[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2024214403A1 - Induction heating device - Google Patents

Induction heating device Download PDF

Info

Publication number
WO2024214403A1
WO2024214403A1 PCT/JP2024/006609 JP2024006609W WO2024214403A1 WO 2024214403 A1 WO2024214403 A1 WO 2024214403A1 JP 2024006609 W JP2024006609 W JP 2024006609W WO 2024214403 A1 WO2024214403 A1 WO 2024214403A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
coils
semiconductor switch
phase
currents
Prior art date
Application number
PCT/JP2024/006609
Other languages
French (fr)
Japanese (ja)
Inventor
昇平 米田
駿汰 稲見
Original Assignee
国立大学法人東京海洋大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京海洋大学 filed Critical 国立大学法人東京海洋大学
Publication of WO2024214403A1 publication Critical patent/WO2024214403A1/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/04Sources of current
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/36Coil arrangements
    • H05B6/44Coil arrangements having more than one coil or coil segment

Definitions

  • the present invention relates to an induction heating device that can control the heating distribution of a coil.
  • Patent Document 1 discloses an induction heating cooker that uses a single-phase inverter.
  • three inverters with approximately the same capacity are connected in parallel to a three-phase power source, and each single-phase inverter is connected to three coils arranged concentrically. This combination of three single-phase inverters is said to reduce harmonics and suppress interference noise.
  • Patent Document 2 discloses a dielectric heating cooker that switches the phase difference between the currents flowing through two coils connected to each other in a range of 0 to ⁇ . In this dielectric heating cooker, the currents are synchronized between the coils, allowing the heated object to be heated evenly.
  • the power supply current of a three-phase AC power supply is converted to DC by a diode rectifier and then input to an inverter. This can result in significant distortion of the power supply current.
  • the device proposed in Patent Document 2 aims to heat the pan, which is the object to be heated, evenly, so the heating distribution of the coil is inevitably limited to a uniform distribution.
  • the present invention aims to provide an induction heating device that can control the heating distribution of the coil while suppressing distortion of the power supply current.
  • An induction heating device includes three converters that directly convert three-phase power supply currents of a three-phase AC power supply into three high-frequency AC currents having frequencies higher than the frequency of the power supply currents; and three coils for heating an object to be heated with harmonic alternating current supplied individually from the three converters; The three coils are arranged so that their centers are spaced within a coil diameter.
  • the three coils may be arranged in a triangular shape.
  • each of the three converters is a harmonic cycloconverter;
  • the harmonic cycloconverter may include a first semiconductor switch and a second semiconductor switch connected in series to each other, and a third semiconductor switch and a fourth semiconductor switch connected in series to each other in the opposite direction to the first semiconductor switch and the second semiconductor switch.
  • the first to fourth semiconductor switches are switched to an on state or an off state according to a level of a gate signal input to each gate, When the first semiconductor switch is in an on state, the second semiconductor switch is in an off state, the third semiconductor switch is in an on state, and the fourth semiconductor switch is in an off state; When the first semiconductor switch is in an off state, the second semiconductor switch may be in an on state, the third semiconductor switch may be in an off state, and the fourth semiconductor switch may be in an on state.
  • the phase difference of the coil currents among the three converters may be 120 degrees.
  • the centres of the three coils may be located at the vertices of an equilateral triangle.
  • the three coils may partially overlap each other.
  • the three coils may be arranged in a row.
  • the three coils may be arranged in an L-shape.
  • the phase of the coil current may be the same among the three coils.
  • a phase difference between coil currents of two adjacent coils may be 0 degrees or 180 degrees.
  • the present invention provides an induction heating device that can control the heat distribution of the coil while suppressing distortion of the power supply current.
  • FIG. 1 is a block diagram showing a schematic configuration of an induction heating device according to a first embodiment.
  • FIG. 13 is a schematic diagram showing another example of a coil arrangement.
  • FIG. 2 is a diagram showing an equivalent circuit of the induction heating device according to the first embodiment.
  • 4 is a timing chart of a gate signal of the semiconductor switch according to the first embodiment.
  • FIG. 4 is a diagram showing an example of a waveform of a power supply current in the first embodiment.
  • 5A to 5C are diagrams illustrating the amplitude waveform and direction of an output current of the converter in the first embodiment.
  • 5A to 5C are diagrams illustrating an example of a heating pattern of a coil in the first embodiment.
  • 10 is a timing chart of a gate signal of a semiconductor switch according to a second embodiment.
  • FIG. 11 is a diagram showing an example of a waveform of a power supply current in the second embodiment.
  • 13A to 13C are diagrams showing the amplitude waveform and direction of the output current of the converter in the second embodiment.
  • 13A and 13B are diagrams illustrating an example of a heating pattern of a coil in the second embodiment.
  • FIG. 13 is a diagram showing experimental results of heating distribution of a coil.
  • FIG. 13 is a schematic diagram showing a coil arrangement in a third embodiment.
  • FIG. 13 is a diagram showing an example of a heating pattern when the directions of coil currents are all positive in the third embodiment.
  • FIG. 13 is a diagram showing an example of a heating pattern when the directions of coil currents are all negative in the third embodiment.
  • 13 is a diagram showing an example of a waveform of a power supply current in a synchronous mode.
  • 13 is a diagram showing an example of a heating pattern when the phase of the U-phase coil current is shifted 180 degrees from the phases of the V-phase and W-phase coil currents.
  • FIG. 11 is a diagram showing another example of a heating pattern when the phase of the U-phase coil current is shifted by 180 degrees from the phases of the V-phase and W-phase coil currents.
  • 13 is a diagram showing an example of a heating pattern when the phase of the V-phase coil current is shifted 180 degrees from the phases of the U-phase and W-phase coil currents.
  • FIG. 13 is a diagram showing another example of a heating pattern when the phase of the V-phase coil current is shifted by 180 degrees from the phases of the U-phase and W-phase coil currents.
  • 13 is a diagram showing an example of a heating pattern when the phase of the W-phase coil current is shifted 180 degrees from the phases of the U-phase and V-phase coil currents.
  • FIG. 13 is a diagram showing another example of a heating pattern when the phase of the W-phase coil current is shifted by 180 degrees from the phases of the U-phase and V-phase coil currents.
  • FIG. 13 is a diagram showing an example of a waveform of a power supply current in a 180-degree mode.
  • FIG. 13 is a schematic diagram showing a coil arrangement in a modified example of the third embodiment.
  • First Embodiment Fig. 1 is a block diagram showing a schematic configuration of an induction heating device according to a first embodiment.
  • the induction heating device 1 shown in Fig. 1 includes three converters 11, 12, and 13, and three coils 21, 22, and 23.
  • the three converters 11, 12, and 13 directly convert the three-phase power supply current of the three-phase AC power supply 30 into three high-frequency AC currents having frequencies higher than the frequency of the power supply currents.
  • the converter 11 directly converts the U-phase power supply current IU into a high-frequency AC current
  • the converter 12 directly converts the V-phase power supply current IV into a high-frequency AC current
  • the converter 13 directly converts the W-phase power supply current IW into a high-frequency AC current.
  • the frequency of the power supply current is, for example, 50 Hz or 60 Hz.
  • the frequency of the high-frequency AC current is, for example, 20 kHz.
  • the three coils 21, 22, and 23 heat the object to be heated 50 with harmonic alternating current supplied individually from the three converters 11, 12, and 13.
  • the object to be heated 50 is, for example, a metal plate.
  • the coil 21 is connected to the converter 11 via a resonant capacitor 41.
  • the coil 22 is connected to the converter 12 via a resonant capacitor 42.
  • the coil 23 is connected to the converter 13 via a resonant capacitor 43.
  • the three coils 21, 22, and 23 have the same number of turns and winding direction.
  • the capacitance values of the resonant capacitors 41, 42, and 43 are also the same.
  • the three coils 21, 22, and 23 are arranged in a triangular shape as shown in Fig. 1. Specifically, the centers O1 , O2 , and O3 of the coils are arranged at the vertices of an equilateral triangle. Note that in this embodiment, the three coils 21, 22, and 23 are arranged so that the outermost windings of the coils are in contact with each other so that the distance D between the centers is within the diameter d of each coil, but the present invention is not limited to this arrangement.
  • FIG. 2 is a schematic diagram showing another example of coil arrangement.
  • three coils 21, 22, 23 are arranged so that each coil partially overlaps with the other.
  • the coupling coefficient (cross-coupling) between each coil may be minimized. In this case, it is possible to reduce distortion of the power supply current. Note that in order to minimize this coupling coefficient, it is desirable to reduce the spatial distance between the heated object 50 and the coils 21, 22, and 23.
  • FIG. 3 is a diagram showing an equivalent circuit of the induction heating device 1 according to the first embodiment.
  • the converters 11, 12, and 13 are composed of high-frequency cycloconverters.
  • the converter 11 has a first semiconductor switch S U1 to a fourth semiconductor switch S U4 , a first diode D U1 to a fourth diode D U4 , and a first capacitor C U1 to a sixth capacitor C U6 .
  • the converter 12 also has a first semiconductor switch S V1 to a fourth semiconductor switch S V4 , a first diode D V1 to a fourth diode D V4 , and a first capacitor C V1 to a sixth capacitor C V6 .
  • the converter 13 also has a first semiconductor switch S W1 to a fourth semiconductor switch S W4 , a first diode D W1 to a fourth diode D W4 , and a first capacitor C W1 to a sixth capacitor C W6 .
  • the first semiconductor switch S U 1 to the fourth semiconductor switch S U 4 are N-channel type Metal Oxide Semiconductor Field Effect Transistors (MOSFETs).
  • MOSFETs Metal Oxide Semiconductor Field Effect Transistors
  • each semiconductor switch is not limited to a MOSFET and may be another semiconductor element such as an IGBT (Insulated Gate Bipolar Transistor).
  • the first semiconductor switch S U1 and the second semiconductor switch S U2 are connected in series. Specifically, the drain of the first semiconductor switch S U1 is connected to the three-phase AC power supply 30, and the source of the first semiconductor switch S U1 is connected to the drain of the second semiconductor switch S U2 . The source of the second semiconductor switch S U2 is connected to the source of the third semiconductor switch S U3 .
  • the third semiconductor switch S U3 and the fourth semiconductor switch S U4 are connected in series in the opposite direction to the first semiconductor switch S U1 and the second semiconductor switch S U2 . Specifically, the drain of the third semiconductor switch S U3 is connected to the source of the fourth semiconductor switch S U4 . The drain of the fourth semiconductor switch S U4 is connected to the drains of the fourth semiconductor switch S V4 and the fourth semiconductor switch S W4 .
  • a resonant capacitor 41, a coil 21, and a resistive element R are connected in series between the connection point of the source of the first semiconductor switch S U1 and the drain of the second semiconductor switch S U2 and the connection point of the drain of the third semiconductor switch S U3 and the source of the fourth semiconductor switch S U4 .
  • the resistive element R corresponds to the electrical resistance of the object 50 to be heated by the coils 21 to 23.
  • the resonant capacitor 41, the coil 21, and the resistive element R correspond to the load circuit of the converter 11.
  • the first diode D U1 to the fourth diode D U4 are connected in anti-parallel between the drain-source of the first semiconductor switch S U1 to the fourth semiconductor switch S U4 , respectively.
  • the first diode D U1 to the fourth diode D U4 are return diodes that return the energy stored in the coil 21 to the three-phase AC power supply 30 when each semiconductor switch is in the off state.
  • One end of the first capacitor C U1 to the fourth capacitor C U4 is connected to the anodes of the first diode D U1 to the fourth diode D U4 , respectively, and the other end is connected to the cathodes of the first diode D U1 to the fourth diode D U4 , respectively.
  • one end of the fifth capacitor C U5 is connected to the drain of the first semiconductor switch S U1 , and the other end is connected to the sources of the second semiconductor switch S U2 and the third semiconductor switch S U3 .
  • one end of the sixth capacitor C U6 is connected to the other end of the fifth capacitor C U5 and to the sources of the second semiconductor switch S U2 and the third semiconductor switch S U3 .
  • the other end of the sixth capacitor C U6 is connected to the drain of the fourth semiconductor switch S U4 .
  • the first semiconductor switch S U1 to the fourth semiconductor switch S U4 of the converter 11, the first semiconductor switch S V1 to the fourth semiconductor switch S V4 of the converter 12, and the first semiconductor switch S W1 to the fourth semiconductor switch S W4 of the converter 13 are switched to an on state or an off state depending on the level of a gate signal input to each gate.
  • the gate signals are in phase among the three converters 11, 12, and 13.
  • the timing of the signal levels of the on state (high level) and off state (low level) of the first semiconductor switch S U 1 of the converter 11 is the same as those of the first semiconductor switch S V 1 of the converter 12 and the first semiconductor switch S W 1 of the converter 13, respectively.
  • Fig. 5 is a diagram showing an example of the waveforms of the power supply currents in the first embodiment.
  • Fig. 5 shows the U-phase power supply current IU , the V-phase power supply current IV , and the W-phase power supply current IW .
  • the power supply current IU is the input current of the converter 11.
  • the power supply current IV is the input current of the converter 12.
  • the power supply current IW is the input current of the converter 13.
  • each converter directly converts the power supply currents IU , IV , and IW into high-frequency AC without converting them into DC, so that the distortion of each power supply current is extremely small, as shown in FIG.
  • FIG. 6 is a diagram showing the amplitude waveforms and directions of the output currents I UOUT , I VOUT , and I WOUT of the converters 11, 12, and 13 in the first embodiment.
  • the gate signals of the first semiconductor switches S U1 , S V1 , and S W1 to the fourth semiconductor switches S U4 , S V4 , and S W4 are in phase among the three converters 11, 12, and 13. Therefore, as shown in FIG. 6, the phases of the output currents I UOUT , I VOUT , and I WOUT are also the same.
  • the output currents I UOUT , I VOUT , and I WOUT are supplied individually to the three coils 21, 22, and 23. As a result, there are two patterns for the direction of the coil current flowing through each coil: a pattern in which all three are positive, and a pattern in which all three are negative.
  • the three coils 21, 22, and 23 heat the object to be heated 50 (specifically, the resistive element R) with coil current. As described above, there are two different directions of the coil current in one period. As a result, there are also two different heating patterns using the three coils 21, 22, and 23. Here, the heating patterns using the three coils 21, 22, and 23 will be explained with reference to Figures 7(a) and 7(b).
  • FIG. 7(a) is a diagram showing an example of a heating pattern when all coil currents flow in the positive direction.
  • the coil currents flow in the opposite directions in the inner regions of each coil, i.e., the region where coil 21 faces coil 22, the region where coil 22 faces coil 23, and the region where coil 23 faces coil 21.
  • the magnetic fields cancel each other out, making it difficult for induction heating to occur in the object to be heated 50.
  • the outer regions of each coil the magnetic fields do not cancel each other out, so induction heating occurs in the object to be heated 50. Therefore, when all coil currents flow in the positive direction, a heating pattern is obtained in which the outer regions of each coil are heated, as shown in FIG. 7(a).
  • Figure 7(b) is a diagram showing an example of a heating pattern when the coil currents are all negative. Even when all coil currents flow in the negative direction, the coil currents flow in the opposite directions in the inner regions of each coil. This causes the magnetic fields to cancel each other out, making it difficult for induction heating to occur in the object to be heated 50. Furthermore, in the outer regions of each coil, the magnetic fields do not cancel each other out, so induction heating occurs in the object to be heated 50. Therefore, even when all coil currents flow in the negative direction, a heating pattern is obtained in which the outer regions of each coil are heated, as shown in Figure 7(b).
  • the heating pattern shown in FIG. 7(a) and the heating pattern shown in FIG. 7(b) are periodically repeated alternately. As a result, a heating distribution is obtained in which the outer region of the coil is hotter than the inner region of the coil.
  • the converters 11 to 13 when the converters 11 to 13 convert the power supply currents IU to IW into the output currents IUOUT to IWOUT , the output currents IUOUT to IWOUT are directly converted into harmonic AC without passing through DC. This makes it possible to suppress distortion of the power supply currents IU to IW .
  • the converters 11 to 13 have a circuit configuration that does not require a diode rectifier or a smoothing capacitor that converts the power supply current of the three-phase AC power supply 30 into DC. This makes it possible to miniaturize the converters 11 to 13.
  • the three coils 21, 22, and 23 are arranged in a triangular shape.
  • the currents flowing through each coil are set to be in phase. This makes it possible to control the heating distribution of the coils 21 to 23 so that the outer regions of each coil are hotter than the inner regions of each coil.
  • the induction heating device includes three converters 11, 12, and 13 and three coils 21, 22, and 23, similar to the induction heating device 1 according to the first embodiment.
  • the converters 11, 12, and 13 are configured with high-frequency cycloconverters, as shown in FIG. 3. Meanwhile, in this embodiment, in order to set the phase difference of the coil currents among the three coils 21, 22, and 23 to 120 degrees, the phase difference of the gate signals of the semiconductor switches among the three converters 11, 12, and 13 is 120 degrees.
  • the gate signals of the semiconductor switches according to the second embodiment will be described with reference to FIG. 8.
  • the phase difference between the gate signals of the first semiconductor switch S U 1 to the fourth semiconductor switch S U 4 of the converter 11 and the gate signals of the first semiconductor switch S V 1 to the fourth semiconductor switch S V 4 of the converter 12 is 120 degrees.
  • the phase difference between the gate signals of the first semiconductor switch S U 1 to the fourth semiconductor switch S U 4 of the converter 11 and the gate signals of the first semiconductor switch S W 1 to the fourth semiconductor switch S W 4 of the converter 13 is 240 degrees.
  • the phase difference between the gate signals of the first semiconductor switch S V 1 to the fourth semiconductor switch S V 4 of the converter 12 and the gate signals of the first semiconductor switch S W 1 to the fourth semiconductor switch S W 4 of the converter 13 is 120 degrees.
  • Fig. 9 is a diagram showing an example of the waveform of the power supply current in the second embodiment.
  • each converter is configured with a high-frequency cycloconverter as shown in Fig. 3. Therefore, each converter directly converts the power supply currents IU , IV , IW into high-frequency AC without converting them into DC. Therefore, in this embodiment as well, the distortion of each power supply current is very small as shown in Fig. 9.
  • FIG. 10 is a diagram showing the amplitude waveforms and directions of the output currents I UOUT , I VOUT , and I WOUT of the converters 11, 12, and 13 in the second embodiment.
  • the phase of the gate signals of the first semiconductor switches S U1 , S V1 , and S W1 to the fourth semiconductor switches S U4 , S V4 , and S W4 is 120 degrees among the three converters 11, 12, and 13. Therefore, as shown in FIG. 10, the phase difference of the output currents I UOUT , I VOUT , and I WOUT is also 120 degrees.
  • there are six possible directions of the coil currents flowing through each coil including three patterns in which two of the three coil currents are positive and three patterns in which two of the three coil currents are negative, as shown in FIG. 10.
  • the three coils 21, 22, and 23 heat the object to be heated 50 (specifically, the resistive element R) with coil current. As described above, there are six possible directions of the coil current. As a result, there are six possible heating patterns using the three coils 21, 22, and 23. Here, the heating patterns using the three coils 21, 22, and 23 will be explained with reference to Figures 11(a) to 11(f).
  • FIG. 11(a) shows an example of a heating pattern when the direction of the current flowing through coils 21 and 23 is positive and the direction of the current flowing through coil 22 is negative.
  • the outer regions of coil 21 and coil 23 are heated.
  • the direction of the coil current is the same in the region where coils 21 and 22 face each other and the region where coils 22 and 23 face each other. Therefore, these regions are also heated.
  • the directions of the coil current are opposite to each other. Therefore, in this region, the magnetic fields cancel each other out, making it difficult for induction heating to occur in the heated object 50.
  • Figure 11 (b) shows an example of a heating pattern when the direction of the current flowing through coil 21 is positive and the direction of the current flowing through coils 22 and 23 is negative.
  • the outer regions of coil 22 and coil 23 are heated.
  • the coil current flows in the same direction, so these regions are also heated.
  • the coil current flows in opposite directions, so induction heating is less likely to occur in object to be heated 50.
  • Figure 11 (c) shows an example of a heating pattern when the direction of the current flowing through coils 21 and 22 is positive and the direction of the current flowing through coil 23 is negative.
  • the outer regions of coil 21 and coil 22 are heated.
  • the coil current flows in the same direction, so these regions are also heated.
  • the coil current flows in opposite directions, so induction heating is less likely to occur in object to be heated 50.
  • Figure 11(d) is a diagram showing an example of a heating pattern when the direction of the current flowing through coil 22 is positive and the direction of the current flowing through coils 21 and 23 is negative.
  • the outer regions of coil 21 and coil 23 are heated.
  • the coil current flows in the same direction, so these regions are also heated.
  • the coil current flows in opposite directions, so induction heating is less likely to occur in object to be heated 50.
  • Figure 11(e) is a diagram showing an example of a heating pattern when the direction of the current flowing through coils 22 and 23 is positive and the direction of the current flowing through coil 21 is negative.
  • the outer regions of coil 22 and coil 23 are heated.
  • the coil current flows in the same direction, so these regions are also heated.
  • the coil current flows in opposite directions, so induction heating is less likely to occur in object to be heated 50.
  • the heating patterns shown in Figures 11(a) to 11(f) are repeated periodically.
  • both the outer and inner regions of the coil are heated, resulting in a heating distribution in which the temperature difference between the inner and outer regions is smaller than in the first embodiment, as shown in Figure 12(b).
  • the heat source is concentrated in the inner region, it is possible to control the heating distribution so that the inner region is hotter than the outer region.
  • the three coils 21, 22, and 23 are arranged in a triangular shape.
  • the phase difference of the current flowing through each coil is set to 120 degrees. This makes it possible to control the heating distribution of the coils 21 to 23 so that not only the outer region of each coil but also the inner region of each coil is heated.
  • the induction heating device includes three converters 11, 12, and 13 and three coils 21, 22, and 23, similar to the induction heating device 1 according to the first embodiment.
  • the converters 11, 12, and 13 are configured with high-frequency cycloconverters as shown in Fig. 3.
  • the arrangement of the three coils 21, 22, and 23 is different from that of the first embodiment.
  • FIG. 13 is a schematic diagram showing the coil arrangement in the third embodiment.
  • three coils 21, 22, and 23 are arranged in a row.
  • the distance D between the centers of adjacent coils is within the diameter d of each coil. Note that in FIG. 13, the distance D is shown as being longer than the diameter d in order to make it easier to understand the direction of the current flowing through each coil.
  • the three converters 11, 12, 13 are driven in a synchronous mode in which the phases of the output currents I UOUT , I VOUT , and I WOUT are in the same phase, as in the first embodiment (see FIG. 6).
  • the synchronous mode there are two patterns for the direction of the coil current flowing through each coil: a pattern in which all three are positive, and a pattern in which all three are negative.
  • FIG. 13 shows a pattern in which all the coil currents are positive.
  • the heating pattern by the three coils 21, 22, 23 will be described with reference to FIG. 14.
  • FIG. 14 is a diagram showing an example of a heating pattern when the coil currents are all positive in the third embodiment.
  • the directions of the coil currents are opposite to each other in the inner regions of each coil, i.e., the region where coil 21 faces coil 22, and the region where coil 22 faces coil 23. In this case, the magnetic fields cancel each other out, making it difficult for induction heating to occur in the heated object 50.
  • FIG. 15 is a diagram showing an example of a heating pattern when the coil currents are all negative in the third embodiment. Even when the coil currents all flow in the negative direction, the coil currents flow in opposite directions in the inner regions of each coil, i.e., the region where coil 21 faces coil 22, and the region where coil 22 faces coil 23. Therefore, the heating pattern heats the outer regions of each coil, just like when the coil currents are all positive.
  • Fig. 16 is a diagram showing an example of the waveforms of the power supply currents in the synchronous mode, which respectively show the power supply current IU of the converter 11 (U phase), the power supply current IV of the converter 12 (V phase), and the power supply current IW of the converter 13 (W phase) when the converters 11, 12, and 13 are driven in the synchronous mode.
  • each converter directly converts the power supply currents IU , IV , and IW into high-frequency AC without converting them into DC, so that the distortion of each power supply current is extremely small, as shown in FIG.
  • the driving mode of the three converters 11, 12, and 13 is not limited to the above-mentioned synchronous mode, and may be, for example, a 180-degree mode.
  • the phase difference of the gate signals of the first semiconductor switches S U 1, S V 1, and S W 1 to the fourth semiconductor switches S U 4, S V 4, and S W 4 for driving each converter between two converters that supply harmonic AC to two adjacent coils among the three converters 11, 12 , and 13 is 0 degrees or 180 degrees.
  • the phase of one coil current among the three coils 21, 22, and 23 is shifted by 180 degrees with respect to the phases of the other two coil currents.
  • the heating pattern by the coils 21, 22, and 23 in the 180-degree mode will be described.
  • FIG. 17 is a diagram showing an example of a heating pattern when the phase of the U-phase coil current is shifted 180 degrees from the phase of the V-phase and W-phase coil currents.
  • current flows in a positive direction in U-phase coil 21, while current flows in a negative direction in V-phase coil 22 and W-phase coil 23.
  • FIG. 18 shows another example of a heating pattern when the phase of the U-phase coil current is shifted 180 degrees from the phases of the V-phase and W-phase coil currents.
  • current flows in the negative direction in coil 21, while current flows in the positive direction in coils 22 and 23.
  • the direction of the current is the same in the region between coils 21 and 22, while the direction of the current is opposite in the region between coils 22 and 23. Therefore, in the heating pattern shown in FIG. 18, like the heating pattern shown in FIG. 17, the inner region between coils 21 and 22 is heated, and the outer region between coils 22 and 23 is heated.
  • Figure 19 shows an example of a heating pattern when the phase of the V-phase coil current is shifted 180 degrees from the phase of the U-phase and W-phase coil currents.
  • current flows in a positive direction in V-phase coil 22, while current flows in a negative direction in U-phase coil 21 and W-phase coil 23.
  • the direction of the current is the same in the region between coils 21 and 22, resulting in a heating pattern in which the inner region is heated. Also, the direction of the current is the same in the region between coils 22 and 23, resulting in a heating pattern in which the inner region is heated.
  • FIG. 20 shows another example of a heating pattern when the phase of the V-phase coil current is shifted 180 degrees from the phase of the U-phase and W-phase coil currents.
  • current flows in the negative direction in coil 22, while current flows in the positive direction in coils 21 and 23.
  • the direction of the current is the same in the region between coils 21 and 22, and also in the region between coils 22 and 23. Therefore, the heating pattern shown in FIG. 20 heats the inner region between the coils, similar to the heating pattern shown in FIG. 19.
  • FIG. 21 shows an example of a heating pattern when the phase of the W-phase coil current is shifted 180 degrees from the phase of the U-phase and V-phase coil currents.
  • current flows in a positive direction in the W-phase coil 23, while current flows in a negative direction in the U-phase coil 21 and the V-phase coil 22.
  • the current flows in the opposite direction, resulting in a heating pattern in which the outer region is heated.
  • the current flows in the same direction, resulting in a heating pattern in which the inner region is heated.
  • FIG. 22 shows another example of a heating pattern when the phase of the W-phase coil current is shifted 180 degrees from the phase of the U-phase and V-phase coil currents.
  • current flows in the negative direction in coil 23, while current flows in the positive direction in coils 21 and 22.
  • the direction of the current is opposite in the region between coils 21 and 22, while the direction of the current is the same in the region between coils 22 and 23. Therefore, in the heating pattern shown in FIG. 22, like the heating pattern shown in FIG. 21, the outer region is heated between coils 21 and 22, and the inner region is heated between coils 22 and 23.
  • FIG. 23 is a diagram showing an example of a power supply current waveform in 180-degree mode.
  • FIG. 23 shows an example of a power supply current waveform in which the U-phase coil current is shifted 180 degrees relative to the V-phase and W-phase coil currents.
  • each converter Even when each converter is driven in the 180 degree mode, as in the synchronous mode, each converter directly converts the power supply currents IU , IV , and IW into high-frequency AC without converting them into DC. Therefore, the distortion of each power supply current is very small, as shown in Fig. 23. Note that, even when the V-phase coil current and the W-phase coil current are shifted by 180 degrees, the distortion of the power supply currents IU , IV , and IW is also very small.
  • FIG. 24 is a schematic diagram showing the coil arrangement in a modified example of the third embodiment.
  • three coils 21, 22, and 23 are arranged in an L-shape.
  • the distance D between the centers of adjacent coils is within the diameter d of each coil.
  • the three converters 11, 12, and 13 can be driven in the synchronous mode or 180-degree mode described above. In this case, if the direction of the coil current is the same between two adjacent coils, the inner region is heated. Conversely, if the direction of the coil current is opposite, the outer region is heated.
  • the three converters 11, 12, and 13 directly convert the power supply currents IU , IV , and IW into high-frequency AC without converting them into DC. Therefore, in this modification as well, the distortion of each power supply current is extremely small.
  • the converters 11 to 13 convert the power supply currents IU to IW into the output currents IUOUT to IWOUT , the output currents IUOUT to IWOUT are directly converted into harmonic AC without passing through DC, thereby making it possible to suppress distortion of the power supply currents IU to IW .
  • the converters 11 to 13 have a circuit configuration that does not require a diode rectifier or smoothing capacitor to convert the power supply current of the three-phase AC power supply 30 to DC. This makes it possible to miniaturize the converters 11 to 13.
  • the three coils 21, 22, and 23 are arranged in a line or in an L-shape.
  • each converter may be a matrix converter configured with bidirectional switches connected to each phase of the three-phase AC power supply 30.
  • This bidirectional switch is configured with two semiconductor switches connected in series in the opposite directions, such as the second semiconductor switch S U 2 and the third semiconductor switch S U 3 shown in Fig. 3.
  • each converter may be a converter in which this bidirectional switch is provided in a chopper circuit.
  • each converter may be any circuit configuration that converts the power supply current of the three-phase AC power supply 30 into harmonic AC without converting it into DC. Therefore, each converter may have a circuit configuration including an inverter circuit and an AC/DC converter.
  • the inverter circuit includes two arms connected in series, such as the first semiconductor switch S U 1 and the second semiconductor switch S U 2 shown in FIG. 3.
  • the AC/DC converter is, for example, a diode rectifier. In this case, the capacity of the capacitor connected between the inverter circuit and the AC/DC converter is reduced so as not to smooth the power supply current, thereby making it possible to directly convert the power supply current into high-frequency AC while leaving the AC component of the power supply current.
  • induction heating device 11-13 converter 21-23: coil 30: three-phase AC power supply 50: object to be heated S U 1, S V 1, S W 1: first semiconductor switch S U 2, S V 2, S W 2: second semiconductor switch S U 3, S V 3, S W 3: third semiconductor switch S U 4, S V 4, S W 4: fourth semiconductor switch

