[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2024214353A1 - Sputtering target, method for producing sputtering target, layered film, method for producing layered film, magnetic recording medium, and method for producing magnetic recording medium - Google Patents

Sputtering target, method for producing sputtering target, layered film, method for producing layered film, magnetic recording medium, and method for producing magnetic recording medium Download PDF

Info

Publication number
WO2024214353A1
WO2024214353A1 PCT/JP2024/000196 JP2024000196W WO2024214353A1 WO 2024214353 A1 WO2024214353 A1 WO 2024214353A1 JP 2024000196 W JP2024000196 W JP 2024000196W WO 2024214353 A1 WO2024214353 A1 WO 2024214353A1
Authority
WO
WIPO (PCT)
Prior art keywords
sputtering target
sputtering
magnetic
crb
underlayer
Prior art date
Application number
PCT/JP2024/000196
Other languages
French (fr)
Japanese (ja)
Inventor
和也 本田
孝志 小庄
正義 清水
愛美 増田
Original Assignee
Jx金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx金属株式会社 filed Critical Jx金属株式会社
Publication of WO2024214353A1 publication Critical patent/WO2024214353A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/64Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/73Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/851Coating a support with a magnetic layer by sputtering

Definitions

  • the present invention relates to a sputtering target, a method for manufacturing a sputtering target, a laminated film, a method for manufacturing a laminated film, a magnetic recording medium, and a method for manufacturing a magnetic recording medium.
  • the perpendicular magnetic recording method has come into practical use in the field of hard disk drives.
  • the perpendicular magnetic recording method records magnetic data perpendicular to the recording surface.
  • the perpendicular magnetic recording method is widely adopted because it allows for higher density recording than the in-plane magnetic recording method. As the demand for higher recording density in hard disk drives increases, the development of magnetic recording media suitable for higher recording density is progressing.
  • Magnetic recording media using perpendicular magnetic recording methods may be composed of multiple layers, including a recording layer including an upper recording layer and a lower recording layer, and other layers. Each of these layers is deposited sequentially on a substrate by sputtering using a sputtering target appropriate for each layer.
  • a sputtering target may be used in which the metal phase is made of a metal with Co as the main component, and the oxide phase contains a specified metal oxide.
  • Patent Document 1 a sputtering target has been proposed that contains 0.05 at% or more of Bi, a total content of metal oxides is 10 vol% to 60 vol%, and the remainder contains at least Co and Pt.
  • Patent Document 1 it is possible to suppress the grain growth of magnetic particles while maintaining the crystal orientation of the magnetic particles, improve the grain size dispersion of the magnetic particles, and improve the separation between magnetic particles.
  • Specific examples of the above metal oxides include oxides of Co, Cr, Si, Ti, and B.
  • Patent Document 1 makes it possible to disperse fine magnetic particles with uniform particle size distribution through oxide grain boundaries with uniform widths, but there is room for improvement in terms of controlling saturation magnetization and magnetic anisotropy.
  • the present invention was completed in consideration of the above problems, and in one embodiment, it aims to provide a sputtering target and a manufacturing method thereof that maintains saturation magnetization at or above a predetermined value while increasing magnetic anisotropy Ku to ensure thermal stability and achieving high magnetic separation of magnetic particles for high resolution. In another embodiment, it aims to provide a laminated film manufactured by sputtering using such a sputtering target, a magnetic recording medium, a manufacturing method for a laminated film, and a manufacturing method for a magnetic recording medium.
  • a sputtering target comprising, as a metal component, CrB, with the remainder containing at least Co and Pt.
  • the sputtering target according to [1], wherein a diffraction peak is observed at 2 ⁇ 44.94° ⁇ 1° when measured using an X-ray diffraction apparatus.
  • the sputtering target according to [2], wherein the analysis conditions of the X-ray diffraction apparatus are the following (1) to (15): (1) The analysis area of the sputtering target is a cut surface perpendicular to the sputtering surface. (2) Cu-K ⁇ is used as the X-ray source. (3) The tube voltage is 40 kV. (4) The tube current is 30 mA.
  • the divergence slit is 1°.
  • the vertical divergence limiting slit is 10 mm.
  • the scattering slit is 8 mm.
  • the receiving slit is in the open state.
  • the analysis area is polished with #2000 waterproof abrasive paper and further buffed with a slurry in which alumina abrasive grains having a particle size of 0.3 ⁇ m are dispersed. (15) Of the analysis areas, a flat surface with minimal irregularities is measured.
  • Cu-K ⁇ is used as the X-ray source.
  • the tube voltage is 40 kV.
  • the tube current is 30 mA.
  • the divergence slit is 1°.
  • the vertical divergence limiting slit is 10 mm.
  • the scattering slit is 8 mm.
  • the receiving slit is in the open state.
  • the scan speed is 10°/min. (11)
  • the scan step is 0.01°.
  • a fitting method is used for background removal.
  • the analysis area is polished with #2000 waterproof abrasive paper and further buffed with a slurry in which alumina abrasive grains having a particle size of 0.3 ⁇ m are dispersed.
  • a flat surface with minimal irregularities is measured.
  • a method for producing a sputtering target comprising pressure sintering a raw material powder including a CrB powder, a Co powder, and a Pt powder.
  • a method for manufacturing a laminated film comprising a step of forming a magnetic layer on an underlayer by sputtering using the sputtering target according to any one of [1] to [8].
  • [13] A magnetic recording medium comprising: a substrate; and a magnetic layer formed on the substrate, the magnetic layer including, as a metal component, CrB, and a remainder including at least Co and Pt.
  • a method for manufacturing a magnetic recording medium including at least an underlayer on a substrate and a magnetic layer formed on the underlayer comprising the steps of: A method for producing a magnetic recording medium, comprising: forming the magnetic layer on the underlayer by sputtering using the sputtering target according to any one of [1] to [8].
  • a sputtering target and a method for manufacturing the same that maintains a saturation magnetization above a predetermined value while increasing the magnetic anisotropy Ku to ensure thermal stability and achieving high magnetic separation of magnetic particles to achieve high resolution.
  • FIG. 2 is a diagram showing the results of XRD (X-ray diffraction) analysis of sputtering targets of Comparative Example and Example.
  • 1 is a graph showing the measurement results of magnetic anisotropy Ku of magnetic films formed using sputtering targets of the comparative example and the example.
  • 1 is a graph showing the measurement results of the magnetic cluster size Dn of magnetic films formed using the sputtering targets of the comparative example and the example.
  • 1 is a graph showing the measurement results of saturation magnetization Ms of magnetic films formed using sputtering targets of a comparative example and an example.
  • the sputtering target according to this embodiment is preferably used to form a magnetic layer of a magnetic recording medium using a perpendicular magnetic recording method, and is more suitable for use in forming the lower recording layer, which is preferably the layer in which information is least likely to be rewritten, out of the upper and lower recording layers that make up the magnetic layer.
  • the metal components of the sputtering target mainly include Co and Pt, but it is essential that the target also includes CrB as a metal component. It is believed that the inclusion of CrB as a metal component stabilizes the hcp structure of the Co-Pt phase of the thin film formed by sputtering.
  • the inclusion of CrB as a metal component means that a CrB alloy is present in the sputtering target. In this specification, the alloy refers to a substance formed by mixing two or more metal elements, or a metal element and a nonmetal element.
  • the content of CrB as a metal component is preferably within a predetermined range with respect to the total composition of the raw material of the sputtering target. If the content of CrB as a metal component is a certain value, for example, 2 wt% or more, the magnetic anisotropy Ku is further improved.
  • the fact that the sputtering target contains CrB as a metal component means that B in a state not bonded to oxygen is present.
  • the content of CrB as a metal component is preferably 2 wt% or more.
  • the content of CrB as a metal component is preferably 7 wt% or less.
  • XRD X-ray diffraction
  • the peak intensity ratio is more preferably 0.02 or more, even more preferably 0.03 or more, and ideally 0.04 or more.
  • the peak intensity ratio can be obtained by analyzing the X-ray pattern obtained by X-ray diffraction (XRD) using X-ray analysis software (Rigaku Corporation, integrated powder X-ray analysis software PDXL2). Specifically, it can be obtained by the following (I) to (III).
  • the background is removed using the fitting method (more specifically, a simple peak search is performed, the peak portions are removed, and then a polynomial is fitted to the remaining data) using the above-mentioned X-ray analysis software.
  • the scale at the highest position of the diffraction peak of the (111) plane of CrB hereinafter referred to as the CrB peak intensity
  • the scale at the highest position of the diffraction peak of the (111) plane of FCC Co-Pt hereinafter referred to as the Co-Pt peak intensity
  • the Co-Pt peak intensity are read.
  • the sputtering target contains at least Co and Pt as metal components.
  • Co and Pt as metal components can be set as desired as needed, but for example, Co can be contained in an amount of 35 mol% to 60 mol%, and Pt can be contained in an amount of 5 mol% to 30 mol%.
  • the metal components of the sputtering target may contain, in addition to the above Co and Pt, one or more selected from the group consisting of Au, Ag, Cu, Ge, Ir, Mn, Mo, Nb, Ni, Pd, Re, Rh, Ru, Ta, W, and V in a total amount of 5 mol% or less, as necessary.
  • the contents of Co, Pt, Cr, B, Au, Ag, Cu, Ge, Ir, Mn, Mo, Nb, Ni, Pd, Re, Rh, Ru, Ta, W, and V in the sputtering target may be determined, for example, by analysis using ICP and based on the analysis results.
  • the sputtering target of this embodiment can contain, as a metal oxide component, at least one of TiO 2 , SiO 2 , Cr 2 O 3 , B 2 O 3 , CoO, and Co 3 O 4. This makes it possible to obtain the effect of the metal oxide TiO 2 , SiO 2 , Cr 2 O 3 , B 2 O 3 , CoO, or Co 3 O 4 in addition to the effect of CrB described above.
  • the sputtering target described above can be manufactured by, for example, a powder sintering method, and a specific example of the manufacturing method will be described below.
  • the above-mentioned metal powder may be a powder of a single element or an alloy, and preferably has a particle size within the range of 1 ⁇ m to 150 ⁇ m, which allows for uniform mixing and prevents segregation and coarse crystallization. If the particle size of the metal powder is larger than 150 ⁇ m, the oxide particles described below may not be uniformly dispersed, and if it is smaller than 1 ⁇ m, there is a risk that the sputtering target will deviate from the desired composition due to the oxidation of the metal powder.
  • Co-B powder can be prepared as the metal powder.
  • the presence of Co-B allows more B as a metal component, i.e., B that is not bound to oxygen, to remain in the target.
  • oxide powder such as TiO2 powder, SiO2 powder, Cr2O3 powder and/or Co2B2O5 powder .
  • the oxide powder preferably has a particle size in the range of 1 ⁇ m to 30 ⁇ m. This allows the oxide particles to be more uniformly dispersed in the metal phase when mixed with the metal powder and pressure sintered. If the particle size of the oxide powder is larger than 30 ⁇ m, coarse oxide particles may be generated after pressure sintering, while if the particle size is smaller than 1 ⁇ m, the oxide powder particles may aggregate together.
  • the metal powder and oxide powder are weighed out to obtain the desired composition.
  • the materials are mixed and pulverized using a known method such as a ball mill. This makes it possible to obtain a mixed powder in which the specified metal powder and oxide powder are uniformly mixed.
  • the mixed powder thus obtained is pressurized and sintered in a vacuum or inert gas atmosphere, and molded into a desired shape such as a disk.
  • Various pressure sintering methods can be used here, such as hot press sintering, hot isostatic sintering, and plasma discharge sintering.
  • hot isostatic sintering is effective from the viewpoint of increasing the density of the sintered body.
  • the temperature to be maintained during sintering is preferably in the range of 600°C to 1500°C, and more preferably 700°C to 1400°C. It is preferable to maintain the temperature in this range for at least one hour.
  • the pressure during sintering is preferably 10 MPa or more, and more preferably 20 MPa or more. This allows the oxide particles to be more uniformly dispersed in the metal phase.
  • the sintered body obtained by the above pressure sintering can be machined using a lathe or other machine tools to produce a sputtering target in the shape of a disk or other object.
  • the laminated film has at least an underlayer and a magnetic layer formed on the underlayer. More specifically, the underlayer contains Ru, and is generally made of Ru or is a layer mainly composed of Ru.
  • Each layer of the laminated film can be formed by depositing the film using a magnetron sputtering device or the like, using a sputtering target of the present invention that has a composition and structure appropriate for each layer.
  • the magnetic layer can be formed on the underlayer by sputtering using a sputtering target according to one embodiment of the present invention. This allows for an increase in magnetic anisotropy Ku to ensure thermal stability while maintaining a saturation magnetization above a predetermined value, and for high magnetic separation of magnetic particles to achieve high resolution.
  • An example of the magnetic layer formed by sputtering using a sputtering target according to one embodiment of the present invention includes Cr, B, Co, and Pt.
  • the magnetic layer further contains at least one metal oxide selected from the group consisting of TiO 2 , SiO 2 , Cr 2 O 3 , B 2 O 3 , CoO, and Co 3 O 4 as a metal oxide component
  • Co is contained in an amount of 35 mol% to 60 mol%
  • Pt is contained in an amount of 5 mol% to 30 mol%
  • one or more selected from the group consisting of Au, Ag, Cu, Ge, Ir, Mn, Mo, Nb, Ni, Pd, Re, Rh, Ru, Ta, W, and V are contained in an amount of 5 mol% or less in total.
  • the distribution and organizational structure of each metal component in the obtained magnetic layer differ depending on the sputtering conditions, it is technically difficult to unambiguously define a more specific composition.
  • a method for manufacturing a laminated film having an underlayer and a magnetic layer on the underlayer including forming the magnetic layer by sputtering using a sputtering target of the present invention.
  • a laminated film including an underlayer and a magnetic layer formed on the underlayer the magnetic layer being formed by sputtering using a sputtering target of the present invention. Therefore, the magnetic layer of the laminated film contains CrB as a metal component, with the remainder containing at least Co and Pt.
  • the magnetic recording medium is provided with a laminated film having an underlayer and a magnetic layer formed on the underlayer as described above.
  • the magnetic recording medium is usually manufactured by sequentially forming a soft magnetic layer, an underlayer, a magnetic layer, and a protective layer on a substrate such as aluminum or glass. Therefore, in another aspect of the present invention, a method for manufacturing a magnetic recording medium having at least an underlayer on a substrate and a magnetic layer on the underlayer is provided, which includes forming the magnetic layer by sputtering using the sputtering target of the present invention. Therefore, the magnetic layer of the magnetic recording medium contains CrB as a metal component, and at least Co and Pt as a remainder.
  • a magnetic recording medium which includes at least an underlayer on a substrate and a magnetic layer formed on the underlayer, and the magnetic layer is formed by sputtering using the sputtering target of the present invention.
  • the magnetic recording medium is formed by sputtering using the sputtering target of one embodiment of the present invention, the distribution and organizational structure of each metal component differ depending on the sputtering conditions, so that it is difficult to define it uniquely.
  • sputtering targets of 50Co-5Cr-15Pt-10B-1Ru-2TiO 2 -2Cr 2 O 3 -15CoO (mol %) were prepared.
  • Example 2 As raw material powders, Co powder, Pt powder, Ru powder, TiO2 powder, Cr2O3 powder, CoO powder, Co-B powder, and CrB powder were weighed to match the above target composition, and a sputtering target was manufactured under the same conditions as the comparative example. Note that the Co-B powder used had a particle size of 77 ⁇ m. The proportion of CrB powder in the entire raw material powder was 2.87 wt%.
  • the analysis area is polished with #2000 waterproof abrasive paper, and then buffed with a slurry containing dispersed alumina abrasive grains with a particle size of 0.3 ⁇ m, and the flattest and least uneven surface of the analysis area is measured. Note that "flattest and least uneven surface” is not a strict standard, and simply means that if there are any unevenness that may interfere with the analysis, those areas will be avoided.
  • the obtained XRD patterns were analyzed using X-ray analysis software (Rigaku Corporation, integrated powder X-ray analysis software PDXL2). As a result, as shown in Figure 1, CrB was detected in the example, whereas CrB was not detected in the comparative example. Note that the X-ray pattern in Figure 1 is data from which the background has been removed using the above-mentioned fitting method using the X-ray analysis software. The XRD measurement results are explained in detail below.
  • a magnetron sputtering device (C-3010 manufactured by Canon Anelva Corporation) was used to deposit films of Cr-Ti (6 nm), Ni-W (5 nm), and Ru (20 nm) in that order on a glass substrate, and each of the sputtering targets described above was sputtered at 300 W in an Ar 5.0 Pa atmosphere to deposit magnetic films with a thickness of 11 nm.
  • a Ru (3 nm) was deposited as a protective film to prevent oxidation of the magnetic film, thereby forming each layer.
  • the magnetic anisotropy Ku of the obtained magnetic film was measured using a Kerr measuring device manufactured by NeoArc.
  • the measurement conditions were a maximum applied magnetic field of 20 kOe and a sweep time of 20 seconds.
  • the magnetic cluster size Dn and saturation magnetization Ms of the magnetic film obtained by the above film formation operation were measured using a vibrating sample magnetometer manufactured by Tamagawa Seisakusho Co., Ltd. The measurement conditions were a maximum applied magnetic field of 22 kOe in each case.
  • the demagnetizing field factor Nd was calculated by the following formula.
  • Demagnetizing factor Nd Hd/(4 ⁇ Ms)
  • the magnetic cluster size Dn was calculated using the calculated Nd and the thickness t of the magnetic film of the sample according to the following formula.
  • Magnetic cluster size Dn t x (1 - Nd 2 ) 1/2 /Nd
  • the results of measuring the magnetic anisotropy Ku, magnetic cluster size Dn, and saturation magnetization Ms measured in the comparative example and the example are shown in Figs. 2, 3, and 4, respectively.
  • the horizontal axis in Figs. 2, 3, and 4 indicates the supply amount of Ar and O2 to the chamber of the magnetron sputtering device.
  • the chamber is a container in which sputtering is performed using a sputtering target.
  • This supply amount is a set value of the magnetron sputtering device, but it is considered to be equivalent to the actual measured value.
  • the supply amount on the horizontal axis means the total value of Ar and O2 .
  • a large Ku means high magnetic anisotropy.
  • a small Dn while showing a value of Ms of a certain value or more means good magnetic separation.
  • the Ku of the magnetic film obtained is large.
  • Dn is small while showing a value of Ms of a certain value or more. That is, the separation between magnetic particles is improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

