WO2024214441A1 - Overhead transport vehicle system and overhead transport vehicle - Google Patents
Overhead transport vehicle system and overhead transport vehicle Download PDFInfo
- Publication number
- WO2024214441A1 WO2024214441A1 PCT/JP2024/008591 JP2024008591W WO2024214441A1 WO 2024214441 A1 WO2024214441 A1 WO 2024214441A1 JP 2024008591 W JP2024008591 W JP 2024008591W WO 2024214441 A1 WO2024214441 A1 WO 2024214441A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- transport vehicle
- teaching position
- unit
- correction value
- teaching
- Prior art date
Links
- 238000012937 correction Methods 0.000 claims abstract description 148
- 238000012546 transfer Methods 0.000 claims abstract description 57
- 238000001514 detection method Methods 0.000 claims abstract description 20
- 230000032258 transport Effects 0.000 description 200
- 238000012986 modification Methods 0.000 description 13
- 230000004048 modification Effects 0.000 description 13
- 239000000284 extract Substances 0.000 description 6
- 238000000034 method Methods 0.000 description 5
- 210000000078 claw Anatomy 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 238000004891 communication Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 235000012431 wafers Nutrition 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65G—TRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
- B65G49/00—Conveying systems characterised by their application for specified purposes not otherwise provided for
- B65G49/05—Conveying systems characterised by their application for specified purposes not otherwise provided for for fragile or damageable materials or articles
- B65G49/07—Conveying systems characterised by their application for specified purposes not otherwise provided for for fragile or damageable materials or articles for semiconductor wafers Not used, see H01L21/677
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B66—HOISTING; LIFTING; HAULING
- B66C—CRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
- B66C17/00—Overhead travelling cranes comprising one or more substantially horizontal girders the ends of which are directly supported by wheels or rollers running on tracks carried by spaced supports
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/677—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
Definitions
- One aspect of the present invention relates to a ceiling transport vehicle system and a ceiling transport vehicle.
- Ceiling transport vehicles are known that travel along a track supported by the ceiling to transfer items to a station.
- Ceiling transport vehicles are equipped with a gripping section that grips items and a lifting section that raises and lowers the gripping section, and transfer items to the station by lowering the gripping section.
- items are transferred to the station by lowering the gripping section based on a pre-stored set value.
- the relative distance between the ceiling transport vehicle and the station, or the controlled distance and the actual lowering distance changes due to various factors (for example, if the height of the ceiling changes due to snow accumulation, or if the belt that suspends the gripping section is stretched, etc.), there is a possibility that the gripping section will crush the item or be unable to grip the item, making it impossible to transfer the item properly.
- Patent Document 1 discloses an overhead transport vehicle system equipped with a laser distance sensor that detects the distance between the overhead transport vehicle and the station.
- a set value is corrected based on the detection results of the laser distance sensor obtained when transferring an item, and the gripper is lowered based on the corrected set value.
- the objective of one aspect of the present invention is to provide an overhead transport vehicle system and overhead transport vehicle that can transfer items to a station appropriately and quickly, even if the distance between the teaching position and the stopping position changes due to various factors.
- a ceiling transport vehicle system is a ceiling transport vehicle system including a plurality of transport vehicles that transfers objects to a plurality of stations by raising and lowering a gripper that grips an object relative to a main body that runs on a track supported on the ceiling, and each of the plurality of transport vehicles includes a detector provided in the gripper that detects the object, a lifting unit that raises and lowers the gripper, a transport vehicle controller that lowers the gripper at a first speed relative to the main body, and then lowers the gripper at a second speed slower than the first speed from a teaching position previously stored in the memory unit, and stops the gripper when the detection unit detects an object, thereby transferring the object to the transport vehicle, and a teaching position correction unit that corrects the teaching positions stored for each of the plurality of stations based on the stopping position of the gripper when the object is transferred.
- a ceiling transport vehicle is a ceiling transport vehicle that transfers objects to a plurality of stations by raising and lowering a gripping unit that grips the object relative to a main body unit that runs on a track supported on the ceiling, and is equipped with a detection unit provided on the gripping unit that detects the object, a lifting unit that raises and lowers the gripping unit, a transport vehicle controller that lowers the gripping unit at a first speed relative to the main body unit, and then lowers the gripping unit at a second speed slower than the first speed from a teaching position pre-stored in a memory unit, and stops the gripping unit when the detection unit detects the object, thereby transferring the object to the transport vehicle, and a teaching position correction unit that corrects the teaching position stored for each station based on the stopping position of the gripping unit when the object is transferred.
- the taught position for each station is appropriately corrected based on the stop position when the item is transferred to the station.
- the correction can be used to return it to an appropriate distance for the next transfer operation.
- the item can be transferred to the station appropriately and in a short time.
- the memory unit stores one teaching position associated with each of a plurality of stations, and the teaching position correction unit may correct the teaching position based on the stop position acquired each time all transfer operations are performed by the plurality of transport vehicles.
- the correction value can be updated regardless of which transport vehicle transfers an item to the station. This allows the correction value to be updated frequently, making it possible to quickly respond to unintended factors.
- the memory unit stores a teaching position corresponding to each of the multiple transport vehicles for each of the multiple stations in association with each other, and the teaching position correction unit may correct the teaching position based on the stop position acquired by each of the multiple stations by the transport vehicles.
- the positional relationship (distance) between the teaching position and the stop position is set between each station and each transport vehicle. This makes it possible to deal with malfunctions caused by factors due to machine differences, such as stretching of the belt that suspends the gripping unit.
- a memory unit may be provided in each of the multiple transport vehicles.
- the information required for correcting the teaching position for each transport vehicle (the distance between the teaching position and the stopping position) is stored within the vehicle itself, so that the amount of communication required when correcting the teaching position can be reduced.
- items can be transferred to a station appropriately and in a short time.
- FIG. 1 is a side view of the ceiling transport vehicle according to the present embodiment.
- FIG. 2 is a side view of the ceiling transport vehicle of FIG. 1 when the gripping unit is lowered.
- FIG. 3 is a front view showing the relationship between the teaching position and the stop position.
- FIG. 4 is a functional block diagram showing the functional configuration of the ceiling transport vehicle of FIG.
- FIG. 5 is a VT graph when the lift section descends.
- FIG. 6 is a flowchart showing a flow of correction of the teaching position by the ceiling transport vehicle system of FIG.
- FIG. 7 is a flowchart showing the flow of correction of the teaching position, continued from FIG.
- Fig. 8(A) is an example of a data configuration stored in the teaching position memory unit of the area controller.
- Fig. 8(A) is an example of a data configuration stored in the teaching position memory unit of the area controller.
- FIG. 8(B) is an example of a data configuration stored in the teaching position memory unit of the first car in Modification 1.
- Fig. 8(C) is an example of a data configuration stored in the teaching position memory unit of the second car in Modification 1.
- Fig. 8(D) is an example of a data configuration stored in the teaching position memory unit of the area controller in Modification 2.
- FIG. 9 is a flowchart showing a flow of correction of a teaching position by the ceiling transport vehicle system according to the modified example.
- FIG. 10 is a flowchart showing the flow of correction of the teaching position, continued from FIG.
- FIG. 11 is a flowchart showing a flow of correction of a teaching position by an overhead transport vehicle system according to a further modified example.
- the ceiling transport vehicle system 80 includes a plurality of ceiling transport vehicles 1 (hereinafter simply referred to as "transport vehicles 1"), a plurality of load ports 102, and an area controller (teaching position correction unit) 70 (see Figure 4).
- the transport vehicle 1 travels along a travelling rail (track) 101 laid near the ceiling C of the clean room where semiconductor devices are manufactured.
- the transport vehicle 1 transports a FOUP (item) 90, which is a container that contains multiple semiconductor wafers.
- the transport vehicle 1 transfers the FOUP 90 to a load port (station) 102 provided in a processing device that performs various processes on the semiconductor wafers. That is, the transport vehicle 1 retrieves the FOUP 90 placed on the placement surface 102a of the load port 102, and places the FOUP 90 on the placement surface 102a of the load port 102.
- the transport vehicle 1 comprises a running unit 2, a lateral feed unit 3, a rotating unit 4, a lifting unit 5, a gripping unit 6, and a transport vehicle controller (teaching position correction unit) 7.
- the running unit 2 runs along the running rail 101 by receiving a non-contact supply of power, for example, from a high-frequency current line laid along the running rail 101.
- the lateral feed unit 3 moves the rotating unit 4, the lifting unit 5, and the gripping unit 6 in a direction lateral to the direction in which the running rail 101 extends.
- the rotating unit 4 rotates the lifting unit 5 and the gripping unit 6 in a horizontal plane.
- the lifting unit 5 has multiple belts 5a, and the gripping unit 6 is attached to the lower end of the belts 5a.
- the lifting unit 5 raises and lowers the gripping unit 6 by unwinding or winding up multiple belts (hanging members) 5a.
- the gripping unit 6 grips the flange portion 91 of the FOUP 90 by closing a pair of claw members 6a.
- the gripping unit 6 releases the gripped state of the flange portion 91 by opening the pair of claw members 6a.
- the X, Y and Z axes are shown together.
- the Y direction in the figure is the travel direction of the ceiling transport vehicle 1
- the X direction in the figure is the lateral movement direction in which the gripping unit 6 and the like are moved by the lateral feed unit 3.
- the Z direction in the figure is the vertical direction.
- the ceiling transport vehicle 1 lowers the gripping unit 6 along the Z direction, and also raises the gripping unit 6 along the Z direction.
- the travel direction (Y direction) of the ceiling transport vehicle 1, the lateral movement direction (X direction) by the lateral feed unit 3, and the vertical direction (Z direction) are all perpendicular to each other. Note that the X, Y and Z axes are also shown together in FIG. 2 and FIG. 3, which will be referred to in the following explanation.
- the transport vehicle 1 further includes a center cone 8, a dog 10, and a flange detection unit (detection unit) 20.
- a recess 91a that is open upward is formed in the center of the flange portion 91 of the FOUP 90.
- the center cone 8 is a member that fits into the recess 91a of the flange portion 91 and is used to position the gripper 6 relative to the FOUP 90.
- the center cone 8, the dog 10, and the flange detection unit 20 are provided in the gripper 6.
- the center cone 8, the dog 10, and the flange detection unit 20 are attached to the base portion (not shown) of the gripper 6.
- the center cone 8 is biased downward by a spring (not shown) attached to the base portion, and is freely movable up and down relative to the gripper 6.
- the transport vehicle controller 7 is a part that controls the operation of each part in the transport vehicle 1, and is configured to include a CPU (Central Processing Unit), ROM (Read Only Memory), RAM (Random Access Memory), etc.
- the transport vehicle controller 7 may be configured as hardware.
- the transfer operation in the transport vehicle 1 will be described below.
- the gripper 6 is controlled to descend by the transport vehicle controller 7, and the center cone 8 fits into the recess 91a of the flange 91.
- the center cone 8 rises relative to the gripper 6.
- the transport vehicle controller 7 detects that the gripper 6 has reached the gripping position (stop position P2) (see Figures 2 and 3) by the photointerrupter consisting of the light-emitting and light-receiving parts of the flange detector 20 and the light-shielding plate part of the dog 10 passing on the optical axis of the photointerrupter.
- the center cone 8, the dog 10, and the flange detector 20 are provided on the gripper 6 and can be said to constitute a contact sensor that detects contact with the FOUP 90.
- the transport vehicle controller 7 detects that the gripper 6 has reached the gripping position, it stops the descent of the gripper 6.
- the transport vehicle controller 7 causes the gripper 6 to close the pair of claw members 6a. As the claw members 6a close, they enter the underside of the flange portion 91. The transport vehicle controller 7 then causes the lifting unit 5 to start raising the gripper 6. When the gripper 6 holding the FOUP 90 places the FOUP 90 on the loading surface 102a of the load port 102, i.e., when unloading, the operation is the opposite of that when grabbing the load.
- the flange detection unit 20 detects that the gripping unit 6 has reached a predetermined position relative to the FOUP 90 placed on the load port 102.
- Recognition of the position of the gripping unit 6 using the center cone 8, dog 10, and flange detection unit 20 and recognition of the gripping state of the FOUP 90 by the gripping unit 6 are achieved, for example, by the configuration and method described in the above-mentioned Patent Document 1 (WO 2018/179931). However, recognition of the position of the gripping unit 6 and recognition of the gripping state of the FOUP 90 by the gripping unit 6 may also be achieved by other known configurations and methods.
- the lifting unit 5 has a lifting motor (not shown), which lowers the gripping unit 6 by unwinding the belt 5a, and raises the gripping unit 6 by winding up the belt 5a.
- the lifting motor is driven and controlled by the transport vehicle controller 7.
- the transport vehicle controller 7 can detect the amount of belt 5a unwound (belt length) by receiving a signal related to the rotation from the lifting motor.
- the transport vehicle controller 7 can position the gripping unit 6 at any position in the vertical direction based on the amount of belt 5a unwound (belt length).
- the transport vehicle controller 7 positions the gripping unit 6 at the teaching position P1 based on the amount of belt 5a unwound (belt length).
- the transport vehicle controller 7 can also obtain the position (height position) of the gripping unit 6 at the stop position P2 (the gripping position for gripping the FOUP 90) based on the amount of belt 5a unwound.
- the transport vehicle controller 7 when transferring a FOUP 90 to the load port 102, the transport vehicle controller 7 lowers the gripper 6 relative to the travel section (main body section) 2 at a first speed V1, then lowers the gripper 6 from a pre-stored teaching position P1 at a second speed V2 slower than the first speed V1, and stops the gripper 6 when the FOUP 90 is detected by the flange detection section 20. More specifically, the transport vehicle controller 7 controls the lifting section 5 so that the gripper 6 descends at the first speed V1 from a travelling position P0, which is the position of the gripper 6 when the transport vehicle 1 is travelling.
- the transport vehicle controller 7 controls the lifting unit 5 so that the gripper 6 descends from the taught position P1 at a second speed V2.
- the second speed V2 is, for example, a speed at which the gripper 6 can be stopped in a relatively short distance (e.g., 5 mm) when the lifting unit 5 is controlled to stop.
- the transport vehicle controller 7 controls the lifting unit 5 to stop the descent of the gripper 6 when the flange detection unit 20 detects the FOUP 90 (i.e., when it detects that the gripper 6 has reached a predetermined position with respect to the FOUP 90 placed on the load port 102).
- the gripper 6 is initially lowered at a high speed, and then the gripper 6 is lowered at a low speed from the teaching position close to the FOUP 90. This shortens the time required for descent to the teaching position, and then the gripper 6 is lowered slowly, thereby suppressing the impact when the FOUP 90 is placed on the load port 102, and suppressing the gripper 6 from colliding with the flange portion 91 of the FOUP 90 when gripping the FOUP 90 placed on the load port 102.
- Such a teaching position is set so that the distance between the teaching position and the stop position P2 falls within a predetermined range.