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Induction Heating (AREA)
  • Induction Heating Cooking Devices (AREA)

Abstract

Provided is an induction heating device capable of controlling the heating distribution of a coil while suppressing distortion of a power supply current. The heating device according to one embodiment comprises: three converters (11, 12, 13) that directly convert three power supply currents of a three-phase AC power supply (30) to three high-frequency AC currents having a frequency higher than the frequency of the power supply currents; and three coils (21, 22, 23) that heat an object (50) to be heated by means of harmonic alternating currents supplied individually from the three converters (11, 12, 13). The three coils (21, 22, 23) are disposed so that the distance between the centers thereof is not more than the diameter of the coils.

Description

誘導加熱装置Induction Heating Equipment
 本発明は、コイルの加熱分布を制御可能な誘導加熱装置に関する。 The present invention relates to an induction heating device that can control the heating distribution of a coil.
 誘導加熱の原理を用いて被加熱物を加熱する誘導加熱装置が、例えば特許文献1および特許文献2に提案されている。 Induction heating devices that use the principles of induction heating to heat objects are proposed, for example, in Patent Documents 1 and 2.
 特許文献1には、単相インバータを用いた誘導加熱式調理器が開示されている。誘導加熱式調理器では、容量が略同一の3台のインバータを三相電源に並行するように接続し,各単相インバータを同心円状に配置された3つのコイルにそれぞれ接続する。このような3台の単相インバータの組み合わせにより、高調波を低減し、干渉音を抑制できるとなっている。 Patent Document 1 discloses an induction heating cooker that uses a single-phase inverter. In the induction heating cooker, three inverters with approximately the same capacity are connected in parallel to a three-phase power source, and each single-phase inverter is connected to three coils arranged concentrically. This combination of three single-phase inverters is said to reduce harmonics and suppress interference noise.
 特許文献2には、互いに接続された2つのコイルに流れる電流の位相差を0~πの範囲で切り替えを行う誘電加熱調理器が開示されている。この誘電加熱調理器では、コイル間で電流の同期を取ることによって,被加熱物を均一に加熱することができるとなっている。 Patent Document 2 discloses a dielectric heating cooker that switches the phase difference between the currents flowing through two coils connected to each other in a range of 0 to π. In this dielectric heating cooker, the currents are synchronized between the coils, allowing the heated object to be heated evenly.
特開2012-3846号公報JP 2012-3846 A 特開2010-153060号公報JP 2010-153060 A
 特許文献1に提案された装置では、三相交流電源の電源電流が、ダイオード整流器で直流に変換された後、インバータに入力される。そのため、電源電流の歪が大きくなる場合がある。 In the device proposed in Patent Document 1, the power supply current of a three-phase AC power supply is converted to DC by a diode rectifier and then input to an inverter. This can result in significant distortion of the power supply current.
 また、特許文献2に提案された装置では、被加熱物である鍋を均一に加熱することを目的としているため、必然的にコイルの加熱分布が一様な分布に制限されてしまう。 In addition, the device proposed in Patent Document 2 aims to heat the pan, which is the object to be heated, evenly, so the heating distribution of the coil is inevitably limited to a uniform distribution.
 本発明は、電源電流の歪を抑制しつつ、コイルの加熱分布を制御することが可能な誘導加熱装置を提供することを目的とする。 The present invention aims to provide an induction heating device that can control the heating distribution of the coil while suppressing distortion of the power supply current.
 本発明の一実施形態に係る誘導加熱装置は、三相交流電源の三相の電源電流を、前記電源電流の周波数よりも高い周波数を有する3つの高周波交流へそれぞれ直接変換する3つの変換器と、
 前記3つの変換器から個別に供給された高調波交流で、被加熱物を加熱する3つのコイルと、を備え、
 前記3つのコイルは、中心間の距離がコイルの直径以内になるように配置されている。
An induction heating device according to an embodiment of the present invention includes three converters that directly convert three-phase power supply currents of a three-phase AC power supply into three high-frequency AC currents having frequencies higher than the frequency of the power supply currents;
and three coils for heating an object to be heated with harmonic alternating current supplied individually from the three converters;
The three coils are arranged so that their centers are spaced within a coil diameter.
 また、前記誘導加熱装置において、
 前記3つのコイルが三角形状に配置されていてもよい。
In addition, in the induction heating device,
The three coils may be arranged in a triangular shape.
 また、前記誘導加熱装置において、
 前記3つの変換器の各々が、高調波サイクロコンバータであり、
 前記高調波サイクロコンバータが、互いに直列に接続された第1半導体スイッチおよび第2半導体スイッチと、前記第1半導体スイッチおよび前記第2半導体スイッチと逆方向で互いに直列に接続された第3半導体スイッチおよび第4半導体スイッチと、を含んでいてもよい。
In addition, in the induction heating device,
each of the three converters is a harmonic cycloconverter;
The harmonic cycloconverter may include a first semiconductor switch and a second semiconductor switch connected in series to each other, and a third semiconductor switch and a fourth semiconductor switch connected in series to each other in the opposite direction to the first semiconductor switch and the second semiconductor switch.
 また、前記誘導加熱装置において、
 前記第1乃至第4半導体スイッチは、各々のゲートに入力されるゲート信号のレベルに応じてオン状態またはオフ状態に切り替わり、
 前記第1半導体スイッチがオン状態の時に、前記第2半導体スイッチがオフ状態、前記第3半導体スイッチがオン状態、前記第4半導体スイッチがオフ状態であり、
 前記第1半導体スイッチがオフ状態の時に、前記第2半導体スイッチがオン状態、前記第3半導体スイッチがオフ状態、前記第4半導体スイッチがオン状態となってもよい。
In addition, in the induction heating device,
The first to fourth semiconductor switches are switched to an on state or an off state according to a level of a gate signal input to each gate,
When the first semiconductor switch is in an on state, the second semiconductor switch is in an off state, the third semiconductor switch is in an on state, and the fourth semiconductor switch is in an off state;
When the first semiconductor switch is in an off state, the second semiconductor switch may be in an on state, the third semiconductor switch may be in an off state, and the fourth semiconductor switch may be in an on state.
 また、前記誘導加熱装置において、
 前記3つの変換器の間で、コイル電流の位相差が120度であってもよい。
In addition, in the induction heating device,
The phase difference of the coil currents among the three converters may be 120 degrees.
 また、前記誘導加熱装置において、
 前記3つのコイルの中心が正三角形の頂点に配置されていてもよい。
In addition, in the induction heating device,
The centres of the three coils may be located at the vertices of an equilateral triangle.
 また、前記誘導加熱装置において、
 前記3つのコイルの一部が互いに重なっていてもよい。
In addition, in the induction heating device,
The three coils may partially overlap each other.
 また、前記誘導加熱装置において、
 前記3つのコイルが、一列に配置されていてもよい。
In addition, in the induction heating device,
The three coils may be arranged in a row.
 また、前記誘導加熱装置において、
 前記3つのコイルが、L字型に配置されていてもよい。
In addition, in the induction heating device,
The three coils may be arranged in an L-shape.
 また、前記誘導加熱装置において、
 前記3つのコイルの間で、コイル電流の位相が同じであってもよい。
In addition, in the induction heating device,
The phase of the coil current may be the same among the three coils.
 また、前記誘導加熱装置において、
 前記3つのコイルのうち、隣り合う2つのコイル間で、コイル電流の位相差が0度または180度であってもよい。
In addition, in the induction heating device,
Of the three coils, a phase difference between coil currents of two adjacent coils may be 0 degrees or 180 degrees.
 本発明によれば、電源電流の歪を抑制しつつ、コイルの発熱分布を制御することが可能な誘導加熱装置をすることができる。 The present invention provides an induction heating device that can control the heat distribution of the coil while suppressing distortion of the power supply current.
第1実施形態に係る誘導加熱装置の概略的な構成を示すブロック図である。1 is a block diagram showing a schematic configuration of an induction heating device according to a first embodiment. コイル配置の他の一例を示す模式図である。FIG. 13 is a schematic diagram showing another example of a coil arrangement. 第1実施形態に係る誘導加熱装置の等価回路を示す図である。FIG. 2 is a diagram showing an equivalent circuit of the induction heating device according to the first embodiment. 第1実施形態に係る半導体スイッチのゲート信号のタイミングチャートである。4 is a timing chart of a gate signal of the semiconductor switch according to the first embodiment. 第1実施形態における電源電流の波形の一例を示す図である。FIG. 4 is a diagram showing an example of a waveform of a power supply current in the first embodiment. 第1実施形態における変換器の出力電流の振幅波形および向きを示す図である。5A to 5C are diagrams illustrating the amplitude waveform and direction of an output current of the converter in the first embodiment. 第1実施形態におけるコイルの加熱パターン例を示す図である。5A to 5C are diagrams illustrating an example of a heating pattern of a coil in the first embodiment. 第2実施形態に係る半導体スイッチのゲート信号のタイミングチャートである。10 is a timing chart of a gate signal of a semiconductor switch according to a second embodiment. 第2実施形態における電源電流の波形の一例を示す図である。FIG. 11 is a diagram showing an example of a waveform of a power supply current in the second embodiment. 第2実施形態における変換器の出力電流の振幅波形および向きを示す図である。13A to 13C are diagrams showing the amplitude waveform and direction of the output current of the converter in the second embodiment. 第2実施形態におけるコイルの加熱パターン例を示す図である。13A and 13B are diagrams illustrating an example of a heating pattern of a coil in the second embodiment. コイルの加熱分布の実験結果を示す図である。FIG. 13 is a diagram showing experimental results of heating distribution of a coil. 第3実施形態におけるコイル配置を示す模式図である。FIG. 13 is a schematic diagram showing a coil arrangement in a third embodiment. 第3実施形態においてコイル電流の向きが全て正のときの加熱パターンの一例を示す図である。FIG. 13 is a diagram showing an example of a heating pattern when the directions of coil currents are all positive in the third embodiment. 第3実施形態においてコイル電流の向きが全て負のときの加熱パターンの一例を示す図である。FIG. 13 is a diagram showing an example of a heating pattern when the directions of coil currents are all negative in the third embodiment. 同期モードにおける電源電流の波形の一例を示す図である。FIG. 13 is a diagram showing an example of a waveform of a power supply current in a synchronous mode. U相のコイル電流の位相をV相およびW相のコイル電流の位相から180度シフトしたときの加熱パターンの一例を示す図である。13 is a diagram showing an example of a heating pattern when the phase of the U-phase coil current is shifted 180 degrees from the phases of the V-phase and W-phase coil currents. FIG. U相のコイル電流の位相をV相およびW相のコイル電流の位相から180度シフトしたときの加熱パターンの別の一例を示す図である。FIG. 11 is a diagram showing another example of a heating pattern when the phase of the U-phase coil current is shifted by 180 degrees from the phases of the V-phase and W-phase coil currents. V相のコイル電流の位相をU相およびW相のコイル電流の位相から180度シフトしたときの加熱パターンの一例を示す図である。13 is a diagram showing an example of a heating pattern when the phase of the V-phase coil current is shifted 180 degrees from the phases of the U-phase and W-phase coil currents. FIG. V相のコイル電流の位相をU相およびW相のコイル電流の位相から180度シフトしたときの加熱パターンの別の一例を示す図である。FIG. 13 is a diagram showing another example of a heating pattern when the phase of the V-phase coil current is shifted by 180 degrees from the phases of the U-phase and W-phase coil currents. W相のコイル電流の位相をU相およびV相のコイル電流の位相から180度シフトしたときの加熱パターンの一例を示す図である。13 is a diagram showing an example of a heating pattern when the phase of the W-phase coil current is shifted 180 degrees from the phases of the U-phase and V-phase coil currents. FIG. W相のコイル電流の位相をU相およびV相のコイル電流の位相から180度シフトしたときの加熱パターンの別の一例を示す図である。FIG. 13 is a diagram showing another example of a heating pattern when the phase of the W-phase coil current is shifted by 180 degrees from the phases of the U-phase and V-phase coil currents. 180度モードにおける電源電流の波形の一例を示す図である。FIG. 13 is a diagram showing an example of a waveform of a power supply current in a 180-degree mode. 第3実施形態の変形例におけるコイル配置を示す模式図である。FIG. 13 is a schematic diagram showing a coil arrangement in a modified example of the third embodiment.
 以下、本発明に係る実施形態について図面を参照しながら説明する。なお、各図においては、同等の機能を有する構成要素に同一の符号を付している。 Below, an embodiment of the present invention will be described with reference to the drawings. In each drawing, components having equivalent functions are given the same reference numerals.
 (第1実施形態)
 図1は、第1実施形態に係る誘導加熱装置の概略的な構成を示すブロック図である。図1に示す誘導加熱装置1は、3つの変換器11、12、13と、3つのコイル21、22、23と、を備える。
First Embodiment
Fig. 1 is a block diagram showing a schematic configuration of an induction heating device according to a first embodiment. The induction heating device 1 shown in Fig. 1 includes three converters 11, 12, and 13, and three coils 21, 22, and 23.
 3つの変換器11、12、13は、三相交流電源30の三相の電源電流を、前記電源電流の周波数よりも高い周波数を有する3つの高周波交流へそれぞれ直接変換する。具体的には、変換器11は、U相の電源電流Iを高周波交流へ直接変換し、変換器12は、V相の電源電流Iを高周波交流へ直接変換し、変換器13は、W相の電源電流Iを高周波交流へ直接変換する。なお、電源電流の周波数は、例えば50Hzまたは60Hzである。一方、高周波交流の周波数は、例えば20kHzである。 The three converters 11, 12, and 13 directly convert the three-phase power supply current of the three-phase AC power supply 30 into three high-frequency AC currents having frequencies higher than the frequency of the power supply currents. Specifically, the converter 11 directly converts the U-phase power supply current IU into a high-frequency AC current, the converter 12 directly converts the V-phase power supply current IV into a high-frequency AC current, and the converter 13 directly converts the W-phase power supply current IW into a high-frequency AC current. The frequency of the power supply current is, for example, 50 Hz or 60 Hz. On the other hand, the frequency of the high-frequency AC current is, for example, 20 kHz.
