[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2024210303A1 - 양극 활물질과 그 제조 방법, 전고체 이차 전지용 양극 및 전고체 이차 전지 - Google Patents

양극 활물질과 그 제조 방법, 전고체 이차 전지용 양극 및 전고체 이차 전지 Download PDF

Info

Publication number
WO2024210303A1
WO2024210303A1 PCT/KR2024/000419 KR2024000419W WO2024210303A1 WO 2024210303 A1 WO2024210303 A1 WO 2024210303A1 KR 2024000419 W KR2024000419 W KR 2024000419W WO 2024210303 A1 WO2024210303 A1 WO 2024210303A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
lithium
particles
positive electrode
cathode active
Prior art date
Application number
PCT/KR2024/000419
Other languages
English (en)
French (fr)
Inventor
김주윤
민명기
황수민
박슬찬
김진우
유호선
Original Assignee
삼성에스디아이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성에스디아이 주식회사 filed Critical 삼성에스디아이 주식회사
Publication of WO2024210303A1 publication Critical patent/WO2024210303A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a cathode active material and a method for manufacturing the same, a cathode for an all-solid-state secondary battery, and an all-solid-state secondary battery.
  • solid electrolytes have problems such as lower ion conductivity than liquid electrolytes, resistance occurs at the interface with solid particles such as positive electrode active materials in the battery, and a depletion layer is formed by the bonding of solids, which reduces ion conductivity.
  • the cathode for an all-solid-state secondary battery is composed of inorganic materials such as cathode active material, solid electrolyte, and conductive material.
  • inorganic materials such as cathode active material, solid electrolyte, and conductive material.
  • the movement of lithium ions at the contact point between the solid particles of the cathode active material and the solid electrolyte has a major impact on the battery performance.
  • the volume change of the cathode active material that occurs during the charge/discharge process limits the physical bonding between the cathode active material and the solid electrolyte, and to overcome this, research is continuously being conducted to improve the contact between the particles.
  • a cathode active material which comprises a cathode active material particle including a lithium transition metal composite oxide, and a coating layer positioned on a surface of the cathode active material particle, wherein the coating layer comprises an organic material and a lithium salt, and the organic material comprises a (meth)acrylate containing an alkylene glycol unit, an ether containing an alkylene glycol unit, or a combination thereof.
  • a method for producing a cathode active material comprising: preparing a composite by mixing an organic material and a lithium salt, mixing the composite with cathode active material particles including a lithium transition metal composite oxide, and drying the composite to coat the surface of the cathode active material particles with the composite, wherein the organic material comprises a (meth)acrylate containing an alkylene glycol unit, an ether containing an alkylene glycol unit, or a combination thereof.
  • a positive electrode for an all-solid-state secondary battery comprising the positive electrode active material and a sulfide-based solid electrolyte.
  • an all-solid-state secondary battery comprising the aforementioned positive electrode, negative electrode, and a solid electrolyte layer positioned between the positive electrode and negative electrode.
  • a cathode active material is a material having an organic substance and a lithium salt coated on the surface, which improves the interfacial adhesive strength between the cathode active material and the solid electrolyte, thereby facilitating the movement of lithium ions, effectively preventing degradation of battery performance due to volume change of the cathode active material according to charge and discharge, and improving the overall performance of the all-solid-state secondary battery, such as capacity characteristics and life characteristics.
  • Figures 1 and 2 are cross-sectional views schematically illustrating an all-solid-state secondary battery according to one embodiment.
  • Figure 3 is a graph showing the discharge capacity according to the number of cycles for the all-solid-state secondary batteries of Example 1 and Comparative Examples 1 and 2.
  • Figure 4 is a graph showing the capacity retention rate according to the number of cycles for the all-solid-state secondary batteries of Example 1 and Comparative Examples 1 and 2.
  • the term “layer” here includes not only the shape formed on the entire surface when observed in a flat surface, but also the shape formed on a portion of the surface.
  • the average particle size can also be measured by methods well known to those skilled in the art, for example, by measuring with a particle size analyzer, or by measuring with a transmission electron microscope photograph or a scanning electron microscope photograph. Alternatively, the average particle size can be obtained by measuring using a dynamic light scattering method, performing data analysis to count the number of particles for each particle size range, and calculating from the counted number.
  • the average particle size can be measured with a microscope image or a particle size analyzer, and can mean the diameter of particles having a cumulative volume of 50% by volume (D50) in the particle size distribution.
  • a cathode active material which comprises a cathode active material particle including a lithium transition metal composite oxide, and a coating layer positioned on a surface of the cathode active material particle, wherein the coating layer comprises an organic material and a lithium salt, and the organic material comprises a (meth)acrylate containing an alkylene glycol unit, an ether containing an alkylene glycol unit, or a combination thereof.
  • the above-mentioned positive electrode active material has excellent adhesion to the solid electrolyte since a specific organic substance and a lithium salt are coated on the surface, and even if the volume of the positive electrode active material changes depending on charge and discharge, stable contact between solid particles within the positive electrode is secured, and accordingly, the movement of lithium ions is facilitated for a long cycle, so that the overall performance of the all-solid-state secondary battery can be improved.
  • the coated positive electrode active material according to one embodiment is applied to the positive electrode, the adhesion between solid particles is higher and the movement of lithium ions is further promoted compared to a case where the same organic substance and lithium salt are simply dispersed in the positive electrode, so that the life stability of the all-solid-state battery can be further improved.
  • the organic material may be an acrylate or ether containing an alkylene glycol unit, and such an organic material has low reactivity with a sulfide-based solid electrolyte, excellent oxidation resistance, and can implement high adhesion.
  • PEG polyethylene glycol
  • a general acrylic binder that does not contain an alkylene glycol unit has low oxidation resistance, and thus the binder itself may be decomposed in an all-solid-state battery manufactured under high temperature and high pressure conditions, and thus may not be suitable.
  • the alkylene glycol may be, but is not limited to, ethylene glycol, propylene glycol, or neopentyl glycol, for example, and may be, for example, ethylene glycol.
  • the number of alkylene glycol units in the organic material may be 1 to 200, for example, 1 to 5, or 20 to 200.
  • the number of (meth)acrylate groups in the (meth)acrylate containing the alkylene glycol unit may be 1 to 4, for example, 1 or 2.
  • the number of ether groups in the ether containing the alkylene glycol unit may be 1 to 4, for example, 1 or 2.
  • the ether groups may be chain-like or cyclic.
  • the organic material may include only an acrylate group, only an ether group, or both an acrylate group and an ether group.
  • the (meth)acrylate containing the above alkylene glycol unit, the ether containing the alkylene glycol unit, or the combination thereof may include the following compounds.
  • the organic material may include, among these, for example, poly(ethylene glycol) diacrylate (PEGDA), poly(ethylene glycol) monoacrylate (PEGMA), poly(ethylene glycol) methyl ether methacrylate (PEGDMA), poly(ethylene glycol) dimethyl ether (PEGDME; polyglime), or a combination thereof, and these have low reactivity with a sulfide-based solid electrolyte, high oxidation resistance, and high adhesive strength, making them suitable for application as a coating component of a cathode active material for an all-solid-state secondary battery.
  • PEGDA poly(ethylene glycol) diacrylate
  • PEGMA poly(ethylene glycol) monoacrylate
  • PEGDMA poly(ethylene glycol) methyl ether methacrylate
  • PEGDME poly(ethylene glycol) dimethyl ether
  • polyglime polyglime
  • the above organic substances i.e., (meth)acrylate containing alkylene glycol units and ether containing alkylene glycol units, may each independently have a number average molecular weight of 200 g/mol to 2,000 g/mol. Their number average molecular weights may be, for example, 250 g/mol to 1,500 g/mol, or 300 g/mol to 1,200 g/mol.
  • a thin coating layer can be formed while implementing excellent adhesive strength.
  • the organic matter and lithium salt may form a kind of complex.
  • the organic material may be included in an amount of 20 to 90 wt%, and the lithium salt may be included in an amount of 10 to 80 wt%, based on a total of 100 wt% of the organic material and the lithium salt.
  • the coating layer can improve performance, such as life stability, of the all-solid-state secondary battery by implementing appropriate adhesive strength and facilitating the movement of lithium ions.
  • the weight ratio of the organic material to the lithium salt in the coating layer may be 2:8 to 9:1, and may be, for example, 2:8 to 8:2, 3:7 to 7:3, or 2:8 to 6:4.
  • the total content of the organic material and the lithium salt may be 0.1 to 10 parts by weight based on 100 parts by weight of the positive electrode active material particles, for example, 0.1 to 8 parts by weight, 0.1 to 6 parts by weight, 0.1 to 5 parts by weight, 0.5 to 4 parts by weight, or 1 to 3 parts by weight.
  • the organic material may be included in an amount of 0.05 wt% to 5 wt% based on 100 wt% of the positive electrode active material, for example, 0.05 wt% to 4 wt%, 0.1 wt% to 3 wt%, or 0.5 wt% to 2 wt%.
  • the lithium salt may be included in an amount of 0.05 wt% to 5 wt% based on 100 wt% of the positive electrode active material, for example, 0.05 wt% to 4 wt%, 0.1 wt% to 3 wt%, or 0.5 wt% to 2 wt%.
  • the above lithium salt may be applied without limitation on type, and may include, for example, LiPF 6 , LiBF 4 , LiSbF 6 , LiAsF 6 , LiClO 4 , LiAlO 2 , LiAlCl 4 , LiPO 2 F 2 , LiCl, LiI, LiSCN, LiN(CN) 2 , lithium bis(oxalato)borate (LiBOB), lithium difluoro(oxalato)borate (LiDFOB), lithium difluorobis(oxalato)phosphate (LiDFBP), lithium bis(trifluoromethanesulfonyl)imide (LiTFSI), lithium bis(fluorosulfonyl)imide (LiFSI), lithium bis(pentafluoroethanesulfonyl)imide (LiBETI), lithium trifluoromethane sulfonate, lithium tetrafluoroethane sulfonate, or
  • the lithium salt may be an imide-based lithium salt such as LiTFSI, LiFSI, LiBETI, or a combination thereof, which may facilitate the movement of lithium ions on the surface of the positive electrode active material.
  • the above coating layer may exist in the form of an island or a continuous film on the surface of the positive electrode active material particle.
  • the coating layer is composed of an organic material and a lithium salt, it can be formed with a very thin thickness, thereby increasing adhesion and facilitating lithium ions without increasing resistance within the battery.
  • the thickness of the coating layer can be 1 nm to 50 nm, and for example, 1 nm to 40 nm, 1 nm to 30 nm, 1 nm to 20 nm, 1 nm to 10 nm, or 2 nm to 10 nm.
  • the cathode active material particles including the above lithium transition metal composite oxide correspond to a kind of core, and commonly used cathode active material particles can be applied without limitation.
  • the above lithium transition metal composite oxide may be, for example, lithium cobalt oxide (LCO), lithium nickel oxide (LNO), lithium nickel cobalt oxide (NC), lithium nickel cobalt aluminum oxide (NCA), lithium nickel cobalt manganese oxide (NCM), lithium nickel manganese oxide (NM), lithium manganese oxide (LMO), or lithium iron phosphate (LFP).
  • LCO lithium cobalt oxide
  • LNO lithium nickel oxide
  • NC lithium nickel cobalt oxide
  • NCA lithium nickel cobalt aluminum oxide
  • NCM lithium nickel cobalt manganese oxide
  • NM lithium nickel manganese oxide
  • LMO lithium manganese oxide
  • LFP lithium iron phosphate
  • the above lithium transition metal composite oxide may be, for example, a lithium nickel-based oxide represented by the following chemical formula 1, a lithium cobalt-based oxide represented by the following chemical formula 2, a lithium iron phosphate-based compound represented by the following chemical formula 3, or a cobalt-free lithium nickel-manganese-based oxide represented by the following chemical formula 4.
  • M 1 and M 2 are each independently one or more elements selected from the group consisting of Al, B, Ba, Ca, Ce, Co, Cr, Cu, Fe, Mg, Mn, Mo, Nb, Si, Sn, Sr, Ti, V, W, Zn, and Zr,
  • X is one or more elements selected from the group consisting of F, P, and S,
  • M 3 is at least one element selected from the group consisting of Al, B, Ba, Ca, Ce, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Se, Si, Sn, Sr, Ti, V, W, Y, Zn, and Zr
  • X is at least one element selected from the group consisting of F, P, and S
  • M 4 is at least one element selected from the group consisting of Al, B, Ba, Ca, Ce, Co, Cr, Cu, Mg, Mn, Mo, Ni, Se, Si, Sn, Sr, Ti, V, W, Y, Zn, and Zr
  • X is at least one element selected from the group consisting of F, P, and S
  • M 5 is at least one element selected from the group consisting of Al, B, Ba, Ca, Ce, Cr, Fe, Mg, Mo, Nb, Si, Sn, Sr, Ti, V, W, and Zr
  • X is at least one element selected from the group consisting of F, P, and S.
  • the above lithium transition metal composite oxide may be a lithium nickel-based oxide represented by the above chemical formula 1, and may be, for example, a high nickel-based oxide. That is, the nickel content with respect to 100 mol% of the metal excluding lithium in the lithium transition metal composite oxide may be 80 mol% or more, or 90 mol% or more, or 91 mol% or more, or 94 mol% or more.
  • 0.8 ⁇ x1 ⁇ 1, 0 ⁇ y1 ⁇ 0.2, and 0 ⁇ z1 ⁇ 0.2 may be satisfied, or 0.9 ⁇ x1 ⁇ 1, 0 ⁇ y1 ⁇ 0.1, and 0 ⁇ z1 ⁇ 0.1.
  • High-nickel oxides can implement high capacity, and are therefore suitable for application to high-capacity, high-density all-solid-state secondary batteries that have recently been in demand.
  • a cathode active material including a high-nickel oxide has a large volume change of about 8% depending on charge and discharge, it is difficult to maintain long-term contact with a solid electrolyte.
  • introducing a coating layer according to one embodiment it is possible to implement long-term adhesion between solid particles while facilitating the movement of lithium ions.
  • the average particle diameter (D50) of the positive active material particles may be 1 ⁇ m to 25 ⁇ m, for example, 2 ⁇ m to 20 ⁇ m, or 3 ⁇ m to 18 ⁇ m.
  • the positive active material particles may include small particles having an average particle diameter (D50) of 1 ⁇ m to 9 ⁇ m and large particles having an average particle diameter (D50) of 10 ⁇ m to 20 ⁇ m.
  • the small particles may be included in an amount of 5 wt% to 40 wt% and the large particles may be included in an amount of 60 wt% to 95 wt% with respect to a total of 100 wt% of the small particles and the large particles, for example, the small particles may be included in an amount of 10 wt% to 30 wt% and the large particles may be included in an amount of 70 wt% to 90 wt%.
  • the positive active material particles are formed by mixing the small particles and the large particles, a high energy density battery can be implemented.
  • the average particle size may be obtained by randomly measuring the size (diameter or length of the major axis) of about 20 particles in an electron microscope photograph such as a scanning electron microscope to obtain a particle size distribution, and taking the diameter (D50) of the particles having a cumulative volume of 50% by volume in the particle size distribution as the average particle size.
  • the above-mentioned positive electrode active material particles may be in the form of secondary particles formed by agglomeration of multiple primary particles, in the form of single particles, or in the form of a mixture of these.
  • both elementary particles and macromolecules can be secondary particles in the form of aggregated multiple primary particles, and these secondary particles can be said to be a type of polycrystal form.
  • the elementary particles can be single particle forms
  • the macromolecules can be secondary particles in the form of aggregated multiple primary particles.
  • a single particle means that it exists alone without a grain boundary within the particle and is composed of a single particle, and morphologically, it can mean a single particle, a monolithic structure, a single-body structure, or a non-aggregated particle in which the particles exist as an independent phase without being mutually aggregated, and can be, for example, a single crystal.
  • the positive electrode active material may further include a buffer layer between the positive electrode active material particles and the coating layer.
  • the buffer layer may lower the interfacial resistance between the positive electrode active material particles or between the positive electrode active material and the solid electrolyte particles, and may improve the initial charge/discharge efficiency and life characteristics of the battery.
  • the above buffer layer may include a lithium compound and a metal oxide.
  • the lithium compound means a compound containing lithium
  • the metal oxide means an oxide containing a metal other than lithium.
  • the metal is a concept including general metals, transition metals, and metalloids.
  • the metal may be at least one element selected from the group consisting of Al, B, Ca, Ce, Cr, Fe, Mg, Mo, Nb, Si, Sn, Sr, Ta, V, W, and Zr, for example.
  • the lithium compound may be, for example, a carbonate, a hydroxide, an oxide, etc. containing lithium, and may be, for example, Li 2 CO 3 , LiOH, or a combination thereof.
  • the above buffer layer is excellent in lowering the interfacial resistance between the positive electrode active material and the solid electrolyte particles while improving the performance of the positive electrode active material by facilitating the movement of lithium ions and electron conduction.
  • the buffer layer may be amorphous. That is, the lithium compound and the metal oxide in the buffer layer may be amorphous.
  • the amorphous compound is formed as a buffer layer on the surface of the positive electrode active material, the interfacial resistance between the positive electrode active material and the solid electrolyte particles can be lowered without impairing the performance of the positive electrode active material, thereby improving the capacity characteristics and life characteristics of the all-solid-state secondary battery.
  • the thickness of the buffer layer may be approximately 1 nm to 20 nm, for example 2 nm to 15 nm, or 5 nm to 10 nm.
  • the buffer layer is formed with such a very thin thickness that it can effectively reduce the interfacial resistance between solid particles without impairing the performance of the positive electrode active material.
  • a method for producing a cathode active material comprising: mixing an organic material and a lithium salt to produce a composite; mixing the composite with cathode active material particles including a lithium transition metal composite oxide; and drying the composite to coat the surface of the cathode active material particles with the composite, wherein the organic material comprises a (meth)acrylate containing an alkylene glycol unit, an ether containing an alkylene glycol unit, or a combination thereof.
  • the coated cathode active material described above can be produced using this method.
  • the organic material may be mixed in an amount of 0.05 to 5 parts by weight with respect to 100 parts by weight of the positive electrode active material particles, for example, 0.05 to 4 parts by weight, 0.1 to 3 parts by weight, or 0.5 to 2 parts by weight.
  • the lithium salt may be mixed in an amount of 0.05 parts by weight to 5 parts by weight per 100 parts by weight of the positive electrode active material particles, for example, 0.05 parts by weight to 4 parts by weight, 0.1 parts by weight to 3 parts by weight, or 0.5 parts by weight to 2 parts by weight.
  • the weight ratio of the organic material and the lithium salt may be from 2:8 to 9:1, for example, from 2:8 to 8:2, from 3:7 to 7:3, or from 2:8 to 6:4.
  • the drying may be performed at a temperature range of from 60° C. to 150° C. and for from 1 hour to 48 hours.
  • the coating process according to one embodiment may be a wet coating method or a solid coating method.
  • coating may be performed by dissolving the organic material and the lithium salt in a solvent, adding the positive electrode active material particles, mixing, and then drying.
  • the wet coating method By applying the wet coating method, a thin and uniform coating layer may be formed.
  • the positive electrode active material particles, the organic material, and the lithium salt may be mixed without a solvent, for example, in a sink mixer. If the solid coating method is applied, a coating layer of an appropriate thickness may be formed without damaging the positive electrode active material.
  • a positive electrode for an all-solid-state secondary battery including the above-described positive electrode active material, and a sulfide-based solid electrolyte.
  • the positive electrode according to one embodiment includes a current collector, and a positive electrode active material layer positioned on the current collector, wherein the positive electrode active material layer includes the above-described positive electrode active material and the sulfide-based solid electrolyte, and may optionally include a conductive material and/or a binder.
  • the above-described positive electrode active material has a coating layer formed on a surface including a specific organic material and a lithium salt, wherein the coating layer has high oxidation resistance, high adhesiveness, and high lithium ion conductivity while being non-reactive with the sulfide-based solid electrolyte, and is therefore suitable for application to a positive electrode of an all-solid-state secondary battery applying a sulfide-based solid electrolyte.
  • the above sulfide-based solid electrolyte is, for example, Li 2 SP 2 S 5 , Li 2 SP 2 S 5 --LiX (X is a halogen element, for example, I or Cl), Li 2 SP 2 S 5 -Li 2 O, Li 2 SP 2 S 5 -Li 2 O-LiI, Li 2 S-SiS 2 , Li 2 S-SiS 2 -LiI, Li 2 S-SiS 2 -LiBr, Li 2 S-SiS 2 -LiCl, Li 2 S-SiS 2 -B 2 S 3 -LiI, Li 2 S-SiS 2 -P 2 S 5 -LiI, Li 2 SB 2 S 3 , Li 2 SP 2 S 5 -Z m S n (m and n are each integers, and Z is Ge, Zn, or Ga), Li 2 S-GeS 2 , Li 2 S-SiS 2 -Li 3 It may include PO 4 , Li 2 S
  • Such sulfide-based solid electrolytes can be obtained, for example, by mixing Li 2 S and P 2 S 5 in a molar ratio of 50:50 to 90:10, or a molar ratio of 50:50 to 80:20, and optionally performing a heat treatment. In the above mixing ratio range, a sulfide-based solid electrolyte having excellent ionic conductivity can be produced.
  • other components such as SiS 2 , GeS 2 , and B 2 S 3 can be further included to further improve the ionic conductivity.
  • mechanical milling is a method of putting starting raw materials in a ball mill reactor, vigorously stirring them, and mixing them by pulverizing them.
  • the starting raw materials can be mixed in a solvent to obtain a solid electrolyte as a precipitate.
  • heat treatment is performed after mixing, the crystals of the solid electrolyte can become more solid and the ionic conductivity can be improved.
  • a sulfide-based solid electrolyte can be produced by mixing sulfur-containing raw materials and performing heat treatment twice or more, in which case a sulfide-based solid electrolyte with high ionic conductivity and solidity can be produced.
  • a sulfide-based solid electrolyte can be manufactured through, for example, a first heat treatment of mixing sulfur-containing raw materials and calcining at 120°C to 350°C, and a second heat treatment of mixing the results of the first heat treatment and calcining at 350°C to 800°C.
  • the first heat treatment and the second heat treatment can each be performed in an inert gas or nitrogen atmosphere.
  • the first heat treatment can be performed for 1 hour to 10 hours, and the second heat treatment can be performed for 5 hours to 20 hours.
  • the first heat treatment can have the effect of milling small raw materials, and the second heat treatment can synthesize the final solid electrolyte.
  • the temperature of the first heat treatment may be, for example, 150°C to 330°C, or 200°C to 300°C
  • the temperature of the second heat treatment may be, for example, 380°C to 700°C, or 400°C to 600°C.
  • the sulfide-based solid electrolyte may include an argyrodite-type sulfide.
  • the argyrodite-type sulfide may be represented by a chemical formula of, for example, Li a M b P c S d A e (wherein a, b, c, d, and e are all 0 or more and 12 or less, M is Ge, Sn, Si, or a combination thereof, and A is F, Cl, Br, or I), and as a specific example, may be represented by a chemical formula of Li 7-x PS 6-x A x (wherein x is 0.2 or more and 1.8 or less, and A is F, Cl, Br, or I).
  • the above argyrodite-type sulfides may specifically be Li 3 PS 4 , Li 7 P 3 S 11 , Li 7 PS 6 , Li 6 PS 5 Cl, Li 6 PS 5 Br, Li 5.8 PS 4.8 Cl 1.2 , Li 6.2 PS 5.2 Br 0.8 , etc.
  • the sulfide-based solid electrolyte including such argyrodite-type sulfides has a high ionic conductivity close to the ionic conductivity of a typical liquid electrolyte at room temperature, which is in the range of 10 -4 to 10 -2 S/cm, and can form a close bond between a cathode active material and a solid electrolyte without causing a decrease in ionic conductivity, and further can form a close interface between an electrode layer and a solid electrolyte layer.
  • An all-solid-state secondary battery including the same can have improved battery performances, such as rate characteristics, Coulombic efficiency, and cycle life characteristics.
  • the argyrodite-type sulfide-based solid electrolyte can be manufactured by, for example, mixing lithium sulfide and phosphorus sulfide, and optionally lithium halide. After mixing these, a heat treatment may be performed. The heat treatment may include, for example, two or more heat treatment steps.
  • manufacturing the argyrodite-type sulfide-based solid electrolyte may include, for example, a first heat treatment of mixing raw materials and calcining at 120° C. to 350° C., and a second heat treatment of mixing the resultant of the first heat treatment again and calcining at 350° C. to 800° C.
  • the average particle diameter (D50) of the above-mentioned sulfide-based solid electrolyte particles may be, for example, 0.1 ⁇ m to 5.0 ⁇ m, and may be small particles of 0.1 ⁇ m to 1.9 ⁇ m, or large particles of 2.0 ⁇ m to 5.0 ⁇ m.
  • the average particle diameter (D50) of the sulfide-based solid electrolyte included in the positive electrode may be about 0.1 ⁇ m to 1.9 ⁇ m, which may be smaller than the average particle diameter of the solid electrolyte included in the solid electrolyte layer.
  • the solid electrolyte satisfying the above-mentioned average particle diameter range can effectively penetrate between positive electrode active materials, and has excellent contactability with the positive electrode active material and excellent connectivity between the solid electrolyte particles.
  • the average particle diameter may be measured by an electron microscope image, and for example, the particle size distribution may be obtained by measuring the sizes (diameter or major axis length) of about 20 particles in a scanning electron microscope image, and the D50 may be calculated from this.