Provided are: a sputtering target that achieves an increase in magnetic anisotropy Ku for securing thermal stability and achieves high magnetic separation properties of magnetic particles for high resolution, while maintaining saturation magnetization at or above a predetermined value; and a method for producing same. This sputtering target comprises CrB as a metal component, wherein the balance includes at least Co and Pt.

Description

スパッタリングターゲット、スパッタリングターゲットの製造方法、積層膜、積層膜の製造方法、磁気記録媒体、及び、磁気記録媒体の製造方法Sputtering target, method for manufacturing sputtering target, laminated film, method for manufacturing laminated film, magnetic recording medium, and method for manufacturing magnetic recording medium
 本発明は、スパッタリングターゲット、スパッタリングターゲットの製造方法、積層膜、積層膜の製造方法、磁気記録媒体、及び、磁気記録媒体の製造方法に関する。 The present invention relates to a sputtering target, a method for manufacturing a sputtering target, a laminated film, a method for manufacturing a laminated film, a magnetic recording medium, and a method for manufacturing a magnetic recording medium.
 近年、ハードディスクドライブの分野では、垂直磁気記録方式が実用化されている。垂直磁気記録方式は、記録面に対して垂直方向に磁気を記録する方式である。垂直磁気記録方式は、面内磁気記録方式に比べて高密度の記録が可能であるため、広く採用されている。ハードディスクドライブの記録密度に対する要求が高まるに伴って、高記録密度化に適した磁気記録媒体の開発が進められている。 In recent years, the perpendicular magnetic recording method has come into practical use in the field of hard disk drives. The perpendicular magnetic recording method records magnetic data perpendicular to the recording surface. The perpendicular magnetic recording method is widely adopted because it allows for higher density recording than the in-plane magnetic recording method. As the demand for higher recording density in hard disk drives increases, the development of magnetic recording media suitable for higher recording density is progressing.
 垂直磁気記録方式の磁気記録媒体は、上部記録層及び下部記録層を含む記録層、並びに、その他の層からなる複数の層で構成されることがある。これらの層はそれぞれ、各層に応じたスパッタリングターゲットを用いて、基板上にスパッタリングすることにより順次に成膜される。その成膜において、金属相がCoを主成分とした金属からなり、酸化物相が所定の金属酸化物を含むスパッタリングターゲットが用いられる場合がある。  Magnetic recording media using perpendicular magnetic recording methods may be composed of multiple layers, including a recording layer including an upper recording layer and a lower recording layer, and other layers. Each of these layers is deposited sequentially on a substrate by sputtering using a sputtering target appropriate for each layer. In the deposition, a sputtering target may be used in which the metal phase is made of a metal with Co as the main component, and the oxide phase contains a specified metal oxide.
 磁気記録媒体の記録層の記録密度の高密度化を実現するためには、所望の飽和磁化を示しつつ、垂直磁気異方性が付与された磁性粒子の高い結晶配向性と、磁性粒子間の良好な分離性が伴うように、記録層を形成することが求められる。この要求に対処する一つの手段として、Biを0.05at%以上含有し、金属酸化物の合計含有量が10vol%~60vol%であり、残部に少なくともCo及びPtを含んでなるスパッタリングターゲットが提案されている(特許文献1)。特許文献1に係る発明によれば、磁性粒子の結晶配向を維持しながら、磁性粒子の粒子成長を抑え、磁性粒子の粒径分散を向上させ、磁性粒子間の分離性を向上させることができる。上記の金属酸化物として具体的には、Co、Cr、Si、Ti、Bの酸化物が挙げられている。 In order to achieve high recording density in the recording layer of a magnetic recording medium, it is necessary to form a recording layer that exhibits the desired saturation magnetization while also exhibiting high crystal orientation of magnetic particles with perpendicular magnetic anisotropy and good separation between magnetic particles. As one means of meeting this requirement, a sputtering target has been proposed that contains 0.05 at% or more of Bi, a total content of metal oxides is 10 vol% to 60 vol%, and the remainder contains at least Co and Pt (Patent Document 1). According to the invention of Patent Document 1, it is possible to suppress the grain growth of magnetic particles while maintaining the crystal orientation of the magnetic particles, improve the grain size dispersion of the magnetic particles, and improve the separation between magnetic particles. Specific examples of the above metal oxides include oxides of Co, Cr, Si, Ti, and B.
国際公開第2020/031460号International Publication No. 2020/031460
 特許文献1に開示される発明により、粒径分散のそろった微細な磁性粒子を均一な幅を持った酸化物粒界を介して分散させることができるが、飽和磁化と磁気異方性の制御の観点で改善の余地がある。 The invention disclosed in Patent Document 1 makes it possible to disperse fine magnetic particles with uniform particle size distribution through oxide grain boundaries with uniform widths, but there is room for improvement in terms of controlling saturation magnetization and magnetic anisotropy.
 本発明は上記問題点に鑑みて完成されたものであり、一実施形態において、所定値以上の飽和磁化を維持しつつ、熱安定性の確保のための磁気異方性Kuの増大と、高分解能化のための磁性粒子の高い磁気的分離性を実現したスパッタリングターゲット及びその製造方法を提供することを目的とする。本発明は別の実施形態において、そのようなスパッタリングターゲットを用いたスパッタリングにより製造された積層膜、磁気記録媒体、積層膜の製造方法、及び、磁気記録媒体の製造方法を提供することを目的とする。 The present invention was completed in consideration of the above problems, and in one embodiment, it aims to provide a sputtering target and a manufacturing method thereof that maintains saturation magnetization at or above a predetermined value while increasing magnetic anisotropy Ku to ensure thermal stability and achieving high magnetic separation of magnetic particles for high resolution. In another embodiment, it aims to provide a laminated film manufactured by sputtering using such a sputtering target, a magnetic recording medium, a manufacturing method for a laminated film, and a manufacturing method for a magnetic recording medium.
 本発明者らが鋭意検討した結果、金属成分としてのCrBを含有させることにより、高い磁気異方性(Ku)及び磁性粒子間の良好な磁気的分離性を実現できるとの知見を得た。高い磁気異方性を確保することで、熱安定性を確保することができる。また、磁性粒子間の磁気的分離性を高くすることで、磁性粒子間の干渉を生じにくくすることができる。ひいては、本発明に係るスパッタリングターゲットを用いて磁気記録媒体を製造した場合、単位面積あたりの情報量の増加を図ることができる。本発明は上記知見に基づき完成されたものであり、以下に例示される。 As a result of intensive research, the inventors have found that by including CrB as a metal component, high magnetic anisotropy (Ku) and good magnetic separation between magnetic particles can be achieved. By ensuring high magnetic anisotropy, thermal stability can be ensured. Furthermore, by increasing the magnetic separation between magnetic particles, interference between magnetic particles can be made less likely to occur. In addition, when a magnetic recording medium is manufactured using the sputtering target according to the present invention, the amount of information per unit area can be increased. The present invention was completed based on the above findings, and is exemplified below.
[1]
 金属成分として、CrBを含み、残部に少なくともCo及びPtを含んでなるスパッタリングターゲット。
[2]
 X線回折装置を用いて測定したとき、2θ=44.94°±1°に回折ピークが観察される、[1]に記載のスパッタリングターゲット。
[3]
 前記X線回折装置の分析条件が以下(1)~(15)である、[2]に記載のスパッタリングターゲット:
(1)スパッタリングターゲットの分析箇所は、スパッタ面に対して垂直な切断面である。
(2)X線源としてCu-Kαを用いる。
(3)管電圧が40kVである。
(4)管電流が30mAである。
(5)発散スリットは1°である。
(6)発散縦制限スリットは10mmである。
(7)散乱スリットは8mmである。
(8)受光スリットは開放状態である。
(9)ゴニオメータは試料水平型を用いる。
(10)スキャンスピードは10°/minである。
(11)スキャンステップは0.01°である。
(12)測定範囲は2θ=20°~80°である。
(13)バックグラウンド除去としてフィッティング方式を用いる。
(14)前記分析箇所は、#2000の耐水研磨紙で研磨し、更に、粒径0.3μmのアルミナ砥粒が分散したスラリーを用いてバフ研磨されている。
(15)前記分析箇所のうち、平坦かつ凹凸の少ない面を測定する。
[4]
 X線回折装置を用いて測定したとき、2θ=44.94°±1°の回折ピークと2θ=43.06°±1°の回折ピークの強度比が0.01以上である、[1]~[3]のいずれか1項に記載のスパッタリングターゲット。
[5]
 前記X線回折装置の分析条件が以下(1)~(15)であり、回折ピークの強度比は、以下(手順1)及び(手順2)で計算される、[4]に記載のスパッタリングターゲット:
(1)スパッタリングターゲットの分析箇所は、スパッタ面に対して垂直な切断面である。
(2)X線源としてCu-Kαを用いる。
(3)管電圧が40kVである。
(4)管電流が30mAである。
(5)発散スリットは1°である。
(6)発散縦制限スリットは10mmである。
(7)散乱スリットは8mmである。
(8)受光スリットは開放状態である。
(9)ゴニオメータは試料水平型を用いる。
(10)スキャンスピードは10°/minである。
(11)スキャンステップは0.01°である。
(12)測定範囲は2θ=20°~80°である。
(13)バックグラウンド除去としてフィッティング方式を用いる。
(14)前記分析箇所は、#2000の耐水研磨紙で研磨し、更に、粒径0.3μmのアルミナ砥粒が分散したスラリーを用いてバフ研磨されている。
(15)前記分析箇所のうち、平坦かつ凹凸の少ない面を測定する。
(手順1)バックグラウンドを除去することで得られたデータにおいて、2θ=44.94°±1°の回折ピークの最も高い位置の目盛、及び、2θ=43.06°±1°の回折ピークの最も高い位置の目盛をピーク強度としてそれぞれ読み取る。
(手順2)2θ=44.94°±1°のピーク強度を2θ=43.06°±1°のピーク強度で除算する。
[6]
 Coを35mol%~60mol%含有する、[1]~[5]のいずれか1項に記載のスパッタリングターゲット。
[7]
 Ptを5mol%~30mol%含有する、[1]~[6]のいずれか1項に記載のスパッタリングターゲット。
[8]
 さらに、Au、Ag、Cu、Ge、Ir、Mn、Mo、Nb、Ni、Pd、Re、Rh、Ru、Ta、W及びVからなる群から選択される一種以上を、合計5mol%以下の量で含有する、[1]~[7]のいずれか1項に記載のスパッタリングターゲット。
[9]
 スパッタリングターゲットの製造方法であって、CrB粉末、Co粉末、及びPt粉末を含む原料粉末を加圧焼結することを含む、方法。
[10]
 前記CrB粉末の量は、スパッタリングターゲットの原材料の全質量に対して、2wt%~7wt%である、[9]に記載の方法。
[11]
 下地層と、下地層上に形成された磁性層とを含む積層膜であって、
 前記磁性層は、金属成分として、CrBを含み、残部に少なくともCo及びPtを含む、積層膜。
[12]
 下地層上に、[1]~[8]のいずれかに記載のスパッタリングターゲットを用いたスパッタリングにより磁性層を形成する工程を含む、積層膜の製造方法。
[13]
 磁気記録媒体であって、基板上に、少なくとも下地層と、下地層上に形成された磁性層とを含み、前記磁性層は、金属成分として、CrBを含み、残部に少なくともCo及びPtを含む、磁気記録媒体。
[14]
 基板上に、少なくとも下地層と、下地層上に形成された磁性層とを含む磁気記録媒体の製造方法であって、
 前記下地層上に、[1]~[8]のいずれかに記載のスパッタリングターゲットを用いたスパッタリングにより前記磁性層を形成する工程を含む、磁気記録媒体の製造方法。
[1]
A sputtering target comprising, as a metal component, CrB, with the remainder containing at least Co and Pt.
[2]
The sputtering target according to [1], wherein a diffraction peak is observed at 2θ=44.94°±1° when measured using an X-ray diffraction apparatus.
[3]
The sputtering target according to [2], wherein the analysis conditions of the X-ray diffraction apparatus are the following (1) to (15):
(1) The analysis area of the sputtering target is a cut surface perpendicular to the sputtering surface.
(2) Cu-Kα is used as the X-ray source.
(3) The tube voltage is 40 kV.
(4) The tube current is 30 mA.
(5) The divergence slit is 1°.
(6) The vertical divergence limiting slit is 10 mm.
(7) The scattering slit is 8 mm.
(8) The receiving slit is in the open state.
(9) Use a horizontal-sample goniometer.
(10) The scan speed is 10°/min.
(11) The scan step is 0.01°.