 3つのコイル21、22、23は、3つの変換器11、12、13から個別に供給された高調波交流で、被加熱物50を加熱する。被加熱物50は、例えば金属板である。また、本実施形態では、コイル21は、共振コンデンサ41を介して変換器11に接続されている。また、コイル22は、共振コンデンサ42を介して変換器12に接続されている。さらに、コイル23は、共振コンデンサ43を介して変換器13に接続されている。3つのコイル21、22、23の巻数および巻線方向は同じである。また、共振コンデンサ41、42、43の容量値も同じである。 The three coils 21, 22, and 23 heat the object to be heated 50 with harmonic alternating current supplied individually from the three converters 11, 12, and 13. The object to be heated 50 is, for example, a metal plate. In this embodiment, the coil 21 is connected to the converter 11 via a resonant capacitor 41. The coil 22 is connected to the converter 12 via a resonant capacitor 42. The coil 23 is connected to the converter 13 via a resonant capacitor 43. The three coils 21, 22, and 23 have the same number of turns and winding direction. The capacitance values of the resonant capacitors 41, 42, and 43 are also the same.
 本実施形態では、図1に示すように、3つのコイル21、22、23は、三角形状に配置されている。具体的には、各コイルの中心O、O、Oが正三角形の頂点に配置されている。なお、本実施形態では、中心間の距離Dが、各コイルの直径d以内になるように、3つのコイル21、22、23が、最も外側の巻線で接する配置となっているが、本発明では、この配置に限定されない。 In this embodiment, the three coils 21, 22, and 23 are arranged in a triangular shape as shown in Fig. 1. Specifically, the centers O1 , O2 , and O3 of the coils are arranged at the vertices of an equilateral triangle. Note that in this embodiment, the three coils 21, 22, and 23 are arranged so that the outermost windings of the coils are in contact with each other so that the distance D between the centers is within the diameter d of each coil, but the present invention is not limited to this arrangement.
 図2は、コイル配置の他の一例を示す模式図である。図2では、3つのコイル21、22、23は、各々の一部が互いに重なるように配置されている。3つのコイル21、22、23が図2に示すように配置されると、各コイル間の結合係数(クロスカップリング)が極小化する場合がある。この場合、電源電流の歪みを低減できるようになる。なお、この結合係数を極力小さくするために、被加熱物50とのコイル21、22、および23との空間距離を小さくすることが望ましい。 FIG. 2 is a schematic diagram showing another example of coil arrangement. In FIG. 2, three coils 21, 22, 23 are arranged so that each coil partially overlaps with the other. When the three coils 21, 22, 23 are arranged as shown in FIG. 2, the coupling coefficient (cross-coupling) between each coil may be minimized. In this case, it is possible to reduce distortion of the power supply current. Note that in order to minimize this coupling coefficient, it is desirable to reduce the spatial distance between the heated object 50 and the coils 21, 22, and 23.
 図3は、第1実施形態に係る誘導加熱装置1の等価回路を示す図である。本実施形態では、変換器11、12、13は、高周波サイクロコンバータで構成される。 FIG. 3 is a diagram showing an equivalent circuit of the induction heating device 1 according to the first embodiment. In this embodiment, the converters 11, 12, and 13 are composed of high-frequency cycloconverters.
 具体的には、変換器11は、第1半導体スイッチS1~第4半導体スイッチS4、第1ダイオードD1~第4ダイオードD4、および第1コンデンサC1~第6コンデンサC6を有する。また、変換器12も、変換器11と同様に、第1半導体スイッチS1~第4半導体スイッチS4、第1ダイオードD1~第4ダイオードD4、および第1コンデンサC1~第6コンデンサC6を有する。さらに、変換器13も、変換器11と同様に、第1半導体スイッチS1~第4半導体スイッチS4、第1ダイオードD1~第4ダイオードD4、および第1コンデンサC1~第6コンデンサC6を有する。 Specifically, the converter 11 has a first semiconductor switch S U1 to a fourth semiconductor switch S U4 , a first diode D U1 to a fourth diode D U4 , and a first capacitor C U1 to a sixth capacitor C U6 . Similarly to the converter 11, the converter 12 also has a first semiconductor switch S V1 to a fourth semiconductor switch S V4 , a first diode D V1 to a fourth diode D V4 , and a first capacitor C V1 to a sixth capacitor C V6 . Similarly to the converter 11, the converter 13 also has a first semiconductor switch S W1 to a fourth semiconductor switch S W4 , a first diode D W1 to a fourth diode D W4 , and a first capacitor C W1 to a sixth capacitor C W6 .
 図3に示すように、変換器11、12、13の回路構成は、全て同じである。そのため、ここでは、変換器11の回路構成のみを説明し、変換器12および変換器13の回路構成の説明を省略する。 As shown in FIG. 3, the circuit configurations of converters 11, 12, and 13 are all the same. Therefore, only the circuit configuration of converter 11 will be described here, and the description of the circuit configurations of converters 12 and 13 will be omitted.
 本実施形態では、第1半導体スイッチS1~第4半導体スイッチS4は、Nチャネル型のMOSFET(Metal Oxide Semiconductor Field Effect Transistor)である。ただし、各半導体スイッチは、MOSFETに限定されず、例えばIGBT(Insulated Gate Bipolar Transistor)等の他の半導体素子であってもよい。 In this embodiment, the first semiconductor switch S U 1 to the fourth semiconductor switch S U 4 are N-channel type Metal Oxide Semiconductor Field Effect Transistors (MOSFETs). However, each semiconductor switch is not limited to a MOSFET and may be another semiconductor element such as an IGBT (Insulated Gate Bipolar Transistor).
 第1半導体スイッチS1および第2半導体スイッチS2は、直列に接続されている。具体的には、第1半導体スイッチS1のドレインは、三相交流電源30に接続され、第1半導体スイッチS1のソースは、第2半導体スイッチSU2のドレインに接続されている。第2半導体スイッチS2のソースは、第3半導体スイッチS3のソースに接続されている。 The first semiconductor switch S U1 and the second semiconductor switch S U2 are connected in series. Specifically, the drain of the first semiconductor switch S U1 is connected to the three-phase AC power supply 30, and the source of the first semiconductor switch S U1 is connected to the drain of the second semiconductor switch S U2 . The source of the second semiconductor switch S U2 is connected to the source of the third semiconductor switch S U3 .
 第3半導体スイッチS3および第4半導体スイッチS4は、第1半導体スイッチS1および第2半導体スイッチS2とは逆方向で直列に接続されている。具体的には、第3半導体スイッチS3のドレインは、第4半導体スイッチS4のソースに接続されている。第4半導体スイッチS4のドレインは、第4半導体スイッチS4および第4半導体スイッチS4の各々のドレインに接続されている。 The third semiconductor switch S U3 and the fourth semiconductor switch S U4 are connected in series in the opposite direction to the first semiconductor switch S U1 and the second semiconductor switch S U2 . Specifically, the drain of the third semiconductor switch S U3 is connected to the source of the fourth semiconductor switch S U4 . The drain of the fourth semiconductor switch S U4 is connected to the drains of the fourth semiconductor switch S V4 and the fourth semiconductor switch S W4 .
 第1半導体スイッチS1のソースおよび第2半導体スイッチS2のドレインの接続点と、第3半導体スイッチS3のドレインおよび第4半導体スイッチS4のソースの接続点との間には、共振コンデンサ41、コイル21、および抵抗素子Rが直列に接続される。抵抗素子Rは、コイル21~コイル23によって加熱される被加熱物50の電気抵抗に相当する。共振コンデンサ41、コイル21、および抵抗素子Rは、変換器11の負荷回路に相当する。 A resonant capacitor 41, a coil 21, and a resistive element R are connected in series between the connection point of the source of the first semiconductor switch S U1 and the drain of the second semiconductor switch S U2 and the connection point of the drain of the third semiconductor switch S U3 and the source of the fourth semiconductor switch S U4 . The resistive element R corresponds to the electrical resistance of the object 50 to be heated by the coils 21 to 23. The resonant capacitor 41, the coil 21, and the resistive element R correspond to the load circuit of the converter 11.
 第1ダイオードD1~第4ダイオードD4は、第1半導体スイッチS1~第4半導体スイッチS4のドレイン―ソース間にそれぞれ逆並列に接続されている。第1ダイオードD1~第4ダイオードD4は、各半導体スイッチがオフ状態のときにコイル21に蓄積されたエネルギを三相交流電源30へ還流する還流ダイオードである。 The first diode D U1 to the fourth diode D U4 are connected in anti-parallel between the drain-source of the first semiconductor switch S U1 to the fourth semiconductor switch S U4 , respectively. The first diode D U1 to the fourth diode D U4 are return diodes that return the energy stored in the coil 21 to the three-phase AC power supply 30 when each semiconductor switch is in the off state.
 第1コンデンサC1~第4コンデンサC4の一端は、第1ダイオードD1~第4ダイオードD4のアノードにそれぞれ接続され、他端は、第1ダイオードD1~第4ダイオードD4のカソードにそれぞれ接続されている。また、第5コンデンサC5の一端は、第1半導体スイッチS1のドレインに接続され、他端は、第2半導体スイッチS2および第3半導体スイッチS3の各々のソースに接続されている。さらに、第6コンデンサC6の一端は、第5コンデンサC5の他端と、第2半導体スイッチS2および第3半導体スイッチS3の各々のソースとに接続されている。第6コンデンサC6の他端は、第4半導体スイッチS4のドレインに接続されている。 One end of the first capacitor C U1 to the fourth capacitor C U4 is connected to the anodes of the first diode D U1 to the fourth diode D U4 , respectively, and the other end is connected to the cathodes of the first diode D U1 to the fourth diode D U4 , respectively. Furthermore, one end of the fifth capacitor C U5 is connected to the drain of the first semiconductor switch S U1 , and the other end is connected to the sources of the second semiconductor switch S U2 and the third semiconductor switch S U3 . Furthermore, one end of the sixth capacitor C U6 is connected to the other end of the fifth capacitor C U5 and to the sources of the second semiconductor switch S U2 and the third semiconductor switch S U3 . The other end of the sixth capacitor C U6 is connected to the drain of the fourth semiconductor switch S U4 .
 変換器11の第1半導体スイッチS1~第4半導体スイッチS4、変換器12の第1半導体スイッチS1~第4半導体スイッチS4、および変換器13の第1半導体スイッチS1~第4半導体スイッチS4は、それぞれのゲートに入力されるゲート信号のレベルに応じてオン状態またはオフ状態に切り替わる。 The first semiconductor switch S U1 to the fourth semiconductor switch S U4 of the converter 11, the first semiconductor switch S V1 to the fourth semiconductor switch S V4 of the converter 12, and the first semiconductor switch S W1 to the fourth semiconductor switch S W4 of the converter 13 are switched to an on state or an off state depending on the level of a gate signal input to each gate.
 図4は、第1実施形態に係る半導体スイッチのゲート信号のタイミングチャートである。本実施形態では、図4に示すように、3つのコイル21、22、23の間でコイル電流の位相を同じするために、3つの変換器11、12、13の間で、ゲート信号が同位相である。例えば、変換器11の第1半導体スイッチS1のオン状態(ハイレベル)およびオフ状態(ローレベル)の信号レベルのタイミングは、変換器12の第1半導体スイッチS1および変換器13の第1半導体スイッチS1とそれぞれ同じである。第2半導体スイッチS2~第4半導体スイッチS4についても、同様である。 4 is a timing chart of gate signals of the semiconductor switches according to the first embodiment. In this embodiment, as shown in FIG. 4, in order to make the phase of the coil currents the same among the three coils 21, 22, and 23, the gate signals are in phase among the three converters 11, 12, and 13. For example, the timing of the signal levels of the on state (high level) and off state (low level) of the first semiconductor switch S U 1 of the converter 11 is the same as those of the first semiconductor switch S V 1 of the converter 12 and the first semiconductor switch S W 1 of the converter 13, respectively. The same is true for the second semiconductor switch S U 2 to the fourth semiconductor switch S U 4.
 また、3つの変換器11、12、13では、図4に示すゲート信号に基づいて、第1半導体スイッチS1、S1、S1がオン状態の時に、第2半導体スイッチS2、S2、S2がオフ状態であり、第3半導体スイッチS3、S3、S3がオン状態であり、第4半導体スイッチS4、S4、S4がオフ状態である。反対に、第1半導体スイッチS1、S1、S1がオフ状態の時に、第2半導体スイッチS2、S2、S2がオン状態であり、第3半導体スイッチS3、S3、S3がオフ状態であり、第4半導体スイッチS4、S4、S4がオン状態である。 4, when the first semiconductor switches S U1 , S V1 , and S W1 are on, the second semiconductor switches S U2, S V2, and S W2 are off, the third semiconductor switches S U3 , S V3 , and S W3 are on, and the fourth semiconductor switches S U4 , S V4 , and S W4 are off. Conversely, when the first semiconductor switches S U1 , S V1 , and S W1 are off, the second semiconductor switches S U2 , S V2 , and S W2 are on, the third semiconductor switches S U3 , S V3 , and S W3 are off, and the fourth semiconductor switches S U4 , S V4 , and S W4 are on .
 図5は、第1実施形態における電源電流の波形の一例を示す図である。図5には、U相の電源電流I、V相の電源電流I、およびW相の電源電流Iが示されている。電源電流Iは、変換器11の入力電流である。電源電流Iは、変換器12の入力電流である。電源電流Iは、変換器13の入力電流である。 Fig. 5 is a diagram showing an example of the waveforms of the power supply currents in the first embodiment. Fig. 5 shows the U-phase power supply current IU , the V-phase power supply current IV , and the W-phase power supply current IW . The power supply current IU is the input current of the converter 11. The power supply current IV is the input current of the converter 12. The power supply current IW is the input current of the converter 13.
 本実施形態では、各変換器は、電源電流I、I、Iを直流に変換することなく高周波交流に直接変換している。そのため、図5に示すように、各電源電流の歪が非常に小さくなる。 In this embodiment, each converter directly converts the power supply currents IU , IV , and IW into high-frequency AC without converting them into DC, so that the distortion of each power supply current is extremely small, as shown in FIG.
 電源電流I、I、Iが変換器11、12、13に入力されると、変換器11、12、13の各半導体スイッチは、図4に示すゲート信号に基づいてスイッチングする。その結果、出力電流IUOUT、IVOUT、IWOUTが高周波交流として変換器11、12、13からそれぞれ出力される。 When the power supply currents IU , IV , and IW are input to the converters 11, 12, and 13, the semiconductor switches of the converters 11, 12, and 13 are switched on and off based on the gate signals shown in Fig. 4. As a result, output currents IUOUT , IVOUT , and IWOUT are output from the converters 11, 12, and 13, respectively, as high-frequency AC currents.
 図6は、第1実施形態における変換器11、12、13の出力電流IUOUT、IVOUT、IWOUTの振幅波形および向きを示す図である。本実施形態では、3つの変換器11、12、13の間で、第1半導体スイッチS1、S1、S1~第4半導体スイッチS4、S4、S4のゲート信号が同位相である。そのため、図6に示すように、出力電流IUOUT、IVOUT、IWOUTの位相も同じになる。出力電流IUOUT、IVOUT、IWOUTは、3つのコイル21、22、23に個別に供給される。その結果、各コイルを流れるコイル電流の向きについては、3つとも正の向きとなるパターンと、3つとも負の向きになるパターンの2通りが存在する。 6 is a diagram showing the amplitude waveforms and directions of the output currents I UOUT , I VOUT , and I WOUT of the converters 11, 12, and 13 in the first embodiment. In this embodiment, the gate signals of the first semiconductor switches S U1 , S V1 , and S W1 to the fourth semiconductor switches S U4 , S V4 , and S W4 are in phase among the three converters 11, 12, and 13. Therefore, as shown in FIG. 6, the phases of the output currents I UOUT , I VOUT , and I WOUT are also the same. The output currents I UOUT , I VOUT , and I WOUT are supplied individually to the three coils 21, 22, and 23. As a result, there are two patterns for the direction of the coil current flowing through each coil: a pattern in which all three are positive, and a pattern in which all three are negative.
