WO2024210218A1 - Metal-terminal adhesive film and manufacturing method therefor, metal terminal equipped with metal-terminal adhesive film, power-storage-device external packaging material, kit comprising power-storage-device external packaging material and metal-terminal adhesive film, and power storage device and manufacturing method therefor - Google Patents
Metal-terminal adhesive film and manufacturing method therefor, metal terminal equipped with metal-terminal adhesive film, power-storage-device external packaging material, kit comprising power-storage-device external packaging material and metal-terminal adhesive film, and power storage device and manufacturing method therefor Download PDFInfo
- Publication number
- WO2024210218A1 WO2024210218A1 PCT/JP2024/014195 JP2024014195W WO2024210218A1 WO 2024210218 A1 WO2024210218 A1 WO 2024210218A1 JP 2024014195 W JP2024014195 W JP 2024014195W WO 2024210218 A1 WO2024210218 A1 WO 2024210218A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- storage device
- adhesive film
- layer
- electricity storage
- metal terminal
- Prior art date
Links
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 317
- 239000002184 metal Substances 0.000 title claims abstract description 317
- 238000003860 storage Methods 0.000 title claims abstract description 256
- 239000002313 adhesive film Substances 0.000 title claims abstract description 234
- 238000004519 manufacturing process Methods 0.000 title claims description 23
- 239000005022 packaging material Substances 0.000 title claims description 8
- 239000000463 material Substances 0.000 claims abstract description 177
- 229920005989 resin Polymers 0.000 claims description 304
- 239000011347 resin Substances 0.000 claims description 304
- 230000005611 electricity Effects 0.000 claims description 195
- 229920000098 polyolefin Polymers 0.000 claims description 82
- 238000000034 method Methods 0.000 claims description 40
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical group [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 claims description 29
- 230000004888 barrier function Effects 0.000 claims description 26
- 239000003792 electrolyte Substances 0.000 claims description 21
- 229920005672 polyolefin resin Polymers 0.000 claims description 20
- 238000005259 measurement Methods 0.000 claims description 16
- 239000002245 particle Substances 0.000 claims description 15
- 238000007789 sealing Methods 0.000 claims description 15
- 238000004566 IR spectroscopy Methods 0.000 claims description 6
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 claims description 6
- 150000002484 inorganic compounds Chemical class 0.000 claims description 5
- 239000011342 resin composition Substances 0.000 claims description 5
- 229910010272 inorganic material Inorganic materials 0.000 claims description 4
- 239000010410 layer Substances 0.000 description 600
- -1 fluororesins Polymers 0.000 description 114
- 239000004743 Polypropylene Substances 0.000 description 103
- 238000002844 melting Methods 0.000 description 100
- 230000008018 melting Effects 0.000 description 100
- 229920001155 polypropylene Polymers 0.000 description 77
- 230000000694 effects Effects 0.000 description 26
- 239000012790 adhesive layer Substances 0.000 description 24
- 239000000853 adhesive Substances 0.000 description 21
- 230000001070 adhesive effect Effects 0.000 description 21
- 229920005629 polypropylene homopolymer Polymers 0.000 description 21
- 238000010438 heat treatment Methods 0.000 description 20
- 229920000728 polyester Polymers 0.000 description 18
- 229920001577 copolymer Polymers 0.000 description 17
- 125000004122 cyclic group Chemical group 0.000 description 16
- 239000000758 substrate Substances 0.000 description 16
- 239000002318 adhesion promoter Substances 0.000 description 15
- 239000000945 filler Substances 0.000 description 13
- 239000004698 Polyethylene Substances 0.000 description 12
- 239000000178 monomer Substances 0.000 description 12
- 229920000573 polyethylene Polymers 0.000 description 12
- 238000004512 die casting Methods 0.000 description 11
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 10
- 229910052782 aluminium Inorganic materials 0.000 description 10
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 10
- 229920000642 polymer Polymers 0.000 description 10
- 239000004952 Polyamide Substances 0.000 description 9
- 229920002647 polyamide Polymers 0.000 description 9
- 229920000139 polyethylene terephthalate Polymers 0.000 description 9
- UPMLOUAZCHDJJD-UHFFFAOYSA-N 4,4'-Diphenylmethane Diisocyanate Chemical compound C1=CC(N=C=O)=CC=C1CC1=CC=C(N=C=O)C=C1 UPMLOUAZCHDJJD-UHFFFAOYSA-N 0.000 description 8
- 229910052799 carbon Inorganic materials 0.000 description 8
- 239000000203 mixture Substances 0.000 description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- 229920000178 Acrylic resin Polymers 0.000 description 6
- 239000004925 Acrylic resin Substances 0.000 description 6
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 6
- 239000004677 Nylon Substances 0.000 description 6
- 229920001400 block copolymer Polymers 0.000 description 6
- 229910001416 lithium ion Inorganic materials 0.000 description 6
- 229920001778 nylon Polymers 0.000 description 6
- 239000000049 pigment Substances 0.000 description 6
- 229920001707 polybutylene terephthalate Polymers 0.000 description 6
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 6
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 6
- 229920005604 random copolymer Polymers 0.000 description 6
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 5
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 5
- 230000008859 change Effects 0.000 description 5
- 230000006870 function Effects 0.000 description 5
- 239000012948 isocyanate Substances 0.000 description 5
- 150000002513 isocyanates Chemical class 0.000 description 5
- 239000004745 nonwoven fabric Substances 0.000 description 5
- JFNLZVQOOSMTJK-KNVOCYPGSA-N norbornene Chemical compound C1[C@@H]2CC[C@H]1C=C2 JFNLZVQOOSMTJK-KNVOCYPGSA-N 0.000 description 5
- 229920001568 phenolic resin Polymers 0.000 description 5
- 239000005011 phenolic resin Substances 0.000 description 5
- 239000010936 titanium Substances 0.000 description 5
- 229910052719 titanium Inorganic materials 0.000 description 5
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 4
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 4
- 239000005977 Ethylene Substances 0.000 description 4
- RRHGJUQNOFWUDK-UHFFFAOYSA-N Isoprene Chemical compound CC(=C)C=C RRHGJUQNOFWUDK-UHFFFAOYSA-N 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- 239000004642 Polyimide Substances 0.000 description 4
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 4
- 150000001336 alkenes Chemical class 0.000 description 4
- 150000008064 anhydrides Chemical class 0.000 description 4
- 239000006229 carbon black Substances 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 238000004040 coloring Methods 0.000 description 4
- 230000007797 corrosion Effects 0.000 description 4
- 238000005260 corrosion Methods 0.000 description 4
- MGNZXYYWBUKAII-UHFFFAOYSA-N cyclohexa-1,3-diene Chemical compound C1CC=CC=C1 MGNZXYYWBUKAII-UHFFFAOYSA-N 0.000 description 4
- ZSWFCLXCOIISFI-UHFFFAOYSA-N cyclopentadiene Chemical compound C1C=CC=C1 ZSWFCLXCOIISFI-UHFFFAOYSA-N 0.000 description 4
- 239000003822 epoxy resin Substances 0.000 description 4
- 239000011888 foil Substances 0.000 description 4
- QQVIHTHCMHWDBS-UHFFFAOYSA-N isophthalic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1 QQVIHTHCMHWDBS-UHFFFAOYSA-N 0.000 description 4
- 239000011976 maleic acid Substances 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 230000002093 peripheral effect Effects 0.000 description 4
- 229920006122 polyamide resin Polymers 0.000 description 4
- 229920000647 polyepoxide Polymers 0.000 description 4
- 229920001601 polyetherimide Polymers 0.000 description 4
- 229920001721 polyimide Polymers 0.000 description 4
- 229920002050 silicone resin Polymers 0.000 description 4
- 239000002356 single layer Substances 0.000 description 4
- KKEYFWRCBNTPAC-UHFFFAOYSA-N terephthalic acid group Chemical group C(C1=CC=C(C(=O)O)C=C1)(=O)O KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 4
- 238000007740 vapor deposition Methods 0.000 description 4
- WSQZNZLOZXSBHA-UHFFFAOYSA-N 3,8-dioxabicyclo[8.2.2]tetradeca-1(12),10,13-triene-2,9-dione Chemical compound O=C1OCCCCOC(=O)C2=CC=C1C=C2 WSQZNZLOZXSBHA-UHFFFAOYSA-N 0.000 description 3
- LLLVZDVNHNWSDS-UHFFFAOYSA-N 4-methylidene-3,5-dioxabicyclo[5.2.2]undeca-1(9),7,10-triene-2,6-dione Chemical compound C1(C2=CC=C(C(=O)OC(=C)O1)C=C2)=O LLLVZDVNHNWSDS-UHFFFAOYSA-N 0.000 description 3
- 229920002873 Polyethylenimine Polymers 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 239000003086 colorant Substances 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 229920001038 ethylene copolymer Polymers 0.000 description 3
- 229920000840 ethylene tetrafluoroethylene copolymer Polymers 0.000 description 3
- 229910002804 graphite Inorganic materials 0.000 description 3
- 239000010439 graphite Substances 0.000 description 3
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 3
- 229920001903 high density polyethylene Polymers 0.000 description 3
- 239000004700 high-density polyethylene Substances 0.000 description 3
- QQVIHTHCMHWDBS-UHFFFAOYSA-L isophthalate(2-) Chemical compound [O-]C(=O)C1=CC=CC(C([O-])=O)=C1 QQVIHTHCMHWDBS-UHFFFAOYSA-L 0.000 description 3
- 229920000092 linear low density polyethylene Polymers 0.000 description 3
- 239000004707 linear low-density polyethylene Substances 0.000 description 3
- 229920001684 low density polyethylene Polymers 0.000 description 3
- 239000004702 low-density polyethylene Substances 0.000 description 3
- 229920001179 medium density polyethylene Polymers 0.000 description 3
- 239000004701 medium-density polyethylene Substances 0.000 description 3
- 150000002894 organic compounds Chemical class 0.000 description 3
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 3
- 239000004417 polycarbonate Substances 0.000 description 3
- 229920000515 polycarbonate Polymers 0.000 description 3
- 229920001225 polyester resin Polymers 0.000 description 3
- 239000004645 polyester resin Substances 0.000 description 3
- 239000004814 polyurethane Substances 0.000 description 3
- 229920002635 polyurethane Polymers 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 229920001897 terpolymer Polymers 0.000 description 3
- HECLRDQVFMWTQS-RGOKHQFPSA-N 1755-01-7 Chemical compound C1[C@H]2[C@@H]3CC=C[C@@H]3[C@@H]1C=C2 HECLRDQVFMWTQS-RGOKHQFPSA-N 0.000 description 2
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 description 2
- GVNWZKBFMFUVNX-UHFFFAOYSA-N Adipamide Chemical compound NC(=O)CCCCC(N)=O GVNWZKBFMFUVNX-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- 229920002292 Nylon 6 Polymers 0.000 description 2
- 229920002302 Nylon 6,6 Polymers 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 239000004840 adhesive resin Substances 0.000 description 2
- 229920006223 adhesive resin Polymers 0.000 description 2
- WNLRTRBMVRJNCN-UHFFFAOYSA-L adipate(2-) Chemical compound [O-]C(=O)CCCCC([O-])=O WNLRTRBMVRJNCN-UHFFFAOYSA-L 0.000 description 2
- 239000003738 black carbon Substances 0.000 description 2
- 239000003990 capacitor Substances 0.000 description 2
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 239000003431 cross linking reagent Substances 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000001125 extrusion Methods 0.000 description 2
- MSYLJRIXVZCQHW-UHFFFAOYSA-N formaldehyde;6-phenyl-1,3,5-triazine-2,4-diamine Chemical compound O=C.NC1=NC(N)=NC(C=2C=CC=CC=2)=N1 MSYLJRIXVZCQHW-UHFFFAOYSA-N 0.000 description 2
- 230000001965 increasing effect Effects 0.000 description 2
- 239000011256 inorganic filler Substances 0.000 description 2
- 229910052809 inorganic oxide Inorganic materials 0.000 description 2
- 239000010954 inorganic particle Substances 0.000 description 2
- 238000010030 laminating Methods 0.000 description 2
- 238000003475 lamination Methods 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- SJYNFBVQFBRSIB-UHFFFAOYSA-N norbornadiene Chemical compound C1=CC2C=CC1C2 SJYNFBVQFBRSIB-UHFFFAOYSA-N 0.000 description 2
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 2
- 239000012766 organic filler Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 230000000379 polymerizing effect Effects 0.000 description 2
- 229920005673 polypropylene based resin Polymers 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 239000013589 supplement Substances 0.000 description 2
- 238000009823 thermal lamination Methods 0.000 description 2
- 239000004408 titanium dioxide Substances 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- 230000002087 whitening effect Effects 0.000 description 2
- 150000007934 α,β-unsaturated carboxylic acids Chemical class 0.000 description 2
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- JAHNSTQSQJOJLO-UHFFFAOYSA-N 2-(3-fluorophenyl)-1h-imidazole Chemical compound FC1=CC=CC(C=2NC=CN=2)=C1 JAHNSTQSQJOJLO-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- LZFNKJKBRGFWDU-UHFFFAOYSA-N 3,6-dioxabicyclo[6.3.1]dodeca-1(12),8,10-triene-2,7-dione Chemical compound O=C1OCCOC(=O)C2=CC=CC1=C2 LZFNKJKBRGFWDU-UHFFFAOYSA-N 0.000 description 1
- ZVSXNPBSZYQDKJ-UHFFFAOYSA-N 3,8-dioxabicyclo[8.3.1]tetradeca-1(14),10,12-triene-2,9-dione Chemical compound O=C1OCCCCOC(=O)C2=CC=CC1=C2 ZVSXNPBSZYQDKJ-UHFFFAOYSA-N 0.000 description 1
- OFNISBHGPNMTMS-UHFFFAOYSA-N 3-methylideneoxolane-2,5-dione Chemical compound C=C1CC(=O)OC1=O OFNISBHGPNMTMS-UHFFFAOYSA-N 0.000 description 1
- 239000004953 Aliphatic polyamide Substances 0.000 description 1
- 229910021564 Chromium(III) fluoride Inorganic materials 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- 101000576320 Homo sapiens Max-binding protein MNT Proteins 0.000 description 1
- JHWNWJKBPDFINM-UHFFFAOYSA-N Laurolactam Chemical compound O=C1CCCCCCCCCCCN1 JHWNWJKBPDFINM-UHFFFAOYSA-N 0.000 description 1
- 239000004594 Masterbatch (MB) Substances 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- 238000005481 NMR spectroscopy Methods 0.000 description 1
- 229920000299 Nylon 12 Polymers 0.000 description 1
- 229920003189 Nylon 4,6 Polymers 0.000 description 1
- 229920000305 Nylon 6,10 Polymers 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 239000005062 Polybutadiene Substances 0.000 description 1
- 239000004697 Polyetherimide Substances 0.000 description 1
- 229920006121 Polyxylylene adipamide Polymers 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- 229920001807 Urea-formaldehyde Polymers 0.000 description 1
- 239000005083 Zinc sulfide Substances 0.000 description 1
- 230000010062 adhesion mechanism Effects 0.000 description 1
- 125000002723 alicyclic group Chemical group 0.000 description 1
- 229920003231 aliphatic polyamide Polymers 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 239000004760 aramid Substances 0.000 description 1
- 229920003235 aromatic polyamide Polymers 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- JRPBQTZRNDNNOP-UHFFFAOYSA-N barium titanate Chemical compound [Ba+2].[Ba+2].[O-][Ti]([O-])([O-])[O-] JRPBQTZRNDNNOP-UHFFFAOYSA-N 0.000 description 1
- 229910002113 barium titanate Inorganic materials 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- OJIJEKBXJYRIBZ-UHFFFAOYSA-N cadmium nickel Chemical compound [Ni].[Cd] OJIJEKBXJYRIBZ-UHFFFAOYSA-N 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 1