(12) The measurement range is 2θ = 20° to 80°.
(13) A fitting method is used for background removal.
(14) The analysis area is polished with #2000 waterproof abrasive paper and further buffed with a slurry in which alumina abrasive grains having a particle size of 0.3 μm are dispersed.
(15) Of the analysis areas, a flat surface with minimal irregularities is measured.
[4]
[1] The sputtering target according to any one of [1] to [3], wherein the intensity ratio of a diffraction peak at 2θ = 44.94 ° ± 1 ° to a diffraction peak at 2θ = 43.06 ° ± 1 ° is 0.01 or more when measured using an X-ray diffraction apparatus.
[5]
The sputtering target according to [4], wherein the analysis conditions of the X-ray diffraction apparatus are the following (1) to (15), and the intensity ratio of the diffraction peaks is calculated by the following (procedure 1) and (procedure 2):
(1) The analysis area of the sputtering target is a cut surface perpendicular to the sputtering surface.
(2) Cu-Kα is used as the X-ray source.
(3) The tube voltage is 40 kV.
(4) The tube current is 30 mA.
(5) The divergence slit is 1°.
(6) The vertical divergence limiting slit is 10 mm.
(7) The scattering slit is 8 mm.
(8) The receiving slit is in the open state.
(9) Use a horizontal-sample goniometer.
(10) The scan speed is 10°/min.
(11) The scan step is 0.01°.
(12) The measurement range is 2θ = 20° to 80°.
(13) A fitting method is used for background removal.
(14) The analysis area is polished with #2000 waterproof abrasive paper and further buffed with a slurry in which alumina abrasive grains having a particle size of 0.3 μm are dispersed.
(15) Of the analysis areas, a flat surface with minimal irregularities is measured.
(Step 1) In the data obtained by removing the background, the scale marking at the highest position of the diffraction peak at 2θ = 44.94° ± 1° and the scale marking at the highest position of the diffraction peak at 2θ = 43.06° ± 1° are read as peak intensities, respectively.
(Step 2) Divide the peak intensity at 2θ=44.94°±1° by the peak intensity at 2θ=43.06°±1°.
[6]
The sputtering target according to any one of [1] to [5], containing 35 mol% to 60 mol% Co.
[7]
The sputtering target according to any one of [1] to [6], containing 5 mol % to 30 mol % of Pt.
[8]
The sputtering target according to any one of [1] to [7], further comprising one or more selected from the group consisting of Au, Ag, Cu, Ge, Ir, Mn, Mo, Nb, Ni, Pd, Re, Rh, Ru, Ta, W, and V in a total amount of 5 mol% or less.
[9]
A method for producing a sputtering target, comprising pressure sintering a raw material powder including a CrB powder, a Co powder, and a Pt powder.
[10]
The method according to [9], wherein the amount of the CrB powder is 2 wt % to 7 wt % based on the total mass of the raw material of the sputtering target.
[11]
A laminated film including an underlayer and a magnetic layer formed on the underlayer,
The magnetic layer is a laminated film containing, as a metal component, CrB, with the remainder containing at least Co and Pt.
[12]
A method for manufacturing a laminated film, comprising a step of forming a magnetic layer on an underlayer by sputtering using the sputtering target according to any one of [1] to [8].
[13]
1. A magnetic recording medium comprising: a substrate; and a magnetic layer formed on the substrate, the magnetic layer including, as a metal component, CrB, and a remainder including at least Co and Pt.
[14]
A method for manufacturing a magnetic recording medium including at least an underlayer on a substrate and a magnetic layer formed on the underlayer, comprising the steps of:
A method for producing a magnetic recording medium, comprising: forming the magnetic layer on the underlayer by sputtering using the sputtering target according to any one of [1] to [8].
 本発明の一実施形態によれば、所定値以上の飽和磁化を維持しつつ、熱安定性の確保のための磁気異方性Kuの増大と、高分解能化のための磁性粒子の高い磁気的分離性を実現したスパッタリングターゲット及びその製造方法を提供することができる。本発明の別の実施形態によれば、そのようなスパッタリングターゲットを用いたスパッタリングにより製造された積層膜、磁気記録媒体、積層膜の製造方法、及び、磁気記録媒体の製造方法を提供することができる。 According to one embodiment of the present invention, it is possible to provide a sputtering target and a method for manufacturing the same that maintains a saturation magnetization above a predetermined value while increasing the magnetic anisotropy Ku to ensure thermal stability and achieving high magnetic separation of magnetic particles to achieve high resolution. According to another embodiment of the present invention, it is possible to provide a laminated film manufactured by sputtering using such a sputtering target, a magnetic recording medium, a method for manufacturing the laminated film, and a method for manufacturing the magnetic recording medium.
比較例及び実施例のスパッタリングターゲットのXRD(X線回折)分析の結果を示す図である。FIG. 2 is a diagram showing the results of XRD (X-ray diffraction) analysis of sputtering targets of Comparative Example and Example. 比較例及び実施例のスパッタリングターゲットを用いて成膜した磁性膜の磁気異方性Kuの測定結果を示すグラフである。1 is a graph showing the measurement results of magnetic anisotropy Ku of magnetic films formed using sputtering targets of the comparative example and the example. 比較例及び実施例のスパッタリングターゲットを用いて成膜した磁性膜の磁気クラスターサイズDnの測定結果を示すグラフである。1 is a graph showing the measurement results of the magnetic cluster size Dn of magnetic films formed using the sputtering targets of the comparative example and the example. 比較例及び実施例のスパッタリングターゲットを用いて成膜した磁性膜の飽和磁化Msの測定結果を示すグラフである。1 is a graph showing the measurement results of saturation magnetization Ms of magnetic films formed using sputtering targets of a comparative example and an example.
 次に、本発明の実施形態について、図面を参照しながら詳細に説明する。本発明は以下の実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で、当業者の通常の知識に基づいて、適宜設計の変更、改良等が加えられることが理解されるべきである。 Next, an embodiment of the present invention will be described in detail with reference to the drawings. The present invention is not limited to the following embodiment, and it should be understood that appropriate design changes, improvements, etc. may be made based on the ordinary knowledge of a person skilled in the art without departing from the spirit of the present invention.
 本実施形態に係るスパッタリングターゲットは、垂直磁気記録方式の磁気記録媒体の磁性層の形成に用いることが好ましく、磁性層を構成する上部記録層と下部記録層のうち、情報の書き換えが行われにくいことが望ましいとされる下部記録層の形成に用いることにより適している。 The sputtering target according to this embodiment is preferably used to form a magnetic layer of a magnetic recording medium using a perpendicular magnetic recording method, and is more suitable for use in forming the lower recording layer, which is preferably the layer in which information is least likely to be rewritten, out of the upper and lower recording layers that make up the magnetic layer.
(スパッタリングターゲットの組成)
 スパッタリングターゲットの金属成分は主としてCo及びPtを含むが、それに加えて、金属成分としてのCrBを含むことが肝要である。金属成分としてのCrBを含むことにより、スパッタリングにより成膜される薄膜のCo-Pt相のhcp構造が安定化すると考えられる。なお、金属成分としてのCrBを含むことの意味は、スパッタリングターゲットにCrB合金が存在することである。本明細書での合金とは、2種以上の金属元素、あるいは金属元素と非金属元素が混ざり合って形成された物質を意味する。
(Composition of sputtering target)
The metal components of the sputtering target mainly include Co and Pt, but it is essential that the target also includes CrB as a metal component. It is believed that the inclusion of CrB as a metal component stabilizes the hcp structure of the Co-Pt phase of the thin film formed by sputtering. The inclusion of CrB as a metal component means that a CrB alloy is present in the sputtering target. In this specification, the alloy refers to a substance formed by mixing two or more metal elements, or a metal element and a nonmetal element.
 本実施形態のスパッタリングターゲットにおいて、金属成分としてのCrBの含有量は、スパッタリングターゲットの原材料の全組成に対して、所定の範囲内であることが好ましい。金属成分としてのCrBの含有量が、一定値、例えば、2wt%以上であれば、磁気異方性Kuがより向上する。スパッタリングターゲットが金属成分としてのCrBを含むことは、酸素と結合していない状態のBが存在することを意味する。そして、酸素と結合していない状態のBがスパッタリング時に磁性元素と相互作用しやすく、磁性元素が特定の方向に配向されやすくなり、その結果、スパッタリングにより成膜される膜の磁気異方性Kuが向上すると思われる。磁気異方性Kuが向上することで、磁性粒子間の相互作用が小さくなる。このため、金属成分としてのCrBの含有量は、2wt%以上とすることが好ましい。一方、金属成分としてのCrBが、一定値、例えば、7wt%以下であれば、スパッタリング時のパーティクルの発生を抑制しやすい。そのため、金属成分としてのCrBの含有量は、7wt%以下とすることが好ましい。 In the sputtering target of this embodiment, the content of CrB as a metal component is preferably within a predetermined range with respect to the total composition of the raw material of the sputtering target. If the content of CrB as a metal component is a certain value, for example, 2 wt% or more, the magnetic anisotropy Ku is further improved. The fact that the sputtering target contains CrB as a metal component means that B in a state not bonded to oxygen is present. Then, B in a state not bonded to oxygen is likely to interact with magnetic elements during sputtering, and the magnetic elements are likely to be oriented in a specific direction, and as a result, the magnetic anisotropy Ku of the film formed by sputtering is thought to be improved. By improving the magnetic anisotropy Ku, the interaction between magnetic particles is reduced. For this reason, the content of CrB as a metal component is preferably 2 wt% or more. On the other hand, if the content of CrB as a metal component is a certain value, for example, 7 wt% or less, it is easy to suppress the generation of particles during sputtering. For this reason, the content of CrB as a metal component is preferably 7 wt% or less.
