[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2024214613A1 - Endoscope imaging device, endoscope, and ultrasonic endoscope - Google Patents

Endoscope imaging device, endoscope, and ultrasonic endoscope Download PDF

Info

Publication number
WO2024214613A1
WO2024214613A1 PCT/JP2024/013760 JP2024013760W WO2024214613A1 WO 2024214613 A1 WO2024214613 A1 WO 2024214613A1 JP 2024013760 W JP2024013760 W JP 2024013760W WO 2024214613 A1 WO2024214613 A1 WO 2024214613A1
Authority
WO
WIPO (PCT)
Prior art keywords
holder
connecting member
imaging device
endoscope
signal cable
Prior art date
Application number
PCT/JP2024/013760
Other languages
French (fr)
Japanese (ja)
Inventor
毅司 雪入
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2024214613A1 publication Critical patent/WO2024214613A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances

Definitions

  • the present invention relates to an endoscopic imaging device, an endoscope, and an ultrasonic endoscope that obtain images of an object to be observed, and in particular to an endoscopic imaging device, an endoscope, and an ultrasonic endoscope that have been provided with anti-static measures.
  • the endoscope has an insertion portion that is inserted into the body of a subject, and illumination light from an endoscope light source device is irradiated onto an observation object through the insertion portion.
  • the endoscope uses an imaging element to capture an image of the observation object illuminated with the illumination light and generate an image signal.
  • the processor device processes the image signal generated by the endoscope to generate an observation image to be displayed on a monitor.
  • the imaging element is electrically connected to a signal cable via a circuit board formed of a flexible wiring board or the like, and the signal cable is electrically connected to the processor device.
  • endoscopes have been provided with measures against static electricity.
  • Patent Document 1 describes an endoscope that includes an insertion section having at least a tip portion that is inserted into an object to be examined, a lens unit provided at the tip portion, an imaging element that is arranged on the opposite side of the lens unit to the object to be examined, and a linear conductor whose tip extends toward the lens unit beyond the imaging element and whose base end passes inside the insertion section.
  • a long, thin linear conductor is provided along the transmission cable from the outside of the lens unit.
  • An object of the present invention is to provide an endoscopic imaging device, an endoscope, and an ultrasonic endoscope that have a simple structure and protect an imaging element from static electricity.
  • invention [1] is an endoscopic imaging device for acquiring an image of an object to be observed, comprising a holder for holding an imaging lens directly or a lens barrel having an imaging lens provided therein, an imaging element for receiving light that has passed through the imaging lens and performing photoelectric conversion, a signal cable electrically connected to the imaging element, and a connecting member for connecting the holder and the signal cable, the holder and the connecting member being made of a conductor, and the signal cable comprising a shielding layer for collectively covering a plurality of signal lines and an outer sheath for covering the outside of the shielding layer,
  • An endoscopic imaging device in which the outer sheath has an exposed portion at the end of the signal cable on the holder side and covers the shielding layer, the signal cable is held by a connecting member, the tip of the exposed portion of the shielding layer on the holder side is closer to the holder than the tip of the outer sheath on the holder side, the tip of the outer sheath is located closer to the
  • Invention [2] is an endoscopic imaging device according to Invention [1], in which the connecting member has a conductive wire, the conductive wire is wound around the outer peripheral surface of the exposed portion of the shielding layer at least once, and the wound conductive wire is connected to the shielding layer by soldering.
  • Invention [3] is an endoscopic imaging device according to invention [1] or [2], which has a circuit board electrically connected to the imaging element, the circuit board having a terminal portion, and the shielding layer around which the conductive wire is wound and the terminal portion are electrically connected and fixed by solder.
  • Invention [4] is an endoscopic imaging device according to any one of inventions [1] to [3], in which the connecting member is joined to the connecting member on the outside of the connecting member.
  • Invention [5] is an endoscopic imaging device as described in Invention [4], in which the connecting member has a narrow portion at the rear end opposite the holder, the length in the width direction perpendicular to the optical axis of the imaging lens being shorter than the tip end on the holder side, and the connecting member is joined to the connecting member at the narrow portion.
  • Invention [6] is an endoscopic imaging device according to any one of inventions [1] to [5], having a tip body for fixing a holder or a lens barrel.
  • Invention [7] is the endoscopic imaging device according to invention [6], in which the tip body is made of resin.
  • the invention [8] is an endoscope having an endoscopic imaging device according to any one of the inventions [1] to [7].
  • the invention [9] is an ultrasonic endoscope having the endoscopic imaging device according to the invention [7].
  • the present invention provides an endoscopic imaging device, an endoscope, and an ultrasonic endoscope that can protect an imaging element from static electricity with a simple structure.
  • FIG. 1 is a schematic diagram showing an example of an endoscope system according to an embodiment of the present invention.
  • 1 is a schematic perspective view showing an example of an endoscopic imaging device according to an embodiment of the present invention.
  • FIG. 2 is a schematic perspective view showing an example of a connecting member of the endoscopic imaging device according to the embodiment of the present invention.
  • 1 is a schematic side view showing an example of an endoscopic imaging device according to an embodiment of the present invention.
  • 1 is a schematic side view showing an example of an endoscopic imaging device according to an embodiment of the present invention.
  • 1 is a schematic top view showing an example of an endoscopic imaging device according to an embodiment of the present invention.
  • 1 is a schematic perspective view showing an enlarged view of a main portion of an example of an endoscopic imaging device according to an embodiment of the present invention.
  • FIG. 2 is a schematic perspective view showing an example of a signal cable used in the endoscopic imaging device according to the embodiment of the present invention.
  • FIG. 11 is a schematic diagram showing another example of the endoscope system according to the embodiment of the present invention.
  • 1 is a schematic cross-sectional view showing an example of an ultrasonic endoscope according to an embodiment of the present invention.
  • FIG. 1 is a schematic diagram showing an example of an endoscope system according to an embodiment of the present invention.
  • the endoscopic system 10 includes an endoscope 12, a light source device 14, and a processor device 16.
  • the endoscopic system 10 has a configuration similar to that of a general endoscope, except for an endoscopic imaging device 20 (see FIG. 2 ) of the endoscope 12, which will be described later.
  • the endoscope system 10 may further include a water tank for storing cleaning water or the like, a suction pump for sucking up the aspirated material (including the supplied cleaning water) from within the body cavity, etc. Furthermore, the endoscope system 10 may further include a supply pump for supplying cleaning water from the water tank or a gas such as external air to a duct (not shown) within the endoscope.
  • the endoscope 12 has an endoscopic imaging device 20 (see FIG. 2).
  • the endoscope 12 has an insertion section that is inserted into the subject, an operating section that is connected to the insertion section, and a universal cord that extends from the operating section, and the insertion section is composed of a tip section, a bending section that is connected to the tip section, and a flexible section that connects the bending section and the operating section.
  • the endoscopic imaging device will be described later.
  • the tip 12a of the endoscope 12 is provided with an endoscopic imaging device 20 (see FIG. 2) that has an illumination optical system that emits illumination light to illuminate the observation site, or an imaging element and imaging optical system that capture an image of the observation site.
  • the bending section is configured to be bendable in a direction perpendicular to the longitudinal axis of the insertion section, and the bending operation of the bending section is controlled by the operating section.
  • the flexible section is configured to be relatively flexible so that it can be deformed to follow the shape of the insertion path of the insertion section.
  • the operation section is provided with buttons for operating the imaging operation of the endoscopic imaging device 20 (see FIG. 2) at the tip 12a, knobs for operating the bending operation of the bending section, etc.
  • the operation section is also provided with an introduction port through which a treatment tool such as an electric scalpel is introduced, and a treatment tool channel is provided inside the insertion section that extends from the introduction port to the tip and through which a treatment tool such as forceps is inserted.
  • a connector is provided at the end of the universal cord, and the endoscope 12 is connected via the connector to a light source device 14 that generates illumination light emitted from the illumination optical system at the tip, and a processor device 16 that processes video signals acquired by an endoscopic imaging device 20 (see FIG. 2) at the tip 12a. At least one of signals and power is transmitted between the endoscopic imaging device 20 (see FIG. 2) and the processor device 16 via a group of electric wires.
  • the processor unit 16 processes the input video signal to generate video data of the observed area, and displays the generated video data on a monitor (not shown) or records it on a storage medium such as a hard disk.
  • the processor unit 16 may be configured with a processor such as a personal computer.
  • the light source device 14 generates illumination light such as white light or specific wavelength light consisting of three primary colors such as red (R), green (G), and blue (B), and supplies it to the endoscope 12, where it propagates through a light guide or the like within the endoscope 12 and is emitted from an illumination optical system at the tip of the insertion section of the endoscope 12 to illuminate the area to be observed within the body cavity, in order to capture an image of the area to be observed within the body cavity using the endoscopic imaging device 20 (see Figure 2) of the endoscope 12 and obtain an image signal of the area to be observed.
  • illumination light such as white light or specific wavelength light consisting of three primary colors such as red (R), green (G), and blue (B)
  • a light guide or a group of electric wires are housed inside the insertion section, the operating section, and the universal cord. Illumination light generated by the light source device 14 is guided to the illumination optical system of the tip portion 12a via the light guide, and the light is emitted from the tip surface 12b of the tip portion 12a.
  • FIG. 2 is a schematic perspective view showing an example of an endoscopic imaging device according to an embodiment of the present invention
  • Fig. 3 is a schematic perspective view showing a connecting member of the example of the endoscopic imaging device according to an embodiment of the present invention
  • Fig. 4 and Fig. 5 are schematic side views showing the example of the endoscopic imaging device according to an embodiment of the present invention
  • Fig. 6 is a schematic top view showing the example of the endoscopic imaging device according to an embodiment of the present invention
  • Fig. 7 is a schematic perspective view showing an enlarged view of a main part of the example of the endoscopic imaging device according to an embodiment of the present invention. 5 shows the endoscopic imaging device 20 of FIG.
  • An endoscopic imaging device 20 shown in Fig. 2 is mounted on a distal end portion 12a of an endoscope 12 of an endoscopic system 10 shown in Fig. 1.
  • the endoscopic imaging device 20 is also called a camera head.
  • a distal end surface 12b of the distal end portion 12a of the endoscope 12 shown in FIG. 1 is a surface 50a (see FIG. 4) of a distal end body 50 of the endoscopic imaging device 20 (see FIG. 4).
  • the endoscopic imaging device 20 shown in Fig. 2 is for acquiring an image of an observation target.
  • the endoscopic imaging device 20 has, for example, an imaging lens 23, a lens barrel 22 that holds the imaging lens 23, a holder 24, an imaging element 25, a circuit board 26, a prism 27, and a signal cable 28.
  • the endoscopic imaging device 20 also has a connecting member 40.
  • the direction parallel to the optical axis C of the imaging lens 23 is defined as the X direction. Of the two directions perpendicular to the optical axis C, one is defined as the Y direction and the other is defined as the Z direction.
  • the Y direction corresponds to the width direction of the endoscopic imaging device 20, and the Z direction corresponds to the height direction of the endoscopic imaging device 20.
  • the imaging element 25 and electronic components 30, 30a are mounted on a circuit board 26.
  • "Mounted” means “electrically connected.”
  • the circuit board 26 has at least a first planar portion 26a, a second planar portion 26c connected to the first planar portion 26a by a first bent portion 26b, and a third planar portion 26e connected to the second planar portion 26c by a second bent portion 26d.
  • the first planar portion 26a and the third planar portion 26e are parallel to the optical axis C of the imaging lens 23, and the second planar portion 26c is inclined with respect to the optical axis C.
  • the second planar portion 26c is inclined at an angle with respect to the optical axis C of the imaging lens 23, and the second planar portion 26c is not parallel to the optical axis C.
  • the second planar portion 26c is inclined so that the second bent portion 26d is higher in the Z direction than the first bent portion 26b.
  • a signal cable 28 is electrically connected to a rear surface 26h of the third planar portion 26e facing the second planar portion 26c.
  • the circuit board 26 is provided on the rear surface 26h with a plurality of connection terminals (not shown) for inputting and outputting signals or power to and from the imaging element 25 and the electronic components 30, 30a.
  • a signal line 28a of the signal cable 28 is electrically connected to the connection terminals.
  • Prism 27 is, for example, a right-angle prism in which incident surface 27a and exit surface 27b are perpendicular to each other. Prism 27 also has a slope 27c connecting incident surface 27a and exit surface 27b. Slope 27c is the reflective surface of prism 27.
  • Prism 27 is an example of an optical member arranged between lens barrel 22 and image sensor 25, and optical members are not limited to prism 27. The arrangement of prism 27 is also not particularly limited. Furthermore, prism 27 may not be necessary depending on the arrangement position of image sensor 25, and a configuration in which another optical member is arranged may be used.
  • the imaging lens 23 is an optical element that forms an image of the light incident on the imaging lens 23 on the light receiving surface 25a of the imaging element 25.
  • the imaging lens 23 is held by the lens barrel 22.
  • the lens barrel 22 is a cylindrical member, and has one or more imaging lenses 23 disposed therein.
  • the lens barrel 22 holds one or more imaging lenses 23.
  • the lens barrel 22 holds the imaging lenses 23 so that the optical axis C of the imaging lenses 23 is perpendicular to the entrance surface 27a of the prism 27 (see FIG. 5).
  • the endoscopic imaging device 20 has, for example, three imaging lenses 23, which are held by the lens barrel 22.
  • the configuration of the imaging lens 23 and the lens barrel 22 is not particularly limited.
  • the configuration may include one imaging lens 23, or may include two or four or more imaging lenses 23.
  • each imaging lens 23 may be a convex lens or a concave lens.
  • the imaging element 25 is an imaging element that captures an image by converting the light focused by the imaging lens 23 into an electrical signal through photoelectric conversion.
  • the imaging element 25 is a conventionally known imaging element, and may be a CCD (Charge Coupled Device) type image sensor or a CMOS (Complementary Metal Oxide Semiconductor) image sensor.
  • the imaging element 25 is disposed on the opposite side of the lens barrel 22 with respect to the holder 24. As shown in Fig. 4, the imaging element 25 is electrically connected to a surface 26f of a first flat portion 26a of the circuit board 26 via, for example, conductive bumps 34. Also, as shown in Fig. 4, the imaging element 25 is mounted on the circuit board 26 so that the light receiving surface 25a is parallel to the optical axis C of the imaging lens 23. Note that mounting means being electrically connected. An underfill layer (not shown) may be provided between the imaging element 25 and the circuit board 26 in order to firmly connect the imaging element 25 and the circuit board 26 .
  • the bumps 34 are made of a metal or an alloy. More specifically, the bumps 34 are made of solder. The bumps 34 made of solder are also called solder balls. Note that the bumps 34 are not limited to solder or the like as long as they can electrically connect the imaging element 25 and the circuit board 26. Also, the imaging element 25 and the circuit board 26 may be directly electrically connected to each other.
  • the underfill layer also relieves stress that occurs at the joints between the imaging element 25 and the circuit board 26, such as the bumps 34, due to the difference in thermal expansion coefficient between the imaging element 25 and the circuit board 26. The underfill layer firmly connects the imaging element 25 and the circuit board 26, increasing the reliability of the electrical connection, and resulting in a highly reliable endoscopic imaging device 20.
  • the underfill agent constituting the underfill layer is not particularly limited, and any agent that is used as a sealing resin between the image sensor 25 and the circuit board 26 can be appropriately used.
  • a one-component heat-curing epoxy resin is used as the underfill agent. In this case, after the underfill agent is supplied, it is heated and held at a predetermined temperature to form the underfill layer.
  • the circuit board 26 is a board on which the imaging element 25 is mounted.
  • electronic components 30, 30a are mounted on the circuit board 26.
  • the electronic components 30, 30a are for driving the imaging element 25, and include, but are not limited to, for example, a voltage regulator, a resistor, and a capacitor.
  • the voltage regulator is a device that stabilizes the voltage to the imaging element 25, and outputs a constant voltage to the imaging element 25.
  • the circuit board 26 is, for example, a flexible board, for example, a flexible printed circuit board.
  • the first bent portion 26b and the second bent portion 26d of the circuit board 26 are both formed of curved surfaces.
  • the radii of curvature of the first bent portion 26b and the second bent portion 26d may be the same or different. As shown in FIG. 5, the first bent portion 26b has a larger radius of curvature than the second bent portion 26d.
  • first bent portion 26b and the second bent portion 26d have a curved surface, they are not limited to being composed of only curved surfaces, and may be composed of, for example, a flat surface and a curved surface.
  • the radius of curvature is obtained as follows. First, an image of the circuit board 26 from the side is acquired. Using the acquired image, the relevant locations corresponding to the radius of curvature of the first bent portion 26b and the second bent portion 26d are identified. A curve is fitted to the relevant locations, and the radius of curvature of the curve is measured using a ruler. The measured value is the radius of curvature.
  • the measurement of the above-mentioned radius of curvature also includes importing the acquired image of the circuit board 26 into a computer and measuring the radius of curvature of the first bent portion 26b and the second bent portion 26d using software. Fitting a curve to the corresponding portion corresponding to the radius of curvature and measuring the radius of curvature of the curve using a ruler also includes performing the measurement using software on a computer.
  • the imaging element 25 is mounted on a surface 26f of the first flat portion 26a as shown in Fig. 4.
  • an electronic component 30 is also mounted on the surface 26f of the first flat portion 26a.
  • the electronic components 30, 30a are mounted on the back surface 26g of the second flat surface 26c, which faces the front surface 26f of the first flat surface 26a. Since the second flat surface 26c is inclined with respect to the first flat surface 26a, a wide space is created between the first flat surface 26a and the second flat surface 26c. Therefore, a large-sized electronic component 30a can be mounted.
  • the electronic component 30a mounted on the second bent portion 26d side is taller than the electronic component 30 mounted on the first bent portion 26b side.
  • connection terminals are provided on the back surface 26h of the third planar portion 26e facing the second planar portion 26c.
  • the electronic components 30 are mounted on the front surface 26i of the third planar portion 26e.
  • the arrangement of the image sensor 25, the electronic components 30, 30a, the connection terminals, etc. on the circuit board 26 is not particularly limited.
  • a signal line 28a (see FIG. 4) of a signal cable 28 is electrically connected to a connection terminal (not shown) provided on a back surface 26h (see FIG. 5) of the third flat surface 26e of the circuit board 26, electrically connecting the image pickup element 25 and the signal cable 28. Light is converted into an electrical signal by the image pickup element 25, and this electrical signal is transmitted via the signal cable 28.
  • the signal cable 28 is inserted through the insertion portion, operation portion, universal cord, etc. of the endoscope, and is electrically connected to the processor device 16 (see FIG. 1).
  • the circuit board 26 has a planar terminal portion 63 provided on the back surface 26h of the third planar portion 26e, on the opposite side of the holder 24 from the connection terminal (not shown).
  • the planar terminal portion 63 has, for example, a trapezoidal shape when viewed from the front surface 26i side of the third planar portion 26e, but the shape is not particularly limited. Moreover, the terminal portion 63 is electrically connected to a ground layer (not shown) of the circuit board 26. The terminal portion 63 is called a pad. As described below, the terminal portion 63 is electrically connected to the shield layer 28c of the signal cable 28 via the connection member 60. For this reason, the terminal portion 63 is preferably provided at a position facing an exposed portion 28e of the shield layer 28c of the signal cable 28, which will be described later.
  • the signal cable 28 includes, for example, a plurality of signal wires 28a, a coating layer 28b that coats each of the signal wires 28a, a shielding layer 28c that is provided around the entirety of the signal wires 28a coated with the coating layer 28b and covers the signal wires 28a collectively, and an outer jacket 28d that coats the outside of the shielding layer 28c.
  • the signal cable 28 is a multi-core cable in which a plurality of signal wires 28a are bundled together, a shielding layer 28c is provided around the signal wires 28a, and the signal cable 28 is housed in a cylindrical outer sheath 28d.
  • the shielding layer 28c is, for example, grounded.
  • the outer cover 28d forms the outer periphery of the signal cable 28.
  • the covering layer 28b, the shield layer 28c, and the outer cover 28d are, for example, cylindrical.
  • the shield layer 28c of the signal cable 28 is called the shield.
  • the signal cable 28 has, for example, five signal wires 28a.
  • the number of signal wires 28a depends on the configuration of the endoscopic imaging device 20 and is not particularly limited, and may be two, three, four, or six or more.
  • the outer cover 28d is provided with an exposed portion 28e and covers the shield layer 28c.
  • the shield layer 28c has the exposed portion 28e on the end 29 side.
  • the holder 24 side refers to the imaging lens 23 side, that is, the surface 50a side of the tip body 50 shown in FIG.
  • the signal cable 28 is held by the connecting member 40 and housed within the connecting member 40.
  • a tip 29b on the holder 24 side of an exposed portion 28e of a shield layer 28c of the signal cable 28 is located closer to the holder 24 than a tip 29a on the holder 24 side of an outer sheath 28d of the signal cable 28.
  • a tip 29a of the outer cover 28d of the signal cable 28 on the holder 24 side is located closer to the holder 24 than a rear end 40j of the connecting member 40 on the opposite side to the holder 24.
  • the outer cover 28d of the signal cable 28 is housed in an interior 41d of the connecting member 40.
  • connection member 60 The exposed portion 28e of the shielding layer 28c of the signal cable 28 and the coupling member 40 are electrically connected by the connection member 60.
  • the holder 24 and the coupling member 40 are made of a conductor as described below, and the holder 24, the exposed portion 28e of the shielding layer 28c of the signal cable 28, and the coupling member 40 are electrically connected by the connection member 60.
  • the second electrical resistance between the holder 24 and the connecting member 40 is smaller than the first electrical resistance between the holder 24 and the imaging element 25. Therefore, static electricity flows preferentially between the holder 24 and the connecting member 40, which has a smaller electrical resistance, than between the holder 24 and the imaging element 25. This prevents static electricity from flowing to the imaging element 25, and the imaging element 25 can be protected from static electricity. Moreover, the above-mentioned protection of the imaging element 25 from static electricity can be achieved with a simple structure in which the exposed portion 28e of the shield layer 28c and the connecting member 40 are electrically connected by the connecting member 60. The first electrical resistance between the holder 24 and the imaging element 25 and the second electrical resistance between the holder 24 and the connecting member 40 are measured using a tester. Specifically, the shield layer 28c is provided with a connection member 60, which will be described later.
  • the prism 27 is disposed between the lens barrel 22 and the image sensor 25 via a cover glass 31.
  • the prism 27 guides light that has passed through the imaging lens 23 to the light receiving surface 25a of the image sensor 25.
  • the prism 27 bends the light that has passed through the imaging lens 23 held in the lens barrel 22 by, for example, 90° at the inclined surface 27c, i.e., the reflecting surface, to change the optical path, and guides the light to the light receiving surface 25a of the image sensor 25.
  • the transmitted light that has passed through the imaging lens 23 enters the prism 27, is reflected by the inclined surface 27c of the prism 27, i.e., the reflecting surface, and is incident on the light receiving surface 25a of the image sensor 25.
  • the prism 27 is disposed so that the entrance surface 27a faces the surface on the base end side of the lens barrel 22.
  • the prism 27 is also disposed so that the exit surface 27b faces the light receiving surface 25a of the image sensor 25.
  • the prism 27 is disposed on the cover glass 31 so that the exit surface 27b faces the cover glass 31.
  • the cover glass 31 is disposed on the light receiving surface 25a of the image sensor 25 to protect the light receiving surface 25a.
  • the prism 27 and the cover glass 31 are bonded together with, for example, a light curing adhesive. Note that the cover glass 31 may be omitted.
  • the imaging element 25 may be configured to be bonded to the holder 24 instead of to the prism 27 .
  • the holder 24 is a member that holds the lens barrel 22 and the prism 27, and is made of a conductor.
  • the conductor that constitutes the holder 24 is, for example, a metal or an alloy.
  • the holder 24 is a substantially cylindrical member, and the lens barrel 22 is fitted into the inside of the cylindrical portion to hold the lens barrel 22.
  • the inner surface of the holder 24 and the outer peripheral surface of the lens barrel 22 are fixed by adhesive.
  • Various known adhesives used in conventional endoscopes can be used as the adhesive for bonding the holder 24 and the lens barrel 22. The same applies to adhesives for bonding other members together.
  • the holder 24 has a polygonal flange portion 24b on the end surface on the base end side of the mounting tube portion 24a.
  • a restricting member 24d is provided on each of both ends of the flange portion 24b in the Y direction.
  • the restricting member 24d is, for example, a convex member.
  • the restricting member 24d has, for example, a rectangular outer shape.
  • an arm portion 40c of the connecting member 40 is engaged with the restricting member 24d.
  • Prism 27 is disposed between regulating members 24d, and incident surface 27a abuts flange portion 24b while sandwiched between regulating members 24d. This positions prism 27 in the X direction.
  • Holder 24 holds lens barrel 22 and prism 27 in predetermined positions, thereby fixing the relative positions of lens barrel 22 and prism 27, i.e., the relative position of lens barrel 22 and light receiving surface 25a of image sensor 25. Exit surface 27b of prism 27 faces image sensor 25.
  • the lens barrel 22 is adhesively fixed to the holder 24 after the relative position with respect to the optical axis C direction of the imaging lens 23 is adjusted so that the focus is on the light receiving surface 25a of the imaging element 25.
  • the optical axis C direction is the extension direction of the optical axis C of the imaging lens 23.
  • the optical axis C direction of the imaging lens 23 is parallel to the X direction.
  • the connecting member 40 connects the holder 24 and the signal cable 28, and is made of a conductor.
  • the conductor constituting the connecting member 40 is, for example, a metal or an alloy.
  • a metal material having high thermal conductivity is preferable.
  • stainless steel and copper alloy are preferable for the connecting member 40.
  • electrical resistance copper alloy with low electrical resistance is preferable for the connecting member 40.
  • the connecting member 40 holds and houses the signal cable 28 in the interior 41d.
  • the connecting member 40 is a member formed by bending a single plate material, for example, as shown in FIG. 3. Specifically, the connecting member 40 has a shape in which a single plate material is bent at two bending portions 40k, 40m that extend in the direction of the optical axis C. Therefore, the cross section of the connecting member 40 perpendicular to the direction of the optical axis C is approximately C-shaped.
  • the connecting member 40 has a flat bottom portion 40a formed by bending a single plate material, and a flat holding portion 40b continuous with the bottom portion 40a.
  • the holding portion 40b side of the connecting member 40 is defined as a rear end 41a.
  • the rear end 41a is the end opposite the holder 24.
  • the signal cable 28 is held inside the holding portion 40b.
  • the flat plate-shaped holding portions 40b facing each other with an opening in between are each provided with an arm portion 40c.
  • the connecting member 40 has a pair of arm portions 40c. The arm portion 40c is bent outward from the holding portion 40b at the rear end 41a side and then extends linearly.
  • the pair of arm portions 40c are spaced apart from each other at the front end 41b wider than at the rear end 41a, and this space is appropriately determined in accordance with the regulating member 24d of the holder 24 shown in FIG. 2.
  • an opening 40d is provided at the front end 41b of each arm portion 40c.
  • the maximum length in the Y direction from the outside of one arm portion 40c to the outside of the other arm portion 40c is the maximum width of the connecting member 40.
  • the connecting member 40 has a narrow portion 41c at its rear end 41a opposite the holder 24, the length in the width direction perpendicular to the optical axis C of the imaging lens 23, i.e., the length in the Y direction, being shorter than the tip 41b on the holder 24 side.
  • the holding portions 40b facing each other in the Y direction are bent at a bent portion 40k on the tip end 41b side, expanded in the width direction, and connected to the arm portion 40c.
  • the bent portion 40k is a connection portion between the holding portions 40b and the arm portion 40c.
  • the holding portion 40b is bent at a bent portion 40m on the rear end 41a side, and has a surface 40p on the rear end 41a side that is parallel to the optical axis C.
  • the parallel surfaces 40p face each other in the Y direction.
  • the opposing parallel surfaces 40p and the bottom 40a form a narrow width portion 41c.
  • the holding portion 40b is provided with a window portion 40n that reaches halfway in the Z direction from the bottom portion 40a.
  • the window portion 40n is an opening that penetrates the holding portion 40b.
  • the window portion 40n is provided in a range that includes the bent portion 40m.
  • an opening 40d of the arm portion 40c engages with the regulating member 24d of the holder 24.
  • the opening 40d is formed, for example, by cutting out a part of the arm portion 40c in a rectangular shape.
  • the opening 40d may have the same size and shape as the outer shape of the restricting member 24d.
  • the above-mentioned shape of the opening 40d being the same size and shape as the outer shape of the restricting member 24d includes a generally acceptable error range in the relevant technical field. Therefore, the opening 40d and the restricting member 24d may have any of a so-called clearance fit, transition fit, and interference fit.
  • "same size and shape" includes the error range generally accepted in the relevant technical field, as described above.
  • each arm portion 40c has, for example, an edge 40e parallel to the second planar portion 26c of the circuit board 26.
  • the edge 40e is located above the second planar portion 26c in the Z direction, and when the circuit board 26 is covered from above with the connecting member 40, the second planar portion 26c of the circuit board 26 is exposed.
  • a cover portion 40f is provided on each arm portion 40c. As shown in FIG. 6, the cover portions 40f are not connected to each other in the Y direction, and there is a gap 40g.
  • the cover portion 40f is partially provided in the X direction, and there is an opening 40h on the tip 41b side of the cover portion 40f.
  • the cover portion 40f is a member disposed on the surface 26i of the third flat portion 26e of the circuit board 26.
  • the gap 40g and the opening 40h in the cover portion 40f prevent contact with the electronic component 30 disposed on the surface 26i of the third flat portion 26e.
  • the connecting member 40 covers a part of the third flat portion 26e of the circuit board 26, the prism 27, and the tip portion of the signal cable 28, and serves as a cover member for the circuit board 26, the prism 27, and the signal cable 28. Furthermore, the connecting member 40 also functions as a protective member for the circuit board 26, the prism 27, and the signal cable 28.
  • the connecting member 40 is not particularly limited to the configuration shown in FIG. 3, and may have a configuration without the cover portion 40f, or the gap 40g of the cover portion 40f may be wider.