- 239000000920 calcium hydroxide Substances 0.000 description 1
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 1
- XFWJKVMFIVXPKK-UHFFFAOYSA-N calcium;oxido(oxo)alumane Chemical compound [Ca+2].[O-][Al]=O.[O-][Al]=O XFWJKVMFIVXPKK-UHFFFAOYSA-N 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 238000006757 chemical reactions by type Methods 0.000 description 1
- 150000001841 cholesterols Chemical class 0.000 description 1
- ZCDOYSPFYFSLEW-UHFFFAOYSA-N chromate(2-) Chemical class [O-][Cr]([O-])(=O)=O ZCDOYSPFYFSLEW-UHFFFAOYSA-N 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000003851 corona treatment Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- LDHQCZJRKDOVOX-NSCUHMNNSA-N crotonic acid Chemical compound C\C=C\C(O)=O LDHQCZJRKDOVOX-NSCUHMNNSA-N 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000032798 delamination Effects 0.000 description 1
- WMYWOWFOOVUPFY-UHFFFAOYSA-L dihydroxy(dioxo)chromium;phosphoric acid Chemical compound OP(O)(O)=O.O[Cr](O)(=O)=O WMYWOWFOOVUPFY-UHFFFAOYSA-L 0.000 description 1
- VVTXSHLLIKXMPY-UHFFFAOYSA-L disodium;2-sulfobenzene-1,3-dicarboxylate Chemical compound [Na+].[Na+].OS(=O)(=O)C1=C(C([O-])=O)C=CC=C1C([O-])=O VVTXSHLLIKXMPY-UHFFFAOYSA-L 0.000 description 1
- GZCKIUIIYCBICZ-UHFFFAOYSA-L disodium;benzene-1,3-dicarboxylate Chemical compound [Na+].[Na+].[O-]C(=O)C1=CC=CC(C([O-])=O)=C1 GZCKIUIIYCBICZ-UHFFFAOYSA-L 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- BXKDSDJJOVIHMX-UHFFFAOYSA-N edrophonium chloride Chemical compound [Cl-].CC[N+](C)(C)C1=CC=CC(O)=C1 BXKDSDJJOVIHMX-UHFFFAOYSA-N 0.000 description 1
- 238000004049 embossing Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 150000002222 fluorine compounds Chemical class 0.000 description 1
- IVJISJACKSSFGE-UHFFFAOYSA-N formaldehyde;1,3,5-triazine-2,4,6-triamine Chemical compound O=C.NC1=NC(N)=NC(N)=N1 IVJISJACKSSFGE-UHFFFAOYSA-N 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 238000002290 gas chromatography-mass spectrometry Methods 0.000 description 1
- 238000007756 gravure coating Methods 0.000 description 1
- 239000012943 hotmelt Substances 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229910003475 inorganic filler Inorganic materials 0.000 description 1
- 239000001023 inorganic pigment Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- UGKDIUIOSMUOAW-UHFFFAOYSA-N iron nickel Chemical compound [Fe].[Ni] UGKDIUIOSMUOAW-UHFFFAOYSA-N 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- IQPQWNKOIGAROB-UHFFFAOYSA-N isocyanate group Chemical group [N-]=C=O IQPQWNKOIGAROB-UHFFFAOYSA-N 0.000 description 1
- 150000003951 lactams Chemical class 0.000 description 1
- 239000005001 laminate film Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 1
- 239000000347 magnesium hydroxide Substances 0.000 description 1
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- LVHBHZANLOWSRM-UHFFFAOYSA-N methylenebutanedioic acid Natural products OC(=O)CC(=C)C(O)=O LVHBHZANLOWSRM-UHFFFAOYSA-N 0.000 description 1
- QELJHCBNGDEXLD-UHFFFAOYSA-N nickel zinc Chemical compound [Ni].[Zn] QELJHCBNGDEXLD-UHFFFAOYSA-N 0.000 description 1
- 229920006284 nylon film Polymers 0.000 description 1
- HTQOEHYNHFXMJJ-UHFFFAOYSA-N oxosilver zinc Chemical compound [Zn].[Ag]=O HTQOEHYNHFXMJJ-UHFFFAOYSA-N 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 235000021317 phosphate Nutrition 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 238000009832 plasma treatment Methods 0.000 description 1
- 229920003207 poly(ethylene-2,6-naphthalate) Polymers 0.000 description 1
- 229920006111 poly(hexamethylene terephthalamide) Polymers 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920001281 polyalkylene Polymers 0.000 description 1
- 229920002857 polybutadiene Polymers 0.000 description 1
- 229920006267 polyester film Polymers 0.000 description 1
- 229920006149 polyester-amide block copolymer Polymers 0.000 description 1
- 229920006146 polyetheresteramide block copolymer Polymers 0.000 description 1
- 229920000921 polyethylene adipate Polymers 0.000 description 1
- 239000011112 polyethylene naphthalate Substances 0.000 description 1
- 229920001228 polyisocyanate Polymers 0.000 description 1
- 239000005056 polyisocyanate Substances 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 229920006389 polyphenyl polymer Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 229940116351 sebacate Drugs 0.000 description 1
- CXMXRPHRNRROMY-UHFFFAOYSA-L sebacate(2-) Chemical compound [O-]C(=O)CCCCCCCCC([O-])=O CXMXRPHRNRROMY-UHFFFAOYSA-L 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 239000012748 slip agent Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000004154 testing of material Methods 0.000 description 1
- RYYWUUFWQRZTIU-UHFFFAOYSA-K thiophosphate Chemical compound [O-]P([O-])([O-])=S RYYWUUFWQRZTIU-UHFFFAOYSA-K 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 1
- LDHQCZJRKDOVOX-UHFFFAOYSA-N trans-crotonic acid Natural products CC=CC(O)=O LDHQCZJRKDOVOX-UHFFFAOYSA-N 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- 230000005612 types of electricity Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 230000037303 wrinkles Effects 0.000 description 1
- 238000004394 yellowing prevention Methods 0.000 description 1
- 229910052984 zinc sulfide Inorganic materials 0.000 description 1
- DRDVZXDWVBGGMH-UHFFFAOYSA-N zinc;sulfide Chemical compound [S-2].[Zn+2] DRDVZXDWVBGGMH-UHFFFAOYSA-N 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
- GFQYVLUOOAAOGM-UHFFFAOYSA-N zirconium(iv) silicate Chemical compound [Zr+4].[O-][Si]([O-])([O-])[O-] GFQYVLUOOAAOGM-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/78—Cases; Housings; Encapsulations; Mountings
- H01G11/80—Gaskets; Sealings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G2/00—Details of capacitors not covered by a single one of groups H01G4/00-H01G11/00
- H01G2/10—Housing; Encapsulation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/004—Details
- H01G9/08—Housing; Encapsulation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/10—Primary casings; Jackets or wrappings
- H01M50/102—Primary casings; Jackets or wrappings characterised by their shape or physical structure
- H01M50/105—Pouches or flexible bags
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/10—Primary casings; Jackets or wrappings
- H01M50/116—Primary casings; Jackets or wrappings characterised by the material
- H01M50/117—Inorganic material
- H01M50/119—Metals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/10—Primary casings; Jackets or wrappings
- H01M50/116—Primary casings; Jackets or wrappings characterised by the material
- H01M50/121—Organic material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/10—Primary casings; Jackets or wrappings
- H01M50/116—Primary casings; Jackets or wrappings characterised by the material
- H01M50/124—Primary casings; Jackets or wrappings characterised by the material having a layered structure
- H01M50/126—Primary casings; Jackets or wrappings characterised by the material having a layered structure comprising three or more layers
- H01M50/129—Primary casings; Jackets or wrappings characterised by the material having a layered structure comprising three or more layers with two or more layers of only organic material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/10—Primary casings; Jackets or wrappings
- H01M50/172—Arrangements of electric connectors penetrating the casing
- H01M50/174—Arrangements of electric connectors penetrating the casing adapted for the shape of the cells
- H01M50/178—Arrangements of electric connectors penetrating the casing adapted for the shape of the cells for pouch or flexible bag cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/10—Primary casings; Jackets or wrappings
- H01M50/183—Sealing members
- H01M50/184—Sealing members characterised by their shape or structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/10—Primary casings; Jackets or wrappings
- H01M50/183—Sealing members
- H01M50/186—Sealing members characterised by the disposition of the sealing members
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/10—Primary casings; Jackets or wrappings
- H01M50/183—Sealing members
- H01M50/19—Sealing members characterised by the material
- H01M50/191—Inorganic material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/10—Primary casings; Jackets or wrappings
- H01M50/183—Sealing members
- H01M50/19—Sealing members characterised by the material
- H01M50/193—Organic material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/10—Primary casings; Jackets or wrappings
- H01M50/183—Sealing members
- H01M50/19—Sealing members characterised by the material
- H01M50/195—Composite material consisting of a mixture of organic and inorganic materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/10—Primary casings; Jackets or wrappings
- H01M50/183—Sealing members
- H01M50/19—Sealing members characterised by the material
- H01M50/197—Sealing members characterised by the material having a layered structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/10—Primary casings; Jackets or wrappings
- H01M50/183—Sealing members
- H01M50/19—Sealing members characterised by the material
- H01M50/198—Sealing members characterised by the material characterised by physical properties, e.g. adhesiveness or hardness
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/50—Current conducting connections for cells or batteries
- H01M50/531—Electrode connections inside a battery casing
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/50—Current conducting connections for cells or batteries
- H01M50/531—Electrode connections inside a battery casing
- H01M50/534—Electrode connections inside a battery casing characterised by the material of the leads or tabs
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/50—Current conducting connections for cells or batteries
- H01M50/543—Terminals
- H01M50/552—Terminals characterised by their shape
- H01M50/553—Terminals adapted for prismatic, pouch or rectangular cells
- H01M50/557—Plate-shaped terminals
Definitions
- the present disclosure relates to an adhesive film for metal terminals and a manufacturing method thereof, a metal terminal with an adhesive film for metal terminals, an exterior material for an electricity storage device, a kit including an exterior material for an electricity storage device and an adhesive film for metal terminals, and an electricity storage device and a manufacturing method thereof.
- a laminate sheet in which a base layer, an adhesive layer, a barrier layer, and a heat-sealable resin layer are laminated in that order has been proposed as an exterior material for an electricity storage device that can be easily processed into a variety of shapes and can be made thinner and lighter.
- the heat-sealable resin layers located in the innermost layers of the exterior material for an electricity storage device are placed opposite each other, and the peripheral portion of the exterior material for an electricity storage device is heat-sealed to seal the electricity storage device element.
- Metal terminals protrude from the heat-sealed portion of the exterior material for electricity storage devices, and the electricity storage device element sealed with the exterior material for electricity storage devices is electrically connected to the outside via the metal terminals that are electrically connected to the electrodes of the electricity storage device element.
- the portion of the exterior material for electricity storage devices where the metal terminals are present is heat-sealed in a state where the metal terminals are sandwiched between the heat-sealable resin layer. Because the metal terminals and the heat-sealable resin layer are made of different materials, adhesion is likely to decrease at the interface between the metal terminals and the heat-sealable resin layer.
- an adhesive film may be placed between the metal terminal and the heat-sealable resin layer in order to improve adhesion between them.
- An example of such an adhesive film is that described in Patent Document 1.
- the adhesive film disposed between the metal terminal and the exterior material for the electricity storage device covers the periphery of the metal terminal by sandwiching the metal terminal on both sides with the adhesive film and heat sealing the exterior material. For example, during heat sealing, the adhesive film is heated to a high temperature. Also, during the manufacture of the adhesive film, the resin that forms the adhesive film is melted and formed into a film, so the resin that forms the adhesive film is heated to a high temperature. Furthermore, even after the adhesive film is applied to the electricity storage device, if the electricity storage device is exposed to a high-temperature environment or generates heat and becomes hot, the adhesive film will also be heated to a high temperature.
- the adhesive film disposed between the metal terminal and the exterior material for the electricity storage device may be exposed to a high-temperature environment during the manufacture of the adhesive film, when the adhesive film is applied to the electricity storage device, and even after application.
- the resin that forms the adhesive film is exposed to high temperatures, the resin may deteriorate, causing the properties of the adhesive film to decrease (for example, reduced adhesion to metal terminals).
- the inventors of this disclosure have set a new problem: determining from the appearance that the resin forming the adhesive film has been heated to a specified temperature. If such a problem is solved, it will have an excellent effect of making it possible to identify from the appearance, for example, an adhesive film whose characteristics may have deteriorated.
- the main objective of the present disclosure is to provide an adhesive film for metal terminals that is interposed between a metal terminal electrically connected to an electrode of an electricity storage device element and an exterior material for an electricity storage device that encapsulates the electricity storage device element, and that allows the appearance of the film to indicate that it has been heated to a predetermined temperature. Furthermore, the present disclosure also aims to provide a method for manufacturing the adhesive film for metal terminals, a metal terminal with an adhesive film for metal terminals, an exterior material for an electricity storage device, a kit including an exterior material for an electricity storage device and the adhesive film for metal terminals, an electricity storage device, and a method for manufacturing the electricity storage device.
- the inventors of the present disclosure conducted intensive research to solve the above problems. As a result, they discovered that by providing a thermochromic layer in an adhesive film for metal terminals, which is interposed between a metal terminal electrically connected to an electrode of an electricity storage device element and an exterior material for an electricity storage device that encapsulates the electricity storage device element, it is possible to tell from the outside that the resin contained in the adhesive film for metal terminals has been heated to a predetermined temperature.