  • the solid electrolyte may be included in an amount of 0.1 wt% to 35 wt%, for example, 1 wt% to 35 wt%, 5 wt% to 30 wt%, 8 wt% to 25 wt%, or 10 wt% to 20 wt%.
  • the positive electrode active material may be included in an amount of 65 wt% to 99 wt% and the solid electrolyte in an amount of 1 wt% to 35 wt% based on the total weight of the positive electrode active material and the solid electrolyte, for example, the positive electrode active material may be included in an amount of 80 wt% to 90 wt% and the solid electrolyte in an amount of 10 wt% to 20 wt%.
  • the solid electrolyte is included in the positive electrode in such an amount, the efficiency and life characteristics of the all-solid-state battery can be improved without reducing the capacity.
  • the conductive material is used to provide conductivity to the electrode, and any material that does not cause a chemical change in the battery to be formed and is electronically conductive can be used.
  • Examples of such conductive materials include carbon-based materials such as natural graphite, artificial graphite, carbon black, acetylene black, Ketjen black, carbon fibers, carbon nanofibers, and carbon nanotubes; metal-based materials containing copper, nickel, aluminum, silver, etc. and in the form of metal powder or metal fibers; conductive polymers such as polyphenylene derivatives; or conductive materials including mixtures thereof.
  • the content of the conductive material in the above positive electrode active material layer may be 0.1 wt% to 5 wt% with respect to the total weight of the positive electrode active material layer.
  • the positive electrode can realize excellent adhesion between solid particles without using a separate binder by including the aforementioned positive electrode active material coated with an organic material.
  • the fluorine-based binder can limit the movement of lithium in the positive electrode in an all-solid-state secondary battery, and in one embodiment, excellent adhesion can be realized even without including the fluorine-based binder.
  • the positive electrode for an all-solid-state secondary battery according to one embodiment can be said to be a positive electrode that does not include a fluorine-based binder.
  • the anode may further include various binders as needed.
  • the binder may be, for example, a polymer including polyvinyl alcohol, carboxymethyl cellulose, hydroxypropyl cellulose, diacetyl cellulose, ethylene oxide, polyvinyl pyrrolidone, polyurethane, polyethylene, polypropylene, polyalkyl (meth)acrylate, styrene-butadiene rubber, acrylated styrene-butadiene rubber, nitrile-butadiene rubber, hydrogenated nitrile-butadiene rubber, acrylic rubber, natural rubber, epoxy resin, nylon, etc.
  • the content of the binder in the above positive electrode active material layer may be approximately 0.1 wt% to 5 wt% with respect to the total weight of the positive electrode active material layer.
  • aluminum foil or stainless steel foil such as SUS can be used, but is not limited thereto.
  • an all-solid-state secondary battery which includes the aforementioned positive and negative electrodes and a solid electrolyte layer positioned between the positive and negative electrodes.
  • the all-solid-state secondary battery may be expressed as an all-solid-state battery, an all-solid-state lithium secondary battery, etc.
  • FIG. 1 is a cross-sectional view of an all-solid-state secondary battery according to an embodiment.
  • an all-solid-state secondary battery (100) may have a structure in which an electrode assembly in which an anode (400) including an anode current collector (401) and an anode active material layer (403), a solid electrolyte layer (300), and a cathode (200) including an anode active material layer (203) and a cathode current collector (201) are laminated is housed in a case such as a pouch.
  • the all-solid-state secondary battery (100) may further include an elastic layer (500) on the outer side of at least one of the cathode (200) and the anode (400).
  • FIG. 1 illustrates one electrode assembly including an anode (400), a solid electrolyte layer (300), and a cathode (200), an all-solid-state secondary battery may be manufactured by laminating two or more electrode assemblies.
  • An anode for an all-solid-state secondary battery includes a current collector and a negative electrode active material layer positioned on the current collector.
  • the negative electrode active material layer includes a negative electrode active material and may further include a binder and/or a conductive material.
  • the above negative active material includes a material capable of reversibly intercalating/deintercalating lithium ions, lithium metal, an alloy of lithium metal, a material capable of doping and dedoping lithium, or a transition metal oxide.
  • the material capable of reversibly intercalating/deintercalating the lithium ions may include a carbon-based negative electrode active material, for example, crystalline carbon, amorphous carbon, or a combination thereof.
  • crystalline carbon include graphite such as natural graphite or artificial graphite in an amorphous, plate-like, flake-like, spherical, or fibrous form
  • amorphous carbon include soft carbon or hard carbon, mesophase pitch carbide, calcined coke, and the like.
  • lithium metal alloy an alloy of lithium and a metal selected from the group consisting of Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Si, Sb, Pb, In, Zn, Ba, Ra, Ge, Al, and Sn can be used.
  • a Si-based negative electrode active material or a Sn-based negative electrode active material can be used.
  • the Si-based negative electrode active material silicon, a silicon-carbon composite, SiO x (0 ⁇ x ⁇ 2), a Si-Q alloy (wherein Q is an element selected from the group consisting of alkali metals, alkaline earth metals, Group 13 elements, Group 14 elements, Group 15 elements, Group 16 elements, transition metals, rare earth elements, and combinations thereof, but is not Si), and as the Sn-based negative electrode active material, Sn, SnO 2 , a Sn-R alloy (wherein R is an element selected from the group consisting of alkali metals, alkaline earth metals, Group 13 elements, Group 14 elements, Group 15 elements, Group 16 elements, transition metals, rare earth elements, and combinations thereof, but is not Sn), and the like.
  • the above elements Q and R may be selected from the group consisting of Mg, Ca, Sr, Ba, Ra, Sc, Y, Ti, Zr, Hf, Rf, V, Nb, Ta, Db, Cr, Mo, W, Sg, Tc, Re, Bh, Fe, Pb, Ru, Os, Hs, Rh, Ir, Pd, Pt, Cu, Ag, Au, Zn, Cd, B, Al, Ga, Sn, In, Tl, Ge, P, As, Sb, Bi, S, Se, Te, Po, and combinations thereof.
  • the negative active material may include silicon-carbon composite particles.
  • the average particle diameter (D50) of the silicon-carbon composite particles may be, for example, 0.5 ⁇ m to 20 ⁇ m.
  • the average particle diameter (D50) is measured by a particle size analyzer and refers to the diameter of particles having a cumulative volume of 50 volume% in a particle size distribution.
  • silicon may be included in an amount of 10 wt% to 60 wt% and carbon may be included in an amount of 40 wt% to 90 wt%.
  • the silicon-carbon composite particles may include, for example, a core including silicon particles, and a carbon coating layer positioned on a surface of the core.
  • the average particle diameter (D50) of the silicon particles in the core may be 10 nm to 1 ⁇ m, or 10 nm to 200 nm.
  • the silicon particles may exist as silicon alone, in the form of a silicon alloy, or in an oxidized form.
  • the oxidized form of silicon can be represented as SiO x (0 ⁇ x ⁇ 2).
  • the thickness of the carbon coating layer can be about 5 nm to 100 nm.
  • the silicon-carbon composite particle may include a core including silicon particles and crystalline carbon, and a carbon coating layer positioned on the surface of the core and including amorphous carbon.
  • the amorphous carbon may not be present in the core but may be present only in the carbon coating layer.
  • the crystalline carbon may be artificial graphite, natural graphite, or a combination thereof, and the amorphous carbon may be formed from coal pitch, mesophase pitch, petroleum pitch, coal oil, petroleum heavy oil, or a polymer resin (phenol resin, furan resin, polyimide resin, etc.).
  • the content of the crystalline carbon may be 10 wt% to 70 wt% with respect to 100 wt% of the silicon-carbon composite particle, and the content of the amorphous carbon may be 20 wt% to 40 wt%.
  • the core may include a void in the central portion.
  • the radius of the void may be 30% to 50% of the radius of the silicon-carbon composite particle.
  • the silicon-carbon composite particles described above can effectively suppress problems such as volume expansion, structural collapse, or particle crushing due to charge and discharge, thereby preventing the phenomenon of conductive path disconnection, realizing high capacity and high efficiency, and are advantageous for use under high voltage or high-speed charging conditions.
  • the above Si-based negative electrode active material or Sn-based negative electrode active material can be used in a mixture with a carbon-based negative electrode active material.
  • the mixing ratio can be 1:99 to 90:10 by weight.
  • the content of the negative active material in the above negative active material layer may be 95 wt% to 99 wt% with respect to the total weight of the negative active material layer.
  • the above binder serves to adhere the negative active material particles well to each other and also to adhere the negative active material well to the current collector.
  • the binder may be an insoluble binder, a water-soluble binder, or a combination thereof.
  • the above-mentioned insoluble binders may include polyvinyl chloride, carboxylated polyvinyl chloride, polyvinyl fluoride, polymers containing ethylene oxide, ethylene propylene copolymers, polystyrene, polyvinyl pyrrolidone, polyurethane, polytetrafluoroethylene, polyvinylidene fluoride, polyethylene, polypropylene, polyamideimide, polyimide or combinations thereof.
  • the above water-soluble binder may be a rubber-based binder or a polymer resin binder.
  • the rubber-based binder may be selected from styrene-butadiene rubber, acrylated styrene-butadiene rubber, acrylonitrile-butadiene rubber, acrylic rubber, butyl rubber, fluororubber, and combinations thereof.
  • the polymer resin binder may be selected from polyethylene oxide, polyvinylpyrrolidone, polyepichlorohydrin, polyphosphazene, polyacrylonitrile, ethylene propylene diene copolymer, polyvinyl pyridine, chlorosulfonated polyethylene, latex, polyester resin, acrylic resin, phenol resin, epoxy resin, polyvinyl alcohol, and combinations thereof.
  • a cellulose-based compound that can provide viscosity as a kind of thickener may be further included.
  • the cellulose-based compound one or more types of carboxymethyl cellulose, hydroxypropylmethyl cellulose, methyl cellulose, or an alkali metal salt thereof may be mixed and used.
  • the alkali metal Na, K or Li may be used.
  • the amount of such thickener used may be 0.1 to 3 parts by weight based on 100 parts by weight of the negative electrode active material.
  • the conductive material is used to provide conductivity to the electrode, and any material that does not cause a chemical change in the battery to be formed and is electronically conductive can be used.
  • Examples of such conductive materials include carbon-based materials such as natural graphite, artificial graphite, carbon black, acetylene black, Ketjen black, carbon fibers, carbon nanofibers, and carbon nanotubes; metal-based materials including copper, nickel, aluminum, and silver in the form of metal powder or metal fibers; conductive polymers such as polyphenylene derivatives; or conductive materials including mixtures thereof.
  • the negative electrode current collector may be selected from the group consisting of copper foil, nickel foil, stainless steel foil, titanium foil, nickel foam, copper foam, a polymer substrate coated with a conductive metal, and combinations thereof.
  • the negative electrode for an all-solid-state secondary battery may be a precipitation-type negative electrode.
  • the precipitation-type negative electrode may mean a negative electrode that does not include a negative electrode active material when the battery is assembled, but in which lithium metal or the like is precipitated or deposited on the negative electrode when the battery is charged, and this serves as a negative electrode active material.
  • FIG. 2 is a schematic cross-sectional view of an all-solid-state secondary battery including a precipitation-type negative electrode.
  • the precipitation-type negative electrode (400') may include a current collector (401) and a negative electrode coating layer (405) positioned on the current collector.
  • An all-solid-state secondary battery including such a precipitation-type negative electrode (400') starts initial charging in a state in which no negative electrode active material exists, and when charging, high-density lithium metal is precipitated or deposited between the current collector (401) and the negative electrode coating layer (405) or on the negative electrode coating layer (405) to form a lithium metal layer (404), which may function as a negative electrode active material.
  • the precipitation-type negative electrode (400') may include, for example, a current collector (401), a lithium metal layer (404) positioned on the current collector, and a negative electrode coating layer (405) positioned on the metal layer.
  • the lithium metal layer (404) refers to a layer in which lithium metal or the like is precipitated during the charging process of the battery, and may be referred to as a metal layer, a lithium layer, a lithium deposition layer, or a negative electrode active material layer.
  • the above cathode coating layer (405) may be called a lithium electrodeposition induction layer or a cathode catalyst layer, and may include a metal, carbon material, or a combination thereof that acts as a catalyst.
  • the metal may be a lithium-philic metal, and may include, for example, gold, platinum, palladium, silicon, silver, aluminum, bismuth, tin, zinc, or a combination thereof, and may be composed of one kind of these or may be composed of several kinds of alloys.
  • the average particle diameter (D50) thereof may be about 4 ⁇ m or less, for example, 10 nm to 4 ⁇ m.
  • the carbon material can be, for example, crystalline carbon, amorphous carbon, or a combination thereof.
  • the crystalline carbon can be, for example, natural graphite, artificial graphite, mesophase carbon microbeads, or a combination thereof.
  • the amorphous carbon can be, for example, carbon black, activated carbon, acetylene black, Denka black, Ketjen black, or a combination thereof.
  • the mixing ratio of the metal and the carbon material may be, for example, a weight ratio of 1:10 to 2:1.
  • the precipitation of lithium metal can be effectively promoted and the characteristics of the all-solid-state secondary battery can be improved.
  • the above-described negative electrode coating layer (405) may include, for example, a carbon material supported with a catalytic metal, or may include a mixture of metal particles and carbon material particles.
  • the above-described cathode coating layer (405) may include, for example, the above-described lithium-philic metal and amorphous carbon, in which case the precipitation of lithium metal may be effectively promoted.
  • the above-described cathode coating layer (405) may include a composite in which a lithium-philic metal is supported on amorphous carbon.
  • the above cathode coating layer (405) may further include a binder, and the binder may be, for example, a conductive binder.
  • the above cathode coating layer (405) may further include general additives such as fillers, dispersants, and ion conductive agents.
  • the thickness of the cathode coating layer (405) may be, for example, 100 nm to 20 ⁇ m, or 500 nm to 10 ⁇ m, or 1 ⁇ m to 5 ⁇ m.
  • the above-described precipitated negative electrode (400') may further include, for example, a thin film on the surface of the current collector, that is, between the current collector and the negative electrode coating layer.
  • the thin film may include an element capable of forming an alloy with lithium.
  • the element capable of forming an alloy with lithium may be, for example, gold, silver, zinc, tin, indium, silicon, aluminum, bismuth, etc., and may be composed of one type of these or may be composed of multiple types of alloys.
  • the thin film may further flatten the precipitated form of the lithium metal layer (404) and further improve the characteristics of the all-solid-state secondary battery.
  • the thin film may be formed by, for example, a vacuum deposition method, a sputtering method, a plating method, or the like.
  • the thickness of the thin film may be, for example, 1 nm to 500 nm.
  • the above lithium metal layer (404) may include lithium metal or a lithium alloy.
  • the lithium alloy may be, for example, a Li-Al alloy, a Li-Sn alloy, a Li-In alloy, a Li-Ag alloy, a Li-Au alloy, a Li-Zn alloy, a Li-Ge alloy, or a Li-Si alloy.
  • the thickness of the lithium metal layer (404) may be 1 ⁇ m to 500 ⁇ m, 1 ⁇ m to 200 ⁇ m, 1 ⁇ m to 100 ⁇ m, or 1 ⁇ m to 50 ⁇ m. If the thickness of the lithium metal layer (404) is too thin, it may be difficult to perform the role of a lithium storage, and if it is too thick, the battery volume may increase and the performance may deteriorate.
  • the cathode coating layer (405) can play a role in protecting the lithium metal layer (404) and suppressing the precipitation growth of lithium dendrites. Accordingly, short-circuiting and capacity reduction of the all-solid-state battery can be suppressed, and the life characteristics can be improved.
  • the solid electrolyte layer (300) may include solid electrolyte particles and optionally a binder.
  • the solid electrolyte particles may include a sulfide-based solid electrolyte, an oxide-based solid electrolyte, etc. Since the sulfide-based solid electrolyte is as described above, a detailed description thereof will be omitted.
  • the above oxide-based solid electrolytes include, for example, Li 1+x Ti 2-x Al(PO 4 ) 3 (LTAP)(0 ⁇ x ⁇ 4), Li 1+x+y Al x Ti 2-x Si y P 3-y O 12 (0 ⁇ x ⁇ 2, 0 ⁇ y ⁇ 3), BaTiO 3 , Pb(Zr,Ti)O 3 (PZT), Pb 1-x La x Zr 1-y Ti y O 3 (PLZT)(0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1), PB(Mg 3 Nb 2/3 )O 3 -PbTiO 3 (PMN-PT), HfO 2 , SrTiO 3 , SnO 2 , CeO 2 , Na 2 O, MgO, NiO, CaO, BaO, ZnO, ZrO 2 , Y 2 O 3 , Al 2 O 3 , TiO 2 , SiO 2 , lithium phosphate (Li 3 PO 4 ), lithium titanium phosphate (Li x Ti
  • the average particle diameter (D50) of the solid electrolyte included in the solid electrolyte layer (300) may be larger than the average particle diameter (D50) of the solid electrolyte included in the positive electrode (200).
  • the energy density of the all-solid-state secondary battery may be maximized while increasing the mobility of lithium ions, thereby improving the overall performance.
  • the average particle diameter (D50) of the solid electrolyte included in the positive electrode (200) may be 0.1 ⁇ m to 1.9 ⁇ m, or 0.1 ⁇ m to 1.0 ⁇ m, and the average particle diameter (D50) of the solid electrolyte included in the solid electrolyte layer (300) may be 2.0 ⁇ m to 5.0 ⁇ m, or 2.0 ⁇ m to 4.0 ⁇ m, or 2.5 ⁇ m to 3.5 ⁇ m.
  • the average particle size (D50) of the solid electrolyte can be measured by a particle size analyzer using laser diffraction.
  • the above solid electrolyte layer may further include a binder in addition to the solid electrolyte particles.
  • the binder may be styrene butadiene rubber, polytetrafluoroethylene, polyvinylidene fluoride, polyethylene, an acrylate polymer, or a combination thereof, but is not limited thereto, and any binder used in the relevant technical field may be used.
  • the acrylate polymer may be, for example, butyl acrylate, polyacrylate, polymethacrylate, or a combination thereof.
  • the above solid electrolyte layer can be formed by adding a solid electrolyte to a binder solution, coating it on a base film, and drying it.
  • the solvent of the binder solution can be isobutyryl isobutyrate, xylene, toluene, benzene, hexane, or a combination thereof. Since the solid electrolyte layer forming process is widely known in the art, a detailed description thereof will be omitted.
  • the thickness of the solid electrolyte layer may be, for example, 10 ⁇ m to 150 ⁇ m.
  • the above solid electrolyte layer may further include an alkali metal salt, and/or an ionic liquid, and/or a conductive polymer.
  • the above alkali metal salt may be, for example, a lithium salt.
  • the content of the lithium salt in the solid electrolyte layer may be 1 M or more, for example, 1 M to 4 M.
  • the lithium salt may improve ion conductivity by enhancing lithium ion mobility of the solid electrolyte layer.
  • the lithium salt may include, for example, LiPF 6 , LiBF 4 , LiSbF 6 , LiAsF 6 , LiClO 4 , LiAlO 2 , LiAlCl 4 , LiPO 2 F 2 , LiCl, LiI, LiSCN, LiN(CN) 2 , lithium bis(oxalato)borate (LiBOB), lithium difluoro(oxalato)borate (LiDFOB), lithium difluorobis(oxalato)phosphate (LiDFBP), lithium bis(trifluoromethanesulfonyl)imide (LiTFSI), lithium bis(fluorosulfonyl)imide (LiFSI), lithium bis(pentafluoroethanesulfonyl)imide (LiBETI), lithium trifluoromethane sulfonate, lithium tetrafluoroethane sulfonate, or a combination thereof.
  • LiPF 6
  • the lithium salt may be an imide-based lithium salt such as LiTFSI, LiFSI, LiBETI, or a combination thereof.
  • the imide-based lithium salt can maintain or improve ionic conductivity by appropriately maintaining chemical reactivity with the ionic liquid.
  • the above ionic liquid has a melting point below room temperature and is a salt or room-temperature molten salt that is liquid at room temperature and consists only of ions.
  • the above ionic liquid comprises a) at least one cation selected from ammonium, pyrrolidinium, pyridinium, pyrimidinium, imidazolium, piperidinium, pyrazolium, oxazolium, pyridazinium, phosphonium, sulfonium, triazolium, and mixtures thereof, and b) BF 4 - , PF 6 - , AsF 6 - , SbF 6 - , AlCl 4 - , HSO 4 - , ClO 4 - , CH 3 SO 3 - , CF 3 CO 2 - , Cl - , Br - , I - , BF 4 - , SO 4 - , CF 3 SO 3 - , (FSO 2 ) 2 N - , (C 2 F 5 SO 2 ) 2 N - , (C 2 F 5 SO 2 )(CF 3 SO 2 )N - , and (
  • the above ionic liquid may be at least one selected from the group consisting of, for example, N-methyl-N-propylpyrrolidinium bis(trifluoromethanesulfonyl)imide, N-butyl-N-methylpyrrolidinium bis(3-trifluoromethylsulfonyl)imide, 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide, and 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide.
  • the weight ratio of the solid electrolyte and the ionic liquid can be 0.1:99.9 to 90:10, and for example, 10:90 to 90:10, 20:80 to 90:10, 30:70 to 90:10, 40:60 to 90:10, or 50:50 to 90:10.
  • the solid electrolyte layer satisfying the above range can improve the electrochemical contact area with the electrode, thereby maintaining or improving the ionic conductivity. Accordingly, the energy density, discharge capacity, rate characteristics, etc. of the all-solid-state secondary battery can be improved.
  • the above-mentioned all-solid-state secondary battery may be a unit cell having a structure of positive electrode/solid electrolyte layer/negative electrode, a bicell having a structure of negative electrode/solid electrolyte layer/positive electrode/solid electrolyte layer/negative electrode, or a laminated battery in which the structure of the unit cell is repeated.
  • the shape of the above-mentioned all-solid-state secondary battery is not particularly limited, and may be, for example, coin-shaped, button-shaped, sheet-shaped, stacked, cylindrical, flat, etc.
  • the above-mentioned all-solid-state secondary battery can be applied to large-sized batteries used in electric vehicles, etc.
  • the above-mentioned all-solid-state secondary battery can be used in hybrid vehicles, such as plug-in hybrid electric vehicles (PHEVs).
  • PHEVs plug-in hybrid electric vehicles
  • it can be used in fields that require a large amount of power storage, and for example, it can be used in electric bicycles or power tools.
  • the above-mentioned all-solid-state secondary battery can be used in various fields, such as portable electronic devices.
  • the cathode active material particles were prepared by mixing small particles with an average particle size of about 4 ⁇ m and large particles with an average particle size of about 18 ⁇ m in a weight ratio of 3:7, with a composition of LiNi 0.944 Co 0.04 Al 0.012 Mn 0.004 O 2 and a buffer layer of lithium zirconium oxide formed thereon.
  • a diethyl carbonate (DEC) solvent 0.5 parts by weight of poly(ethylene glycol) diacrylate (PEGDA) having a number average molecular weight of approximately 700 g/mol and 0.75 parts by weight of LiTFSI were mixed, and then 100 parts by weight of the prepared cathode active material particles were added and mixed. After removing the solvent, the mixture was dried at 60°C for 5 min and then vacuum-dried at 80°C for 2 hours, thereby producing a coated cathode active material.
  • PEGDA poly(ethylene glycol) diacrylate
  • An Ag/C composite was prepared by mixing carbon black having a primary particle size (D50) of about 30 nm and silver (Ag) having an average particle size (D50) of about 60 nm in a weight ratio of 3:1, and 0.25 g of the composite was added to 2 g of an NMP solution containing 7 wt% of polyvinylidene fluoride binder and mixed to prepare a negative electrode coating layer composition. This was applied to a nickel foil current collector using a bar coater and vacuum-dried to prepare a deposition-type negative electrode in which a negative electrode coating layer was formed on the current collector.
  • the composition includes 98.7 wt% of a sulfide-based solid electrolyte, 1.0 wt% of a binder, and 0.3 wt% of an organic dispersant.
  • the composition is cast on a release PET film and dried at room temperature to prepare a solid electrolyte layer.
  • a positive electrode active material having a composition of LiNi 0.944 Co 0.04 Al 0.012 Mn 0.004 O 2 and a buffer layer of lithium zirconium oxide was formed, and a mixture of small particles having an average particle size of about 4 ⁇ m and large particles having an average particle size of about 18 ⁇ m was used in a weight ratio of 3:7, without performing coating with an organic material and a lithium salt, a positive electrode and an all-solid-state secondary battery were manufactured in substantially the same manner as in Example 1.
  • a cathode active material and an all-solid-state secondary battery were manufactured in substantially the same manner as in Example 1, except that polyethylene glycol (PEG) having a weight average molecular weight of 1,000 g/mol was used instead of PEGDA.
  • PEG polyethylene glycol
  • a cathode active material and an all-solid-state secondary battery were manufactured in substantially the same manner as in Example 1, except that ethylhexyl acrylate having a weight-average molecular weight of 4,000 g/mol was used instead of PEGDA.
  • Example 1 and Comparative Examples 1 and 2 the batteries were charged at a constant current of 0.1 C at 45°C to an upper limit voltage of 4.25 V and a constant voltage of 0.05 C, and then discharged at 0.1 C to an end-of-discharge voltage of 2.5 V to perform an initial charge/discharge. Thereafter, the cycle of charging at 0.33 C and discharging at 0.33 C in a voltage range of 2.5 V to 4.25 V at 45°C was repeated 100 times to evaluate the life characteristics.
  • FIG. 3 shows the discharge capacity according to the number of cycles
  • FIG. 4 shows the capacity retention rate according to the number of cycles.
  • the capacity retention rate means the ratio of the discharge capacity in each cycle to the discharge capacity in the first cycle, and the unit is %.
  • Example 1 and Comparative Example 1 are reversed around the 50th cycle, and that the discharge capacity of Example 1 is higher than that of Comparative Example 1 after the 50th cycle.
  • FIG. 4 it can be seen that the capacity retention rate of Example 1 is higher than that of Comparative Examples 1 and 2 throughout the cycle.
  • Cathode current collector 203 Cathode active material layer
  • Negative electrode current collector 403 Negative electrode active material layer
  • Negative coating layer 500 Elastic layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