 スパッタリングターゲット中の金属成分としてのCrBの存在は、例えば、X線回折法(XRD)により確認することができる。すなわち、Cu-Kαを用いたXRDパターンにおいて、およそ2θ=44.94°±1°付近にメインピークであるCrBの(111)面の回折ピークを有する。また、2θ=38.29°±1°付近にCrBの(021)面の回折ピークを有し、さらに、2θ=32.32°±1°付近にCrBの(110)面の回折ピークを有する。これらのピークのうち、メインピークが観察される場合、CrBが存在すると判断できる。典型的には、これらのピークが同時に観察される。 The presence of CrB as a metal component in a sputtering target can be confirmed, for example, by X-ray diffraction (XRD). That is, in an XRD pattern using Cu-Kα, there is a diffraction peak of the (111) plane of CrB, which is the main peak, at approximately 2θ = 44.94° ± 1°. There is also a diffraction peak of the (021) plane of CrB at approximately 2θ = 38.29° ± 1°, and further there is a diffraction peak of the (110) plane of CrB at approximately 2θ = 32.32° ± 1°. If the main peak of these peaks is observed, it can be determined that CrB is present. Typically, these peaks are observed simultaneously.
 なお、FCC(面心立方格子)のCo-Ptの(111)面の回折ピーク(2θ=43.06°±1°付近)に対するCrBの(111)面の回折ピークのピーク強度比は、0.01以上であることが好ましい。当該ピーク強度比は、より好ましくは、0.02以上であり、さらに好ましくは、0.03以上であり、理想的には0.04以上である。ピーク強度比は、X線回折法(XRD)により得られたX線パターンについて、X線解析ソフトウェア(リガク社製、統合粉末X線解析ソフトウェアPDXL2)を用いて解析することで求めることができる。具体的には、以下(I)~(III)により求めることができる。
(I)X線パターンについて、上述のX線解析ソフトウェアで、フィッティング方式(詳しくは、簡易ピークサーチを行い、ピーク部分を取り除いた後、残りのデータに対して多項式をフィッティングする方式)によりバックグラウンドを除去する。
(II)バックグラウンドを除去することで得られたデータにおいて、CrBの(111)面の回折ピークの最も高い位置の目盛(以下、CrBのピーク強度)、及び、FCCのCo-Ptの(111)面の回折ピークの最も高い位置の目盛(以下、Co-Ptのピーク強度)をそれぞれ読み取る。
(III)CrBのピーク強度をCo-Ptのピーク強度で除算する。
In addition, the peak intensity ratio of the diffraction peak of the (111) plane of CrB to the diffraction peak of the (111) plane of Co-Pt of FCC (face-centered cubic lattice) (near 2θ=43.06°±1°) is preferably 0.01 or more. The peak intensity ratio is more preferably 0.02 or more, even more preferably 0.03 or more, and ideally 0.04 or more. The peak intensity ratio can be obtained by analyzing the X-ray pattern obtained by X-ray diffraction (XRD) using X-ray analysis software (Rigaku Corporation, integrated powder X-ray analysis software PDXL2). Specifically, it can be obtained by the following (I) to (III).
(I) For the X-ray pattern, the background is removed using the fitting method (more specifically, a simple peak search is performed, the peak portions are removed, and then a polynomial is fitted to the remaining data) using the above-mentioned X-ray analysis software.
(II) In the data obtained by removing the background, the scale at the highest position of the diffraction peak of the (111) plane of CrB (hereinafter referred to as the CrB peak intensity) and the scale at the highest position of the diffraction peak of the (111) plane of FCC Co-Pt (hereinafter referred to as the Co-Pt peak intensity) are read.
(III) Divide the CrB peak intensity by the Co--Pt peak intensity.
 スパッタリングターゲットは、金属成分として少なくともCo及びPtを含む。Ptの含有量は所望の磁気異方性を実現するために、任意に選択することができる。一般的に金属成分Coに対するPtのモル比率を金属成分Co:Pt=3:1にするともっとも高い磁気異方性が得られることが知られているが、金属成分Co:Ptの比率は10:0から10:5の範囲であれば本実施形態のスパッタリングターゲットを実現することが可能である。 The sputtering target contains at least Co and Pt as metal components. The Pt content can be selected as desired to achieve the desired magnetic anisotropy. It is generally known that the highest magnetic anisotropy can be obtained when the molar ratio of Pt to the metal component Co is metal component Co:Pt = 3:1, but the sputtering target of this embodiment can be realized if the ratio of the metal components Co:Pt is in the range of 10:0 to 10:5.
 金属成分としてのCo及びPtの量は必要に応じて任意に設定できるが、例えばCoは35mol%~60mol%の量で含有することができ、Ptは5mol%~30mol%の量で含有することができる。 The amounts of Co and Pt as metal components can be set as desired as needed, but for example, Co can be contained in an amount of 35 mol% to 60 mol%, and Pt can be contained in an amount of 5 mol% to 30 mol%.
 スパッタリングターゲットの金属成分は、飽和磁化、磁気異方性、磁性粒子と粒界酸化物との濡れ性の適正化のために、上記のCo及びPtの他、必要に応じてさらに、Au、Ag、Cu、Ge、Ir、Mn、Mo、Nb、Ni、Pd、Re、Rh、Ru、Ta、W及びVからなる群から選択される一種以上を、合計5mol%以下の量で含有することができる。なお、スパッタリングターゲット中のCo、Pt、Cr、B、Au、Ag、Cu、Ge、Ir、Mn、Mo、Nb、Ni、Pd、Re、Rh、Ru、Ta、W及びVの含有量は、例えば、ICPにより分析し、その分析結果に基づいて求めることができる。 In order to optimize saturation magnetization, magnetic anisotropy, and wettability between magnetic particles and grain boundary oxides, the metal components of the sputtering target may contain, in addition to the above Co and Pt, one or more selected from the group consisting of Au, Ag, Cu, Ge, Ir, Mn, Mo, Nb, Ni, Pd, Re, Rh, Ru, Ta, W, and V in a total amount of 5 mol% or less, as necessary. The contents of Co, Pt, Cr, B, Au, Ag, Cu, Ge, Ir, Mn, Mo, Nb, Ni, Pd, Re, Rh, Ru, Ta, W, and V in the sputtering target may be determined, for example, by analysis using ICP and based on the analysis results.
 また、本実施形態のスパッタリングターゲットは、金属酸化物成分として、TiO2、SiO2、Cr23、B23、CoO及びCo34のうちの少なくとも一種を含むことができる。これにより、上記CrBによる効果のほか、TiO2、SiO2、Cr23、B23、CoO又はCo34の金属酸化物による効果を得ることが可能である。 Furthermore, the sputtering target of this embodiment can contain, as a metal oxide component, at least one of TiO 2 , SiO 2 , Cr 2 O 3 , B 2 O 3 , CoO, and Co 3 O 4. This makes it possible to obtain the effect of the metal oxide TiO 2 , SiO 2 , Cr 2 O 3 , B 2 O 3 , CoO, or Co 3 O 4 in addition to the effect of CrB described above.
(スパッタリングターゲットの製造方法)
 以上に述べたスパッタリングターゲットは、例えば粉末焼結法により製造することができ、その具体的な製造方法の例を次に述べる。
(Method of manufacturing sputtering target)
The sputtering target described above can be manufactured by, for example, a powder sintering method, and a specific example of the manufacturing method will be described below.
 まず、金属粉末として、CrB粉末と、Co粉末と、Pt粉末と、さらに必要に応じて、Au、Ag、Cu、Ge、Ir、Mn、Mo、Nb、Ni、Pd、Re、Rh、Ru、Ta、W及びVからなる群から選択される一種以上の粉末を用意する。 First, prepare the metal powders CrB powder, Co powder, Pt powder, and, if necessary, one or more powders selected from the group consisting of Au, Ag, Cu, Ge, Ir, Mn, Mo, Nb, Ni, Pd, Re, Rh, Ru, Ta, W, and V.
 上述の金属粉末は、単元素のみならず合金の粉末であってもよく、その粒径が1μm~150μmの範囲内のものであることが、均一な混合を可能にして偏析と粗大結晶化を防止できる点で好ましい。金属粉末の粒径が150μmより大きい場合は、後述の酸化物粒子が均一に分散しないことがあり、また、1μmより小さい場合は、金属粉末の酸化の影響でスパッタリングターゲットが所望の組成から外れたものになるおそれがある。 The above-mentioned metal powder may be a powder of a single element or an alloy, and preferably has a particle size within the range of 1 μm to 150 μm, which allows for uniform mixing and prevents segregation and coarse crystallization. If the particle size of the metal powder is larger than 150 μm, the oxide particles described below may not be uniformly dispersed, and if it is smaller than 1 μm, there is a risk that the sputtering target will deviate from the desired composition due to the oxidation of the metal powder.
 本発明の一実施形態において、金属粉末としてCo-B粉末を用意することができる。Co-Bの存在により、金属成分としてのB、すなわち、酸素と結合していない状態のBをより多くターゲット中に残すことができる。また、Co-B粉末を使用する場合、粒径77μm以上のものを使用することが、金属成分としてのBをより多くターゲット中に残すという観点から好ましい。 In one embodiment of the present invention, Co-B powder can be prepared as the metal powder. The presence of Co-B allows more B as a metal component, i.e., B that is not bound to oxygen, to remain in the target. In addition, when using Co-B powder, it is preferable to use powder with a particle size of 77 μm or more from the viewpoint of leaving more B as a metal component in the target.
 また、必要に応じて、酸化物粉末として、例えば、TiO2粉末、SiO2粉末、Cr23粉末及び/又はCo225粉末等を用意する。酸化物粉末は粒径が1μm~30μmの範囲のものとすることが好ましい。それにより、上記の金属粉末と混合して加圧焼結した際に、金属相中に酸化物粒子をより均一に分散させることができる。酸化物粉末の粒径が30μmより大きい場合は、加圧焼結後に粗大な酸化物粒子が生じることがあり、この一方で、1μmより小さい場合は、酸化物粉末同士の凝集が生じることがある。 Also, as necessary, prepare oxide powder such as TiO2 powder, SiO2 powder, Cr2O3 powder and/or Co2B2O5 powder . The oxide powder preferably has a particle size in the range of 1 μm to 30 μm. This allows the oxide particles to be more uniformly dispersed in the metal phase when mixed with the metal powder and pressure sintered. If the particle size of the oxide powder is larger than 30 μm, coarse oxide particles may be generated after pressure sintering, while if the particle size is smaller than 1 μm, the oxide powder particles may aggregate together.
 次いで、上記の金属粉末及び酸化物粉末を、所望の組成になるように秤量する。秤量の際に、例えば、スパッタリングターゲットの原材料の全質量に対して、金属としてのCrB粉末が、2wt%~7wt%となるように秤量することが好ましい。そして、ボールミル等の公知の手法を用いて混合するとともに粉砕する。これにより、所定の金属粉末と酸化物粉末とが均一に混合した混合粉末を得ることができる。ただし、該粉砕時には、混合・粉砕に用いる容器の内部を不活性ガスで充満させて、原料粉末の酸化をできる限り抑制することが望ましい。 Then, the metal powder and oxide powder are weighed out to obtain the desired composition. When weighing, it is preferable to weigh out the metal CrB powder so that it is 2 wt% to 7 wt% of the total mass of the raw materials for the sputtering target. Then, the materials are mixed and pulverized using a known method such as a ball mill. This makes it possible to obtain a mixed powder in which the specified metal powder and oxide powder are uniformly mixed. However, during the pulverization, it is preferable to fill the inside of the container used for mixing and pulverization with an inert gas to suppress oxidation of the raw material powder as much as possible.
 その後、このようにして得られた混合粉末を、真空雰囲気又は不活性ガス雰囲気下で加圧して焼結させ、円盤状等の所定の形状に成型する。ここでは、ホットプレス焼結法、熱間静水圧焼結法、プラズマ放電焼結法等の様々な加圧焼結方法を使用することができる。なかでも、熱間静水圧焼結法は焼結体の密度向上の観点から有効である。 Then, the mixed powder thus obtained is pressurized and sintered in a vacuum or inert gas atmosphere, and molded into a desired shape such as a disk. Various pressure sintering methods can be used here, such as hot press sintering, hot isostatic sintering, and plasma discharge sintering. Among these, hot isostatic sintering is effective from the viewpoint of increasing the density of the sintered body.