- the present disclosure was completed through further research based on this knowledge.
- An adhesive film for a metal terminal which is interposed between a metal terminal electrically connected to an electrode of an electricity storage device element and an exterior material for an electricity storage device that encapsulates the electricity storage device element,
- the adhesive film for a metal terminal includes a thermochromic layer.
- the present disclosure it is possible to provide an adhesive film for metal terminals that is interposed between a metal terminal electrically connected to an electrode of an electricity storage device element and an exterior material for an electricity storage device that seals the electricity storage device element, and that allows the appearance of the adhesive film to indicate that it has been heated to a predetermined temperature. Furthermore, the present disclosure also aims to provide a method for manufacturing the adhesive film for metal terminals, a metal terminal with an adhesive film for metal terminals, an exterior material for an electricity storage device, a kit including an exterior material for an electricity storage device and an adhesive film for metal terminals, and an electricity storage device and a method for manufacturing the same.
- FIG. 2 is a schematic plan view of the electricity storage device of the present disclosure.
- 2 is a schematic cross-sectional view taken along line A-A' in FIG. 1.
- 2 is a schematic cross-sectional view taken along line B-B' in FIG. 1.
- 1 is a schematic cross-sectional view of an adhesive film for metal terminals according to the present disclosure.
- 1 is a schematic cross-sectional view of an adhesive film for metal terminals according to the present disclosure.
- 1 is a schematic cross-sectional view of an adhesive film for metal terminals according to the present disclosure.
- 1 is a schematic cross-sectional view of an adhesive film for metal terminals according to the present disclosure.
- 1 is a schematic cross-sectional view of an exterior material for an electricity storage device according to the present disclosure.
- the adhesive film for metal terminals disclosed herein is an adhesive film for metal terminals that is interposed between a metal terminal electrically connected to an electrode of an electricity storage device element and an exterior material for an electricity storage device that seals the electricity storage device element, and is characterized in that the adhesive film for metal terminals has a thermochromic layer.
- the electricity storage device of the present disclosure is an electricity storage device that includes at least an electricity storage device element having a positive electrode, a negative electrode, and an electrolyte, an exterior material for an electricity storage device that seals the electricity storage device element, and metal terminals that are electrically connected to the positive electrode and the negative electrode, respectively, and protrude to the outside of the exterior material for an electricity storage device, and is characterized in that the adhesive film for metal terminals of the present disclosure is interposed between the metal terminals and the exterior material for an electricity storage device.
- the numerical ranges indicated with “ ⁇ ” mean “greater than or equal to” or “less than or equal to.”
- the expression 2 to 15 mm means 2 mm or greater and 15 mm or less.
- the upper or lower limit value described in a certain numerical range may be replaced with the upper or lower limit value of another numerical range described in stages.
- a numerical range may be formed by combining an upper limit value and an upper limit value, an upper limit value and a lower limit value, or a lower limit value and a lower limit value, each of which is described separately.
- the upper or lower limit value described in a certain numerical range may be replaced with a value shown in the examples.
- Adhesive film for metal terminal The adhesive film for metal terminal of the present disclosure is interposed between a metal terminal electrically connected to an electrode of an electricity storage device element and an exterior material for an electricity storage device that seals the electricity storage device element.
- the adhesive film for metal terminal 1 of the present disclosure is interposed between a metal terminal 2 electrically connected to an electrode of an electricity storage device element 4 and an exterior material for an electricity storage device 3 that seals the electricity storage device element 4.
- the metal terminal 2 protrudes outside the exterior material for an electricity storage device 3, and is sandwiched by the exterior material for an electricity storage device 3 via the adhesive film for metal terminal 1 at the peripheral portion 3a of the heat-sealed exterior material for an electricity storage device 3.
- the temporary adhesion process of the adhesive film for metal terminals to the metal terminals is carried out under conditions of, for example, a temperature of about 140-160°C, a pressure of about 0.01-1.0 MPa, a time of about 3-15 seconds, and about 3-6 cycles, while the main adhesion process is carried out under conditions of, for example, a temperature of about 160-240°C, a pressure of about 0.01-1.0 MPa, a time of about 3-15 seconds, and about 1-3 cycles.
- the heating temperature when the metal terminal with the adhesive film for metal terminal is interposed between the exterior material for the electricity storage device and heat sealed is usually in the range of about 180-210°C, and the pressure is usually about 1.0-2.0 MPa, a time of about 3-5 seconds, and about 1 cycle.
- the adhesive film 1 for metal terminals of the present disclosure is provided to improve the adhesion between the metal terminal 2 and the exterior material 3 for the electric storage device.
- the sealing property of the electric storage device element 4 is improved. As described above, when the electric storage device element 4 is heat-sealed, the electric storage device element is sealed so that the metal terminal 2 electrically connected to the electrode of the electric storage device element 4 protrudes outside the exterior material 3 for the electric storage device.
- the metal terminal 2 made of metal and the heat-sealable resin layer 35 (a layer made of a heat-sealable resin such as polyolefin) located in the innermost layer of the exterior material 3 for the electric storage device are made of different materials, if such an adhesive film is not used, the sealing property of the electric storage device element is likely to be reduced at the interface between the metal terminal 2 and the heat-sealable resin layer 35.
- the adhesive film 1 for metal terminals of the present disclosure includes at least a thermochromic layer.
- the thermochromic layer is, for example, a resin layer formed of a resin composition containing a temperature indicator and a resin.
- the temperature indicator means a material (compound) that has a property of changing color when placed in a certain temperature environment. As described later, various inorganic compounds and organic compounds are known as materials that have such a property.
- thermochromic layer may be a layer that forms at least one surface of the adhesive film for metal terminals 1 (i.e., the outermost layer, such as the first resin layer 12a or the second resin layer 12b described below), or it may be a layer that does not form the surface (such as the intermediate layer 11 or the adhesion promoter layer 13 described below).
- the adhesive film 1 for metal terminals of the present disclosure may be a single layer as shown in FIG. 4, or may be multilayer as shown in FIGS. 5 to 7.
- the adhesive film 1 for metal terminals of the present disclosure is a single layer
- the adhesive film 1 for metal terminals is composed of a thermochromic layer
- the surface on the metal terminal side and the surface of the exterior material for a storage device are formed by the thermochromic layer.
- the resin forming the surface on the exterior material for a storage device side of the adhesive film 1 for metal terminals and the resin forming the surface on the metal terminal side are a common resin (i.e., a resin that forms a thermochromic layer).
- the resin forming the surface on the exterior material for a storage device side of the adhesive film 1 for metal terminals and the resin forming the surface on the metal terminal side being common means that, for example, 80% by mass or more of the components in these resins are the same, 90% by mass or more are the same, 95% by mass or more are the same, or 100% by mass are the same.
- the adhesive film 1 for metal terminals of the present disclosure is a multi-layer structure, for example as shown in FIG. 5, when the adhesive film 1 for metal terminals of the present disclosure has a two-layer structure, the adhesive film 1 for metal terminals is a laminate of a first resin layer 12a and a second resin layer 12b, and at least one of the first resin layer 12a and the second resin layer 12b is a thermochromic layer. Even when the adhesive film 1 for metal terminals of the present disclosure is a multi-layer structure, the resin forming the surface on the exterior material side for the electricity storage device and the resin forming the surface on the metal terminal side may be the same resin.
- the adhesive film 1 for metal terminals of the present disclosure when the adhesive film 1 for metal terminals of the present disclosure has a three-layer structure, the adhesive film 1 for metal terminals is a laminate in which a first resin layer 12a, an intermediate layer 11, and a second resin layer 12b are laminated in this order.
- the first resin layer 12a forms the surface on the metal terminal side
- the second resin layer 12b forms the surface on the exterior material side for the electricity storage device.
- the thermochromic layer has thermal adhesion to metal (the metal constituting the metal terminal).
- the thermochromic layer can be disposed on the metal terminal side of the adhesive film 1 for metal terminals.
- the first resin layer 12a and the second resin layer 12b at least the first resin layer 12a can be formed by the thermochromic layer.
- the surface of the adhesive film 1 for metal terminals of the present disclosure that faces the exterior material for an electrical storage device (e.g., the second resin layer 12b) has thermal adhesion to the thermally adhesive resin layer described below. It is preferable that the thermochromic layer also has thermal adhesion to the thermally adhesive resin layer described below.
- the thermochromic layer can be disposed on the exterior material side for an electrical storage device of the adhesive film 1 for metal terminals and used.
- at least the second resin layer 12b can be formed by a thermochromic layer.
- thermochromic layer can also be used as an intermediate layer 11 located between the first resin layer 12a and the second resin layer 12b.
- thermochromic layer is a layer that contains a temperature-indicating material. That is, the thermochromic layer is, for example, a resin layer formed from a resin composition that contains a temperature-indicating material and a resin.
- the temperature-indicating material there are no particular limitations on the temperature-indicating material, so long as it is a material (compound) that has the property of changing color when placed in a certain temperature environment, and various inorganic and organic compounds are known as materials that have this property.
- the temperature at which the temperature indicator changes color when heated from room temperature (25°C) is unique to each temperature indicator, so a temperature indicator can be selected according to the heating temperature to be determined from the appearance of the adhesive film 1 for metal terminals.
- Examples of the temperature range at which the temperature indicator used in this disclosure changes color when heated from room temperature (25°C) include between 120 and 150°C, between 200 and 240°C, and between 280 and 320°C.
- the adhesive film 1 for metal terminals contains polyolefin, it is preferable that the color change occurs between 280 and 320°C, at which point the polyolefin begins to deteriorate.
- the color change occurs between 200 and 240°C from the viewpoint of confirming that the adhesive film 1 for metal terminals has been heat-sealed, and it is preferable that the color change occurs between 280 and 320°C from the viewpoint of determining that the temperature during heat sealing was too high.
- the adhesive film 1 for metal terminals is used to determine whether the power storage device has experienced thermal runaway and is reaching a high temperature, it is preferable for the color to change between 120 and 150°C.
- titanium nitride changes from black to white when heated to about 300°C.
- titanium nitride which is preferably used as a temperature indicator in this disclosure, is black at room temperature (25°C) and remains black even when heated to, for example, 280°C, but when heated to 300°C, it is oxidized to titanium dioxide and changes color to white. Therefore, if titanium nitride (titanium black) is used as a temperature indicator for the thermochromic layer, the adhesive film 1 for metal terminals retains its black color from room temperature to 280°C, but changes color to white when heated to 300°C, so that it can be determined from the appearance that it has been exposed to a very high temperature environment of 300°C.
- the resin When the adhesive film 1 for metal terminals is exposed to a high temperature environment of 300°C, the resin deteriorates and the properties of the adhesive film 1 for metal terminals tend to deteriorate, so that it is possible to determine from the appearance whether the properties of the adhesive film 1 for metal terminals are likely to deteriorate.
- the resin may be heated to 300°C in the manufacturing process of the adhesive film 1 for metal terminals. Even in such cases, by confirming that the thermochromic layer, which should have been manufactured as black, has changed to white, it is possible to judge from the appearance whether there is a risk of a deterioration in the properties of the adhesive film 1 for metal terminals.
- the temperature indicator include inorganic compounds such as titanium nitride (titanium black), titanium dioxide, and zinc sulfide, and organic compounds such as thermochromic liquid crystals (cholesterol derivatives and cyanobiphenyls).
- inorganic particles are unlikely to dissolve in the electrolyte.
- inorganic particles have a large coloring effect and can obtain a sufficient coloring effect with an amount added that does not inhibit adhesion, and can increase the apparent melt viscosity of the added resin without melting with heat.
- they can prevent the pressurized part from becoming thin during thermal adhesion (heat sealing), and can provide excellent sealing between the exterior material for the power storage device and the metal terminal.
- the thermochromic layer may contain only one type of temperature indicator, or two or more types. From the viewpoint of more suitably exerting the effects of the present disclosure, titanium nitride (titanium black) is particularly preferable among these temperature indicators.
- the color of the temperature indicator is not particularly limited, but from the viewpoint of more optimally exerting the effects of the present disclosure, black, gray, etc. are preferred, and black is particularly preferred.
- the thermochromic layer can be colored in a color corresponding to the color of the temperature indicator, and the adhesive film 1 for metal terminals of the present disclosure allows the color of the thermochromic layer to be visually recognized from the outside.
- the thermochromic layer has an L * value in the L * a * b * color space of reflected light measured under the measurement conditions of the SCI method, a visual field of 10°, and a light source F2, which is preferably about 90 or less, more preferably about 80 or less, and even more preferably about 70 or less, and is preferably about 10 or more, more preferably about 20 or more, and even more preferably about 30 or more.
- Preferred ranges include about 10 to 90, about 10 to 80, about 10 to 70, about 20 to 90, about 20 to 80, about 20 to 70, about 30 to 90, about 30 to 80, and about 30 to 70.
- the difference in L * before and after heating the adhesive film 1 for metal terminal is preferably about 10 or more, more preferably about 20 or more, and even more preferably about 30 or more, with the upper limit usually being about 90 or less, and preferred ranges include about 10 to 90, about 20 to 90, and about 30 to 90.
- the average particle diameter of the temperature indicator is preferably about 300 nm or less, more preferably about 200 nm or less, and even more preferably about 100 nm or less, and is preferably about 10 nm or more, more preferably about 20 nm or more, even more preferably about 30 nm or more, and even more preferably about 50 nm or more.
- Preferred ranges include about 10 to 300 nm, about 10 to 200 nm, about 10 to 100 nm, about 20 to 300 nm, about 20 to 200 nm, about 20 to 100 nm, about 30 to 300 nm, about 30 to 200 nm, about 30 to 100 nm, about 50 to 300 nm, about 50 to 200 nm, and about 50 to 100 nm.
- the average particle diameter of the temperature indicator is the median diameter measured by a laser diffraction/scattering type particle size distribution measuring device.
- the content of the temperature indicator in the thermochromic layer is preferably about 50% by mass or less, more preferably about 40% by mass or less, even more preferably about 30% by mass or less, and even more preferably about 20% by mass or less, and is preferably about 0.01% by mass or more, more preferably about 0.1% by mass or more, and preferred ranges include about 0.01 to 50% by mass, about 0.01 to 40% by mass, about 0.01 to 30% by mass, about 0.01 to 20% by mass, about 0.1 to 50% by mass, about 0.1 to 40% by mass, about 0.1 to 30% by mass, and about 0.1 to 20% by mass.
- thermochromic layer examples include polyolefin resins, polyamide resins, polyester resins, epoxy resins, acrylic resins, fluororesins, silicone resins, phenolic resins, polyetherimides, polyimides, polycarbonates, and mixtures and copolymers thereof, among which polyolefin resins are particularly preferred.
