate, Apparatus and Method for treating substrate | |
WO2024214626A1 (en) | Heat treatment device and heat treatment method | |
JP2009260022A (en) | Substrate treatment unit, and substrate treatment apparatus | |
WO2023276723A1 (en) | Substrate processing device and substrate processing method | |
JP7158549B2 (en) | SUBSTRATE PROCESSING METHOD, SUBSTRATE PROCESSING SYSTEM AND COMPUTER-READABLE STORAGE MEDIUM | |
JP3631131B2 (en) | Silylation treatment apparatus and silylation treatment method | |
WO2023032214A1 (en) | Thermal treatment device, thermal treatment method, and storage medium | |
JP7365387B2 (en) | Heat treatment equipment and heat treatment method | |
US20220413397A1 (en) | Support unit, bake apparatus and substrate treating apparatus including the same | |
JP2024055150A (en) | Substrate processing method, substrate processing apparatus and computer storage medium | |
JP2004165614A (en) | Apparatus and method for treating substrate | |
JP2011049353A (en) | Application film forming method, program, computer storage medium, and substrate processing system | |
JPH11111602A (en) | Post-exposure baking oven and manufacture of semiconductor device |