- the teaching position is stored by the transport vehicle controller 7 as the teaching position P1, and the initial value of the teaching position P1 is appropriately set when the ceiling transport vehicle system 80 is installed, etc.
- the transport vehicle controller 7 corrects the teaching position P1 stored for each of the multiple load ports 102 based on the actual stopping position P2 of the gripping unit 6 when the FOUP 90 is transferred. Specifically, the area controller 70 determines whether the distance difference between the teaching position P1 and the stopping position P2 is within a predetermined range (for example, within ⁇ 5 mm). If the area controller 70 determines that the distance difference is not within the predetermined range, it calculates a correction value for the teaching position P1 based on the stopping position P2.
- the correction value is, for example, a shift amount relative to the teaching position P1, and indicates how much the teaching position P1 needs to be shifted from the teaching position P1 so that the distance to the stopping position P2 falls within the above-mentioned predetermined range.
- the transport vehicle controller 7 transmits the correction value for the teaching position P1 calculated in this manner to the area controller 70.
- the transport vehicle controller 7 can obtain a correction value for the teaching position P1 from the area controller 70 during transfer, it determines whether the distance difference between the teaching position P1 and the stop position P2 taking into account the correction value falls within a specified range, and if it determines that the distance difference does not fall within the specified range, it calculates a correction value for the teaching position P1 based on the stop position P2.
- the area controller 70 includes a CPU, a ROM, a RAM, and the like.
- the area controller 70 can be configured as software in which a program stored in the ROM is loaded onto the RAM and executed by the CPU.
- the area controller 70 may also be configured as hardware using electronic circuits, and the like.
- the area controller 70 transmits, for example, a transport command to cause the transport vehicle 1 to transport the FOUP 90.
- the area controller 70 is capable of communicating with the transport vehicle 1 via a power supply unit, etc., arranged on the traveling rail 101.
- the area controller 70 is equipped with a teaching position memory unit 70A that stores information about the teaching position P1.
- the teaching position memory unit 70A is a storage device such as a hard disk drive (HDD) or a solid state drive (SSD). As shown in FIG. 8(A), the teaching position memory unit 70A associates and stores a correction value for one teaching position P1 for each of the multiple load ports 102 provided in the ceiling transport vehicle system 80.
- the area controller 70 stores the correction values of the teaching position P1 transmitted from the multiple transport vehicles 1 in the teaching position memory unit 70A. If the correction value of the teaching position P1 is not stored in the teaching position memory unit 70A, the area controller 70 newly stores the transmitted correction value of the teaching position P1, and if the correction value of the teaching position P1 is already stored, it overwrites (updates) it with the transmitted correction value of the teaching position P1. It can be said that the area controller 70 of this embodiment corrects the teaching position P1 based on the stop position P2 acquired every time all transfer operations are performed by the multiple transport vehicles 1. That is, in this embodiment, the teaching position P1 for one load port 102 can be corrected by the transfer operations of each of the multiple transport vehicles 1.
- the correction of the teaching position P1 performed by the area controller 70 will be explained with reference to the flowcharts of Figures 6 and 7.
- an example will be explained in which the teaching position P1 is corrected by two of the multiple transport vehicles 1, 1, and the correction value has already been stored in the teaching position memory unit 70A of the area controller 70.
- the two transport vehicles 1, 1 will be referred to as vehicle No. 1 1A and vehicle No. 2 1B, respectively.
- the transport vehicle controller 7 of the first car 1A inquires of the area controller 70 about the correction value of the teaching position P1 of port A (hereinafter referred to as the "correction value of port A”) (step S1).
- the area controller 70 that receives the inquiry extracts the correction value of port A from the teaching position memory unit 70A (step S2) and transmits the correction value of port A to the transport vehicle controller 7 of the first car 1A (step S3).
- the transport vehicle controller 7 of the first car 1A receives the correction value of port A transmitted from the area controller 70 (step S4).
- the transport vehicle controller 7 of the first car 1A transfers the FOUP 90 to port A based on the previously stored teaching position P1 and the correction value of port A (step S5).
- the transport vehicle controller 7 of the first car 1A determines whether the difference between the stop position P2 at the time of transfer and the teaching position P1 taking into account the correction value is within a specified range. If the transport vehicle controller 7 of the first car 1A determines that the difference is not within the specified range, it calculates a correction value (port A correction value) for correcting the teaching position P1 to be within the specified range based on the stop position P2 (step S6).
- the transport vehicle controller 7 of the first car 1A transmits the thus calculated correction value of port A to the area controller 70 (step S7).
- the area controller 70 stores (updates) the correction value of port A received from the first car 1A in the teaching position memory unit 70A (step S8). Specifically, the area controller 70 updates the database as shown in FIG. 8(A).
- the transport vehicle controller 7 of car No. 2 1B inquires of the area controller 70 about the correction value of port A (step S11).
- the area controller 70 which receives the inquiry, extracts the correction value of port A from the teaching position memory unit 70A (step S12) and transmits the correction value of port A to the transport vehicle controller 7 of car No. 2 1B (step S13).
- the transport vehicle controller 7 of car No. 2 1B receives the correction value of port A transmitted from the area controller 70 (step S14).
- the transport vehicle controller 7 of the second car 1B transfers the FOUP 90 to port A based on the previously stored teaching position P1 and the correction value of port A (step S15).
- the transport vehicle controller 7 of the second car 1B determines whether the difference between the stop position P2 at the time of transfer and the teaching position P1 taking into account the correction value is within a specified range. If the transport vehicle controller 7 of the second car 1B determines that the difference is not within the specified range, it calculates a correction value (port A correction value) for correcting the teaching position P1 to be within the specified range based on the stop position P2 (step S16).
- the transport vehicle controller 7 of the second car 1B transmits the thus calculated correction value of port A to the area controller 70 (step S17).
- the area controller 70 stores (updates) the correction value of port A received from the second car 1B in the teaching position memory unit 70A (step S18). Specifically, the area controller 70 updates the database as shown in FIG. 8(A).
- transport vehicles 1 other than the first car 1A and the second car 1B can also calculate the correction value of port A in a similar manner and transmit it to the area controller 70.
- the area controller 70 can store (update) the correction value of port A received from transport vehicles 1 other than the first car 1A and the second car 1B in the teaching position memory unit 70A.
- the transport vehicle controller 7 of the first car 1A transfers the FOUP 90 to port B based on the previously stored teaching position P1 and the correction value of port B (step S25).
- the transport vehicle controller 7 of the first car 1A determines whether the difference between the stop position P2 at the time of transfer and the teaching position P1 taking into account the correction value is within a specified range. If the transport vehicle controller 7 of the first car 1A determines that the difference is not within the specified range, it calculates a correction value (port B correction value) for correcting the teaching position P1 to be within the specified range based on the stop position P2 (step S26).
- the transport vehicle controller 7 of the first car 1A transmits the thus calculated correction value of port B to the area controller 70 (step S27).
- the area controller 70 stores (updates) the correction value of port B received from the first car 1A in the teaching position memory unit 70A (step S28). Specifically, the area controller 70 updates the database as shown in FIG. 8(A).
- transport vehicles 1 other than the first car 1A can also calculate the correction value of port B in a similar manner and transmit it to the area controller 70.
- the area controller 70 can store (update) the correction value of port B received from transport vehicles 1 other than the first car 1A in the teaching position storage unit 70A. Specifically, the area controller 70 updates the database as shown in FIG. 8(A).
- the ceiling transport vehicle system 80 of the above embodiment when the gripper 6 is lowered, it is lowered at high speed in the section where the possibility of collision is low, and is lowered at low speed in the section where the possibility of collision is high.
- the starting point of the section where the possibility of collision is high is stored in advance as the teaching position P1, and the positional relationship (distance) between the teaching position P1 and the stop position P2 may be unintentionally too short or too long due to the factors described above. If this relationship is unintentionally too short, the FOUP 90 cannot be properly transferred to the load port 102, and if this relationship is unintentionally too long, it takes time to transfer the FOUP 90 to the load port 102.
- the teaching position P1 for each load port 102 is appropriately corrected based on the stop position P2 at the time of transfer to the load port 102.
- the correction can be used to return it to an appropriate distance, allowing the FOUP 90 to be transferred appropriately and quickly to the load port 102.
- the teaching position memory unit 70A associates and stores one teaching position P1 for each of the multiple load ports 102, and the area controller 70 corrects the teaching position P1 based on the stop position P2 acquired each time a transfer operation is performed by the multiple transport vehicles 1. This makes it possible to update the correction value regardless of which transport vehicle 1 transfers a FOUP 90 to the load port 102. This makes it possible to update the correction value frequently, making it possible to quickly respond to unintended factors.
- the teaching position memory unit 7A may be provided in the transport vehicle controller 7 instead of the area controller 70.
- the teaching position memory unit 70A is a storage such as a hard disk drive (HDD) or a solid state drive (SSD).
- the teaching position memory unit 7A is a storage such as a hard disk drive (HDD) or a solid state drive (SSD).
- the teaching position memory unit 7A is provided for each transport vehicle 1, and as shown in FIG. 8(B) and FIG. 8(C), it associates and stores teaching positions P1 corresponding to each of the multiple transport vehicles 1 for each of the multiple load ports 102.
- the transport vehicle controller 7 corrects the teaching position P1 based on the stop position P2 acquired by each transport vehicle 1 for each of the multiple load ports 102.
- the correction of the teaching position P1 performed by the carrier vehicle controller 7 in the carrier vehicle 1 according to the first modification will be explained with reference to the flowchart in FIG. 9.
- an example will be explained in which two carrier vehicles 1, 1 among the multiple carrier vehicles 1 correct the teaching position P1 using their own carrier vehicle controller 7, and the correction value has already been stored in the teaching position memory unit 7A of the carrier vehicle controller 7 of each carrier vehicle 1.
- the two carrier vehicles 1, 1 will be referred to as the first carrier vehicle 1A and the second carrier vehicle 1B, respectively.
- the first car 1A transfers the FOUP 90 to port A.
- the transport vehicle controller 7 of the first car 1A transfers the FOUP 90 to port A based on the teaching position P1 and the correction value of port A stored in advance (step S41).
- the transport vehicle controller 7 of the first car 1A judges whether the difference between the stop position P2 at the time of transfer and the teaching position P1 taking into account the correction value is within a predetermined range. If the transport vehicle controller 7 of the first car 1A judges that the difference is not within the predetermined range, it calculates a correction value (port A correction value) for correcting the teaching position P1 to be within the predetermined range based on the stopping position P2 (step S42).
- the transport vehicle controller 7 of the first car 1A stores (updates) the correction value of port A thus calculated in the teaching position memory unit 7A (step S43). Specifically, the transport vehicle controller 7 updates the database as shown in FIG. 8(B).
- the first car 1A transfers the FOUP 90 to port B.
- the transport vehicle controller 7 of the first car 1A transfers the FOUP 90 to port B based on the previously stored teaching position P1 and the correction value of port B (step S44).
- the transport vehicle controller 7 of the first car 1A judges whether the difference between the stop position P2 at the time of transfer and the teaching position P1 taking into account the correction value is within a predetermined range. If the transport vehicle controller 7 of the first car 1A judges that the difference is not within the predetermined range, it calculates a correction value (port B correction value) for correcting the teaching position P1 to be within the predetermined range based on the stop position P2 (step S45).
- the transport vehicle controller 7 of the first car 1A stores (updates) the correction value of port B thus calculated in the teaching position memory unit 7A (step S46). Specifically, the transport vehicle controller 7 updates the database as shown in FIG. 8(B).
- car No. 2 1B also executes steps S51 to S53 shown in FIG. 9 to store (update) the correction value for port A in the teaching position memory unit 7A provided in the carrier controller 7 of the vehicle itself.
- Car No. 2 1B also executes steps S54 to S56 shown in FIG. 9 to store (update) the correction value for port B in the teaching position memory unit 7A.
- the carrier controller 7 updates the database as shown in FIG. 8 (C).
- the positional relationship (distance) between the teaching position P1 and the stop position P2 is set between each load port 102 and each transport vehicle 1. This makes it possible to deal with problems caused by machine differences, such as stretching of the belt 5a that suspends the gripping portion 6. Furthermore, in the transport vehicle 1 according to the first modification, the teaching position P1 is corrected for each transport vehicle 1, so the amount of communication required when correcting the teaching position P1 can be reduced.
- the transport vehicle controller 7 of each transport vehicle 1 corrects the teaching position P1 and stores the correction value in the teaching position memory unit 7A of the transport vehicle controller 7 of each transport vehicle 1, but the present invention is not limited to this.
- the transport vehicle controller 7 of each transport vehicle 1 calculates a correction value for each port based on the stop position P2 acquired during transfer and transmits it to the area controller 70, and the area controller 70 stores (updates) the correction value for each port acquired from the transport vehicle controller 7 in the teaching position memory unit 70A for each transport vehicle.
- the correction of the teaching position P1 performed by the area controller 70 will be explained with reference to the flowcharts in Figures 10 and 11.
- an example will be explained in which the teaching position P1 is corrected by two of the multiple transport vehicles 1, 1, and the correction value has already been stored in the teaching position memory unit 7A of the transport vehicle controller 7 of each transport vehicle 1.
- the two transport vehicles 1, 1 will be referred to as the first transport vehicle 1A and the second transport vehicle 1B, respectively.
- the transport vehicle controller 7 of the first car 1A inquires of the area controller 70 about the correction value of port A (step S61).
- the area controller 70 which receives the inquiry, extracts the correction value of port A of the first car 1A from the teaching position memory unit 70A (step S62) and transmits the correction value of port A of the first car 1A to the transport vehicle controller 7 of the first car 1A (step S63).
- the transport vehicle controller 7 of the first car 1A receives the correction value of port A of the first car 1A transmitted from the area controller 70 (step S64).
- the transport vehicle controller 7 of the first car 1A transfers the FOUP 90 to port A based on the previously stored teaching position P1 and the correction value of port A (step S65).
- the transport vehicle controller 7 of the first car 1A determines whether the difference between the stop position P2 at the time of transfer and the teaching position P1 taking into account the correction value is within a specified range. If the transport vehicle controller 7 of the first car 1A determines that the difference is not within the specified range, it calculates a correction value (port A correction value) for correcting the teaching position P1 to be within the specified range based on the stop position P2 (step S66).
- the transport vehicle controller 7 of the first car 1A transmits the thus calculated correction value of port A to the area controller 70 (step S67).
- the area controller 70 stores (updates) the correction value of port A received from the first car 1A in the teaching position memory unit 70A as the correction value of port A of the first car 1A (step S68). Specifically, the area controller 70 updates the database as shown in FIG. 8(D).
- the transport vehicle controller 7 in car No. 2 1B inquires of the area controller 70 about the correction value for port A (step S71).