- polyolefin resins include polyolefins and acid-modified polyolefins.
- the thermochromic layer preferably contains a polyolefin resin (i.e., has a polyolefin skeleton), preferably contains a polyolefin, and is more preferably a layer formed of a polyolefin.
- the thermochromic layer preferably contains a polyolefin or an acid-modified polyolefin.
- the polyolefin is preferably polypropylene, and the acid-modified polyolefin is preferably acid-modified polypropylene.
- the thermochromic layer may contain only one type of resin, or two or more types.
- the resin of the thermochromic layer is preferably a blended polymer combining two or more types of resin components.
- a thermochromic layer containing acid-modified polypropylene is preferably made of acid-modified polypropylene as the main component (50% by mass or more of a component) and 50% by mass or less of other resins (preferably polyethylene from the viewpoint of improving flexibility).
- a thermochromic layer containing polypropylene is preferably made of polypropylene as the main component (50% by mass or more of a component) and 50% by mass or less of other resins (preferably polyethylene from the viewpoint of improving flexibility).
- thermochromic layer containing acid-modified polypropylene preferably contains acid-modified polypropylene alone as a resin
- thermochromic layer containing polypropylene is preferably made of acid-modified polypropylene or polypropylene alone as a resin.
- thermochromic layer preferably contains an acid-modified polyolefin, since this provides excellent adhesion to the metal terminal.
- the thermochromic layer is preferably formed from an acid-modified polyolefin containing a temperature indicator.
- the thermochromic layer can be suitably formed from an acid-modified polyolefin film containing a temperature indicator.
- the acid-modified polyolefin is not particularly limited as long as it is an acid-modified polyolefin, but preferably includes polyolefins graft-modified with an unsaturated carboxylic acid or anhydride thereof.
- polyolefins to be acid-modified include polyethylenes such as low-density polyethylene, medium-density polyethylene, high-density polyethylene, and linear low-density polyethylene; crystalline or amorphous polypropylenes such as homopolypropylene, block copolymers of polypropylene (e.g., block copolymers of propylene and ethylene), and random copolymers of polypropylene (e.g., random copolymers of propylene and ethylene); and ethylene-butene-propylene terpolymers.
- polyethylene and polypropylene are preferred, and polypropylene is particularly preferred.
- the polyolefin to be acid-modified may also be a cyclic polyolefin.
- a carboxylic acid-modified cyclic polyolefin is a polymer obtained by copolymerizing a portion of the monomers constituting the cyclic polyolefin with an ⁇ , ⁇ -unsaturated carboxylic acid or its anhydride, or by block polymerizing or graft polymerizing an ⁇ , ⁇ -unsaturated carboxylic acid or its anhydride onto a cyclic polyolefin.
- the acid-modified cyclic polyolefin is a copolymer of an olefin and a cyclic monomer
- examples of the olefins constituting the cyclic polyolefin include ethylene, propylene, 4-methyl-1-pentene, butadiene, and isoprene.
- examples of the cyclic monomers constituting the cyclic polyolefin include cyclic alkenes such as norbornene; specifically, cyclic dienes such as cyclopentadiene, dicyclopentadiene, cyclohexadiene, and norbornadiene.
- cyclic alkenes are preferred, and norbornene is even more preferred.
- Styrene is also an example of a constituting monomer.
- Examples of the carboxylic acid or its anhydride used for acid modification include maleic acid, acrylic acid, itaconic acid, crotonic acid, maleic anhydride, and itaconic anhydride.
- a peak derived from maleic anhydride is preferably detected.
- maleic anhydride-modified polyolefin is measured by infrared spectroscopy, a peak derived from maleic anhydride is detected at a wave number of about 1760 cm - 1 and a wave number of about 1780 cm -1 .
- thermochromic layer is a layer composed of maleic anhydride-modified polyolefin
- a peak derived from maleic anhydride is detected by infrared spectroscopy.
- the peak may be small and not detected. In that case, it can be analyzed by nuclear magnetic resonance spectroscopy.
- thermochromic layer may contain, in addition to the temperature indicator and resin, known additives such as fillers, as necessary, to the extent that the effect of the present disclosure is not impaired.
- the thermochromic layer may contain a filler as necessary.
- the filler functions as a spacer, making it possible to effectively suppress short circuits between the metal terminal 2 and the barrier layer 33 of the exterior material 3 for a storage battery device.
- the particle size of the filler is about 0.1 to 35 ⁇ m, preferably about 5.0 to 30 ⁇ m, and more preferably about 10 to 25 ⁇ m.
- the content of the filler is about 5 to 30 parts by mass, and more preferably about 10 to 20 parts by mass, per 100 parts by mass of the resin component that forms the thermochromic layer.
- inorganic fillers include carbon (carbon, graphite), silica, aluminum oxide, barium titanate, iron oxide, silicon carbide, zirconium oxide, zirconium silicate, magnesium oxide, titanium oxide, calcium aluminate, calcium hydroxide, aluminum hydroxide, magnesium hydroxide, calcium carbonate, etc.
- organic fillers include fluororesin, phenolic resin, urea resin, epoxy resin, acrylic resin, benzoguanamine-formaldehyde condensate, melamine-formaldehyde condensate, polymethyl methacrylate crosslinked product, polyethylene crosslinked product, etc.
- the filler can be mixed into the resin component that forms the thermochromic layer by melt-blending the two in advance using a Banbury mixer or similar to create a master batch and mixing it in a specified ratio, or by directly mixing it with the resin component.
- thermochromic layer When adding a filler to the thermochromic layer, a temperature indicator and a pigment may be added to the thermochromic layer, but from the viewpoint of not impairing the thermal fusion properties of the adhesive film for metal terminals 1, it is preferable to add the filler and pigment separately to different layers (for example, the first resin layer 12a, the second resin layer 12b, the intermediate layer 11, etc. described below).
- the melting peak temperature of the thermochromic layer is preferably 110°C or higher, more preferably about 120°C or higher, and even more preferably about 130°C or higher. From the same viewpoint, the melting peak temperature is, for example, 200°C or lower, preferably 190°C or lower, more preferably 180°C or lower, even more preferably about 175°C or lower, and even more preferably about 170°C or lower.
- Preferred ranges of the melting peak temperature include about 110 to 200°C, about 110 to 190°C, about 110 to 180°C, about 110 to 175°C, about 110 to 170°C, about 120 to 200°C, about 120 to 190°C, about 120 to 180°C, about 120 to 175°C, about 120 to 170°C, about 130 to 200°C, about 130 to 190°C, about 130 to 180°C, about 130 to 175°C, and about 130 to 170°C.
- the method for measuring the melting peak temperature is as follows.
- the melting peak temperature of each measurement sample is measured in accordance with the provisions of JIS K7121:2012 (Method of measuring transition temperature of plastics (JIS K7121:1987 Supplement 1)).
- the measurement is performed using a differential scanning calorimeter (DSC, for example, a differential scanning calorimeter Q200 manufactured by TA Instruments).
- DSC differential scanning calorimeter
- the measurement sample is held at -50°C for 15 minutes, then heated from -50°C to 210°C at a heating rate of 10°C/min, the first melting peak temperature P (°C) is measured, and then held at 210°C for 10 minutes.
- the temperature is lowered from 210°C to -50°C at a heating rate of 10°C/min and held for 15 minutes. Furthermore, the temperature is raised from -50°C to 210°C at a heating rate of 10°C/min to measure the second melting peak temperature Q (°C).
- the flow rate of nitrogen gas is 50 ml/min.
- the total thickness of the adhesive film 1 for metal terminals described below corresponds to the thickness of the thermochromic layer.
- the thickness of the thermochromic layer is preferably about 20 ⁇ m or more, more preferably about 30 ⁇ m or more, even more preferably about 40 ⁇ m or more, and also preferably about 200 ⁇ m or less, more preferably about 150 ⁇ m or less, even more preferably 100 ⁇ m or less.
- thermochromic layer Preferred ranges of the thickness of the thermochromic layer include about 20 to 200 ⁇ m, about 20 to 150 ⁇ m, about 20 to 100 ⁇ m, about 30 to 200 ⁇ m, about 30 to 150 ⁇ m, about 30 to 100 ⁇ m, about 40 to 200 ⁇ m, about 40 to 150 ⁇ m, and about 40 to 100 ⁇ m. Note that when the adhesive film 1 for metal terminals of the present disclosure includes multiple thermochromic layers, it is preferable that the thickness of each thermochromic layer is the above-mentioned thickness.
- the thickness of the thermochromic layer is preferably about 20 ⁇ m or more, more preferably about 30 ⁇ m or more, even more preferably about 40 ⁇ m or more, and is preferably about 200 ⁇ m or less, more preferably about 150 ⁇ m or less, even more preferably 100 ⁇ m or less.
- thermochromic layer Preferred ranges for the thickness of the thermochromic layer include about 20 to 200 ⁇ m, about 20 to 150 ⁇ m, about 20 to 100 ⁇ m, about 30 to 200 ⁇ m, about 30 to 150 ⁇ m, about 30 to 100 ⁇ m, about 40 to 200 ⁇ m, about 40 to 150 ⁇ m, and about 40 to 100 ⁇ m.
- the thickness of the thermochromic layer is preferably about 20 ⁇ m or more, more preferably about 30 ⁇ m or more, even more preferably about 40 ⁇ m or more, and is preferably about 200 ⁇ m or less, more preferably about 150 ⁇ m or less, even more preferably 100 ⁇ m or less.
- a preferred range for the thickness of the thermochromic layer is about 40 to 100 ⁇ m.
- the thickness of the thermochromic layer is preferably about 20 ⁇ m or more, more preferably about 30 ⁇ m or more, even more preferably about 40 ⁇ m or more, and is preferably about 200 ⁇ m or less, more preferably about 150 ⁇ m or less, even more preferably 100 ⁇ m or less.
- thermochromic layer Preferred ranges for the thickness of the thermochromic layer include about 20 to 200 ⁇ m, about 20 to 150 ⁇ m, about 20 to 100 ⁇ m, about 30 to 200 ⁇ m, about 30 to 150 ⁇ m, about 30 to 100 ⁇ m, about 40 to 200 ⁇ m, about 40 to 150 ⁇ m, and about 40 to 100 ⁇ m.
- the adhesive film 1 for metal terminals of the present disclosure can be configured, for example as shown in FIG. 6, to have at least a first resin layer 12a, an intermediate layer 11, and a second resin layer 12b laminated in this order.
- the first resin layer 12a is disposed on the metal terminal 2 side
- the second resin layer 12b is disposed on the exterior material 3 side for an electrical storage device.
- the first resin layer 12a and the second resin layer 12b are located on the surfaces of both sides, respectively.
- the second resin layer 12b is a layer made of resin.
- the second resin layer 12b may be formed of a thermochromic layer, or may be formed of a resin layer B different from the thermochromic layer (i.e., the resin layer B is a resin layer that does not contain a thermochromic material).
- the intermediate layer 11 may also be formed from a thermochromic layer, or may be formed from a resin layer B that is different from the thermochromic layer.
- Resin layer B is a resin layer different from the thermochromic layer (i.e., resin layer B can be said to be a non-thermochromic layer that does not thermochromic at the temperature at which the thermochromic layer thermochromic changes, for example, a resin layer that does not contain a temperature indicating material).
- Examples of the resin constituting the resin layer B include polyolefin resins, polyamide resins, polyester resins, epoxy resins, acrylic resins, fluororesins, silicone resins, phenolic resins, polyetherimides, polyimides, polycarbonates, and mixtures and copolymers thereof, among which polyolefin resins are particularly preferred.
- Examples of polyolefin resins include polyolefins and acid-modified polyolefins.
- the resin contained in the resin layer B may be only one type, or may be two or more types. From the viewpoint of film-forming properties, the resin of the resin layer B is preferably a blended polymer combining two or more types of resin components. In the case of a blended polymer, for example, if the resin layer B contains acid-modified polypropylene, it is preferable that the acid-modified polypropylene is the main component (a component of 50 mass% or more) and 50 mass% or less of other resins (preferably polyethylene from the viewpoint of improving flexibility).
- the resin layer B contains polypropylene
- the polypropylene is the main component (a component of 50 mass% or more) and 50 mass% or less of other resins (preferably polyethylene from the viewpoint of improving flexibility).
- the resin layer B containing acid-modified polypropylene preferably contains acid-modified polypropylene alone as a resin
- the resin layer B containing polypropylene preferably contains acid-modified polypropylene or polypropylene alone as a resin.
- the melting peak temperature of resin layer B is preferably 110° C. or higher, more preferably about 120° C. or higher, and even more preferably about 130° C. or higher.
- the melting peak temperature is, for example, 200° C. or lower, preferably 190° C. or lower, more preferably 180° C. or lower, even more preferably about 175° C. or lower, and even more preferably about 170° C. or lower.
- Preferred ranges for the melting peak temperature include about 110 to 200°C, about 110 to 190°C, about 110 to 180°C, about 110 to 175°C, about 110 to 170°C, about 120 to 200°C, about 120 to 190°C, about 120 to 180°C, about 120 to 175°C, about 120 to 170°C, about 130 to 200°C, about 130 to 190°C, about 130 to 180°C, about 130 to 175°C, and about 130 to 170°C.
- the thickness of the resin layer B is preferably about 20 ⁇ m or more, more preferably about 30 ⁇ m or more, even more preferably about 40 ⁇ m or more, and is preferably about 200 ⁇ m or less, more preferably about 150 ⁇ m or less, even more preferably 100 ⁇ m or less.
- Preferred ranges for the thickness of the resin layer B include about 20 to 200 ⁇ m, about 20 to 150 ⁇ m, about 20 to 100 ⁇ m, about 30 to 200 ⁇ m, about 30 to 150 ⁇ m, about 30 to 100 ⁇ m, about 40 to 200 ⁇ m, about 40 to 150 ⁇ m, and about 40 to 100 ⁇ m.
- the thickness of the resin layer B is preferably about 20 ⁇ m or more, more preferably about 30 ⁇ m or more, even more preferably about 40 ⁇ m or more, and is preferably about 200 ⁇ m or less, more preferably about 150 ⁇ m or less, even more preferably 100 ⁇ m or less.
- Preferred ranges for the thickness of the resin layer B include about 20 to 200 ⁇ m, about 20 to 150 ⁇ m, about 20 to 100 ⁇ m, about 30 to 200 ⁇ m, about 30 to 150 ⁇ m, about 30 to 100 ⁇ m, about 40 to 200 ⁇ m, about 40 to 150 ⁇ m, and about 40 to 100 ⁇ m.