  • the configuration has the openings 40d of the pair of arms 40c and the engaging portions 41 that engage with the restricting member 24d of the holder 24, so that the openings 40d fit into the convex restricting member 24d, thereby shortening the length of the endoscopic image pickup device 20 in the Y direction perpendicular to the optical axis C, thereby preventing the size of the endoscopic image pickup device 20 from becoming large.
  • the holder 24 and the connecting member 40 can be firmly fixed to each other.
  • the length of the endoscopic imaging device 20 in the Y direction perpendicular to the optical axis C can be made shorter, and this configuration allows the endoscopic imaging device 20 to be made smaller.
  • the pair of arm portions 40c are preferably bent so that the front ends 41b of the arm portions 40c are closer to each other than the rear ends 41a of the arm portions 40c.
  • the pair of arm portions 40c are preferably bent in a closing direction. This allows the openings 40d of the arm portions 40c to be fitted into the restricting member 24d of the holder 24 by spreading the arm portions 40c once, making assembly easy.
  • the pair of arm portions 40c are preferably bent so that the front ends 41b of the arm portions 40c are closer to each other than the rear ends 41a of the arm portions 40c, but this may be the case in the state of the components before assembly.
  • the arm portion 40c is provided with the opening 40d which penetrates the arm portion 40c, but the present invention is not limited to this.
  • the arm portion 40c may be a recessed portion having a bottom without penetrating the arm portion 40c.
  • the signal cable 28 is attached to the inside of the holding portion 40b and held in the connecting member 40.
  • the method of attaching the signal cable 28 is not particularly limited as long as the signal cable 28 does not come off the holding portion 40b and the signal line 28a does not come off when the endoscope is in use, and for example, the signal cable 28 can be attached to the connecting member 40 using an adhesive as described below.
  • the two regulating members 24d have the same size and shape, i.e., are congruent, as described above, but may have different sizes and shapes.
  • the shape of the restricting member 24d (protruding portion) in the holder 24 is not particularly limited to the above-mentioned quadrangle, but may be a circle, an ellipse, or a polygon such as a triangle, a pentagon, or a hexagon, or may be a shape formed by combining these shapes.
  • a plurality of the same shapes may be arranged, or a specific pattern may be used.
  • the engagement portion 41 one convex portion and one concave portion engage at one location, but the engagement portion is not limited to one, and a configuration in which one convex portion has multiple engagement portions is also possible.
  • the size of the convex portion of the holder 24 is preferably, for example, large enough to cover at least a part of the side surface 27d of the prism 27.
  • the prism 27 can be more stably clamped and fixed, and stable position regulation can be achieved.
  • it can be used to position the prism in the Y direction with respect to the holder during assembly.
  • the upper limit of the size of the convex portion of the holder 24 can be set to a size that completely covers the side surface 27 d of the prism 27 .
  • the arm portion 40c surrounds the prism 27 and the circuit board 26. This stabilizes the engagement between the holder 24 and the connecting member 40, and also protects the prism 27 and the circuit board 26.
  • the holder 24 is configured to have two restricting members 24d, but the present invention is not limited to this, and three or more protrusions may be provided as long as the size is not increased. In other words, the number of engagement portions may be three or more.
  • the connecting member 40 connects the holder 24 and the signal cable 28, respectively, and prevents the connection between the connection terminal on the circuit board 26 and the signal line 28a of the signal cable 28 from being pulled when the signal cable 28 is pulled, resulting in a disconnection between the connection terminal and the signal line 28a.
  • the arm portion 40c of the connecting member 40 and the regulating member 24d of the holder 24, as well as the holding portion 40b of the connecting member 40 and the outer cover 28d of the signal cable 28, are bonded and fixed using, for example, an adhesive.
  • an adhesive for example, the interior 41d of the connecting member 40 is filled with adhesive to bond and fix the connecting member 40, the circuit board 26, and the signal cable 28.
  • the adhesive is in a hardened state.
  • an epoxy resin adhesive, a silicone adhesive, or an acrylic adhesive can be used as the adhesive.
  • a fixing member 35 may be provided on the outer sheath 28d of the signal cable 28.
  • the fixing member 35 is provided on the outer sheath 28d of the signal cable 28 and is tightened to fix the outer sheath 28d to the signal line 28a of the signal cable 28.
  • the fixing member 35 is, for example, an annular member. After a circular member as the fixing member 35 is passed through the outer sheath 28d of the signal cable 28, the circular member is compressed from the periphery and crimped to tighten the fixing member 35 and fix it to the outer sheath 28d of the signal cable 28.
  • the fixing member 35 is not limited to a circular shape, and may be a polygonal ring-shaped member as long as it can be fixed to the outer cover 28d of the signal cable 28.
  • the fixing member 35 is made of, for example, a metal or an alloy.
  • the signal cable 28 used in the endoscopic imaging device 20 has a structure in which multiple signal lines 28a are bundled with an outer cover 28d, and since the signal lines 28a are easily damaged, they need to be protected by the outer cover 28d or the connecting member 40.
  • the connecting member 40 is made of metal or the like, and the rigidity of the connecting member 40 changes abruptly at its rear end 40j, causing a large load to be concentrated on the signal cable 28. For this reason, when the outer cover 28d is displaced due to bending of the endoscope or sliding against other contents, and the signal lines 28a are exposed outside the connecting member 40, the signal lines 28a are damaged near the rear end 40j of the connecting member 40.
  • the fixing strength of the outer sheath 28d of the signal cable 28 can be increased.
  • the signal cable 28 is fixed to the connecting member 40 by overlapping it, the adhesion area of the outer sheath 28d of the signal cable 28 is reduced, but this reduction can be compensated for by the fixing strength of the fixing member 35.
  • This increases the joint strength of the signal cable 28, and increases the reliability of the joint of the signal cable 28. It is more preferable that the window portion 40n is provided at a position facing at least a part of the fixing member 35.
  • the window portion 40n is provided at a position where at least a part of the fixing member 35 is visible from the outside of the connecting member 40. This allows the connecting member 40, the circuit board 26, and the signal cable 28 to be bonded and fixed even more firmly when the interior 41d of the connecting member 40 is filled with adhesive to bond and fix the connecting member 40, the circuit board 26, and the signal cable 28 together.
  • the observation image captured by the imaging element 25 through the imaging lens 23 is focused on the light receiving surface 25a of the imaging element 25 and converted into an electrical signal, which is output to the processor unit 16 (see Figure 1) via the signal cable 28, converted into a video signal, and the observation image is displayed on a monitor connected to the processor unit 16.
  • the inclined surface 27c of the prism 27 faces the second bent portion 26d.
  • the second bent portion 26d of the circuit board 26 overlaps with the inclined surface 27c of the prism 27.
  • a part of the inclined surface 27c of the prism 27 and a part of the second bent portion 26d of the circuit board 26 are connected with a light-curing adhesive (not shown), and a part of the first bent portion 26b and/or a part of the second flat portion 26c are connected with a part of the signal cable 28 and/or a part of the third flat portion 26e with a light-curing adhesive (not shown).
  • the photocurable adhesive is, for example, an adhesive that is cured by ultraviolet light with a wavelength of about 100 nm to 400 nm, visible light with a wavelength of more than 400 nm and less than 780 nm, or infrared light with a wavelength of about 780 nm to 1 mm.
  • the photocurable adhesive is, for example, an epoxy resin-based photocurable adhesive, an acrylic resin-based photocurable adhesive, or a silicone-based photocurable adhesive.
  • An adhesive that uses both photocuring and heat curing may also be used. This photocurable adhesive can also be used to bond the prism 27 and the cover glass 31 described above.
  • Fig. 8 is a schematic perspective view showing an example of a signal cable used in the endoscopic imaging device according to the embodiment of the present invention.
  • Fig. 8 shows an example of a signal cable 28 provided with a connection member 60.
  • the solder connecting the conductive wire 61 and the exposed portion 28e of the shield layer 28c is omitted.
  • the above-mentioned connection member 60 has, for example, a conductive wire 61.
  • the conductive wire 61 is wound at least once around the outer circumferential surface of the exposed portion 28e of the shield layer 28c.
  • the conductive wire 61 wound around the exposed portion 28e of the shield layer 28c is connected to the shield layer 28c by solder (not shown).
  • the conductive wire 61 may be in a strip shape other than a line shape. As long as the conductive wire 61 is wound at least once, electrical connection between the connection member 60 and the shield layer 28c can be ensured. Therefore, the number of turns of the conductive wire 61 is not particularly limited as long as it is at least one turn. The number of turns of the conductive wire 61 is appropriately determined depending on the wire diameter of the conductive wire 61, the length of the exposed portion 28e in the optical axis direction, and the like. For example, as shown in Fig. 5, the conductive wire 61 is wound around the entire outer periphery of the exposed portion 28e of the shield layer 28c.
  • the conductive wire 61 wound around the exposed portion 28e of the shield layer 28c is connected to the shield layer 28c by solder (not shown), thereby making it possible to prevent the shield layer 28c from cracking.
  • the conductive wire 61 is made of, for example, a metal or an alloy, more specifically, copper, a copper alloy, aluminum, or an aluminum alloy.
  • the conductive wire 61 is preferably made of copper because of its low electrical resistance and excellent workability.
  • the connection member 60 has an extension portion 61a disposed along the outer cover 28d of the signal cable 28.
  • the extension portion 61a extends in the optical axis direction.
  • the connecting member 60 has a curved portion 61b that is provided continuously with the extending portion 61a and that leads the conductive wire 61 from the inside 41d of the connecting member 40 around the rear end 40j to the outside of the connecting member 40.
  • the connecting portion 61c is provided continuously with the curved portion 61b and is disposed along the outside of the holding portion 40b of the connecting member 40.
  • the connecting portion 61c extends in the optical axis direction.
  • the extending portion 61a and the connecting portion 61c are parallel to each other.
  • the configuration of the connecting member 60 is not limited to those shown in FIGS. 6 and 8.
  • connection portion 61c of the connection member 60 is joined to the holding portion 40b on the outside of the holding portion 40b using, for example, solder 64.
  • solder 64 solder 64
  • the linking member 40, the solder 64, and the connection member 60 are all conductive.
  • the exposed portion 28e of the shield layer 28c and the linking member 40 are electrically connected by the connection member 60.
  • the narrow portion 41c to which the connecting member 60 is joined is closer to the optical axis C than the arm portion 40c of the linking member 40, and is lowered toward the optical axis C with respect to the arm portion 40c. Even if the connecting member 60 is joined to the outside of the holding portion 40b that constitutes the narrow portion 41c, the connecting member 60 is closer to the optical axis C than the arm portion 40c in the Y direction. For this reason, by joining the connecting member 60 to the narrow portion 41c, the space of the endoscopic imaging device 20 can be effectively utilized.
  • the shield layer 28c around which the conductive wire 61 is wound and the terminal portion 63 are electrically connected and fixed by solder 65.
  • solder 65 By sandwiching the solder 65 between the shield layer 28c and the circuit board 26 in this way, one side will not come off while the other is being soldered. This improves the ease of soldering between the shield layer 28c and the circuit board 26.
  • the endoscopic imaging device 20 has a tip body 50 (see FIG. 4) that fixes the holder 24 or the lens barrel 22. More specifically, as shown in FIG. 4, the tip body 50 is provided with a through hole 50b that penetrates in the optical axis direction. The lens barrel 22 is inserted and fixed in the through hole 50b.
  • the tip body 50 is made of, for example, resin, metal, or alloy.
  • the surface 50a of the tip body 50 is the tip surface 12b of the tip portion 12a of the endoscope 12 as described above.
  • the exposed portion 28e of the shield layer 28c and the connecting member 40 are electrically connected by the connecting member 60, and the second electrical resistance between the holder 24 and the connecting member 40 is smaller than the first electrical resistance between the holder 24 and the imaging element 25.
  • the current flows preferentially through a path with a lower electrical resistance from the tip body 50 through the holder 24 to the connecting member 40, the connecting member 60, and the shield layer 28c of the signal cable 28, rather than flowing from the tip body 50 through the holder 24 to the imaging element 25.
  • the tip body 50 is configured to fix the lens barrel 22, but this is not limited thereto.
  • the tip body 50 may be configured to fix the holder 24.
  • the endoscopic imaging device 20 is configured such that the imaging lens 23 is held by the lens barrel 22, but the present invention is not limited to this.
  • the holder 24 may directly hold the imaging lens 23.
  • a ceramic plate may be provided on the rear surface of the first planar portion 26a of the circuit board 26.
  • the endoscopic imaging device 20 is configured so that the light receiving surface 25a of the imaging element 25 is arranged parallel to the optical axis C, but this is not limited to the configuration as long as the exposed portion 28e of the shield layer 28c of the signal cable 28 and the connecting member 40 are electrically connected by the connecting member 60.
  • the light receiving surface 25a of the imaging element 25 may be arranged perpendicular to the optical axis C.
  • a cover glass 31 may or may not be placed on the light receiving surface 25a of the imaging element 25.
  • Fig. 9 is a schematic diagram showing another example of an endoscope system according to an embodiment of the present invention.
  • the endoscope system 10a shown in Fig. 9 has an ultrasonic endoscope 13.
  • the endoscope system 10a includes an ultrasonic endoscope 13, an ultrasonic processor 70, an endoscope processor 71, a light source 72, and a monitor 73.
  • the endoscope system 10a also includes a water tank 74 for storing cleaning water or the like, and a suction pump 75 for suctioning an aspirate from within the subject, for example, within a body cavity.
  • the ultrasonic endoscope 13 has an insertion section 76 that is inserted into the subject, for example, into a body cavity, an operation section 77 that is connected to the base end of the insertion section 76 and allows the surgeon to operate it, and a universal cord 78 one end of which is connected to the operation section 77.
  • the tip surface 76b of the tip section 76a of the insertion section 76 corresponds to the tip surface 12b of the tip section 12a of the endoscope 12 shown in FIG. 1.
  • the tip surface 12b of the tip section 12a is the surface 50a (see FIG. 4) of the tip body 50 (see FIG. 4) of the endoscopic imaging device 20 (see FIG. 4).
  • the operation unit 77 is provided with an air/water supply button 79a for opening and closing the air/water supply line (not shown) from the water supply tank 74, and a suction button 79b for opening and closing the suction line (not shown) from the suction pump 75.
  • the operation unit 77 is also provided with a pair of angle knobs 79c and a treatment tool insertion port 79d.
  • the other end of the universal cord 78 is provided with a connector 80a connected to the ultrasonic processor 70, a connector 80b connected to the endoscope processor 71, and a connector 80c connected to the light source 72.
  • the ultrasonic endoscope 13 is detachably connected to the ultrasonic processor 70, the endoscope processor 71, and the light source 72 via these connectors 80a, 80b, and 80c.
  • the connector 80c also has an air/water supply tube 81 connected to the water supply tank 74, and a suction tube 82 connected to the suction pump 75.
  • the insertion section 76 has, in order from the tip side, a tip hard section 85 having an endoscopic observation section 83 and an ultrasonic transducer 84, a bending section 86 connected to the base end side of the tip hard section 85, and a soft section 87 connecting the base end side of the bending section 86 and the tip side of the operation section 77.
  • the tip hard section 85, bending section 86 and soft section 87 are arranged along the longitudinal axis A of the elongated insertion section 76.
  • the bending section 86 is connected to multiple bending pieces 97 (see Figure 10) and is configured to be freely bendable.
  • the soft section 87 is elongated, long and flexible.
  • the bending portion 86 is remotely bent by rotating a pair of angle knobs 79c provided on the operation portion 77. This allows the tip rigid portion 85 to be oriented in the desired direction.
  • Figure 10 which will be described later, shows multiple bending pieces 97 that make up the bending portion 86, and multiple bending operation wires 98 (two in Figure 10). The tip ends of these bending operation wires 98 are connected to the bending pieces 97, and the base ends are connected to the pair of angle knobs 79c.
  • the ultrasonic processor device 70 shown in FIG. 9 generates ultrasonic signals for generating ultrasonic waves in a plurality of ultrasonic vibrators 92 (see FIG. 10) constituting the ultrasonic transducer 84, and supplies the ultrasonic signals to the ultrasonic vibrators 92 (see FIG. 10).
  • the ultrasonic waves are emitted from the plurality of ultrasonic vibrators 92 toward the observation target area.
  • the ultrasonic processor device 70 receives and acquires echo signals (reflected waves) reflected from the observation target area with the ultrasonic vibrators 92, and performs various signal processing on the acquired echo signals to generate an ultrasonic image.
  • the generated ultrasonic image is displayed on the monitor 73.
  • the area to be observed is illuminated by illumination light from the light source device 72 in the endoscopic observation section 83.
  • the endoscope processor device 71 receives and acquires an image signal obtained from the area to be observed, and performs various signal processing and image processing on the acquired image signal to generate an endoscopic image.
  • the generated endoscopic image is displayed on the monitor 73.
  • the monitor 73 receives the video signals generated by the ultrasonic processor 70 and the endoscope processor 71 and displays the ultrasonic image and the endoscopic image.
  • the display of the ultrasonic image and the endoscopic image can be switched appropriately to display only one of the images on the monitor 73 or both images can be displayed simultaneously.
  • FIG. 10 is a schematic cross-sectional view showing an example of an ultrasonic endoscope according to an embodiment of the present invention.
  • the same components as those of the endoscopic imaging device 20 shown in Fig. 2 are denoted by the same reference numerals, and detailed description thereof will be omitted.
  • Fig. 10 shows the tip portion of the ultrasonic endoscope 13, i.e., the tip portion 76a of the insertion portion 76, and shows a state in which the above-mentioned endoscopic imaging device 20 is provided inside the tip portion 76a of the insertion portion 76.
  • the tip rigid portion 85 has, in order from the tip side, the endoscopic observation portion 83 and the ultrasonic transducer 84 .
  • the distal end hard portion 85 is provided with an endoscopic observation section 83 for acquiring an endoscopic image on the distal end side, and an ultrasonic transducer 84 for acquiring an ultrasonic image on the proximal end side.
  • the distal rigid portion 85 has a distal cap 88 disposed on the distal side of the ultrasonic transducer 84, and a proximal ring 89 disposed on the proximal side of the ultrasonic transducer 84.
  • the distal cap 88 fixes the lens barrel 22 of the endoscopic imaging device 20.
  • the distal cap 88 may be configured to fix the holder 24 of the endoscopic imaging device 20.
  • the distal cap 88 and the proximal ring 89 are exterior members.
  • a distal end surface 88a of the distal end cap 88 is the distal end surface 76b of the distal end portion 76a of the insertion section 76.
  • the distal end cap 88 corresponds to the distal end body 50 (see FIG.
  • the distal cap 88 and the proximal ring 89 are made of a resin such as a hard resin, and the distal cap 88 and the proximal ring 89 are made of an insulating material having electrical insulation properties.
  • a metal ring 90 is connected to the base end side of the tip cap 88.
  • the endoscopic imaging device 20, the signal cable 28, the forceps duct 91, etc. are arranged inside the metal ring 90.
  • the ultrasonic transducer 84 is arranged outside the metal ring 90.
  • the metal ring 90 is a cylindrical conductive member that supports the ultrasonic vibrator 92, and is made of, for example, stainless steel.
  • the ultrasonic transducer 84 is configured by arranging a plurality of ultrasonic vibrators 92, which transmit and receive ultrasonic waves, in the circumferential direction of the outer peripheral wall of the metal ring 90.
  • the ultrasonic transducer 84 is a radial type ultrasonic transducer in which a plurality of ultrasonic vibrators 92 are arranged along the circumferential direction around the longitudinal axis A.
  • the plurality of ultrasonic vibrators 92 configure an ultrasonic vibrator array 92a.
  • the ultrasonic transducer array 92a is a multi-channel, for example, 48-192 channel array consisting of a plurality of ultrasonic transducers 92 arranged cylindrically along the circumferential direction around the longitudinal axis A, for example, 48-192 rectangular parallelepiped ultrasonic transducers 92. More specifically, the ultrasonic transducer array 92a is configured such that a plurality of ultrasonic transducers 92 are arranged at a predetermined pitch, for example, in a cylindrical two-dimensional array.
  • a cable (not shown) is connected to each of the ultrasonic transducers 92.
  • the cables connected to the ultrasonic transducers 92 are, for example, inserted from the curved portion 86 through the flexible portion into the operation unit 77 (see FIG. 9) while being housed in an ultrasonic shielded cable.
  • the cables are then inserted from the operation unit into the universal cord 78 (see FIG. 9) and connected to the ultrasonic connector 80a (see FIG. 9).
  • the ultrasonic connector 80a is connected to the ultrasonic processor device 70 (see FIG. 9).
  • the ultrasonic signal (not shown) generated by the ultrasonic processor device 70 is supplied to the ultrasonic transducers 92 through a plurality of cables.
  • the ultrasonic signal is supplied to the ultrasonic transducer 92 in the form of a voltage.
  • the ultrasonic transducer 92 has a configuration in which an electrode is formed on the bottom surface of a piezoelectric thick film made of, for example, PZT (lead zirconate titanate) or PVDF (polyvinylidene fluoride).
  • An individual electrode 110a and a common electrode 110b are provided on each of the ultrasonic transducers 92.
  • the individual electrode 110a is provided on the inner side of the ultrasonic transducer 92.
  • the common electrode 110b is provided on the outer side of the ultrasonic transducer 92.
  • the common electrode 110b is an electrode, for example a ground electrode, common to all of the ultrasonic transducers 92.
  • a flexible printed circuit (FPC) 115 is connected to the common electrode 110b.
  • the flexible wiring board 115 is attached to the side surface on the base end side of the backing material layer 112.
  • the flexible wiring board 115 is electrically connected to an ultrasonic connector 80a (see FIG. 9) of the ultrasonic processor device 70 (see FIG. 9) by a shielded cable (not shown).
  • a backing material layer 112 is provided between the common electrode 110b of the ultrasonic transducers 92 and the metal ring 90.
  • the backing material layer 112 supports each ultrasonic transducer 92 of the ultrasonic transducer array 92a from the common electrode 110b side.
  • An acoustic matching layer 113 is provided on the ultrasonic transducer 92.
  • the acoustic matching layer 113 is for achieving acoustic impedance matching between a subject such as a human body and the ultrasonic transducer 92, and is provided on the outer periphery of the ultrasonic transducer array 92a.
  • An acoustic lens 114 is attached on the outer periphery of the acoustic matching layer 113.
  • the acoustic lens 114, the acoustic matching layer 113, the ultrasonic transducer 92, and the backing material layer 112 are laminated in this order from the outside to the inside of the tip 76a of the insertion portion 76.
  • the backing material constituting the backing material layer 112 functions as a cushioning material that flexibly supports each ultrasonic transducer 92 of the ultrasonic transducer array 92a, etc.
  • the backing material is made of a material having rigidity such as hard rubber, and an ultrasonic attenuation material (ferrite, ceramics, etc.) is added as necessary.
  • the acoustic lens 114 is for converging the ultrasonic waves emitted from the ultrasonic transducer array 92a toward the observation target area.
  • the acoustic lens 114 is made of, for example, a silicone-based resin (millable type silicone rubber (HTV rubber), liquid silicone rubber (RTV rubber), etc.), a butadiene-based resin, a polyurethane-based resin, etc.
  • a silicone-based resin millable type silicone rubber (HTV rubber), liquid silicone rubber (RTV rubber), etc.
  • HTV rubber millable type silicone rubber
  • RTV rubber liquid silicone rubber
  • the acoustic lens 114 is mixed with powder of titanium oxide, alumina, silica, etc. as necessary.
  • a balloon 100 surrounding the ultrasonic transducer 84 is detachably attached to the tip rigid portion 85.
  • An ultrasonic transmission medium (not shown) is supplied to the interior 100a of the balloon 100.
  • the ultrasonic transmission medium is, for example, water or oil.
  • ultrasonic waves and echo signals are attenuated in the air. Therefore, water is supplied to the inside 100a of the balloon 100 to inflate it, and the inflated balloon 100 is brought into contact with the observation target area, and air is removed from between the ultrasonic transducer 84 and the observation target area. This makes it possible to suppress attenuation of ultrasonic waves and echo signals, and therefore to obtain a good ultrasonic image.
  • the balloon 100 will be described later.
  • the endoscopic observation section 83 has a treatment tool outlet 93, an observation window 94, an illumination window (not shown), and a nozzle (not shown) that are opened on the distal end surface 88a of the distal end cap 88.
  • the ultrasonic endoscope 13 is a direct-view type ultrasonic endoscope that has an observation window 94 on the distal end surface 88a of the distal end hard section 85.
  • the illumination windows (not shown) are provided, for example, in a pair on either side of the observation window 94.
  • a forceps conduit 91 is connected to the treatment tool outlet 93.
  • the forceps conduit 91 has a forceps pipe 95 whose tip side is connected to the treatment tool outlet 93, and a forceps tube 96 whose tip side is connected to the base end side of the forceps pipe 95.
  • the forceps tube 96 extends from the inside of the curved section 86 to the base end side of the soft section, and the base end side of the forceps tube 96 is connected to a treatment tool insertion port 79d (see FIG. 9) of the operating section.
  • a treatment tool such as forceps (not shown) is inserted into the forceps tube 96 from the treatment tool insertion port 79d and is led out of the treatment tool outlet 93 via the forceps pipe 95.
  • the endoscopic imaging device 20 is disposed behind (on the proximal end side of) the observation window 94.
  • the configuration of the endoscopic imaging device 20 is as described above, and therefore a detailed description thereof will be omitted.
  • the reflected light from the observation target area entering through the observation window 94 is captured by the imaging lens 23 of the endoscopic imaging device 20, and the optical path is bent at a right angle by the prism 27 (see Figure 5), forming an image on the light receiving surface 25a (see Figure 5) of the imaging element 25 (see Figure 5).
  • the bending portion 86 is remotely bent by rotating a pair of angle knobs 79c (see FIG. 9) provided on the operation portion 77 (see FIG. 9). This allows the tip rigid portion 85 to be oriented in the desired direction.
  • the bending portion 86 is made up of a number of bending pieces 97, and a number of bending operation wires 98 (two in FIG. 10) are shown. The tip ends of these bending operation wires 98 are connected to the bending pieces 97, and the base ends are connected to the pair of angle knobs 79c.
  • an insulating heat conducting member i.e., an insulating heat conducting member 120, is sandwiched between the metal ring 90, which is a heat conducting member, and the bending piece 97 at the tip side.
  • the insulating heat conductive member 120 may be, for example, a heat dissipating silicone rubber or a heat dissipating sheet, and may further be a ceramic member, a heat dissipating pad, or an insulating coating such as a DLC (diamond-like carbon) coating or a paraffin coating, as long as it has thermal conductivity.
  • the insulating heat conductive member 120 preferably has a withstand voltage of 1.5 kV or more. Further, the bending piece 97 on the distal end side and the metal ring 90 are fixed by a resin screw 121 with the resin base end side ring 89 sandwiched therebetween.
  • the ultrasonic signals for generating ultrasonic waves in the multiple ultrasonic vibrators 92 that make up the ultrasonic transducer 84 are generated and supplied by the ultrasonic processor 70 (see FIG. 9).
  • the ultrasonic waves are emitted from the multiple ultrasonic vibrators 92 toward the area to be observed.
  • the ultrasonic processor 70 receives and acquires echo signals (reflected waves) reflected from the area to be observed by the ultrasonic vibrators 92, and performs various signal processing on the acquired echo signals to generate an ultrasonic image.
  • the generated ultrasonic image is displayed on the monitor 73 (see FIG. 9).
  • the observation target area is illuminated by illumination light from the light source device 72 (see FIG. 9) in the endoscopic observation section 83.
  • the endoscope processor device 71 receives and acquires image signals acquired from the observation target area, and performs various signal processing and image processing on the acquired image signals to generate an endoscopic image.
  • the generated endoscopic image is displayed on the monitor 73 (see FIG. 9).
  • the nozzle (not shown) is connected to the tip side of the air and water supply pipe (not shown).
  • This air and water supply pipe extends from the insertion part 76 to the operation part 77, and is inserted from the operation part 77 into the universal cord 78 (see FIG. 9), and the base end side of the air and water supply pipe is connected to the connector 80c (see FIG. 9) for the light source.
  • the base end side of the air and water supply pipe is connected to the water supply tank 74 (see FIG. 9) via the connector 80c and the air and water supply tube 81 (not shown).
  • Water in the water supply tank 74 is sent from the air and water supply tube 81 through the connector 80c to the air and water supply pipe and is sprayed from the nozzle toward the observation window 94 and the illumination window.
  • the air and water supply pipe is configured to be supplied with air sent from an air pump (not shown), and this air is sprayed from the nozzle toward the observation window 94 and the illumination window through the air and water supply pipe.
  • An attachment groove 102 for attaching the base end side of the balloon 100 and an attachment groove 104 for attaching the tip side of the balloon 100 are formed on the outer peripheral surface of the tip rigid portion 85. These attachment grooves 102, 104 are formed along the circumferential direction around the longitudinal axis A on the outer surface of the tip rigid portion 85.
  • a supply port (not shown) for supplying water to the interior 100a of the balloon 100 and discharging water from the interior 100a of the balloon 100 is formed on the outer surface of the tip rigid portion 85 between the mounting groove 102 and the mounting groove 104.
  • the supply port is formed between the mounting groove 102 and the ultrasonic transducer 84.
  • the tip side of a balloon pipe (not shown) is connected to the supply port.
  • the balloon 100 is made of an elastic material such as rubber.
  • the balloon 100 has a ring-shaped band portion 106 at one end and a ring-shaped band portion 107 at the other end of the balloon 100. In the balloon 100, the band portion 106 is elastically attached to the attachment groove 102 of the tip rigid portion 85, and the band portion 107 is elastically attached to the attachment groove 104.
  • the distal cap 88 is made of an insulating material having electrical insulation properties. Therefore, when a voltage is supplied to the ultrasonic transducers 92 to generate ultrasonic waves, the distal cap 88 is easily charged, and static electricity is generated by the charging of the distal cap 88. The static electricity generated in the distal cap 88 flows to the holder 24. In this case, as described above, in the endoscopic imaging device 20, the second electrical resistance between the holder 24 and the connecting member 40 is smaller than the first electrical resistance between the holder 24 and the imaging element 25.
  • the static electricity generated by the charging of at least one of the distal cap 88 and the base end ring 89 flows preferentially between the holder 24 and the connecting member 40, which has a smaller electrical resistance, than between the holder 24 and the imaging element 25.
  • the static electricity that flows from the holder 24 to the connecting member 40 flows from the connecting member 40 to the shield layer 28c of the signal cable 28 by the connecting member 60 that electrically connects the connecting member 40 and the shield layer 28c of the signal cable 28. In this way, the effects of static electricity generated in the ultrasonic endoscope 13 can also be suppressed.
  • the present invention is basically configured as described above.
  • the endoscopic imaging device, endoscope, and ultrasonic endoscope of the present invention have been described in detail above, but the present invention is not limited to the above-described embodiments, and various improvements and modifications may of course be made without departing from the spirit and scope of the present invention.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biomedical Technology (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biophysics (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