- the area controller 70 having received the inquiry, extracts the correction value for port A of car No. 2 1B from the teaching position memory unit 70A (step S72) and transmits the correction value for port A of car No. 2 1B to the transport vehicle controller 7 in car No. 2 1B (step S73).
- the transport vehicle controller 7 in car No. 2 1B receives the correction value for port A of car No. 2 1B transmitted from the area controller 70 (step S74).
- the transport vehicle controller 7 of the second car 1B transfers the FOUP 90 to port A based on the previously stored teaching position P1 and the correction value of port A (step S75).
- the transport vehicle controller 7 of the second car 1B determines whether the difference between the stop position P2 at the time of transfer and the teaching position P1 taking into account the correction value is within a specified range. If the transport vehicle controller 7 of the second car 1B determines that the difference is not within the specified range, it calculates a correction value (port A correction value) for correcting the teaching position P1 to be within the specified range based on the stop position P2 (step S76). As shown in FIG. 11, the transport vehicle controller 7 of the second car 1B transmits the thus calculated correction value of port A to the area controller 70 (step S77).
- the area controller 70 stores (updates) the correction value of port A received from the second car 1B in the teaching position memory unit 70A as the correction value of port A of the second car 1B (step S78). Specifically, the area controller 70 updates the database as shown in FIG. 8(D).
- transport vehicles 1 other than vehicle No. 1 1A and vehicle No. 2 1B can also calculate the port A correction value in a similar manner and transmit it to the area controller 70.
- the area controller 70 can store (update) the port A correction value received from transport vehicles 1 other than vehicle No. 1 1A and vehicle No. 2 1B as the port A correction value of each transport vehicle 1 in the teaching position memory unit 70A.
- the transport vehicle controller 7 of first car 1A inquires of the area controller 70 about the correction value of port B (step S81).
- the area controller 70 which receives the inquiry, extracts the correction value of port B of first car 1A from the teaching position memory unit 70A (step S82) and transmits the correction value of port B of first car 1A to the transport vehicle controller 7 of first car 1A (step S83).
- the transport vehicle controller 7 of first car 1A receives the correction value of port B of first car 1A transmitted from the area controller 70 (step S84).
- the transport vehicle controller 7 of the first car 1A transfers the FOUP 90 to port B based on the previously stored teaching position P1 and the correction value of port B (step S85).
- the transport vehicle controller 7 of the first car 1A determines whether the difference between the stop position P2 at the time of transfer and the teaching position P1 taking into account the correction value is within a specified range. If the transport vehicle controller 7 of the first car 1A determines that the difference is not within the specified range, it calculates a correction value (port B correction value) for correcting the teaching position P1 to be within the specified range based on the stop position P2 (step S86).
- the transport vehicle controller 7 of the first car 1A transmits the thus calculated correction value of port B to the area controller 70 (step S87).
- the area controller 70 stores (updates) the correction value of port B received from the first car 1A in the teaching position memory unit 70A as the correction value of port B of the first car 1A (step S88). Specifically, the area controller 70 updates the database as shown in FIG. 8(D).
- transport vehicles 1 other than the first vehicle 1A can also calculate the port B correction value in a similar manner and transmit it to the area controller 70.
- the area controller 70 can store (update) the port B correction value received from transport vehicles 1 other than the first vehicle 1A as the port B correction value of each transport vehicle 1 in the teaching position storage unit 70A. Specifically, the area controller 70 updates the database as shown in FIG. 8 (D).
- the positional relationship (distance) between the teaching position P1 and the stop position P2 is set between each load port 102 and each transport vehicle 1. This makes it possible to deal with problems caused by machine differences, such as stretching of the belt 5a that suspends the gripper 6.
- the correction value calculated during transfer is stored (updated) as is in the teaching position storage unit 7A (70A), but the present invention is not limited to this.
- the area controller 70 transport vehicle controller 7 determines that the distance difference between the teaching position P1 and the stop position P2 (the distance difference between the teaching position P1 and the stop position P2 taking into account the correction value) is not within a predetermined range (i.e., when it determines that it is necessary to calculate a correction value)
- it may use a predetermined small shift amount (e.g., 1 mm) as the correction value instead of the calculated correction value.
- the shift amount is set to a value that is smaller than the correction value that would be calculated.
- a correction is suppressed from being made that causes a large change in the teaching position P1 due to a single transfer operation, that is, causes a large change in the amount of movement when the gripper 6 descends at high speed.
- the area controller 70 may calculate a correction value and store (update) it in the teaching position storage unit 7A (70A) when the number of such determinations exceeds a specified number, rather than immediately calculating a correction value when it determines that the distance difference between the teaching position P1 and the stop position P2 (the distance difference between the teaching position P1 and the stop position P2 taking the correction value into account) is not within a predetermined range.
- the correction value can be updated after confirming that the distance difference is a steady change.
- 1...Ceiling transport vehicle transport vehicle
- 1A...First vehicle transport vehicle
- 1B...Second vehicle transport vehicle
- 2...Running section main body
- 3...Side feed section 4...Rotating section, 5...Lifting section, 6...Gripping section, 7...Transport vehicle controller (instruction position correction section), 7A...Instruction position memory section (memory section), 20...Flange detection section (detection section), 70...Area controller (instruction position correction section), 70A...Instruction position memory section (memory section), 80...Ceiling transport vehicle system, 101...Running rail, 102...Load port (station), P1...Instruction position, P2...Stop position (gripping position).
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Control And Safety Of Cranes (AREA)
Abstract
Each of a plurality of transport vehicles (1) provided in an overhead transport vehicle system (80) comprises: a detection part (20) that is provided to a gripping part (6) and that detects that the gripping part (6) has reached a prescribed position with respect to an article (90) mounted on a station (102); a raising/lowering part (5) that raises and lowers the gripping part (6); a transport vehicle controller (7) that causes the gripping part (6) to lower at a first speed (V1) with respect to a body part (2) and then causes the gripping part (6) to lower from a teaching position (P1) stored in advance in a storage unit (70A) at a second speed (V2) which is slower than the first speed (V1), and causes the gripping part (6) to stop when the article (90) is detected by the detection part (20) so as to transfer the article (90) to the transport vehicle (1); and a teaching position correction part (7) that corrects the teaching position (P1) stored for each of a plurality of stations (102) on the basis of the stop position of the gripping part (6) during the transfer of the article (90).
Description
本発明の一側面は、天井搬送車システム及び天井搬送車に関する。
One aspect of the present invention relates to a ceiling transport vehicle system and a ceiling transport vehicle.
天井に支持された軌道を走行してステーションに物品を移載する天井搬送車が知られている。天井搬送車は、物品を把持する把持部と、把持部を昇降させる昇降部とを備え、把持部を下降させることによってステーションに対して物品を移載する。このような天井搬送車では、予め記憶された設定値に基づいて、把持部を下降させることによって、ステーションに物品を移載する。ところが、種々の要因(例えば、積雪等により天井の高さが変化した場合、把持部を吊り下げるベルト等が延びた場合等)によって天井搬送車とステーションとの相対距離、又は、制御上の距離と実際の下降距離とが変化すると、把持部で物品を押し潰したり、物品を把持できなかったりする等、物品を適切に移載できなくなる可能性がある。
Ceiling transport vehicles are known that travel along a track supported by the ceiling to transfer items to a station. Ceiling transport vehicles are equipped with a gripping section that grips items and a lifting section that raises and lowers the gripping section, and transfer items to the station by lowering the gripping section. In such ceiling transport vehicles, items are transferred to the station by lowering the gripping section based on a pre-stored set value. However, if the relative distance between the ceiling transport vehicle and the station, or the controlled distance and the actual lowering distance, changes due to various factors (for example, if the height of the ceiling changes due to snow accumulation, or if the belt that suspends the gripping section is stretched, etc.), there is a possibility that the gripping section will crush the item or be unable to grip the item, making it impossible to transfer the item properly.
このような問題を解決する技術として、例えば、特許文献1には、天井搬送車とステーションとの距離を検出するレーザ距離センサを備える天井搬送車システムが開示されている。特許文献1記載の天井搬送車システムでは、物品の移載時に取得するレーザ距離センサの検出結果に基づいて設定値を補正し、補正後の設定値に基づいて把持部を下降させている。
As a technology to solve such problems, for example, Patent Document 1 discloses an overhead transport vehicle system equipped with a laser distance sensor that detects the distance between the overhead transport vehicle and the station. In the overhead transport vehicle system described in Patent Document 1, a set value is corrected based on the detection results of the laser distance sensor obtained when transferring an item, and the gripper is lowered based on the corrected set value.
また、レーザ距離センサを備えなくとも上記のような問題を解決する方法として、予め記憶された教示位置まで所定速度で把持部を下降させ、教示位置を過ぎてからはすぐに停止できるような低速度で把持部を下降させることが考えられる。しかしながら、この場合には、上述したような意図していなかった要因が発生した場合であっても物品を適切に移載するために、教示位置を不要に高い位置に設定する必要がある。このような天井搬送車では、物品をステーションに移載するに際し時間を要する。
In addition, as a method for solving the above problems without using a laser distance sensor, it is possible to lower the gripper at a predetermined speed to a pre-stored teaching position, and then to lower the gripper at a slow speed so that it can be stopped immediately after passing the teaching position. However, in this case, in order to transfer the item appropriately even if an unintended factor such as the above occurs, it is necessary to set the teaching position at an unnecessarily high position. With such an overhead transport vehicle, it takes time to transfer the item to the station.
そこで、本発明の一側面の目的は、教示位置と停止位置との距離が種々の要因によって変化する場合であっても、ステーションに対して適切かつ短時間に物品を移載することができる天井搬送車システム及び天井搬送車を提供することにある。
The objective of one aspect of the present invention is to provide an overhead transport vehicle system and overhead transport vehicle that can transfer items to a station appropriately and quickly, even if the distance between the teaching position and the stopping position changes due to various factors.
本発明の一側面に係る天井搬送車システムは、天井に支持された軌道を走行する本体部に対して物品を把持する把持部を昇降させることによって、複数のステーションに対して物品を移載する複数の搬送車を備える天井搬送車システムであって、複数の搬送車のそれぞれは、把持部に設けられ、物品を検知する検知部と、把持部を昇降させる昇降部と、本体部に対して第一速度で把持部を下降させた後、記憶部に予め記憶された教示位置から第一速度よりも低速の第二速度で把持部を下降させ、検知部によって物品が検知されると把持部を停止させることによって、搬送車に物品を移載させる搬送車コントローラと、複数のステーション毎に記憶された教示位置を、物品の移載時における把持部の停止位置に基づいて補正する教示位置補正部と、を備える。
A ceiling transport vehicle system according to one aspect of the present invention is a ceiling transport vehicle system including a plurality of transport vehicles that transfers objects to a plurality of stations by raising and lowering a gripper that grips an object relative to a main body that runs on a track supported on the ceiling, and each of the plurality of transport vehicles includes a detector provided in the gripper that detects the object, a lifting unit that raises and lowers the gripper, a transport vehicle controller that lowers the gripper at a first speed relative to the main body, and then lowers the gripper at a second speed slower than the first speed from a teaching position previously stored in the memory unit, and stops the gripper when the detection unit detects an object, thereby transferring the object to the transport vehicle, and a teaching position correction unit that corrects the teaching positions stored for each of the plurality of stations based on the stopping position of the gripper when the object is transferred.
本発明の一側面に係る天井搬送車は、天井に支持された軌道を走行する本体部に対して物品を把持する把持部を昇降させることによって、複数のステーションに対して物品を移載する天井搬送車であって、把持部に設けられ、物品を検知する検知部と、把持部を昇降させる昇降部と、本体部に対して第一速度で把持部を下降させた後、記憶部に予め記憶された教示位置から第一速度よりも低速の第二速度で把持部を下降させ、検知部によって物品が検知されると把持部を停止させることによって、搬送車に物品を移載させる搬送車コントローラと、ステーション毎に記憶された教示位置を、物品の移載時における把持部の停止位置に基づいて補正する教示位置補正部と、を備える。
A ceiling transport vehicle according to one aspect of the present invention is a ceiling transport vehicle that transfers objects to a plurality of stations by raising and lowering a gripping unit that grips the object relative to a main body unit that runs on a track supported on the ceiling, and is equipped with a detection unit provided on the gripping unit that detects the object, a lifting unit that raises and lowers the gripping unit, a transport vehicle controller that lowers the gripping unit at a first speed relative to the main body unit, and then lowers the gripping unit at a second speed slower than the first speed from a teaching position pre-stored in a memory unit, and stops the gripping unit when the detection unit detects the object, thereby transferring the object to the transport vehicle, and a teaching position correction unit that corrects the teaching position stored for each station based on the stopping position of the gripping unit when the object is transferred.
この構成の天井搬送車システム及び天井搬送車では、教示位置と停止位置との位置関係(距離)が種々の要因によって短くなりすぎたり、長くなりすぎたりしている場合であっても、ステーションへの物品の移載時の停止位置に基づいて、ステーション毎の教示位置が適正に補正される。これにより、教示位置と停止位置との距離が意図せず広がっていたり、短くなっていたりしても、次回の移載動作の際には当該補正によって適切な距離に戻すことができる。この結果、教示位置と停止位置との距離が種々の要因によって変化する場合であっても、ステーションに対して適切かつ短時間に物品を移載することができる。
In the overhead transport vehicle system and overhead transport vehicle of this configuration, even if the positional relationship (distance) between the taught position and the stop position becomes too short or too long due to various factors, the taught position for each station is appropriately corrected based on the stop position when the item is transferred to the station. As a result, even if the distance between the taught position and the stop position unintentionally becomes wider or shorter, the correction can be used to return it to an appropriate distance for the next transfer operation. As a result, even if the distance between the taught position and the stop position changes due to various factors, the item can be transferred to the station appropriately and in a short time.
本発明の一側面に係る天井搬送車システムでは、記憶部は、複数のステーション毎に一つの教示位置を関連付けて記憶しており、教示位置補正部は、複数の搬送車による全ての移載動作の度に取得される停止位置に基づいて教示位置を補正してもよい。この構成では、ステーションに対してどの搬送車が物品を移載しても補正値を更新することができる。これにより、高い頻度で補正値を更新できるようになるので、意図しない要因に対して迅速に対応することができる。
In an overhead transport vehicle system according to one aspect of the present invention, the memory unit stores one teaching position associated with each of a plurality of stations, and the teaching position correction unit may correct the teaching position based on the stop position acquired each time all transfer operations are performed by the plurality of transport vehicles. In this configuration, the correction value can be updated regardless of which transport vehicle transfers an item to the station. This allows the correction value to be updated frequently, making it possible to quickly respond to unintended factors.