 3つのコイル21、22、23は、コイル電流で被加熱物50(具体的には抵抗素子R)を加熱する。コイル電流の向きは、上記のように1周期で2通り存在する。これにより、3つのコイル21、22、23による加熱パターンも、2通り存在する。ここで、図7(a)および図7(b)を参照して、3つのコイル21、22、23による加熱パターンについて説明する。 The three coils 21, 22, and 23 heat the object to be heated 50 (specifically, the resistive element R) with coil current. As described above, there are two different directions of the coil current in one period. As a result, there are also two different heating patterns using the three coils 21, 22, and 23. Here, the heating patterns using the three coils 21, 22, and 23 will be explained with reference to Figures 7(a) and 7(b).
 図7(a)は、コイル電流の向きが全て正のときの加熱パターンの一例を示す図である。コイル電流が全て正の向きに流れる場合、各コイルの内側領域、すなわち、コイル21がコイル22に対向する領域、コイル22がコイル23に対向する領域、およびコイル23がコイル21に対向する領域では、コイル電流の向きが互いに反対になる。この場合、磁界を打ち消し合う現象が生じるため、被加熱物50で誘導加熱が起こりにくくなる。一方、各コイルの外側領域では、磁界を打ち消し合う現象が生じないため、被加熱物50で誘導加熱が発生する。したがって、コイル電流の向きが全て正のときには、図7(a)に示すように、各コイルの外側領域を加熱する加熱パターンとなる。 FIG. 7(a) is a diagram showing an example of a heating pattern when all coil currents flow in the positive direction. When all coil currents flow in the positive direction, the coil currents flow in the opposite directions in the inner regions of each coil, i.e., the region where coil 21 faces coil 22, the region where coil 22 faces coil 23, and the region where coil 23 faces coil 21. In this case, the magnetic fields cancel each other out, making it difficult for induction heating to occur in the object to be heated 50. On the other hand, in the outer regions of each coil, the magnetic fields do not cancel each other out, so induction heating occurs in the object to be heated 50. Therefore, when all coil currents flow in the positive direction, a heating pattern is obtained in which the outer regions of each coil are heated, as shown in FIG. 7(a).
 図7(b)は、コイル電流の向きが全て負のときの加熱パターンの一例を示す図である。コイル電流が全て負の向きに流れる場合も、各コイルの内側領域では、コイル電流の向きが互いに反対になる。そのため、磁界を打ち消し合う現象が生じるため、被加熱物50で誘導加熱が起こりにくくなる。また、各コイルの外側領域では、磁界を打ち消し合う現象が生じないため、被加熱物50で誘導加熱が発生する。したがって、コイル電流の向きが全て負のときにも、図7(b)に示すように、各コイルの外側領域を加熱する加熱パターンとなる。 Figure 7(b) is a diagram showing an example of a heating pattern when the coil currents are all negative. Even when all coil currents flow in the negative direction, the coil currents flow in the opposite directions in the inner regions of each coil. This causes the magnetic fields to cancel each other out, making it difficult for induction heating to occur in the object to be heated 50. Furthermore, in the outer regions of each coil, the magnetic fields do not cancel each other out, so induction heating occurs in the object to be heated 50. Therefore, even when all coil currents flow in the negative direction, a heating pattern is obtained in which the outer regions of each coil are heated, as shown in Figure 7(b).
 第1実施形態では、図7(a)に示す加熱パターンと、図7(b)に加熱パターンとが周期的に交互に繰り返される。その結果、コイルの外側領域が、コイルの内側領域よりも高温となる加熱分布となる。 In the first embodiment, the heating pattern shown in FIG. 7(a) and the heating pattern shown in FIG. 7(b) are periodically repeated alternately. As a result, a heating distribution is obtained in which the outer region of the coil is hotter than the inner region of the coil.
 以上説明した本実施形態によれば、変換器11~13が、電源電流I~Iを出力電流IUOUT~IWOUTに変換する際、出力電流IUOUT~IWOUTは、直流を介することなく高調波交流に直接変換される。これにより、電源電流I~Iの歪を抑制することが可能となる。特に、本実施形態では、変換器11~13は、三相交流電源30の電源電流を直流に変換するダイオード整流器や平滑コンデンサを不要とする回路構成である。そのため、変換器11~13を小型化することが可能となる。 According to the present embodiment described above, when the converters 11 to 13 convert the power supply currents IU to IW into the output currents IUOUT to IWOUT , the output currents IUOUT to IWOUT are directly converted into harmonic AC without passing through DC. This makes it possible to suppress distortion of the power supply currents IU to IW . In particular, in this embodiment, the converters 11 to 13 have a circuit configuration that does not require a diode rectifier or a smoothing capacitor that converts the power supply current of the three-phase AC power supply 30 into DC. This makes it possible to miniaturize the converters 11 to 13.
 また、本実施形態では、3つのコイル21、22、23が三角形状に配置されている。そして、各コイルを流れる電流が同位相に設定されている。これにより、コイル21~23の加熱分布を、各コイルの外側領域が各コイルの内側領域よりも高温になる加熱分布に制御することが可能となる。 In addition, in this embodiment, the three coils 21, 22, and 23 are arranged in a triangular shape. The currents flowing through each coil are set to be in phase. This makes it possible to control the heating distribution of the coils 21 to 23 so that the outer regions of each coil are hotter than the inner regions of each coil.
 (第2実施形態)
 本発明の第2実施形態について説明する。本実施形態に係る誘導加熱装置は、第1実施形態に係る誘導加熱装置1と同様に、3つの変換器11、12、13と、3つのコイル21、22、23と、を備える。また、変換器11、12、13は、図3に示すように、高周波サイクロコンバータで構成される。その一方で、本実施形態では、3つのコイル21、22、23の間でコイル電流の位相差を120度にするために、3つの変換器11、12、13の間で、各半導体スイッチのゲート信号の位相差が、120度である。ここで、図8を参照して、第2実施形態に係る半導体スイッチのゲート信号について説明する。
Second Embodiment
A second embodiment of the present invention will be described. The induction heating device according to this embodiment includes three converters 11, 12, and 13 and three coils 21, 22, and 23, similar to the induction heating device 1 according to the first embodiment. The converters 11, 12, and 13 are configured with high-frequency cycloconverters, as shown in FIG. 3. Meanwhile, in this embodiment, in order to set the phase difference of the coil currents among the three coils 21, 22, and 23 to 120 degrees, the phase difference of the gate signals of the semiconductor switches among the three converters 11, 12, and 13 is 120 degrees. Here, the gate signals of the semiconductor switches according to the second embodiment will be described with reference to FIG. 8.
 図8は、第2実施形態に係る半導体スイッチのゲート信号のタイミングチャートである。本実施形態では、図4に示すように、変換器11の第1半導体スイッチS1~第4半導体スイッチS4の各々のゲート信号と、変換器12の第1半導体スイッチS1~第4半導体スイッチS4の各々のゲート信号との位相差は、120度である。また、変換器11の第1半導体スイッチS1~第4半導体スイッチS4の各々のゲート信号と、変換器13の第1半導体スイッチS1~第4半導体スイッチS4の各々のゲート信号との位相差は、240度である。換言すると、変換器12の第1半導体スイッチS1~第4半導体スイッチS4の各々のゲート信号と、変換器13の第1半導体スイッチS1~第4半導体スイッチS4の各々のゲート信号との位相差は、120度である。 8 is a timing chart of the gate signals of the semiconductor switches according to the second embodiment. In this embodiment, as shown in FIG. 4, the phase difference between the gate signals of the first semiconductor switch S U 1 to the fourth semiconductor switch S U 4 of the converter 11 and the gate signals of the first semiconductor switch S V 1 to the fourth semiconductor switch S V 4 of the converter 12 is 120 degrees. Also, the phase difference between the gate signals of the first semiconductor switch S U 1 to the fourth semiconductor switch S U 4 of the converter 11 and the gate signals of the first semiconductor switch S W 1 to the fourth semiconductor switch S W 4 of the converter 13 is 240 degrees. In other words, the phase difference between the gate signals of the first semiconductor switch S V 1 to the fourth semiconductor switch S V 4 of the converter 12 and the gate signals of the first semiconductor switch S W 1 to the fourth semiconductor switch S W 4 of the converter 13 is 120 degrees.
 なお、変換器11では、図8に示すゲート信号に基づいて、第1半導体スイッチS1がオン状態の時に、第2半導体スイッチS2がオフ状態であり、第3半導体スイッチS3がオン状態であり、第4半導体スイッチS4がオフ状態である。反対に、第1半導体スイッチS1がオフ状態の時に、第2半導体スイッチS2がオン状態であり、第3半導体スイッチS3がオフ状態であり、第4半導体スイッチS4がオン状態である。変換器12および変換器13でも、図8に示すゲート信号に基づいて、各半導体スイッチは、変換器11と同様にオン状態またはオフ状態に切り替わる。 In the converter 11, when the first semiconductor switch S U 1 is on, the second semiconductor switch S U 2 is off, the third semiconductor switch S U 3 is on, and the fourth semiconductor switch S U 4 is off based on the gate signals shown in Fig. 8. Conversely, when the first semiconductor switch S U 1 is off, the second semiconductor switch S U 2 is on, the third semiconductor switch S U 3 is off, and the fourth semiconductor switch S U 4 is on. In the converters 12 and 13, the semiconductor switches are switched on or off based on the gate signals shown in Fig. 8 in the same manner as in the converter 11.
 図9は、第2実施形態における電源電流の波形の一例を示す図である。本実施形態でも第1実施形態と同様に、各変換器は、図3に示す高周波サイクロコンバータで構成される。そのため、各変換器は、電源電流I、I、Iを直流に変換することなく高周波交流に直接変換している。そのため、本実施形態においても、図9に示すように、各電源電流の歪が非常に小さくなる。 Fig. 9 is a diagram showing an example of the waveform of the power supply current in the second embodiment. In this embodiment, as in the first embodiment, each converter is configured with a high-frequency cycloconverter as shown in Fig. 3. Therefore, each converter directly converts the power supply currents IU , IV , IW into high-frequency AC without converting them into DC. Therefore, in this embodiment as well, the distortion of each power supply current is very small as shown in Fig. 9.
 電源電流I、I、Iが変換器11、12、13に入力されると、変換器11、12、13の各半導体スイッチは、図8に示すゲート信号に基づいてスイッチングする。その結果、出力電流IUOUT、IVOUT、IWOUTが高周波交流として変換器11、12、13からそれぞれ出力される。 When the power supply currents IU , IV , and IW are input to the converters 11, 12, and 13, the semiconductor switches of the converters 11, 12, and 13 are switched on and off based on the gate signals shown in Fig. 8. As a result, output currents IUOUT , IVOUT , and IWOUT are output from the converters 11, 12, and 13, respectively, as high-frequency AC currents.
 図10は、第2実施形態における変換器11、12、13の出力電流IUOUT、IVOUT、IWOUTの振幅波形および向きを示す図である。本実施形態では、3つの変換器11、12、13の間で、第1半導体スイッチS1、S1、S1~第4半導体スイッチS4、S4、S4のゲート信号の位相が120度である。そのため、図10に示すように、出力電流IUOUT、IVOUT、IWOUTの位相差も120度になる。その結果、各コイルを流れるコイル電流の向きについては、図10に示すように、3つのコイル電流のうちの2つが正の向きになる3つのパターンと、3つのコイル電流のうちの2つが負の向きになる3つのパターンとを加算した6通りが存在する。 10 is a diagram showing the amplitude waveforms and directions of the output currents I UOUT , I VOUT , and I WOUT of the converters 11, 12, and 13 in the second embodiment. In this embodiment, the phase of the gate signals of the first semiconductor switches S U1 , S V1 , and S W1 to the fourth semiconductor switches S U4 , S V4 , and S W4 is 120 degrees among the three converters 11, 12, and 13. Therefore, as shown in FIG. 10, the phase difference of the output currents I UOUT , I VOUT , and I WOUT is also 120 degrees. As a result, there are six possible directions of the coil currents flowing through each coil, including three patterns in which two of the three coil currents are positive and three patterns in which two of the three coil currents are negative, as shown in FIG. 10.
 3つのコイル21、22、23は、コイル電流で被加熱物50(具体的には抵抗素子R)を加熱する。コイル電流の向きは、上記のように6通り存在する。これにより、3つのコイル21、22、23による加熱パターンも、6通り存在する。ここで、図11(a)~図11(f)を参照して、3つのコイル21、22、23による加熱パターンについて説明する。 The three coils 21, 22, and 23 heat the object to be heated 50 (specifically, the resistive element R) with coil current. As described above, there are six possible directions of the coil current. As a result, there are six possible heating patterns using the three coils 21, 22, and 23. Here, the heating patterns using the three coils 21, 22, and 23 will be explained with reference to Figures 11(a) to 11(f).
 図11(a)は、コイル21、23を流れる電流の向きが正であり、コイル22を流れる電流の向きが負であるときの加熱パターンの一例を示す図である。この場合、コイル21の外側領域およびコイル23の外側領域は加熱される。また、コイル21およびコイル22が対向する領域と、コイル22およびコイル23が対向する領域では、コイル電流の向きが同じになる。そのため、これらの領域も加熱される。一方、コイル21およびコイル23が対向する領域では、コイル電流の向きが互いに反対になる。そのため、この領域では、磁界を打ち消し合う現象が生じるため、被加熱物50で誘導加熱が起こりにくくなる。 FIG. 11(a) shows an example of a heating pattern when the direction of the current flowing through coils 21 and 23 is positive and the direction of the current flowing through coil 22 is negative. In this case, the outer regions of coil 21 and coil 23 are heated. Furthermore, the direction of the coil current is the same in the region where coils 21 and 22 face each other and the region where coils 22 and 23 face each other. Therefore, these regions are also heated. On the other hand, in the region where coils 21 and 23 face each other, the directions of the coil current are opposite to each other. Therefore, in this region, the magnetic fields cancel each other out, making it difficult for induction heating to occur in the heated object 50.
 図11(b)は、コイル21を流れる電流の向きが正であり、コイル22、23を流れる電流の向きが負であるときの加熱パターンの一例を示す図である。この場合、コイル22の外側領域およびコイル23の外側領域は加熱される。また、コイル21がコイル22およびコイル23とそれぞれ対向する領域では、コイル電流の向きが同じになるため、これらの領域も加熱される。一方、コイル22およびコイル23が対向する領域では、コイル電流の向きが互いに反対になるため、被加熱物50で誘導加熱が起こりにくくなる。 Figure 11 (b) shows an example of a heating pattern when the direction of the current flowing through coil 21 is positive and the direction of the current flowing through coils 22 and 23 is negative. In this case, the outer regions of coil 22 and coil 23 are heated. Furthermore, in the regions where coil 21 faces coils 22 and 23, the coil current flows in the same direction, so these regions are also heated. On the other hand, in the region where coils 22 and 23 face each other, the coil current flows in opposite directions, so induction heating is less likely to occur in object to be heated 50.