Provided are an endoscope imaging device, an endoscope, and an ultrasonic endoscope that protect an imaging element therein from static electricity with a simple structure. This endoscope imaging device acquires an image of an object being observed and comprises: a holder that holds an imaging lens directly or holds a lens barrel containing the imaging lens; an imaging element; a signal cable that electrically connects to the imaging element; and a coupling member that couples the holder and the signal cable. The holder and the coupling member are composed of a conductor. The signal cable includes a shield layer that covers a plurality of signal lines together and an outer skin that covers the outside of the shield layer. The outer skin covers the shield layer so that a portion of the shield layer is exposed at an end portion of the signal cable on the holder side. The tip end of the shield layer is located closer to the holder than the tip end of the outer skin, and the tip end of the outer skin is located closer to the holder than the rear end of the coupling member. The exposed portion of the shield layer and the coupling member are electrically connected using a connecting member. A second electric resistance between the holder and the coupling member is smaller than a first electric resistance between the holder and the imaging element.

Description

内視鏡撮像装置、内視鏡及び超音波内視鏡Endoscopic imaging device, endoscope, and ultrasonic endoscope
 本発明は、観察対象の画像を取得する内視鏡撮像装置、内視鏡及び超音波内視鏡に関し、特に、静電気対策を施した内視鏡撮像装置、内視鏡及び超音波内視鏡に関する。 The present invention relates to an endoscopic imaging device, an endoscope, and an ultrasonic endoscope that obtain images of an object to be observed, and in particular to an endoscopic imaging device, an endoscope, and an ultrasonic endoscope that have been provided with anti-static measures.
 近年、内視鏡用光源装置、内視鏡(内視鏡スコープ)、及びプロセッサ装置を備える内視鏡システムを用いた診断等が広く行われている。
 被検者の体内に挿入される挿入部を有しており、内視鏡用光源装置による照明光は挿入部を経て観察対象に照射される。内視鏡は、照明光が照射された観察対象を撮像素子により撮像して画像信号を生成する。プロセッサ装置は、内視鏡により生成された画像信号を画像処理してモニタに表示するための観察画像を生成する。撮像素子はフレキシブル配線基板等で構成される回路基板を介して信号ケーブルに電気的に接続されており、信号ケーブルがプロセッサ装置に電気的に接続されている。従来から、内視鏡に静電気対策が施されている。
2. Description of the Related Art In recent years, diagnosis and the like using an endoscope system including an endoscope light source device, an endoscope (endoscopic scope), and a processor device has been widely performed.
The endoscope has an insertion portion that is inserted into the body of a subject, and illumination light from an endoscope light source device is irradiated onto an observation object through the insertion portion. The endoscope uses an imaging element to capture an image of the observation object illuminated with the illumination light and generate an image signal. The processor device processes the image signal generated by the endoscope to generate an observation image to be displayed on a monitor. The imaging element is electrically connected to a signal cable via a circuit board formed of a flexible wiring board or the like, and the signal cable is electrically connected to the processor device. Conventionally, endoscopes have been provided with measures against static electricity.
 例えば、特許文献1には、被検対象物に挿入される先端部を少なくとも有する挿入部と、先端部に設けられるレンズユニットと、レンズユニットの被検対象物側と反対側に配置される撮像素子と、先端が撮像素子よりもレンズユニット側に延出して配置され、基端が挿入部の内方を通る線状導体とを備える内視鏡が記載されている。特許文献1の図3及び図8に示すようにレンズユニットの外側から、細長い線状導体が伝送ケーブルに沿って設けられている。 For example, Patent Document 1 describes an endoscope that includes an insertion section having at least a tip portion that is inserted into an object to be examined, a lens unit provided at the tip portion, an imaging element that is arranged on the opposite side of the lens unit to the object to be examined, and a linear conductor whose tip extends toward the lens unit beyond the imaging element and whose base end passes inside the insertion section. As shown in Figures 3 and 8 of Patent Document 1, a long, thin linear conductor is provided along the transmission cable from the outside of the lens unit.
特開2019-025207号公報JP 2019-025207 A
 上述のように特許文献1の内視鏡では、レンズユニットの外側から細長い線状導体を伝送ケーブルに沿って設ける必要があり、構造が複雑である。
 本発明の目的は、簡単な構造で静電気から撮像素子を保護する内視鏡撮像装置、内視鏡及び超音波内視鏡を提供することにある。
As described above, in the endoscope of Patent Document 1, it is necessary to provide a long and thin linear conductor along the transmission cable from the outside of the lens unit, and the structure is complicated.
An object of the present invention is to provide an endoscopic imaging device, an endoscope, and an ultrasonic endoscope that have a simple structure and protect an imaging element from static electricity.
 上述の目的を達成するために、発明[1]は、観察対象の画像を取得する内視鏡撮像装置であって、撮像レンズを直接、又は内部に撮像レンズが設けられたレンズ鏡胴を保持する保持具と、撮像レンズを通過した光を受光し、光電変換する撮像素子と、撮像素子に電気的に接続される信号ケーブルと、保持具と信号ケーブルとを連結する連結部材とを有し、保持具及び連結部材は、導電体で構成され、信号ケーブルは、複数の信号線をまとめて覆うシールド層と、シールド層の外側を被覆する外皮とを備え、信号ケーブルの保持具側に端部において、外皮は、露出部を設けてシールド層を被覆しており、信号ケーブルは連結部材に保持され、シールド層の露出部の保持具側の先端は、外皮の保持具側の先端よりも保持具側にあり、外皮の先端は、連結部材の保持具の反対側の後端よりも保持具側に位置し、シールド層の露出部と連結部材とが、接続部材により電気的に接続されており、保持具と撮像素子との間の第1の電気抵抗よりも、保持具と連結部材との間の第2の電気抵抗の方が小さい、内視鏡撮像装置である。 In order to achieve the above-mentioned object, invention [1] is an endoscopic imaging device for acquiring an image of an object to be observed, comprising a holder for holding an imaging lens directly or a lens barrel having an imaging lens provided therein, an imaging element for receiving light that has passed through the imaging lens and performing photoelectric conversion, a signal cable electrically connected to the imaging element, and a connecting member for connecting the holder and the signal cable, the holder and the connecting member being made of a conductor, and the signal cable comprising a shielding layer for collectively covering a plurality of signal lines and an outer sheath for covering the outside of the shielding layer, An endoscopic imaging device in which the outer sheath has an exposed portion at the end of the signal cable on the holder side and covers the shielding layer, the signal cable is held by a connecting member, the tip of the exposed portion of the shielding layer on the holder side is closer to the holder than the tip of the outer sheath on the holder side, the tip of the outer sheath is located closer to the holder than the rear end of the connecting member on the opposite side to the holder, the exposed portion of the shielding layer and the connecting member are electrically connected by a connecting member, and the second electrical resistance between the holding device and the connecting member is smaller than the first electrical resistance between the holding device and the imaging element.
 発明[2]は、接続部材は、導電線を有し、導電線は、シールド層の露出部の外周面に少なくとも1周巻回されており、巻回された導電線はシールド層に半田により連結されている、発明[1]に記載の内視鏡撮像装置である。
 発明[3]は、撮像素子と電気的に接続された回路基板を有し、回路基板は端子部を備え、導電線が巻回されたシールド層と端子部とは、半田により電気的に接続され、かつ固定されている、発明[1]又は[2]に記載の内視鏡撮像装置である。
Invention [2] is an endoscopic imaging device according to Invention [1], in which the connecting member has a conductive wire, the conductive wire is wound around the outer peripheral surface of the exposed portion of the shielding layer at least once, and the wound conductive wire is connected to the shielding layer by soldering.
Invention [3] is an endoscopic imaging device according to invention [1] or [2], which has a circuit board electrically connected to the imaging element, the circuit board having a terminal portion, and the shielding layer around which the conductive wire is wound and the terminal portion are electrically connected and fixed by solder.
 発明[4]は、接続部材は、連結部材の外側で連結部材と接合されている、発明[1]~[3]のいずれか1つに記載の内視鏡撮像装置である。
 発明[5]は、連結部材は、保持具の反対側の後端に、撮像レンズの光軸と直交する幅方向における長さが保持具側の先端よりも短い幅狭部を有し、幅狭部で接続部材が、連結部材と接合されている、発明[4]に記載の内視鏡撮像装置である。
 発明[6]は、保持具又はレンズ鏡胴を固定する先端本体を有する、発明[1]~[5]のいずれか1つに記載の内視鏡撮像装置である。
 発明[7]は、先端本体は、樹脂で構成されている、発明[6]に記載の内視鏡撮像装置である。
 発明[8]は、発明[1]~[7]のいずれか1つに記載の内視鏡撮像装置を有する、内視鏡である。
 発明[9]は、発明[7]に記載の内視鏡撮像装置を有する、超音波内視鏡である。
Invention [4] is an endoscopic imaging device according to any one of inventions [1] to [3], in which the connecting member is joined to the connecting member on the outside of the connecting member.
Invention [5] is an endoscopic imaging device as described in Invention [4], in which the connecting member has a narrow portion at the rear end opposite the holder, the length in the width direction perpendicular to the optical axis of the imaging lens being shorter than the tip end on the holder side, and the connecting member is joined to the connecting member at the narrow portion.
Invention [6] is an endoscopic imaging device according to any one of inventions [1] to [5], having a tip body for fixing a holder or a lens barrel.
Invention [7] is the endoscopic imaging device according to invention [6], in which the tip body is made of resin.
The invention [8] is an endoscope having an endoscopic imaging device according to any one of the inventions [1] to [7].
The invention [9] is an ultrasonic endoscope having the endoscopic imaging device according to the invention [7].
 本発明によれば、簡単な構造で静電気から撮像素子を保護できる内視鏡撮像装置、内視鏡及び超音波内視鏡を提供できる。 The present invention provides an endoscopic imaging device, an endoscope, and an ultrasonic endoscope that can protect an imaging element from static electricity with a simple structure.
本発明の実施形態の内視鏡システムの一例を示す模式図である。1 is a schematic diagram showing an example of an endoscope system according to an embodiment of the present invention. 本発明の実施形態の内視鏡撮像装置の一例を示す模式的斜視図である。1 is a schematic perspective view showing an example of an endoscopic imaging device according to an embodiment of the present invention. 本発明の実施形態の内視鏡撮像装置の一例の連結部材を示す模式的斜視図である。FIG. 2 is a schematic perspective view showing an example of a connecting member of the endoscopic imaging device according to the embodiment of the present invention. 本発明の実施形態の内視鏡撮像装置の一例を示す模式的側面図である。1 is a schematic side view showing an example of an endoscopic imaging device according to an embodiment of the present invention. 本発明の実施形態の内視鏡撮像装置の一例を示す模式的側面図である。1 is a schematic side view showing an example of an endoscopic imaging device according to an embodiment of the present invention. 本発明の実施形態の内視鏡撮像装置の一例を示す模式的上面図である。1 is a schematic top view showing an example of an endoscopic imaging device according to an embodiment of the present invention. 本発明の実施形態の内視鏡撮像装置の一例の要部を拡大して示す模式的斜視図である。1 is a schematic perspective view showing an enlarged view of a main portion of an example of an endoscopic imaging device according to an embodiment of the present invention. 本発明の実施形態の内視鏡撮像装置に用いられる信号ケーブルの一例を示す模式的斜視図である。FIG. 2 is a schematic perspective view showing an example of a signal cable used in the endoscopic imaging device according to the embodiment of the present invention. 本発明の実施形態の内視鏡システムの他の例を示す模式図である。FIG. 11 is a schematic diagram showing another example of the endoscope system according to the embodiment of the present invention. 本発明の実施形態の超音波内視鏡の一例を示す模式的断面図である。1 is a schematic cross-sectional view showing an example of an ultrasonic endoscope according to an embodiment of the present invention.
 以下に、添付の図面に示す好適実施形態に基づいて、本発明の内視鏡撮像装置、内視鏡及び超音波内視鏡を詳細に説明する。
 なお、以下に説明する図は、本発明を説明するための例示的なものであり、以下に示す図に本発明が限定されるものではない。
 なお、以下において数値範囲を示す「~」とは両側に記載された数値を含む。例えば、εが数値εα~数値εβとは、εの範囲は数値εαと数値εβを含む範囲であり、数学記号で示せばεα≦ε≦εβである。
 以下の説明の「平行」、「垂直」及び「直交」等は、該当する技術分野で一般的に許容される誤差範囲を含む。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, an endoscopic imaging device, an endoscope, and an ultrasonic endoscope of the present invention will be described in detail based on preferred embodiments shown in the accompanying drawings.
It should be noted that the drawings described below are illustrative for explaining the present invention, and the present invention is not limited to the drawings shown below.
In the following description, the term "to" indicating a range of values includes the values written on both sides. For example, if ε is a value εα to a value εβ , the range of ε includes the values εα and εβ , and expressed in mathematical notation, εα ≦ε≦ εβ .
In the following description, terms such as "parallel,""perpendicular," and "orthogonal" include a generally acceptable error range in the relevant technical field.
 〔内視鏡システムの一例〕
 内視鏡システムは、観察対象である被験者の体内等の観察部位に照明光(図示せず)を照射し、観察部位を撮像して、撮像により得られた画像信号に基づいて観察部位の表示画像を生成し、表示画像を表示するものである。
 図1は本発明の実施形態の内視鏡システムの一例を示す模式図である。
 内視鏡システム10は、内視鏡12と、光源装置14と、プロセッサ装置16とを有する。内視鏡システム10は、後述する内視鏡12の内視鏡撮像装置20(図2参照)の部分以外は、一般的な内視鏡と同様の構成を有する。
 また、内視鏡システム10は、更に、洗浄水等を貯留する送水タンク、体腔内の吸引物(供給された洗浄水等も含む)を吸引する吸引ポンプ等を備えていてもよい。更に、送水タンク内の洗浄水、又は外部の空気等の気体を内視鏡内の管路(図示せず)に供給する供給ポンプ等を備えていてもよい。
[An example of an endoscope system]
An endoscopic system irradiates an observation area, such as the inside of a subject's body, with illumination light (not shown), captures an image of the observation area, generates a display image of the observation area based on the image signal obtained by capturing the image, and displays the display image.
FIG. 1 is a schematic diagram showing an example of an endoscope system according to an embodiment of the present invention.
The endoscopic system 10 includes an endoscope 12, a light source device 14, and a processor device 16. The endoscopic system 10 has a configuration similar to that of a general endoscope, except for an endoscopic imaging device 20 (see FIG. 2 ) of the endoscope 12, which will be described later.
The endoscope system 10 may further include a water tank for storing cleaning water or the like, a suction pump for sucking up the aspirated material (including the supplied cleaning water) from within the body cavity, etc. Furthermore, the endoscope system 10 may further include a supply pump for supplying cleaning water from the water tank or a gas such as external air to a duct (not shown) within the endoscope.
 内視鏡12は内視鏡撮像装置20(図2参照)を有する。また、内視鏡12は、詳細に図示はしないが、被検体内に挿入される挿入部と、挿入部に連なる操作部と、操作部から延びるユニバーサルコードとを有し、挿入部は、先端部と、先端部に連なる湾曲部と、湾曲部と操作部とを繋ぐ軟性部とで構成されている。内視鏡撮像装置については後述する。 The endoscope 12 has an endoscopic imaging device 20 (see FIG. 2). Although not shown in detail, the endoscope 12 has an insertion section that is inserted into the subject, an operating section that is connected to the insertion section, and a universal cord that extends from the operating section, and the insertion section is composed of a tip section, a bending section that is connected to the tip section, and a flexible section that connects the bending section and the operating section. The endoscopic imaging device will be described later.
 内視鏡12の先端部12aに、観察部位を照明するための照明光を出射する照明光学系、又は観察部位を撮像する撮像素子及び撮像光学系等を有する内視鏡撮像装置20(図2参照)が設けられている。湾曲部は挿入部の長手軸と直交する方向に湾曲可能に構成されており、湾曲部の湾曲動作は操作部にて操作される。また、軟性部は、挿入部の挿入経路の形状に倣って変形可能な程に比較的柔軟に構成されている。 The tip 12a of the endoscope 12 is provided with an endoscopic imaging device 20 (see FIG. 2) that has an illumination optical system that emits illumination light to illuminate the observation site, or an imaging element and imaging optical system that capture an image of the observation site. The bending section is configured to be bendable in a direction perpendicular to the longitudinal axis of the insertion section, and the bending operation of the bending section is controlled by the operating section. In addition, the flexible section is configured to be relatively flexible so that it can be deformed to follow the shape of the insertion path of the insertion section.
 操作部には、先端部12aの内視鏡撮像装置20(図2参照)の撮像動作を操作するボタン、又は湾曲部の湾曲動作を操作するノブ等が設けられている。また、操作部には、電気メス等の処置具が導入される導入口が設けられており、挿入部の内部には、導入口から先端部に達し、鉗子等の処置具が挿通される処置具チャンネルが設けられている。 The operation section is provided with buttons for operating the imaging operation of the endoscopic imaging device 20 (see FIG. 2) at the tip 12a, knobs for operating the bending operation of the bending section, etc. The operation section is also provided with an introduction port through which a treatment tool such as an electric scalpel is introduced, and a treatment tool channel is provided inside the insertion section that extends from the introduction port to the tip and through which a treatment tool such as forceps is inserted.
 ユニバーサルコードの末端にはコネクタが設けられ、内視鏡12は、コネクタを介して、先端部の照明光学系から出射される照明光を生成する光源装置14、及び先端部12aの内視鏡撮像装置20(図2参照)によって取得される映像信号を処理するプロセッサ装置16と接続される。内視鏡撮像装置20(図2参照)とプロセッサ装置16との間で信号及び電力のうち、少なくとも一方が電線群を介して伝送される。 A connector is provided at the end of the universal cord, and the endoscope 12 is connected via the connector to a light source device 14 that generates illumination light emitted from the illumination optical system at the tip, and a processor device 16 that processes video signals acquired by an endoscopic imaging device 20 (see FIG. 2) at the tip 12a. At least one of signals and power is transmitted between the endoscopic imaging device 20 (see FIG. 2) and the processor device 16 via a group of electric wires.
 プロセッサ装置16は、入力された映像信号を処理して観察部位の映像データを生成し、生成した映像データをモニタ(図示せず)に表示させるか、又はハードディスク等の記憶媒体に記録する。なお、プロセッサ装置16は、パーソナルコンピュータ等のプロセッサによって構成されるものであってもよい。 The processor unit 16 processes the input video signal to generate video data of the observed area, and displays the generated video data on a monitor (not shown) or records it on a storage medium such as a hard disk. The processor unit 16 may be configured with a processor such as a personal computer.
 光源装置14は、内視鏡12の内視鏡撮像装置20(図2参照)によって体腔内の観察対象部位を撮像して、観察対象の画像信号を取得するために、赤光(R)、緑光(G)、及び青光(B)等の3原色光からなる白色光又は特定波長光等の照明光を、発生させて、内視鏡12に供給し、内視鏡12内のライトガイド等によって伝搬し、内視鏡12の挿入部の先端部の照明光学系から出射して、体腔内の観察対象部位を照明するためのものである。 The light source device 14 generates illumination light such as white light or specific wavelength light consisting of three primary colors such as red (R), green (G), and blue (B), and supplies it to the endoscope 12, where it propagates through a light guide or the like within the endoscope 12 and is emitted from an illumination optical system at the tip of the insertion section of the endoscope 12 to illuminate the area to be observed within the body cavity, in order to capture an image of the area to be observed within the body cavity using the endoscopic imaging device 20 (see Figure 2) of the endoscope 12 and obtain an image signal of the area to be observed.
 挿入部及び操作部並びにユニバーサルコードの内部にはライトガイド又は電線群(信号ケーブル)が収容されている。光源装置14にて生成された照明光がライトガイドを介して先端部12aの照明光学系に導光され、先端部12aの先端面12bから光が出射される。 A light guide or a group of electric wires (signal cables) are housed inside the insertion section, the operating section, and the universal cord. Illumination light generated by the light source device 14 is guided to the illumination optical system of the tip portion 12a via the light guide, and the light is emitted from the tip surface 12b of the tip portion 12a.
 〔内視鏡撮像装置の一例〕
 図2は本発明の実施形態の内視鏡撮像装置の一例を示す模式的斜視図であり、図3は本発明の実施形態の内視鏡撮像装置の一例の連結部材を示す模式的斜視図である。図4及び図5は本発明の実施形態の内視鏡撮像装置の一例を示す模式的側面図である。図6は本発明の実施形態の内視鏡撮像装置の一例を示す模式的上面図であり、図7は本発明の実施形態の内視鏡撮像装置の一例の要部を拡大して示す模式的斜視図である。
 なお、図5は図4の内視鏡撮像装置20において連結部材40の片側のアーム部40c及び保持部40bを外した状態を示す。
 図1に示す内視鏡システム10の内視鏡12の先端部12aに、図2に示す内視鏡撮像装置20が搭載される。内視鏡撮像装置20のことをカメラヘッドともいう。
 図1に示す内視鏡12の先端部12aの先端面12bは、内視鏡撮像装置20の先端本体50(図4参照)の表面50a(図4参照)である。
[An example of an endoscopic imaging device]
Fig. 2 is a schematic perspective view showing an example of an endoscopic imaging device according to an embodiment of the present invention, Fig. 3 is a schematic perspective view showing a connecting member of the example of the endoscopic imaging device according to an embodiment of the present invention, Fig. 4 and Fig. 5 are schematic side views showing the example of the endoscopic imaging device according to an embodiment of the present invention, Fig. 6 is a schematic top view showing the example of the endoscopic imaging device according to an embodiment of the present invention, and Fig. 7 is a schematic perspective view showing an enlarged view of a main part of the example of the endoscopic imaging device according to an embodiment of the present invention.
5 shows the endoscopic imaging device 20 of FIG. 4 in a state where the arm portion 40c and the holding portion 40b on one side of the connecting member 40 are removed.
An endoscopic imaging device 20 shown in Fig. 2 is mounted on a distal end portion 12a of an endoscope 12 of an endoscopic system 10 shown in Fig. 1. The endoscopic imaging device 20 is also called a camera head.
A distal end surface 12b of the distal end portion 12a of the endoscope 12 shown in FIG. 1 is a surface 50a (see FIG. 4) of a distal end body 50 of the endoscopic imaging device 20 (see FIG. 4).
 図2に示す内視鏡撮像装置20は、観察対象の画像を取得するものである。内視鏡撮像装置20は、例えば、撮像レンズ23、撮像レンズ23を保持するレンズ鏡胴22、保持具24、撮像素子25、回路基板26、プリズム27、及び信号ケーブル28を有する。また、内視鏡撮像装置20は、連結部材40を有する。
 ここで、撮像レンズ23の光軸Cに平行な方向をX方向とする。光軸Cと直交する2つの方向のうち、1つをY方向とし、残りをZ方向とする。Y方向は内視鏡撮像装置20の幅方向に対応し、Z方向は内視鏡撮像装置20の高さ方向に対応する。
The endoscopic imaging device 20 shown in Fig. 2 is for acquiring an image of an observation target. The endoscopic imaging device 20 has, for example, an imaging lens 23, a lens barrel 22 that holds the imaging lens 23, a holder 24, an imaging element 25, a circuit board 26, a prism 27, and a signal cable 28. The endoscopic imaging device 20 also has a connecting member 40.
Here, the direction parallel to the optical axis C of the imaging lens 23 is defined as the X direction. Of the two directions perpendicular to the optical axis C, one is defined as the Y direction and the other is defined as the Z direction. The Y direction corresponds to the width direction of the endoscopic imaging device 20, and the Z direction corresponds to the height direction of the endoscopic imaging device 20.
 回路基板26に、撮像素子25、及び電子部品30、30aが実装されている。なお、実装とは、電気的に接続されていることをいう。
 回路基板26は、図5に示すように、少なくとも第1の平面部26aと、第1の平面部26aと第1の屈曲部26bで連結された第2の平面部26cと、第2の平面部26cと第2の屈曲部26dで連結された第3の平面部26eとを有する。
 第1の平面部26a及び第3の平面部26eは、撮像レンズ23の光軸Cと平行であり、第2の平面部26cは光軸Cに対して傾斜している。すなわち、第2の平面部26cは、撮像レンズ23の光軸Cに対して傾いて角度がついて傾斜しており、第2の平面部26cが光軸Cと平行ではない。例えば、第2の平面部26cは、第2の屈曲部26dの方が第1の屈曲部26bよりもZ方向において上側になるように傾斜している。
 第3の平面部26eの第2の平面部26cに対向する裏面26hに、信号ケーブル28が電気的に接続されている。より具体的には、回路基板26には、撮像素子25及び電子部品30、30aに対する信号又は電力が入出力される複数の接続端子(図示せず)が裏面26hに設けられている。接続端子に、信号ケーブル28の信号線28aが電気的に接続される。
 回路基板26を、上述の構成とすることにより、内視鏡撮像装置20をZ方向の高さを小さくでき、内視鏡撮像装置20を小型化できる。
The imaging element 25 and electronic components 30, 30a are mounted on a circuit board 26. "Mounted" means "electrically connected."
As shown in FIG. 5, the circuit board 26 has at least a first planar portion 26a, a second planar portion 26c connected to the first planar portion 26a by a first bent portion 26b, and a third planar portion 26e connected to the second planar portion 26c by a second bent portion 26d.
The first planar portion 26a and the third planar portion 26e are parallel to the optical axis C of the imaging lens 23, and the second planar portion 26c is inclined with respect to the optical axis C. In other words, the second planar portion 26c is inclined at an angle with respect to the optical axis C of the imaging lens 23, and the second planar portion 26c is not parallel to the optical axis C. For example, the second planar portion 26c is inclined so that the second bent portion 26d is higher in the Z direction than the first bent portion 26b.