리튬 전이금속 복합 산화물을 포함하는 양극 활물질 입자, 및 상기 양극 활물질 입자의 표면에 위치하는 코팅층을 포함하고, 상기 코팅층은 유기물 및 리튬염을 포함하며, 상기 유기물은 알킬렌 글리콜 단위를 함유하는 (메타)아크릴레이트, 알킬렌 글리콜 단위를 함유하는 에테르, 또는 이들의 조합을 포함하는, 양극 활물질, 그리고 이를 포함하는 전고체 이차 전지용 양극과 전고체 이차 전지에 관한 것이다.

Description

양극 활물질과 그 제조 방법, 전고체 이차 전지용 양극 및 전고체 이차 전지
양극 활물질과 그 제조 방법, 전고체 이차 전지용 양극 및 전고체 이차 전지에 관한 것이다.
최근 액체 전해질을 사용한 전지의 폭발 위험성이 보고되면서, 전고체 이차 전지에 대한 개발이 활발히 이루어지고 있다. 그러나 고체 전해질은 액체 전해질에 비해 이온 전도도가 낮고, 전지 내 양극 활물질 등의 고체 입자와의 계면에서 저항이 발생하며, 고체와 고체의 접합에 의한 공핍층(depletion layer)이 형성되어 이온 전도 성능이 저하되는 등의 문제를 가지고 있다.
전고체 이차 전지용 양극은 양극 활물질, 고체 전해질 및 도전재 등의 무기 소재로 구성된다. 여기서 고체 입자인 양극 활물질과 고체 전해질의 접촉부에서의 리튬 이온의 이동이 전지 성능에 주요한 영향을 끼치게 된다. 그런데 충방전 과정에서 일어나는 양극 활물질의 부피 변화는 양극 활물질과 고체 전해질 간의 물리적인 결합을 제한하게 되고, 이를 극복하기 위하여 입자들 간의 접촉을 향상시키는 연구가 지속적으로 진행되고 있다.
기존의 전고체 이차 전지용 양극은 불소계 바인더 등을 이용하여 양극 활물질과 고체 전해질을 고정시켜 극판을 유지하는 방법이 사용되었다. 그러나 불소계 바인더는 리튬 이동을 방해하여 전고체 이차 전지의 성능을 감소시킬 수 있다는 문제가 있다.
양극 활물질과 고체 전해질의 계면 접착력을 향상시키고, 충방전에 따른 양극 활물질의 부피 변화에 의한 전지 성능의 저하를 효과적으로 방지하여, 전고체 이차 전지의 용량 특성, 수명 특성 등을 개선한다.
일 구현예에서는 리튬 전이금속 복합 산화물을 포함하는 양극 활물질 입자, 및 상기 양극 활물질 입자의 표면에 위치하는 코팅층을 포함하고, 상기 코팅층은 유기물 및 리튬염을 포함하며, 상기 유기물은 알킬렌 글리콜 단위를 함유하는 (메타)아크릴레이트, 알킬렌 글리콜 단위를 함유하는 에테르, 또는 이들의 조합을 포함하는, 양극 활물질을 제공한다.
다른 일 구현예에서는 유기물과 리튬염을 혼합하여 복합체를 제조하고, 리튬 전이금속 복합 산화물을 포함하는 양극 활물질 입자와 상기 복합체를 혼합하고 건조하여 상기 양극 활물질 입자의 표면에 상기 복합체를 코팅하는 것을 포함하고, 상기 유기물은 알킬렌 글리콜 단위를 함유하는 (메타)아크릴레이트, 알킬렌 글리콜 단위를 함유하는 에테르, 또는 이들의 조합을 포함하는, 양극 활물질의 제조 방법을 제공한다.
다른 일 구현예에서는 상기 양극 활물질, 및 황화물계 고체 전해질을 포함하는 전고체 이차 전지용 양극을 제공한다.
또 다른 일 구현예에서는 전술한 양극, 음극 및 상기 양극과 음극 사이에 위치하는 고체 전해질 층을 포함하는 전고체 이차 전지를 제공한다.
일 구현예에 따른 양극 활물질은 표면에 유기물과 리튬염이 코팅된 소재로서, 양극 활물질과 고체 전해질의 계면 접착력을 향상시켜 리튬 이온의 이동을 원활하게 하며, 충방전에 따른 양극 활물질의 부피 변화로 인한 전지 성능 저하를 효과적으로 방지할 수 있고, 전고체 이차 전지의 용량 특성, 수명 특성 등 전반적인 성능을 개선할 수 있다.
도 1 및 도 2는 일 구현예에 따른 전고체 이차 전지를 개략적으로 나타낸 단면도이다.
도 3은 실시예 1 및 비교예 1, 2의 전고체 이차 전지에 대한 사이클 수에 따른 방전 용량을 나타낸 그래프이다.
도 4는 실시예 1 및 비교예 1, 2의 전고체 이차 전지에 대한 사이클 수에 따른 용량 유지율을 나타낸 그래프이다.
이하, 구체적인 구현예에 대하여 이 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 구현예에 한정되지 않는다.
여기서 사용되는 용어는 단지 예시적인 구현예들을 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도는 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.
여기서 "이들의 조합"이란, 구성물의 혼합물, 적층물, 복합체, 공중합체, 합금, 블렌드, 반응 생성물 등을 의미한다.
여기서 "포함하다", "구비하다" 또는 "가지다" 등의 용어는 실시된 특징, 숫자, 단계, 구성 요소 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 구성 요소, 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
도면에서 여러 층 및 영역을 명확하게 표현하기 위하여 두께를 확대하여 나타내었으며, 명세서 전체를 통하여 유사한 부분에 대해서는 동일한 도면 부호를 붙였다. 층, 막, 영역, 판 등의 부분이 다른 부분 "위에" 또는 “상에” 있다고 할 때, 이는 다른 부분 "바로 위에" 있는 경우뿐만 아니라 그 중간에 또 다른 부분이 있는 경우도 포함한다. 반대로 어떤 부분이 다른 부분 "바로 위에" 있다고 할 때에는 중간에 다른 부분이 없는 것을 뜻한다.
또한 여기서 “층”은 평면도로 관찰했을 때 전체 면에 형성되어 있는 형상뿐만 아니라 일부 면에 형성되어 있는 형상도 포함한다.
또한 평균 입경은 당업자에게 널리 공지된 방법으로 측정될 수 있으며, 예를 들어, 입도 분석기로 측정하거나, 또는 투과전자현미경 사진 또는 주사전자현미경 사진으로 측정할 수도 있다. 다른 방법으로는, 동적광산란법을 이용하여 측정하고 데이터 분석을 실시하여 각각의 입자 사이즈 범위에 대하여 입자수를 카운팅한 뒤 이로부터 계산하여 평균 입경 값을 얻을 수 있다. 평균 입경은 현미경 이미지로 측정하거나 입도 분석기로 측정될 수 있으며, 입도 분포에서 누적 체적이 50 부피%인 입자의 지름(D50)을 의미할 수 있다.
여기서 “또는”은 배제적인(exclusive) 의미로 해석되지 않으며, 예를 들어 “A 또는 B”는 A, B, A+B 등을 포함하는 것으로 해석된다.
양극 활물질
일 구현예에서는 리튬 전이금속 복합 산화물을 포함하는 양극 활물질 입자, 및 상기 양극 활물질 입자의 표면에 위치하는 코팅층을 포함하고, 상기 코팅층은 유기물 및 리튬염을 포함하며, 상기 유기물은 알킬렌 글리콜 단위를 함유하는 (메타)아크릴레이트, 알킬렌 글리콜 단위를 함유하는 에테르, 또는 이들의 조합을 포함하는, 양극 활물질을 제공한다.
상기 양극 활물질은 표면에 특정 유기물과 리튬염이 코팅되어 있어 고체 전해질과의 접착력이 우수하며, 충방전에 따라 양극 활물질의 부피가 변하더라도 양극 내에서 고체 입자들 간의 안정적인 접촉이 확보되고, 이에 따라 오랜 사이클 동안 리튬 이온의 이동이 원활하게 이루어져 전고체 이차 전지의 전반적인 성능이 개선될 수 있다. 일 구현예에 따른 코팅된 양극 활물질을 양극에 적용하는 경우, 양극에 동일한 유기물과 리튬염을 단순히 분산시킨 경우에 비하여 고체 입자들 간의 접착력이 더 높고 리튬 이온의 이동이 더욱 촉진되어 전고체 전지의 수명 안정성이 더욱 향상될 수 있다.
상기 코팅층에서 상기 유기물은 알킬렌 글리콜 단위를 함유하는 아크릴레이트 또는 에테르라고 할 수 있으며, 이러한 유기물은 황화물계 고체 전해질과 반응성이 낮으면서 내산화성이 뛰어나고 높은 접착력을 구현할 수 있다. 일 예로 폴리에틸렌글리콜(PEG) 등은 황화물계 고체 전해질과의 반응성이 높아 전고체 전지의 양극에 적용하는 것이 곤란하며, 알킬렌 글리콜 단위를 함유하지 않는 일반적인 아크릴계 바인더는 내산화성이 낮아 고온 고압 조건에서 제조되는 전고체 전지 내에서 바인더 자체가 분해될 수 있어 적절하지 않을 수 있다.
상기 알킬렌 글리콜은 예를 들어 에틸렌 글리콜, 프로필렌 글리콜, 또는 네오펜틸 글리콜일 수 있으나 이에 제한되지 않으며, 일 예로 에틸렌 글리콜일 수 있다. 상기 유기물에서 알킬렌 글리콜 단위의 개수는 1 내지 200일 수 있고, 예를 들어 1 내지 5이거나, 또는 20 내지 200일 수 있다. 또한 상기 알킬렌 글리콜 단위를 함유하는 (메타)아크릴레이트에서 (메타)아크릴레이트기의 개수는 1 내지 4일 수 있고, 일 예로 1개 또는 2개일 수 있다. 상기 알킬렌 글리콜 단위를 함유하는 에테르에서 에테르기의 개수는 1 내지 4일 수 있고, 일 예로 1개 또는 2개일 수 있다. 에테르기는 사슬형 또는 고리형일 수 있다. 상기 유기물을 아크릴레이트기만 포함하거나 에테르기만 포함하거나, 또는 아크릴레이트기와 에테르기를 모두 포함할 수도 있다.
상기 알킬렌 글리콜 단위를 함유하는 (메타)아크릴레이트, 알킬렌 글리콜 단위를 함유하는 에테르, 또는 이들의 조합은 구체적인 예로 다음과 같은 화합물을 포함할 수 있다. 예를 들어, 폴리(에틸렌 글리콜) 디아크릴레이트 (PEGDA), 폴리(에틸렌 글리콜) 모노아크릴레이트 (PEGMA), 폴리(프로필렌 글리콜) 디아크릴레이트 (PPGDA), 폴리(프로필렌 글리콜) 디메타크릴레이트 (PPGDMA), 디(에틸렌 글리콜) 디아크릴레이트 (DEGDA), 트리(에틸렌 글리콜) 디아크릴레이트 (TEGDA), 테트라(에틸렌 글리콜) 디아크릴레이트 (TTEGDA), 디(프로필렌 글리콜) 디아크릴레이트 (DPGDA), 트리(프로필렌 글리콜) 디아크릴레이트 (TPGDA), 에톡실화된 트리메틸올프로판 트리아크릴레이트 (ETPTA), 폴리(에틸렌 글리콜) 메틸 에테르 메타크릴레이트 (PEGDMA), 폴리(에틸렌 글리콜) 디메틸 에테르 (PEGDME; polyglime), 트리(에틸렌 글리콜) 디메틸 에테르 (triglyme), 테트라(에틸렌 글리콜) 디메틸 에테르(TEGDME, tetraglyme), 또는 이들의 조합일 수 있다.
상기 유기물은 이들 중에서도, 일 예로, 폴리(에틸렌 글리콜) 디아크릴레이트 (PEGDA), 폴리(에틸렌 글리콜) 모노아크릴레이트 (PEGMA), 폴리(에틸렌 글리콜) 메틸 에테르 메타크릴레이트 (PEGDMA), 폴리(에틸렌 글리콜) 디메틸 에테르 (PEGDME; polyglime), 또는 이들의 조합을 포함할 수 있으며, 이들은 황화물계 고체 전해질과의 반응성이 낮으면서 내산화성이 높고 접착력이 높아 전고체 이차 전지용 양극 활물질의 코팅 성분으로 적용하기에 적절하다.
상기 유기물, 즉 알킬렌 글리콜 단위를 함유하는 (메타)아크릴레이트, 및 알킬렌 글리콜 단위를 함유하는 에테르는 각각 독립적으로 200 g/mol 내지 2,000 g/mol의 수평균 분자량을 가지는 것일 수 있다. 이들의 수평균 분자량은 예를 들어 250 g/mol 내지 1,500 g/mol, 또는 300 g/mol 내지 1,200 g/mol일 수 있다. 이러한 분자량을 가지는 유기물을 적용하는 경우 우수한 접착력을 구현하면서 얇은 코팅층을 형성할 수 있다.
상기 코팅층에서 유기물과 리튬염은 일종의 복합체를 형성하고 있을 수도 있다.
상기 코팅층에서 유기물 및 리튬염의 총합 100 중량%에 대하여 유기물은 20 중량% 내지 90 중량%로 포함되고, 리튬염은 10 중량% 내지 80 중량%로 포함될 수 있다. 이와 같은 비율로 혼합되는 경우 상기 코팅층은 적절한 접착력을 구현하면서 리튬 이온의 이동을 원활하게 하여 전고체 이차 전지의 수명 안정성 등의 성능을 개선할 수 있다. 상기 코팅층에서 유기물과 리튬염의 중량비는 2:8 내지 9:1일 수 있고, 예를 들어 2:8 내지 8:2, 3:7 내지 7:3, 또는 2:8 내지 6:4일 수 있다.
상기 유기물과 리튬염의 총함량은 상기 양극 활물질 입자 100 중량부에 대하여 0.1 중량부 내지 10 중량부일 수 있고, 예를 들어 0.1 중량부 내지 8 중량부, 0.1 중량부 내지 6 중량부, 0.1 중량부 내지 5 중량부, 0.5 중량부 내지 4 중량부, 또는 1 중량부 내지 3 중량부일 수 있다.
또한 상기 유기물은 상기 양극 활물질 100 중량%에 대하여 0.05 중량% 내지 5 중량%로 포함될 수 있고, 예를 들어 0.05 중량% 내지 4 중량%, 0.1 중량% 내지 3 중량%, 또는 0.5 중량% 내지 2 중량%로 포함될 수 있다. 상기 리튬염은 상기 양극 활물질 100 중량%에 대하여 0.05 중량% 내지 5 중량%로 포함될 수 있고, 예를 들어 0.05 중량% 내지 4 중량%, 0.1 중량% 내지 3 중량%, 또는 0.5 중량% 내지 2 중량%로 포함될 수 있다.
상기 리튬염은 종류 제한 없이 적용 가능하며, 예를 들어 LiPF6, LiBF4, LiSbF6, LiAsF6, LiClO4, LiAlO2, LiAlCl4, LiPO2F2, LiCl, LiI, LiSCN, LiN(CN)2, 리튬 비스(옥살레이토)보레이트 (LiBOB), 리튬 디플로오로(옥살레이토)보레이트 (LiDFOB), 리튬 디플루오로비스(옥살레이토)포스페이트 (LiDFBP), 리튬 비스(트리플루오로메탄설포닐)이미드 (LiTFSI), 리튬 비스(플루오로설포닐)이미드 (LiFSI), 리튬 비스(펜타플루오로에탄설포닐)이미드 (LiBETI), 리튬 트리플루오로메탄 설포네이트, 리튬 테트라플루오로에탄 설포네이트, 또는 이들의 조합을 포함할 수 있다.
일 예로 상기 리튬염은 LiTFSI, LiFSI, LiBETI, 또는 이들의 조합인 이미드계 리튬염일 수 있으며, 이들은 양극 활물질의 표면에서 리튬 이온의 이동을 더욱 원활하게 할 수 있다.
상기 코팅층은 상기 양극 활물질 입자 표면에 아일랜드 형태, 또는 연속적인 막 형태로 존재할 수 있다.
상기 코팅층은 유기물과 리튬염으로 이루어지므로 매우 얇은 두께로 형성될 수 있으며, 이에 따라 전지 내 저항을 높이지 않으면서 접착력을 높이고 리튬 이온을 원활하게 할 수 있다. 상기 코팅층의 두께는 1 nm 내지 50 nm일 수 있으며, 예를 들어 1 nm 내지 40 nm, 1 nm 내지 30 nm, 1 nm 내지 20 nm, 1 nm 내지 10 nm, 혹은 2 nm 내지 10 nm일 수 있다.
상기 리튬 전이금속 복합 산화물을 포함하는 양극 활물질 입자는 일종의 코어에 해당하는 것으로, 일반적으로 사용되는 양극 활물질 입자를 제한없이 적용할 수 있다.
상기 리튬 전이금속 복합 산화물은 예를 들어 리튬코발트산화물(LCO), 리튬니켈산화물(LNO), 리튬니켈코발트산화물(NC), 리튬니켈코발트알루미늄산화물(NCA), 리튬니켈코발트망간산화물(NCM), 리튬니켈망간산화물(NM), 리튬망간산화물(LMO), 또는 리튬인산철산화물(LFP) 등일 수 있다.
상기 리튬 전이금속 복합 산화물은 예를 들어 하기 화학식 1로 표시되는 리튬 니켈계 산화물, 하기 화학식 2로 표시되는 리튬 코발트계 산화물, 하기 화학식 3으로 표시되는 리튬인산철계 화합물, 또는 하기 화학식 4로 표시되는 코발트-프리 리튬 니켈-망간계 산화물일 수 있다.
[화학식 1]
Lia1Nix1M1 y1M2 z1O2-b1Xb1
상기 화학식 11에서, 0.9≤a1≤1.8, 0.3≤x1≤1, 0≤y1≤0.7, 0≤z1≤0.7, 0.9≤x1+y1+z1≤1.1, 및 0≤b1≤0.1이고, M1 및 M2는 각각 독립적으로 Al, B, Ba, Ca, Ce, Co, Cr, Cu, Fe, Mg, Mn, Mo, Nb, Si, Sn, Sr, Ti, V, W, Zn, 및 Zr로 이루어지는 그룹에서 선택되는 하나 이상의 원소이고, X는 F, P 및 S로 이루어지는 그룹에서 선택되는 하나 이상의 원소이고,
[화학식 2]