 図11(c)は、コイル21、22を流れる電流の向きが正であり、コイル23を流れる電流の向きが負であるときの加熱パターンの一例を示す図である。この場合、コイル21の外側領域およびコイル22の外側領域は加熱される。また、コイル23がコイル21およびコイル22とそれぞれ対向する領域では、コイル電流の向きが同じになるため、これらの領域も加熱される。一方、コイル21およびコイル22が対向する領域では、コイル電流の向きが互いに反対になるため、被加熱物50で誘導加熱が起こりにくくなる。 Figure 11 (c) shows an example of a heating pattern when the direction of the current flowing through coils 21 and 22 is positive and the direction of the current flowing through coil 23 is negative. In this case, the outer regions of coil 21 and coil 22 are heated. Furthermore, in the regions where coil 23 faces coils 21 and 22, the coil current flows in the same direction, so these regions are also heated. On the other hand, in the region where coils 21 and 22 face each other, the coil current flows in opposite directions, so induction heating is less likely to occur in object to be heated 50.
 図11(d)は、コイル22を流れる電流の向きが正であり、コイル21、23を流れる電流の向きが負であるときの加熱パターンの一例を示す図である。この場合、コイル21の外側領域およびコイル23の外側領域は加熱される。また、コイル22がコイル21およびコイル23とそれぞれ対向する領域では、コイル電流の向きが同じになるため、これらの領域も加熱される。一方、コイル21およびコイル23が対向する領域では、コイル電流の向きが互いに反対になるため、被加熱物50で誘導加熱が起こりにくくなる。 Figure 11(d) is a diagram showing an example of a heating pattern when the direction of the current flowing through coil 22 is positive and the direction of the current flowing through coils 21 and 23 is negative. In this case, the outer regions of coil 21 and coil 23 are heated. Furthermore, in the regions where coil 22 faces coils 21 and 23, the coil current flows in the same direction, so these regions are also heated. On the other hand, in the region where coils 21 and 23 face each other, the coil current flows in opposite directions, so induction heating is less likely to occur in object to be heated 50.
 図11(e)は、コイル22、23を流れる電流の向きが正であり、コイル21を流れる電流の向きが負であるときの加熱パターンの一例を示す図である。この場合、コイル22の外側領域およびコイル23の外側領域は加熱される。また、コイル21がコイル22およびコイル23とそれぞれ対向する領域では、コイル電流の向きが同じになるため、これらの領域も加熱される。一方、コイル22およびコイル23が対向する領域では、コイル電流の向きが互いに反対になるため、被加熱物50で誘導加熱が起こりにくくなる。 Figure 11(e) is a diagram showing an example of a heating pattern when the direction of the current flowing through coils 22 and 23 is positive and the direction of the current flowing through coil 21 is negative. In this case, the outer regions of coil 22 and coil 23 are heated. Furthermore, in the regions where coil 21 faces coils 22 and 23, the coil current flows in the same direction, so these regions are also heated. On the other hand, in the region where coils 22 and 23 face each other, the coil current flows in opposite directions, so induction heating is less likely to occur in object to be heated 50.
 図11(f)は、コイル23を流れる電流の向きが正であり、コイル21、22を流れる電流の向きが負であるときの加熱パターンの一例を示す図である。この場合、コイル21の外側領域およびコイル22の外側領域は加熱される。また、コイル23がコイル21およびコイル22とそれぞれ対向する領域では、コイル電流の向きが同じになるため、これらの領域も加熱される。一方、コイル21およびコイル22が対向する領域では、コイル電流の向きが互いに反対になるため、被加熱物50で誘導加熱が起こりにくくなる。 Figure 11(f) shows an example of a heating pattern when the direction of the current flowing through coil 23 is positive and the direction of the current flowing through coils 21 and 22 is negative. In this case, the outer regions of coil 21 and coil 22 are heated. Furthermore, in the regions where coil 23 faces coils 21 and 22, the coil current flows in the same direction, so these regions are also heated. On the other hand, in the region where coils 21 and 22 face each other, the coil current flows in opposite directions, so induction heating is less likely to occur in object to be heated 50.
 ここで、コイル21、22、23を、第1実施形態の加熱パターンと、第2実施形態の加熱パターンとでそれぞれ実際に加熱した実験結果について説明する。 Here, we will explain the experimental results of actually heating coils 21, 22, and 23 using the heating pattern of the first embodiment and the heating pattern of the second embodiment.
 図12(a)は、コイル21、22、23を、第1実施形態の加熱パターンで実際に加熱した時の加熱分布を示す。また、図12(b)は、コイル21、22、23を、第2実施形態の加熱パターンで実際に加熱した時の加熱分布を示す。図12(a)および図12(b)に示す加熱分布は、サーモビューアを用いて測定することができる。 FIG. 12(a) shows the heating distribution when coils 21, 22, and 23 are actually heated with the heating pattern of the first embodiment. Also, FIG. 12(b) shows the heating distribution when coils 21, 22, and 23 are actually heated with the heating pattern of the second embodiment. The heating distributions shown in FIG. 12(a) and FIG. 12(b) can be measured using a thermoviewer.
 上述した第1実施形態では、図7(a)~図7(b)に示す加熱パターンが周期的に繰り返される。そのため、図12(a)に示すように、コイルの外側領域の温度が、コイルの内側領域の温度よりも高くなる。 In the first embodiment described above, the heating patterns shown in Fig. 7(a) and Fig. 7(b) are repeated periodically. Therefore, as shown in Fig. 12(a), the temperature of the outer region of the coil becomes higher than the temperature of the inner region of the coil.
 一方、第2実施形態では、図11(a)~図11(f)に示す加熱パターンが周期的に繰り返される。これにより、コイルの外側領域および内側領域の両方が加熱されるため、図12(b)に示すように内側領域と外側領域との間における温度差が、第1実施形態よりも小さくなる加熱分布となる。このとき、内側領域では発熱源が集中しているため、内側領域が外側領域よりも高温になる加熱分布に制御することが可能となる。 In contrast, in the second embodiment, the heating patterns shown in Figures 11(a) to 11(f) are repeated periodically. As a result, both the outer and inner regions of the coil are heated, resulting in a heating distribution in which the temperature difference between the inner and outer regions is smaller than in the first embodiment, as shown in Figure 12(b). At this time, because the heat source is concentrated in the inner region, it is possible to control the heating distribution so that the inner region is hotter than the outer region.
 以上説明した本実施形態においても、第1実施形態と同様に、変換器11~13が、電源電流I~Iを出力電流IUOUT~IWOUTに変換する際、出力電流IUOUT~IWOUTは、直流を介することなく高調波交流に直接変換される。これにより、電源電流I~Iの歪を抑制することが可能となる。また、本実施形態においても、変換器11~13は、三相交流電源30の電源電流を直流に変換するダイオード整流器や平滑コンデンサを不要とする回路構成である。そのため、変換器11~13を小型化することが可能となる。 In the present embodiment described above, similarly to the first embodiment, when the converters 11 to 13 convert the power supply currents IU to IW into the output currents IUOUT to IWOUT , the output currents IUOUT to IWOUT are directly converted into harmonic AC without passing through DC. This makes it possible to suppress distortion of the power supply currents IU to IW . Also, in this embodiment, the converters 11 to 13 have a circuit configuration that does not require a diode rectifier or a smoothing capacitor that converts the power supply current of the three-phase AC power supply 30 into DC. This makes it possible to miniaturize the converters 11 to 13.
 また、第1実施形態と同様に、3つのコイル21、22、23が三角形状に配置されている。その一方で、本実施形態では、各コイルを流れる電流の位相差が120度に設定されている。これにより、コイル21~23の加熱分布を、各コイルの外側領域だけでなく各コイルの内側領域も加熱される加熱分布に制御することが可能となる。 Furthermore, as in the first embodiment, the three coils 21, 22, and 23 are arranged in a triangular shape. On the other hand, in this embodiment, the phase difference of the current flowing through each coil is set to 120 degrees. This makes it possible to control the heating distribution of the coils 21 to 23 so that not only the outer region of each coil but also the inner region of each coil is heated.
 (第3実施形態)
 本発明の第3実施形態について説明する。本実施形態に係る誘導加熱装置は、第1実施形態に係る誘導加熱装置1と同様に、3つの変換器11、12、13と、3つのコイル21、22、23と、を備える。変換器11、12、13は、図3に示す高周波サイクロコンバータで構成される。その一方で、本実施形態では、3つのコイル21、22、23の配置形態が第1実施形態と異なる。
Third Embodiment
A third embodiment of the present invention will now be described. The induction heating device according to this embodiment includes three converters 11, 12, and 13 and three coils 21, 22, and 23, similar to the induction heating device 1 according to the first embodiment. The converters 11, 12, and 13 are configured with high-frequency cycloconverters as shown in Fig. 3. However, in this embodiment, the arrangement of the three coils 21, 22, and 23 is different from that of the first embodiment.
 図13は、第3実施形態におけるコイル配置を示す模式図である。本実施形態では、3つのコイル21、22、23は、一列に配置されている。このとき、第1実施形態と同様に、隣り合うコイル同士の中心間の距離Dは、各コイルの直径d以内になっている。なお、図13では、距離Dが直径dよりも長く図示されているが、これは各コイルに流れる電流の向きをわかりやすくするためである。 FIG. 13 is a schematic diagram showing the coil arrangement in the third embodiment. In this embodiment, three coils 21, 22, and 23 are arranged in a row. In this case, as in the first embodiment, the distance D between the centers of adjacent coils is within the diameter d of each coil. Note that in FIG. 13, the distance D is shown as being longer than the diameter d in order to make it easier to understand the direction of the current flowing through each coil.
 本実施形態では、3つの変換器11、12、13の間で、第1半導体スイッチS1、S1、S1~第4半導体スイッチS4、S4、S4のゲート信号が同位相である場合、第1実施形態と同様に、3つの変換器11、12、13は、出力電流IUOUT、IVOUT、IWOUTの位相が同じになる同期モードで駆動する(図6参照)。同期モードの場合、各コイルを流れるコイル電流の向きについては、3つとも正の向きとなるパターンと、3つとも負の向きになるパターンの2通りが存在する。図13は、コイル電流の向きが全て正であるパターンを示す。ここで、図14を参照して、3つのコイル21、22、23による加熱パターンについて説明する。 In this embodiment, when the gate signals of the first semiconductor switches S U1 , S V1 , S W1 to the fourth semiconductor switches S U4 , S V4 , S W4 are in phase among the three converters 11, 12, 13, the three converters 11, 12, 13 are driven in a synchronous mode in which the phases of the output currents I UOUT , I VOUT , and I WOUT are in the same phase, as in the first embodiment (see FIG. 6). In the synchronous mode, there are two patterns for the direction of the coil current flowing through each coil: a pattern in which all three are positive, and a pattern in which all three are negative. FIG. 13 shows a pattern in which all the coil currents are positive. Here, the heating pattern by the three coils 21, 22, 23 will be described with reference to FIG. 14.
 図14は、第3実施形態においてコイル電流の向きが全て正のときの加熱パターンの一例を示す図である。コイル電流が全て正の向きに流れる場合、各コイルの内側領域、すなわち、コイル21がコイル22に対向する領域、およびコイル22がコイル23に対向する領域では、コイル電流の向きが互いに反対になる。この場合、磁界を打ち消し合う現象が生じるため、被加熱物50で誘導加熱が起こりにくくなる。 FIG. 14 is a diagram showing an example of a heating pattern when the coil currents are all positive in the third embodiment. When the coil currents all flow in the positive direction, the directions of the coil currents are opposite to each other in the inner regions of each coil, i.e., the region where coil 21 faces coil 22, and the region where coil 22 faces coil 23. In this case, the magnetic fields cancel each other out, making it difficult for induction heating to occur in the heated object 50.
 一方、各コイルの外側領域では、磁界を打ち消し合う現象が生じないため、被加熱物50で誘導加熱が発生する。したがって、コイル電流の向きが全て正のときには、図14に示すように、各コイルの外側領域を加熱する加熱パターンとなる。 On the other hand, in the outer regions of each coil, the phenomenon of magnetic fields canceling each other out does not occur, and induction heating occurs in the heated object 50. Therefore, when the directions of the coil currents are all positive, the heating pattern heats the outer regions of each coil, as shown in FIG. 14.
 図15は、第3実施形態においてコイル電流の向きが全て負のときの加熱パターンの一例を示す図である。コイル電流が全て負の向きに流れる場合も、各コイルの内側領域、すなわち、コイル21がコイル22に対向する領域、およびコイル22がコイル23に対向する領域では、コイル電流の向きが互いに反対になる。そのため、コイル電流の向きが全て正のときと同様に、各コイルの外側領域を加熱する加熱パターンとなる。 FIG. 15 is a diagram showing an example of a heating pattern when the coil currents are all negative in the third embodiment. Even when the coil currents all flow in the negative direction, the coil currents flow in opposite directions in the inner regions of each coil, i.e., the region where coil 21 faces coil 22, and the region where coil 22 faces coil 23. Therefore, the heating pattern heats the outer regions of each coil, just like when the coil currents are all positive.
 図16は、同期モードにおける電源電流の波形の一例を示す図である。図16には、変換器11、12、13が同期モードで駆動した時の変換器11(U相)の電源電流I、変換器12(V相)の電源電流I、および変換器13(W相)の電源電流Iがそれぞれ示されている。 Fig. 16 is a diagram showing an example of the waveforms of the power supply currents in the synchronous mode, which respectively show the power supply current IU of the converter 11 (U phase), the power supply current IV of the converter 12 (V phase), and the power supply current IW of the converter 13 (W phase) when the converters 11, 12, and 13 are driven in the synchronous mode.
 本実施形態でも第1実施形態と同様に、各変換器は、電源電流I、I、Iを直流に変換することなく高周波交流に直接変換している。そのため、図16に示すように、各電源電流の歪が非常に小さくなる。 In this embodiment, similarly to the first embodiment, each converter directly converts the power supply currents IU , IV , and IW into high-frequency AC without converting them into DC, so that the distortion of each power supply current is extremely small, as shown in FIG.
 本発明では、3つの変換器11、12、13の駆動モードは、上述した同期モードに限定されず、例えば、180度モードであってもよい。180度モードでは、3つの変換器11、12、13のうち、互いに隣り合う2つのコイルの各々に高調波交流を供給する2つの変換器の間で、各変換器を駆動するための、第1半導体スイッチS1、S1、S1~第4半導体スイッチS4、S4、S4のゲート信号の位相差が0度または180度である。換言すると、180度モードでは、3つのコイル21、22、23のうち、1つのコイル電流の位相が他の2つのコイル電流の位相に対して180度シフトしている。ここで、180度モードにおけるコイル21、22、23による加熱パターンについて説明する。 In the present invention, the driving mode of the three converters 11, 12, and 13 is not limited to the above-mentioned synchronous mode, and may be, for example, a 180-degree mode. In the 180-degree mode, the phase difference of the gate signals of the first semiconductor switches S U 1, S V 1, and S W 1 to the fourth semiconductor switches S U 4, S V 4, and S W 4 for driving each converter between two converters that supply harmonic AC to two adjacent coils among the three converters 11, 12 , and 13 is 0 degrees or 180 degrees. In other words, in the 180-degree mode, the phase of one coil current among the three coils 21, 22, and 23 is shifted by 180 degrees with respect to the phases of the other two coil currents. Here, the heating pattern by the coils 21, 22, and 23 in the 180-degree mode will be described.