 焼結時の保持温度は、好ましくは600℃~1500℃の温度範囲とし、より好ましくは700℃~1400℃とする。そして、この範囲の温度に保持する時間は、1時間以上とすることが好適である。 The temperature to be maintained during sintering is preferably in the range of 600°C to 1500°C, and more preferably 700°C to 1400°C. It is preferable to maintain the temperature in this range for at least one hour.
 また、焼結時の加圧力は、好ましくは10MPa以上、より好ましくは20MPa以上とする。それにより、金属相中に酸化物粒子をより均一に分散させることができる。 The pressure during sintering is preferably 10 MPa or more, and more preferably 20 MPa or more. This allows the oxide particles to be more uniformly dispersed in the metal phase.
 上記の加圧焼結により得られた焼結体に対し、旋盤等を用いて所望の形状にする切削その他の機械加工を施すことにより、円盤状等のスパッタリングターゲットを製造することができる。 The sintered body obtained by the above pressure sintering can be machined using a lathe or other machine tools to produce a sputtering target in the shape of a disk or other object.
(積層膜)
 積層膜は、少なくとも、下地層と、下地層上に形成された磁性層とを有するものである。より詳細には、下地層は、Ruを含有するものであり、一般にはRuからなり、又はRuを主成分とする層である。
(Laminated Film)
The laminated film has at least an underlayer and a magnetic layer formed on the underlayer. More specifically, the underlayer contains Ru, and is generally made of Ru or is a layer mainly composed of Ru.
 積層膜の各層は、それらの各層に応じた組成及び組織を有する本発明のスパッタリングターゲットを用いて、マグネトロンスパッタリング装置等で成膜することにより形成することがでる。 Each layer of the laminated film can be formed by depositing the film using a magnetron sputtering device or the like, using a sputtering target of the present invention that has a composition and structure appropriate for each layer.
 磁性層は、本発明の一実施形態のスパッタリングターゲットを用いたスパッタリングにより、下地層上に成膜することができる。これにより、所定値以上の飽和磁化を維持しつつ、熱安定性の確保のための磁気異方性Kuの増大と、高分解能化のための磁性粒子の高い磁気的分離性を実現できる。 The magnetic layer can be formed on the underlayer by sputtering using a sputtering target according to one embodiment of the present invention. This allows for an increase in magnetic anisotropy Ku to ensure thermal stability while maintaining a saturation magnetization above a predetermined value, and for high magnetic separation of magnetic particles to achieve high resolution.
 本発明の一実施形態にスパッタリングターゲットを用いたスパッタリングにより形成される磁性層の一例は、Cr、B、Co、及びPtを含む。磁性層は、金属酸化物成分として更にTiO2、SiO2、Cr23、B23、CoO及びCo34からなる群から選択される少なくとも一種の金属酸化物を含有する場合は、例えば、Coは35mol%~60mol%の量で含有すること、Ptを5mol%~30mol%で含有すること、Au、Ag、Cu、Ge、Ir、Mn、Mo、Nb、Ni、Pd、Re、Rh、Ru、Ta、W及びVからなる群から選択される一種以上を、合計5mol%以下の量で含有することがそれぞれ好ましい。ただし、得られる磁性層における各金属成分の分布や組織構造はスパッタリングの条件により異なるため、より具体的な組成を一義的に定義することは技術的に困難である。 An example of the magnetic layer formed by sputtering using a sputtering target according to one embodiment of the present invention includes Cr, B, Co, and Pt. When the magnetic layer further contains at least one metal oxide selected from the group consisting of TiO 2 , SiO 2 , Cr 2 O 3 , B 2 O 3 , CoO, and Co 3 O 4 as a metal oxide component, it is preferable that, for example, Co is contained in an amount of 35 mol% to 60 mol%, Pt is contained in an amount of 5 mol% to 30 mol%, and one or more selected from the group consisting of Au, Ag, Cu, Ge, Ir, Mn, Mo, Nb, Ni, Pd, Re, Rh, Ru, Ta, W, and V are contained in an amount of 5 mol% or less in total. However, since the distribution and organizational structure of each metal component in the obtained magnetic layer differ depending on the sputtering conditions, it is technically difficult to unambiguously define a more specific composition.
 本発明の別の側面では、下地層と、下地層上に磁性層とを有する積層膜の製造方法であって、本発明のスパッタリングターゲットを用いたスパッタリングにより、磁性層を形成することを含む、積層膜の製造方法が提供される。本発明のさらなる別の側面では、積層膜であって、下地層と、下地層上に形成された磁性層とを含み、かつ磁性層が、本発明のスパッタリングターゲットを用いたスパッタリングにより形成される積層膜を提供する。そのため、積層膜の磁性層は、金属成分として、CrBを含み、残部に少なくともCo及びPtを含む。 In another aspect of the present invention, there is provided a method for manufacturing a laminated film having an underlayer and a magnetic layer on the underlayer, the method including forming the magnetic layer by sputtering using a sputtering target of the present invention. In yet another aspect of the present invention, there is provided a laminated film including an underlayer and a magnetic layer formed on the underlayer, the magnetic layer being formed by sputtering using a sputtering target of the present invention. Therefore, the magnetic layer of the laminated film contains CrB as a metal component, with the remainder containing at least Co and Pt.
(磁気記録媒体)
 磁気記録媒体は、上述したような、下地層と、下地層上に形成された磁性層とを有する積層膜を備えるものである。磁気記録媒体は通常、アルミニウムやガラス等の基板上に軟磁性層、下地層、磁性層及び保護層等を順次に形成することにより製造される。したがって、本発明のさらなる別の側面では、基板上に、少なくとも下地層と、下地層上に磁性層とを有する磁気記録媒体の製造方法であって、本発明のスパッタリングターゲットを用いたスパッタリングにより、磁性層を形成することを含む、磁気記録媒体の製造方法が提供される。そのため、磁気記録媒体の磁性層は、金属成分として、CrBを含み、残部に少なくともCo及びPtを含む。本発明のさらなる別の側面では、磁気記録媒体であって、基板上に、少なくとも下地層と、下地層上に形成された磁性層とを含み、かつ磁性層が、本発明のスパッタリングターゲットを用いたスパッタリングにより形成される磁気記録媒体を提供する。なお、前述のように、本発明の一実施形態のスパッタリングターゲットを用いたスパッタリングにより形成される場合、各金属成分の分布や組織構造はスパッタリングの条件により異なるため、一義的に定義することは困難である。
(Magnetic Recording Medium)
The magnetic recording medium is provided with a laminated film having an underlayer and a magnetic layer formed on the underlayer as described above. The magnetic recording medium is usually manufactured by sequentially forming a soft magnetic layer, an underlayer, a magnetic layer, and a protective layer on a substrate such as aluminum or glass. Therefore, in another aspect of the present invention, a method for manufacturing a magnetic recording medium having at least an underlayer on a substrate and a magnetic layer on the underlayer is provided, which includes forming the magnetic layer by sputtering using the sputtering target of the present invention. Therefore, the magnetic layer of the magnetic recording medium contains CrB as a metal component, and at least Co and Pt as a remainder. In another aspect of the present invention, a magnetic recording medium is provided, which includes at least an underlayer on a substrate and a magnetic layer formed on the underlayer, and the magnetic layer is formed by sputtering using the sputtering target of the present invention. As described above, when the magnetic recording medium is formed by sputtering using the sputtering target of one embodiment of the present invention, the distribution and organizational structure of each metal component differ depending on the sputtering conditions, so that it is difficult to define it uniquely.
 次に、上述したスパッタリングターゲットを試作し、その性能を確認したので以下に説明する。但し、ここでの説明は単なる例示を目的としたものであり、それに限定されることを意図するものではない。 Next, we have produced a prototype of the above-mentioned sputtering target and confirmed its performance, which will be explained below. However, the explanation here is merely for illustrative purposes and is not intended to be limiting.
 実施例及び比較例の目標組成として、50Co-5Cr-15Pt-10B-1Ru-2TiO2-2Cr23-15CoO(mol%)のスパッタリングターゲットをそれぞれ作製した。 As the target composition for the examples and comparative examples, sputtering targets of 50Co-5Cr-15Pt-10B-1Ru-2TiO 2 -2Cr 2 O 3 -15CoO (mol %) were prepared.
(比較例)
 原材料粉末として、Co粉末、Pt粉末、Ru粉末、Cr23粉末、TiBO3粉末、Co-B粉末、及びCo225粉末を、上記目標組成に適合するように秤量し、粉砕媒体のチタニアボールとともに容量5リットルのボールミルポットに封入して、10時間回転させて混合した。そして、ボールミルから取り出した混合粉末を直径190mmのカーボン製の円柱状の型に充填し、ホットプレスで焼結させた。ホットプレスの条件は、真空雰囲気、昇温速度300℃/時間、保持温度1000℃、保持時間2時間とし、昇温開始時から保持終了まで30MPaで加圧した。保持終了後はチャンバー内でそのまま自然冷却させた。これにより得られた焼結体を切削し、スパッタリングターゲットとした。
(Comparative Example)
As raw material powders, Co powder, Pt powder, Ru powder, Cr 2 O 3 powder, TiBO 3 powder, Co-B powder, and Co 2 B 2 O 5 powder were weighed to match the above target composition, and were enclosed in a ball mill pot with a capacity of 5 liters together with a titania ball as a grinding medium, and rotated and mixed for 10 hours. The mixed powder taken out from the ball mill was then filled into a carbon cylindrical mold with a diameter of 190 mm, and sintered by hot pressing. The hot pressing conditions were a vacuum atmosphere, a heating rate of 300°C/hour, a holding temperature of 1000°C, and a holding time of 2 hours, and pressure was applied at 30 MPa from the start of heating to the end of holding. After the holding, the powder was naturally cooled in the chamber. The sintered body obtained in this way was cut to form a sputtering target.
(実施例)
 原材料粉末として、Co粉末、Pt粉末、Ru粉末、TiO2粉末、Cr23粉末、CoO粉末、Co-B粉末、及びCrB粉末を、上記目標組成に適合するように秤量し、比較例と同じ条件でスパッタリングターゲットを製造した。なお、Co-B粉末として、粒径77μmのものを使用した。原材料粉末全体におけるCrB粉末の割合は2.87wt%であった。
(Example)
As raw material powders, Co powder, Pt powder, Ru powder, TiO2 powder, Cr2O3 powder, CoO powder, Co-B powder, and CrB powder were weighed to match the above target composition, and a sputtering target was manufactured under the same conditions as the comparative example. Note that the Co-B powder used had a particle size of 77 μm. The proportion of CrB powder in the entire raw material powder was 2.87 wt%.
(XRDによる評価)
 製造したターゲットのXRD測定を、XRD評価装置(Rigaku Ultima IV)を用いて実施した。この測定はJIS K0131:1996に準拠して行うことができ、測定条件は、以下とすることができる。
スパッタリングターゲットの分析箇所:スパッタ面に対して垂直な切断面
X線源:Cu-Kα
管電圧:40kV
管電流:30mA
発散スリット:1°
発散縦制限スリット:10mm
散乱スリット:8mm
受光スリット:開放状態
ゴニオメータ:試料水平型
スキャンスピード:10°/min
スキャンステップ:0.01°
測定範囲:2θ=20°~80°
バックグラウンド除去:フィッティング方式(詳しくは、簡易ピークサーチを行い、ピーク部分を取り除いた後、残りのデータに対して多項式をフィッティングする方式である。バックグラウンド除去は、X線解析ソフトウェア(リガク社製、統合粉末X線解析ソフトウェアPDXL2)に基づいて実施する。)