- the thickness of the resin layer B is preferably about 20 ⁇ m or more, more preferably about 30 ⁇ m or more, even more preferably about 40 ⁇ m or more, and is preferably about 200 ⁇ m or less, more preferably about 150 ⁇ m or less, even more preferably 100 ⁇ m or less.
- Preferred ranges for the thickness of the resin layer B include about 20 to 200 ⁇ m, about 20 to 150 ⁇ m, about 20 to 100 ⁇ m, about 30 to 200 ⁇ m, about 30 to 150 ⁇ m, about 30 to 100 ⁇ m, about 40 to 200 ⁇ m, about 40 to 150 ⁇ m, and about 40 to 100 ⁇ m.
- the resin layer B may contain known additives (pigments, fillers, etc.).
- the resin layer B may contain a pigment.
- various inorganic pigments can be used.
- carbon (carbon, graphite) exemplified as the filler above can be preferably exemplified.
- Carbon (carbon, graphite) is a material generally used inside the electric storage device, and there is no risk of dissolving in the electrolyte. In addition, it has a large coloring effect, and a sufficient coloring effect can be obtained with an amount added that does not inhibit adhesion, and it does not melt with heat, and the apparent melt viscosity of the added resin can be increased.
- the resin layer B may contain a filler.
- the type and amount of the filler are the same as those of the thermochromic layer.
- the resin layer B may be colored or colorless and transparent.
- the total thickness of the adhesive film 1 for metal terminals is, for example, about 50 ⁇ m or more, preferably about 100 ⁇ m or more, and more preferably about 150 ⁇ m or more.
- the total thickness of the adhesive film 1 for metal terminals of the present disclosure is preferably about 400 ⁇ m or less, more preferably about 350 ⁇ m or less, and even more preferably about 300 ⁇ m or less.
- Preferred ranges for the total thickness of the adhesive film 1 for metal terminals of the present disclosure include about 50 to 400 ⁇ m, about 50 to 350 ⁇ m, about 50 to 300 ⁇ m, about 100 to 400 ⁇ m, about 100 to 350 ⁇ m, about 100 to 300 ⁇ m, about 150 to 400 ⁇ m, about 150 to 350 ⁇ m, and about 150 to 300 ⁇ m.
- the adhesive film 1 for metal terminals of the present disclosure preferably has fine irregularities on at least one surface of the outermost layer. This can further improve adhesion to the heat-sealable resin layer 35 of the exterior material 3 for an electrical storage device or the metal terminal 2.
- Methods for forming fine irregularities on the surface of the outermost layer of the adhesive film 1 for metal terminals include a method of adding additives such as fine particles to the outermost layer, and a method of applying a cooling roll having an irregular surface to the outermost layer to form a shape.
- the ten-point average roughness of the surface of the outermost layer is preferably about 0.1 ⁇ m or more, more preferably about 0.2 ⁇ m or more, and is also preferably about 35 ⁇ m or less, more preferably about 10 ⁇ m or less, with preferred ranges being about 0.1 to 35 ⁇ m, about 0.1 to 10 ⁇ m, about 0.2 to 35 ⁇ m, and about 0.2 to 10 ⁇ m.
- the ten-point average roughness was measured using a Keyence VK-9710 laser microscope in accordance with the method specified in JIS B0601:1994, with an objective lens of 50x and no cutoff.
- the adhesive film 1 for metal terminals of the present disclosure is preferably formed from a polyolefin resin.
- the resin components contained in the adhesive film 1 for metal terminals of the present disclosure are preferably only acid-modified polyolefins, or only acid-modified polyolefins and polyolefins.
- the preferred acid-modified polyolefins and polyolefins are as described in the thermochromic layer and resin layer B.
- the adhesive film 1 for metal terminals of the present disclosure is preferably composed of a laminate having a first resin layer 12a, an intermediate layer 11, and a second resin layer 12b in this order.
- a preferred embodiment of the adhesive film 1 for metal terminals of the present disclosure will be described in detail, taking as an example a case where the adhesive film 1 for metal terminals of the present disclosure is composed of a laminate having at least a first resin layer 12a, an intermediate layer 11, and a second resin layer 12b in this order.
- the adhesive film 1 for metal terminals of the present disclosure When the adhesive film 1 for metal terminals of the present disclosure is placed between the metal terminal 2 of the electricity storage device 10 and the exterior material 3 for the electricity storage device, the surface of the metal terminal 2 made of metal and the heat-sealable resin layer 35 (a layer formed of a heat-sealable resin such as polyolefin) of the exterior material 3 for the electricity storage device are bonded via the adhesive film 1 for metal terminals.
- the first resin layer 12a of the adhesive film 1 for metal terminals is placed on the metal terminal 2 side, and the second resin layer 12b is placed on the exterior material 3 for the electricity storage device, with the first resin layer 12a in close contact with the metal terminal 2 and the second resin layer 12b in close contact with the heat-sealable resin layer 35 of the exterior material 3 for the electricity storage device.
- the adhesive film 1 for metal terminal comprises a first resin layer 12a on one side of an intermediate layer 11, and a second resin layer 12b on the other side.
- the first resin layer 12a is disposed on the metal terminal 2 side.
- the second resin layer 12b is disposed on the exterior material 3 for an electrical storage device.
- the first resin layer 12a and the second resin layer 12b are located on the surfaces of both sides, respectively.
- At least one of the first resin layer 12a, the intermediate layer 11, and the second resin layer 12b is formed from the aforementioned thermochromic layer.
- the first resin layer 12a and the second resin layer 12b each preferably contain a polyolefin-based resin (i.e., have a polyolefin skeleton), preferably contain a polyolefin, and more preferably are layers formed of a polyolefin.
- the first resin layer 12a preferably contains a polyolefin or an acid-modified polyolefin among polyolefin-based resins, more preferably contains an acid-modified polyolefin, and more preferably is a layer formed of an acid-modified polyolefin film.
- the polyolefin-based resin is preferably a polypropylene-based resin.
- the second resin layer 12b preferably contains a polyolefin or an acid-modified polyolefin among polyolefin-based resins, more preferably contains a polyolefin, and more preferably is a layer formed of a polyolefin film.
- the polyolefin-based resin is preferably a polypropylene-based resin.
- the polyolefin is preferably polypropylene, and the acid-modified polyolefin is preferably polypropylene.
- the melting peak temperature of the first resin layer 12a is preferably 110°C or higher, more preferably about 120°C or higher, and even more preferably about 130°C or higher.
- the melting peak temperature is, for example, 200°C or lower, preferably 190°C or lower, more preferably 180°C or lower, even more preferably about 175°C or lower, and even more preferably about 170°C or lower.
- Preferred ranges for the melting peak temperature include about 110 to 200°C, about 110 to 190°C, about 110 to 180°C, about 110 to 175°C, about 110 to 170°C, about 120 to 200°C, about 120 to 190°C, about 120 to 180°C, about 120 to 175°C, about 120 to 170°C, about 130 to 200°C, about 130 to 190°C, about 130 to 180°C, about 130 to 175°C, and about 130 to 170°C.
- the melting peak temperature of the second resin layer 12b is preferably 110° C. or higher, more preferably about 120° C. or higher, and even more preferably about 130° C. or higher.
- the melting peak temperature is, for example, 200° C. or lower, preferably 190° C. or lower, more preferably 180° C. or lower, even more preferably about 175° C. or lower, and even more preferably about 170° C. or lower.
- Preferred ranges for the melting peak temperature include about 110 to 200°C, about 110 to 190°C, about 110 to 180°C, about 110 to 175°C, about 110 to 170°C, about 120 to 200°C, about 120 to 190°C, about 120 to 180°C, about 120 to 175°C, about 120 to 170°C, about 130 to 200°C, about 130 to 190°C, about 130 to 180°C, about 130 to 175°C, and about 130 to 170°C.
- the thickness of the first resin layer 12a is preferably at least about 20 ⁇ m, more preferably at least about 30 ⁇ m, even more preferably at least about 40 ⁇ m, and is preferably no more than about 200 ⁇ m, more preferably no more than about 150 ⁇ m, even more preferably no more than 100 ⁇ m.
- a preferred range for the thickness of the first resin layer 12a is about 40 to 100 ⁇ m.
- the thickness of the second resin layer 12b is preferably at least about 20 ⁇ m, more preferably at least about 30 ⁇ m, and even more preferably at least about 40 ⁇ m, and is preferably no more than about 200 ⁇ m, more preferably no more than about 150 ⁇ m, and even more preferably no more than 100 ⁇ m.
- Preferred ranges for the thickness of the second resin layer 12b include about 20 to 200 ⁇ m, about 20 to 150 ⁇ m, about 20 to 100 ⁇ m, about 30 to 200 ⁇ m, about 30 to 150 ⁇ m, about 30 to 100 ⁇ m, about 40 to 200 ⁇ m, about 40 to 150 ⁇ m, and about 40 to 100 ⁇ m.
- the intermediate layer 11 is a layer that functions as a support for the adhesive film 1 for a metal terminal.
- the intermediate layer 11 may be formed from the thermochromic layer described above, or may be formed from the resin layer B described above.
- the material forming the intermediate layer 11 is not particularly limited.
- materials forming the intermediate layer 11 include polyolefin resins, polyamide resins, polyester resins, epoxy resins, acrylic resins, fluororesins, silicone resins, phenolic resins, polyetherimides, polyimides, polycarbonates, and mixtures and copolymers thereof.
- polyolefin resins are particularly preferred.
- the material forming the intermediate layer 11 is preferably a resin containing a polyolefin skeleton, such as polyolefin or acid-modified polyolefin. Whether the resin constituting the intermediate layer 11 contains a polyolefin skeleton can be analyzed, for example, by infrared spectroscopy, gas chromatography mass spectrometry, or the like.
- the intermediate layer 11 preferably contains a polyolefin resin, more preferably contains a polyolefin, and more preferably is a layer formed of a polyolefin.
- the layer formed of a polyolefin may be a stretched polyolefin film or an unstretched polyolefin film, but is preferably an unstretched polyolefin film.
- polyolefin examples include polyethylene such as low-density polyethylene, medium-density polyethylene, high-density polyethylene, and linear low-density polyethylene; crystalline or amorphous polypropylene such as homopolypropylene, block copolymers of polypropylene (e.g., block copolymers of propylene and ethylene), and random copolymers of polypropylene (e.g., random copolymers of propylene and ethylene); and ethylene-butene-propylene terpolymers.
- polyethylene and polypropylene are preferred, and polypropylene is more preferred.
- the intermediate layer 11 preferably contains homopolypropylene, more preferably is formed of homopolypropylene, and even more preferably is an unstretched homopolypropylene film.
- polyamides include aliphatic polyamides such as nylon 6, nylon 66, nylon 610, nylon 12, nylon 46, and copolymers of nylon 6 and nylon 66; hexamethylenediamine-isophthalic acid-terephthalic acid copolymer polyamides such as nylon 6I, nylon 6T, nylon 6IT, and nylon 6I6T (I represents isophthalic acid and T represents terephthalic acid) which contain structural units derived from terephthalic acid and/or isophthalic acid, and aromatic polyamides such as polymetaxylylene adipamide (MXD6); alicyclic polyamides such as polyaminomethylcyclohexyl adipamide (PACM6); polyamides copolymerized with lactam components or isocyanate components such as 4,4'-diphenylmethane diisocyanate; polyesteramide copolymers and polyetheresteramide copolymers which are copolymers of copolymerized polyamides with polyesters
- polyesters include polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polybutylene naphthalate, polyethylene isophthalate, copolymer polyesters whose main repeating units are ethylene terephthalate, and copolymer polyesters whose main repeating units are butylene terephthalate.
- copolymer polyesters whose main repeating units are ethylene terephthalate include copolymer polyesters in which ethylene terephthalate is the main repeating unit and is polymerized with ethylene isophthalate (hereinafter abbreviated as polyethylene (terephthalate/isophthalate)), polyethylene (terephthalate/isophthalate), polyethylene (terephthalate/adipate), polyethylene (terephthalate/sodium sulfoisophthalate), polyethylene (terephthalate/sodium isophthalate), polyethylene (terephthalate/phenyl-dicarboxylate), and polyethylene (terephthalate/decanedicarboxylate).
- polyethylene (terephthalate/isophthalate) polyethylene (terephthalate/isophthalate)
- polyethylene (terephthalate/isophthalate) polyethylene (terephthalate/isophthalate)
- polyethylene (terephthalate/adipate) polyethylene (terephthalate/s
- copolymer polyesters containing butylene terephthalate as the main repeating unit include copolymer polyesters in which butylene terephthalate is the main repeating unit and is polymerized with butylene isophthalate (hereinafter abbreviated as polybutylene (terephthalate/isophthalate)), polybutylene (terephthalate/adipate), polybutylene (terephthalate/sebacate), polybutylene (terephthalate/decanedicarboxylate), polybutylene naphthalate, etc. These polyesters may be used alone or in combination of two or more.
- the intermediate layer 11 may also be formed of a nonwoven fabric made of the above-mentioned resin.
- the intermediate layer 11 is a nonwoven fabric, it is preferable that the intermediate layer 11 is composed of the above-mentioned polyolefin resin, polyamide resin, etc.
- the melting peak temperature of the intermediate layer 11 is preferably 110°C or higher, more preferably about 120°C or higher, and even more preferably about 130°C or higher. From a similar perspective, the melting peak temperature is, for example, 300°C or lower, preferably 290°C or lower, more preferably 280°C or lower, even more preferably about 275°C or lower, and even more preferably about 270°C or lower.
- Preferred ranges for the melting peak temperature include about 110 to 300°C, about 110 to 290°C, about 110 to 280°C, about 110 to 275°C, about 110 to 270°C, about 120 to 300°C, about 120 to 290°C, about 120 to 280°C, about 120 to 275°C, about 120 to 270°C, about 130 to 300°C, about 130 to 290°C, about 130 to 280°C, about 130 to 275°C, and about 130 to 270°C.
- the intermediate layer 11 may be a single layer or multiple layers.
- the intermediate layer 11 can be a layer containing the colorant. Also, light transmittance can be adjusted by selecting a resin with low transparency. If the intermediate layer 11 is a film, a colored film or a film with low transparency can be used. If the intermediate layer 11 is a nonwoven fabric, a nonwoven fabric using fibers or a binder containing a colorant, or a nonwoven fabric with low transparency can be used.
- the surface of the intermediate layer 11 may be subjected to a known adhesion enhancing method such as corona discharge treatment, ozone treatment, or plasma treatment, if necessary.
- the thickness of the intermediate layer 11 is preferably at least about 20 ⁇ m, more preferably at least about 30 ⁇ m, and even more preferably at least about 40 ⁇ m, and is preferably no more than about 200 ⁇ m, more preferably no more than about 150 ⁇ m, and even more preferably no more than 100 ⁇ m.