A signal cable 28 is electrically connected to a rear surface 26h of the third planar portion 26e facing the second planar portion 26c. More specifically, the circuit board 26 is provided on the rear surface 26h with a plurality of connection terminals (not shown) for inputting and outputting signals or power to and from the imaging element 25 and the electronic components 30, 30a. A signal line 28a of the signal cable 28 is electrically connected to the connection terminals.
By configuring the circuit board 26 as described above, the height of the endoscopic imaging device 20 in the Z direction can be reduced, and the endoscopic imaging device 20 can be made more compact.
 プリズム27は、例えば、入射面27aと出射面27bとが直交する直角プリズムである。また、プリズム27には入射面27aと出射面27bとを結ぶ斜面27cを有する。斜面27cがプリズム27の反射面である。プリズム27は、レンズ鏡胴22と撮像素子25との間に配置される光学部材の一例であり、光学部材は、プリズム27に限定されるものではない。なお、プリズム27の配置も特に限定されるものではない。また、プリズム27は、撮像素子25の配置位置によっては必ずしも必要ではなく、別の光学部材を配置する構成でもよい。 Prism 27 is, for example, a right-angle prism in which incident surface 27a and exit surface 27b are perpendicular to each other. Prism 27 also has a slope 27c connecting incident surface 27a and exit surface 27b. Slope 27c is the reflective surface of prism 27. Prism 27 is an example of an optical member arranged between lens barrel 22 and image sensor 25, and optical members are not limited to prism 27. The arrangement of prism 27 is also not particularly limited. Furthermore, prism 27 may not be necessary depending on the arrangement position of image sensor 25, and a configuration in which another optical member is arranged may be used.
 撮像レンズ23は、撮像レンズ23に入射する光を撮像素子25の受光面25aに結像する光学素子である。撮像レンズ23はレンズ鏡胴22に保持される。 The imaging lens 23 is an optical element that forms an image of the light incident on the imaging lens 23 on the light receiving surface 25a of the imaging element 25. The imaging lens 23 is held by the lens barrel 22.
 レンズ鏡胴22は、筒状の部材であり、内部に、1以上の撮像レンズ23が設けられている。レンズ鏡胴22は1以上の撮像レンズ23を保持する。レンズ鏡胴22は、撮像レンズ23の光軸Cがプリズム27の入射面27a(図5参照)に垂直になるように、撮像レンズ23を保持する。内視鏡撮像装置20は、例えば、3つの撮像レンズ23を有し、レンズ鏡胴22で保持されている。 The lens barrel 22 is a cylindrical member, and has one or more imaging lenses 23 disposed therein. The lens barrel 22 holds one or more imaging lenses 23. The lens barrel 22 holds the imaging lenses 23 so that the optical axis C of the imaging lenses 23 is perpendicular to the entrance surface 27a of the prism 27 (see FIG. 5). The endoscopic imaging device 20 has, for example, three imaging lenses 23, which are held by the lens barrel 22.
 撮像レンズ23及びレンズ鏡胴22の構成は特に制限されない。例えば、撮像レンズ23を1つ有する構成であってもよいし、2つ、又は、4つ以上の撮像レンズ23を有する構成でもよい。また、各撮像レンズ23は、凸レンズであっても凹レンズであってもよい。 The configuration of the imaging lens 23 and the lens barrel 22 is not particularly limited. For example, the configuration may include one imaging lens 23, or may include two or four or more imaging lenses 23. Furthermore, each imaging lens 23 may be a convex lens or a concave lens.
 撮像素子25は、撮像レンズ23によって結像された光を光電変換によって電気信号に変換することで撮像を行う撮像素子である。撮像素子25は、従来公知の撮像素子であり、CCD(Charge Coupled Device)型イメージセンサー又はCMOS(Complementary Metal Oxide Semiconductor)イメージセンサーを用いることができる。 The imaging element 25 is an imaging element that captures an image by converting the light focused by the imaging lens 23 into an electrical signal through photoelectric conversion. The imaging element 25 is a conventionally known imaging element, and may be a CCD (Charge Coupled Device) type image sensor or a CMOS (Complementary Metal Oxide Semiconductor) image sensor.
 撮像素子25は、保持具24に対してレンズ鏡胴22の反対側に配置されている。撮像素子25は、図4に示すように、例えば、導電性を有するバンプ34を介して回路基板26の第1の平面部26aの表面26fに電気的に接続されている。また、図4に示すように、撮像素子25は、受光面25aが撮像レンズ23の光軸Cに平行になるように回路基板26上に実装されている。なお、実装とは、電気的に接続されていることをいう。
 撮像素子25と回路基板26との間に、撮像素子25と回路基板26とを強固に接続するためにアンダーフィル層(図示せず)を設けることもできる。
The imaging element 25 is disposed on the opposite side of the lens barrel 22 with respect to the holder 24. As shown in Fig. 4, the imaging element 25 is electrically connected to a surface 26f of a first flat portion 26a of the circuit board 26 via, for example, conductive bumps 34. Also, as shown in Fig. 4, the imaging element 25 is mounted on the circuit board 26 so that the light receiving surface 25a is parallel to the optical axis C of the imaging lens 23. Note that mounting means being electrically connected.
An underfill layer (not shown) may be provided between the imaging element 25 and the circuit board 26 in order to firmly connect the imaging element 25 and the circuit board 26 .
 バンプ34は、金属又は合金で構成される。より具体的には、バンプ34は、半田で構成される。半田で形成されたバンプ34のことを半田ボールともいう。なお、バンプ34は、撮像素子25と回路基板26とを電気的に接続することができれば、半田等に限定されるものではない。また、撮像素子25と回路基板26とは直接電気的に接続してもよい。
 また、アンダーフィル層は、撮像素子25と回路基板26との熱膨張係数の違いにより、撮像素子25と回路基板26との接合部、例えば、バンプ34に応力が生じるが、この応力を緩和する。アンダーフィル層により、撮像素子25と回路基板26とが強固に接続され、電気的な接続の信頼性が増し、信頼性が高い内視鏡撮像装置20が得られる。
 アンダーフィル層を構成するアンダーフィル剤は、特に限定されるものでなく、撮像素子25と、回路基板26との間の封止樹脂として用いられるものが適宜利用可能である。例えば、アンダーフィル剤として、一液性加熱硬化型のエポキシ樹脂が用いられる。この場合、アンダーフィル剤を供給した後、予め定められた温度に加熱保持して、アンダーフィル層が形成される。
The bumps 34 are made of a metal or an alloy. More specifically, the bumps 34 are made of solder. The bumps 34 made of solder are also called solder balls. Note that the bumps 34 are not limited to solder or the like as long as they can electrically connect the imaging element 25 and the circuit board 26. Also, the imaging element 25 and the circuit board 26 may be directly electrically connected to each other.
The underfill layer also relieves stress that occurs at the joints between the imaging element 25 and the circuit board 26, such as the bumps 34, due to the difference in thermal expansion coefficient between the imaging element 25 and the circuit board 26. The underfill layer firmly connects the imaging element 25 and the circuit board 26, increasing the reliability of the electrical connection, and resulting in a highly reliable endoscopic imaging device 20.
The underfill agent constituting the underfill layer is not particularly limited, and any agent that is used as a sealing resin between the image sensor 25 and the circuit board 26 can be appropriately used. For example, a one-component heat-curing epoxy resin is used as the underfill agent. In this case, after the underfill agent is supplied, it is heated and held at a predetermined temperature to form the underfill layer.
 回路基板26は、撮像素子25が実装される基板である。また、回路基板26には、撮像素子25以外に、例えば、電子部品30、30aが実装される。電子部品30、30aは、撮像素子25を駆動するためのものであり、特に限定されるものではないが、例えば、電圧レギュレータ、抵抗、及びコンデンサ等が挙げられる。電圧レギュレータは、撮像素子25への電圧を安定化させるデバイスであり、撮像素子25に一定の電圧を出力する。
 回路基板26は、例えば、可撓性を有する基板で構成されており、例えば、フレキシブルプリント基板で構成される。
The circuit board 26 is a board on which the imaging element 25 is mounted. In addition to the imaging element 25, for example, electronic components 30, 30a are mounted on the circuit board 26. The electronic components 30, 30a are for driving the imaging element 25, and include, but are not limited to, for example, a voltage regulator, a resistor, and a capacitor. The voltage regulator is a device that stabilizes the voltage to the imaging element 25, and outputs a constant voltage to the imaging element 25.
The circuit board 26 is, for example, a flexible board, for example, a flexible printed circuit board.
 回路基板26の第1の屈曲部26b及び第2の屈曲部26dは、いずれも曲面で構成されている。第1の屈曲部26b及び第2の屈曲部26dの曲率半径は同じでもよく、違っていてもよい。図5に示すように第1の屈曲部26bの方が第2の屈曲部26dよりも曲率半径が大きい。第1の屈曲部26b及び第2の屈曲部26dの曲率半径を調整することにより、第1の平面部26aと第2の平面部26cとの間のスペース、及び第2の平面部26cと第3の平面部26eとの間のスペースを調整できる。
 第1の屈曲部26b及び第2の屈曲部26dは、曲面を有する構成であれば、曲面だけで構成されていることに限定されるものではなく、例えば、平面と曲面とを有する構成でもよい。
 曲率半径は、以下のようにして得られる。まず、側面方向からの回路基板26の画像を取得する。取得した画像を用いて、第1の屈曲部26b及び第2の屈曲部26dの曲率半径に該当する該当箇所を特定する。該当箇所に、曲線を当てはめ、その曲線の曲率半径を定規を用いて測定する。その測定値が曲率半径である。
 なお、上述の曲率半径の測定には、取得した回路基板26の画像をコンピューターに取り込んで、ソフトウェアを用いて、第1の屈曲部26b及び第2の屈曲部26dの曲率半径を測定することも含まれる。曲率半径に該当する該当箇所に、曲線を当てはめ、その曲線の曲率半径を定規を用いて測定することには、コンピューター上でソフトウェアを用いて実施することも含まれる。
The first bent portion 26b and the second bent portion 26d of the circuit board 26 are both formed of curved surfaces. The radii of curvature of the first bent portion 26b and the second bent portion 26d may be the same or different. As shown in FIG. 5, the first bent portion 26b has a larger radius of curvature than the second bent portion 26d. By adjusting the radii of curvature of the first bent portion 26b and the second bent portion 26d, the space between the first flat portion 26a and the second flat portion 26c, and the space between the second flat portion 26c and the third flat portion 26e can be adjusted.
As long as the first bent portion 26b and the second bent portion 26d have a curved surface, they are not limited to being composed of only curved surfaces, and may be composed of, for example, a flat surface and a curved surface.
The radius of curvature is obtained as follows. First, an image of the circuit board 26 from the side is acquired. Using the acquired image, the relevant locations corresponding to the radius of curvature of the first bent portion 26b and the second bent portion 26d are identified. A curve is fitted to the relevant locations, and the radius of curvature of the curve is measured using a ruler. The measured value is the radius of curvature.
The measurement of the above-mentioned radius of curvature also includes importing the acquired image of the circuit board 26 into a computer and measuring the radius of curvature of the first bent portion 26b and the second bent portion 26d using software. Fitting a curve to the corresponding portion corresponding to the radius of curvature and measuring the radius of curvature of the curve using a ruler also includes performing the measurement using software on a computer.
 撮像素子25は、図4に示すように第1の平面部26aの表面26fに実装されている。また、第1の平面部26aの表面26fには電子部品30も実装されている。
 第2の平面部26cの第1の平面部26aの表面26fに対向する裏面26gに電子部品30、30aが実装されている。第2の平面部26cは、第1の平面部26aに対して傾斜しているため、第1の平面部26aと第2の平面部26cとの間にスペースが広い領域ができる。このため、サイズの大きい電子部品30aを実装できる。例えば、第2の平面部26cの裏面26gでは、第2の屈曲部26d側に実装された電子部品30aは第1の屈曲部26b側に実装された電子部品30よりも高さが高い。このように、様々なサイズの電子部品を実装でき、内視鏡撮像装置20のスペースを有効活用できる。
 なお、上述のように第3の平面部26eの第2の平面部26cに対向する裏面26hに接続端子(図示せず)が設けられている。第3の平面部26eの表面26iに電子部品30が実装されている。回路基板26上における撮像素子25、電子部品30、30a、及び接続端子等の配置は、特に限定されるものではない。
The imaging element 25 is mounted on a surface 26f of the first flat portion 26a as shown in Fig. 4. In addition, an electronic component 30 is also mounted on the surface 26f of the first flat portion 26a.
The electronic components 30, 30a are mounted on the back surface 26g of the second flat surface 26c, which faces the front surface 26f of the first flat surface 26a. Since the second flat surface 26c is inclined with respect to the first flat surface 26a, a wide space is created between the first flat surface 26a and the second flat surface 26c. Therefore, a large-sized electronic component 30a can be mounted. For example, on the back surface 26g of the second flat surface 26c, the electronic component 30a mounted on the second bent portion 26d side is taller than the electronic component 30 mounted on the first bent portion 26b side. In this way, electronic components of various sizes can be mounted, and the space of the endoscopic imaging device 20 can be effectively utilized.
As described above, the connection terminals (not shown) are provided on the back surface 26h of the third planar portion 26e facing the second planar portion 26c. The electronic components 30 are mounted on the front surface 26i of the third planar portion 26e. The arrangement of the image sensor 25, the electronic components 30, 30a, the connection terminals, etc. on the circuit board 26 is not particularly limited.
 回路基板26の第3の平面部26eの裏面26h(図5参照)に設けられた接続端子(図示せず)に、信号ケーブル28の信号線28a(図4参照)が電気的に接続されており、撮像素子25と信号ケーブル28とが電気的に接続される。撮像素子25によって光が電気信号に変換され、この電気信号が信号ケーブル28を介して送信される。信号ケーブル28は、内視鏡の挿入部、操作部、ユニバーサルコード等に挿通されて、プロセッサ装置16(図1参照)に電気的に接続されている。
 また、回路基板26は、第3の平面部26eの裏面26hに、平面状の端子部63が、接続端子(図示せず)よりも保持具24の反対側に設けられている。平面状の端子部63は、例えば、第3の平面部26eの表面26i側から見た形状が台形であるが、形状は特に限定されるものではない。
 また、端子部63は、回路基板26のグランド層(図示せず)に電気的に接続されている。端子部63は、パッドと呼ばれるものである。
 端子部63は、後述のように接続部材60を介して信号ケーブル28のシールド層28cに電気的に接続される。このため、端子部63は、後述の信号ケーブル28のシールド層28cの露出部28eと対向する位置に設けられることが好ましい。
A signal line 28a (see FIG. 4) of a signal cable 28 is electrically connected to a connection terminal (not shown) provided on a back surface 26h (see FIG. 5) of the third flat surface 26e of the circuit board 26, electrically connecting the image pickup element 25 and the signal cable 28. Light is converted into an electrical signal by the image pickup element 25, and this electrical signal is transmitted via the signal cable 28. The signal cable 28 is inserted through the insertion portion, operation portion, universal cord, etc. of the endoscope, and is electrically connected to the processor device 16 (see FIG. 1).
Further, the circuit board 26 has a planar terminal portion 63 provided on the back surface 26h of the third planar portion 26e, on the opposite side of the holder 24 from the connection terminal (not shown). The planar terminal portion 63 has, for example, a trapezoidal shape when viewed from the front surface 26i side of the third planar portion 26e, but the shape is not particularly limited.
Moreover, the terminal portion 63 is electrically connected to a ground layer (not shown) of the circuit board 26. The terminal portion 63 is called a pad.
As described below, the terminal portion 63 is electrically connected to the shield layer 28c of the signal cable 28 via the connection member 60. For this reason, the terminal portion 63 is preferably provided at a position facing an exposed portion 28e of the shield layer 28c of the signal cable 28, which will be described later.
 信号ケーブル28は、例えば、図5に示すように複数の信号線28aと、各信号線28aを被覆する被覆層28bと、被覆層28bで被覆された、複数の信号線28aの全体の周囲に設けられて、複数の信号線28aをまとめて覆うシールド層28cと、シールド層28cの外側を被覆する外皮28dとを備える。
 信号ケーブル28は、複数の信号線28aが束ねられ、かつ複数の信号線28aの周囲にシールド層28cが設けられ、かつ円筒状の外皮28d内に収納された多芯ケーブルである。シールド層28cは、例えば、グランドに接地されている。
 上述のように外皮28dは信号ケーブル28の外周を構成する。被覆層28b、シールド層28c、及び外皮28dは、例えば、円筒状である。また、信号ケーブル28のシールド層28cのことをシールドという。信号ケーブル28は、信号線28aを、例えば、5本有する。信号線28aの数は、内視鏡撮像装置20の構成に応じたものであり、特に限定されるものではなく、2本でも、3本でも、4本でもよく、6本以上でもよい。
 信号ケーブル28の保持具24側の端部29において、外皮28dは、露出部28eを設けてシールド層28cを被覆している。シールド層28cは、端部29側に露出部28eを有する。なお、保持具24側とは、撮像レンズ23側のことであり、図4に示す先端本体50の表面50a側のことである。
As shown in FIG. 5, the signal cable 28 includes, for example, a plurality of signal wires 28a, a coating layer 28b that coats each of the signal wires 28a, a shielding layer 28c that is provided around the entirety of the signal wires 28a coated with the coating layer 28b and covers the signal wires 28a collectively, and an outer jacket 28d that coats the outside of the shielding layer 28c.
The signal cable 28 is a multi-core cable in which a plurality of signal wires 28a are bundled together, a shielding layer 28c is provided around the signal wires 28a, and the signal cable 28 is housed in a cylindrical outer sheath 28d. The shielding layer 28c is, for example, grounded.
As described above, the outer cover 28d forms the outer periphery of the signal cable 28. The covering layer 28b, the shield layer 28c, and the outer cover 28d are, for example, cylindrical. The shield layer 28c of the signal cable 28 is called the shield. The signal cable 28 has, for example, five signal wires 28a. The number of signal wires 28a depends on the configuration of the endoscopic imaging device 20 and is not particularly limited, and may be two, three, four, or six or more.
At the end 29 of the signal cable 28 on the holder 24 side, the outer cover 28d is provided with an exposed portion 28e and covers the shield layer 28c. The shield layer 28c has the exposed portion 28e on the end 29 side. The holder 24 side refers to the imaging lens 23 side, that is, the surface 50a side of the tip body 50 shown in FIG.
 信号ケーブル28は、連結部材40に保持され、連結部材40内に収容されている。この状態で、信号ケーブル28のシールド層28cの露出部28eの保持具24側の先端29bは、信号ケーブル28の外皮28dの保持具24側の先端29aよりも保持具24側にある。
 信号ケーブル28の外皮28dの保持具24側の先端29aは、連結部材40の保持具24の反対側の後端40jよりも保持具24側に位置している。この場合、信号ケーブル28の外皮28dは連結部材40の内部41dに収容されている。
 信号ケーブル28のシールド層28cの露出部28eと連結部材40とが、接続部材60により電気的に接続されている。この場合、後述のように保持具24及び連結部材40は導電体で構成されており、保持具24と、信号ケーブル28のシールド層28cの露出部28eと連結部材40とが、接続部材60により導通する。
The signal cable 28 is held by the connecting member 40 and housed within the connecting member 40. In this state, a tip 29b on the holder 24 side of an exposed portion 28e of a shield layer 28c of the signal cable 28 is located closer to the holder 24 than a tip 29a on the holder 24 side of an outer sheath 28d of the signal cable 28.
A tip 29a of the outer cover 28d of the signal cable 28 on the holder 24 side is located closer to the holder 24 than a rear end 40j of the connecting member 40 on the opposite side to the holder 24. In this case, the outer cover 28d of the signal cable 28 is housed in an interior 41d of the connecting member 40.
The exposed portion 28e of the shielding layer 28c of the signal cable 28 and the coupling member 40 are electrically connected by the connection member 60. In this case, the holder 24 and the coupling member 40 are made of a conductor as described below, and the holder 24, the exposed portion 28e of the shielding layer 28c of the signal cable 28, and the coupling member 40 are electrically connected by the connection member 60.
 内視鏡撮像装置20は、保持具24と撮像素子25との間の第1の電気抵抗よりも、保持具24と連結部材40との間の第2の電気抵抗の方が小さい。このため、静電気は、保持具24と撮像素子25との間よりも、電気抵抗の方が小さい保持具24と連結部材40との間を優先して流れる。これにより、撮像素子25に静電気が流れることが抑制されて、静電気から撮像素子25を保護できる。しかも、シールド層28cの露出部28eと連結部材40とを接続部材60により電気的に接続した簡単な構造で、上述の静電気からの撮像素子25の保護を実現できる。
 保持具24と撮像素子25との間の第1の電気抵抗、及び保持具24と連結部材40との間の第2の電気抵抗は、テスターを用いて測定する。
 具体的には、シールド層28cに、接続部材60が設けられているが、接続部材60については後に説明する。
In the endoscopic imaging device 20, the second electrical resistance between the holder 24 and the connecting member 40 is smaller than the first electrical resistance between the holder 24 and the imaging element 25. Therefore, static electricity flows preferentially between the holder 24 and the connecting member 40, which has a smaller electrical resistance, than between the holder 24 and the imaging element 25. This prevents static electricity from flowing to the imaging element 25, and the imaging element 25 can be protected from static electricity. Moreover, the above-mentioned protection of the imaging element 25 from static electricity can be achieved with a simple structure in which the exposed portion 28e of the shield layer 28c and the connecting member 40 are electrically connected by the connecting member 60.
The first electrical resistance between the holder 24 and the imaging element 25 and the second electrical resistance between the holder 24 and the connecting member 40 are measured using a tester.
Specifically, the shield layer 28c is provided with a connection member 60, which will be described later.
 プリズム27は、レンズ鏡胴22と撮像素子25との間に、カバーガラス31を介して配置される。プリズム27は、撮像素子25の受光面25aに撮像レンズ23を通過した光をガイドするものである。プリズム27は、レンズ鏡胴22に保持された撮像レンズ23を通過した光を、斜面27c、すなわち、反射面で、例えば、90°屈曲させて光路を変更し、撮像素子25の受光面25aに導く。撮像レンズ23を透過した透過光はプリズム27に入射し、プリズム27の斜面27c、すなわち、反射面で反射し、撮像素子25の受光面25aに入射される。
 例えば、プリズム27は、入射面27aをレンズ鏡胴22の基端側の面に対面して配置される。また、プリズム27は、出射面27bを撮像素子25の受光面25aに対面して配置される。この場合、プリズム27は、カバーガラス31上に出射面27bをカバーガラス31に対向して配置される。
 カバーガラス31は、撮像素子25の受光面25a上に配置され、受光面25aを保護するものである。プリズム27とカバーガラス31とは、例えば、光硬化型接着剤で接着される。なお、カバーガラス31がない構成でもよい。
 また、撮像素子25はプリズム27ではなく、保持具24に接着される構成でもよい。
The prism 27 is disposed between the lens barrel 22 and the image sensor 25 via a cover glass 31. The prism 27 guides light that has passed through the imaging lens 23 to the light receiving surface 25a of the image sensor 25. The prism 27 bends the light that has passed through the imaging lens 23 held in the lens barrel 22 by, for example, 90° at the inclined surface 27c, i.e., the reflecting surface, to change the optical path, and guides the light to the light receiving surface 25a of the image sensor 25. The transmitted light that has passed through the imaging lens 23 enters the prism 27, is reflected by the inclined surface 27c of the prism 27, i.e., the reflecting surface, and is incident on the light receiving surface 25a of the image sensor 25.
For example, the prism 27 is disposed so that the entrance surface 27a faces the surface on the base end side of the lens barrel 22. The prism 27 is also disposed so that the exit surface 27b faces the light receiving surface 25a of the image sensor 25. In this case, the prism 27 is disposed on the cover glass 31 so that the exit surface 27b faces the cover glass 31.
The cover glass 31 is disposed on the light receiving surface 25a of the image sensor 25 to protect the light receiving surface 25a. The prism 27 and the cover glass 31 are bonded together with, for example, a light curing adhesive. Note that the cover glass 31 may be omitted.
Furthermore, the imaging element 25 may be configured to be bonded to the holder 24 instead of to the prism 27 .
 保持具24は、レンズ鏡胴22とプリズム27とを保持する部材であり、導電体で構成されている。保持具24を構成する導電体は、例えば、金属又は合金である。
 保持具24は、略筒状の部材であり、筒部の内部にレンズ鏡胴22を嵌入されて、レンズ鏡胴22を保持する。保持具24の内面とレンズ鏡胴22の外周面とは接着固定される。
 保持具24とレンズ鏡胴22とを接着する接着剤としては、従来の内視鏡で用いられている種々の公知の接着剤を用いることができる。この点は、他の部材同士を接着する接着剤についても同様である。
The holder 24 is a member that holds the lens barrel 22 and the prism 27, and is made of a conductor. The conductor that constitutes the holder 24 is, for example, a metal or an alloy.
The holder 24 is a substantially cylindrical member, and the lens barrel 22 is fitted into the inside of the cylindrical portion to hold the lens barrel 22. The inner surface of the holder 24 and the outer peripheral surface of the lens barrel 22 are fixed by adhesive.
Various known adhesives used in conventional endoscopes can be used as the adhesive for bonding the holder 24 and the lens barrel 22. The same applies to adhesives for bonding other members together.
 保持具24は、取付筒部24aの基端側の端面に、多角形状のフランジ部24bを有する。フランジ部24bのY方向の両端に、それぞれ規制部材24dが設けられている。規制部材24dは、例えば、凸部状の部材である。規制部材24dは、例えば、外形が四角形である。後述のように規制部材24dに、連結部材40のアーム部40cが係合される。
 プリズム27は規制部材24dの間に配置され、規制部材24dに挟まれた状態でフランジ部24bに入射面27aが当接される。これにより、プリズム27はX方向の位置決めがなされる。保持具24は、レンズ鏡胴22及びプリズム27を所定の位置に保持することで、レンズ鏡胴22とプリズム27との相対位置、すなわち、レンズ鏡胴22と、撮像素子25の受光面25aとの相対位置を固定する。プリズム27の出射面27bと撮像素子25とが対向する。
 ここで、レンズ鏡胴22は、撮像レンズ23の光軸C方向における、保持具24に対する相対位置を、撮像素子25の受光面25aにピントが合うように調整されて、保持具24に接着固定される。光軸C方向とは撮像レンズ23の光軸Cの延在方向である。撮像レンズ23の光軸C方向はX方向と平行な方向である。
The holder 24 has a polygonal flange portion 24b on the end surface on the base end side of the mounting tube portion 24a. A restricting member 24d is provided on each of both ends of the flange portion 24b in the Y direction. The restricting member 24d is, for example, a convex member. The restricting member 24d has, for example, a rectangular outer shape. As described below, an arm portion 40c of the connecting member 40 is engaged with the restricting member 24d.