(Evaluation by XRD)
The XRD measurement of the manufactured target was carried out using an XRD evaluation device (Rigaku Ultima IV). This measurement can be performed in accordance with JIS K0131:1996, and the measurement conditions can be as follows.
Analysis location of sputtering target: Cut surface perpendicular to the sputtering surface X-ray source: Cu-Kα
Tube voltage: 40 kV
Tube current: 30mA
Divergence slit: 1°
Divergence vertical limit slit: 10 mm
Scattering slit: 8 mm
Receiving slit: open state Goniometer: horizontal type for sample Scan speed: 10°/min
Scan step: 0.01°
Measurement range: 2θ = 20° to 80°
Background removal: Fitting method (more specifically, a simple peak search is performed, the peak portion is removed, and then a polynomial is fitted to the remaining data. The background removal is performed based on X-ray analysis software (Rigaku Corporation, Integrated Powder X-ray Analysis Software PDXL2).)
 なお、分析箇所を#2000の耐水研磨紙で研磨し、更に、粒径0.3μmのアルミナ砥粒が分散したスラリーを用いてバフ研磨を行い、上記分析箇所のうち、平坦かつ凹凸の少ない面を測定する。なお、「平坦かつ凹凸の少ない面」とは、厳格な基準ではなく、分析に支障をきたすような凹凸がある場合にはその部分を避けることを意味するに過ぎない。 The analysis area is polished with #2000 waterproof abrasive paper, and then buffed with a slurry containing dispersed alumina abrasive grains with a particle size of 0.3 μm, and the flattest and least uneven surface of the analysis area is measured. Note that "flattest and least uneven surface" is not a strict standard, and simply means that if there are any unevenness that may interfere with the analysis, those areas will be avoided.
 得られたXRDパターンについて、X線解析ソフトウェア(リガク社製、統合粉末X線解析ソフトウェアPDXL2)を用いて解析を行った。その結果、図1に示されるように、実施例ではCrBが検出されたのに対し、比較例ではCrBは検出されなかった。なお、図1のX線パターンは、X線解析ソフトウェアにより、上述のフィッティング方式でバックグラウンドが除去されたデータである。以下、XRD測定結果について詳しく説明する。 The obtained XRD patterns were analyzed using X-ray analysis software (Rigaku Corporation, integrated powder X-ray analysis software PDXL2). As a result, as shown in Figure 1, CrB was detected in the example, whereas CrB was not detected in the comparative example. Note that the X-ray pattern in Figure 1 is data from which the background has been removed using the above-mentioned fitting method using the X-ray analysis software. The XRD measurement results are explained in detail below.
 図1から分かるように、実施例では、2θ=44.94°±1°付近に回折ピークを観察することができた。この観察された回折ピークの位置と、JCPDSカードのNo.01-075-1159のCrBの(111)面の回折ピークの位置のデータとを照らし合わせ、観察されたピークの位置が、JCPDSカードNo.01-075-1159のメインピーク(2θ=44.94°)の位置と対応することが確認できた。すなわち、CrBが検出できたと言える。また、2θ=38.29°±1°付近に回折ピークを観察することができた。この観察された回折ピークの位置と、JCPDSカードのNo.01-075-1159のCrBの(021)面の回折ピークの位置のデータとを照らし合わせ、観察されたピークの位置が、JCPDSカードNo.01-075-1159のピーク(2θ=38.29°)の位置と対応することが確認できた。さらに、2θ=32.32°±1°付近に回折ピークを観察することができた。この観察された回折ピークの位置と、JCPDSカードのNo.01-075-1159のCrBの(110)面の回折ピークの位置のデータとを照らし合わせ、観察されたピークの位置が、JCPDSカードNo.01-075-1159のピーク(2θ=32.32°)の位置と対応することが確認できた。一方、比較例では、2θ=44.94°±1°付近に回折ピークを観察することができなかった。すなわち、CrBを確認することができなかった。さらに、2θ=38.29°±1°付近、2θ=32.32°±1°付近のいずれにも回折ピークが観察されなかった。 As can be seen from Figure 1, in the embodiment, a diffraction peak was observed near 2θ = 44.94° ± 1°. By comparing the position of this observed diffraction peak with the data on the position of the diffraction peak of the (111) plane of CrB on JCPDS card No. 01-075-1159, it was confirmed that the position of the observed peak corresponds to the position of the main peak (2θ = 44.94°) on JCPDS card No. 01-075-1159. In other words, it can be said that CrB was detected. In addition, a diffraction peak was observed near 2θ = 38.29° ± 1°. By comparing the position of this observed diffraction peak with the data on the position of the diffraction peak of the (021) plane of CrB on JCPDS card No. 01-075-1159, it was confirmed that the position of the observed peak corresponds to the position of the main peak (2θ = 44.94°) on JCPDS card No. It was confirmed that the position of the peak (2θ = 38.29°) of No. 01-075-1159 corresponds to that of the peak (2θ = 38.29°). Furthermore, a diffraction peak was observed near 2θ = 32.32° ± 1°. By comparing the position of this observed diffraction peak with the data on the position of the diffraction peak of the (110) plane of CrB of No. 01-075-1159 of the JCPDS card, it was confirmed that the position of the observed peak corresponds to the position of the peak (2θ = 32.32°) of JCPDS card No. 01-075-1159. On the other hand, in the comparative example, a diffraction peak could not be observed near 2θ = 44.94° ± 1°. In other words, CrB could not be confirmed. Furthermore, no diffraction peak was observed near either 2θ = 38.29° ± 1° or 2θ = 32.32° ± 1°.
 また、図1のX線パターンに対して、CrBの(111)面の回折ピーク(2θ=44.94°±1°付近)の最も高い位置の目盛(以下、CrBのピーク強度)、及び、FCCのCo-Ptの(111)面の回折ピーク(2θ=43.06°±1°付近)の最も高い位置の目盛(以下、Co-Ptのピーク強度)をそれぞれ読み取り、CrBのピーク強度をCo-Ptのピーク強度で除算することで、FCCのCo-Ptの(111)面の回折ピークに対するCrBの(111)面の回折ピークのピーク強度比が、0.044と求められた。 Furthermore, for the X-ray pattern in Figure 1, the highest scale mark of the diffraction peak of the (111) plane of CrB (near 2θ = 44.94° ± 1°) (hereafter, CrB peak intensity) and the highest scale mark of the diffraction peak of the (111) plane of FCC Co-Pt (near 2θ = 43.06° ± 1°) (hereafter, Co-Pt peak intensity) were read, and by dividing the CrB peak intensity by the Co-Pt peak intensity, the peak intensity ratio of the diffraction peak of the (111) plane of CrB to the diffraction peak of the (111) plane of FCC Co-Pt was found to be 0.044.
(磁気異方性Kuの評価)
 次に、マグネトロンスパッタリング装置(キヤノンアネルバ(株)製C-3010)によりガラス基板上にCr-Ti(6nm)、Ni-W(5nm)、Ru(20nm)をこの順序で成膜したものに、上述した各スパッタリングターゲットをAr5.0Pa雰囲気下にて300Wでスパッタリングして膜厚が11nmの各磁性膜を成膜した後、磁性膜の酸化を防ぐため保護膜としてRu(3nm)成膜して、各層を形成した。
(Evaluation of magnetic anisotropy Ku)
Next, a magnetron sputtering device (C-3010 manufactured by Canon Anelva Corporation) was used to deposit films of Cr-Ti (6 nm), Ni-W (5 nm), and Ru (20 nm) in that order on a glass substrate, and each of the sputtering targets described above was sputtered at 300 W in an Ar 5.0 Pa atmosphere to deposit magnetic films with a thickness of 11 nm. After that, a Ru (3 nm) was deposited as a protective film to prevent oxidation of the magnetic film, thereby forming each layer.
 得られた磁性膜について、ネオアーク社製のKerr測定装置を使用して、磁気異方性Kuを測定した。測定条件として最大印加磁界を20kOe、スイープ時間を20秒とした。 The magnetic anisotropy Ku of the obtained magnetic film was measured using a Kerr measuring device manufactured by NeoArc. The measurement conditions were a maximum applied magnetic field of 20 kOe and a sweep time of 20 seconds.
(磁気クラスターサイズDn及び飽和磁化Msの評価)
 上記成膜操作により得られた磁性膜について、玉川製作所製の振動試料型磁力計を使用して、磁気クラスターサイズDn及び飽和磁化Msを測定した。測定条件はいずれも最大印加磁界を22kOeとした。
 Dnの算出方法として具体的には、まず、反磁界係数Ndを下記式で求めた。
反磁界係数Nd=Hd/(4πMs)
 そして、求められたNdと試料の磁性膜の膜厚tを用いて磁気クラスターサイズDnを下記式で求めた。
磁気クラスターサイズDn=t×(1-Nd21/2/Nd
(Evaluation of magnetic cluster size Dn and saturation magnetization Ms)
The magnetic cluster size Dn and saturation magnetization Ms of the magnetic film obtained by the above film formation operation were measured using a vibrating sample magnetometer manufactured by Tamagawa Seisakusho Co., Ltd. The measurement conditions were a maximum applied magnetic field of 22 kOe in each case.
Specifically, as a method for calculating Dn, first, the demagnetizing field factor Nd was calculated by the following formula.
Demagnetizing factor Nd=Hd/(4πMs)
Then, the magnetic cluster size Dn was calculated using the calculated Nd and the thickness t of the magnetic film of the sample according to the following formula.
Magnetic cluster size Dn = t x (1 - Nd 2 ) 1/2 /Nd
(考察)
 比較例及び実施例において測定された磁気異方性Ku、磁気クラスターサイズDn及び飽和磁化Msの測定結果をそれぞれ図2、図3及び図4に示す。なお、図2、図3、及び図4の横軸は、マグネトロンスパッタリング装置のチャンバーに対するArとO2の供給量である。チャンバーとは、スパッタリングターゲットを用いてスパッタされる収容部のことである。この供給量は、マグネトロンスパッタリング装置の設定値であるが、実測値と同視できると思われる。横軸の供給量は、ArとO2の合計値を意味する。Kuが大きいと磁気異方性が高いことを意味する。また、一定値以上のMsの値を示しながら、Dnが小さいと磁気的分離性が良いことを意味する。図2、図3及び図4から分かるように、同じ組成のスパッタリングターゲットであっても、金属成分としてのCrBが存在する場合、得られる磁性膜のKuが大きい。さらに、金属成分としてのCrBが存在する場合、一定値以上のMsを示しながらDnが小さくなっている。すなわち、磁性粒子間の分離性が良くなっている。
(Discussion)
The results of measuring the magnetic anisotropy Ku, magnetic cluster size Dn, and saturation magnetization Ms measured in the comparative example and the example are shown in Figs. 2, 3, and 4, respectively. The horizontal axis in Figs. 2, 3, and 4 indicates the supply amount of Ar and O2 to the chamber of the magnetron sputtering device. The chamber is a container in which sputtering is performed using a sputtering target. This supply amount is a set value of the magnetron sputtering device, but it is considered to be equivalent to the actual measured value. The supply amount on the horizontal axis means the total value of Ar and O2 . A large Ku means high magnetic anisotropy. Furthermore, a small Dn while showing a value of Ms of a certain value or more means good magnetic separation. As can be seen from Figs. 2, 3, and 4, even with sputtering targets of the same composition, when CrB is present as a metal component, the Ku of the magnetic film obtained is large. Furthermore, when CrB is present as a metal component, Dn is small while showing a value of Ms of a certain value or more. That is, the separation between magnetic particles is improved.