本発明の一側面に係る天井搬送車システムでは、記憶部は、複数のステーション毎に複数の搬送車のそれぞれに対応する教示位置を関連付けて記憶しており、教示位置補正部は、複数のステーション毎にそれぞれの搬送車が取得する停止位置に基づいて教示位置を補正してもよい。この構成では、教示位置と停止位置との位置関係(距離)が、各ステーションと各搬送車との間で設定されることになる。これにより、例えば、把持部を吊り下げるベルトの伸び等、機差による要因を起因とする不具合等にも対応することが可能となる。
In a ceiling transport vehicle system according to one aspect of the present invention, the memory unit stores a teaching position corresponding to each of the multiple transport vehicles for each of the multiple stations in association with each other, and the teaching position correction unit may correct the teaching position based on the stop position acquired by each of the multiple stations by the transport vehicles. In this configuration, the positional relationship (distance) between the teaching position and the stop position is set between each station and each transport vehicle. This makes it possible to deal with malfunctions caused by factors due to machine differences, such as stretching of the belt that suspends the gripping unit.
本発明の一側面に係る天井搬送車システムでは、記憶部は、複数の搬送車のそれぞれに設けられてもよい。この構成では、搬送車毎に教示位置の補正に必要な情報(教示位置と停止位置との距離)は自車内に記憶されるので、教示位置の補正時の通信量を軽減することができる。
In an overhead transport vehicle system according to one aspect of the present invention, a memory unit may be provided in each of the multiple transport vehicles. In this configuration, the information required for correcting the teaching position for each transport vehicle (the distance between the teaching position and the stopping position) is stored within the vehicle itself, so that the amount of communication required when correcting the teaching position can be reduced.
本発明の一側面によれば、ステーションに対して適切かつ短時間に物品を移載することができる。
According to one aspect of the present invention, items can be transferred to a station appropriately and in a short time.
以下、図面を参照して一実施形態に係る天井搬送車システム80について説明する。図面の説明において、同一要素には同一符号を付し、重複する説明を省略する。
Below, a ceiling transport vehicle system 80 according to one embodiment will be described with reference to the drawings. In the description of the drawings, the same elements are given the same reference numerals, and duplicate descriptions will be omitted.
図1及び図2に示されるように、天井搬送車システム80は、複数の天井搬送車1(以下、単に「搬送車1」称する。)と、複数のロードポート102と、エリアコントローラ(教示位置補正部)70(図4参照)と、を備える。
As shown in Figures 1 and 2, the ceiling transport vehicle system 80 includes a plurality of ceiling transport vehicles 1 (hereinafter simply referred to as "transport vehicles 1"), a plurality of load ports 102, and an area controller (teaching position correction unit) 70 (see Figure 4).
搬送車1は、半導体デバイスが製造されるクリーンルームの天井C付近に敷設された走行レール(軌道)101に沿って走行する。搬送車1は、複数枚の半導体ウェハが収容された容器であるFOUP(物品)90を搬送する。搬送車1は、半導体ウェハに各種処理を施す処理装置に設けられたロードポート(ステーション)102に対してFOUP90の移載を行う。すなわち、搬送車1は、ロードポート102の載置面102aに載置されているFOUP90を回収したり、ロードポート102の載置面102aにFOUP90を載置したりする。
The transport vehicle 1 travels along a travelling rail (track) 101 laid near the ceiling C of the clean room where semiconductor devices are manufactured. The transport vehicle 1 transports a FOUP (item) 90, which is a container that contains multiple semiconductor wafers. The transport vehicle 1 transfers the FOUP 90 to a load port (station) 102 provided in a processing device that performs various processes on the semiconductor wafers. That is, the transport vehicle 1 retrieves the FOUP 90 placed on the placement surface 102a of the load port 102, and places the FOUP 90 on the placement surface 102a of the load port 102.
搬送車1は、走行部2と、横送り部3と、回動部4と、昇降部5と、把持部6と、搬送車コントローラ(教示位置補正部)7と、を備えている。走行部2は、例えば、走行レール101に沿って敷設された高周波電流線から非接触で電力の供給を受けることにより、走行レール101に沿って走行する。横送り部3は、走行レール101が延在する方向に対して横方向に、回動部4、昇降部5及び把持部6を移動させる。回動部4は、昇降部5及び把持部6を水平面内において回動させる。昇降部5は、複数本のベルト5aを有しており、ベルト5aの下端部に、把持部6が取り付けられている。
The transport vehicle 1 comprises a running unit 2, a lateral feed unit 3, a rotating unit 4, a lifting unit 5, a gripping unit 6, and a transport vehicle controller (teaching position correction unit) 7. The running unit 2 runs along the running rail 101 by receiving a non-contact supply of power, for example, from a high-frequency current line laid along the running rail 101. The lateral feed unit 3 moves the rotating unit 4, the lifting unit 5, and the gripping unit 6 in a direction lateral to the direction in which the running rail 101 extends. The rotating unit 4 rotates the lifting unit 5 and the gripping unit 6 in a horizontal plane. The lifting unit 5 has multiple belts 5a, and the gripping unit 6 is attached to the lower end of the belts 5a.
昇降部5は、複数本のベルト(吊持部材)5aを繰り出し又は巻き取ることにより、把持部6を昇降させる。把持部6は、一対の爪部材6aを閉じることにより、FOUP90が有するフランジ部91を把持する。把持部6は、一対の爪部材6aを開くことにより、フランジ部91の把持状態を解除する。
The lifting unit 5 raises and lowers the gripping unit 6 by unwinding or winding up multiple belts (hanging members) 5a. The gripping unit 6 grips the flange portion 91 of the FOUP 90 by closing a pair of claw members 6a. The gripping unit 6 releases the gripped state of the flange portion 91 by opening the pair of claw members 6a.
図1には、XYZ軸が併記されている。図中のY方向は天井搬送車1の走行方向であり、図中のX方向は、横送り部3によって把持部6等が移動させられる横移動方向である。図中のZ方向は鉛直方向である。天井搬送車1は、Z方向に沿って把持部6を下降させ、また、Z方向に沿って把持部6を上昇させる。天井搬送車1の走行方向(Y方向)、横送り部3による横移動方向(X方向)及び鉛直方向(Z方向)は、互いにそれぞれ直交する。なお、後述の説明において参照される図2及び図3にも、同様に、XYZ軸が併記されている。
In FIG. 1, the X, Y and Z axes are shown together. The Y direction in the figure is the travel direction of the ceiling transport vehicle 1, and the X direction in the figure is the lateral movement direction in which the gripping unit 6 and the like are moved by the lateral feed unit 3. The Z direction in the figure is the vertical direction. The ceiling transport vehicle 1 lowers the gripping unit 6 along the Z direction, and also raises the gripping unit 6 along the Z direction. The travel direction (Y direction) of the ceiling transport vehicle 1, the lateral movement direction (X direction) by the lateral feed unit 3, and the vertical direction (Z direction) are all perpendicular to each other. Note that the X, Y and Z axes are also shown together in FIG. 2 and FIG. 3, which will be referred to in the following explanation.
図1及び図2に示されるように、搬送車1は、センターコーン8と、ドグ10と、フランジ検知部(検知部)20と、を更に備えている。FOUP90のフランジ部91の中央には、上方に開放された凹部91aが形成されている。センターコーン8は、フランジ部91の凹部91aに嵌合させ、FOUP90に対して把持部6を位置決めするための部材である。センターコーン8、ドグ10及びフランジ検知部20は、把持部6に設けられている。センターコーン8、ドグ10及びフランジ検知部20は、把持部6のベース部(図示せず)に取り付けられている。センターコーン8は、ベース部に取り付けられたスプリング(図示せず)によって下方に付勢されると共に、把持部6に対して上下動自在である。
As shown in Figures 1 and 2, the transport vehicle 1 further includes a center cone 8, a dog 10, and a flange detection unit (detection unit) 20. A recess 91a that is open upward is formed in the center of the flange portion 91 of the FOUP 90. The center cone 8 is a member that fits into the recess 91a of the flange portion 91 and is used to position the gripper 6 relative to the FOUP 90. The center cone 8, the dog 10, and the flange detection unit 20 are provided in the gripper 6. The center cone 8, the dog 10, and the flange detection unit 20 are attached to the base portion (not shown) of the gripper 6. The center cone 8 is biased downward by a spring (not shown) attached to the base portion, and is freely movable up and down relative to the gripper 6.
図1、図2及び図4に示されるように、搬送車コントローラ7は、搬送車1における各部の動作を制御する部分であり、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)等を含んで構成されている。搬送車コントローラ7は、ハードウェアとして構成されてもよい。
As shown in Figures 1, 2, and 4, the transport vehicle controller 7 is a part that controls the operation of each part in the transport vehicle 1, and is configured to include a CPU (Central Processing Unit), ROM (Read Only Memory), RAM (Random Access Memory), etc. The transport vehicle controller 7 may be configured as hardware.
以下、搬送車1における移載動作について説明する。ロードポート102に載置されたFOUP90の荷掴みを行う際、搬送車コントローラ7によって把持部6が下降制御され、センターコーン8がフランジ部91の凹部91aに嵌合する。把持部6が更に下降すると、把持部6に対してセンターコーン8が相対的に上昇する。フランジ検知部20の投光部及び受光部からなるフォトインタラプタと、その光軸上を通過するドグ10の遮光板部とによって、搬送車コントローラ7は、把持部6が把持位置(停止位置P2)(図2及び図3参照)に到達したことを検知する。すなわち、センターコーン8、ドグ10及びフランジ検知部20は、把持部6に設けられ、FOUP90への接触を検知する接触センサを構成すると言える。搬送車コントローラ7は、把持部6が把持位置に到達したことを検知すると、把持部6の下降を停止させる。
The transfer operation in the transport vehicle 1 will be described below. When the FOUP 90 placed on the load port 102 is gripped, the gripper 6 is controlled to descend by the transport vehicle controller 7, and the center cone 8 fits into the recess 91a of the flange 91. When the gripper 6 descends further, the center cone 8 rises relative to the gripper 6. The transport vehicle controller 7 detects that the gripper 6 has reached the gripping position (stop position P2) (see Figures 2 and 3) by the photointerrupter consisting of the light-emitting and light-receiving parts of the flange detector 20 and the light-shielding plate part of the dog 10 passing on the optical axis of the photointerrupter. In other words, the center cone 8, the dog 10, and the flange detector 20 are provided on the gripper 6 and can be said to constitute a contact sensor that detects contact with the FOUP 90. When the transport vehicle controller 7 detects that the gripper 6 has reached the gripping position, it stops the descent of the gripper 6.
搬送車コントローラ7は、把持部6に一対の爪部材6aを閉じさせる。爪部材6aが閉じることで、フランジ部91の下側に爪部材6aが入り込む。その後、搬送車コントローラ7は、昇降部5による把持部6の上昇を開始させる。FOUP90を保持した把持部6がロードポート102の載置面102aにFOUP90を配置する際、すなわち荷降ろしの際の動作は、荷掴みの際の動作とは逆である。
The transport vehicle controller 7 causes the gripper 6 to close the pair of claw members 6a. As the claw members 6a close, they enter the underside of the flange portion 91. The transport vehicle controller 7 then causes the lifting unit 5 to start raising the gripper 6. When the gripper 6 holding the FOUP 90 places the FOUP 90 on the loading surface 102a of the load port 102, i.e., when unloading, the operation is the opposite of that when grabbing the load.
フランジ検知部20は、ロードポート102に載置されたFOUP90に対して把持部6が所定位置に達したことを検知する。センターコーン8、ドグ10及びフランジ検知部20を用いた把持部6の位置の認識及び把持部6によるFOUP90の把持状態の認識は、例えば、上記特許文献1(国際公開第2018/179931号)に記載された構成及び方法によって実現される。しかしながら、それ以外の公知の構成及び方法によって、把持部6の位置の認識及び把持部6によるFOUP90の把持状態の認識がなされてもよい。
The flange detection unit 20 detects that the gripping unit 6 has reached a predetermined position relative to the FOUP 90 placed on the load port 102. Recognition of the position of the gripping unit 6 using the center cone 8, dog 10, and flange detection unit 20 and recognition of the gripping state of the FOUP 90 by the gripping unit 6 are achieved, for example, by the configuration and method described in the above-mentioned Patent Document 1 (WO 2018/179931). However, recognition of the position of the gripping unit 6 and recognition of the gripping state of the FOUP 90 by the gripping unit 6 may also be achieved by other known configurations and methods.
昇降部5は、昇降モータ(図示せず)を有しており、昇降モータがベルト5aを繰り出すことによって把持部6を下降させ、昇降モータがベルト5aを巻き上げることによって把持部6を上昇させる。昇降モータは、搬送車コントローラ7によって駆動制御される。搬送車コントローラ7は、昇降モータからの回転に関わる信号を受け取ることで、ベルト5aの繰出し量(ベルト長)を検知可能である。搬送車コントローラ7は、ベルト5aの繰出し量(ベルト長)に基づき、鉛直方向における任意の位置に把持部6を位置させることができる。本実施形態では、搬送車コントローラ7は、ベルト5aの繰出し量(ベルト長)に基づき、教示位置P1に把持部6を位置させる。また、搬送車コントローラ7は、ベルト5aの繰出し量に基づき、停止位置P2(FOUP90を把持する把持位置)における把持部6の位置(高さ位置)を取得できる。
The lifting unit 5 has a lifting motor (not shown), which lowers the gripping unit 6 by unwinding the belt 5a, and raises the gripping unit 6 by winding up the belt 5a. The lifting motor is driven and controlled by the transport vehicle controller 7. The transport vehicle controller 7 can detect the amount of belt 5a unwound (belt length) by receiving a signal related to the rotation from the lifting motor. The transport vehicle controller 7 can position the gripping unit 6 at any position in the vertical direction based on the amount of belt 5a unwound (belt length). In this embodiment, the transport vehicle controller 7 positions the gripping unit 6 at the teaching position P1 based on the amount of belt 5a unwound (belt length). The transport vehicle controller 7 can also obtain the position (height position) of the gripping unit 6 at the stop position P2 (the gripping position for gripping the FOUP 90) based on the amount of belt 5a unwound.
図3及び図5に示されるように、搬送車コントローラ7は、ロードポート102に対してFOUP90を移載する場合、走行部(本体部)2に対して第一速度V1で把持部6を下降させた後、予め記憶された教示位置P1から第一速度V1よりも低速の第二速度V2で把持部6を下降させ、フランジ検知部20によってFOUP90が検知されると把持部6を停止させる。より詳細には、搬送車コントローラ7は、搬送車1が走行する際の把持部6の位置である走行時位置P0から第一速度V1で把持部6が下降するように昇降部5を制御する。
As shown in Figures 3 and 5, when transferring a FOUP 90 to the load port 102, the transport vehicle controller 7 lowers the gripper 6 relative to the travel section (main body section) 2 at a first speed V1, then lowers the gripper 6 from a pre-stored teaching position P1 at a second speed V2 slower than the first speed V1, and stops the gripper 6 when the FOUP 90 is detected by the flange detection section 20.
More specifically, the transport vehicle controller 7 controls the lifting section 5 so that the gripper 6 descends at the first speed V1 from a travelling position P0, which is the position of the gripper 6 when the transport vehicle 1 is travelling.