Prism 27 is disposed between regulating members 24d, and incident surface 27a abuts flange portion 24b while sandwiched between regulating members 24d. This positions prism 27 in the X direction. Holder 24 holds lens barrel 22 and prism 27 in predetermined positions, thereby fixing the relative positions of lens barrel 22 and prism 27, i.e., the relative position of lens barrel 22 and light receiving surface 25a of image sensor 25. Exit surface 27b of prism 27 faces image sensor 25.
Here, the lens barrel 22 is adhesively fixed to the holder 24 after the relative position with respect to the optical axis C direction of the imaging lens 23 is adjusted so that the focus is on the light receiving surface 25a of the imaging element 25. The optical axis C direction is the extension direction of the optical axis C of the imaging lens 23. The optical axis C direction of the imaging lens 23 is parallel to the X direction.
 連結部材40は、保持具24と信号ケーブル28とを連結するものであり、導電体で構成されている。連結部材40を構成する導電体は、例えば、金属又は合金である。
 連結部材40を構成する金属材料としては、特に限定はないが、熱伝導率が高い金属材料が好ましい。加工性、入手性、及び強度等を考慮すると、連結部材40としては、ステンレス鋼、及び銅合金が好ましい。電気抵抗を考慮すると、連結部材40としては、電気抵抗が小さい銅合金が好ましい。
The connecting member 40 connects the holder 24 and the signal cable 28, and is made of a conductor. The conductor constituting the connecting member 40 is, for example, a metal or an alloy.
Although there is no particular limitation on the metal material constituting the connecting member 40, a metal material having high thermal conductivity is preferable. Considering workability, availability, strength, etc., stainless steel and copper alloy are preferable for the connecting member 40. Considering electrical resistance, copper alloy with low electrical resistance is preferable for the connecting member 40.
 連結部材40は、内部41dで信号ケーブル28を保持して収容する。連結部材40は、例えば、図3に示すように、1つの板材を湾曲させて構成された部材である。具体的には、連結部材40は、1つの板材を光軸C方向に延在する、2か所の折曲げ部40k、40mで折り曲げた形状を有する。従って、連結部材40は、光軸C方向に垂直な断面が略C形状となる。 The connecting member 40 holds and houses the signal cable 28 in the interior 41d. The connecting member 40 is a member formed by bending a single plate material, for example, as shown in FIG. 3. Specifically, the connecting member 40 has a shape in which a single plate material is bent at two bending portions 40k, 40m that extend in the direction of the optical axis C. Therefore, the cross section of the connecting member 40 perpendicular to the direction of the optical axis C is approximately C-shaped.
 連結部材40は、例えば、図3に示すように、1つ板材を曲げて構成された、平板状の底部40aと、底部40aに連続した平板状の保持部40bを有する。連結部材40では、保持部40b側を後端41aとする。後端41aは、保持具24の反対側の端である。保持部40bの内側に信号ケーブル28が保持される。
 保持部40bにおいて開口を挟んで対向する、平板状の保持部40bに、それぞれアーム部40cが設けられている。連結部材40は、1対のアーム部40cを有する。アーム部40cは、後端41a側で保持部40bよりも外側に屈曲した後、直線状に伸びている。このため、1対のアーム部40cは、後端41aよりも先端41bの方が間隔が広く、この間隔は、図2に示す保持具24の規制部材24dに合わせて適宜決定される。また、それぞれのアーム部40cには、先端41bに開口部40dが設けられている。
 一方のアーム部40cの外側から他方のアーム部40cの外側迄のY方向の最大長さが、連結部材40の最大幅である。
3, the connecting member 40 has a flat bottom portion 40a formed by bending a single plate material, and a flat holding portion 40b continuous with the bottom portion 40a. The holding portion 40b side of the connecting member 40 is defined as a rear end 41a. The rear end 41a is the end opposite the holder 24. The signal cable 28 is held inside the holding portion 40b.
The flat plate-shaped holding portions 40b facing each other with an opening in between are each provided with an arm portion 40c. The connecting member 40 has a pair of arm portions 40c. The arm portion 40c is bent outward from the holding portion 40b at the rear end 41a side and then extends linearly. Therefore, the pair of arm portions 40c are spaced apart from each other at the front end 41b wider than at the rear end 41a, and this space is appropriately determined in accordance with the regulating member 24d of the holder 24 shown in FIG. 2. In addition, an opening 40d is provided at the front end 41b of each arm portion 40c.
The maximum length in the Y direction from the outside of one arm portion 40c to the outside of the other arm portion 40c is the maximum width of the connecting member 40.
 連結部材40は、保持具24の反対側の後端41aに、撮像レンズ23の光軸Cと直交する幅方向における長さ、すなわち、Y方向における長さが保持具24側の先端41bよりも短い幅狭部41cを有する。
 また、Y方向に対向する保持部40bは先端41b側の折曲げ部40kで屈曲して幅方向に広がってアーム部40cと接続されている。折曲げ部40kが保持部40bとアーム部40cとの接続部である。
 また、保持部40bは後端41a側の折曲げ部40mで屈曲しており、後端41a側に光軸Cに対して平行な面40pを有する。平行な面40pがY方向に対向している。対向する平行な面40pと、底部40aとで幅狭部41cが構成される。
 例えば、保持部40bに、底部40aからZ方向の途中まで達する窓部40nが設けられている。窓部40nは保持部40bを貫通した開口部である。窓部40nは、折曲げ部40mを含む範囲に設けられている。
The connecting member 40 has a narrow portion 41c at its rear end 41a opposite the holder 24, the length in the width direction perpendicular to the optical axis C of the imaging lens 23, i.e., the length in the Y direction, being shorter than the tip 41b on the holder 24 side.
The holding portions 40b facing each other in the Y direction are bent at a bent portion 40k on the tip end 41b side, expanded in the width direction, and connected to the arm portion 40c. The bent portion 40k is a connection portion between the holding portions 40b and the arm portion 40c.
The holding portion 40b is bent at a bent portion 40m on the rear end 41a side, and has a surface 40p on the rear end 41a side that is parallel to the optical axis C. The parallel surfaces 40p face each other in the Y direction. The opposing parallel surfaces 40p and the bottom 40a form a narrow width portion 41c.
For example, the holding portion 40b is provided with a window portion 40n that reaches halfway in the Z direction from the bottom portion 40a. The window portion 40n is an opening that penetrates the holding portion 40b. The window portion 40n is provided in a range that includes the bent portion 40m.
 連結部材40では、アーム部40cの開口部40dが、保持具24の規制部材24dと係合する。開口部40dは、例えば、アーム部40cの一部が四角形状に切り取られて構成されている。
 なお、開口部40dは、規制部材24dの外形状と大きさ及び形状が同じでもよい。ここで、上述の開口部40dの形状は、規制部材24dの外形状と大きさ及び形状が同じであるとは、該当技術分野で一般的に許容される誤差範囲を含む。このため、開口部40dと規制部材24dとは、いわゆる、すき間ばめ、中間ばめ、及びしまりばめのいずれの場合もある。
 なお、以下の説明においても、「大きさ及び形状が同じ」とは、上述のように該当技術分野で一般的に許容される誤差範囲が含まれる。
In the connecting member 40, an opening 40d of the arm portion 40c engages with the regulating member 24d of the holder 24. The opening 40d is formed, for example, by cutting out a part of the arm portion 40c in a rectangular shape.
The opening 40d may have the same size and shape as the outer shape of the restricting member 24d. Here, the above-mentioned shape of the opening 40d being the same size and shape as the outer shape of the restricting member 24d includes a generally acceptable error range in the relevant technical field. Therefore, the opening 40d and the restricting member 24d may have any of a so-called clearance fit, transition fit, and interference fit.
In the following description, "same size and shape" includes the error range generally accepted in the relevant technical field, as described above.
 また、それぞれのアーム部40cには、例えば、回路基板26の第2の平面部26cに平行な縁40eを有する。縁40eは、第2の平面部26cよりもZ方向において上側にあり、連結部材40で上側から回路基板26を覆った際、回路基板26の第2の平面部26cが露出する。
 また、それぞれのアーム部40cには、例えば、カバー部40fが設けられている。図6に示すように、互いのカバー部40fは、Y方向で接続されておらず、隙間40gがある。また、カバー部40fはX方向に部分的に設けられており、カバー部40fの先端41b側に開口部40hがある。また、カバー部40fは、回路基板26の第3の平面部26eの表面26i上に配置される部材である。カバー部40fに隙間40gと開口部40hがあることにより、第3の平面部26eの表面26iに配置された電子部品30との接触が回避される。
 連結部材40は、回路基板26の第3の平面部26e等の一部と、プリズム27及び信号ケーブル28の先端部を覆っており、回路基板26、プリズム27及び信号ケーブル28のカバー部材を兼ねている。さらには、連結部材40は、回路基板26、プリズム27及び信号ケーブル28の保護部材としても機能する。
 なお、連結部材40は、図3に示す構成に特に限定されるものではなく、カバー部40fがない構成でもよく、カバー部40fの隙間40gがより広いものでもよい。
Furthermore, each arm portion 40c has, for example, an edge 40e parallel to the second planar portion 26c of the circuit board 26. The edge 40e is located above the second planar portion 26c in the Z direction, and when the circuit board 26 is covered from above with the connecting member 40, the second planar portion 26c of the circuit board 26 is exposed.
Further, for example, a cover portion 40f is provided on each arm portion 40c. As shown in FIG. 6, the cover portions 40f are not connected to each other in the Y direction, and there is a gap 40g. The cover portion 40f is partially provided in the X direction, and there is an opening 40h on the tip 41b side of the cover portion 40f. The cover portion 40f is a member disposed on the surface 26i of the third flat portion 26e of the circuit board 26. The gap 40g and the opening 40h in the cover portion 40f prevent contact with the electronic component 30 disposed on the surface 26i of the third flat portion 26e.
The connecting member 40 covers a part of the third flat portion 26e of the circuit board 26, the prism 27, and the tip portion of the signal cable 28, and serves as a cover member for the circuit board 26, the prism 27, and the signal cable 28. Furthermore, the connecting member 40 also functions as a protective member for the circuit board 26, the prism 27, and the signal cable 28.
The connecting member 40 is not particularly limited to the configuration shown in FIG. 3, and may have a configuration without the cover portion 40f, or the gap 40g of the cover portion 40f may be wider.
 上述のように1対のアーム部40cの開口部40dと、保持具24の規制部材24dとを係合する係合部41を有する構成により、凸状の規制部材24dに開口部40dが嵌るため、内視鏡撮像装置20の光軸Cと直交するY方向における長さを短くすることができ、内視鏡撮像装置20のサイズの大型化を抑制することができる。しかも、保持具24と連結部材40との強固な固定を実現することができる。
 なお、アーム部40cの厚みを、規制部材24dの高さと合わせることにより、1対のアーム部40cの開口部40dが、それぞれ保持具24の規制部材24dと係合した場合、内視鏡撮像装置20の光軸Cと直交するY方向における長さをより短くすることができ、この構成により、内視鏡撮像装置20をより小型化できる。
As described above, the configuration has the openings 40d of the pair of arms 40c and the engaging portions 41 that engage with the restricting member 24d of the holder 24, so that the openings 40d fit into the convex restricting member 24d, thereby shortening the length of the endoscopic image pickup device 20 in the Y direction perpendicular to the optical axis C, thereby preventing the size of the endoscopic image pickup device 20 from becoming large. Moreover, the holder 24 and the connecting member 40 can be firmly fixed to each other.
Furthermore, by matching the thickness of the arm portions 40c with the height of the regulating members 24d, when the openings 40d of a pair of arm portions 40c each engage with the regulating members 24d of the holder 24, the length of the endoscopic imaging device 20 in the Y direction perpendicular to the optical axis C can be made shorter, and this configuration allows the endoscopic imaging device 20 to be made smaller.
 連結部材40において、1対のアーム部40cは、アーム部40cの後端41aよりも先端41bの方が互いに近づくように曲げられていることが好ましい。すなわち、1対のアーム部40cは閉じる方向に曲げられていることが好ましい。これにより、アーム部40cを一度広げることにより、アーム部40cの開口部40dを保持具24の規制部材24dに嵌めることができ、容易に組み立てることができる。
 上述のように1対のアーム部40cは、アーム部40cの後端41aよりも先端41bの方が互いに近づくように曲げられていることが好ましいが、これは組み立て前の部品の状態であってもよい。
 また、アーム部40cに、貫通する開口部40dを設けたが、これに限定されるものではなく、貫通せずに、凹みだけで底がある凹部でもよい。
 連結部材40は、保持部40bの内側に信号ケーブル28が取付けられて保持される。なお、信号ケーブル28の取付け方法は、内視鏡の使用時に、信号ケーブル28が保持部40bから外れること、及び信号線28aが外れること等がなければ、特に限定されるものではなく、例えば、後述のように接着剤を用いて連結部材40に取付けられる。
In the connecting member 40, the pair of arm portions 40c are preferably bent so that the front ends 41b of the arm portions 40c are closer to each other than the rear ends 41a of the arm portions 40c. In other words, the pair of arm portions 40c are preferably bent in a closing direction. This allows the openings 40d of the arm portions 40c to be fitted into the restricting member 24d of the holder 24 by spreading the arm portions 40c once, making assembly easy.
As described above, the pair of arm portions 40c are preferably bent so that the front ends 41b of the arm portions 40c are closer to each other than the rear ends 41a of the arm portions 40c, but this may be the case in the state of the components before assembly.
Furthermore, the arm portion 40c is provided with the opening 40d which penetrates the arm portion 40c, but the present invention is not limited to this. The arm portion 40c may be a recessed portion having a bottom without penetrating the arm portion 40c.
The signal cable 28 is attached to the inside of the holding portion 40b and held in the connecting member 40. The method of attaching the signal cable 28 is not particularly limited as long as the signal cable 28 does not come off the holding portion 40b and the signal line 28a does not come off when the endoscope is in use, and for example, the signal cable 28 can be attached to the connecting member 40 using an adhesive as described below.
 なお、保持具24において、2つの規制部材24dは、上述のように大きさ及び形状が同じ、すなわち、合同であるが、大きさ及び形状が異なってもよい。
 また、保持具24において、規制部材24d(凸部)の形状は、上述の四角形に、特に限定されるものではなく、円、楕円、又は三角形、五角形若しくは六角形等の多角形でもよく、これらの形状が組合せてできた形状でもよい。さらには、1つの形状だけではなく、同じ形状のものが複数配置されたものでもよく特定のパターンでもよい。
 係合部41では、1つの凸部と1つの凹部とが1つの部位で係合するが、係合する部位が1つに限定されるものではなく、1つの凸部に複数の係合する部位を有する構成でもよい。
In the holder 24, the two regulating members 24d have the same size and shape, i.e., are congruent, as described above, but may have different sizes and shapes.
In addition, the shape of the restricting member 24d (protruding portion) in the holder 24 is not particularly limited to the above-mentioned quadrangle, but may be a circle, an ellipse, or a polygon such as a triangle, a pentagon, or a hexagon, or may be a shape formed by combining these shapes. Furthermore, instead of one shape, a plurality of the same shapes may be arranged, or a specific pattern may be used.
In the engagement portion 41, one convex portion and one concave portion engage at one location, but the engagement portion is not limited to one, and a configuration in which one convex portion has multiple engagement portions is also possible.
 なお、保持具24の凸部の大きさは、例えば、プリズム27の側面27dの少なくとも一部を覆う大きさであることが好ましい。凸部の大きさを、プリズム27の側面27dの少なくとも一部を覆う大きさにすることにより、プリズム27をより安定して挟持して固定することができ、安定した位置規制ができる。また、組み立て時において保持具に対してプリズムのY方向の位置決めに利用することができる。
 保持具24の凸部の大きさの上限としては、プリズム27の側面27dを全て覆う大きさとすることができる。
 さらには、保持具24において、2つの規制部材24dを対向して設けることにより、アーム部40cにより、プリズム27及び回路基板26が囲まれる。これにより、保持具24と連結部材40との係合が安定し、かつプリズム27及び回路基板26を保護することもできる。
 保持具24において、2つの規制部材24dを設ける構成としたが、大型化をしない限り、これに限定されるものではなく、凸部を3つ以上設けてもよい。すなわち、係合部の数は、3以上とすることもできる。
The size of the convex portion of the holder 24 is preferably, for example, large enough to cover at least a part of the side surface 27d of the prism 27. By making the size of the convex portion large enough to cover at least a part of the side surface 27d of the prism 27, the prism 27 can be more stably clamped and fixed, and stable position regulation can be achieved. In addition, it can be used to position the prism in the Y direction with respect to the holder during assembly.
The upper limit of the size of the convex portion of the holder 24 can be set to a size that completely covers the side surface 27 d of the prism 27 .
Furthermore, by providing two restricting members 24d facing each other in the holder 24, the arm portion 40c surrounds the prism 27 and the circuit board 26. This stabilizes the engagement between the holder 24 and the connecting member 40, and also protects the prism 27 and the circuit board 26.
In the above embodiment, the holder 24 is configured to have two restricting members 24d, but the present invention is not limited to this, and three or more protrusions may be provided as long as the size is not increased. In other words, the number of engagement portions may be three or more.
 連結部材40は、保持具24及び信号ケーブル28をそれぞれに接続されることにより、信号ケーブル28が引っ張られた際等に、回路基板26上の接続端子と、信号ケーブル28の信号線28aとの接続箇所が引っ張られて、接続端子と信号線28aとの接続が断線することを防止する。 The connecting member 40 connects the holder 24 and the signal cable 28, respectively, and prevents the connection between the connection terminal on the circuit board 26 and the signal line 28a of the signal cable 28 from being pulled when the signal cable 28 is pulled, resulting in a disconnection between the connection terminal and the signal line 28a.
 連結部材40のアーム部40cと保持具24の規制部材24d、並びに連結部材40の保持部40bと信号ケーブル28の外皮28dとは、例えば、接着剤を用いて接着固定される。この場合、例えば、連結部材40の内部41dに接着剤を充填して、連結部材40と回路基板26と信号ケーブル28とを接着固定する。接着固定されている場合、接着剤は硬化状態である。接着剤に、例えば、エポキシ樹脂系接着剤、シリコーン系接着剤、又はアクリル系接着剤を用いることができる。
 連結部材40に上述の窓部40nを設けることにより、窓部40nの内周に接着剤が付着するため、上述の接着固定を、より強固にできる。
The arm portion 40c of the connecting member 40 and the regulating member 24d of the holder 24, as well as the holding portion 40b of the connecting member 40 and the outer cover 28d of the signal cable 28, are bonded and fixed using, for example, an adhesive. In this case, for example, the interior 41d of the connecting member 40 is filled with adhesive to bond and fix the connecting member 40, the circuit board 26, and the signal cable 28. When bonded and fixed, the adhesive is in a hardened state. For example, an epoxy resin adhesive, a silicone adhesive, or an acrylic adhesive can be used as the adhesive.
By providing the above-mentioned window portion 40n in the connecting member 40, the adhesive adheres to the inner periphery of the window portion 40n, so that the above-mentioned adhesive fixation can be made stronger.
 また、信号ケーブル28の外皮28dに固定部材35を設けてもよい。固定部材35は、信号ケーブル28の外皮28dに設けられ、締め付けて外皮28dを信号ケーブル28の信号線28aに固定するものである。固定部材35は、例えば、円環状の部材である。固定部材35として、円環状の部材を信号ケーブル28の外皮28dに通した後、円環状の部材を周囲から圧縮して、かしめることにより固定部材35を締め付けて、信号ケーブル28の外皮28dに固定する。
 固定部材35は、信号ケーブル28の外皮28dに固定することができれば、円環状に限定されるものではなく、環状であればよく、多角形の環状の部材でもよい。固定部材35は、例えば、金属又は合金で構成される。
Furthermore, a fixing member 35 may be provided on the outer sheath 28d of the signal cable 28. The fixing member 35 is provided on the outer sheath 28d of the signal cable 28 and is tightened to fix the outer sheath 28d to the signal line 28a of the signal cable 28. The fixing member 35 is, for example, an annular member. After a circular member as the fixing member 35 is passed through the outer sheath 28d of the signal cable 28, the circular member is compressed from the periphery and crimped to tighten the fixing member 35 and fix it to the outer sheath 28d of the signal cable 28.
The fixing member 35 is not limited to a circular shape, and may be a polygonal ring-shaped member as long as it can be fixed to the outer cover 28d of the signal cable 28. The fixing member 35 is made of, for example, a metal or an alloy.
 また、内視鏡撮像装置20に使用している信号ケーブル28は、上述のように、複数の信号線28aを外皮28dで束ねた構造をしており、信号線28aは破損しやすいため、外皮28d又は連結部材40により保護が必要である。連結部材40は、上述のように金属等で形成されており、連結部材40の後端40jは剛性の変化が急激であり、信号ケーブル28への負荷が大きく集中する。このため、内視鏡の湾曲動作又は他の内容物との摺動により外皮28dがずれて信号線28aが連結部材40外に露出すると、連結部材40の後端40j近傍において信号線28aの破損が発生する。
 しかしながら、信号ケーブル28の外皮28dを固定部材35で固定することにより、信号ケーブル28の外皮28dの固定強度を高くできる。信号ケーブル28を、連結部材40に対してオーバーラップさせて固定した場合、信号ケーブル28の外皮28dの接着面積が減るが、この減った分を固定部材35の固定強度で補填できる。これにより、信号ケーブル28の接合強度が高く、信号ケーブル28の接合の信頼性を高くできる。
 なお、窓部40nは、固定部材35の少なくとも一部を臨む位置に設けることがより好ましい。すなわち、固定部材35の少なくとも一部が連結部材40の外部から見える位置に窓部40nを設けることがより好ましい。これにより、連結部材40の内部41dに接着剤を充填して、連結部材40と回路基板26と信号ケーブル28とを接着固定する場合、更に一層、強固に接着固定できる。
Furthermore, as described above, the signal cable 28 used in the endoscopic imaging device 20 has a structure in which multiple signal lines 28a are bundled with an outer cover 28d, and since the signal lines 28a are easily damaged, they need to be protected by the outer cover 28d or the connecting member 40. As described above, the connecting member 40 is made of metal or the like, and the rigidity of the connecting member 40 changes abruptly at its rear end 40j, causing a large load to be concentrated on the signal cable 28. For this reason, when the outer cover 28d is displaced due to bending of the endoscope or sliding against other contents, and the signal lines 28a are exposed outside the connecting member 40, the signal lines 28a are damaged near the rear end 40j of the connecting member 40.
However, by fixing the outer sheath 28d of the signal cable 28 with the fixing member 35, the fixing strength of the outer sheath 28d of the signal cable 28 can be increased. When the signal cable 28 is fixed to the connecting member 40 by overlapping it, the adhesion area of the outer sheath 28d of the signal cable 28 is reduced, but this reduction can be compensated for by the fixing strength of the fixing member 35. This increases the joint strength of the signal cable 28, and increases the reliability of the joint of the signal cable 28.
It is more preferable that the window portion 40n is provided at a position facing at least a part of the fixing member 35. In other words, it is more preferable that the window portion 40n is provided at a position where at least a part of the fixing member 35 is visible from the outside of the connecting member 40. This allows the connecting member 40, the circuit board 26, and the signal cable 28 to be bonded and fixed even more firmly when the interior 41d of the connecting member 40 is filled with adhesive to bond and fix the connecting member 40, the circuit board 26, and the signal cable 28 together.
 内視鏡撮像装置20において、撮像レンズ23から撮像素子25に取り込まれた観察像は、撮像素子25の受光面25aに結像されて電気信号に変換され、この電気信号が信号ケーブル28を介してプロセッサ装置16(図1参照)に出力され、映像信号に変換され、プロセッサ装置16に接続されたモニタに観察画像が表示される。 In the endoscopic imaging device 20, the observation image captured by the imaging element 25 through the imaging lens 23 is focused on the light receiving surface 25a of the imaging element 25 and converted into an electrical signal, which is output to the processor unit 16 (see Figure 1) via the signal cable 28, converted into a video signal, and the observation image is displayed on a monitor connected to the processor unit 16.
 内視鏡撮像装置20では、図5に示すように、プリズム27の斜面27cは第2の屈曲部26dに対向している。撮像素子25の受光面25aに対して垂直な方向、図5ではZ方向から見た際に、プリズム27の斜面27cに、回路基板26の第2の屈曲部26dの少なくとも一部が重なることが好ましい。これにより、プリズム27の斜面27c側のスペースに、第2の屈曲部26dが入り込む形態となり、プリズム27の斜面27c側のスペースを有効利用して、内視鏡撮像装置20の光軸C方向の長さを短くでき、内視鏡撮像装置20を光軸C方向において小型化できる。 In the endoscopic imaging device 20, as shown in FIG. 5, the inclined surface 27c of the prism 27 faces the second bent portion 26d. When viewed in a direction perpendicular to the light receiving surface 25a of the imaging element 25, that is, from the Z direction in FIG. 5, it is preferable that at least a portion of the second bent portion 26d of the circuit board 26 overlaps with the inclined surface 27c of the prism 27. This results in a configuration in which the second bent portion 26d fits into the space on the inclined surface 27c side of the prism 27, and by effectively utilizing the space on the inclined surface 27c side of the prism 27, the length of the endoscopic imaging device 20 in the optical axis C direction can be shortened, and the endoscopic imaging device 20 can be made smaller in size in the optical axis C direction.
 内視鏡撮像装置20では、プリズム27の斜面27cの一部と回路基板26の第2の屈曲部26dの一部とが光硬化型接着剤(図示せず)で連結され、第1の屈曲部26bの一部及び/又は第2の平面部26cの一部と、信号ケーブル28の一部及び/又は第3の平面部26eとが、光硬化型接着剤(図示せず)で連結されていることが好ましい。これにより、回路基板26の形状を維持でき、内視鏡撮像装置20の製造時間を短縮できる。
 光硬化型接着剤は、例えば、波長100nm~400nm程度の紫外光、波長400nm超780nm未満程度の可視光、又は波長780nm~1mm程度の赤外光等により硬化する接着剤である。光硬化型接着剤は、例えば、エポキシ樹脂系光硬化型接着剤、アクリル樹脂系光硬化型接着剤、又はシリコーン系光硬化型接着剤である。また、光硬化と熱硬化が併用される接着剤でもよい。この光硬化型接着剤は、上述のプリズム27とカバーガラス31との接着にも利用できる。