Lia2Cox2M3 y2O2-b2Xb2
상기 화학식 2에서, 0.9≤a2≤1.8, 0.7≤x2≤1, 0≤y2≤0.3, 0.9≤x2+y2≤1.1, 및 0≤b2≤0.1이고, M3은 Al, B, Ba, Ca, Ce, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Se, Si, Sn, Sr, Ti, V, W, Y, Zn 및 Zr로 이루어지는 그룹에서 선택되는 하나 이상의 원소이고, X는 F, P, 및 S로 이루어지는 그룹에서 선택되는 하나 이상의 원소이고,
[화학식 3]
Lia3Fex3M4 y3PO4-b3Xb3
상기 화학식 3에서, 0.9≤a3≤1.8, 0.6≤x3≤1, 0≤y3≤0.4, 및 0≤b3≤0.1이고, M4는 Al, B, Ba, Ca, Ce, Co, Cr, Cu, Mg, Mn, Mo, Ni, Se, Si, Sn, Sr, Ti, V, W, Y, Zn 및 Zr로 이루어지는 그룹에서 선택되는 하나 이상의 원소이고, X는 F, P, 및 S로 이루어지는 그룹에서 선택되는 하나 이상의 원소이며,
[화학식 4]
Lia4Nix4Mny4M5 z4O2-b4Xb4
상기 화학식 4에서, 0.9≤a4≤1.8, 0.8≤x4<1, 0<y4≤0.2, 0≤z4≤0.2, 0.9≤x4+y4+z4≤1.1, 및 0≤b4≤0.1이고 M5은 Al, B, Ba, Ca, Ce, Cr, Fe, Mg, Mo, Nb, Si, Sn, Sr, Ti, V, W, 및 Zr로 이루어지는 그룹에서 선택되는 하나 이상의 원소이고, X는 F, P 및 S로 이루어지는 그룹에서 선택되는 하나 이상의 원소이다.
상기 리튬 전이금속 복합 산화물은 상기 화학식 1로 표시되는 리튬 니켈계 산화물일 수 있고, 예를 들어 고니켈계 산화물일 수 있다. 즉 리튬 전이금속 복합 산화물 중 리튬을 제외한 금속 100 몰%에 대한 니켈의 함량은 80 몰% 이상, 또는 90 몰% 이상, 또는 91 몰% 이상, 또는 94 몰% 이상일 수 있다. 상기 화학식 1에서 0.8≤x1≤1, 0≤y1≤0.2, 및 0≤z1≤0.2일 수 있으며, 또는 0.9≤x1≤1, 0≤y1≤0.1, 및 0≤z1≤0.1일 수 있고, 또는 0.91≤x1≤1, 0≤y1≤0.09, 및 0≤z1≤0.09일 수 있으며, 0.94≤x1≤1, 0≤y1≤0.06, 및 0≤z1≤0.06일 수 있다. 일 예로, 0.8≤x1<1, 0<y1≤0.2, 및 0≤z1≤0.2이거나 0.9≤x1<1, 0<y1≤0.1, 및 0≤z1≤0.1일 수 있다. 고니켈계 산화물은 높은 용량을 구현할 수 있어 최근 요구되는 고용량 고밀도 전고체 이차 전지에 적용하기에 적절하다. 다만 고니켈계 산화물을 포함하는 양극 활물질은 충방전에 따른 부피 변화가 8% 가량으로 크기 때문에 고체 전해질과 장시간 접촉을 유지하는 것이 어려운데, 일 구현예에 따른 코팅층을 도입함으로써 고체 입자들 간의 장시간 접착력을 구현하면서 리튬 이온의 이동을 원활하게 할 수 있다.
상기 양극 활물질 입자의 평균 입경(D50)은 1 ㎛ 내지 25 ㎛일 수 있고, 예를 들어 2 ㎛ 내지 20 ㎛, 또는 3 ㎛ 내지 18 ㎛일 수 있다. 일 예로, 상기 양극 활물질 입자는 평균 입경(D50)이 1 ㎛ 내지 9 ㎛인 소립자와 평균 입경(D50)이 10 ㎛ 내지 20 ㎛인 대립자를 포함하는 것일 수 있다. 이 경우 소립자와 대립자의 총합 100 중량%에 대하여 상기 소립자는 5 중량% 내지 40 중량%로 포함되고 상기 대립자는 60 중량% 내지 95 중량%로 포함될 수 있으며, 예를 들어 10 중량% 내지 30 중량%로 포함되고 상기 대립자는 70 중량% 내지 90 중량%로 포함될 수 있다. 양극 활물질 입자가 소립자와 대립자의 혼합으로 이루어질 경우 고에너지 밀도의 전지를 구현할 수 있다.
여기서 평균 입경은 주사 전자 현미경 등의 전자 현미경 사진에서 무작위로 20여개의 입자의 크기(지름 또는 장축의 길이)를 측정하여 입도 분포를 얻고, 상기 입도 분포에서 누적 체적이 50 부피%인 입자의 지름(D50)을 평균 입경으로 취한 것일 수 있다.
상기 양극 활물질 입자는 복수의 1차 입자가 응집된 2차 입자 형태이거나, 단입자(single particle) 형태일 수 있으며, 또는 이들의 혼합 형태일 수도 있다.
예를 들어 소립자 및 대립자는 모두 복수의 1차 입자가 응집된 2차 입자 형태일 수 있으며, 이러한 2차 입자는 일종의 다결정(polycrystal) 형태라고 할 수도 있다. 또는 상기 소립자는 단입자 형태이고, 상기 대립자는 복수의 1차 입자가 응집된 2차 입자 형태일 수 있다. 여기서 단입자는 입자 내에 입자 경계(grain boundary)를 가지지 않고 단독으로 존재하며 하나의 입자로 이루어진 것을 의미하고, 모폴로지 상으로 입자들이 상호 응집되지 않은 독립된 상(phase)으로 존재하는 단일 입자, 모노리스(monolith) 구조 또는 단일체 구조 또는 비응집 입자를 의미할 수 있으며, 일 예로 단결정(single crystal)일 수 있다.
한편, 상기 양극 활물질은 상기 양극 활물질 입자와 상기 코팅층 사이에 버퍼층을 더 포함할 수 있다. 상기 버퍼층은 양극 활물질 입자들 사이나 양극 활물질과 고체 전해질 입자 사이의 계면 저항을 낮출 수 있고, 전지의 초기 충방전 효율과 수명 특성을 향상시킬 수 있다.
상기 버퍼층은 리튬 화합물과 금속 산화물을 포함할 수 있다. 상기 리튬 화합물은 리튬을 함유하는 화합물을 의미하고, 상기 금속 산화물은 리튬을 제외한 금속을 포함하는 산화물을 의미한다. 여기서 금속은 일반 금속과 전이금속 및 준금속을 포함하는 개념이다. 상기 금속 산화물에서 상기 금속은 예를 들어 Al, B, Ca, Ce, Cr, Fe, Mg, Mo, Nb, Si, Sn, Sr, Ta, V, W, 및 Zr로 이루어지는 그룹에서 선택되는 하나 이상의 원소일 수 있다. 상기 리튬 화합물은 예를 들어 리튬을 함유하는 탄산염, 수산화물, 산화물 등일 수 있고, 예컨대 Li2CO3, LiOH, 또는 이들의 조합일 수 있다.
상기 버퍼층은 리튬 이온의 이동과 전자 전도를 원활하게 하여 양극 활물질의 성능을 개선하면서, 양극 활물질과 고체 전해질 입자의 계면 저항을 낮추는데 탁월하다. 상기 버퍼층은 비정질(amorphous)일 수 있다. 즉 버퍼층에서 상기 리튬 화합물과 금속 산화물은 비정질일 수 있다. 비정질 화합물이 상기 양극 활물질의 표면에 버퍼층으로 형성될 경우, 양극 활물질의 성능을 저해하지 않으면서 양극 활물질과 고체 전해질 입자 사이의 계면 저항을 낮추어 전고체 이차 전지의 용량 특성과 수명 특성 등을 향상시킬 수 있다.
상기 버퍼층의 두께는 대략 1 nm 내지 20 nm일 수 있고, 예를 들어 2 nm 내지 15 nm, 또는 5 nm 내지 10 nm일 수 있다. 상기 버퍼층은 이와 같이 매우 얇은 두께로 형성되어 양극 활물질의 성능을 저해하지 않으면서 고체 입자들 간의 계면 저항을 효과적으로 낮출 수 있다.
양극 활물질의 제조 방법
일 구현예에서는 유기물과 리튬염을 혼합하여 복합체를 제조하고, 리튬 전이금속 복합 산화물을 포함하는 양극 활물질 입자와 상기 복합체를 혼합하고 건조하여 상기 양극 활물질 입자의 표면에 상기 복합체를 코팅하는 것을 포함하고, 상기 유기물은 알킬렌 글리콜 단위를 함유하는 (메타)아크릴레이트, 알킬렌 글리콜 단위를 함유하는 에테르, 또는 이들의 조합을 포함하는, 양극 활물질의 제조 방법을 제공한다. 이러한 방법을 이용하여 전술한 코팅된 양극 활물질을 제조할 수 있다.
유기물, 리튬염, 및 양극 활물질 입자에 대한 내용은 전술한 바와 같으므로 자세한 설명은 생략한다.
상기 유기물은 상기 양극 활물질 입자 100 중량부에 대하여 0.05 중량부 내지 5 중량부로 혼합될 수 있고, 예를 들어 0.05 중량부 내지 4 중량부, 0.1 중량부 내지 3 중량부, 또는 0.5 중량부 내지 2 중량부로 혼합될 수 있다.
또한 상기 리튬염은 상기 양극 활물질 입자 100 중량부에 대하여 0.05 중량부 내지 5 중량부로 혼합될 수 있고, 예를 들어 0.05 중량부 내지 4 중량부, 0.1 중량부 내지 3 중량부, 또는 0.5 중량부 내지 2 중량부로 혼합될 수 있다.
상기 유기물과 리튬염의 중량비는 2:8 내지 9:1일 수 있고, 예를 들어 2:8 내지 8:2, 3:7 내지 7:3, 또는 2:8 내지 6:4일 수 있다. 상기 건조는 60℃ 내지 150℃의 온도 범위에서 진행될 수 있으며 1 시간 내지 48시간 동안 진행될 수 있다.
일 구현예에 따른 코팅 과정은 습식 코팅법 또는 고상 코팅법일 수 있다. 예를 들어, 용매에 상기 유기물과 상기 리튬염을 용해시킨 후 양극 활물질 입자를 투입하고 혼합한 뒤 건조함으로써 코팅을 진행할 수 있다. 습식 코팅법을 적용함으로써 두께가 얇으면서 균일한 코팅층을 형성할 수 있다. 또는 양극 활물질 입자와 상기 유기물 및 리튬염은 용매 없이, 예를 들어 씽키 믹서 등에서 혼합되는 것일 수 있다. 고상 코팅법을 적용할 경우 양극 활물질의 손상 없이 적절한 두께의 코팅층을 형성할 수 있다.
전고체 이차 전지용 양극
일 구현예에서는 전술한 양극 활물질, 및 황화물계 고체 전해질을 포함하는 전고체 이차 전지용 양극을 제공한다. 구체적으로, 일 구현예에 따른 양극은 집전체, 및 상기 집전체 상에 위치하는 양극 활물질 층을 포함하고, 상기 양극 활물질 층은 전술한 양극 활물질과 황화물계 고체 전해질을 포함하며 선택적으로 도전재 및/또는 바인더를 포함할 수 있다. 전술한 양극 활물질은 특정한 유기물과 리튬염을 포함하는 코팅층이 표면에 형성되어 있는 것으로서, 상기 코팅층은 황화물계 고체 전해질과의 반응성이 없으면서 내산화성이 높고 접착력이 높으며 리튬 이온 전도도가 높아, 황화물계 고체 전해질을 적용한 전고체 이차 전지의 양극에 적용하기에 적합하다.
황화물계 고체 전해질
상기 황화물계 고체 전해질은 예를 들어 Li2S-P2S5, Li2S-P2S5--LiX(X는 할로겐 원소이고, 예를 들면 I, 또는 Cl임), Li2S-P2S5-Li2O, Li2S-P2S5-Li2O-LiI, Li2S-SiS2, Li2S-SiS2-LiI, Li2S-SiS2-LiBr, Li2S-SiS2-LiCl, Li2S-SiS2-B2S3-LiI, Li2S-SiS2-P2S5-LiI, Li2S-B2S3, Li2S-P2S5-ZmSn(m, n은 각각 정수이고, Z는 Ge, Zn 또는 Ga임), Li2S-GeS2, Li2S-SiS2-Li3PO4, Li2S-SiS2-LipMOq(p, q는 정수이고, M은 P, Si, Ge, B, Al, Ga 또는 In임), 또는 이들의 조합을 포함할 수 있다.
이러한 황화물계 고체 전해질은 일 예로 Li2S와 P2S5를 50:50 내지 90:10의 몰비, 또는 50:50 내지 80:20의 몰비로 혼합하고 선택적으로 열처리하여 얻을 수 있다. 상기 혼합비 범위에서, 우수한 이온 전도도를 가지는 황화물계 고체 전해질을 제조할 수 있다. 여기에 다른 성분으로서 SiS2, GeS2, B2S3 등을 더 포함시켜 이온 전도도를 더욱 향상시킬 수도 있다.
황화물계 고체 전해질을 제조하기 위한 황 함유 원료의 혼합 방법으로는 기계적 밀링이나 용액법을 적용할 수 있다. 기계적 밀링은 볼 밀 반응기 내 출발 원료를 넣어 강하게 교반하여 출발 원료를 미립자화하여 혼합시키는 방법이다. 용액법을 이용하는 경우 용매 내에서 출발 원료를 혼합시켜 석출물로서 고체 전해질을 얻을 수 있다. 또한 혼합 이후 열처리하는 경우 고체 전해질의 결정은 더욱 견고해질 수 있고 이온 전도도를 향상시킬 수 있다. 일 예로, 황화물계 고체 전해질은 황 함유 원료를 혼합하고 2번 이상 열처리하여 제조될 수 있으며, 이 경우 이온 전도도가 높고 견고한 황화물계 고체 전해질을 제조할 수 있다.
일 구현에 따른 황화물계 고체 전해질은 일 예로 황 함유 원료를 혼합하고 120℃ 내지 350℃로 소성하는 제1 열처리 및 제1 열처리 결과물을 혼합하고 350℃ 내지 800℃로 소성하는 제2 열처리를 통해 제조될 수 있다. 제1 열처리와 제2 열처리는 각각 비활성 기체 혹은 질소 분위기에서 진행될 수 있다. 제1 열처리는 1 시간 내지 10 시간 동안 수행될 수 있고, 제2 열처리는 5 시간 내지 20 시간동안 수행될 수 있다. 제1 열처리를 통해 작은 원료들을 밀링하는 효과를 얻을 수 있고 제2 열처리를 통해 최종 고체 전해질이 합성될 수 있다. 이와 같은 2차례 이상의 열처리를 통해 이온 전도도가 높고 견고한 고성능의 황화물계 고체 전해질을 얻을 수 있으며, 이 같은 고체 전해질은 양산에 적합하다고 할 수 있다. 제1 열처리의 온도는 예를 들어 150℃ 내지 330℃, 혹은 200℃ 내지 300℃일 수 있고, 제2 열처리의 온도는 예를 들어 380℃ 내지 700℃, 또는 400℃ 내지 600℃일 수 있다.
일 예로, 상기 황화물계 고체 전해질은 아지로다이트(argyrodite)형 황화물을 포함할 수 있다. 상기 아지로다이트형 황화물은 예를 들어 LiaMbPcSdAe(a, b, c, d 및 e는 모두 0 이상 12 이하, M은 Ge, Sn, Si 또는 이들의 조합이고, A는 F, Cl, Br, 또는 I임)의 화학식으로 표현될 수 있고, 구체적인 예로 Li7-xPS6-xAx(x는 0.2 이상 1.8 이하이고, A는 F, Cl, Br, 또는 I임)의 화학식으로 표현될 수 있다. 상기 아지로다이트형 황화물은 구체적으로 Li3PS4, Li7P3S11, Li7PS6, Li6PS5Cl, Li6PS5Br, Li5.8PS4.8Cl1.2, Li6.2PS5.2Br0.8 등일 수 있다.
이러한 아지로다이트형 황화물을 포함하는 황화물계 고체 전해질은 상온에서 일반적인 액체 전해질의 이온 전도도인 10-4 내지 10-2 S/cm 범위에 근접한 높은 이온 전도도를 가지고 있고, 이온 전도도의 감소를 유발하지 않으면서 양극 활물질과 고체 전해질 간의 긴밀한 결합을 형성할 수 있고, 나아가 전극 층과 고체 전해질 층 간에 긴밀한 계면을 형성할 수 있다. 이를 포함하는 전고체 이차 전지는 율 특성, 쿨롱 효율, 및 수명 특성과 같은 전지 성능이 향상될 수 있다.
아지로다이트형 황화물계 고체 전해질은 예를 들어 황화리튬과 황화인, 선택적으로 할로겐화리튬을 혼합하여 제조할 수 있다. 이들을 혼합한 후 열처리를 진행할 수도 있다. 상기 열처리는 예를 들어 2차례 이상의 열처리 단계를 포함할 수 있다. 여기서 아지로다이트형 황화물계 고체 전해질을 제조하는 것은, 일 예로, 원료를 혼합하고 120℃ 내지 350℃로 소성하는 제1 열처리 및 제1 열처리 결과물을 다시 혼합하고 350℃ 내지 800℃로 소성하는 제2 열처리를 포함할 수 있다.
상기 황화물계 고체 전해질 입자의 평균 입경(D50)은 예를 들어, 0.1 ㎛ 내지 5.0 ㎛일 수 있으며, 0.1 ㎛ 내지 1.9 ㎛의 소립자이거나, 2.0 ㎛ 내지 5.0 ㎛의 대립자일 수 있다. 일 예로 상기 양극에 포함되는 황화물계 고체 전해질의 평균 입경(D50)은 약 0.1 ㎛ 내지 1.9 ㎛일 수 있고, 이는 고체 전해질 층에 포함되는 고체 전해질의 평균 입경보다 작은 것일 수 있다. 상기 평균 입경 범위를 만족하는 고체 전해질은 양극 활물질 사이에 효과적으로 침투할 수 있으며, 양극 활물질과의 접촉성 및 고체 전해질 입자들 간의 연결성이 우수하다. 여기서 평균 입경은 전자 현미경 이미지로 측정된 것일 수 있고, 예를 들어 주사 전자 현미경 이미지에서 약 20 여개의 입자의 크기(직경 혹은 장축의 길이)를 측정하여 입도 분포를 얻고 여기서 D50을 계산한 것일 수 있다.