Claims (14)

  1.  金属成分として、CrBを含み、残部に少なくともCo及びPtを含んでなるスパッタリングターゲット。 A sputtering target containing CrB as a metal component, with the remainder containing at least Co and Pt.
  2.  X線回折装置を用いて測定したとき、2θ=44.94°±1°に回折ピークが観察される、請求項1に記載のスパッタリングターゲット。 The sputtering target of claim 1, in which a diffraction peak is observed at 2θ = 44.94° ± 1° when measured using an X-ray diffraction device.
  3.  前記X線回折装置の分析条件が以下(1)~(15)である、請求項2に記載のスパッタリングターゲット:
    (1)スパッタリングターゲットの分析箇所は、スパッタ面に対して垂直な切断面である。
    (2)X線源としてCu-Kαを用いる。
    (3)管電圧が40kVである。
    (4)管電流が30mAである。
    (5)発散スリットは1°である。
    (6)発散縦制限スリットは10mmである。
    (7)散乱スリットは8mmである。
    (8)受光スリットは開放状態である。
    (9)ゴニオメータは試料水平型を用いる。
    (10)スキャンスピードは10°/minである。
    (11)スキャンステップは0.01°である。
    (12)測定範囲は2θ=20°~80°である。
    (13)バックグラウンド除去としてフィッティング方式を用いる。
    (14)前記分析箇所は、#2000の耐水研磨紙で研磨し、更に、粒径0.3μmのアルミナ砥粒が分散したスラリーを用いてバフ研磨されている。
    (15)前記分析箇所のうち、平坦かつ凹凸の少ない面を測定する。
    The sputtering target according to claim 2, wherein the analysis conditions of the X-ray diffraction apparatus are the following (1) to (15):
    (1) The analysis area of the sputtering target is a cut surface perpendicular to the sputtering surface.
    (2) Cu-Kα is used as the X-ray source.
    (3) The tube voltage is 40 kV.
    (4) The tube current is 30 mA.
    (5) The divergence slit is 1°.
    (6) The vertical divergence limiting slit is 10 mm.
    (7) The scattering slit is 8 mm.
    (8) The receiving slit is in the open state.
    (9) Use a horizontal-sample goniometer.
    (10) The scan speed is 10°/min.
    (11) The scan step is 0.01°.
    (12) The measurement range is 2θ = 20° to 80°.
    (13) A fitting method is used for background removal.
    (14) The analysis area is polished with #2000 waterproof abrasive paper and further buffed with a slurry in which alumina abrasive grains having a particle size of 0.3 μm are dispersed.
    (15) Of the analysis areas, a flat surface with minimal irregularities is measured.
  4.  X線回折装置を用いて測定したとき、2θ=44.94°±1°の回折ピークと2θ=43.06°±1°の回折ピークの強度比が0.01以上である、請求項1又は2に記載のスパッタリングターゲット。 The sputtering target according to claim 1 or 2, in which the intensity ratio of the diffraction peak at 2θ = 44.94° ± 1° to the diffraction peak at 2θ = 43.06° ± 1° is 0.01 or more when measured using an X-ray diffraction device.
  5.  前記X線回折装置の分析条件が以下(1)~(15)であり、回折ピークの強度比は、以下(手順1)及び(手順2)で計算される、請求項4に記載のスパッタリングターゲット:
    (1)スパッタリングターゲットの分析箇所は、スパッタ面に対して垂直な切断面である。
    (2)X線源としてCu-Kαを用いる。
    (3)管電圧が40kVである。
    (4)管電流が30mAである。
    (5)発散スリットは1°である。
    (6)発散縦制限スリットは10mmである。
    (7)散乱スリットは8mmである。
    (8)受光スリットは開放状態である。
    (9)ゴニオメータは試料水平型を用いる。
    (10)スキャンスピードは10°/minである。
    (11)スキャンステップは0.01°である。
    (12)測定範囲は2θ=20°~80°である。
    (13)バックグラウンド除去としてフィッティング方式を用いる。
    (14)前記分析箇所は、#2000の耐水研磨紙で研磨し、更に、粒径0.3μmのアルミナ砥粒が分散したスラリーを用いてバフ研磨されている。
    (15)前記分析箇所のうち、平坦かつ凹凸の少ない面を測定する。
    (手順1)バックグラウンドを除去することで得られたデータにおいて、2θ=44.94°±1°の回折ピークの最も高い位置の目盛、及び、2θ=43.06°±1°の回折ピークの最も高い位置の目盛をピーク強度としてそれぞれ読み取る。
    (手順2)2θ=44.94°±1°のピーク強度を2θ=43.06°±1°のピーク強度で除算する。
    The sputtering target according to claim 4, wherein the analysis conditions of the X-ray diffraction apparatus are the following (1) to (15), and the intensity ratio of the diffraction peaks is calculated by the following (step 1) and (step 2):
    (1) The analysis area of the sputtering target is a cut surface perpendicular to the sputtering surface.
    (2) Cu-Kα is used as the X-ray source.
    (3) The tube voltage is 40 kV.
    (4) The tube current is 30 mA.
    (5) The divergence slit is 1°.
    (6) The vertical divergence limiting slit is 10 mm.
    (7) The scattering slit is 8 mm.
    (8) The receiving slit is in the open state.
    (9) Use a horizontal-sample goniometer.
    (10) The scan speed is 10°/min.
    (11) The scan step is 0.01°.
    (12) The measurement range is 2θ = 20° to 80°.
    (13) A fitting method is used for background removal.
    (14) The analysis area is polished with #2000 waterproof abrasive paper and further buffed with a slurry in which alumina abrasive grains having a particle size of 0.3 μm are dispersed.
    (15) Of the analysis areas, a flat surface with minimal irregularities is measured.
    (Step 1) In the data obtained by removing the background, the scale marking at the highest position of the diffraction peak at 2θ = 44.94° ± 1° and the scale marking at the highest position of the diffraction peak at 2θ = 43.06° ± 1° are read as peak intensities, respectively.
    (Step 2) Divide the peak intensity at 2θ=44.94°±1° by the peak intensity at 2θ=43.06°±1°.
  6.  Coを35mol%~60mol%含有する、請求項1又は2に記載のスパッタリングターゲット。 The sputtering target according to claim 1 or 2, containing 35 mol% to 60 mol% Co.
  7.  Ptを5mol%~30mol%含有する、請求項1又は2に記載のスパッタリングターゲット。 The sputtering target according to claim 1 or 2, containing 5 mol% to 30 mol% Pt.
  8.  さらに、Au、Ag、Cu、Ge、Ir、Mn、Mo、Nb、Ni、Pd、Re、Rh、Ru、Ta、W及びVからなる群から選択される一種以上を、合計5mol%以下の量で含有する、請求項1に記載のスパッタリングターゲット。 The sputtering target of claim 1 further contains one or more elements selected from the group consisting of Au, Ag, Cu, Ge, Ir, Mn, Mo, Nb, Ni, Pd, Re, Rh, Ru, Ta, W, and V in a total amount of 5 mol% or less.
  9.  スパッタリングターゲットの製造方法であって、CrB粉末、Co粉末、及びPt粉末を含む原料粉末を加圧焼結することを含む、方法。 A method for manufacturing a sputtering target, comprising pressure sintering raw material powders including CrB powder, Co powder, and Pt powder.
  10.  前記CrB粉末の量は、スパッタリングターゲットの原材料の全質量に対して、2wt%~7wt%である、請求項9に記載の方法。 The method according to claim 9, wherein the amount of the CrB powder is 2 wt% to 7 wt% based on the total mass of the raw materials of the sputtering target.
  11.  下地層と、前記下地層上に形成された磁性層とを含む積層膜であって、
     前記磁性層は、金属成分として、CrBを含み、残部に少なくともCo及びPtを含む、積層膜。
    A laminated film including an underlayer and a magnetic layer formed on the underlayer,
    The magnetic layer is a laminated film containing, as a metal component, CrB, with the remainder containing at least Co and Pt.
  12.  下地層上に、請求項1又は2に記載のスパッタリングターゲットを用いたスパッタリングにより磁性層を形成する工程を含む、積層膜の製造方法。 A method for manufacturing a laminated film, comprising the step of forming a magnetic layer on an underlayer by sputtering using the sputtering target according to claim 1 or 2.
  13.  磁気記録媒体であって、基板上に、少なくとも下地層と、前記下地層上に形成された磁性層とを含み、前記磁性層は、金属成分として、CrBを含み、残部に少なくともCo及びPtを含む、磁気記録媒体。 A magnetic recording medium comprising at least an underlayer on a substrate and a magnetic layer formed on the underlayer, the magnetic layer containing CrB as a metal component, and the remainder containing at least Co and Pt.
  14.  基板上に、少なくとも下地層と、前記下地層上に形成された磁性層とを含む磁気記録媒体の製造方法であって、
     前記下地層上に、請求項1又は2に記載のスパッタリングターゲットを用いたスパッタリングにより前記磁性層を形成する工程を含む、磁気記録媒体の製造方法。
    A method for manufacturing a magnetic recording medium including at least an underlayer on a substrate and a magnetic layer formed on the underlayer, the method comprising the steps of:
    A method for producing a magnetic recording medium, comprising the step of forming the magnetic layer on the underlayer by sputtering using the sputtering target according to claim 1 or 2.
PCT/JP2024/000196 2023-04-13 2024-01-09 Sputtering target, method for producing sputtering target, layered film, method for producing layered film, magnetic recording medium, and method for producing magnetic recording medium WO2024214353A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2023-065881 2023-04-13
JP2023065881 2023-04-13