次に、搬送車コントローラ7は、教示位置P1から第二速度V2で把持部6が下降するように昇降部5を制御する。第二速度V2は、例えば、昇降部5を停止制御したときに把持部6が比較的短い距離(例えば5mm)で停止できる速度である。搬送車コントローラ7は、フランジ検知部20によってFOUP90が検知されると(すなわち、ロードポート102に載置されたFOUP90に対して把持部6が所定位置に達したことを検知すると)把持部6の下降を停止するように昇降部5を制御する。
Next, the transport vehicle controller 7 controls the lifting unit 5 so that the gripper 6 descends from the taught position P1 at a second speed V2. The second speed V2 is, for example, a speed at which the gripper 6 can be stopped in a relatively short distance (e.g., 5 mm) when the lifting unit 5 is controlled to stop. The transport vehicle controller 7 controls the lifting unit 5 to stop the descent of the gripper 6 when the flange detection unit 20 detects the FOUP 90 (i.e., when it detects that the gripper 6 has reached a predetermined position with respect to the FOUP 90 placed on the load port 102).
このような搬送車コントローラ7の制御によって、搬送車1は、ロードポート102に対してFOUP90を移載するに際し、最初に高い速度で把持部6を下降させ、FOUP90に近づいた教示位置からは低い速度で把持部6を下降させている。これにより、教示位置までの下降時間を短縮し、その後はゆっくりと下降させることでロードポート102にFOUP90を載置するときの衝撃を抑制したり、ロードポート102に載置されたFOUP90を把持するときに把持部6がFOUP90のフランジ部91に衝突したりすることを抑制できる。このような教示位置は、教示位置と停止位置P2の距離が所定範囲に収まるように設定されている。教示位置は、教示位置P1として搬送車コントローラ7によって記憶されており、教示位置P1の初期値は、天井搬送車システム80の据え付け時等に適宜設定される。
By controlling the transport vehicle controller 7 in this way, when the transport vehicle 1 transfers the FOUP 90 to the load port 102, the gripper 6 is initially lowered at a high speed, and then the gripper 6 is lowered at a low speed from the teaching position close to the FOUP 90. This shortens the time required for descent to the teaching position, and then the gripper 6 is lowered slowly, thereby suppressing the impact when the FOUP 90 is placed on the load port 102, and suppressing the gripper 6 from colliding with the flange portion 91 of the FOUP 90 when gripping the FOUP 90 placed on the load port 102. Such a teaching position is set so that the distance between the teaching position and the stop position P2 falls within a predetermined range. The teaching position is stored by the transport vehicle controller 7 as the teaching position P1, and the initial value of the teaching position P1 is appropriately set when the ceiling transport vehicle system 80 is installed, etc.
搬送車コントローラ7は、複数のロードポート102毎に記憶された教示位置P1を、FOUP90の移載時における把持部6の実際の停止位置P2に基づいて補正する。具体的には、エリアコントローラ70は、教示位置P1と停止位置P2との距離差が所定範囲(例えば、±5mm以内)に収まっているか否かを判定する。エリアコントローラ70は、上記の距離差が所定範囲に収まっていないと判定した場合に、停止位置P2を基準とした教示位置P1の補正値を算出する。補正値は、例えば教示位置P1に対するシフト量であって、教示位置P1からどれくらいシフトさせれば停止位置P2との距離が上記所定範囲に収まるかを示す量である。搬送車コントローラ7は、このように算出された教示位置P1の補正値を、エリアコントローラ70に送信する。なお、搬送車コントローラ7は、移載時においてエリアコントローラ70から教示位置P1の補正値を取得できる場合、補正値を考慮した教示位置P1と停止位置P2との距離差が所定範囲に収まるか否かを判定すると共に、上記の距離差が所定範囲に収まっていないと判定した場合に、停止位置P2を基準とした教示位置P1の補正値を算出する。
The transport vehicle controller 7 corrects the teaching position P1 stored for each of the multiple load ports 102 based on the actual stopping position P2 of the gripping unit 6 when the FOUP 90 is transferred. Specifically, the area controller 70 determines whether the distance difference between the teaching position P1 and the stopping position P2 is within a predetermined range (for example, within ±5 mm). If the area controller 70 determines that the distance difference is not within the predetermined range, it calculates a correction value for the teaching position P1 based on the stopping position P2. The correction value is, for example, a shift amount relative to the teaching position P1, and indicates how much the teaching position P1 needs to be shifted from the teaching position P1 so that the distance to the stopping position P2 falls within the above-mentioned predetermined range. The transport vehicle controller 7 transmits the correction value for the teaching position P1 calculated in this manner to the area controller 70. In addition, when the transport vehicle controller 7 can obtain a correction value for the teaching position P1 from the area controller 70 during transfer, it determines whether the distance difference between the teaching position P1 and the stop position P2 taking into account the correction value falls within a specified range, and if it determines that the distance difference does not fall within the specified range, it calculates a correction value for the teaching position P1 based on the stop position P2.
エリアコントローラ70は、CPU、ROM及びRAM等を含んで構成されている。エリアコントローラ70は、例えばROMに格納されているプログラムがRAM上にロードされてCPUで実行されるソフトウェアとして構成することができる。エリアコントローラ70は、電子回路等によるハードウェアとして構成されてもよい。エリアコントローラ70は、例えば、搬送車1にFOUP90を搬送させる搬送指令を送信する。エリアコントローラ70は、走行レール101に配置された給電部等を介して搬送車1と通信可能に設けられている。
The area controller 70 includes a CPU, a ROM, a RAM, and the like. The area controller 70 can be configured as software in which a program stored in the ROM is loaded onto the RAM and executed by the CPU. The area controller 70 may also be configured as hardware using electronic circuits, and the like. The area controller 70 transmits, for example, a transport command to cause the transport vehicle 1 to transport the FOUP 90. The area controller 70 is capable of communicating with the transport vehicle 1 via a power supply unit, etc., arranged on the traveling rail 101.
エリアコントローラ70は、教示位置P1に関する情報を記憶する教示位置記憶部70Aを備える。教示位置記憶部70Aは、HDD(Hard Disk Drive)又はSSD(Solid State Drive)等のストレージである。教示位置記憶部70Aは、図8(A)に示されるように、天井搬送車システム80に設けられる複数のロードポート102毎に一つの教示位置P1の補正値を関連付けて記憶している。
The area controller 70 is equipped with a teaching position memory unit 70A that stores information about the teaching position P1. The teaching position memory unit 70A is a storage device such as a hard disk drive (HDD) or a solid state drive (SSD). As shown in FIG. 8(A), the teaching position memory unit 70A associates and stores a correction value for one teaching position P1 for each of the multiple load ports 102 provided in the ceiling transport vehicle system 80.
エリアコントローラ70は、複数の搬送車1から送信されてくる教示位置P1の補正値を、教示位置記憶部70Aに記憶させる。エリアコントローラ70は、教示位置記憶部70Aに教示位置P1の補正値が記憶されていない場合には、送信されてきた教示位置P1の補正値を新規に記憶し、教示位置P1の補正値が既に記憶されている場合には、送信されてきた教示位置P1の補正値で上書きをする(更新する)。本実施形態のエリアコントローラ70は、複数の搬送車1による全ての移載動作の度に取得される停止位置P2に基づいて教示位置P1を補正していると言える。すなわち、本実施形態では、一つのロードポート102に対する教示位置P1が複数の搬送車1のそれぞれの移載動作によって補正され得る。
The area controller 70 stores the correction values of the teaching position P1 transmitted from the multiple transport vehicles 1 in the teaching position memory unit 70A. If the correction value of the teaching position P1 is not stored in the teaching position memory unit 70A, the area controller 70 newly stores the transmitted correction value of the teaching position P1, and if the correction value of the teaching position P1 is already stored, it overwrites (updates) it with the transmitted correction value of the teaching position P1. It can be said that the area controller 70 of this embodiment corrects the teaching position P1 based on the stop position P2 acquired every time all transfer operations are performed by the multiple transport vehicles 1. That is, in this embodiment, the teaching position P1 for one load port 102 can be corrected by the transfer operations of each of the multiple transport vehicles 1.
以上に説明した天井搬送車システム80において、エリアコントローラ70が実行する教示位置P1の補正について、図6及び図7のフローチャートを参照しながら説明する。ここでは、複数の搬送車1のうち二台の搬送車1,1によって教示位置P1が補正される場合、かつエリアコントローラ70の教示位置記憶部70Aに補正値が既に記憶されている場合を例に挙げて説明する。また、説明の便宜のため、二台の搬送車1,1をそれぞれ一号車1A及び二号車1Bと称する。
In the ceiling transport vehicle system 80 described above, the correction of the teaching position P1 performed by the area controller 70 will be explained with reference to the flowcharts of Figures 6 and 7. Here, an example will be explained in which the teaching position P1 is corrected by two of the multiple transport vehicles 1, 1, and the correction value has already been stored in the teaching position memory unit 70A of the area controller 70. For ease of explanation, the two transport vehicles 1, 1 will be referred to as vehicle No. 1 1A and vehicle No. 2 1B, respectively.
図6に示されるように、一号車1Aが複数のロードポート102の一つであるロードポートA(以下、単に「ポートA」と称する。)に対してFOUP90を移載するとき、一号車1Aの搬送車コントローラ7は、エリアコントローラ70にポートAの教示位置P1の補正値(以下、「ポートAの補正値」と称する。)を問い合わせる(ステップS1)。問い合わせを受けたエリアコントローラ70は、教示位置記憶部70AからポートAの補正値を抽出し(ステップS2)、一号車1Aの搬送車コントローラ7にポートAの補正値を送信する(ステップS3)。一号車1Aの搬送車コントローラ7は、エリアコントローラ70から送信されたポートAの補正値を受信する(ステップS4)。
As shown in FIG. 6, when the first car 1A transfers a FOUP 90 to load port A (hereinafter simply referred to as "port A"), which is one of the multiple load ports 102, the transport vehicle controller 7 of the first car 1A inquires of the area controller 70 about the correction value of the teaching position P1 of port A (hereinafter referred to as the "correction value of port A") (step S1). The area controller 70 that receives the inquiry extracts the correction value of port A from the teaching position memory unit 70A (step S2) and transmits the correction value of port A to the transport vehicle controller 7 of the first car 1A (step S3). The transport vehicle controller 7 of the first car 1A receives the correction value of port A transmitted from the area controller 70 (step S4).
一号車1Aの搬送車コントローラ7は、予め記憶された教示位置P1とポートAの補正値とに基づいて、FOUP90をポートAに移載する(ステップS5)。一号車1Aの搬送車コントローラ7は、このときの移載時における停止位置P2と、補正値を考慮した教示位置P1との差が、所定範囲に収まっているか否かを判定する。そして、一号車1Aの搬送車コントローラ7は、上記の差が所定範囲に収まっていないと判定した場合、停止位置P2を基準として所定範囲に収まるような教示位置P1に補正するための補正値(ポートAの補正値)を算出する(ステップS6)。一号車1Aの搬送車コントローラ7は、このように算出したポートAの補正値をエリアコントローラ70に送信する(ステップS7)。エリアコントローラ70は、一号車1Aから受信したポートAの補正値を教示位置記憶部70Aに記憶(更新)させる(ステップS8)。具体的には、エリアコントローラ70は、図8(A)に示されるようなデータベースを更新する。
The transport vehicle controller 7 of the first car 1A transfers the FOUP 90 to port A based on the previously stored teaching position P1 and the correction value of port A (step S5). The transport vehicle controller 7 of the first car 1A determines whether the difference between the stop position P2 at the time of transfer and the teaching position P1 taking into account the correction value is within a specified range. If the transport vehicle controller 7 of the first car 1A determines that the difference is not within the specified range, it calculates a correction value (port A correction value) for correcting the teaching position P1 to be within the specified range based on the stop position P2 (step S6). The transport vehicle controller 7 of the first car 1A transmits the thus calculated correction value of port A to the area controller 70 (step S7). The area controller 70 stores (updates) the correction value of port A received from the first car 1A in the teaching position memory unit 70A (step S8). Specifically, the area controller 70 updates the database as shown in FIG. 8(A).
二号車1BがポートAに対してFOUP90を移載するとき、二号車1Bの搬送車コントローラ7は、エリアコントローラ70にポートAの補正値を問い合わせる(ステップS11)。問い合わせを受けたエリアコントローラ70は、教示位置記憶部70AからポートAの補正値を抽出し(ステップS12)、二号車1Bの搬送車コントローラ7にポートAの補正値を送信する(ステップS13)。二号車1Bの搬送車コントローラ7は、エリアコントローラ70から送信されたポートAの補正値を受信する(ステップS14)。
When car No. 2 1B transfers FOUP 90 to port A, the transport vehicle controller 7 of car No. 2 1B inquires of the area controller 70 about the correction value of port A (step S11). The area controller 70, which receives the inquiry, extracts the correction value of port A from the teaching position memory unit 70A (step S12) and transmits the correction value of port A to the transport vehicle controller 7 of car No. 2 1B (step S13). The transport vehicle controller 7 of car No. 2 1B receives the correction value of port A transmitted from the area controller 70 (step S14).
二号車1Bの搬送車コントローラ7は、予め記憶された教示位置P1とポートAの補正値とに基づいて、FOUP90をポートAに移載する(ステップS15)。二号車1Bの搬送車コントローラ7は、このときの移載時における停止位置P2と、補正値を考慮した教示位置P1との差が、所定範囲に収まっているか否かを判定する。そして、二号車1Bの搬送車コントローラ7は、上記の差が所定範囲に収まっていないと判定した場合、停止位置P2を基準として所定範囲に収まるような教示位置P1に補正するための補正値(ポートAの補正値)を算出する(ステップS16)。図7に示されるように、二号車1Bの搬送車コントローラ7は、このように算出したポートAの補正値をエリアコントローラ70に送信する(ステップS17)。エリアコントローラ70は、二号車1Bから受信したポートAの補正値を教示位置記憶部70Aに記憶(更新)させる(ステップS18)。具体的には、エリアコントローラ70は、図8(A)に示されるようなデータベースを更新する。
The transport vehicle controller 7 of the second car 1B transfers the FOUP 90 to port A based on the previously stored teaching position P1 and the correction value of port A (step S15). The transport vehicle controller 7 of the second car 1B determines whether the difference between the stop position P2 at the time of transfer and the teaching position P1 taking into account the correction value is within a specified range. If the transport vehicle controller 7 of the second car 1B determines that the difference is not within the specified range, it calculates a correction value (port A correction value) for correcting the teaching position P1 to be within the specified range based on the stop position P2 (step S16). As shown in FIG. 7, the transport vehicle controller 7 of the second car 1B transmits the thus calculated correction value of port A to the area controller 70 (step S17). The area controller 70 stores (updates) the correction value of port A received from the second car 1B in the teaching position memory unit 70A (step S18). Specifically, the area controller 70 updates the database as shown in FIG. 8(A).