상기 양극 활물질 층 총 중량에 대하여, 상기 고체 전해질은 0.1 중량% 내지 35 중량%로 포함될 수 있고, 예를 들어 1 중량% 내지 35 중량%, 5 중량% 내지 30 중량%, 8 중량% 내지 25 중량%, 또는 10 중량% 내지 20 중량%로 포함될 수 있다.
또한 상기 양극 활물질 층에서 양극 활물질과 고체 전해질의 총 중량에 대하여, 양극 활물질 65 중량% 내지 99 중량% 및 고체 전해질 1 중량% 내지 35 중량%가 포함될 수 있고, 예를 들어 양극 활물질 80 중량% 내지 90 중량% 및 고체 전해질 10 중량% 내지 20 중량%가 포함될 수 있다. 상기 고체 전해질이 이와 같은 함량으로 양극 내 포함될 경우, 용량을 저하시키지 않으면서 전고체 전지의 효율과 수명 특성을 향상시킬 수 있다.
도전재
상기 도전재는 전극에 도전성을 부여하기 위해 사용되는 것으로서, 구성되는 전지에 있어서, 화학변화를 야기하지 않고 전자 전도성 재료이면 어떠한 것도 사용 가능하며, 그 예로 천연 흑연, 인조 흑연, 카본 블랙, 아세틸렌 블랙, 케첸블랙, 탄소섬유, 탄소나노섬유, 탄소나노튜브, 등의 탄소계 물질; 구리, 니켈, 알루미늄, 은 등을 함유하고 금속 분말 또는 금속 섬유 형태의 금속계 물질; 폴리페닐렌 유도체 등의 도전성 폴리머; 또는 이들의 혼합물을 포함하는 도전성 재료를 사용할 수 있다.
상기 양극 활물질층에서 도전재의 함량은 양극 활물질층 전체 중량에 대하여 0.1 중량% 내지 5 중량%일 수 있다.
바인더
일 구현예에 따른 양극은 유기물로 코팅된 전술한 양극 활물질을 포함함으로써 별도의 바인더를 사용하지 않더라도 고체 입자 간의 우수한 접착력을 구현할 수 있다. 특히 불소계 바인더는 전고체 이차 전지 내 양극에서 리튬의 이동을 제한할 수 있는데, 일 구현예에서는 불소계 바인더를 포함하지 않더라도 뛰어난 접착력을 구현할 수 있다. 즉 일 구현예에 따른 전고체 이차 전지용 양극은 불소계 바인더를 포함하지 않는 양극이라고 할 수 있다.
다만, 상기 양극은 필요에 따라 다양한 바인더를 더 포함할 수도 있다. 상기 바인더는 예를 들어 폴리비닐알콜, 카르복시메틸셀룰로즈, 히드록시프로필셀룰로즈, 디아세틸셀룰로즈, 에틸렌 옥사이드를 포함하는 폴리머, 폴리비닐피롤리돈, 폴리우레탄, 폴리에틸렌, 폴리프로필렌, 폴리알킬(메타)아크릴레이트, 스티렌-부타디엔 고무, 아크릴레이티드 스티렌-부타디엔 고무, 니트릴-부타디엔 고무, 수소화된 니트릴-부타디엔 고무, 아크릴 고무, 천연고무, 에폭시 수지, 나일론 등일 수 있다.
상기 양극 활물질층에서 바인더의 함량은 양극 활물질층 전체 중량에 대하여 대략 0.1 중량% 내지 5 중량%일 수 있다.
상기 양극 집전체로는 알루미늄 박, 또는 SUS 등의 스테인리스 강철 박을 사용할 수 있으나 이에 한정되는 것은 아니다.
전고체 이차 전지
일 구현예에서는 전술한 양극과 음극 및 상기 양극과 음극 사이에 위치하는 고체 전해질 층을 포함하는 전고체 이차 전지를 제공한다. 상기 전고체 이차 전지는 전고체 전지, 전고체 리튬 이차 전지 등으로 표현될 수 있다.
도 1은 일 구현예에 따른 전고체 이차 전지의 단면도이다. 도 1을 참고하면, 전고체 이차 전지(100)는 음극 집전체(401)와 음극 활물질 층(403)을 포함하는 음극(400), 고체 전해질 층(300), 및 양극 활물질 층(203)과 양극 집전체(201)를 포함하는 양극(200)이 적층된 전극 조립체가 파우치 등의 케이스에 수납된 구조일 수 있다. 상기 전고체 이차 전지(100)는 양극(200)과 음극(400) 중 적어도 하나의 외측에 탄성층(500)을 더 포함할 수 있다. 도 1에는 음극(400), 고체 전해질 층(300) 및 양극(200)을 포함하는 하나의 전극 조립체가 도시되어 있으나 2개 이상의 전극 조립체를 적층하여 전고체 이차 전지를 제작할 수도 있다.
음극
전고체 이차 전지용 음극은 집전체, 및 이 집전체 상에 위치하는 음극 활물질층을 포함한다. 상기 음극 활물질 층은 음극 활물질을 포함하고, 바인더 및/또는 도전재를 더 포함할 수 있다.
상기 음극 활물질은 리튬 이온을 가역적으로 인터칼레이션/디인터칼레이션할 수 있는 물질, 리튬 금속, 리튬 금속의 합금, 리튬에 도프 및 탈도프 가능한 물질 또는 전이 금속 산화물을 포함한다.
상기 리튬 이온을 가역적으로 인터칼레이션/디인터칼레이션할 수 있는 물질로는 탄소계 음극 활물질로, 예를 들어 결정질 탄소, 비정질 탄소 또는 이들의 조합을 포함할 수 있다. 상기 결정질 탄소의 예로는 무정형, 판상형, 린편상(flake), 구형 또는 섬유형의 천연 흑연 또는 인조 흑연과 같은 흑연을 들 수 있고, 상기 비정질 탄소의 예로는 소프트 카본 또는 하드 카본, 메조페이스 피치 탄화물, 소성된 코크스 등을 들 수 있다.
상기 리튬 금속의 합금으로는 리튬과 Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Si, Sb, Pb, In, Zn, Ba, Ra, Ge, Al 및 Sn으로 이루어진 군에서 선택되는 금속의 합금이 사용될 수 있다.
상기 리튬에 도프 및 탈도프 가능한 물질로는 Si계 음극 활물질 또는 Sn계 음극 활물질을 사용할 수 있으며, 상기 Si계 음극 활물질로는 실리콘, 실리콘-탄소 복합체, SiOx(0 < x < 2), Si-Q 합금(상기 Q는 알칼리 금속, 알칼리 토금속, 13족 원소, 14족 원소, 15족 원소, 16족 원소, 전이금속, 희토류 원소 및 이들의 조합으로 이루어진 군에서 선택되는 원소이며, Si은 아님), 상기 Sn계 음극 활물질로는 Sn, SnO2, Sn-R 합금(상기 R은 알칼리 금속, 알칼리 토금속, 13족 원소, 14족 원소, 15족 원소, 16족 원소, 전이금속, 희토류 원소 및 이들의 조합으로 이루어진 군에서 선택되는 원소이며, Sn은 아님) 등을 들 수 있고, 또한 이들 중 적어도 하나와 SiO2를 혼합하여 사용할 수도 있다. 상기 원소 Q 및 R로는 Mg, Ca, Sr, Ba, Ra, Sc, Y, Ti, Zr, Hf, Rf, V, Nb, Ta, Db, Cr, Mo, W, Sg, Tc, Re, Bh, Fe, Pb, Ru, Os, Hs, Rh, Ir, Pd, Pt, Cu, Ag, Au, Zn, Cd, B, Al, Ga, Sn, In, Tl, Ge, P, As, Sb, Bi, S, Se, Te, Po, 및 이들의 조합으로 이루어진 군에서 선택되는 것을 사용할 수 있다.
일 예로 음극 활물질은 실리콘-탄소 복합체 입자를 포함할 수 있다. 상기 실리콘-탄소 복합체 입자의 평균 입경(D50)은 예를 들어 0.5 ㎛ 내지 20 ㎛일 수 있다. 상기 평균 입경(D50)은 입도 분석기로 측정한 것으로서 입도 분포에서 누적 체적이 50 부피%인 입자의 지름을 의미한다. 상기 실리콘-탄소 복합체 입자 100 중량%에 대하여, 실리콘은 10 중량% 내지 60 중량%로 포함되고 탄소는 40 중량% 내지 90 중량%로 포함될 수 있다. 상기 실리콘-탄소 복합체 입자는 예를 들어, 실리콘 입자를 포함하는 코어, 및 상기 코어의 표면에 위치하는 탄소 코팅층을 포함할 수 있다. 상기 코어에서 실리콘 입자의 평균 입경(D50)은 10 nm 내지 1 ㎛, 혹은 10 nm 내지 200nm일 수 있다. 상기 실리콘 입자는 실리콘 단독으로 존재하거나, 실리콘 합금 형태이거나, 혹은 산화된 형태로 존재할 수도 있다. 실리콘의 산화된 형태는 SiOx (0<x<2)로 표시될 수 있다. 또한, 상기 탄소 코팅층의 두께는 약 5 nm 내지 100 nm일 수 있다.
일 예로, 상기 실리콘-탄소 복합체 입자는 실리콘 입자와 결정질 탄소를 포함하는 코어, 및 상기 코어의 표면에 위치하고 비정질 탄소를 포함하는 탄소 코팅층을 포함할 수 있다. 일 예로, 상기 실리콘-탄소 복합체 입자에서 비정질 탄소는 코어에는 존재하지 않고 탄소 코팅층에만 존재하는 것일 수 있다. 상기 결정질 탄소는 인조 흑연, 천연 흑연 또는 이들의 조합일 수 있고, 상기 비정질 탄소는 석탄계 핏치, 메조페이스 핏치, 석유계 핏치, 석탄계 오일, 석유계 중질유 또는 고분자 수지(페놀 수지, 퓨란 수지, 폴리이미드 수지 등)로부터 형성된 것일 수 있다. 이때, 상기 실리콘-탄소 복합체 입자 100 중량%에 대하여 상기 결정질 탄소의 함량은 10 중량% 내지 70 중량%일 수 있고, 상기 비정질 탄소의 함량은 20 중량% 내지 40 중량%일 수 있다.
상기 실리콘-탄소 복합체 입자에서 코어는 중앙부에 공극을 포함할 수 있다. 상기 공극의 반지름은 상기 실리콘-탄소 복합체 입자 반지름의 30 길이% 내지 50 길이%일 수 있다.
전술한 실리콘-탄소 복합체 입자는 충방전에 따른 부피 팽창이나 구조 붕괴 또는 입자 파쇄 등의 문제가 효과적으로 억제되어, 전도성 경로가 단절되는 현상을 막을 수 있고, 고용량 및 고효율을 구현할 수 있으며 고전압이나 고속 충전 조건에 사용되기에 유리하다.
상기 Si계 음극 활물질 또는 Sn계 음극 활물질은 탄소계 음극 활물질과 혼합하여 사용될 수 있다. Si계 음극 활물질 또는 Sn계 음극 활물질과 탄소계 음극 활물질을 혼합 사용시, 그 혼합비는 중량비로 1:99 내지 90:10일 수 있다.
상기 음극 활물질층에서 음극 활물질의 함량은 음극 활물질 층 전체 중량에 대하여 95 중량% 내지 99 중량%일 수 있다.
일 구현예에서 상기 음극 활물질층은 바인더를 더 포함하며, 선택적으로 도전재를 더욱 포함할 수 있다. 상기 음극 활물질층에서 바인더의 함량은 음극 활물질층 전체 중량에 대하여 1 중량% 내지 5 중량%일 수 있다. 또한 도전재를 더욱 포함하는 경우 상기 음극 활물질층은 음극 활물질을 90 중량% 내지 98 중량%, 바인더를 1 중량% 내지 5 중량%, 도전재를 1 중량% 내지 5 중량% 포함할 수 있다.
상기 바인더는 음극 활물질 입자들을 서로 잘 부착시키고, 또한 음극 활물질을 전류 집전체에 잘 부착시키는 역할을 한다. 상기 바인더로는 비수용성 바인더, 수용성 바인더 또는 이들의 조합을 사용할 수 있다.
상기 비수용성 바인더로는 폴리비닐클로라이드, 카르복실화된 폴리비닐클로라이드, 폴리비닐플루오라이드, 에틸렌 옥사이드를 포함하는 폴리머, 에틸렌 프로필렌 공중합체, 폴리스티렌, 폴리비닐피롤리돈, 폴리우레탄, 폴리테트라플루오로에틸렌, 폴리비닐리덴 플루오라이드, 폴리에틸렌, 폴리프로필렌, 폴리아미드이미드, 폴리이미드 또는 이들의 조합을 들 수 있다.
상기 수용성 바인더로는 고무계 바인더 또는 고분자 수지 바인더를 들 수 있다. 상기 고무계 바인더는 스티렌-부타디엔 러버, 아크릴레이티드 스티렌-부타디엔 러버, 아크릴로나이트릴-부타디엔 러버, 아크릴 고무, 부틸고무, 불소고무, 및 이들의 조합에서 선택되는 것일 수 있다. 상기 고분자 수지 바인더는 폴리에틸렌옥시드, 폴리비닐피롤리돈, 폴리에피크로로히드린, 폴리포스파젠, 폴리아크릴로니트릴, 에틸렌프로필렌디엔공중합체, 폴리비닐피리딘, 클로로설폰화폴리에틸렌, 라텍스, 폴리에스테르수지, 아크릴수지, 페놀수지, 에폭시 수지, 폴리비닐알콜으로 및 이들의 조합에서 선택되는 것일 수 있다.
상기 음극 바인더로 수용성 바인더를 사용하는 경우, 일종의 증점제로서점성을 부여할 수 있는 셀룰로즈 계열 화합물을 더욱 포함할 수 있다. 이 셀룰로즈 계열 화합물로는 카르복시메틸 셀룰로즈, 하이드록시프로필메틸 셀룰로즈, 메틸 셀룰로즈, 또는 이들의 알칼리 금속염 등을 1종 이상 혼합하여 사용할 수 있다. 상기 알칼리 금속으로는 Na, K 또는 Li를 사용할 수 있다. 이러한 증점제 사용 함량은 음극 활물질 100 중량부에 대하여 0.1 중량부 내지 3 중량부일 수 있다.
상기 도전재는 전극에 도전성을 부여하기 위해 사용되는 것으로서, 구성되는 전지에 있어서, 화학변화를 야기하지 않고 전자 전도성 재료이면 어떠한 것도 사용 가능하며, 그 예로 천연 흑연, 인조 흑연, 카본 블랙, 아세틸렌 블랙, 케첸블랙, 탄소섬유, 탄소나노섬유, 탄소나노튜브 등의 탄소계 물질; 구리, 니켈, 알루미늄, 은 등을 포함하고 금속 분말 또는 금속 섬유 형태의 금속계 물질; 폴리페닐렌 유도체 등의 도전성 폴리머; 또는 이들의 혼합물을 포함하는 도전성 재료를 사용할 수 있다.
상기 음극 집전체로는 구리 박, 니켈 박, 스테인레스강 박, 티타늄 박, 니켈 발포체(foam), 구리 발포체, 전도성 금속이 코팅된 폴리머 기재, 및 이들의 조합으로 이루어진 군에서 선택되는 것을 사용할 수 있다.
다른 일 예로서, 전고체 이차 전지용 음극은 석출형 음극일 수 있다. 상기 석출형 음극은 전지 조립 시에는 음극 활물질을 포함하지 않으나 전지 충전 시 음극에 리튬 금속 등이 석출 또는 전착되어 이것이 음극 활물질의 역할을 하는 음극을 의미할 수 있다.
도 2는 석출형 음극을 포함하는 전고체 이차 전지의 개략적인 단면도이다. 도 2를 참고하면, 상기 석출형 음극(400’)은 집전체(401) 및 상기 집전체 상에 위치하는 음극 코팅층(405)을 포함할 수 있다. 이러한 석출형 음극(400’)을 가지는 전고체 이차 전지는 음극 활물질이 존재하지 않는 상태에서 초기 충전이 시작되고, 충전시 집전체(401)와 음극 코팅층(405) 사이, 혹은 음극 코팅층(405) 상에 고밀도의 리튬 금속이 석출 또는 전착되어 리튬 금속층(404)이 형성되며, 이것이 음극 활물질의 역할을 할 수 있다. 이에 따라, 1회 이상의 충전이 진행된 전고체 이차 전지에서 상기 석출형 음극(400’)은 예를 들어 집전체(401), 상기 집전체 상에 위치하는 리튬 금속층(404) 및 상기 금속층 상에 위치하는 음극 코팅층(405)을 포함할 수 있다. 상기 리튬 금속층(404)은 전지의 충전 과정에서 리튬 금속 등이 석출된 층을 의미하며 금속층, 리튬층, 리튬전착층 또는 음극 활물질층 등으로 칭할 수 있다.
상기 음극 코팅층(405)은 리튬 전착 유도층, 또는 음극 촉매층이라고 할 수도 있으며, 촉매 역할을 하는 금속, 탄소재, 또는 이들의 조합을 포함할 수 있다.
상기 금속은 친리튬성 금속일 수 있고, 예를 들어 금, 백금, 팔라듐, 실리콘, 은, 알루미늄, 비스무스, 주석, 아연, 또는 이들의 조합을 포함할 수 있고, 이들 중 1종으로 구성되거나 또는 여러 종류의 합금으로 구성될 수도 있다. 상기 금속이 입자 형태로 존재하는 경우 그 평균 입경(D50)은 약 4 ㎛ 이하일 수 있고 예를 들어 10 nm 내지 4 ㎛일 수 있다.
상기 탄소재는 예를 들어 결정질 탄소, 비정질 탄소, 또는 이들의 조합일 수 있다. 상기 결정질 탄소는 예를 들어 천연 흑연, 인조 흑연, 메조페이스카본 마이크로비드, 또는 이들의 조합일 수 있다. 상기 비정질 탄소는 예를 들어 카본 블랙, 활성탄, 아세틸렌 블랙, 덴카 블랙, 케첸 블랙, 또는 이들의 조합일 수 있다.
상기 음극 코팅층(405)이 상기 금속과 상기 탄소재를 모두 포함하는 경우, 금속과 탄소재의 혼합 비율은 예를 들어 1:10 내지 2:1의 중량비일 수 있다. 이 경우 효과적으로 리튬 금속의 석출을 촉진할 수 있고 전고체 이차 전지의 특성을 향상시킬 수 있다. 상기 음극 코팅층(405)은 예를 들어 촉매 금속이 담지된 탄소재를 포함할 수 있고, 또는 금속 입자 및 탄소재 입자의 혼합물을 포함할 수 있다.
상기 음극 코팅층(405)는 일 예로 상기 친리튬성 금속과 비정질 탄소를 포함할 수 있으며, 이 경우 리튬 금속의 석출을 효과적으로 촉진할 수 있다. 구체적인 예로 음극 코팅층(405)는 비정질 탄소에 친리튬성 금속이 담지된 형태의 복합체를 포함할 수 있다.
상기 음극 코팅층(405)은 바인더를 더 포함할 수 있고, 상기 바인더는 일예로 전도성 바인더일 수 있다. 또한 상기 음극 코팅층(405)은 일반적인 첨가제인 필러, 분산제, 이온 도전제 등을 더 포함할 수 있다.