In the endoscopic imaging device 20, it is preferable that a part of the inclined surface 27c of the prism 27 and a part of the second bent portion 26d of the circuit board 26 are connected with a light-curing adhesive (not shown), and a part of the first bent portion 26b and/or a part of the second flat portion 26c are connected with a part of the signal cable 28 and/or a part of the third flat portion 26e with a light-curing adhesive (not shown). This makes it possible to maintain the shape of the circuit board 26 and shorten the manufacturing time of the endoscopic imaging device 20.
The photocurable adhesive is, for example, an adhesive that is cured by ultraviolet light with a wavelength of about 100 nm to 400 nm, visible light with a wavelength of more than 400 nm and less than 780 nm, or infrared light with a wavelength of about 780 nm to 1 mm. The photocurable adhesive is, for example, an epoxy resin-based photocurable adhesive, an acrylic resin-based photocurable adhesive, or a silicone-based photocurable adhesive. An adhesive that uses both photocuring and heat curing may also be used. This photocurable adhesive can also be used to bond the prism 27 and the cover glass 31 described above.
 ここで、図8は本発明の実施形態の内視鏡撮像装置に用いられる信号ケーブルの一例を示す模式的斜視図である。図8は、接続部材60が設けられた信号ケーブル28の一例を示している。図8では導電線61とシールド層28cの露出部28eとを連結する半田の図示を省略している。
 上述の接続部材60は、例えば、導電線61を有する。導電線61は、例えば、シールド層28cの露出部28eの外周面に少なくとも1周巻回されている。シールド層28cの露出部28eに巻回された導電線61は、シールド層28cに半田(図示せず)により連結されている。これにより、接続部材60とシールド層28cの露出部28eとが電気的に接続される。導電線61は、線状以外に帯状であってもよい。
 導電線61が、少なくとも1周巻回されていれば、接続部材60とシールド層28cとの電気的な接続を確保できる。このため、導電線61の巻数は、少なくとも1巻であれば、特に限定されるものではない。導電線61の巻数は、導電線61の線径、及び露出部28eの光軸方向の長さ等により適宜決定される。例えば、図5に示すように、シールド層28cの露出部28eの外周の全域に導電線61が巻回されている。
 シールド層28cの露出部28eに巻回された導電線61は、シールド層28cに、半田(図示せず)により連結されている。これにより、シールド層28cの割れを抑制できる。
 導電線61は、例えば、金属又は合金で構成され、より具体的には、銅、銅合金、アルミニウム又はアルミニウム合金で構成される。電気抵抗が小さく、加工性が優れている点から、導電線61は銅で構成することが好ましい。
Here, Fig. 8 is a schematic perspective view showing an example of a signal cable used in the endoscopic imaging device according to the embodiment of the present invention. Fig. 8 shows an example of a signal cable 28 provided with a connection member 60. In Fig. 8, the solder connecting the conductive wire 61 and the exposed portion 28e of the shield layer 28c is omitted.
The above-mentioned connection member 60 has, for example, a conductive wire 61. For example, the conductive wire 61 is wound at least once around the outer circumferential surface of the exposed portion 28e of the shield layer 28c. The conductive wire 61 wound around the exposed portion 28e of the shield layer 28c is connected to the shield layer 28c by solder (not shown). This electrically connects the connection member 60 and the exposed portion 28e of the shield layer 28c. The conductive wire 61 may be in a strip shape other than a line shape.
As long as the conductive wire 61 is wound at least once, electrical connection between the connection member 60 and the shield layer 28c can be ensured. Therefore, the number of turns of the conductive wire 61 is not particularly limited as long as it is at least one turn. The number of turns of the conductive wire 61 is appropriately determined depending on the wire diameter of the conductive wire 61, the length of the exposed portion 28e in the optical axis direction, and the like. For example, as shown in Fig. 5, the conductive wire 61 is wound around the entire outer periphery of the exposed portion 28e of the shield layer 28c.
The conductive wire 61 wound around the exposed portion 28e of the shield layer 28c is connected to the shield layer 28c by solder (not shown), thereby making it possible to prevent the shield layer 28c from cracking.
The conductive wire 61 is made of, for example, a metal or an alloy, more specifically, copper, a copper alloy, aluminum, or an aluminum alloy. The conductive wire 61 is preferably made of copper because of its low electrical resistance and excellent workability.
 接続部材60は、図6及び図8に示すように、信号ケーブル28の外皮28dに沿って配置された延在部61aを有する。例えば、延在部61aは、光軸方向に延在している。
 延在部61aに連続して設けられ、連結部材40の内部41dから後端40jを回り込んで連結部材40の外部に導電線61を導出する湾曲部61bを有する。この湾曲部61bに連続して設けられ、連結部材40の保持部40bの外側を、保持部40bに沿って配置された接続部61cを有する。例えば、接続部61cは、光軸方向に延在している。例えば、延在部61aと接続部61cとは平行である。なお、接続部材60の構成は、図6及び図8に示すものに限定されるものではない。
6 and 8, the connection member 60 has an extension portion 61a disposed along the outer cover 28d of the signal cable 28. For example, the extension portion 61a extends in the optical axis direction.
The connecting member 60 has a curved portion 61b that is provided continuously with the extending portion 61a and that leads the conductive wire 61 from the inside 41d of the connecting member 40 around the rear end 40j to the outside of the connecting member 40. The connecting portion 61c is provided continuously with the curved portion 61b and is disposed along the outside of the holding portion 40b of the connecting member 40. For example, the connecting portion 61c extends in the optical axis direction. For example, the extending portion 61a and the connecting portion 61c are parallel to each other. The configuration of the connecting member 60 is not limited to those shown in FIGS. 6 and 8.
 図7に示すように、接続部材60の接続部61cが保持部40bの外側で、保持部40bと、例えば、半田64を用いて接合されている。このようにして接続部材60は連結部材40の外側で、接続部材60と接合されている。連結部材40、半田64、及び接続部材60はいずれも導電性を有している。これにより、シールド層28cの露出部28eと連結部材40とが、接続部材60により電気的に接続される。
 接続部材60は連結部材40の外側で接続部材60と接合することにより、例えば、半田を用いて接合する場合、半田付作業自体及びフラックス除去作業を容易にでき、接合作業性が向上する。
 また、接続部材60が接合される幅狭部41cは、図6に示すように連結部材40のアーム部40cよりも光軸C側にあり、アーム部40cに対して光軸C側に下がっている。幅狭部41cを構成する保持部40bの外側に接続部材60を接合しても、Y方向において接続部材60はアーム部40cよりも光軸C側にある。このことから、接続部材60を幅狭部41cに接合することにより、内視鏡撮像装置20のスペースを有効活用できる。
7, the connection portion 61c of the connection member 60 is joined to the holding portion 40b on the outside of the holding portion 40b using, for example, solder 64. In this manner, the connection member 60 is joined to the connection member 60 on the outside of the linking member 40. The linking member 40, the solder 64, and the connection member 60 are all conductive. As a result, the exposed portion 28e of the shield layer 28c and the linking member 40 are electrically connected by the connection member 60.
By joining the connection member 60 to the connecting member 60 on the outside of the linking member 40, for example, when joining using solder, the soldering work itself and the flux removal work can be facilitated, improving the efficiency of joining work.
6, the narrow portion 41c to which the connecting member 60 is joined is closer to the optical axis C than the arm portion 40c of the linking member 40, and is lowered toward the optical axis C with respect to the arm portion 40c. Even if the connecting member 60 is joined to the outside of the holding portion 40b that constitutes the narrow portion 41c, the connecting member 60 is closer to the optical axis C than the arm portion 40c in the Y direction. For this reason, by joining the connecting member 60 to the narrow portion 41c, the space of the endoscopic imaging device 20 can be effectively utilized.
 また、図5に示すように、導電線61が巻回されたシールド層28cと端子部63とは、半田65により電気的に接続されており、かつ固定されている。このように半田65をシールド層28cと回路基板26とで挟むことにより、片方を半田しているときに片方が外れることがなくなる。シールド層28cと回路基板26との半田作業性が向上する。 Also, as shown in FIG. 5, the shield layer 28c around which the conductive wire 61 is wound and the terminal portion 63 are electrically connected and fixed by solder 65. By sandwiching the solder 65 between the shield layer 28c and the circuit board 26 in this way, one side will not come off while the other is being soldered. This improves the ease of soldering between the shield layer 28c and the circuit board 26.
 また、例えば、内視鏡撮像装置20は、保持具24又はレンズ鏡胴22を固定する先端本体50(図4参照)を有する。より具体的には、図4に示すように先端本体50に、光軸方向に貫通する貫通孔50bが設けられている。貫通孔50bにレンズ鏡胴22が挿入されて固定されている。先端本体50は、例えば、樹脂、金属又は合金で構成される。
 先端本体50の表面50aは、上述のように内視鏡12の先端部12aの先端面12bである。
 ここで、上述のように内視鏡撮像装置20は、シールド層28cの露出部28eと連結部材40とが接続部材60により電気的に接続されており、保持具24と撮像素子25との間の第1の電気抵抗よりも、保持具24と連結部材40との間の第2の電気抵抗の方が小さい。このため、先端本体50に静電気等に起因する電流が流れた場合、先端本体50から保持具24を経て撮像素子25に電流が流れるよりも、先端本体50から保持具24を経て、連結部材40、接続部材60、及び信号ケーブル28のシールド層28cに至る電気抵抗が小さい経路を優先して電流が流れる。このように先端本体50に流れる電流が、撮像素子25に流れることが抑制され、静電気から撮像素子25を保護できる。
 なお、図4では、先端本体50はレンズ鏡胴22を固定する構成であるが、これに限定されるものでなく、例えば、先端本体50は保持具24を固定する構成でもよい。
Furthermore, for example, the endoscopic imaging device 20 has a tip body 50 (see FIG. 4) that fixes the holder 24 or the lens barrel 22. More specifically, as shown in FIG. 4, the tip body 50 is provided with a through hole 50b that penetrates in the optical axis direction. The lens barrel 22 is inserted and fixed in the through hole 50b. The tip body 50 is made of, for example, resin, metal, or alloy.
The surface 50a of the tip body 50 is the tip surface 12b of the tip portion 12a of the endoscope 12 as described above.
Here, as described above, in the endoscopic imaging device 20, the exposed portion 28e of the shield layer 28c and the connecting member 40 are electrically connected by the connecting member 60, and the second electrical resistance between the holder 24 and the connecting member 40 is smaller than the first electrical resistance between the holder 24 and the imaging element 25. For this reason, when a current caused by static electricity flows through the tip body 50, the current flows preferentially through a path with a lower electrical resistance from the tip body 50 through the holder 24 to the connecting member 40, the connecting member 60, and the shield layer 28c of the signal cable 28, rather than flowing from the tip body 50 through the holder 24 to the imaging element 25. In this way, the current flowing through the tip body 50 is suppressed from flowing to the imaging element 25, and the imaging element 25 can be protected from static electricity.
In FIG. 4, the tip body 50 is configured to fix the lens barrel 22, but this is not limited thereto. For example, the tip body 50 may be configured to fix the holder 24.
 また、内視鏡撮像装置20は、撮像レンズ23をレンズ鏡胴22で保持する構成としたが、これに限定されるものでない。例えば、保持具24は、撮像レンズ23を直接保持するものでもよい。
 内視鏡撮像装置20では、回路基板26の第1の平面部26aの裏面にセラミックス板を設けてもよい。
In addition, the endoscopic imaging device 20 is configured such that the imaging lens 23 is held by the lens barrel 22, but the present invention is not limited to this. For example, the holder 24 may directly hold the imaging lens 23.
In the endoscopic imaging device 20, a ceramic plate may be provided on the rear surface of the first planar portion 26a of the circuit board 26.
 内視鏡撮像装置20は、撮像素子25の受光面25aを光軸Cに対して平行に配置する構成としたが、信号ケーブル28のシールド層28cの露出部28eと連結部材40とを接続部材60により電気的に接続した構成であれば、これに限定されるものでない。例えば、撮像素子25の受光面25aを光軸Cに対して垂直に配置してもよい。この場合、撮像素子25の受光面25a上にカバーガラス31を配置してもよく、しなくてもよい。 The endoscopic imaging device 20 is configured so that the light receiving surface 25a of the imaging element 25 is arranged parallel to the optical axis C, but this is not limited to the configuration as long as the exposed portion 28e of the shield layer 28c of the signal cable 28 and the connecting member 40 are electrically connected by the connecting member 60. For example, the light receiving surface 25a of the imaging element 25 may be arranged perpendicular to the optical axis C. In this case, a cover glass 31 may or may not be placed on the light receiving surface 25a of the imaging element 25.
 〔内視鏡システムの他の例〕
 図9は本発明の実施形態の内視鏡システムの他の例を示す模式図である。なお、図9において、図1に示す内視鏡システム10と同一構成物には、同一符号を付して、その詳細な説明は省略する。図9に示す内視鏡システム10aは、超音波内視鏡13を有する構成である。
 内視鏡システム10aは、超音波内視鏡13と、超音波用プロセッサ装置70と、内視鏡用プロセッサ装置71と、光源装置72と、モニタ73とを備える。また、内視鏡システム10aは、洗浄水等を貯留する送水タンク74と、被検体内、例えば、体腔内の吸引物を吸引する吸引ポンプ75とを備える。
[Another Example of an Endoscope System]
Fig. 9 is a schematic diagram showing another example of an endoscope system according to an embodiment of the present invention. In Fig. 9, the same components as those in the endoscope system 10 shown in Fig. 1 are denoted by the same reference numerals, and detailed description thereof will be omitted. The endoscope system 10a shown in Fig. 9 has an ultrasonic endoscope 13.
The endoscope system 10a includes an ultrasonic endoscope 13, an ultrasonic processor 70, an endoscope processor 71, a light source 72, and a monitor 73. The endoscope system 10a also includes a water tank 74 for storing cleaning water or the like, and a suction pump 75 for suctioning an aspirate from within the subject, for example, within a body cavity.
 超音波内視鏡13は、被検体内、例えば、体腔内に挿入される挿入部76と、挿入部76の基端部に連設され、術者が操作を行うための操作部77と、操作部77に一端が接続されたユニバーサルコード78とを有する。挿入部76の先端部76aの先端面76bは、図1に示す内視鏡12の先端部12aの先端面12bに相当する。上述のように先端部12aの先端面12bは、内視鏡撮像装置20(図4参照)の先端本体50(図4参照)の表面50a(図4参照)である。 The ultrasonic endoscope 13 has an insertion section 76 that is inserted into the subject, for example, into a body cavity, an operation section 77 that is connected to the base end of the insertion section 76 and allows the surgeon to operate it, and a universal cord 78 one end of which is connected to the operation section 77. The tip surface 76b of the tip section 76a of the insertion section 76 corresponds to the tip surface 12b of the tip section 12a of the endoscope 12 shown in FIG. 1. As described above, the tip surface 12b of the tip section 12a is the surface 50a (see FIG. 4) of the tip body 50 (see FIG. 4) of the endoscopic imaging device 20 (see FIG. 4).
 操作部77には、送水タンク74からの送気送水管路(図示せず)を開閉する送気送水ボタン79aと、吸引ポンプ75からの吸引管路(図示せず)を開閉する吸引ボタン79bとが並設されている。また、操作部77には、一対のアングルノブ79cと処置具挿入口79dとが設けられている。 The operation unit 77 is provided with an air/water supply button 79a for opening and closing the air/water supply line (not shown) from the water supply tank 74, and a suction button 79b for opening and closing the suction line (not shown) from the suction pump 75. The operation unit 77 is also provided with a pair of angle knobs 79c and a treatment tool insertion port 79d.
 ユニバーサルコード78の他端部には、超音波用プロセッサ装置70に接続されるコネクタ80aと、内視鏡用プロセッサ装置71に接続されるコネクタ80bと、光源装置72に接続されるコネクタ80cとが設けられている。超音波内視鏡13は、これらのコネクタ80a、80b及び80cを介して超音波用プロセッサ装置70、内視鏡用プロセッサ装置71及び光源装置72に着脱自在に接続されている。また、コネクタ80cは、送水タンク74に接続される送気送水用チューブ81と、吸引ポンプ75に接続される吸引用チューブ82とを有する。 The other end of the universal cord 78 is provided with a connector 80a connected to the ultrasonic processor 70, a connector 80b connected to the endoscope processor 71, and a connector 80c connected to the light source 72. The ultrasonic endoscope 13 is detachably connected to the ultrasonic processor 70, the endoscope processor 71, and the light source 72 via these connectors 80a, 80b, and 80c. The connector 80c also has an air/water supply tube 81 connected to the water supply tank 74, and a suction tube 82 connected to the suction pump 75.
 挿入部76は、先端側から順に、内視鏡観察部83と超音波トランスデューサ84とを有する先端硬質部85と、先端硬質部85の基端側に連結された湾曲部86と、湾曲部86の基端側と操作部77の先端側との間を連結する軟性部87とを有する。先端硬質部85、湾曲部86及び軟性部87は、長尺状の挿入部76の長手軸Aに沿って配置されている。湾曲部86は、複数の湾曲駒97(図10参照)が連結されており、湾曲自在に構成されている。軟性部87は、細長であり、かつ長尺で可撓性を有する。 The insertion section 76 has, in order from the tip side, a tip hard section 85 having an endoscopic observation section 83 and an ultrasonic transducer 84, a bending section 86 connected to the base end side of the tip hard section 85, and a soft section 87 connecting the base end side of the bending section 86 and the tip side of the operation section 77. The tip hard section 85, bending section 86 and soft section 87 are arranged along the longitudinal axis A of the elongated insertion section 76. The bending section 86 is connected to multiple bending pieces 97 (see Figure 10) and is configured to be freely bendable. The soft section 87 is elongated, long and flexible.
 湾曲部86は、操作部77に設けられた一対のアングルノブ79cを回動操作することにより遠隔的に湾曲操作される。これによって、先端硬質部85を所望の方向に向けることができる。なお、後述の図10には、湾曲部86を構成する複数の湾曲駒97と、複数本、図10では2本の湾曲操作ワイヤ98とが示されている。これらの湾曲操作ワイヤ98は、先端側が湾曲駒97に連結され、基端側が一対のアングルノブ79cに連結されている。 The bending portion 86 is remotely bent by rotating a pair of angle knobs 79c provided on the operation portion 77. This allows the tip rigid portion 85 to be oriented in the desired direction. Note that Figure 10, which will be described later, shows multiple bending pieces 97 that make up the bending portion 86, and multiple bending operation wires 98 (two in Figure 10). The tip ends of these bending operation wires 98 are connected to the bending pieces 97, and the base ends are connected to the pair of angle knobs 79c.
 図9に示す超音波用プロセッサ装置70は、超音波トランスデューサ84を構成する複数の超音波振動子92(図10参照)に超音波を発生させるための超音波信号を生成して、超音波信号を超音波振動子92(図10参照)に供給する。超音波は、複数の超音波振動子92から観察対象部位に向けて放射される。超音波用プロセッサ装置70は、観察対象部位から反射されたエコー信号(反射波)を超音波振動子92で受信して取得し、取得したエコー信号に対して各種の信号処理を施して超音波画像を生成する。生成された超音波画像がモニタ73に表示される。 The ultrasonic processor device 70 shown in FIG. 9 generates ultrasonic signals for generating ultrasonic waves in a plurality of ultrasonic vibrators 92 (see FIG. 10) constituting the ultrasonic transducer 84, and supplies the ultrasonic signals to the ultrasonic vibrators 92 (see FIG. 10). The ultrasonic waves are emitted from the plurality of ultrasonic vibrators 92 toward the observation target area. The ultrasonic processor device 70 receives and acquires echo signals (reflected waves) reflected from the observation target area with the ultrasonic vibrators 92, and performs various signal processing on the acquired echo signals to generate an ultrasonic image. The generated ultrasonic image is displayed on the monitor 73.
 また、観察対象部位は、内視鏡観察部83において光源装置72からの照明光によって照明される。内視鏡用プロセッサ装置71は、その観察対象部位から取得された画像信号を受信して取得し、取得した画像信号に対して各種の信号処理及び画像処理を施して、内視鏡画像を生成する。生成された内視鏡画像がモニタ73に表示される。 The area to be observed is illuminated by illumination light from the light source device 72 in the endoscopic observation section 83. The endoscope processor device 71 receives and acquires an image signal obtained from the area to be observed, and performs various signal processing and image processing on the acquired image signal to generate an endoscopic image. The generated endoscopic image is displayed on the monitor 73.
 モニタ73は、超音波用プロセッサ装置70及び内視鏡用プロセッサ装置71によって生成された各映像信号を受けて超音波画像及び内視鏡画像を表示する。これらの超音波画像及び内視鏡画像の表示は、いずれか一方のみの画像を適宜切り替えてモニタ73に表示したり両方の画像を同時に表示したりすることも可能である。 The monitor 73 receives the video signals generated by the ultrasonic processor 70 and the endoscope processor 71 and displays the ultrasonic image and the endoscopic image. The display of the ultrasonic image and the endoscopic image can be switched appropriately to display only one of the images on the monitor 73 or both images can be displayed simultaneously.
 〔超音波内視鏡の一例〕
 次に、超音波内視鏡13について、より具体的に説明する。
 図10は本発明の実施形態の超音波内視鏡の一例を示す模式的断面図である。
 図10において、図2に示す内視鏡撮像装置20と同一構成物には同一符号を付して、その詳細な説明は省略する。なお、図10は超音波内視鏡13の先端部、すなわち、挿入部76の先端部76aを示しており、挿入部76の先端部76a内に、上述の内視鏡撮像装置20が設けられた状態を示す。
[An example of an ultrasonic endoscope]
Next, the ultrasonic endoscope 13 will be described in more detail.
FIG. 10 is a schematic cross-sectional view showing an example of an ultrasonic endoscope according to an embodiment of the present invention.
In Fig. 10, the same components as those of the endoscopic imaging device 20 shown in Fig. 2 are denoted by the same reference numerals, and detailed description thereof will be omitted. Fig. 10 shows the tip portion of the ultrasonic endoscope 13, i.e., the tip portion 76a of the insertion portion 76, and shows a state in which the above-mentioned endoscopic imaging device 20 is provided inside the tip portion 76a of the insertion portion 76.
 上述のように先端硬質部85は、先端側から順に、内視鏡観察部83と超音波トランスデューサ84とを有する。
 先端硬質部85には、先端側に内視鏡画像を取得するための内視鏡観察部83が設けられ、基端側に超音波画像を取得するための超音波トランスデューサ84が設けられている。
As described above, the tip rigid portion 85 has, in order from the tip side, the endoscopic observation portion 83 and the ultrasonic transducer 84 .
The distal end hard portion 85 is provided with an endoscopic observation section 83 for acquiring an endoscopic image on the distal end side, and an ultrasonic transducer 84 for acquiring an ultrasonic image on the proximal end side.
 先端硬質部85は、超音波トランスデューサ84に対して先端側に配置された先端側キャップ88と、超音波トランスデューサ84に対して基端側に配置された基端側リング89とを有する。先端側キャップ88は内視鏡撮像装置20のレンズ鏡胴22を固定する。なお、先端側キャップ88は内視鏡撮像装置20の保持具24を固定する構成でもよい。先端側キャップ88及び基端側リング89は、外装部材である。
 先端側キャップ88の先端面88aは、挿入部76の先端部76aの先端面76bである。先端側キャップ88は、上述の内視鏡撮像装置20の先端本体50(図4参照)に相当するものであり、先端側キャップ88の先端面88aは、先端本体50の表面50a(図4参照)に相当する。
 また、先端側キャップ88及び基端側リング89は、硬質樹脂等の樹脂で構成されており、先端側キャップ88及び基端側リング89は、電気的な絶縁性を有する絶縁部材で構成されている。先端側キャップ88を硬質樹脂等の絶縁部材で構成することにより、超音波振動子92に電圧の形態で超音波信号が供給された場合に、放電及び漏電が抑制される。
The distal rigid portion 85 has a distal cap 88 disposed on the distal side of the ultrasonic transducer 84, and a proximal ring 89 disposed on the proximal side of the ultrasonic transducer 84. The distal cap 88 fixes the lens barrel 22 of the endoscopic imaging device 20. The distal cap 88 may be configured to fix the holder 24 of the endoscopic imaging device 20. The distal cap 88 and the proximal ring 89 are exterior members.
A distal end surface 88a of the distal end cap 88 is the distal end surface 76b of the distal end portion 76a of the insertion section 76. The distal end cap 88 corresponds to the distal end body 50 (see FIG. 4) of the above-described endoscopic imaging device 20, and the distal end surface 88a of the distal end cap 88 corresponds to the surface 50a of the distal end body 50 (see FIG. 4).
The distal cap 88 and the proximal ring 89 are made of a resin such as a hard resin, and the distal cap 88 and the proximal ring 89 are made of an insulating material having electrical insulation properties. By making the distal cap 88 out of an insulating material such as a hard resin, discharge and leakage are suppressed when an ultrasonic signal is supplied to the ultrasonic transducer 92 in the form of a voltage.
 先端側キャップ88の基端側に金属リング90が連結されている。金属リング90の内側に内視鏡撮像装置20、信号ケーブル28及び鉗子管路91等が配置されている。金属リング90の外側に超音波トランスデューサ84が配置されている。金属リング90は、超音波振動子92を支持する円筒状の導電性部材であり、例えば、ステンレス鋼で構成される。 A metal ring 90 is connected to the base end side of the tip cap 88. The endoscopic imaging device 20, the signal cable 28, the forceps duct 91, etc. are arranged inside the metal ring 90. The ultrasonic transducer 84 is arranged outside the metal ring 90. The metal ring 90 is a cylindrical conductive member that supports the ultrasonic vibrator 92, and is made of, for example, stainless steel.
 超音波トランスデューサ84は、超音波を送受信する複数の超音波振動子92を、金属リング90の外周壁の円周方向に配列することにより構成されている。すなわち、超音波トランスデューサ84は、複数の超音波振動子92が長手軸A周りの周方向に沿って配列されたラジアル型の超音波トランスデューサである。複数の超音波振動子92で超音波振動子アレイ92aが構成される。
 超音波振動子アレイ92aは、長手軸A周りの周方向に沿って円筒状に配列された複数の超音波振動子92、例えば、48~192個の直方体形状の超音波振動子92からなる複数チャンネル、例えば、48~192チャンネルのアレイである。より具体的には、超音波振動子アレイ92aは、複数の超音波振動子92が、例えば、円筒形の二次元アレイ状に所定のピッチで配列された構成である。
The ultrasonic transducer 84 is configured by arranging a plurality of ultrasonic vibrators 92, which transmit and receive ultrasonic waves, in the circumferential direction of the outer peripheral wall of the metal ring 90. In other words, the ultrasonic transducer 84 is a radial type ultrasonic transducer in which a plurality of ultrasonic vibrators 92 are arranged along the circumferential direction around the longitudinal axis A. The plurality of ultrasonic vibrators 92 configure an ultrasonic vibrator array 92a.