Publications (1)

Publication Number Publication Date
WO2024214353A1 true WO2024214353A1 (en) 2024-10-17

Family

ID=93059176

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2024/000196 WO2024214353A1 (en) 2023-04-13 2024-01-09 Sputtering target, method for producing sputtering target, layered film, method for producing layered film, magnetic recording medium, and method for producing magnetic recording medium

Country Status (1)

Country Link
WO (1) WO2024214353A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005336611A (en) * 2004-04-27 2005-12-08 Hitachi Metals Ltd Cr ALLOY TARGET MATERIAL AND ITS PRODUCTION METHOD
JP2006144124A (en) * 2001-04-11 2006-06-08 Heraeus Inc Method for fabricating precious metal magnetic sputtering target and precious metal magnetic sputtering target fabricated by using the method
JP2011174174A (en) * 2010-01-26 2011-09-08 Mitsubishi Materials Corp Sputtering target for forming magnetic recording medium film, and method for producing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006144124A (en) * 2001-04-11 2006-06-08 Heraeus Inc Method for fabricating precious metal magnetic sputtering target and precious metal magnetic sputtering target fabricated by using the method
JP2005336611A (en) * 2004-04-27 2005-12-08 Hitachi Metals Ltd Cr ALLOY TARGET MATERIAL AND ITS PRODUCTION METHOD
JP2011174174A (en) * 2010-01-26 2011-09-08 Mitsubishi Materials Corp Sputtering target for forming magnetic recording medium film, and method for producing the same

Similar Documents

Publication Publication Date Title
JP6526837B2 (en) Ferromagnetic sputtering target
EP1720156B1 (en) Manufacturing of magnetic recording medium
US9761422B2 (en) Magnetic material sputtering target and manufacturing method for same
CN1479276B (en) Vertical magnetic recording medium
EP1783748A1 (en) Deposition of enhanced seed layer using tantalum alloy based sputter target
JP6692724B2 (en) Non-magnetic material dispersed Fe-Pt based sputtering target
JP2023144067A (en) Sputtering target, granular film, and vertical magnetic recording medium
TWI608113B (en) Sputtering target
JP7513667B2 (en) Sputtering target, method for manufacturing laminated film, and method for manufacturing magnetic recording medium
WO2024214353A1 (en) Sputtering target, method for producing sputtering target, layered film, method for producing layered film, magnetic recording medium, and method for producing magnetic recording medium
CN108699678B (en) Sputtering target for magnetic recording medium and magnetic thin film
US20100143749A1 (en) Substrate material for magnetic head and method for manufacturing the same
TWI593810B (en) Sputtering target
CN108699677B (en) Sputtering target for magnetic recording medium and magnetic thin film
JP7076555B2 (en) Sputtering target, magnetic film and vertical magnetic recording medium
JP7554192B2 (en) Sputtering target member for forming non-magnetic layer
WO2024053176A1 (en) Sputtering target, method for producing multilayer film, multilayer film and magnetic recording medium
JPH06248445A (en) Sputtering target and magnetic thin film and thin-film magnetic head formed by using the same
TW202120720A (en) Sputtering target for magnetic recording medium
US12091743B2 (en) Sputtering target, manufacturing method therefor, and manufacturing method for magnetic recording medium
CN111886359A (en) Sputtering target
JP6876115B2 (en) Co-Pt-Re based sputtering target, its manufacturing method and magnetic recording layer
JP2019116682A (en) Ruthenium/rhenium-containing sputtering target, ruthenium/rhenium-containing layer, and manufacturing method therefor
US11821076B2 (en) Sputtering target, magnetic film and method for producing magnetic film
TW202325873A (en) Sputtering target member, sputtering target assembly, and film forming method