상기 음극 코팅층(405)의 두께는 예를 들어 100 nm 내지 20 ㎛, 또는 500 nm 내지 10 ㎛, 또는 1 ㎛ 내지 5 ㎛일 수 있다.
상기 석출형 음극(400’)은 일 예로 상기 집전체의 표면에, 즉 집전체와 음극 코팅층 사이에 박막을 더 포함할 수 있다. 상기 박막은 리튬과 합금을 형성할 수 있는 원소를 포함할 수 있다. 리튬과 합금을 형성할 수 있는 원소는 예를 들어 금, 은, 아연, 주석, 인듐, 규소, 알루미늄, 비스무스 등일 수 있고 이들 중 1종으로 구성되거나 여러 종류의 합금으로 구성될 수도 있다. 상기 박막은 리튬 금속층(404)의 석출 형태를 더욱 평탄화할 수 있고 전고체 이차 전지의 특성을 더욱 향상시킬 수 있다. 상기 박막은 예를 들어 진공 증착법, 스퍼터링 법, 도금법 등의 방법으로 형성될 수 있다. 상기 박막의 두께는 예를 들어 1 nm 내지 500 nm일 수 있다.
상기 리튬 금속층(404)은 리튬 금속 또는 리튬 합금을 포함할 수 있다. 상기 리튬 합금은 예를 들어 Li-Al 합금, Li-Sn 합금, Li-In 합금, Li-Ag 합금, Li-Au 합금, Li-Zn 합금, Li-Ge 합금, 또는 Li-Si 합금 등일 수 있다.
상기 리튬 금속층(404)의 두께는 1㎛ 내지 500㎛, 1㎛ 내지 200㎛, 1㎛ 내지 100㎛, 또는 1㎛m 내지 50㎛일 수 있다. 리튬 금속층(404)의 두께가 너무 얇으면 리튬 저장고의 역할을 수행하기 어렵고 너무 두꺼우면 전지 부피가 증가하면서 성능이 저하될 수 있다.
이러한 석출형 음극을 적용할 경우, 상기 음극 코팅층(405)이 리튬 금속층(404)을 보호하는 역할을 하면서 리튬 덴드라이트의 석출 성장을 억제하는 역할을 할 수 있다. 이에 따라 전고체 전지의 단락 및 용량 저하가 억제되며 수명 특성이 향상될 수 있다.
고체 전해질 층
고체 전해질 층(300)은 고체 전해질 입자와 선택적으로 바인더를 포함할수 있다. 상기 고체 전해질 입자는 황화물계 고체 전해질, 산화물계 고체 전해질 등을 포함할 수 있다. 황화물계 고체 전해질에 대한 내용은 전술한 바와 같으므로 자세한 설명은 생략한다.
상기 산화물계 고체 전해질은 예를 들어 Li1+xTi2-xAl(PO4)3(LTAP)(0≤x≤4), Li1+x+yAlxTi2-xSiyP3-yO12(0<x<2, 0≤y<3), BaTiO3, Pb(Zr,Ti)O3(PZT), Pb1-xLaxZr1-yTiyO3(PLZT)(0≤x<1, 0≤y<1), PB(Mg3Nb2/3)O3-PbTiO3(PMN-PT), HfO2, SrTiO3, SnO2, CeO2, Na2O, MgO, NiO, CaO, BaO, ZnO, ZrO2, Y2O3, Al2O3, TiO2, SiO2, 리튬포스페이트(Li3PO4), 리튬티타늄포스페이트(LixTiy(PO4)3, 0<x<2, 0<y<3), Li1+x+y(Al, Ga)x(Ti, Ge)2-xSiyP3-yO12(0≤x≤1, 0≤y≤1), 리튬란탄티타네이트(LixLayTiO3, 0<x<2, 0<y<3), Li2O, LiAlO2, Li2O-Al2O3-SiO2-P2O5-TiO2-GeO2계 세라믹스, 가넷(Garnet)계 세라믹스 Li3+xLa3M2O12(M= Ta, Te, Nb, Zr, 또는 이들의 조합; x는 1 내지 10의 정수임), 또는 이들의 혼합물을 포함할 수 있다.
한편, 고체 전해질 층(300)에 포함되는 고체 전해질의 평균 입경(D50)은 양극(200)에 포함되는 고체 전해질의 평균 입경(D50)보다 큰 것일 수 있다. 이 경우 전고체 이차 전지의 에너지 밀도를 극대화하면서 리튬 이온의 이동성을 높여 전반적인 성능을 향상시킬 수 있다. 예를 들어 양극(200)에 포함되는 고체 전해질의 평균 입경(D50)은 0.1 ㎛ 내지 1.9 ㎛, 또는 0.1 ㎛ 내지 1.0 ㎛일 수 있고, 고체 전해질 층(300)에 포함되는 고체 전해질의 평균 입경(D50)은 2.0 ㎛ 내지 5.0 ㎛, 또는 2.0 ㎛ 내지 4.0 ㎛, 또는 2.5 ㎛ 내지 3.5 ㎛일 수 있다. 이 같은 입경 범위를 만족하는 경우 전고체 이차 전지의 에너지 밀도를 극대화하면서 리튬 이온의 전달이 용이하여 저항이 억제되고 이에 따라 전고체 이차 전지의 전반적인 성능이 향상될 수 있다. 여기서 고체 전해질의 평균 입경(D50)은 레이저 회절법을 이용한 입도 분석기를 통해 측정된 것일 수 있다.
상기 고체 전해질 층은 고체 전해질 입자 이외에 바인더를 더욱 포함할 수도 있다. 이때 바인더로는 스티렌 부타디엔 러버, 폴리테트라플루오로에틸렌, 폴리비닐리덴 플루오라이드, 폴리에틸렌, 아크릴레이트계 고분자 또는 이들의 조합을 사용할 수 있으나, 이에 한정되는 것은 아니며, 당해 기술 분야에서 바인더로 사용되는 것은 어떠한 것도 사용할 수 있다. 상기 아크릴레이트계 고분자는 예를 들어 부틸 아크릴레이트, 폴리아크릴레이트, 폴리메타크릴레이트 또는 이들의 조합일 수 있다.
상기 고체 전해질 층은 고체 전해질을 바인더 용액에 첨가하고, 이를 기재 필름에 코팅하고, 건조하여 형성할 수 있다. 상기 바인더 용액의 용매로는 이소부티릴 이소부티레이트, 자일렌, 톨루엔, 벤젠, 헥산 또는 이들의 조합일 수 있다. 상기 고체 전해질 층 형성 공정은 당해 분야에 널리 알려 져 있기에 자세한 설명은 생략하기로 한다.
상기 고체 전해질 층의 두께는 예를 들어 10 ㎛ 내지 150 ㎛일 수 있다.
상기 고체 전해질 층은 알칼리 금속염, 및/또는 이온성 액체, 및/또는 전도성 고분자를 더 포함할 수 있다.
상기 알칼리 금속염은 예를 들어 리튬염일 수 있다. 상기 고체 전해질 층에서 리튬염의 함량은 1M 이상일 수 있고, 예를 들어, 1M 내지 4M일 수 있다. 이 경우 상기 리튬염은 고체 전해질 층의 리튬 이온 이동도를 향상시킴으로써 이온 전도도를 개선할 수 있다.
상기 리튬염은 예를 들어 LiPF6, LiBF4, LiSbF6, LiAsF6, LiClO4, LiAlO2, LiAlCl4, LiPO2F2, LiCl, LiI, LiSCN, LiN(CN)2, 리튬 비스(옥살레이토)보레이트 (LiBOB), 리튬 디플로오로(옥살레이토)보레이트 (LiDFOB), 리튬 디플루오로비스(옥살레이토)포스페이트 (LiDFBP), 리튬 비스(트리플루오로메탄설포닐)이미드 (LiTFSI), 리튬 비스(플루오로설포닐)이미드 (LiFSI), 리튬 비스(펜타플루오로에탄설포닐)이미드 (LiBETI), 리튬 트리플루오로메탄 설포네이트, 리튬 테트라플루오로에탄 설포네이트, 또는 이들의 조합을 포함할 수 있다.
일 예로 상기 리튬염은 LiTFSI, LiFSI, LiBETI, 또는 이들의 조합인 이미드계 리튬염일 수 있다. 이미드계 리튬염은 이온성 액체와의 화학적 반응성을 적절히 유지함으로써 이온 전도도를 유지 또는 개선시킬 수 있다.
상기 이온성 액체는 상온 이하의 융점을 가지고 있어 상온에서 액체 상태이면서 이온만으로 구성되는 염 또는 상온 용융염을 말한다.
상기 이온성 액체는 a) 암모늄계, 피롤리디늄계, 피리디늄계, 피리미디늄계, 이미다졸륨계, 피페리디늄계, 피라졸륨계, 옥사졸륨계, 피리다지늄계, 포스포늄계, 설포늄계, 트리아졸륨계 및 그 혼합물 중에서 선택된 하나 이상의 양이온과, b) BF4 -, PF6 -, AsF6 -, SbF6 -, AlCl4 -, HSO4 -, ClO4 -, CH3SO3 -, CF3CO2 -, Cl-, Br-, I-, BF4 -, SO4 -, CF3SO3 -, (FSO2)2N-, (C2F5SO2)2N-, (C2F5SO2)(CF3SO2)N-, 및 (CF3SO2)2N- 중에서 선택된 1종 이상의 음이온을 포함하는 화합물일 수 있다.
상기 이온성 액체는 예를 들어 N-메틸-N-프로필피롤디니움 비스(트리플루오로메탄술포닐)이미드, N-부틸-N-메틸피롤리디움 비스(3-트리플루오로메틸술포닐)이미드, 1-부틸-3-메틸이미다졸리움 비스(트리플루오로메틸술포닐)아미드 및 1-에틸-3-메틸이미다졸리움 비스(트리플루오로메틸술포닐)아미드로 이루어진 군으로부터 선택된 하나 이상일 수 있다.
상기 고체 전해질 층에서 고체 전해질과 이온성 액체의 중량비는 0.1:99.9 내지 90:10일 수 있고 예를 들어, 10:90 내지 90:10, 20:80 내지 90:10, 30:70 내지 90:10, 40:60 내지 90:10, 또는 50:50 내지 90:10일 수 있다. 상기 범위를 만족하는 고체 전해질 층은 전극과의 전기화학적 접촉 면적이 향상되어 이온 전도도를 유지 또는 개선할 수 있다. 이에 따라 전고체 이차 전지의 에너지 밀도, 방전용량, 율 특성 등이 개선될 수 있다.
상기 전고체 이차 전지는 양극/고체전해질층/음극의 구조를 갖는 단위 전지, 음극/고체전해질층/양극/고체전해질층/음극의 구조를 갖는 바이셀, 또는 단위 전지의 구조가 반복되는 적층 전지일 수 있다.
상기 전고체 이차 전지의 형상은 특별히 한정되는 것은 아니며, 예를 들어 코인형, 버튼형, 시트형, 적층형, 원통형, 편평형 등일 수 있다. 또한 상기 전고체 이차 전지는 전기 자동차 등에 사용되는 대형 전지에도 적용할 수 있다. 예를 들어, 상기 전고체 이차 전지는 플러그인 하이브리드 차량(plug-in hybrid electric vehicle, PHEV) 등의 하이브리드 차량에도 사용될 수 있다. 또한, 많은 양의 전력 저장이 요구되는 분야에 사용될 수 있고, 예를 들어, 전기 자전거 또는 전동 공구 등에도 사용될 수 있다. 그 외 상기 전고체 이차 전지는 휴대용 전자 기기 등 다양한 분야에 사용될 수 있다.
이하 본 발명의 실시예 및 비교예를 기재한다. 하기한 실시예는 본 발명의 일 예일뿐 본 발명이 하기한 실시예에 한정되는 것은 아니다.
실시예 1
1. 양극 활물질의 제조
LiNi0.944Co0.04Al0.012Mn0.004O2의 조성을 가지고 리튬 지르코늄 산화물의 버퍼층이 형성된 것으로 평균 입경이 약 4㎛인 소립자와 약 18㎛인 대립자를 3:7의 중량비로 혼합한 것을 양극 활물질 입자로 준비하였다.
디에틸카보네이트(DEC) 용매에서 수평균 분자량이 약 700g/mol인 폴리(에틸렌글리콜)디아크릴레이트(PEGDA) 0.5 중량부와 LiTFSI 0.75 중량부를 혼합한 후 준비한 양극 활물질 입자 100 중량부를 투입하여 혼합하였다. 용매를 제거한 후 60℃로 5 min 동안 건조 한 후 80℃에서 2시간 동안 진공 건조하여, 코팅된 양극 활물질을 제조하였다.
2. 양극의 제조
옥틸 아세테이트 용매에서, 제조한 코팅된 양극 활물질 85 중량%, 황화물계 고체 전해질 입자(Li6PS5Cl, D50=0.85㎛) 13.5 중량%, 아크릴계 바인더 1.0 중량%, 및 탄소나노튜브 도전재 0.5 중량%를 혼합하여 양극 조성물을 제조하였다. 이를 SUS 집전체 상에 바코터로 도포한 후 압연 및 건조하여 양극을 제조하였다.
3. 음극의 제조
일차 입경(D50)이 약 30nm 인 카본 블랙과 평균 입경(D50)이 약 60nm인 은(Ag)을 3:1의 중량비로 혼합한 Ag/C 복합체를 준비하고, 폴리비닐리덴 플루오라이드 바인더가 7 중량% 포함된 NMP 용액 2g에 상기 복합체 0.25g을 넣고 혼합하여 음극 코팅층 조성물을 준비하였다. 이를 니켈 박 집전체에 바 코터를 이용하여 도포하고 진공 건조하여, 집전체 상에 음극 코팅층이 형성된 석출형 음극을 준비하였다.
4. 고체 전해질 층의 제조
아크릴계 바인더가 포함된 IBIB 용매에 황화물계 고체 전해질(Li6PS5Cl, D50=3㎛) 및 유기 분산제를 투입하고 혼합하여, 고체 전해질 층 형성용 조성물을 제조하였다. 상기 조성물에는 황화물계 고체 전해질 98.7 중량%, 바인더 1.0 중량% 및 유기 분산제 0.3 중량%가 포함된다. 상기 조성물을 이형 PET 필름 상에 캐스팅하고 상온 건조하여 고체 전해질 층을 제조한다.
5. 전고체 이차 전지의 제조
양극, 고체 전해질 층, 음극 순서로 적층한 후, 이를 파우치 형태로 밀봉하여 80℃에서 500 MPa로 30분간 고온으로, 정수압 프레스하여 전고체 이차 전지를 제조하였다.
비교예 1
유기물과 리튬염으로 코팅을 진행하지 않고, LiNi0.944Co0.04Al0.012Mn0.004O2의 조성을 가지고 리튬 지르코늄 산화물의 버퍼층이 형성된 것으로 평균 입경이 약 4㎛인 소립자와 약 18㎛인 대립자를 3:7의 중량비로 혼합한 것을 양극 활물질로 사용한 것을 제외하고는 실시예 1과 실질적으로 동일한 방법으로 양극 및 전고체 이차 전지를 제조하였다.
비교예 2
양극 활물질 입자에 PEGDA 및 LiTFSI를 코팅하지 않고, 양극 조성물에 PEGDA 및 LiTFSI를 첨가하는 방식을 적용하였다. 즉, 비교예 1의 양극 활물질 85 중량%, 황화물계 고체 전해질 입자(Li6PS5Cl, D50=0.85㎛) 13.5 중량%, 아크릴계 바인더 1.0 중량%, 및 탄소나노튜브 도전재 0.5 중량%를 옥틸 아세테이트 용매에서 혼합하되, 양극 활물질 100 중량부에 대하여 PEGDA 0.5 중량부와 LiTFSI 0.75 중량부를 투입하여 함께 혼합함으로써 비교예 2에 따른 양극 조성물을 만들었다. 이를 집전체 상에 바코터로 도포한 후 압연 및 건조하여 양극을 제조하였다. 이후 과정은 실시예 1과 실질적으로 동일한 방법을 적용하여 전고체 이차 전지를 제조하였다.
비교예 3
PEGDA 대신에 중량 평균 분자량이 1,000 g/mol인 폴리에틸렌글리콜(PEG)을 사용한 것을 제외하고는 실시예 1과 실질적으로 동일한 방법으로 양극 활물질, 및 전고체 이차 전지를 제조하였다.
비교예 4
PEGDA 대신에 중량 평균 분자량이 4,000 g/mol인 에틸헥실 아크릴레이트를 사용한 것을 제외하고는 실시예 1과 실질적으로 동일한 방법으로 양극 활물질, 및 전고체 이차 전지를 제조하였다.
평가예: 수명 특성 평가
실시예 1 및 비교예 1, 2에서 제조한 전지에 대해 45 ℃에서 0.1C의 정전류로 상한 전압 4.25V까지, 정전압으로 0.05C까지 충전 후, 방전 종지 전압 2.5V까지 0.1C로 방전하여 초기 충방전을 진행하였다. 이후, 45℃에서 2.5V 내지 4.25V의 전압 범위에서 0.33C로 충전 및 0.33C로 방전하는 사이클을 100회 반복하여 수명 특성을 평가하였고, 도 3에 사이클 수에 따른 방전 용량을 나타내고, 도 4에 사이클 수에 따른 용량 유지율을 나타냈다. 용량 유지율은 첫번째 사이클에서의 방전 용량에 대한 각 사이클 에서의 방전 용량의 비율을 의미하며 단위는 %이다.
도 3을 참고하면, 50번째 사이클 부근에서 실시예 1과 비교예 1의 방전 용량이 역전되어, 50 사이클 이후부터는 실시예 1의 방전 용량이 비교예 1의 방전 용량보다 높게 나온다는 것을 확인할 수 있다. 도 4를 참고하면, 실시예 1의 용량 유지율은 사이클 전체에서 비교예 1, 2에 비하여 더 높다는 것을 알 수 있다.
한편, 비교예 3의 경우 PEG가 황화물계 고체전해질과 반응성이 있어 전지의 저항이 높아지는 것으로 확인되었으며, 비교예 4의 경우 아크릴계의 내산화성 문제로 전지의 첫 쿨롱 효율이 떨어지고, 수명 특성도 저하되는 것으로 확인된다.
이상 바람직한 실시예들에 대해 상세하게 설명하였지만, 본 발명의 권리 범위는 이에 한정되는 것이 아니고, 다음의 청구 범위에서 정의하고 있는 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리 범위에 속하는 것이다.
[부호의 설명]
100: 전고체 전지 200: 양극
201: 양극 집전체 203: 양극 활물질 층
300: 고체 전해질 층 400: 음극
401: 음극 집전체 403: 음극 활물질 층
400’: 석출형 음극 404: 리튬 금속층
405: 음극 코팅층 500: 탄성층