- Preferred ranges for the thickness of the intermediate layer 11 include about 20 to 200 ⁇ m, about 20 to 150 ⁇ m, about 20 to 100 ⁇ m, about 30 to 200 ⁇ m, about 30 to 150 ⁇ m, about 30 to 100 ⁇ m, about 40 to 200 ⁇ m, about 40 to 150 ⁇ m, and about 40 to 100 ⁇ m.
- the ratio of the thickness of the intermediate layer 11 to the total thickness of the first resin layer 12a and the second resin layer 12b is preferably at least about 0.3, more preferably at least about 0.4, and is preferably at most about 1.0, more preferably at most about 0.8, with preferred ranges being around 0.3 to 1.0, around 0.3 to 0.8, around 0.4 to 1.0, and around 0.4 to 0.8.
- the ratio of the total thickness of the first resin layer 12a and the second resin layer 12b is preferably about 30 to 80%, and more preferably about 50 to 70%.
- the adhesive film 1 for metal terminals of the present disclosure can be manufactured, for example, by laminating a first resin layer 12a and a second resin layer 12b on both surfaces of an intermediate layer 11.
- the intermediate layer 11 can be laminated with the first resin layer 12a and the second resin layer 12b by a known method such as an extrusion lamination method, a T-die method, an inflation method, or a thermal lamination method.
- the method for interposing the adhesive film 1 for metal terminals between the metal terminal 2 and the exterior material 3 for the electricity storage device is not particularly limited, and for example, as shown in Figures 1 to 3, the adhesive film 1 for metal terminals may be wrapped around the metal terminal 2 in the portion where the metal terminal 2 is sandwiched by the exterior material 3 for the electricity storage device.
- the adhesive film 1 for metal terminals may be disposed on both sides of the metal terminal 2 so as to cross the two metal terminals 2 in the portion where the metal terminal 2 is sandwiched by the exterior material 3 for the electricity storage device.
- the adhesion promoter layer 13 is a layer that is provided as necessary for the purpose of firmly adhering the intermediate layer 11 to the first resin layer 12a, and between the intermediate layer 11 and the second resin layer 12b (see FIG. 7).
- the adhesion promoter layer 13 may be provided on only one side between the intermediate layer 11 and the first resin layer 12a and between the intermediate layer 11 and the second resin layer 12b, or on both sides.
- the adhesion promoter layer may contain a temperature indicator.
- the adhesion promoter layer 13 can be formed using known adhesion promoters such as isocyanate-based, polyethyleneimine-based, polyester-based, polyurethane-based, polybutadiene-based, etc. From the viewpoint of obtaining strong adhesion strength, it is preferable that it is formed using an isocyanate-based adhesion promoter.
- an isocyanate-based adhesion promoter one consisting of an isocyanate component selected from triisocyanate monomer and polymeric MDI has excellent laminate strength and suffers little deterioration in laminate strength at high temperatures.
- an adhesion promoter made of triphenylmethane-4,4',4"-triisocyanate, which is a triisocyanate monomer, or polymethylene polyphenyl polyisocyanate, which is a polymeric MDI (NCO content of about 30%, viscosity of 200 to 700 mPa ⁇ s). It is also preferable to form the adhesive using triisocyanate monomer tris(p-isocyanatephenyl)thiophosphate, or a two-component curing adhesion promoter that uses a polyethyleneimine system as the main agent and polycarbodiimide as the crosslinking agent.
- the adhesion promoter layer 13 can be formed by coating and drying using a known coating method such as bar coating, roll coating, gravure coating, etc.
- the amount of the adhesion promoter to be applied is about 20 to 100 mg/m 2 , preferably about 40 to 60 mg/m 2 , in the case of an adhesion promoter made of triisocyanate, about 40 to 150 mg/m 2 , preferably about 60 to 100 mg/m 2 , in the case of an adhesion promoter made of polymeric MDI, and about 5 to 50 mg/m 2 , preferably about 10 to 30 mg/m 2 , in the case of a two-liquid curing type adhesion promoter with a polyethyleneimine system as the main agent and a polycarbodiimide as the crosslinking agent.
- the triisocyanate monomer is a monomer having three isocyanate groups in one molecule
- the polymeric MDI is a mixture of MDI and MDI oligomers polymerized from MDI, and is represented
- first resin layer 12a and the intermediate layer 11 are in contact with each other, and that the second resin layer 12b and the intermediate layer 11 are in contact with each other.
- Specific examples of preferred laminated structures of the adhesive film 1 for metal terminals of the present disclosure include a three-layer structure in which a first resin layer formed from acid-modified polypropylene/an intermediate layer (substrate) formed from polypropylene/a second resin layer formed from acid-modified polypropylene are laminated in this order; a three-layer structure in which a first resin layer formed from acid-modified polypropylene/an intermediate layer (substrate) formed from polypropylene/a second resin layer formed from polypropylene are laminated in this order, and among these, the latter three-layer structure is particularly preferred in terms of adhesion between the heat-sealable resin layer 35 and the second resin layer 12b of the exterior material 3 for electrical storage devices.
- the adhesive film 1 for metal terminals of the present disclosure is used by being interposed between a metal terminal 2 and an exterior material 3 for an electricity storage device.
- the metal terminal 2 (tab) is a conductive member electrically connected to an electrode (positive electrode or negative electrode) of an electricity storage device element 4, and is made of a metal material.
- the metal material constituting the metal terminal 2 is not particularly limited, and examples thereof include aluminum, nickel, copper, and the like.
- the metal terminal 2 connected to the positive electrode of a lithium ion electricity storage device is usually made of aluminum, etc.
- the metal terminal 2 connected to the negative electrode of a lithium ion electricity storage device is usually made of copper, nickel, etc.
- the surface of the metal terminal 2 is preferably subjected to a chemical conversion treatment in order to enhance resistance to electrolyte.
- a chemical conversion treatment include known methods for forming a corrosion-resistant film using phosphates, chromates, fluorides, triazine thiol compounds, etc.
- a phosphate chromate treatment using a compound consisting of three components: phenolic resin, chromium (III) fluoride compound, and phosphoric acid is preferable.
- the size of the metal terminal 2 may be set appropriately depending on the size of the electricity storage device to be used.
- the thickness of the metal terminal 2 is preferably about 50 to 1000 ⁇ m, more preferably about 70 to 800 ⁇ m.
- the length of the metal terminal 2 is preferably about 1 to 200 mm, more preferably about 3 to 150 mm.
- the width of the metal terminal 2 is preferably about 1 to 200 mm, more preferably about 3 to 150 mm.
- the exterior material 3 for an electric storage device may have a laminated structure including at least a base material layer 31, a barrier layer 33, and a heat-sealable resin layer 35 in this order.
- FIG. 8 shows an example of a cross-sectional structure of the exterior material 3 for an electric storage device, in which the base material layer 31, an adhesive layer 32 provided as needed, a barrier layer 33, an adhesive layer 34 provided as needed, and a heat-sealable resin layer 35 are laminated in this order.
- the base material layer 31 is the outer layer
- the heat-sealable resin layer 35 is the innermost layer.
- FIGS. 1 to 3 show the electric storage device 10 in the case where an embossed type exterior material 3 for an electric storage device formed by embossing or the like is used, but the exterior material 3 for an electric storage device may be an unformed pouch type.
- the pouch type includes three-sided seal, four-sided seal, pillow type, etc., and any type may be used.
- the thickness of the laminate constituting the exterior material 3 for the electric storage device is not particularly limited, but from the viewpoint of cost reduction, energy density improvement, etc., the upper limit is, for example, about 190 ⁇ m or less, preferably about 180 ⁇ m or less, about 160 ⁇ m or less, about 155 ⁇ m or less, about 140 ⁇ m or less, about 130 ⁇ m or less, and about 120 ⁇ m or less, and from the viewpoint of maintaining the function of the exterior material 3 for the electric storage device to protect the electric storage device element 4, the lower limit is preferably about 35 ⁇ m or more, about 45 ⁇ m or more, about 60 ⁇ m or more, and about 80 ⁇ m or more, and preferred ranges are, for example, about 35 to 190 ⁇ m, about 35 to 180 ⁇ m, and about 35 to 160 ⁇ m.
- the base material layer 31 is a layer that functions as a base material of the electrical storage device packaging material, and is a layer that forms the outermost layer side.
- the material forming the base layer 31 is not particularly limited, as long as it is insulating.
- materials forming the base layer 31 include polyester, polyamide, epoxy, acrylic resin, fluororesin, polyurethane, silicone resin, phenol, polyetherimide, polyimide, and mixtures and copolymers thereof.
- Polyesters such as polyethylene terephthalate and polybutylene terephthalate have the advantage of being highly resistant to electrolyte and being less susceptible to whitening due to adhesion of electrolyte, and are therefore preferably used as materials for forming the base layer 31.
- polyamide film has excellent stretchability and can prevent whitening due to resin cracking of the base layer 31 during molding, and is therefore preferably used as materials for forming the base layer 31.
- the substrate layer 31 may be formed of a uniaxially or biaxially stretched resin film, or may be formed of an unstretched resin film. Among them, uniaxially or biaxially stretched resin films, especially biaxially stretched resin films, are preferably used as the substrate layer 31 because their heat resistance is improved by oriented crystallization.
- the resin film forming the base layer 31 is preferably nylon or polyester, and more preferably biaxially oriented nylon or biaxially oriented polyester.
- the base layer 31 can be made by laminating resin films of different materials in order to improve pinhole resistance and insulation when used as a package for an electricity storage device.
- resin films of different materials include a multi-layer structure in which a polyester film is laminated with a nylon film, or a multi-layer structure in which biaxially oriented polyester is laminated with a biaxially oriented nylon.
- the resin films may be bonded via an adhesive, or may be laminated directly without an adhesive.
- bonding without an adhesive examples include a method of bonding in a hot melt state, such as co-extrusion, sand lamination, or thermal lamination.
- the base layer 31 may be made low-friction to improve formability.
- the base layer 31 low-friction there are no particular limitations on the coefficient of friction of its surface, but an example of this is 1.0 or less.
- Examples of ways to make the base layer 31 low-friction include matte treatment, forming a thin layer of a slip agent, and combinations of these.
- the thickness of the base layer 31 is, for example, about 10 to 50 ⁇ m, and preferably about 15 to 30 ⁇ m.
- the adhesive layer 32 is a layer that is disposed on the base material layer 31 as necessary in order to impart adhesion to the base material layer 31. That is, the adhesive layer 32 is provided between the base material layer 31 and the barrier layer 33.
- the adhesive layer 32 is formed from an adhesive capable of bonding the base layer 31 and the barrier layer 33.
- the adhesive used to form the adhesive layer 32 may be a two-component curing adhesive or a one-component curing adhesive.
- the resin component of the adhesive that can be used to form the adhesive layer 32 is preferably a polyurethane-based two-component curing adhesive; polyamide, polyester, or a blend resin of these with modified polyolefin, from the viewpoint of excellent ductility, durability under high humidity conditions, yellowing prevention, and thermal degradation prevention during heat sealing, and effectively suppressing the decrease in laminate strength between the base layer 31 and the barrier layer 33 and preventing the occurrence of delamination.
- the adhesive layer 32 may be multi-layered with different adhesive components.
- the adhesive layer 32 is multi-layered with different adhesive components, it is preferable to select a resin with excellent adhesion to the base layer 31 as the adhesive component arranged on the base layer 31 side, and an adhesive component with excellent adhesion to the barrier layer 33 as the adhesive component arranged on the barrier layer 33 side, from the viewpoint of improving the laminate strength between the base layer 31 and the barrier layer 33.
- the adhesive component arranged on the barrier layer 33 side is preferably an acid-modified polyolefin, a metal-modified polyolefin, a mixed resin of polyester and acid-modified polyolefin, a resin containing a copolymerized polyester, etc.
- the thickness of the adhesive layer 32 is, for example, about 2 to 50 ⁇ m, and preferably about 3 to 25 ⁇ m.
- the barrier layer 33 is a layer that has a function of preventing water vapor, oxygen, light, and the like from penetrating into the electrical storage device in addition to improving the strength of the electrical storage device exterior material.
- the barrier layer 33 is preferably a metal layer, that is, a layer formed of a metal. Specific examples of the metal constituting the barrier layer 33 include aluminum, stainless steel, and titanium, and preferably aluminum.
- the barrier layer 33 can be formed, for example, of a metal foil, a metal vapor deposition film, an inorganic oxide vapor deposition film, a carbon-containing inorganic oxide vapor deposition film, or a film provided with these vapor deposition films, and is preferably formed of a metal foil, and more preferably formed of an aluminum foil.
- the barrier layer is more preferably formed from a soft aluminum foil such as annealed aluminum (JIS H4160:1994 A8021H-O, JIS H4160:1994 A8079H-O, JIS H4000:2014 A8021P-O, JIS H4000:2014 A8079P-O).
- a soft aluminum foil such as annealed aluminum
- the thickness of the barrier layer 33 is preferably about 10 to 200 ⁇ m, and more preferably about 20 to 100 ⁇ m, from the viewpoint of making the exterior material for the power storage device thinner while making it difficult for pinholes to occur during molding.
- barrier layer 33 it is preferable that at least one surface, and preferably both surfaces, of the barrier layer 33 are chemically treated to stabilize adhesion and prevent dissolution and corrosion.
- chemical treatment refers to a process for forming a corrosion-resistant film on the surface of the barrier layer.
- the adhesive layer 34 is a layer that is provided, if necessary, between the barrier layer 33 and the heat-sealable resin layer 35 in order to firmly bond the heat-sealable resin layer 35 .
- the adhesive layer 34 is formed from an adhesive capable of bonding the barrier layer 33 and the heat-sealable resin layer 35.
- the composition of the adhesive used to form the adhesive layer is not particularly limited, but examples include a resin composition containing an acid-modified polyolefin. Examples of acid-modified polyolefins include the same ones exemplified for the first resin layer 12a and the second resin layer 12b.
- the thickness of the adhesive layer 34 is, for example, about 1 to 40 ⁇ m, and preferably about 2 to 30 ⁇ m.
- the heat-sealable resin layer 35 corresponds to the innermost layer, and is a layer that seals the electricity storage device elements by heat-sealing the heat-sealable resin layers together when assembling the electricity storage device. .
- the resin components used in the heat-sealable resin layer 35 are not particularly limited, as long as they are heat-sealable, but examples include polyolefins and cyclic polyolefins.