The ultrasonic transducer array 92a is a multi-channel, for example, 48-192 channel array consisting of a plurality of ultrasonic transducers 92 arranged cylindrically along the circumferential direction around the longitudinal axis A, for example, 48-192 rectangular parallelepiped ultrasonic transducers 92. More specifically, the ultrasonic transducer array 92a is configured such that a plurality of ultrasonic transducers 92 are arranged at a predetermined pitch, for example, in a cylindrical two-dimensional array.
 複数の超音波振動子92は、それぞれケーブル(図示せず)が接続されている。超音波振動子92と接続されるケーブルが複数ある。超音波振動子92と接続されるケーブルは、例えば、超音波シールドケーブルに収容された状態で湾曲部86から軟性部を介して操作部77(図9参照)に挿通される。そして、複数のケーブルは、操作部からユニバーサルコード78(図9参照)に挿通されて、超音波用のコネクタ80a(図9参照)に接続される。超音波用のコネクタ80aは、超音波用プロセッサ装置70(図9参照)に接続される。超音波用プロセッサ装置70で生成された超音波信号(図示せず)は、複数のケーブルを介して複数の超音波振動子92に供給される。例えば、超音波信号は電圧の形態で、超音波振動子92に供給される。
 超音波振動子92は、例えば、PZT(チタン酸ジルコン酸鉛)又はPVDF(ポリフッ化ビニリデン)等の圧電体厚膜の底面に電極を形成した構成である。
A cable (not shown) is connected to each of the ultrasonic transducers 92. There are a plurality of cables connected to the ultrasonic transducers 92. The cables connected to the ultrasonic transducers 92 are, for example, inserted from the curved portion 86 through the flexible portion into the operation unit 77 (see FIG. 9) while being housed in an ultrasonic shielded cable. The cables are then inserted from the operation unit into the universal cord 78 (see FIG. 9) and connected to the ultrasonic connector 80a (see FIG. 9). The ultrasonic connector 80a is connected to the ultrasonic processor device 70 (see FIG. 9). The ultrasonic signal (not shown) generated by the ultrasonic processor device 70 is supplied to the ultrasonic transducers 92 through a plurality of cables. For example, the ultrasonic signal is supplied to the ultrasonic transducer 92 in the form of a voltage.
The ultrasonic transducer 92 has a configuration in which an electrode is formed on the bottom surface of a piezoelectric thick film made of, for example, PZT (lead zirconate titanate) or PVDF (polyvinylidene fluoride).
 複数の超音波振動子92には、それぞれ個別電極110a及び共通電極110bが設けられている。個別電極110aは、超音波振動子92の内側に設けられている。共通電極110bは、超音波振動子92の外側に設けられている。
 共通電極110bは、超音波振動子92の全てに共通の電極であり、例えば、接地電極である。共通電極110bにフレキシブル配線基板(FPC)115が接続されている。
 フレキシブル配線基板115は、バッキング材層112の基端側の側面に取り付けられる。フレキシブル配線基板115は、図示しないシールドケーブルにより、超音波用プロセッサ装置70(図9参照)の超音波用のコネクタ80a(図9参照)に電気的に接続される。
An individual electrode 110a and a common electrode 110b are provided on each of the ultrasonic transducers 92. The individual electrode 110a is provided on the inner side of the ultrasonic transducer 92. The common electrode 110b is provided on the outer side of the ultrasonic transducer 92.
The common electrode 110b is an electrode, for example a ground electrode, common to all of the ultrasonic transducers 92. A flexible printed circuit (FPC) 115 is connected to the common electrode 110b.
The flexible wiring board 115 is attached to the side surface on the base end side of the backing material layer 112. The flexible wiring board 115 is electrically connected to an ultrasonic connector 80a (see FIG. 9) of the ultrasonic processor device 70 (see FIG. 9) by a shielded cable (not shown).
 超音波振動子92の共通電極110bと金属リング90との間に、バッキング材層112が設けられている。バッキング材層112は、超音波振動子アレイ92aの各超音波振動子92を共通電極110b側から支持する。
 超音波振動子92の上に音響整合層113が設けられている。音響整合層113は、人体等の被検体と超音波振動子92との間の音響インピーダンス整合をとるためのものであり、超音波振動子アレイ92aの外周に設けられている。
 音響整合層113の外周上に音響レンズ114が取り付けられている。挿入部76の先端部76aの外側から内側に向かって音響レンズ114、音響整合層113、超音波振動子92、及びバッキング材層112の順で積層されている。
A backing material layer 112 is provided between the common electrode 110b of the ultrasonic transducers 92 and the metal ring 90. The backing material layer 112 supports each ultrasonic transducer 92 of the ultrasonic transducer array 92a from the common electrode 110b side.
An acoustic matching layer 113 is provided on the ultrasonic transducer 92. The acoustic matching layer 113 is for achieving acoustic impedance matching between a subject such as a human body and the ultrasonic transducer 92, and is provided on the outer periphery of the ultrasonic transducer array 92a.
An acoustic lens 114 is attached on the outer periphery of the acoustic matching layer 113. The acoustic lens 114, the acoustic matching layer 113, the ultrasonic transducer 92, and the backing material layer 112 are laminated in this order from the outside to the inside of the tip 76a of the insertion portion 76.
 バッキング材層112を構成するバッキング材は、超音波振動子アレイ92aの各超音波振動子92等を柔軟に支持するクッション材として機能する。このため、バッキング材は、硬質ゴム等の剛性を有する材料からなり、超音波減衰材(フェライト、セラミックス等)が必要に応じて添加されている。
 音響レンズ114は、超音波振動子アレイ92aから発せられる超音波を観察対象部位に向けて収束させるためのものである。音響レンズ114は、例えば、シリコーン系樹脂(ミラブル型シリコーンゴム(HTVゴム)、液状シリコーンゴム(RTVゴム)等)、ブタジエン系樹脂、ポリウレタン系樹脂等からなる。音響整合層113によって被検体と超音波振動子92との間の音響インピーダンス整合をとり、超音波の透過率を高めるため、音響レンズ114には、必要に応じて酸化チタン、アルミナ又はシリカ等の粉末が混合される。
The backing material constituting the backing material layer 112 functions as a cushioning material that flexibly supports each ultrasonic transducer 92 of the ultrasonic transducer array 92a, etc. For this reason, the backing material is made of a material having rigidity such as hard rubber, and an ultrasonic attenuation material (ferrite, ceramics, etc.) is added as necessary.
The acoustic lens 114 is for converging the ultrasonic waves emitted from the ultrasonic transducer array 92a toward the observation target area. The acoustic lens 114 is made of, for example, a silicone-based resin (millable type silicone rubber (HTV rubber), liquid silicone rubber (RTV rubber), etc.), a butadiene-based resin, a polyurethane-based resin, etc. In order to achieve acoustic impedance matching between the subject and the ultrasonic transducer 92 by the acoustic matching layer 113 and to increase the transmittance of the ultrasonic waves, the acoustic lens 114 is mixed with powder of titanium oxide, alumina, silica, etc. as necessary.
 先端硬質部85には、超音波トランスデューサ84を囲繞するバルーン100が着脱自在に装着される。このバルーン100の内部100aに超音波伝達媒体(図示せず)が供給される。超音波伝達媒体は、例えば、水、又はオイルである。
 ここで、超音波及びエコー信号は空気中で減衰する。そのため、バルーン100の内部100aに水を供給して膨らませ、膨らんだバルーン100を観察対象部位に当接させて、超音波トランスデューサ84と観察対象部位との間から空気を排除する。これにより、超音波及びエコー信号の減衰を抑制することができるため、良好な超音波画像を得ることができる。なお、バルーン100については後述する。
A balloon 100 surrounding the ultrasonic transducer 84 is detachably attached to the tip rigid portion 85. An ultrasonic transmission medium (not shown) is supplied to the interior 100a of the balloon 100. The ultrasonic transmission medium is, for example, water or oil.
Here, ultrasonic waves and echo signals are attenuated in the air. Therefore, water is supplied to the inside 100a of the balloon 100 to inflate it, and the inflated balloon 100 is brought into contact with the observation target area, and air is removed from between the ultrasonic transducer 84 and the observation target area. This makes it possible to suppress attenuation of ultrasonic waves and echo signals, and therefore to obtain a good ultrasonic image. The balloon 100 will be described later.
 内視鏡観察部83は、先端側キャップ88の先端面88aに開口された処置具導出口93、観察窓94、照明窓(図示せず)及びノズル(図示せず)等を有している。すなわち、超音波内視鏡13は、先端硬質部85の先端面88aに観察窓94を有する直視タイプの超音波内視鏡である。なお、照明窓(図示せず)は、例えば、観察窓94を挟んで一対設けられている。 The endoscopic observation section 83 has a treatment tool outlet 93, an observation window 94, an illumination window (not shown), and a nozzle (not shown) that are opened on the distal end surface 88a of the distal end cap 88. In other words, the ultrasonic endoscope 13 is a direct-view type ultrasonic endoscope that has an observation window 94 on the distal end surface 88a of the distal end hard section 85. Note that the illumination windows (not shown) are provided, for example, in a pair on either side of the observation window 94.
 処置具導出口93には、鉗子管路91が連結されている。鉗子管路91は、先端側が処置具導出口93に連結された鉗子パイプ95と、先端側が鉗子パイプ95の基端側に連結された鉗子チューブ96とを有する。鉗子チューブ96は、湾曲部86の内側から軟性部の基端側に延設されており、鉗子チューブ96の基端側が操作部の処置具挿入口79d(図9参照)に連結されている。鉗子等の処置具(図示せず)は処置具挿入口79dから鉗子チューブ96に挿入され、鉗子パイプ95を介して処置具導出口93から導出される。 A forceps conduit 91 is connected to the treatment tool outlet 93. The forceps conduit 91 has a forceps pipe 95 whose tip side is connected to the treatment tool outlet 93, and a forceps tube 96 whose tip side is connected to the base end side of the forceps pipe 95. The forceps tube 96 extends from the inside of the curved section 86 to the base end side of the soft section, and the base end side of the forceps tube 96 is connected to a treatment tool insertion port 79d (see FIG. 9) of the operating section. A treatment tool such as forceps (not shown) is inserted into the forceps tube 96 from the treatment tool insertion port 79d and is led out of the treatment tool outlet 93 via the forceps pipe 95.
 観察窓94の後方(基端側)に内視鏡撮像装置20が配置されている。内視鏡撮像装置20の構成は、上述のとおりであるため、その詳細な説明を省略する。
 観察窓94から入射した観察対象部位の反射光は、内視鏡撮像装置20の撮像レンズ23によって取り込まれ、プリズム27(図5参照)より光路が直角に折り曲げられて、撮像素子25(図5参照)の受光面25a(図5参照)に結像される。
The endoscopic imaging device 20 is disposed behind (on the proximal end side of) the observation window 94. The configuration of the endoscopic imaging device 20 is as described above, and therefore a detailed description thereof will be omitted.
The reflected light from the observation target area entering through the observation window 94 is captured by the imaging lens 23 of the endoscopic imaging device 20, and the optical path is bent at a right angle by the prism 27 (see Figure 5), forming an image on the light receiving surface 25a (see Figure 5) of the imaging element 25 (see Figure 5).
 湾曲部86は、操作部77(図9参照)に設けられた一対のアングルノブ79c(図9参照)を回動操作することにより遠隔的に湾曲操作される。これによって、先端硬質部85を所望の方向に向けることができる。なお、湾曲部86を構成する複数の湾曲駒97と、複数本、図10では、2本の湾曲操作ワイヤ98とが示されている。これらの湾曲操作ワイヤ98は、先端側が湾曲駒97に連結され、基端側が一対のアングルノブ79cに連結されている。 The bending portion 86 is remotely bent by rotating a pair of angle knobs 79c (see FIG. 9) provided on the operation portion 77 (see FIG. 9). This allows the tip rigid portion 85 to be oriented in the desired direction. Note that the bending portion 86 is made up of a number of bending pieces 97, and a number of bending operation wires 98 (two in FIG. 10) are shown. The tip ends of these bending operation wires 98 are connected to the bending pieces 97, and the base ends are connected to the pair of angle knobs 79c.
 金属リング90に熱伝達(熱伝導)された複数の超音波振動子92及びバッキング材層112の熱を、効率よく、かつ安全に内視鏡構造物である湾曲駒97のうち、先端側の湾曲駒97に逃がすために、熱伝導部材である金属リング90と、先端側の湾曲駒97との間に絶縁性の熱伝導部材、すなわち、絶縁性熱伝導部材120を挟み込む構成としている。
 絶縁性熱伝導部材120は、例えば、放熱シリコーンゴム、又は放熱シート等を用いることができ、更に、熱伝導性があれば、セラミック部材、放熱性パッド、若しくはDLC(ダイヤモンドライクカーボン)コート、又はパラフィンコート等の絶縁コートを用いてもよい。絶縁性熱伝導部材120は、耐電圧が1.5kV以上であることが好ましい。
 また、樹脂製のネジ121によって先端側の湾曲駒97と、金属リング90とは、樹脂製の基端側リング89を挟んで固定されている。
In order to efficiently and safely dissipate the heat of the multiple ultrasonic transducers 92 and the backing material layer 112 that is thermally transferred (thermally conducted) to the metal ring 90 to the bending piece 97 at the tip side of the bending piece 97 that is the endoscope structure, an insulating heat conducting member, i.e., an insulating heat conducting member 120, is sandwiched between the metal ring 90, which is a heat conducting member, and the bending piece 97 at the tip side.
The insulating heat conductive member 120 may be, for example, a heat dissipating silicone rubber or a heat dissipating sheet, and may further be a ceramic member, a heat dissipating pad, or an insulating coating such as a DLC (diamond-like carbon) coating or a paraffin coating, as long as it has thermal conductivity. The insulating heat conductive member 120 preferably has a withstand voltage of 1.5 kV or more.
Further, the bending piece 97 on the distal end side and the metal ring 90 are fixed by a resin screw 121 with the resin base end side ring 89 sandwiched therebetween.
 超音波トランスデューサ84を構成する複数の超音波振動子92に超音波を発生させるための超音波信号は、超音波用プロセッサ装置70(図9参照)で生成して供給する。超音波は、複数の超音波振動子92から観察対象部位に向けて放射される。超音波用プロセッサ装置70は、観察対象部位から反射されたエコー信号(反射波)を超音波振動子92で受信して取得し、取得したエコー信号に対して各種の信号処理を施して超音波画像を生成する。生成された超音波画像がモニタ73(図9参照)に表示される。 The ultrasonic signals for generating ultrasonic waves in the multiple ultrasonic vibrators 92 that make up the ultrasonic transducer 84 are generated and supplied by the ultrasonic processor 70 (see FIG. 9). The ultrasonic waves are emitted from the multiple ultrasonic vibrators 92 toward the area to be observed. The ultrasonic processor 70 receives and acquires echo signals (reflected waves) reflected from the area to be observed by the ultrasonic vibrators 92, and performs various signal processing on the acquired echo signals to generate an ultrasonic image. The generated ultrasonic image is displayed on the monitor 73 (see FIG. 9).
 また、観察対象部位は、内視鏡観察部83において光源装置72(図9参照)からの照明光によって照明される。内視鏡用プロセッサ装置71(図9参照)は、その観察対象部位から取得された画像信号を受信して取得し、取得した画像信号に対して各種の信号処理及び画像処理を施して、内視鏡画像を生成する。生成された内視鏡画像がモニタ73(図9参照)に表示される。 The observation target area is illuminated by illumination light from the light source device 72 (see FIG. 9) in the endoscopic observation section 83. The endoscope processor device 71 (see FIG. 9) receives and acquires image signals acquired from the observation target area, and performs various signal processing and image processing on the acquired image signals to generate an endoscopic image. The generated endoscopic image is displayed on the monitor 73 (see FIG. 9).
 ノズル(図示せず)には、送気送水管路(図示せず)の先端側が連結される。この送気送水管路は、挿入部76から操作部77に延設され、操作部77からユニバーサルコード78(図9参照)内に挿通されて、送気送水管路の基端側が光源用のコネクタ80c(図9参照)に接続される。これにより、送気送水管路の基端側が、コネクタ80c及び送気送水用チューブ81(図示せず)を介して送水タンク74(図9参照)に接続される。送水タンク74内の水は、送気送水用チューブ81からコネクタ80cを介して送気送水管路に送水されてノズルから観察窓94及び照明窓に向けて噴出される。また、送気送水管路には、エアポンプ(図示せず)から送られる空気が供給されるように構成されており、この空気は送気送水管路を介してノズルから観察窓94及び照明窓に向けて噴出される。 The nozzle (not shown) is connected to the tip side of the air and water supply pipe (not shown). This air and water supply pipe extends from the insertion part 76 to the operation part 77, and is inserted from the operation part 77 into the universal cord 78 (see FIG. 9), and the base end side of the air and water supply pipe is connected to the connector 80c (see FIG. 9) for the light source. As a result, the base end side of the air and water supply pipe is connected to the water supply tank 74 (see FIG. 9) via the connector 80c and the air and water supply tube 81 (not shown). Water in the water supply tank 74 is sent from the air and water supply tube 81 through the connector 80c to the air and water supply pipe and is sprayed from the nozzle toward the observation window 94 and the illumination window. In addition, the air and water supply pipe is configured to be supplied with air sent from an air pump (not shown), and this air is sprayed from the nozzle toward the observation window 94 and the illumination window through the air and water supply pipe.
 次に、バルーン100について説明する。
 先端硬質部85の外周面には、バルーン100の基端側を装着するための装着溝102と、バルーン100の先端側を装着するための装着溝104とが形成されている。これらの装着溝102、104は、先端硬質部85の外表面において長手軸A周りの周方向に沿って形成されている。
Next, the balloon 100 will be described.
An attachment groove 102 for attaching the base end side of the balloon 100 and an attachment groove 104 for attaching the tip side of the balloon 100 are formed on the outer peripheral surface of the tip rigid portion 85. These attachment grooves 102, 104 are formed along the circumferential direction around the longitudinal axis A on the outer surface of the tip rigid portion 85.
 また、先端硬質部85の外表面であって装着溝102と装着溝104との間には、バルーン100の内部100aに水を供給しかつバルーン100の内部100aの水を排出するための供給口(図示せず)が形成されている。また、供給口は、装着溝102と超音波トランスデューサ84との間に形成されている。更に、供給口には、バルーン管路(図示せず)の先端側が連結されている。
 バルーン100は、ゴム等の弾性部材によって形成される。バルーン100は、バルーン100の両端のうち、一端側にリング状のバンド部106を有し、他端側にリング状のバンド部107を有している。このバルーン100は、先端硬質部85に対してバンド部106が装着溝102に弾性をもって装着され、バンド部107が装着溝104に弾性をもって装着される。
A supply port (not shown) for supplying water to the interior 100a of the balloon 100 and discharging water from the interior 100a of the balloon 100 is formed on the outer surface of the tip rigid portion 85 between the mounting groove 102 and the mounting groove 104. The supply port is formed between the mounting groove 102 and the ultrasonic transducer 84. Furthermore, the tip side of a balloon pipe (not shown) is connected to the supply port.
The balloon 100 is made of an elastic material such as rubber. The balloon 100 has a ring-shaped band portion 106 at one end and a ring-shaped band portion 107 at the other end of the balloon 100. In the balloon 100, the band portion 106 is elastically attached to the attachment groove 102 of the tip rigid portion 85, and the band portion 107 is elastically attached to the attachment groove 104.
 特に、超音波内視鏡13では、複数の超音波振動子92に超音波を発生させるための超音波信号として電圧が入力されるため、先端側キャップ88は電気的な絶縁性を有する絶縁部材で構成されている。このため、超音波振動子92に超音波を発生させる際に、超音波振動子92に電圧が供給されると、先端側キャップ88は帯電しやすく、先端側キャップ88の帯電により静電気が発生する。先端側キャップ88に発生した静電気は、保持具24に流れる。この場合、上述のように内視鏡撮像装置20は、保持具24と撮像素子25との間の第1の電気抵抗よりも、保持具24と連結部材40との間の第2の電気抵抗の方が小さい。このため、先端側キャップ88及び基端側リング89のうち、少なくとも一方の帯電により発生した静電気は、保持具24と撮像素子25との間よりも、電気抵抗の方が小さい保持具24と連結部材40との間を優先して流れる。これにより、超音波内視鏡13においても、撮像素子25に静電気が流れることを抑制でき、静電気から撮像素子25を保護できる。
 保持具24から連結部材40に流れた静電気は、連結部材40と信号ケーブル28のシールド層28cとを電気的に接続する接続部材60により、連結部材40から信号ケーブル28のシールド層28cに流れる。このようにして、超音波内視鏡13においても発生した静電気の影響を抑制できる。
In particular, in the ultrasonic endoscope 13, since a voltage is input as an ultrasonic signal for generating ultrasonic waves to the multiple ultrasonic transducers 92, the distal cap 88 is made of an insulating material having electrical insulation properties. Therefore, when a voltage is supplied to the ultrasonic transducers 92 to generate ultrasonic waves, the distal cap 88 is easily charged, and static electricity is generated by the charging of the distal cap 88. The static electricity generated in the distal cap 88 flows to the holder 24. In this case, as described above, in the endoscopic imaging device 20, the second electrical resistance between the holder 24 and the connecting member 40 is smaller than the first electrical resistance between the holder 24 and the imaging element 25. Therefore, the static electricity generated by the charging of at least one of the distal cap 88 and the base end ring 89 flows preferentially between the holder 24 and the connecting member 40, which has a smaller electrical resistance, than between the holder 24 and the imaging element 25. As a result, even in the ultrasonic endoscope 13, it is possible to suppress the flow of static electricity to the imaging element 25, and to protect the imaging element 25 from static electricity.
The static electricity that flows from the holder 24 to the connecting member 40 flows from the connecting member 40 to the shield layer 28c of the signal cable 28 by the connecting member 60 that electrically connects the connecting member 40 and the shield layer 28c of the signal cable 28. In this way, the effects of static electricity generated in the ultrasonic endoscope 13 can also be suppressed.
 本発明は、基本的に以上のように構成されるものである。以上、本発明の内視鏡撮像装置、内視鏡及び超音波内視鏡について詳細に説明したが、本発明は上述の実施形態に限定されず、本発明の主旨を逸脱しない範囲において、種々の改良又は変更をしてもよいのはもちろんである。 The present invention is basically configured as described above. The endoscopic imaging device, endoscope, and ultrasonic endoscope of the present invention have been described in detail above, but the present invention is not limited to the above-described embodiments, and various improvements and modifications may of course be made without departing from the spirit and scope of the present invention.
 10、10a 内視鏡システム
 12 内視鏡
 12a、76a 先端部
 12b、76b、88a 先端面
 13 超音波内視鏡
 14、72 光源装置
 16 プロセッサ装置
 20 内視鏡撮像装置
 22 レンズ鏡胴
 23 撮像レンズ
 24 保持具
 24a 取付筒部
 24b フランジ部
 24d 規制部材
 25 撮像素子
 25a 受光面
 26 回路基板
 26a 第1の平面部
 26b 第1の屈曲部
 26c 第2の平面部
 26d 第2の屈曲部
 26e 第3の平面部
 26f、26i 表面
 26g、26h 裏面
 27 プリズム
 27a 入射面
 27b 出射面
 27c 斜面
 27d 側面
 28 信号ケーブル
 28a 信号線
 28b 被覆層
 28c シールド層
 28d 外皮
 28e 露出部
 29 端部
 29a、29b 先端
 30、30a 電子部品
 31 カバーガラス
 34 バンプ
 35 固定部材
 40 連結部材
 40a 底部
 40b 保持部
 40c アーム部
 40d、40h 開口部
 40e 縁
 40f カバー部
 40g 隙間
 40j 後端
 40k、40m 折曲げ部
 40n 窓部
 41 係合部
 41a 後端
 41b 先端
 41c 幅狭部
 41d 内部
 50 先端本体
 50a 表面
 50b 貫通孔
 60 接続部材
 61 導電線
 61a 延在部
 61b 湾曲部
 61c 接続部
 63 端子部
 64、65 半田
 70 超音波用プロセッサ装置
 71 内視鏡用プロセッサ装置
 73 モニタ
 74 送水タンク
 75 吸引ポンプ
 76 挿入部
 77 操作部
 78 ユニバーサルコード
 79a 送気送水ボタン
 79b 吸引ボタン
 79c アングルノブ
 79d 処置具挿入口
 80a、80b、80c コネクタ
 81 送気送水用チューブ
 82 吸引用チューブ
 83 内視鏡観察部
 84 超音波トランスデューサ
 85 先端硬質部
 86 湾曲部
 87 軟性部
 88 先端側キャップ
 89 基端側リング
 90 金属リング
 91 鉗子管路
 92 超音波振動子
 92a 超音波振動子アレイ
 93 処置具導出口
 94 観察窓
 95 鉗子パイプ
 96 鉗子チューブ
 97 湾曲駒
 98 湾曲操作ワイヤ
 100 バルーン
 100a :内部
 102、104 装着溝
 106、107 バンド部
 110a 個別電極
 110b 共通電極
 112 バッキング材層
 113 音響整合層
 114 音響レンズ
 115 フレキシブル配線基板
 120 絶縁性熱伝導部材
 121 ネジ
 A 長手軸
 C 光軸
10, 10a Endoscope system 12 Endoscope 12a, 76a Tip portion 12b, 76b, 88a Tip surface 13 Ultrasonic endoscope 14, 72 Light source device 16 Processor device 20 Endoscope imaging device 22 Lens barrel 23 Imaging lens 24 Holder 24a Mounting tube portion 24b Flange portion 24d Regulating member 25 Imaging element 25a Light receiving surface 26 Circuit board 26a First planar portion 26b First bent portion 26c Second planar portion 26d Second bent portion 26e Third planar portion 26f, 26i Front surface 26g, 26h Back surface 27 Prism 27a Incident surface 27b Exit surface 27c Inclined surface 27d Side surface 28 Signal cable 28a Signal line 28b Cover layer 28c Shield layer 28d Outer cover 28e Exposed portion 29 End 29a, 29b Tip 30, 30a Electronic component 31 Cover glass 34 Bump 35 Fixing member 40 Connecting member 40a Bottom 40b Holding portion 40c Arm portion 40d, 40h Opening 40e Edge 40f Cover portion 40g Gap 40j Rear end 40k, 40m Bent portion 40n Window portion 41 Engagement portion 41a Rear end 41b Tip 41c Narrow width portion 41d Inside 50 Tip body 50a Surface 50b Through hole 60 Connection member 61 Conductive wire 61a Extension portion 61b Curved portion 61c Connection portion 63 Terminal portion 64, 65 Solder 70 Ultrasonic processor 71 Endoscope processor 73 Monitor 74 Water tank 75 Suction pump 76 Insertion section 77 Operation section 78 Universal cord 79a Air/water supply button 79b Suction button 79c Angle knob 79d Treatment tool insertion port 80a, 80b, 80c Connector 81 Air/water supply tube 82 Suction tube 83 Endoscope observation section 84 Ultrasonic transducer 85 Hard tip section 86 Bending section 87 Soft section 88 Tip cap 89 Base end ring 90 Metal ring 91 Forceps channel 92 Ultrasonic transducer 92a Ultrasonic transducer array 93 Treatment tool outlet 94 Observation window 95 Forceps pipe 96 Forceps tube 97 Bending piece 98 Bending operation wire 100 Balloon 100a: interior 102, 104 mounting groove 106, 107 band portion 110a individual electrode 110b common electrode 112 backing material layer 113 acoustic matching layer 114 acoustic lens 115 flexible wiring board 120 insulating heat conductive member 121 screw A longitudinal axis C optical axis