Claims (32)

  1. 리튬 전이금속 복합 산화물을 포함하는 양극 활물질 입자, 및
    상기 양극 활물질 입자의 표면에 위치하는 코팅층을 포함하고,
    상기 코팅층은 유기물 및 리튬염을 포함하며,
    상기 유기물은 알킬렌 글리콜 단위를 함유하는 (메타)아크릴레이트, 알킬렌 글리콜 단위를 함유하는 에테르, 또는 이들의 조합을 포함하는, 양극 활물질.
  2. 제1항에서,
    상기 알킬렌 글리콜은 에틸렌 글리콜, 프로필렌 글리콜, 또는 네오펜틸 글리콜인 양극 활물질.
  3. 제1항에서,
    상기 알킬렌 글리콜 단위를 함유하는 (메타)아크릴레이트, 알킬렌 글리콜 단위를 함유하는 에테르, 또는 이들의 조합은 폴리(에틸렌 글리콜) 디아크릴레이트 (PEGDA), 폴리(에틸렌 글리콜) 모노아크릴레이트 (PEGMA), 폴리(프로필렌 글리콜) 디아크릴레이트 (PPGDA), 폴리(프로필렌클리콜) 디메타크릴레이트 (PPGDMA), 디(에틸렌 글리콜) 디아크릴레이트 (DEGDA), 트리(에틸렌 글리콜) 디아크릴레이트 (TEGDA), 테트라(에틸렌 글리콜) 디아크릴레이트 (TTEGDA), 디(프로필렌 글리콜) 디아크릴레이트 (DPGDA), 트리(프로필렌 글리콜) 디아크릴레이트 (TPGDA), 에톡실화된 트리메틸올프로판 트리아크릴레이트 (ETPTA), 폴리(에틸렌 글리콜) 메틸 에테르 메타크릴레이트 (PEGDMA), 폴리(에틸렌 글리콜) 디메틸 에테르 (PEGDME; polyglime), 트리(에틸렌 글리콜) 디메틸 에테르 (triglyme), 테트라(에틸렌 글리콜) 디메틸 에테르(TEGDME, tetraglyme), 또는 이들의 조합을 포함하는 양극 활물질.
  4. 제1항에서,
    상기 알킬렌 글리콜 단위를 함유하는 (메타)아크릴레이트, 알킬렌 글리콜 단위를 함유하는 에테르, 또는 이들의 조합은 폴리(에틸렌 글리콜) 디아크릴레이트 (PEGDA), 폴리(에틸렌 글리콜) 모노아크릴레이트 (PEGMA), 폴리(에틸렌 글리콜) 메틸 에테르 메타크릴레이트 (PEGDMA), 폴리(에틸렌 글리콜) 디메틸 에테르 (PEGDME; polyglime), 또는 이들의 조합을 포함하는 양극 활물질.
  5. 제1항에서,
    상기 알킬렌 글리콜 단위를 함유하는 (메타)아크릴레이트, 및 알킬렌 글리콜 단위를 함유하는 에테르는 각각 독립적으로 200 g/mol 내지 2,000 g/mol의 수평균 분자량을 가지는 것인 양극 활물질.
  6. 제1항에서,
    상기 코팅층에서 유기물 및 리튬염의 총합 100 중량%에 대하여 유기물은 20 중량% 내지 90 중량%로 포함되고, 리튬염은 10 중량% 내지 80 중량%로 포함되는 양극 활물질.
  7. 제1항에서,
    상기 유기물과 리튬염의 총함량은 상기 양극 활물질 입자 100 중량부에 대하여 0.1 중량부 내지 10 중량부인 양극 활물질.
  8. 제1항에서,
    상기 양극 활물질 100 중량%에 대하여 상기 유기물은 0.05 중량% 내지 5 중량%로 포함되고, 상기 리튬염은 0.05 중량% 내지 5 중량%로 포함되는 양극 활물질.
  9. 제1항에서,
    상기 리튬염은 LiPF6, LiBF4, LiSbF6, LiAsF6, LiClO4, LiAlO2, LiAlCl4, LiPO2F2, LiCl, LiI, LiSCN, LiN(CN)2, 리튬 비스(옥살레이토)보레이트 (LiBOB), 리튬 디플로오로(옥살레이토)보레이트 (LiDFOB), 리튬 디플루오로비스(옥살레이토)포스페이트 (LiDFBP), 리튬 비스(트리플루오로메탄설포닐)이미드 (LiTFSI), 리튬 비스(플루오로설포닐)이미드 (LiFSI), 리튬 비스(펜타플루오로에탄설포닐)이미드 (LiBETI), 리튬 트리플루오로메탄 설포네이트, 리튬 테트라플루오로에탄 설포네이트, 또는 이들의 조합을 포함하는 양극 활물질.
  10. 제1항에서,
    상기 코팅층은 상기 양극 활물질 입자의 표면에 아일랜드 형태, 또는 연속적인 막 형태로 존재하는 양극 활물질.
  11. 제1항에서,
    상기 코팅층의 두께는 1 nm 내지 50 nm인 양극 활물질.
  12. 제1항에서,
    상기 리튬 전이금속 복합 산화물은 하기 화학식 1로 표시되는 리튬 니켈계 산화물, 하기 화학식 2로 표시되는 리튬 코발트계 산화물, 하기 화학식 3으로 표시되는 리튬인산철계 화합물, 또는 하기 화학식 4로 표시되는 코발트-프리 리튬 니켈-망간계 산화물인 양극 활물질:
    [화학식 1]
    Lia1Nix1M1 y1M2 z1O2-b1Xb1
    상기 화학식 1에서, 0.9≤a1≤1.8, 0.3≤x1≤1, 0≤y1≤0.7, 0≤z1≤0.7, 0.9≤x1+y1+z1≤1.1, 및 0≤b1≤0.1이고, M1 및 M2는 각각 독립적으로 Al, B, Ba, Ca, Ce, Co, Cr, Cu, Fe, Mg, Mn, Mo, Nb, Si, Sn, Sr, Ti, V, W, Zn, 및 Zr로 이루어지는 그룹에서 선택되는 하나 이상의 원소이고, X는 F, P 및 S로 이루어지는 그룹에서 선택되는 하나 이상의 원소이고,
    [화학식 2]
    Lia2Cox2M3 y2O2-b2Xb2
    상기 화학식 2에서, 0.9≤a2≤1.8, 0.7≤x2≤1, 0≤y2≤0.3, 0.9≤x2+y2≤1.1, 및 0≤b2≤0.1이고, M3은 Al, B, Ba, Ca, Ce, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Se, Si, Sn, Sr, Ti, V, W, Y, Zn 및 Zr로 이루어지는 그룹에서 선택되는 하나 이상의 원소이고, X는 F, P, 및 S로 이루어지는 그룹에서 선택되는 하나 이상의 원소이고,
    [화학식 3]
    Lia3Fex3M4 y3PO4-b3Xb3
    상기 화학식 3에서, 0.9≤a3≤1.8, 0.6≤x3≤1, 0≤y3≤0.4, 및 0≤b3≤0.1이고, M4는 Al, B, Ba, Ca, Ce, Co, Cr, Cu, Mg, Mn, Mo, Ni, Se, Si, Sn, Sr, Ti, V, W, Y, Zn 및 Zr로 이루어지는 그룹에서 선택되는 하나 이상의 원소이고, X는 F, P, 및 S로 이루어지는 그룹에서 선택되는 하나 이상의 원소이며,
    [화학식 4]
    Lia4Nix4Mny4M5 z4O2-b4Xb4
    상기 화학식 4에서, 0.9≤a4≤1.8, 0.8≤x4<1, 0<y4≤0.2, 0≤z4≤0.2, 0.9≤x4+y4+z4≤1.1, 및 0≤b4≤0.1이고 M5은 Al, B, Ba, Ca, Ce, Cr, Fe, Mg, Mo, Nb, Si, Sn, Sr, Ti, V, W, 및 Zr로 이루어지는 그룹에서 선택되는 하나 이상의 원소이고, X는 F, P 및 S로 이루어지는 그룹에서 선택되는 하나 이상의 원소이다.
  13. 제12항에서,
    상기 리튬 전이금속 복합 산화물은 상기 화학식 1로 표시되는 리튬 니켈계 산화물이고, 0.8≤x1<1, 0<y1≤0.2, 및 0≤z1≤0.2를 만족하는 고니켈계 산화물인 양극 활물질.
  14. 제13항에서,
    상기 리튬 전이금속 복합 산화물은 상기 화학식 1로 표시되는 리튬 니켈계 산화물이고, 0.9≤x1<1, 0<y1≤0.1, 및 0≤z1≤0.1를 만족하는 고니켈계 산화물인 양극 활물질.
  15. 제1항에서,
    상기 양극 활물질 입자의 평균 입경(D50)은 1 ㎛ 내지 25 ㎛인 양극 활물질.
  16. 제1항에서,
    상기 양극 활물질 입자는 평균 입경(D50)이 1 ㎛ 내지 9 ㎛인 소립자와 평균 입경(D50)이 10 ㎛ 내지 20 ㎛인 대립자를 포함하는 양극 활물질.
  17. 제16항에서,
    소립자와 대립자의 총합 100 중량%에 대하여 상기 소립자는 5 중량% 내지 40 중량%로 포함되고 상기 대립자는 60 중량% 내지 95 중량%로 포함되는 양극 활물질.
  18. 제16항에서,
    상기 소립자 및 대립자는 복수의 1차 입자가 응집된 2차 입자 형태인 양극 활물질.
  19. 제16항에서,
    상기 소립자는 단입자 형태이고, 상기 대립자는 복수의 1차 입자가 응집된 2차 입자 형태인 양극 활물질.
  20. 제1항에서,
    상기 양극 활물질은 상기 양극 활물질 입자와 상기 코팅층 사이에 버퍼층을 더 포함하고,
    상기 버퍼층은 리튬 화합물과 금속 산화물을 포함하고, 상기 금속은 Al, B, Ca, Ce, Cr, Fe, Mg, Mo, Nb, Si, Sn, Sr, Ta, V, W, 및 Zr에서 선택되는 하나 이상인, 양극 활물질.
  21. 유기물과 리튬염을 혼합하여 복합체를 제조하고, 리튬 전이금속 복합 산화물을 포함하는 양극 활물질 입자와 상기 복합체를 혼합하고 건조하여 상기 양극 활물질 입자의 표면에 상기 복합체를 코팅하는 것을 포함하고,
    상기 유기물은 알킬렌 글리콜 단위를 함유하는 (메타)아크릴레이트, 알킬렌 글리콜 단위를 함유하는 에테르, 또는 이들의 조합을 포함하는, 양극 활물질의 제조 방법.
  22. 제21항에서,
    상기 양극 활물질 입자 100 중량부에 대하여 상기 유기물은 0.05 중량부 내지 5 중량부로 혼합되고, 상기 리튬염은 0.05 중량부 내지 5 중량부로 혼합되는 것인 양극 활물질의 제조 방법.
  23. 제21항에서,
    상기 유기물과 상기 리튬염은 2:8 내지 9:1의 중량비로 혼합하는 것인 양극 활물질의 제조 방법.
  24. 제21항에서,
    상기 건조는 60℃ 내지 150℃의 온도 범위에서 진행되는 것인 양극 활물질의 제조 방법.
  25. 제1항 내지 제20항 중 어느 한 항에 따른 양극 활물질, 및 황화물계 고체 전해질을 포함하는 전고체 이차 전지용 양극.
  26. 제25항에서,
    상기 황화물계 고체 전해질은 아지로다이트형 황화물을 포함하는 전고체 이차 전지용 양극.
  27. 제25항에서,
    상기 황화물계 고체 전해질은 입자 형태이고 평균 입경(D50)은 0.1 ㎛ 내지 1.9 ㎛인 전고체 이차 전지용 양극.
  28. 제25항에서,
    양극 활물질과 황화물계 고체 전해질의 총량 100 중량%에 대하여, 상기 양극 활물질은 65 중량% 내지 99 중량%로 포함되고, 상기 황화물계 고체 전해질은 1 중량% 내지 35 중량%로 포함되는 전고체 이차 전지용 양극.
  29. 제25항에서,
    상기 양극은 도전재를 더 포함하고,
    상기 도전재는 천연 흑연, 인조 흑연, 카본 블랙, 아세틸렌 블랙, 케첸블랙, 탄소나노섬유, 탄소나노튜브, 또는 이들의 조합을 포함하는 전고체 이차 전지용 양극.
  30. 제25항에서,
    상기 양극은 불소계 바인더를 포함하지 않는 것인 전고체 이차 전지용 양극.
  31. 제25항에 따른 양극,
    음극 및
    상기 양극과 음극 사이에 위치하는 고체 전해질 층을 포함하는 전고체 이차 전지.
  32. 제31항에서,
    상기 음극은 집전체 및 상기 집전체 상에 위치하고 친리튬성 금속, 탄소재, 또는 이들의 조합을 함유하는 음극 코팅층을 포함하고,
    상기 집전체와 상기 음극 코팅층 사이에, 충전에 의해 형성되는 리튬 금속층을 포함하는 것인 전고체 이차 전지.
PCT/KR2024/000419 2023-04-06 2024-01-09 양극 활물질과 그 제조 방법, 전고체 이차 전지용 양극 및 전고체 이차 전지 WO2024210303A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2023-0045631 2023-04-06
KR1020230045631A KR20240150656A (ko) 2023-04-06 2023-04-06 양극 활물질과 그 제조 방법, 전고체 이차 전지용 양극 및 전고체 이차 전지