なお、一号車1A及び二号車1B以外の搬送車1も、同様の方法でポートAの補正値を算出することができ、エリアコントローラ70に送信することができる。エリアコントローラ70は、一号車1A及び二号車1B以外の搬送車1から受信したポートAの補正値を教示位置記憶部70Aに記憶(更新)させることができる。
In addition, transport vehicles 1 other than the first car 1A and the second car 1B can also calculate the correction value of port A in a similar manner and transmit it to the area controller 70. The area controller 70 can store (update) the correction value of port A received from transport vehicles 1 other than the first car 1A and the second car 1B in the teaching position memory unit 70A.
一号車1Aが複数のロードポート102の一つであるロードポートB(以下、単に「ポートB」と称する。)に対してFOUP90を移載するとき、一号車1Aの搬送車コントローラ7は、エリアコントローラ70にポートBの補正値を問い合わせる(ステップS21)。問い合わせを受けたエリアコントローラ70は、教示位置記憶部70AからポートBの補正値を抽出し(ステップS22)、一号車1Aの搬送車コントローラ7にポートBの補正値を送信する(ステップS23)。一号車1Aの搬送車コントローラ7は、エリアコントローラ70から送信されたポートBの補正値を受信する(ステップS24)。
When the first car 1A transfers a FOUP 90 to load port B (hereinafter simply referred to as "port B"), which is one of the multiple load ports 102, the transport vehicle controller 7 of the first car 1A inquires of the area controller 70 about the correction value of port B (step S21). The area controller 70 that receives the inquiry extracts the correction value of port B from the teaching position memory unit 70A (step S22) and transmits the correction value of port B to the transport vehicle controller 7 of the first car 1A (step S23). The transport vehicle controller 7 of the first car 1A receives the correction value of port B transmitted from the area controller 70 (step S24).
一号車1Aの搬送車コントローラ7は、予め記憶された教示位置P1とポートBの補正値とに基づいて、FOUP90をポートBに移載する(ステップS25)。一号車1Aの搬送車コントローラ7は、このときの移載時における停止位置P2と、補正値を考慮した教示位置P1との差が、所定範囲に収まっているか否かを判定する。そして、一号車1Aの搬送車コントローラ7は、上記の差が所定範囲に収まっていないと判定した場合、停止位置P2を基準として所定範囲に収まるような教示位置P1に補正するための補正値(ポートBの補正値)を算出する(ステップS26)。一号車1Aの搬送車コントローラ7は、このように算出したポートBの補正値をエリアコントローラ70に送信する(ステップS27)。エリアコントローラ70は、一号車1Aから受信したポートBの補正値を教示位置記憶部70Aに記憶(更新)させる(ステップS28)。具体的には、エリアコントローラ70は、図8(A)に示されるようなデータベースを更新する。
The transport vehicle controller 7 of the first car 1A transfers the FOUP 90 to port B based on the previously stored teaching position P1 and the correction value of port B (step S25). The transport vehicle controller 7 of the first car 1A determines whether the difference between the stop position P2 at the time of transfer and the teaching position P1 taking into account the correction value is within a specified range. If the transport vehicle controller 7 of the first car 1A determines that the difference is not within the specified range, it calculates a correction value (port B correction value) for correcting the teaching position P1 to be within the specified range based on the stop position P2 (step S26). The transport vehicle controller 7 of the first car 1A transmits the thus calculated correction value of port B to the area controller 70 (step S27). The area controller 70 stores (updates) the correction value of port B received from the first car 1A in the teaching position memory unit 70A (step S28). Specifically, the area controller 70 updates the database as shown in FIG. 8(A).
なお、一号車1A以外の搬送車1も、同様の方法でポートBの補正値を算出することができ、エリアコントローラ70に送信することができる。エリアコントローラ70は、一号車1A以外の搬送車1から受信したポートBの補正値を教示位置記憶部70Aに記憶(更新)させることができる。具体的には、エリアコントローラ70は、図8(A)に示されるようなデータベースを更新する。
Note that transport vehicles 1 other than the first car 1A can also calculate the correction value of port B in a similar manner and transmit it to the area controller 70. The area controller 70 can store (update) the correction value of port B received from transport vehicles 1 other than the first car 1A in the teaching position storage unit 70A. Specifically, the area controller 70 updates the database as shown in FIG. 8(A).
上記実施形態の天井搬送車システム80における作用効果について説明する。上記実施形態の天井搬送車システム80では、把持部6を下降させるときに衝突の可能性が低い区間を高速で下降させ、衝突の可能性が高い区間を低速で下降させている。そして、この衝突の可能性が高い区間の起点は、教示位置P1として予め記憶されているところ、上述したような要因によって教示位置P1と停止位置P2との位置関係(距離)が意図せず短くなりすぎたり、長くなりすぎたりしていることがある。この関係が意図せず短くなりすぎている場合には、ロードポート102にFOUP90を適切に移載することができず、この関係が意図せず長くなりすぎている場合には、ロードポート102にFOUP90を移載する際に時間を要する。この点、上記実施形態の天井搬送車システム80では、ロードポート102への移載時の停止位置P2に基づいて、ロードポート102毎の教示位置P1が適正に補正される。これにより、教示位置P1と停止位置P2との距離が意図せず広がっていたり、短くなっていたりしても、当該補正によって適切な距離に戻すことができるので、ロードポート102に対して適切かつ短時間にFOUP90を移載することができる。
The effect of the ceiling transport vehicle system 80 of the above embodiment will be described. In the ceiling transport vehicle system 80 of the above embodiment, when the gripper 6 is lowered, it is lowered at high speed in the section where the possibility of collision is low, and is lowered at low speed in the section where the possibility of collision is high. The starting point of the section where the possibility of collision is high is stored in advance as the teaching position P1, and the positional relationship (distance) between the teaching position P1 and the stop position P2 may be unintentionally too short or too long due to the factors described above. If this relationship is unintentionally too short, the FOUP 90 cannot be properly transferred to the load port 102, and if this relationship is unintentionally too long, it takes time to transfer the FOUP 90 to the load port 102. In this regard, in the ceiling transport vehicle system 80 of the above embodiment, the teaching position P1 for each load port 102 is appropriately corrected based on the stop position P2 at the time of transfer to the load port 102. As a result, even if the distance between the teaching position P1 and the stopping position P2 unintentionally becomes wider or shorter, the correction can be used to return it to an appropriate distance, allowing the FOUP 90 to be transferred appropriately and quickly to the load port 102.
上記実施形態の天井搬送車システム80では、教示位置記憶部70Aは、複数のロードポート102毎に一つの教示位置P1を関連付けて記憶しており、エリアコントローラ70は、複数の搬送車1による全ての移載動作の度に取得される停止位置P2に基づいて教示位置P1を補正している。これにより、ロードポート102に対してどの搬送車1がFOUP90を移載しても補正値を更新することができる。これにより、高い頻度で補正値を更新できるようになるので、意図しない要因に対して迅速に対応することができる。
In the ceiling transport vehicle system 80 of the above embodiment, the teaching position memory unit 70A associates and stores one teaching position P1 for each of the multiple load ports 102, and the area controller 70 corrects the teaching position P1 based on the stop position P2 acquired each time a transfer operation is performed by the multiple transport vehicles 1. This makes it possible to update the correction value regardless of which transport vehicle 1 transfers a FOUP 90 to the load port 102. This makes it possible to update the correction value frequently, making it possible to quickly respond to unintended factors.
以上、一実施形態について説明したが、本発明の一側面は、上記実施形態に限られない。発明の趣旨を逸脱しない範囲で種々の変更が可能である。
Although one embodiment has been described above, one aspect of the present invention is not limited to the above embodiment. Various modifications are possible without departing from the spirit of the invention.
(変形例1)
上記実施形態では、教示位置記憶部70Aは、複数のロードポート102毎に一つの教示位置P1を関連付けて記憶し、エリアコントローラ70は、複数の搬送車1による全ての移載動作の度に取得される停止位置P2に基づいて教示位置P1を補正する例を挙げて説明したが、これに限定されない。 (Variation 1)
In the above embodiment, an example was given in which the teachingposition memory unit 70A associates and stores one teaching position P1 for each of multiple load ports 102, and the area controller 70 corrects the teaching position P1 based on the stop position P2 obtained each time a transfer operation is performed by multiple transport vehicles 1, but this is not limited to this.
上記実施形態では、教示位置記憶部70Aは、複数のロードポート102毎に一つの教示位置P1を関連付けて記憶し、エリアコントローラ70は、複数の搬送車1による全ての移載動作の度に取得される停止位置P2に基づいて教示位置P1を補正する例を挙げて説明したが、これに限定されない。 (Variation 1)
In the above embodiment, an example was given in which the teaching
変形例1に係る搬送車1では、教示位置記憶部7Aは、エリアコントローラ70ではなく搬送車コントローラ7に設けられてもよい。教示位置記憶部70Aは、HDD(Hard Disk Drive)又はSSD(Solid State Drive)等のストレージである。教示位置記憶部7Aは、HDD(Hard Disk Drive)又はSSD(Solid State Drive)等のストレージである。教示位置記憶部7Aは、搬送車1ごとに設けられており、図8(B)及び図8(C)に示されるように、複数のロードポート102毎に複数の搬送車1のそれぞれに対応する教示位置P1を関連付けて記憶している。そして、搬送車コントローラ7は、複数のロードポート102毎にそれぞれの搬送車1が取得する停止位置P2に基づいて教示位置P1を補正している。
In the transport vehicle 1 according to the first modification, the teaching position memory unit 7A may be provided in the transport vehicle controller 7 instead of the area controller 70. The teaching position memory unit 70A is a storage such as a hard disk drive (HDD) or a solid state drive (SSD). The teaching position memory unit 7A is a storage such as a hard disk drive (HDD) or a solid state drive (SSD). The teaching position memory unit 7A is provided for each transport vehicle 1, and as shown in FIG. 8(B) and FIG. 8(C), it associates and stores teaching positions P1 corresponding to each of the multiple transport vehicles 1 for each of the multiple load ports 102. The transport vehicle controller 7 corrects the teaching position P1 based on the stop position P2 acquired by each transport vehicle 1 for each of the multiple load ports 102.
変形例1に係る搬送車1において、搬送車コントローラ7が実行する教示位置P1の補正について、図9のフローチャートを参照しながら説明する。ここでは、複数の搬送車1のうち二台の搬送車1,1のそれぞれが、自車の搬送車コントローラ7によって教示位置P1を補正する場合、かつ各搬送車1の搬送車コントローラ7の教示位置記憶部7Aに補正値が既に記憶されている場合を例に挙げて説明する。ここでも、説明の便宜のため、二台の搬送車1,1をそれぞれ一号車1A及び二号車1Bと称する。
The correction of the teaching position P1 performed by the carrier vehicle controller 7 in the carrier vehicle 1 according to the first modification will be explained with reference to the flowchart in FIG. 9. Here, an example will be explained in which two carrier vehicles 1, 1 among the multiple carrier vehicles 1 correct the teaching position P1 using their own carrier vehicle controller 7, and the correction value has already been stored in the teaching position memory unit 7A of the carrier vehicle controller 7 of each carrier vehicle 1. Again, for ease of explanation, the two carrier vehicles 1, 1 will be referred to as the first carrier vehicle 1A and the second carrier vehicle 1B, respectively.
一号車1Aは、ポートAに対してFOUP90を移載する。一号車1Aの搬送車コントローラ7は、予め記憶された教示位置P1とポートAの補正値とに基づいて、FOUP90をポートAに移載する(ステップS41)。一号車1Aの搬送車コントローラ7は、このときの移載時における停止位置P2と、補正値を考慮した教示位置P1との差が、所定範囲に収まっているか否かを判定する。そして、一号車1Aの搬送車コントローラ7は、上記の差が所定範囲に収まっていないと判定した場合、停止位置P2を基準として所定範囲に収まるような教示位置P1に補正するための補正値(ポートAの補正値)を算出する(ステップS42)。一号車1Aの搬送車コントローラ7は、このように算出したポートAの補正値を教示位置記憶部7Aに記憶(更新)させる(ステップS43)。具体的には、搬送車コントローラ7は、図8(B)に示されるようなデータベースを更新する。
The first car 1A transfers the FOUP 90 to port A. The transport vehicle controller 7 of the first car 1A transfers the FOUP 90 to port A based on the teaching position P1 and the correction value of port A stored in advance (step S41). The transport vehicle controller 7 of the first car 1A judges whether the difference between the stop position P2 at the time of transfer and the teaching position P1 taking into account the correction value is within a predetermined range. If the transport vehicle controller 7 of the first car 1A judges that the difference is not within the predetermined range, it calculates a correction value (port A correction value) for correcting the teaching position P1 to be within the predetermined range based on the stopping position P2 (step S42). The transport vehicle controller 7 of the first car 1A stores (updates) the correction value of port A thus calculated in the teaching position memory unit 7A (step S43). Specifically, the transport vehicle controller 7 updates the database as shown in FIG. 8(B).
次に、一号車1Aは、ポートBに対してFOUP90を移載する。一号車1Aの搬送車コントローラ7は、予め記憶された教示位置P1とポートBの補正値とに基づいて、FOUP90をポートBに移載する(ステップS44)。一号車1Aの搬送車コントローラ7は、このときの移載時における停止位置P2と、補正値を考慮した教示位置P1との差が、所定範囲に収まっているか否かを判定する。そして、一号車1Aの搬送車コントローラ7は、上記の差が所定範囲に収まっていないと判定した場合、停止位置P2を基準として所定範囲に収まるような教示位置P1に補正するための補正値(ポートBの補正値)を算出する(ステップS45)。一号車1Aの搬送車コントローラ7は、このように算出したポートBの補正値を教示位置記憶部7Aに記憶(更新)させる(ステップS46)。具体的には、搬送車コントローラ7は、図8(B)に示されるようなデータベースを更新する。
Next, the first car 1A transfers the FOUP 90 to port B. The transport vehicle controller 7 of the first car 1A transfers the FOUP 90 to port B based on the previously stored teaching position P1 and the correction value of port B (step S44). The transport vehicle controller 7 of the first car 1A judges whether the difference between the stop position P2 at the time of transfer and the teaching position P1 taking into account the correction value is within a predetermined range. If the transport vehicle controller 7 of the first car 1A judges that the difference is not within the predetermined range, it calculates a correction value (port B correction value) for correcting the teaching position P1 to be within the predetermined range based on the stop position P2 (step S45). The transport vehicle controller 7 of the first car 1A stores (updates) the correction value of port B thus calculated in the teaching position memory unit 7A (step S46). Specifically, the transport vehicle controller 7 updates the database as shown in FIG. 8(B).