- polystyrene resin examples include polyethylenes such as low-density polyethylene, medium-density polyethylene, high-density polyethylene, and linear low-density polyethylene; crystalline or amorphous polypropylenes such as homopolypropylene, block copolymers of polypropylene (e.g., block copolymers of propylene and ethylene), and random copolymers of polypropylene (e.g., random copolymers of propylene and ethylene); and ethylene-butene-propylene terpolymers.
- polyethylene and polypropylene are preferred.
- the cyclic polyolefin is a copolymer of an olefin and a cyclic monomer
- examples of the olefins constituting the cyclic polyolefin include ethylene, propylene, 4-methyl-1-pentene, butadiene, and isoprene.
- examples of the cyclic monomers constituting the cyclic polyolefin include cyclic alkenes such as norbornene; specifically, cyclic dienes such as cyclopentadiene, dicyclopentadiene, cyclohexadiene, and norbornadiene.
- cyclic alkenes are preferred, and norbornene is more preferred.
- Styrene is also an example of a constituting monomer.
- crystalline or amorphous polyolefins preferred are crystalline or amorphous polyolefins, cyclic polyolefins, and blended polymers thereof; more preferred are polyethylene, polypropylene, copolymers of ethylene and norbornene, and blended polymers of two or more of these.
- the heat-sealable resin layer 35 may be formed from one type of resin component alone, or may be formed from a blend polymer of two or more types of resin components. Furthermore, the heat-sealable resin layer 35 may be formed from only one layer, or may be formed from two or more layers of the same or different resin components. It is particularly preferable that the second resin layer 12b and the heat-sealable resin layer 35 are made of the same resin, as this improves the adhesion between these layers.
- the thickness of the heat-sealable resin layer 35 is not particularly limited, but may be about 2 to 2000 ⁇ m, preferably about 5 to 1000 ⁇ m, and more preferably about 10 to 500 ⁇ m.
- the thickness of the heat-sealable resin layer 35 may be, for example, about 100 ⁇ m or less, preferably about 85 ⁇ m or less, and more preferably about 15 to 85 ⁇ m.
- the thickness of the heat-sealable resin layer 35 is preferably about 85 ⁇ m or less, and more preferably about 15 to 45 ⁇ m.
- the thickness of the heat-sealable resin layer 35 is preferably about 20 ⁇ m or more, and more preferably about 35 to 85 ⁇ m.
- the exterior material for an electricity storage device of the present disclosure can also be in the form of a kit including the exterior material for an electricity storage device for use in an electricity storage device and the adhesive film for metal terminals of the present disclosure.
- the electricity storage device to which it is applied includes at least an electricity storage device element having a positive electrode, a negative electrode, and an electrolyte, the exterior material for an electricity storage device that seals the electricity storage device element, and metal terminals that are electrically connected to the positive electrode and the negative electrode, respectively, and protrude outside the exterior material for an electricity storage device.
- the kit of the present disclosure is used such that, when in use, the adhesive film for metal terminals of the present disclosure is interposed between the metal terminals and the exterior material for an electricity storage device.
- the electricity storage device 10 of the present disclosure comprises at least an electricity storage device element 4 having a positive electrode, a negative electrode, and an electrolyte, an exterior material for an electricity storage device 3 that seals the electricity storage device element 4, and a metal terminal 2 that is electrically connected to each of the positive electrode and the negative electrode and protrudes to the outside of the exterior material for an electricity storage device 3.
- the electricity storage device 10 of the present disclosure is characterized in that the adhesive film for a metal terminal 1 of the present disclosure is interposed between the metal terminal 2 and the exterior material for an electricity storage device 3. That is, the electricity storage device 10 of the present disclosure can be manufactured by a method including a step of interposing the adhesive film for a metal terminal 1 of the present disclosure between the metal terminal 2 and the exterior material for an electricity storage device 3.
- an electric storage device element 4 having at least a positive electrode, a negative electrode, and an electrolyte is covered with an exterior material 3 for an electric storage device by interposing an adhesive film 1 for metal terminals of the present disclosure between the metal terminals 2 and a heat-sealable resin layer 35 in a state in which the metal terminals 2 connected to the positive and negative electrodes are protruding outward, and the electric storage device element 4 is covered so that a flange portion (a region where the heat-sealable resin layers 35 contact each other, the peripheral portion 3a of the exterior material 3 for an electric storage device) of the exterior material 3 for an electric storage device is formed, and the heat-sealable resin layers 35 of the flange portion are heat-sealed to seal them, thereby providing an electric storage device 10 using the exterior material 3 for an electric storage device.
- the exterior material 3 for an electric storage device When the exterior material 3 for an electric storage device is used to house the electric storage device element 4, the exterior material 3 for an electric storage device is used so that the heat-sealable resin layer 35 of the exterior material 3 for an electric storage device is on the inside (the surface in contact with the electric storage device element 4).
- the exterior material for an electricity storage device of the present disclosure can be suitably used for electricity storage devices such as batteries (including condensers, capacitors, etc.).
- the exterior material for an electricity storage device of the present disclosure may be used for either a primary battery or a secondary battery, but is preferably used for a secondary battery.
- the type of secondary battery to which the exterior material for an electricity storage device of the present disclosure is applied is not particularly limited, and examples thereof include lithium ion batteries, lithium ion polymer batteries, all-solid-state batteries, lead-acid batteries, nickel-hydrogen batteries, nickel-cadmium batteries, nickel-iron batteries, nickel-zinc batteries, silver oxide-zinc batteries, metal-air batteries, polyvalent cation batteries, condensers, capacitors, etc.
- suitable applications of the exterior material for an electricity storage device of the present disclosure include lithium ion batteries and lithium ion polymer batteries.
- Example 1 Using an extruder and a T-die casting device, a maleic anhydride-modified polypropylene (PP layer, homopolypropylene, melting peak temperature 163 ° C., thickness 50 ⁇ m) was extruded on one side of the polypropylene as an intermediate layer (PP layer, homopolypropylene, melting peak temperature 163 ° C., thickness 50 ⁇ m) as the second resin layer on the exterior material side, and a maleic anhydride-modified polypropylene (PPa layer, melting peak temperature 124 ° C.) containing 0.1 mass% titanium nitride (average particle diameter 70 nm) as a temperature indicator as the first resin layer (thermochromic layer) on the metal terminal side (PPa layer, melting peak temperature 140 ° C.) was extruded to a thickness of 50 ⁇ m, and an adhesive film (total thickness 150 ⁇ m) in which the first resin layer (thermochromic layer containing
- Example 2 Using an extruder and a T-die casting device, a maleic anhydride-modified polypropylene (PP layer, homopolypropylene, melting peak temperature 163 ° C., thickness 50 ⁇ m) was extruded on one side of the intermediate layer as the second resin layer on the exterior material side (PPa layer, melting peak temperature 124 ° C.), and on the other side as the first resin layer (thermochromic layer) on the metal terminal side as the first resin layer (thermochromic layer) on the metal terminal side.
- PP layer homopolypropylene, melting peak temperature 163 ° C., thickness 50 ⁇ m
- PPa layer, melting peak temperature 140 ° C. Maleic anhydride-modified polypropylene (PPa layer, melting peak temperature 140 ° C.) containing 1.0 mass% titanium nitride (average particle diameter 70 nm) as a temperature indicator was extruded to a thickness of 50 ⁇ m, and an adhesive film (total thickness 150 ⁇ m) in which the first resin layer (thermochromic layer containing titanium nitride, PPa layer, melting peak temperature 140 ° C., thickness 50 ⁇ m) / intermediate layer (substrate) (PP layer, melting peak temperature 163 ° C., thickness 50 ⁇ m) / second resin layer (PPa layer, melting peak temperature 124 ° C., thickness 50 ⁇ m) was obtained.
- the adhesive film thus obtained had a black appearance due to the inclusion of black titanium nitride in the first resin layer (thermochromic layer), while the intermediate layer and the second resin layer were colorless and transparent.
- Example 3 Using an extruder and a T-die casting device, a maleic anhydride-modified polypropylene (PP layer, homopolypropylene, melting peak temperature 163 ° C., thickness 50 ⁇ m) was extruded on one side of the polypropylene as an intermediate layer (PP layer, homopolypropylene, melting peak temperature 163 ° C., thickness 50 ⁇ m) as the second resin layer on the exterior material side, and a maleic anhydride-modified polypropylene (PPa layer, melting peak temperature 124 ° C.) containing 1.0 mass% titanium nitride (average particle diameter 20 nm) as a temperature indicator as the first resin layer (thermochromic layer) on the metal terminal side (PPa layer, melting peak temperature 140 ° C.) was extruded to a thickness of 50 ⁇ m, and an adhesive film (total thickness 150 ⁇ m) in which the first resin layer (thermochromic layer containing titanium nitride, PPa layer
- Example 4 Using an extruder and a T-die casting device, a maleic anhydride-modified polypropylene (PP layer, homopolypropylene, melting peak temperature 163 ° C., thickness 50 ⁇ m) was extruded on one side of the intermediate layer as the second resin layer on the exterior material side (PPa layer, melting peak temperature 124 ° C.), and a maleic anhydride-modified polypropylene (PPa layer, melting peak temperature 140 ° C.) containing 1.0 mass% titanium nitride (average particle diameter 50 nm) as a temperature indicator was extruded on the other side as the first resin layer (thermochromic layer) on the metal terminal side, each with a thickness of 50 ⁇ m, to obtain an adhesive film (total thickness 150 ⁇ m) in which the first resin layer (thermochromic layer containing titanium nitride, PPa layer, melting peak temperature 140 ° C., thickness 50 ⁇ m) / intermediate layer (substrate) (
- Example 5 Using an extruder and a T-die casting machine, a polypropylene intermediate layer (PP layer, homopolypropylene, melting peak temperature 163°C, thickness 50 ⁇ m) was formed on one side of a maleic anhydride-modified polypropylene (PPa layer, melting peak temperature 124°C) as a second resin layer on the exterior material side, and a polypropylene layer containing 10.0 mass% titanium nitride (average particle size 70 nm) as a temperature indicator was formed on the other side of the first resin layer (thermochromic layer) on the metal terminal side.
- PP layer homopolypropylene, melting peak temperature 163°C, thickness 50 ⁇ m
- PPa layer, melting peak temperature 124°C a maleic anhydride-modified polypropylene
- a polypropylene layer containing 10.0 mass% titanium nitride (average particle size 70 nm) as a temperature indicator was formed on the other side of the first resin layer (therm
- PPa layer, melting peak temperature 140°C Water-maleic acid modified polypropylene
- an adhesive film total thickness 150 ⁇ m
- first resin layer thermochromic layer containing titanium nitride, PPa layer, melting peak temperature 140°C, thickness 50 ⁇ m
- intermediate layer substrate
- second resin layer PPa layer, melting peak temperature 124°C, thickness 50 ⁇ m
- the obtained adhesive film had a black appearance because the first resin layer (thermochromic layer) contained black titanium nitride.
- the intermediate layer and the second resin layer were colorless and transparent.
- Example 6 Using an extruder and a T-die casting machine, a polypropylene intermediate layer (PP layer, homopolypropylene, melting peak temperature 163°C, thickness 50 ⁇ m) was formed on one side of a maleic anhydride-modified polypropylene (PPa layer, melting peak temperature 124°C) as a second resin layer on the exterior material side, and a polypropylene resin layer containing 0.01 mass% titanium nitride (average particle size 70 nm) as a temperature indicator was formed on the other side of the first resin layer (thermochromic layer) on the metal terminal side.
- PP layer homopolypropylene, melting peak temperature 163°C, thickness 50 ⁇ m
- PPa layer, melting peak temperature 124°C a maleic anhydride-modified polypropylene
- a polypropylene resin layer containing 0.01 mass% titanium nitride (average particle size 70 nm) as a temperature indicator was formed on the other side of the first resin layer
- PPa layer, melting peak temperature 140°C Water-maleic acid modified polypropylene
- an adhesive film total thickness 150 ⁇ m
- first resin layer thermochromic layer containing titanium nitride, PPa layer, melting peak temperature 140°C, thickness 50 ⁇ m
- intermediate layer substrate
- second resin layer PPa layer, melting peak temperature 124°C, thickness 50 ⁇ m
- the obtained adhesive film had a black appearance because the first resin layer (thermochromic layer) contained black titanium nitride.
- the intermediate layer and the second resin layer were colorless and transparent.
- Example 7 Using an extruder and a T-die casting machine, a polypropylene intermediate layer (PP layer, homopolypropylene, melting peak temperature 163°C, thickness 50 ⁇ m) was formed on one side of the outer casing material side of a maleic anhydride-modified polypropylene (PPa layer, melting peak temperature 124°C) as a second resin layer on the exterior material side, and a polypropylene layer containing 50.0 mass% titanium nitride (average particle size 70 nm) as a temperature indicator was formed on the other side of the outer casing material side of a first resin layer (thermochromic layer) on the metal terminal side.
- PP layer homopolypropylene, melting peak temperature 163°C, thickness 50 ⁇ m
- PPa layer, melting peak temperature 140°C Water-maleic acid modified polypropylene
- an adhesive film total thickness 150 ⁇ m
- first resin layer thermochromic layer containing titanium nitride, PPa layer, melting peak temperature 140°C, thickness 50 ⁇ m
- intermediate layer substrate
- second resin layer PPa layer, melting peak temperature 124°C, thickness 50 ⁇ m
- the obtained adhesive film had a black appearance because the first resin layer (thermochromic layer) contained black titanium nitride.
- the intermediate layer and the second resin layer were colorless and transparent.
- a maleic anhydride-modified polypropylene (PP layer, homopolypropylene, melting peak temperature 163°C, thickness 50 ⁇ m) was extruded on one side of a polypropylene intermediate layer (PP layer, homopolypropylene, melting peak temperature 163°C, thickness 50 ⁇ m) as a second resin layer on the exterior material side, and a maleic anhydride-modified polypropylene (PPa layer, melting peak temperature 124°C) was extruded on the other side of a first resin layer on the metal terminal side, each with a thickness of 50 ⁇ m, to obtain an adhesive film (total thickness 150 ⁇ m) in which the first resin layer (PPa layer, melting peak temperature 140°C, thickness 50 ⁇ m)/intermediate layer (substrate) (PP layer, melting peak temperature 163°C, thickness 50 ⁇ m)/second resin layer (PPa layer, melting peak temperature 124°C, thickness 50 ⁇ m)
- a maleic anhydride-modified polypropylene (PP layer, homopolypropylene, melting peak temperature 163°C, thickness 50 ⁇ m) was extruded on one side of a polypropylene intermediate layer (PP layer, homopolypropylene, melting peak temperature 163°C, thickness 50 ⁇ m) as a second resin layer on the exterior material side, and a maleic anhydride-modified polypropylene (PPa layer, melting peak temperature 124°C) was extruded on the other side of a first resin layer on the metal terminal side, each with a thickness of 50 ⁇ m, to obtain an adhesive film (total thickness 150 ⁇ m) in which the first resin layer (PPa layer, melting peak temperature 140°C, thickness 50 ⁇ m)/intermediate layer (substrate) (PP layer, melting peak temperature 163°C, thickness 50 ⁇ m)/second resin layer (PPa layer, melting peak temperature 124°C, thickness 50 ⁇ m)
- the adhesive film is measured for the melting peak temperature in accordance with the provisions of JIS K7121:2012 (Method for measuring transition temperature of plastics (JIS K7121:1987 Supplement 1)).