 図17は、U相のコイル電流の位相をV相およびW相のコイル電流の位相から180度シフトしたときの加熱パターンの一例を示す図である。図17では、U相のコイル21には電流が正の向きに流れる一方で、V相のコイル22およびW相のコイル23には電流が負の向きに流れる。 FIG. 17 is a diagram showing an example of a heating pattern when the phase of the U-phase coil current is shifted 180 degrees from the phase of the V-phase and W-phase coil currents. In FIG. 17, current flows in a positive direction in U-phase coil 21, while current flows in a negative direction in V-phase coil 22 and W-phase coil 23.
 図17に示すように、コイル21とコイル22との間の領域では、電流の向きが同じになるため、磁界を打ち消し合う現象が生じない。その結果、内側領域が加熱される加熱パターンとなる。一方、コイル22とコイル23との間の領域では、電流の向きが反対になるため、磁界を打ち消し合う現象が生じる。その結果、外側領域が加熱される加熱パターンとなる。 As shown in FIG. 17, in the region between coils 21 and 22, the current flows in the same direction, so the magnetic fields do not cancel each other out. This results in a heating pattern in which the inner region is heated. On the other hand, in the region between coils 22 and 23, the current flows in the opposite direction, so the magnetic fields cancel each other out. This results in a heating pattern in which the outer region is heated.
 図18は、U相のコイル電流の位相をV相およびW相のコイル電流の位相から180度シフトしたときの加熱パターンの別の一例を示す図である。図18では、コイル21には電流が負の向きに流れる一方で、コイル22、23には電流が正の向きに流れる。 FIG. 18 shows another example of a heating pattern when the phase of the U-phase coil current is shifted 180 degrees from the phases of the V-phase and W-phase coil currents. In FIG. 18, current flows in the negative direction in coil 21, while current flows in the positive direction in coils 22 and 23.
 図18に示すように、コイル21とコイル22との間の領域では、電流の向きが同じである一方で、コイル22とコイル23との間の領域では、電流の向きが反対になる。そのため、図18に示す加熱パターンは、図17に示す加熱パターンと同様に、コイル21とコイル22との間では内側領域が加熱され、コイル22とコイル23との間では外側領域が加熱される。 As shown in FIG. 18, the direction of the current is the same in the region between coils 21 and 22, while the direction of the current is opposite in the region between coils 22 and 23. Therefore, in the heating pattern shown in FIG. 18, like the heating pattern shown in FIG. 17, the inner region between coils 21 and 22 is heated, and the outer region between coils 22 and 23 is heated.
 図19は、V相のコイル電流の位相をU相およびW相のコイル電流の位相から180度シフトしたときの加熱パターンの一例を示す図である。図19では、V相のコイル22には電流が正の向きに流れる一方で、U相のコイル21およびW相のコイル23には電流が負の向きに流れる。 Figure 19 shows an example of a heating pattern when the phase of the V-phase coil current is shifted 180 degrees from the phase of the U-phase and W-phase coil currents. In Figure 19, current flows in a positive direction in V-phase coil 22, while current flows in a negative direction in U-phase coil 21 and W-phase coil 23.
 図19に示すように、コイル21とコイル22との間の領域では、電流の向きが同じになるため、内側領域が加熱される加熱パターンとなる。また、コイル22とコイル23との間の領域でも、電流の向きが同じになるため、内側領域が加熱される加熱パターンとなる。 As shown in FIG. 19, the direction of the current is the same in the region between coils 21 and 22, resulting in a heating pattern in which the inner region is heated. Also, the direction of the current is the same in the region between coils 22 and 23, resulting in a heating pattern in which the inner region is heated.
 図20は、V相のコイル電流の位相をU相およびW相のコイル電流の位相から180度シフトしたときの加熱パターンの別の一例を示す図である。図20では、コイル22には電流が負の向きに流れる一方で、コイル21、23には電流が正の向きに流れる。 FIG. 20 shows another example of a heating pattern when the phase of the V-phase coil current is shifted 180 degrees from the phase of the U-phase and W-phase coil currents. In FIG. 20, current flows in the negative direction in coil 22, while current flows in the positive direction in coils 21 and 23.
 図20に示すように、コイル21とコイル22との間の領域では、電流の向きが同じであるとともに、コイル22とコイル23との間の領域でも、電流の向きが同じである。そのため、図20に示す加熱パターンは、図19に示す加熱パターンと同様に、コイル間の内側領域が加熱される。 As shown in FIG. 20, the direction of the current is the same in the region between coils 21 and 22, and also in the region between coils 22 and 23. Therefore, the heating pattern shown in FIG. 20 heats the inner region between the coils, similar to the heating pattern shown in FIG. 19.
 図21は、W相のコイル電流の位相をU相およびV相のコイル電流の位相から180度シフトしたときの加熱パターンの一例を示す図である。図21では、W相のコイル23には電流が正の向きに流れる一方で、U相のコイル21およびV相のコイル22には電流が負の向きに流れる。 FIG. 21 shows an example of a heating pattern when the phase of the W-phase coil current is shifted 180 degrees from the phase of the U-phase and V-phase coil currents. In FIG. 21, current flows in a positive direction in the W-phase coil 23, while current flows in a negative direction in the U-phase coil 21 and the V-phase coil 22.
 図21に示すように、コイル21とコイル22との間の領域では、電流の向きが反対になるため、外側領域が加熱される加熱パターンとなる。一方、コイル22とコイル23との間の領域では、電流の向きが同じになるため、内側領域が加熱される加熱パターンとなる。 As shown in FIG. 21, in the region between coils 21 and 22, the current flows in the opposite direction, resulting in a heating pattern in which the outer region is heated. On the other hand, in the region between coils 22 and 23, the current flows in the same direction, resulting in a heating pattern in which the inner region is heated.
 図22は、W相のコイル電流の位相をU相およびV相のコイル電流の位相から180度シフトしたときの加熱パターンの別の一例を示す図である。図22では、コイル23には電流が負の向きに流れる一方で、コイル21、22には電流が正の向きに流れる。 FIG. 22 shows another example of a heating pattern when the phase of the W-phase coil current is shifted 180 degrees from the phase of the U-phase and V-phase coil currents. In FIG. 22, current flows in the negative direction in coil 23, while current flows in the positive direction in coils 21 and 22.
 図22に示すように、コイル21とコイル22との間の領域では、電流の向きが反対である一方で、コイル22とコイル23との間の領域では、電流の向きが同じである。そのため、図22に示す加熱パターンは、図21に示す加熱パターンと同様に、コイル21とコイル22との間では、外側領域が加熱され、コイル22とコイル23との間では、内側領域が加熱される。 As shown in FIG. 22, the direction of the current is opposite in the region between coils 21 and 22, while the direction of the current is the same in the region between coils 22 and 23. Therefore, in the heating pattern shown in FIG. 22, like the heating pattern shown in FIG. 21, the outer region is heated between coils 21 and 22, and the inner region is heated between coils 22 and 23.
 図23は、180度モードにおける電源電流の波形の一例を示す図である。図23には、U相のコイル電流をV相およびW相のコイル電流に対して180度シフトした電源電流の波形の一例を示す図である。 FIG. 23 is a diagram showing an example of a power supply current waveform in 180-degree mode. FIG. 23 shows an example of a power supply current waveform in which the U-phase coil current is shifted 180 degrees relative to the V-phase and W-phase coil currents.
 各変換器が180モードで駆動しても、同期モードと同様に、各変換器は、電源電流I、I、Iを直流に変換することなく高周波交流に直接変換している。そのため、図23に示すように、各電源電流の歪が非常に小さくなる。なお、V相のコイル電流およびW相のコイル電流を180度シフトした場合も、同様に、電源電流I、I、Iの歪は非常に小さくなる。 Even when each converter is driven in the 180 degree mode, as in the synchronous mode, each converter directly converts the power supply currents IU , IV , and IW into high-frequency AC without converting them into DC. Therefore, the distortion of each power supply current is very small, as shown in Fig. 23. Note that, even when the V-phase coil current and the W-phase coil current are shifted by 180 degrees, the distortion of the power supply currents IU , IV , and IW is also very small.
 図24は、第3実施形態の変形例におけるコイル配置を示す模式図である。本変形例では、3つのコイル21、22、23が、L字型に配置されている。このとき、第3実施形態と同様に、隣り合うコイル同士の中心間の距離Dは、各コイルの直径d以内になっている。 FIG. 24 is a schematic diagram showing the coil arrangement in a modified example of the third embodiment. In this modified example, three coils 21, 22, and 23 are arranged in an L-shape. In this case, as in the third embodiment, the distance D between the centers of adjacent coils is within the diameter d of each coil.
 本変形例においても、3つの変換器11、12、13は上述した同期モードまたは180度モードで駆動することができる。このとき、隣り合う2つのコイル間で、コイル電流の向きが同じであれば内側領域が加熱される。反対に、コイル電流の向きが反対であれば外側領域が加熱される。 In this modified example, the three converters 11, 12, and 13 can be driven in the synchronous mode or 180-degree mode described above. In this case, if the direction of the coil current is the same between two adjacent coils, the inner region is heated. Conversely, if the direction of the coil current is opposite, the outer region is heated.
 また、本変形例では、3つの変換器11、12、13は、電源電流I、I、Iを直流に変換することなく高周波交流に直接変換している。そのため、本変形例においても、各電源電流の歪が非常に小さくなる。 In this modification, the three converters 11, 12, and 13 directly convert the power supply currents IU , IV , and IW into high-frequency AC without converting them into DC. Therefore, in this modification as well, the distortion of each power supply current is extremely small.
 以上説明した本実施形態によれば、第1実施形態と同様に、変換器11~13が、電源電流I~Iを出力電流IUOUT~IWOUTに変換する際、出力電流IUOUT~IWOUTは、直流を介することなく高調波交流に直接変換される。これにより、電源電流I~Iの歪を抑制することが可能となる。 According to the present embodiment described above, similarly to the first embodiment, when the converters 11 to 13 convert the power supply currents IU to IW into the output currents IUOUT to IWOUT , the output currents IUOUT to IWOUT are directly converted into harmonic AC without passing through DC, thereby making it possible to suppress distortion of the power supply currents IU to IW .
 また、本実施形態においても、変換器11~13は、三相交流電源30の電源電流を直流に変換するダイオード整流器や平滑コンデンサを不要とする回路構成である。そのため、変換器11~13を小型化することが可能となる。 Also, in this embodiment, the converters 11 to 13 have a circuit configuration that does not require a diode rectifier or smoothing capacitor to convert the power supply current of the three-phase AC power supply 30 to DC. This makes it possible to miniaturize the converters 11 to 13.
 さらに、本実施形態では、3つのコイル21、22、23が一列またはL字型に配置されている。このように配置されたコイル21~23を、各変換器の同期モードまたは180度モードによる駆動形態で加熱することによって、各コイルの外側領域や各コイルの内側領域を加熱制御することが可能となる。 Furthermore, in this embodiment, the three coils 21, 22, and 23 are arranged in a line or in an L-shape. By heating the coils 21 to 23 arranged in this manner with each converter driven in synchronous mode or 180-degree mode, it becomes possible to control the heating of the outer region of each coil and the inner region of each coil.
 なお、上述した第1実施形態および第2実施形態では、変換器11~13が高周波サイクロコンバータで構成されているが、本発明では、各変換器の回路構成は、図3に示すものに限られない。例えば、各変換器は、三相交流電源30の各相に接続される双方向スイッチで構成されたマトリックスコンバータであってもよい。この双方向スイッチは、例えば図3に示す第2半導体スイッチS2および第3半導体スイッチS3のような逆方向で直列接続された2つの半導体スイッチで構成される。また、各変換器は、この双方向スイッチがチョッパ回路内に設けられたコンバータであってもよい。 In the first and second embodiments described above, the converters 11 to 13 are configured with high-frequency cycloconverters, but in the present invention, the circuit configuration of each converter is not limited to that shown in Fig. 3. For example, each converter may be a matrix converter configured with bidirectional switches connected to each phase of the three-phase AC power supply 30. This bidirectional switch is configured with two semiconductor switches connected in series in the opposite directions, such as the second semiconductor switch S U 2 and the third semiconductor switch S U 3 shown in Fig. 3. Furthermore, each converter may be a converter in which this bidirectional switch is provided in a chopper circuit.
 さらに、本発明では、各変換器の回路構成は、三相交流電源30の電源電流を、直流に変換することなく高調波交流に変換する回路構成であればよい。そのため、各変換器は、インバータ回路とAC/DCコンバータとを備えた回路構成であってもよい。このインバータ回路は、例えば図3に示す第1半導体スイッチS1および第2半導体スイッチS2のような直列接続されたアームを2つ備える。また、AC/DCコンバータは、例えば、ダイオード整流器である。この場合、インバータ回路とAC/DCコンバータとの間に接続されるコンデンサの容量を小さくして電源電流を平滑化させないようにすることによって、電源電流の交流成分を残したまま直接的に高周波交流に変換することができる。 Furthermore, in the present invention, the circuit configuration of each converter may be any circuit configuration that converts the power supply current of the three-phase AC power supply 30 into harmonic AC without converting it into DC. Therefore, each converter may have a circuit configuration including an inverter circuit and an AC/DC converter. The inverter circuit includes two arms connected in series, such as the first semiconductor switch S U 1 and the second semiconductor switch S U 2 shown in FIG. 3. The AC/DC converter is, for example, a diode rectifier. In this case, the capacity of the capacitor connected between the inverter circuit and the AC/DC converter is reduced so as not to smooth the power supply current, thereby making it possible to directly convert the power supply current into high-frequency AC while leaving the AC component of the power supply current.
 上記の記載に基づいて、当業者であれば、本発明の追加の効果や種々の変形を想到できるかもしれないが、本発明の態様は、上述した実施形態に限定されるものではない。特許請求の範囲に規定された内容およびその均等物から導き出される本発明の概念的な思想と趣旨を逸脱しない範囲で種々の追加、変更および部分的削除が可能である。 Based on the above description, a person skilled in the art may be able to conceive of additional effects and various modifications of the present invention, but the aspects of the present invention are not limited to the above-described embodiments. Various additions, modifications, and partial deletions are possible within the scope that does not deviate from the conceptual idea and intent of the present invention derived from the contents defined in the claims and their equivalents.
1:誘導加熱装置
11~13:変換器
21~23:コイル
30:三相交流電源
50:被加熱物
1、S1、S1:第1半導体スイッチ
2、S2、S2:第2半導体スイッチ
3、S3、S3:第3半導体スイッチ
4、S4、S4:第4半導体スイッチ
1: induction heating device 11-13: converter 21-23: coil 30: three-phase AC power supply 50: object to be heated S U 1, S V 1, S W 1: first semiconductor switch S U 2, S V 2, S W 2: second semiconductor switch S U 3, S V 3, S W 3: third semiconductor switch S U 4, S V 4, S W 4: fourth semiconductor switch