二号車1Bについても、一号車1Aと同様に、図9に示されるステップS51~ステップS53を実行することによって、ポートAの補正値を、自車の搬送車コントローラ7に備えられている教示位置記憶部7Aに記憶(更新)させる。また、二号車1Bは、図9に示されるステップS54~ステップS56を実行することによって、ポートBの補正値を教示位置記憶部7Aに記憶(更新)させる。これらの場合、搬送車コントローラ7は、図8(C)に示されるようなデータベースを更新する。
As with car No. 1 1A, car No. 2 1B also executes steps S51 to S53 shown in FIG. 9 to store (update) the correction value for port A in the teaching position memory unit 7A provided in the carrier controller 7 of the vehicle itself. Car No. 2 1B also executes steps S54 to S56 shown in FIG. 9 to store (update) the correction value for port B in the teaching position memory unit 7A. In these cases, the carrier controller 7 updates the database as shown in FIG. 8 (C).
変形例1に係る搬送車1では、教示位置P1と停止位置P2との位置関係(距離)が、各ロードポート102と各搬送車1との間で設定されることになる。これにより、例えば、把持部6を吊り下げるベルト5aの伸び等、機差による要因を起因とする不具合等にも対応することが可能となる。更に、変形例1に係る搬送車1では、搬送車1毎に教示位置P1が補正されるので、教示位置P1の補正時の通信量を軽減することができる。
In the transport vehicle 1 according to the first modification, the positional relationship (distance) between the teaching position P1 and the stop position P2 is set between each load port 102 and each transport vehicle 1. This makes it possible to deal with problems caused by machine differences, such as stretching of the belt 5a that suspends the gripping portion 6. Furthermore, in the transport vehicle 1 according to the first modification, the teaching position P1 is corrected for each transport vehicle 1, so the amount of communication required when correcting the teaching position P1 can be reduced.
(変形例2)
変形例1に係る搬送車1では、各搬送車1に備わる搬送車コントローラ7が教示位置P1を補正して、その補正値を各搬送車1の搬送車コントローラ7が備える教示位置記憶部7Aに記憶させる例を挙げて説明したが、これに限定されない。変形例2に係る天井搬送車システム80では、各搬送車1の搬送車コントローラ7が、移載時に取得した停止位置P2に基づいてポート毎の補正値を算出すると共にエリアコントローラ70に送信し、エリアコントローラ70が、搬送車コントローラ7から取得したポート毎の補正値を搬送車毎に教示位置記憶部70Aに記憶(更新)させる。 (Variation 2)
In thetransport vehicle 1 according to the first modification, the transport vehicle controller 7 of each transport vehicle 1 corrects the teaching position P1 and stores the correction value in the teaching position memory unit 7A of the transport vehicle controller 7 of each transport vehicle 1, but the present invention is not limited to this. In the ceiling transport vehicle system 80 according to the second modification, the transport vehicle controller 7 of each transport vehicle 1 calculates a correction value for each port based on the stop position P2 acquired during transfer and transmits it to the area controller 70, and the area controller 70 stores (updates) the correction value for each port acquired from the transport vehicle controller 7 in the teaching position memory unit 70A for each transport vehicle.
変形例1に係る搬送車1では、各搬送車1に備わる搬送車コントローラ7が教示位置P1を補正して、その補正値を各搬送車1の搬送車コントローラ7が備える教示位置記憶部7Aに記憶させる例を挙げて説明したが、これに限定されない。変形例2に係る天井搬送車システム80では、各搬送車1の搬送車コントローラ7が、移載時に取得した停止位置P2に基づいてポート毎の補正値を算出すると共にエリアコントローラ70に送信し、エリアコントローラ70が、搬送車コントローラ7から取得したポート毎の補正値を搬送車毎に教示位置記憶部70Aに記憶(更新)させる。 (Variation 2)
In the
変形例2に係る天井搬送車システム80において、エリアコントローラ70が実行する教示位置P1の補正について、図10及び図11のフローチャートを参照しながら説明する。ここでは、複数の搬送車1のうち二台の搬送車1,1によって教示位置P1が補正される場合、かつ各搬送車1の搬送車コントローラ7の教示位置記憶部7Aに補正値が既に記憶されている場合を例に挙げて説明する。また、説明の便宜のため、二台の搬送車1,1をそれぞれ一号車1A及び二号車1Bと称する。
In the ceiling transport vehicle system 80 according to the second modification, the correction of the teaching position P1 performed by the area controller 70 will be explained with reference to the flowcharts in Figures 10 and 11. Here, an example will be explained in which the teaching position P1 is corrected by two of the multiple transport vehicles 1, 1, and the correction value has already been stored in the teaching position memory unit 7A of the transport vehicle controller 7 of each transport vehicle 1. For ease of explanation, the two transport vehicles 1, 1 will be referred to as the first transport vehicle 1A and the second transport vehicle 1B, respectively.
図10に示されるように、一号車1AがポートAに対してFOUP90を移載するとき、一号車1Aの搬送車コントローラ7は、エリアコントローラ70にポートAの補正値を問い合わせる(ステップS61)。問い合わせを受けたエリアコントローラ70は、教示位置記憶部70Aから一号車1AのポートAの補正値を抽出し(ステップS62)、一号車1Aの搬送車コントローラ7に一号車1AのポートAの補正値を送信する(ステップS63)。一号車1Aの搬送車コントローラ7は、エリアコントローラ70から送信された一号車1AのポートAの補正値を受信する(ステップS64)。
As shown in FIG. 10, when the first car 1A transfers a FOUP 90 to port A, the transport vehicle controller 7 of the first car 1A inquires of the area controller 70 about the correction value of port A (step S61). The area controller 70, which receives the inquiry, extracts the correction value of port A of the first car 1A from the teaching position memory unit 70A (step S62) and transmits the correction value of port A of the first car 1A to the transport vehicle controller 7 of the first car 1A (step S63). The transport vehicle controller 7 of the first car 1A receives the correction value of port A of the first car 1A transmitted from the area controller 70 (step S64).
一号車1Aの搬送車コントローラ7は、予め記憶された教示位置P1とポートAの補正値とに基づいて、FOUP90をポートAに移載する(ステップS65)。一号車1Aの搬送車コントローラ7は、このときの移載時における停止位置P2と、補正値を考慮した教示位置P1との差が、所定範囲に収まっているか否かを判定する。そして、一号車1Aの搬送車コントローラ7は、上記の差が所定範囲に収まっていないと判定した場合、停止位置P2を基準として所定範囲に収まるような教示位置P1に補正するための補正値(ポートAの補正値)を算出する(ステップS66)。一号車1Aの搬送車コントローラ7は、このように算出したポートAの補正値をエリアコントローラ70に送信する(ステップS67)。エリアコントローラ70は、一号車1Aから受信したポートAの補正値を、一号車1AのポートAの補正値として教示位置記憶部70Aに記憶(更新)させる(ステップS68)。具体的には、エリアコントローラ70は、図8(D)に示されるようなデータベースを更新する。
The transport vehicle controller 7 of the first car 1A transfers the FOUP 90 to port A based on the previously stored teaching position P1 and the correction value of port A (step S65). The transport vehicle controller 7 of the first car 1A determines whether the difference between the stop position P2 at the time of transfer and the teaching position P1 taking into account the correction value is within a specified range. If the transport vehicle controller 7 of the first car 1A determines that the difference is not within the specified range, it calculates a correction value (port A correction value) for correcting the teaching position P1 to be within the specified range based on the stop position P2 (step S66). The transport vehicle controller 7 of the first car 1A transmits the thus calculated correction value of port A to the area controller 70 (step S67). The area controller 70 stores (updates) the correction value of port A received from the first car 1A in the teaching position memory unit 70A as the correction value of port A of the first car 1A (step S68). Specifically, the area controller 70 updates the database as shown in FIG. 8(D).
二号車1BがポートAに対してFOUP90を移載するとき、二号車1Bの搬送車コントローラ7は、エリアコントローラ70にポートAの補正値を問い合わせる(ステップS71)。問い合わせを受けたエリアコントローラ70は、教示位置記憶部70Aから二号車1BのポートAの補正値を抽出し(ステップS72)、二号車1Bの搬送車コントローラ7に二号車1BのポートAの補正値を送信する(ステップS73)。二号車1Bの搬送車コントローラ7は、エリアコントローラ70から送信された二号車1BのポートAの補正値を受信する(ステップS74)。
When car No. 2 1B transfers FOUP 90 to port A, the transport vehicle controller 7 in car No. 2 1B inquires of the area controller 70 about the correction value for port A (step S71). The area controller 70, having received the inquiry, extracts the correction value for port A of car No. 2 1B from the teaching position memory unit 70A (step S72) and transmits the correction value for port A of car No. 2 1B to the transport vehicle controller 7 in car No. 2 1B (step S73). The transport vehicle controller 7 in car No. 2 1B receives the correction value for port A of car No. 2 1B transmitted from the area controller 70 (step S74).
二号車1Bの搬送車コントローラ7は、予め記憶された教示位置P1とポートAの補正値とに基づいて、FOUP90をポートAに移載する(ステップS75)。二号車1Bの搬送車コントローラ7は、このときの移載時における停止位置P2と、補正値を考慮した教示位置P1との差が、所定範囲に収まっているか否かを判定する。そして、二号車1Bの搬送車コントローラ7は、上記の差が所定範囲に収まっていないと判定した場合、停止位置P2を基準として所定範囲に収まるような教示位置P1に補正するための補正値(ポートAの補正値)を算出する(ステップS76)。図11に示されるように、二号車1Bの搬送車コントローラ7は、このように算出したポートAの補正値をエリアコントローラ70に送信する(ステップS77)。エリアコントローラ70は、二号車1Bから受信したポートAの補正値を、二号車1BのポートAの補正値として教示位置記憶部70Aに記憶(更新)させる(ステップS78)。具体的には、エリアコントローラ70は、図8(D)に示されるようなデータベースを更新する。
The transport vehicle controller 7 of the second car 1B transfers the FOUP 90 to port A based on the previously stored teaching position P1 and the correction value of port A (step S75). The transport vehicle controller 7 of the second car 1B determines whether the difference between the stop position P2 at the time of transfer and the teaching position P1 taking into account the correction value is within a specified range. If the transport vehicle controller 7 of the second car 1B determines that the difference is not within the specified range, it calculates a correction value (port A correction value) for correcting the teaching position P1 to be within the specified range based on the stop position P2 (step S76). As shown in FIG. 11, the transport vehicle controller 7 of the second car 1B transmits the thus calculated correction value of port A to the area controller 70 (step S77). The area controller 70 stores (updates) the correction value of port A received from the second car 1B in the teaching position memory unit 70A as the correction value of port A of the second car 1B (step S78). Specifically, the area controller 70 updates the database as shown in FIG. 8(D).
なお、一号車1A及び二号車1B以外の搬送車1も、同様の方法でポートAの補正値を算出することができ、エリアコントローラ70に送信することができる。エリアコントローラ70は、一号車1A及び二号車1B以外の搬送車1から受信したポートAの補正値を、各搬送車1のポートAの補正値として教示位置記憶部70Aに記憶(更新)させることができる。
In addition, transport vehicles 1 other than vehicle No. 1 1A and vehicle No. 2 1B can also calculate the port A correction value in a similar manner and transmit it to the area controller 70. The area controller 70 can store (update) the port A correction value received from transport vehicles 1 other than vehicle No. 1 1A and vehicle No. 2 1B as the port A correction value of each transport vehicle 1 in the teaching position memory unit 70A.
一号車1AがポートBに対してFOUP90を移載するとき、一号車1Aの搬送車コントローラ7は、エリアコントローラ70にポートBの補正値を問い合わせる(ステップS81)。問い合わせを受けたエリアコントローラ70は、教示位置記憶部70Aから一号車1AのポートBの補正値を抽出し(ステップS82)、一号車1Aの搬送車コントローラ7に一号車1AのポートBの補正値を送信する(ステップS83)。一号車1Aの搬送車コントローラ7は、エリアコントローラ70から送信された一号車1AのポートBの補正値の補正値を受信する(ステップS84)。
When first car 1A transfers FOUP 90 to port B, the transport vehicle controller 7 of first car 1A inquires of the area controller 70 about the correction value of port B (step S81). The area controller 70, which receives the inquiry, extracts the correction value of port B of first car 1A from the teaching position memory unit 70A (step S82) and transmits the correction value of port B of first car 1A to the transport vehicle controller 7 of first car 1A (step S83). The transport vehicle controller 7 of first car 1A receives the correction value of port B of first car 1A transmitted from the area controller 70 (step S84).
一号車1Aの搬送車コントローラ7は、予め記憶された教示位置P1とポートBの補正値とに基づいて、FOUP90をポートBに移載する(ステップS85)。一号車1Aの搬送車コントローラ7は、このときの移載時における停止位置P2と、補正値を考慮した教示位置P1との差が、所定範囲に収まっているか否かを判定する。そして、一号車1Aの搬送車コントローラ7は、上記の差が所定範囲に収まっていないと判定した場合、停止位置P2を基準として所定範囲に収まるような教示位置P1に補正するための補正値(ポートBの補正値)を算出する(ステップS86)。一号車1Aの搬送車コントローラ7は、このように算出したポートBの補正値をエリアコントローラ70に送信する(ステップS87)。エリアコントローラ70は、一号車1Aから受信したポートBの補正値を、一号車1AのポートBの補正値として教示位置記憶部70Aに記憶(更新)させる(ステップS88)。具体的には、エリアコントローラ70は、図8(D)に示されるようなデータベースを更新する。
The transport vehicle controller 7 of the first car 1A transfers the FOUP 90 to port B based on the previously stored teaching position P1 and the correction value of port B (step S85). The transport vehicle controller 7 of the first car 1A determines whether the difference between the stop position P2 at the time of transfer and the teaching position P1 taking into account the correction value is within a specified range. If the transport vehicle controller 7 of the first car 1A determines that the difference is not within the specified range, it calculates a correction value (port B correction value) for correcting the teaching position P1 to be within the specified range based on the stop position P2 (step S86). The transport vehicle controller 7 of the first car 1A transmits the thus calculated correction value of port B to the area controller 70 (step S87). The area controller 70 stores (updates) the correction value of port B received from the first car 1A in the teaching position memory unit 70A as the correction value of port B of the first car 1A (step S88). Specifically, the area controller 70 updates the database as shown in FIG. 8(D).
なお、一号車1A以外の搬送車1も、同様の方法でポートBの補正値を算出することができ、エリアコントローラ70に送信することができる。エリアコントローラ70は、一号車1A以外の搬送車1から受信したポートBの補正値を、各搬送車1のポートBの補正値として教示位置記憶部70Aに記憶(更新)させることができる。具体的には、エリアコントローラ70は、図8(D)に示されるようなデータベースを更新する。
Note that transport vehicles 1 other than the first vehicle 1A can also calculate the port B correction value in a similar manner and transmit it to the area controller 70. The area controller 70 can store (update) the port B correction value received from transport vehicles 1 other than the first vehicle 1A as the port B correction value of each transport vehicle 1 in the teaching position storage unit 70A. Specifically, the area controller 70 updates the database as shown in FIG. 8 (D).