Publications (1)

Publication Number Publication Date
WO2024210303A1 true WO2024210303A1 (ko) 2024-10-10

Family

ID=92972407

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2024/000419 WO2024210303A1 (ko) 2023-04-06 2024-01-09 양극 활물질과 그 제조 방법, 전고체 이차 전지용 양극 및 전고체 이차 전지

Country Status (2)

Country Link
KR (1) KR20240150656A (ko)
WO (1) WO2024210303A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013131392A (ja) * 2011-12-21 2013-07-04 Toyota Motor Corp リチウムイオン二次電池製造方法
KR20140018685A (ko) * 2012-08-03 2014-02-13 주식회사 엘지화학 이차전지용 양극 활물질 및 이를 포함하는 리튬 이차전지
US20190115591A1 (en) * 2017-10-16 2019-04-18 Nanotek Instruments, Inc. Surface-Stabilized Cathode Active Material Particles, Lithium Secondary Batteries Containing Same, and Method of Manufacturing
KR20190093454A (ko) * 2018-02-01 2019-08-09 주식회사 엘지화학 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
KR20220137427A (ko) * 2021-04-02 2022-10-12 삼성에스디아이 주식회사 전고체 전지용 복합양극활물질, 그 제조방법, 전고체 전지용 양극층 및 이를 포함하는 전고체 전지

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013131392A (ja) * 2011-12-21 2013-07-04 Toyota Motor Corp リチウムイオン二次電池製造方法
KR20140018685A (ko) * 2012-08-03 2014-02-13 주식회사 엘지화학 이차전지용 양극 활물질 및 이를 포함하는 리튬 이차전지
US20190115591A1 (en) * 2017-10-16 2019-04-18 Nanotek Instruments, Inc. Surface-Stabilized Cathode Active Material Particles, Lithium Secondary Batteries Containing Same, and Method of Manufacturing
KR20190093454A (ko) * 2018-02-01 2019-08-09 주식회사 엘지화학 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
KR20220137427A (ko) * 2021-04-02 2022-10-12 삼성에스디아이 주식회사 전고체 전지용 복합양극활물질, 그 제조방법, 전고체 전지용 양극층 및 이를 포함하는 전고체 전지

Also Published As

Publication number Publication date
KR20240150656A (ko) 2024-10-16

Similar Documents

Publication Publication Date Title
WO2019151834A1 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2020122497A1 (ko) 리튬 이차전지용 양극재, 이를 포함하는 양극 및 리튬 이차전지
WO2019164347A1 (ko) 리튬 이차전지용 음극 활물질, 이를 포함하는 리튬 이차전지용 음극 및 리튬 이차전지
WO2020185014A1 (ko) 음극 및 이를 포함하는 이차전지
WO2014204278A1 (ko) 리튬 이차전지용 고용량 전극 활물질 및 이를 사용한 리튬 이차전지
WO2020080800A1 (ko) 리튬 이차전지용 양극 첨가제의 제조방법 및 이로부터 제조된 리튬 이차전지용 양극 첨가제
WO2022055308A1 (ko) 음극재, 이를 포함하는 음극 및 이차전지
WO2021125535A1 (ko) 고온 수명 특성 향상에 최적화된 양극 및 이를 포함하는 이차전지
WO2016053051A1 (ko) 리튬 이차전지용 양극활물질, 이의 제조방법 및 이를 포함하는 리튬 이차전지
WO2021153936A1 (ko) 이차전지용 양극 활물질 및 이를 포함하는 리튬 이차전지
WO2024117675A1 (ko) 전고체 전지
WO2022092710A1 (ko) 리튬 이차전지용 음극 활물질, 음극 및 리튬 이차전지
WO2024075932A1 (ko) 온도 제어를 통한 전고체 이차 전지 모듈의 제조 방법 및 전고체 이차 전지
WO2021025464A1 (ko) 이차전지용 양극 활물질의 제조방법
WO2020145638A1 (ko) 리튬 이차전지용 양극 활물질의 제조 방법, 상기 제조방법에 의해 제조된 양극 활물질
WO2024210303A1 (ko) 양극 활물질과 그 제조 방법, 전고체 이차 전지용 양극 및 전고체 이차 전지
WO2022244918A1 (ko) 다층구조의 음극 및 이를 포함하는 이차전지
WO2019066585A1 (ko) 이차전지용 양극 활물질의 제조방법, 이와 같이 제조된 양극 활물질 및 이를 포함하는 리튬 이차전지
WO2024214921A1 (ko) 전고체 이차 전지 및 이의 제조 방법
WO2023171890A1 (ko) 전고체 이차 전지
WO2024080493A1 (ko) 고체 전해질과 그 제조 방법, 양극 및 전고체 이차 전지
WO2024191031A1 (ko) 고체 전해질 막 및 전고체 이차 전지
WO2024162637A1 (ko) 전고체 이차 전지용 양극 및 전고체 이차 전지
WO2021133034A1 (ko) 음극 활물질의 제조방법
WO2024117673A1 (ko) 전고체 전지