Claims (11)

  1.  三相交流電源の三相の電源電流を、前記電源電流の周波数よりも高い周波数を有する3つの高周波交流へそれぞれ直接変換する3つの変換器と、
     前記3つの変換器から個別に供給された高調波交流で、被加熱物を加熱する3つのコイルと、を備え、
     前記3つのコイルは、中心間の距離がコイルの直径以内になるように配置されている、誘導加熱装置。
    Three converters for directly converting three-phase power supply currents of a three-phase AC power supply into three high-frequency AC currents having frequencies higher than the frequency of the power supply currents;
    and three coils for heating an object to be heated with harmonic alternating current supplied individually from the three converters;
    The three coils are arranged such that the center-to-center distance is within a coil diameter.
  2.  前記3つのコイルが三角形状に配置されている、請求項1に記載の誘導加熱装置。 The induction heating device of claim 1, wherein the three coils are arranged in a triangular shape.
  3.  前記3つの変換器の各々が、高調波サイクロコンバータであり、
     前記高調波サイクロコンバータが、互いに直列に接続された第1半導体スイッチおよび第2半導体スイッチと、前記第1半導体スイッチおよび前記第2半導体スイッチと逆方向で互いに直列に接続された第3半導体スイッチおよび第4半導体スイッチと、を含む、請求項1に記載の誘導加熱装置。
    each of the three converters is a harmonic cycloconverter;
    2. The induction heating device according to claim 1, wherein the harmonic cycloconverter includes a first semiconductor switch and a second semiconductor switch connected in series with each other, and a third semiconductor switch and a fourth semiconductor switch connected in series with each other in a direction opposite to that of the first semiconductor switch and the second semiconductor switch.
  4.  前記第1乃至第4半導体スイッチは、各々のゲートに入力されるゲート信号のレベルに応じてオン状態またはオフ状態に切り替わり、
     前記第1半導体スイッチがオン状態の時に、前記第2半導体スイッチがオフ状態、前記第3半導体スイッチがオン状態、前記第4半導体スイッチがオフ状態であり、
     前記第1半導体スイッチがオフ状態の時に、前記第2半導体スイッチがオン状態、前記第3半導体スイッチがオフ状態、前記第4半導体スイッチがオン状態となる、請求項3に記載の誘導加熱装置。
    The first to fourth semiconductor switches are switched to an on state or an off state according to a level of a gate signal input to each gate,
    When the first semiconductor switch is in an on state, the second semiconductor switch is in an off state, the third semiconductor switch is in an on state, and the fourth semiconductor switch is in an off state;
    4. The induction heating device according to claim 3, wherein when the first semiconductor switch is in an off state, the second semiconductor switch is in an on state, the third semiconductor switch is in an off state, and the fourth semiconductor switch is in an on state.
  5.  前記3つのコイルの間で、コイル電流の位相差が120度である、請求項2に記載の誘導加熱装置。 The induction heating device of claim 2, wherein the phase difference of the coil currents between the three coils is 120 degrees.
  6.  前記3つのコイルの中心が正三角形の頂点に配置されている、請求項2に記載の誘導加熱装置。 The induction heating device of claim 2, wherein the centers of the three coils are located at the vertices of an equilateral triangle.
  7.  前記3つのコイルの一部が互いに重なっている、請求項1から6のいずれかに記載の誘導加熱装置。 An induction heating device as described in any one of claims 1 to 6, in which the three coils partially overlap each other.
  8.  前記3つのコイルが、一列に配置されている、請求項1に記載の誘導加熱装置。 The induction heating device of claim 1, wherein the three coils are arranged in a row.
  9.  前記3つのコイルが、L字型に配置されている、請求項1に記載の誘導加熱装置。 The induction heating device of claim 1, wherein the three coils are arranged in an L-shape.
  10.  前記3つのコイルの間で、コイル電流の位相が同じである、請求項2、8、または9に記載の誘導加熱装置。 An induction heating device as described in claim 2, 8, or 9, in which the phase of the coil current is the same among the three coils.
  11.  前記3つのコイルのうち、隣り合う2つのコイル間で、コイル電流の位相差が0度または180度である、請求項2、8、または9に記載の誘導加熱装置。 An induction heating device as described in claim 2, 8, or 9, in which the phase difference of the coil current between two adjacent coils among the three coils is 0 degrees or 180 degrees.
PCT/JP2024/006609 2023-04-14 2024-02-22 Induction heating device WO2024214403A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2023066617 2023-04-14
JP2023-066617 2023-04-14