Claims (9)

  1.  観察対象の画像を取得する内視鏡撮像装置であって、
     撮像レンズを直接、又は内部に前記撮像レンズが設けられたレンズ鏡胴を保持する保持具と、
     前記撮像レンズを通過した光を受光し、光電変換する撮像素子と、
     前記撮像素子に電気的に接続される信号ケーブルと、
     前記保持具と前記信号ケーブルとを連結する連結部材とを有し、
     前記保持具及び前記連結部材は、導電体で構成され、
     前記信号ケーブルは、複数の信号線をまとめて覆うシールド層と、前記シールド層の外側を被覆する外皮とを備え、前記信号ケーブルの前記保持具側に端部において、前記外皮は、露出部を設けて前記シールド層を被覆しており、
     前記信号ケーブルは前記連結部材に保持され、前記シールド層の前記露出部の前記保持具側の先端は、前記外皮の前記保持具側の先端よりも前記保持具側にあり、前記外皮の前記先端は、前記連結部材の前記保持具の反対側の後端よりも前記保持具側に位置し、
     前記シールド層の前記露出部と前記連結部材とが、接続部材により電気的に接続されており、
     前記保持具と前記撮像素子との間の第1の電気抵抗よりも、前記保持具と前記連結部材との間の第2の電気抵抗の方が小さい、内視鏡撮像装置。
    An endoscopic imaging device for acquiring an image of an observation object,
    a holder that holds an imaging lens directly or a lens barrel in which the imaging lens is provided;
    an imaging element that receives light that has passed through the imaging lens and performs photoelectric conversion;
    a signal cable electrically connected to the imaging element;
    a connecting member that connects the holding tool and the signal cable,
    the holder and the connecting member are made of a conductor,
    the signal cable includes a shielding layer that collectively covers a plurality of signal lines and an outer jacket that covers the outside of the shielding layer, and the outer jacket covers the shielding layer with an exposed portion at an end of the signal cable facing the holder,
    the signal cable is held by the connecting member, a tip end of the exposed portion of the shielding layer on the holder side is closer to the holder than a tip end of the outer cover on the holder side, and the tip end of the outer cover is located closer to the holder than a rear end of the connecting member on the opposite side to the holder,
    the exposed portion of the shield layer and the coupling member are electrically connected by a connecting member,
    An endoscopic imaging device, wherein a second electrical resistance between the holder and the connecting member is smaller than a first electrical resistance between the holder and the imaging element.
  2.  前記接続部材は、導電線を有し、
     前記導電線は、前記シールド層の前記露出部の外周面に少なくとも1周巻回されており、
     巻回された前記導電線は前記シールド層に半田により連結されている、請求項1に記載の内視鏡撮像装置。
    The connection member has a conductive wire,
    the conductive wire is wound around an outer circumferential surface of the exposed portion of the shield layer at least once,
    The endoscopic imaging device according to claim 1 , wherein the wound conductive wire is connected to the shield layer by soldering.
  3.  前記撮像素子と電気的に接続された回路基板を有し、前記回路基板は端子部を備え、
     前記導電線が巻回された前記シールド層と前記端子部とは、半田により電気的に接続され、かつ固定されている、請求項2に記載の内視鏡撮像装置。
    a circuit board electrically connected to the imaging element, the circuit board having a terminal portion;
    The endoscopic imaging apparatus according to claim 2 , wherein the shield layer around which the conductive wire is wound and the terminal portion are electrically connected and fixed by soldering.
  4.  前記接続部材は、前記連結部材の外側で前記連結部材と接合されている、請求項1~3のいずれか1項に記載の内視鏡撮像装置。 The endoscopic imaging device according to any one of claims 1 to 3, wherein the connecting member is joined to the connecting member on the outside of the connecting member.
  5.  前記連結部材は、前記保持具の反対側の後端に、前記撮像レンズの光軸と直交する幅方向における長さが前記保持具側の先端よりも短い幅狭部を有し、
     前記幅狭部で前記接続部材が、前記連結部材と接合されている、請求項4に記載の内視鏡撮像装置。
    the connecting member has a narrow portion at a rear end opposite to the holder, the narrow portion having a length in a width direction perpendicular to the optical axis of the imaging lens that is shorter than a tip end on the holder side,
    The endoscopic imaging device according to claim 4 , wherein the connecting member is joined to the coupling member at the narrow portion.
  6.  前記保持具又は前記レンズ鏡胴を固定する先端本体を有する、請求項1~3のいずれか1項に記載の内視鏡撮像装置。 An endoscopic imaging device according to any one of claims 1 to 3, having a tip body that fixes the holder or the lens barrel.
  7.  前記先端本体は、樹脂で構成されている、請求項6に記載の内視鏡撮像装置。 The endoscopic imaging device according to claim 6, wherein the tip body is made of resin.
  8.  請求項1~3のいずれか1項に記載の内視鏡撮像装置を有する、内視鏡。 An endoscope having an endoscopic imaging device according to any one of claims 1 to 3.
  9.  請求項7に記載の内視鏡撮像装置を有する、超音波内視鏡。
     
     
    An ultrasonic endoscope comprising the endoscopic imaging device according to claim 7.

PCT/JP2024/013760 2023-04-11 2024-04-03 Endoscope imaging device, endoscope, and ultrasonic endoscope WO2024214613A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2023064169 2023-04-11
JP2023-064169 2023-04-11
JP2024-052976 2024-03-28
JP2024052976 2024-03-28

Publications (1)

Publication Number Publication Date
WO2024214613A1 true WO2024214613A1 (en) 2024-10-17

Family

ID=93059168

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2024/013760 WO2024214613A1 (en) 2023-04-11 2024-04-03 Endoscope imaging device, endoscope, and ultrasonic endoscope

Country Status (1)

Country Link
WO (1) WO2024214613A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05154102A (en) * 1992-05-18 1993-06-22 Olympus Optical Co Ltd Endoscope

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05154102A (en) * 1992-05-18 1993-06-22 Olympus Optical Co Ltd Endoscope

Similar Documents

Publication Publication Date Title
EP2644084B1 (en) Endoscope
CN109414250B (en) Ultrasonic endoscope
US11076837B2 (en) Ultrasonic endoscope
CN109069126B (en) Ultrasonic vibrator unit
CN109414249B (en) Ultrasonic endoscope
US20080119738A1 (en) Ultrasound Endoscope
JP6633189B2 (en) Ultrasonic transducer unit
WO2024214613A1 (en) Endoscope imaging device, endoscope, and ultrasonic endoscope
CN109414252B (en) Ultrasonic endoscope
JP6677799B2 (en) Ultrasonic transducer unit
US11076828B2 (en) Ultrasonic endoscope
JP2022179301A (en) Endoscope imaging apparatus and endoscope
JP2022139272A (en) Endoscope imaging device and endoscope
JP7585104B2 (en) Imaging module
US20240081620A1 (en) Endoscope
JP2023150370A (en) Endoscope imaging device and endoscope
US20230309806A1 (en) Endoscope image pickup device and endoscope
US20220361845A1 (en) Ultrasound endoscope
CN116889368A (en) Endoscope image pickup device and endoscope
JP2022142220A (en) Imaging module
JP2023150161A (en) Endoscope imaging device and endoscope
JP2022142206A (en) Imaging module
CN115363511A (en) Endoscope image pickup device and endoscope
JP2024123505A (en) Endoscope imaging device and endoscope
JP2023129670A (en) Ultrasonic endoscope