変形例2に係る搬送車1では、教示位置P1と停止位置P2との位置関係(距離)が、各ロードポート102と各搬送車1との間で設定されることになる。これにより、例えば、把持部6を吊り下げるベルト5aの伸び等、機差による要因を起因とする不具合等にも対応することが可能となる。
In the transport vehicle 1 according to the second modification, the positional relationship (distance) between the teaching position P1 and the stop position P2 is set between each load port 102 and each transport vehicle 1. This makes it possible to deal with problems caused by machine differences, such as stretching of the belt 5a that suspends the gripper 6.
(その他の変形例)
上記実施形態及び上記変形例2においては、搬送車コントローラ7がポートA及びポートBの補正値を算出する例を挙げて説明したが、搬送車コントローラ7は、停止位置P2に関する情報のみを送信し、エリアコントローラ70がポートA及びポートBの補正値を算出してもよい。なお、ポートA及びポートBの補正値を算出方法は、上述したとおりである。 (Other Modifications)
In the above embodiment and modified example 2, an example has been described in which thetransport vehicle controller 7 calculates the correction values of port A and port B, but the transport vehicle controller 7 may transmit only information related to the stop position P2, and the area controller 70 may calculate the correction values of port A and port B. The method of calculating the correction values of port A and port B is as described above.
上記実施形態及び上記変形例2においては、搬送車コントローラ7がポートA及びポートBの補正値を算出する例を挙げて説明したが、搬送車コントローラ7は、停止位置P2に関する情報のみを送信し、エリアコントローラ70がポートA及びポートBの補正値を算出してもよい。なお、ポートA及びポートBの補正値を算出方法は、上述したとおりである。 (Other Modifications)
In the above embodiment and modified example 2, an example has been described in which the
上記実施形態及び上記変形例では、移載時に算出された補正値を、そのまま教示位置記憶部7A(70A)に記憶(更新)させる例を挙げて説明したが、これに限定されない。例えば、エリアコントローラ70(搬送車コントローラ7)は、教示位置P1と停止位置P2との距離差(補正値を考慮した教示位置P1と停止位置P2との距離差)が所定範囲に収まっていないと判定した場合に(すなわち補正値を算出する必要があると判定した場合)、算出される補正値ではなく、予め定められた微小のシフト量(例えば、1mm)を補正値としてもよい。なお、シフト量は、算出されるであろう補正値と比べて小さな値が設定されている。このような変形例による制御では、一回の移載動作によって、教示位置P1が大きく変化、すなわち把持部6が高速で下降するときの移動量が大きく変動するような補正がなされることが抑制される。
In the above embodiment and the above modified example, the correction value calculated during transfer is stored (updated) as is in the teaching position storage unit 7A (70A), but the present invention is not limited to this. For example, when the area controller 70 (transport vehicle controller 7) determines that the distance difference between the teaching position P1 and the stop position P2 (the distance difference between the teaching position P1 and the stop position P2 taking into account the correction value) is not within a predetermined range (i.e., when it determines that it is necessary to calculate a correction value), it may use a predetermined small shift amount (e.g., 1 mm) as the correction value instead of the calculated correction value. Note that the shift amount is set to a value that is smaller than the correction value that would be calculated. In the control according to such a modified example, a correction is suppressed from being made that causes a large change in the teaching position P1 due to a single transfer operation, that is, causes a large change in the amount of movement when the gripper 6 descends at high speed.
上記実施形態及び上記変形例では、一回の移載によって補正値が算出される度に、その補正値を教示位置記憶部7A(70A)に記憶(更新)させる例を挙げて説明したが、これに限定されない。例えば、エリアコントローラ70(搬送車コントローラ7)は、教示位置P1と停止位置P2との距離差(補正値を考慮した教示位置P1と停止位置P2との距離差)が所定範囲に収まっていないと判定した場合にすぐに補正値を算出するのではなく、上記のような判定の回数が規定回数を超えた場合に、補正値を算出して教示位置記憶部7A(70A)に記憶(更新)させてもよい。このような変形例による制御では、上記の距離差が定常的な変化であることを確認してから補正値を更新することができる。
In the above embodiment and modified example, an example has been described in which the correction value is stored (updated) in the teaching position storage unit 7A (70A) each time the correction value is calculated for one transfer, but this is not limiting. For example, the area controller 70 (transport vehicle controller 7) may calculate a correction value and store (update) it in the teaching position storage unit 7A (70A) when the number of such determinations exceeds a specified number, rather than immediately calculating a correction value when it determines that the distance difference between the teaching position P1 and the stop position P2 (the distance difference between the teaching position P1 and the stop position P2 taking the correction value into account) is not within a predetermined range. In control according to such a modified example, the correction value can be updated after confirming that the distance difference is a steady change.
上記実施形態及び上記変形例では、ロードポート102に載置されたFOUP90を取りに行く移載を実行する場合を例に挙げて説明したが、ロードポート102にFOUP90を載置しに行く移載を実行する場合であっても、停止位置P2を取得することができる。すなわち、上述した補正値を算出することができる。
In the above embodiment and modified example, a case where a transfer is performed to retrieve a FOUP 90 placed on the load port 102 has been described as an example, but even when a transfer is performed to place a FOUP 90 on the load port 102, the stop position P2 can be obtained. In other words, the above-mentioned correction value can be calculated.
1…天井搬送車(搬送車)、1A…一号車(搬送車)、1B…二号車(搬送車)、2…走行部(本体部)、3…横送り部、4…回動部、5…昇降部、6…把持部、7…搬送車コントローラ(教示位置補正部)、7A…教示位置記憶部(記憶部)、20…フランジ検知部(検知部)、70…エリアコントローラ(教示位置補正部)、70A…教示位置記憶部(記憶部)、80…天井搬送車システム、101…走行レール、102…ロードポート(ステーション)、P1…教示位置、P2…停止位置(把持位置)。
1...Ceiling transport vehicle (transport vehicle), 1A...First vehicle (transport vehicle), 1B...Second vehicle (transport vehicle), 2...Running section (main body), 3...Side feed section, 4...Rotating section, 5...Lifting section, 6...Gripping section, 7...Transport vehicle controller (instruction position correction section), 7A...Instruction position memory section (memory section), 20...Flange detection section (detection section), 70...Area controller (instruction position correction section), 70A...Instruction position memory section (memory section), 80...Ceiling transport vehicle system, 101...Running rail, 102...Load port (station), P1...Instruction position, P2...Stop position (gripping position).
Claims (5)
- 天井に支持された軌道を走行する本体部に対して物品を把持する把持部を昇降させることによって、複数のステーションに対して前記物品を移載する複数の搬送車を備える天井搬送車システムであって、
前記複数の搬送車のそれぞれは、
前記把持部に設けられ、前記ステーションに載置された前記物品に対して前記把持部が所定位置に達したことを検知する検知部と、
前記把持部を昇降させる昇降部と、
前記本体部に対して第一速度で前記把持部を下降させた後、記憶部に予め記憶された教示位置から前記第一速度よりも低速の第二速度で前記把持部を下降させ、前記検知部によって前記把持部が前記所定位置に達したことが検知されると前記把持部を停止させることによって、前記搬送車に前記物品を移載させる搬送車コントローラと、
前記複数のステーション毎に記憶された前記教示位置を、前記物品の移載時における前記把持部の実際の停止位置に基づいて補正する教示位置補正部と、を備える、天井搬送車システム。 A ceiling-mounted transport vehicle system including a plurality of transport vehicles that transfers objects to a plurality of stations by raising and lowering a gripping unit that grips an object relative to a main body unit that runs on a track supported on a ceiling,
Each of the plurality of transport vehicles is
a detection unit provided on the gripping unit and configured to detect that the gripping unit has reached a predetermined position with respect to the article placed on the station;
A lifting unit that lifts and lowers the gripping unit;
a transport vehicle controller that lowers the gripper at a first speed relative to the main body, and then lowers the gripper from a teaching position previously stored in a memory at a second speed slower than the first speed, and stops the gripper when the detection unit detects that the gripper has reached the predetermined position, thereby transferring the article to the transport vehicle;
A ceiling transport vehicle system comprising: a teaching position correction unit that corrects the teaching positions stored for each of the plurality of stations based on an actual stopping position of the gripping unit when the article is transferred. - 前記記憶部は、前記複数のステーション毎に一つの前記教示位置を関連付けて記憶しており、
前記教示位置補正部は、前記複数の搬送車による全ての移載動作の度に取得される前記停止位置に基づいて前記教示位置を補正する、請求項1記載の天井搬送車システム。 the storage unit stores the teaching position in association with each of the plurality of stations,
The overhead transport vehicle system according to claim 1 , wherein the teaching position correction unit corrects the teaching position based on the stop positions acquired every time the plurality of transport vehicles perform all transfer operations. - 前記記憶部は、前記複数のステーション毎に前記複数の搬送車のそれぞれに対応する前記教示位置を関連付けて記憶しており、
前記教示位置補正部は、前記複数のステーション毎にそれぞれの前記搬送車が取得する前記停止位置に基づいて前記教示位置を補正する、請求項1又は2記載の天井搬送車システム。 the storage unit stores the teaching positions corresponding to the plurality of transport vehicles in association with each other for each of the plurality of stations,
3. The overhead transport vehicle system according to claim 1, wherein the teaching position correction unit corrects the teaching position based on the stop position acquired by each of the transport vehicles for each of the plurality of stations. - 前記記憶部は、前記複数の搬送車のそれぞれに設けられている、請求項3記載の天井搬送車システム。 The ceiling transport vehicle system according to claim 3, wherein the memory unit is provided in each of the plurality of transport vehicles.
- 天井に支持された軌道を走行する本体部に対して物品を把持する把持部を昇降させることによって、複数のステーションに対して前記物品を移載する天井搬送車であって、
前記把持部に設けられ、前記ステーションに載置された前記物品に対して前記把持部が所定位置に達したことを検知する検知部と、
前記把持部を昇降させる昇降部と、
前記本体部に対して第一速度で前記把持部を下降させた後、記憶部に予め記憶された教示位置から前記第一速度よりも低速の第二速度で前記把持部を下降させ、前記検知部によって前記把持部が前記所定位置に達したことが検知されると前記把持部を停止させることによって、前記ステーションに対して前記物品を移載する搬送車コントローラと、
前記ステーション毎に記憶された前記教示位置を、前記物品の移載時における前記把持部の実際の停止位置に基づいて補正する教示位置補正部と、を備える、天井搬送車。 A ceiling transport vehicle that transfers objects to a plurality of stations by raising and lowering a gripping unit that grips objects relative to a main body that runs on a track supported on a ceiling,
a detection unit provided on the gripping unit and configured to detect that the gripping unit has reached a predetermined position with respect to the article placed on the station;
A lifting unit that lifts and lowers the gripping unit;
a transport vehicle controller that lowers the gripper at a first speed relative to the main body, and then lowers the gripper from a teaching position previously stored in a memory at a second speed slower than the first speed, and stops the gripper when the detection unit detects that the gripper has reached the predetermined position, thereby transferring the article to the station;
and a teaching position correction unit that corrects the teaching position stored for each station based on an actual stopping position of the gripping unit when the article is transferred.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023-063325 | 2023-04-10 | ||
JP2023063325 | 2023-04-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024214441A1 true WO2024214441A1 (en) | 2024-10-17 |
Family
ID=93059061
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2024/008591 WO2024214441A1 (en) | 2023-04-10 | 2024-03-06 | Overhead transport vehicle system and overhead transport vehicle |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2024214441A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006069687A (en) * | 2004-08-31 | 2006-03-16 | Asyst Shinko Inc | Teaching device of conveying carriage on suspension type elevating conveying device |
JP2014063880A (en) * | 2012-09-21 | 2014-04-10 | Dainippon Screen Mfg Co Ltd | Substrate transfer device, substrate processing apparatus, and substrate transfer method |
JP2015060910A (en) * | 2013-09-18 | 2015-03-30 | シャープ株式会社 | Carry-in/out apparatus and carry-in/out method |
JP2022012681A (en) * | 2020-07-02 | 2022-01-17 | 株式会社ダイフク | Article conveying facility |
US20220332522A1 (en) * | 2019-08-28 | 2022-10-20 | Murata Machinery, Ltd. | Overhead carrier vehicle and overhead carrier vehicle system |
-
2024
- 2024-03-06 WO PCT/JP2024/008591 patent/WO2024214441A1/en unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006069687A (en) * | 2004-08-31 | 2006-03-16 | Asyst Shinko Inc | Teaching device of conveying carriage on suspension type elevating conveying device |
JP2014063880A (en) * | 2012-09-21 | 2014-04-10 | Dainippon Screen Mfg Co Ltd | Substrate transfer device, substrate processing apparatus, and substrate transfer method |
JP2015060910A (en) * | 2013-09-18 | 2015-03-30 | シャープ株式会社 | Carry-in/out apparatus and carry-in/out method |
US20220332522A1 (en) * | 2019-08-28 | 2022-10-20 | Murata Machinery, Ltd. | Overhead carrier vehicle and overhead carrier vehicle system |
JP2022012681A (en) * | 2020-07-02 | 2022-01-17 | 株式会社ダイフク | Article conveying facility |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5266683B2 (en) | Transport system and teaching method in the transport system | |
KR101425105B1 (en) | Transfer system | |
TWI698383B (en) | Article transport facility | |
US20110245964A1 (en) | Self Aligning Automated Material Handling System | |
JP6171984B2 (en) | Article support device | |
US20200010280A1 (en) | Article Transport Device | |
IL271508A (en) | Transport system and transport method | |
JP6743967B2 (en) | Ceiling carrier system and teaching unit | |
TWI738911B (en) | Overhead transport vehicle and control method of overhead transport vehicle | |
WO2024214441A1 (en) | Overhead transport vehicle system and overhead transport vehicle | |
TW202422769A (en) | Transport vehicle | |
WO2023084940A1 (en) | Overhead conveying vehicle | |
US20230202806A1 (en) | Overhead transport vehicle, and method of controlling raising/lowering of gripping unit | |
JP7327660B2 (en) | Ceiling carrier and ceiling carrier system | |
KR20220063741A (en) | Transport vehicle | |
JPH01317993A (en) | Crane drive control device | |
KR102343620B1 (en) | Apparatus for transporting carrier and system for transporting carrier with the apparatus | |
WO2024034175A1 (en) | Overhead conveying vehicle | |
WO2024070303A1 (en) | Overhead conveyance vehicle | |
US20240063040A1 (en) | Article Elevating Device | |
KR20240026100A (en) | Transport vehicle | |
WO2023053685A1 (en) | Purge device | |
KR20230073095A (en) | Article transport apparatus | |
JP6669049B2 (en) | Carrier | |
KR20220063740A (en) | Transport vehicle |