Publications (1)

Publication Number Publication Date
WO2024214403A1 true WO2024214403A1 (en) 2024-10-17

Family

ID=93059343

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2024/006609 WO2024214403A1 (en) 2023-04-14 2024-02-22 Induction heating device

Country Status (1)

Country Link
WO (1) WO2024214403A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH031477A (en) * 1989-05-29 1991-01-08 Nikko Kk Low frequency electromagnetic induction heater
JP2002246162A (en) * 2001-02-22 2002-08-30 Tokuden Co Ltd Induction heating roller device
JP2012003846A (en) * 2010-06-14 2012-01-05 Tokyo Electric Power Co Inc:The Induction heating type cooker
JP2012199158A (en) * 2011-03-23 2012-10-18 Mitsui Eng & Shipbuild Co Ltd Induction heating apparatus, and control method and control program for induction heating apparatus
JP2013179091A (en) * 2008-12-19 2013-09-09 Panasonic Corp Induction heating cooker
WO2018041767A1 (en) * 2016-09-02 2018-03-08 Electrolux Appliances Aktiebolag Induction cooking hob and method for controlling a cooking zone
CN108684094A (en) * 2018-04-11 2018-10-19 佛山市众拓科技有限公司 The electromagnetic oven that more electromagnetic coils will not be interfered with each other using same frequency Synchronous Heating
WO2019197148A1 (en) * 2018-04-10 2019-10-17 Electrolux Appliances Aktiebolag Cooking appliance, particularly domestic cooking appliance, more particularly cooking hob, more particularly induction hob with at least two heating elements
CN110557856A (en) * 2018-05-31 2019-12-10 宁波方太厨具有限公司 Heating wire coil structure and electromagnetic stove with same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH031477A (en) * 1989-05-29 1991-01-08 Nikko Kk Low frequency electromagnetic induction heater
JP2002246162A (en) * 2001-02-22 2002-08-30 Tokuden Co Ltd Induction heating roller device
JP2013179091A (en) * 2008-12-19 2013-09-09 Panasonic Corp Induction heating cooker
JP2012003846A (en) * 2010-06-14 2012-01-05 Tokyo Electric Power Co Inc:The Induction heating type cooker
JP2012199158A (en) * 2011-03-23 2012-10-18 Mitsui Eng & Shipbuild Co Ltd Induction heating apparatus, and control method and control program for induction heating apparatus
WO2018041767A1 (en) * 2016-09-02 2018-03-08 Electrolux Appliances Aktiebolag Induction cooking hob and method for controlling a cooking zone
WO2019197148A1 (en) * 2018-04-10 2019-10-17 Electrolux Appliances Aktiebolag Cooking appliance, particularly domestic cooking appliance, more particularly cooking hob, more particularly induction hob with at least two heating elements
CN108684094A (en) * 2018-04-11 2018-10-19 佛山市众拓科技有限公司 The electromagnetic oven that more electromagnetic coils will not be interfered with each other using same frequency Synchronous Heating
CN110557856A (en) * 2018-05-31 2019-12-10 宁波方太厨具有限公司 Heating wire coil structure and electromagnetic stove with same

Similar Documents

Publication Publication Date Title
Kwon et al. Half-bridge series resonant inverter for induction heating applications with load-adaptive PFM control strategy
Koertzen et al. Design of the half-bridge, series resonant converter for induction cooking
JP4910078B1 (en) DC / DC converter and AC / DC converter
US9344004B2 (en) Power conversion system
JP4845432B2 (en) Induction heating cooker
Shigeuchi et al. A modulation method to realize sinusoidal line current for bidirectional isolated three-phase AC/DC dual-active-bridge converter based on matrix converter
KR20120031069A (en) Device for inverting an electric parameter, having a star point reactor
JP2008289228A (en) Power conversion device
JP6763487B2 (en) Drive power supply
CN102474201A (en) Power converter with multi-level voltage output and harmonics compensator
JP6844716B2 (en) Inverter control board
JP2020102933A (en) Switching power supply device and method for controlling the same
WO2024087398A1 (en) Transformer-based battery heating circuit, and electric vehicle
Aguilar et al. Circulating current suppression in DAB assisted low-voltage variable frequency MMC
WO2024214403A1 (en) Induction heating device
Boby et al. A low-order harmonic elimination scheme for induction motor drives using a multilevel octadecagonal space vector structure with a single DC source
Suzuki et al. Isolated Ac/Dc Converter Using Soft Switching Technique
KR20160150512A (en) Induction heat cooking apparatus
KR20130135784A (en) Power supply system with an inverter for generation of single-phase alternating current
Cui et al. Zero Voltage Switching for High Power Threephase Inductive Power Transfer with a Dual Active Bridge
CN218228714U (en) Battery heating circuit and electric vehicle based on transformer
JP2004274864A (en) Switching power unit
Herasymenko et al. A series-resonant inverter with extended topology and pulse-density-modulation control for induction heating applications
JPH1155950A (en) Voltage controlled power converting circuit
KR100723729B1 (en) Integration type induction heating heat treatment apparatus