- the measurement was performed using a differential scanning calorimeter (DSC, differential scanning calorimeter Q200 manufactured by TA Instruments).
- DSC differential scanning calorimeter
- the measurement sample was held at -50°C for 15 minutes, then heated from -50°C to 210°C at a heating rate of 10°C/min, the first melting peak temperature P (°C) was measured, and then held at 210°C for 10 minutes. Next, the temperature was lowered from 210°C to -50°C at a heating rate of 10°C/min and held for 15 minutes.
- the temperature was raised from -50°C to 210°C at a heating rate of 10°C/min to measure the second melting peak temperature Q (°C).
- the flow rate of nitrogen gas was 50 ml/min.
- the melting peak temperature P (°C) measured the first time and the melting peak temperature Q (°C) measured the second time were determined by the above procedure.
- the melting peak temperature P (°C) measured the first time was used.
- the vertical direction and horizontal direction of the metal terminal were aligned with the width direction and length direction of the adhesive film for metal terminal, respectively, and the metal terminal and the adhesive film for metal terminal were aligned with each other.
- the obtained laminate was placed on a hot plate.
- the adhesive film was heated under each heating condition (heating temperature of 280°C and 300°C, heating pressure of 0.25 MPa, heating time of 16 seconds).
- the L * value in the L * a * b * color space was measured for the first resin layer side surface of the adhesive film before and after heating under the following conditions.
- metal terminal aluminum (JIS H4160: 1994 A8079H-O) with a length of 50 mm, a width of 22.5 mm, and a thickness of 0.4 mm was prepared.
- the adhesive film for metal terminal was cut to a length of 45 mm and a width of 10 mm.
- the adhesive film for metal terminal was placed on the metal terminal to obtain a laminate of metal terminal/adhesive film.
- the metal terminal was laminated so that the longitudinal direction and the lateral direction of the metal terminal adhesive film were aligned with the longitudinal direction and the width direction of the metal terminal adhesive film, respectively, and the centers of the metal terminal and the metal terminal adhesive film were aligned.
- the first resin layer of the metal terminal adhesive film was disposed on the metal terminal side.
- a tetrafluoroethylene-ethylene copolymer film (ETFE film, thickness 100 ⁇ m) was placed on the metal terminal adhesive film of the laminate (the surface of the metal terminal adhesive film was covered with the ETFE film), and the laminate was placed on a press machine heated to 200 ° C. (the metal terminal was on the hot plate side), and a silicone sponge sheet was placed on the laminate, and the laminate was left at a pressure of 0.25 MPa for 16 seconds to heat-seal the adhesive film to the metal terminal.
- the laminate after heat-sealing was naturally cooled to 25 ° C.
- the adhesive film for metal terminal was peeled off from the metal terminal using a Tensilon universal material testing machine (RTG-1210 manufactured by A & D Co., Ltd.).
- the maximum strength at the time of peeling was taken as the adhesion strength (N/15 mm) to the metal terminal.
- the adhesion strength was a converted value from the measurement result at a width of 10 mm to the measurement value at a width of 15 mm.
- the peel speed was 50 mm/min, the peel angle was 180°, and the chuck distance was 30 mm, and the average value was taken from three measurements.
- Adhesion strength is 40N/15mm or more.
- Adhesion strength is less than 40N/15mm.
- the adhesive films for metal terminals of Examples 1 to 7 each have a thermochromic layer containing titanium nitride as a temperature indicator, and the L * value changes significantly between 280°C and 320°C. It was possible to tell from the appearance that the film had been heated to a specified temperature.
- An adhesive film for a metal terminal which is interposed between a metal terminal electrically connected to an electrode of an electricity storage device element and an exterior material for an electricity storage device that encapsulates the electricity storage device element,
- the adhesive film for a metal terminal includes a thermochromic layer.
- Item 2. The adhesive film for a metal terminal according to item 1, wherein the thermochromic layer is formed of a resin composition containing a temperature indicating material and a resin.
- the temperature indicator contains an inorganic compound.
- Item 5 The adhesive film for metal terminal according to any one of Items 2 to 4, wherein the content of the temperature indicator in the thermochromic layer is 0.01% by mass or more and 50% by mass or less.
- Item 6. The adhesive film for a metal terminal according to any one of Items 2 to 5, wherein the temperature indicator is titanium nitride.
- thermochromic layer is analyzed by infrared spectroscopy, a peak derived from maleic anhydride is detected.
- Item 9 The adhesive film for metal terminal according to any one of items 1 to 8, wherein the thermochromic layer has an L * value in the L * a * b * color space of reflected light measured under the measurement conditions of SCI method, visual field 10°, and light source F2, of 80 or less.
- the adhesive film for a metal terminal is composed of a laminate including, in this order, a first resin layer disposed on the metal terminal side, an intermediate layer, and a second resin layer disposed on the exterior material for an electrical storage device; Item 10.
- Item 11 The adhesive film for a metal terminal according to any one of Items 1 to 10, wherein the adhesive film for a metal terminal is formed of a polyolefin resin.
- Item 12 A method for producing an adhesive film for a metal terminal, which is interposed between a metal terminal electrically connected to an electrode of an electricity storage device element and an exterior material for an electricity storage device that encapsulates the electricity storage device element, comprising: The method for producing an adhesive film for a metal terminal, wherein the adhesive film for a metal terminal has a thermochromic layer.
- a metal terminal with an adhesive film for a metal terminal comprising the adhesive film for a metal terminal according to any one of items 1 to 11 attached to a metal terminal.
- An electricity storage device including at least an electricity storage device element having a positive electrode, a negative electrode, and an electrolyte, an exterior material for an electricity storage device that seals the electricity storage device element, and metal terminals that are electrically connected to the positive electrode and the negative electrode, respectively, and protrude to the outside of the exterior material for an electricity storage device, Item 12.
- An electricity storage device comprising the adhesive film for a metal terminal according to any one of items 1 to 11 interposed between the metal terminal and the exterior material for the electricity storage device.
- a method for manufacturing an electricity storage device including at least an electricity storage device element including a positive electrode, a negative electrode, and an electrolyte, an exterior material for an electricity storage device that seals the electricity storage device element, and metal terminals that are electrically connected to the positive electrode and the negative electrode, respectively, and protrude outside the exterior material for an electricity storage device, Item 12.
- a method for manufacturing an electricity storage device comprising: interposing the adhesive film for metal terminal according to any one of items 1 to 11 between the metal terminal and the exterior material for an electricity storage device; and sealing the electricity storage device element with the exterior material for an electricity storage device. Item 16.
- An exterior material for an electricity storage device for use in an electricity storage device includes at least an electricity storage device element having a positive electrode, a negative electrode, and an electrolyte, an exterior material for an electricity storage device that seals the electricity storage device element, and metal terminals that are electrically connected to the positive electrode and the negative electrode, respectively, and protrude to the outside of the exterior material for an electricity storage device, and an adhesive film for a metal terminal is interposed between the metal terminal and the exterior material for an electricity storage device,
- the adhesive film for metal terminal is the adhesive film for metal terminal according to any one of items 1 to 11,
- the electrical storage device packaging material is composed of a laminate including at least a base layer, a barrier layer, and a heat-sealable resin layer. Item 17.
- a kit comprising an exterior material for an electricity storage device for use in an electricity storage device and the adhesive film for a metal terminal according to any one of items 1 to 11,
- the electricity storage device includes at least an electricity storage device element having a positive electrode, a negative electrode, and an electrolyte, an exterior material for an electricity storage device that seals the electricity storage device element, and the metal terminals that are electrically connected to the positive electrode and the negative electrode, respectively, and protrude to the outside of the exterior material for an electricity storage device,
- the kit is used such that, when in use, the adhesive film for a metal terminal is interposed between the metal terminal and the exterior material for an electricity storage device.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Inorganic Chemistry (AREA)
- Composite Materials (AREA)
- Materials Engineering (AREA)
- Sealing Battery Cases Or Jackets (AREA)
Abstract
Description
本開示は、金属端子用接着性フィルム及びその製造方法、金属端子用接着性フィルム付き金属端子、蓄電デバイス用外装材、蓄電デバイス用外装材と金属端子用接着性フィルムを備えるキット、並びに、蓄電デバイス及びその製造方法に関する。 The present disclosure relates to an adhesive film for metal terminals and a manufacturing method thereof, a metal terminal with an adhesive film for metal terminals, an exterior material for an electricity storage device, a kit including an exterior material for an electricity storage device and an adhesive film for metal terminals, and an electricity storage device and a manufacturing method thereof.
従来、様々なタイプの蓄電デバイスが開発されているが、あらゆる蓄電デバイスにおいて電極や電解質等の蓄電デバイス素子を封止するために蓄電デバイス用外装材が不可欠な部材になっている。従来、蓄電デバイス用外装材として金属製の蓄電デバイス用外装材が多用されていたが、近年、電気自動車、ハイブリッド電気自動車、パソコン、カメラ、携帯電話等の高性能化に伴い、蓄電デバイスには、多様な形状が要求されると共に、薄型化や軽量化が求められている。しかしながら、従来多用されていた金属製の蓄電デバイス用外装材では、形状の多様化に追従することが困難であり、しかも軽量化にも限界があるという欠点がある。 Traditionally, various types of electricity storage devices have been developed, and in all electricity storage devices, exterior materials for electricity storage devices have become essential components for sealing the electricity storage device elements such as electrodes and electrolytes. Traditionally, metallic exterior materials for electricity storage devices have been widely used as exterior materials for electricity storage devices, but in recent years, with the increasing performance of electric vehicles, hybrid electric vehicles, personal computers, cameras, mobile phones, etc., a variety of shapes are required for electricity storage devices, and they are also required to be thinner and lighter. However, the metallic exterior materials for electricity storage devices that have been widely used in the past have the disadvantage that they are difficult to keep up with the diversification of shapes, and there are also limitations to how much they can be made lighter.
そこで、近年、多様な形状に加工が容易で、薄型化や軽量化を実現し得る蓄電デバイス用外装材として、基材層/接着層/バリア層/熱融着性樹脂層が順次積層された積層シートが提案されている。このような積層フィルム状の蓄電デバイス用外装材を用いる場合、蓄電デバイス用外装材の最内層に位置する熱融着性樹脂層同士を対向させた状態で、蓄電デバイス用外装材の周縁部をヒートシールにて熱融着させることにより、蓄電デバイス用外装材によって蓄電デバイス素子が封止される。 In recent years, therefore, a laminate sheet in which a base layer, an adhesive layer, a barrier layer, and a heat-sealable resin layer are laminated in that order has been proposed as an exterior material for an electricity storage device that can be easily processed into a variety of shapes and can be made thinner and lighter. When using such an exterior material for an electricity storage device in the form of a laminate film, the heat-sealable resin layers located in the innermost layers of the exterior material for an electricity storage device are placed opposite each other, and the peripheral portion of the exterior material for an electricity storage device is heat-sealed to seal the electricity storage device element.
蓄電デバイス用外装材のヒートシール部分からは、金属端子が突出しており、蓄電デバイス用外装材によって封止された蓄電デバイス素子は、蓄電デバイス素子の電極に電気的に接続された金属端子によって外部と電気的に接続される。すなわち、蓄電デバイス用外装材がヒートシールされた部分のうち、金属端子が存在する部分は、金属端子が熱融着性樹脂層に挟持された状態でヒートシールされている。金属端子と熱融着性樹脂層とは、互いに異種材料により構成されているため、金属端子と熱融着性樹脂層との界面において、密着性が低下しやすい。 Metal terminals protrude from the heat-sealed portion of the exterior material for electricity storage devices, and the electricity storage device element sealed with the exterior material for electricity storage devices is electrically connected to the outside via the metal terminals that are electrically connected to the electrodes of the electricity storage device element. In other words, the portion of the exterior material for electricity storage devices where the metal terminals are present is heat-sealed in a state where the metal terminals are sandwiched between the heat-sealable resin layer. Because the metal terminals and the heat-sealable resin layer are made of different materials, adhesion is likely to decrease at the interface between the metal terminals and the heat-sealable resin layer.
このため、金属端子と熱融着性樹脂層との間には、これらの密着性を高めることなどを目的として、接着性フィルムが配されることがある。このような接着性フィルムとしては、例えば特許文献1に記載されたものが挙げられる。 For this reason, an adhesive film may be placed between the metal terminal and the heat-sealable resin layer in order to improve adhesion between them. An example of such an adhesive film is that described in Patent Document 1.
金属端子と蓄電デバイス用外装材との間に配される接着性フィルムは、接着性フィルムで金属端子を両側から挟み込んだ状態で、外装材をヒートシールすることにより、金属端子の周囲を被覆する。例えばヒートシールの際には、接着性フィルムが高温に加熱される。また、接着性フィルムを製造する際にも、接着性フィルムを形成する樹脂を溶融してフィルム状に成形することから、接着性フィルムを形成する樹脂は高温に加熱される。さらに、接着性フィルムが蓄電デバイスに適用された後においても、蓄電デバイスが高温環境に曝されるか、または発熱して高温になると、接着性フィルムも高温に加熱されることになる。 The adhesive film disposed between the metal terminal and the exterior material for the electricity storage device covers the periphery of the metal terminal by sandwiching the metal terminal on both sides with the adhesive film and heat sealing the exterior material. For example, during heat sealing, the adhesive film is heated to a high temperature. Also, during the manufacture of the adhesive film, the resin that forms the adhesive film is melted and formed into a film, so the resin that forms the adhesive film is heated to a high temperature. Furthermore, even after the adhesive film is applied to the electricity storage device, if the electricity storage device is exposed to a high-temperature environment or generates heat and becomes hot, the adhesive film will also be heated to a high temperature.
このように、金属端子と蓄電デバイス用外装材との間に配される接着性フィルムは、接着性フィルムの製造時、接着性フィルムが蓄電デバイスに適用される時、さらには適用後において、高温環境に曝されることがある。 In this way, the adhesive film disposed between the metal terminal and the exterior material for the electricity storage device may be exposed to a high-temperature environment during the manufacture of the adhesive film, when the adhesive film is applied to the electricity storage device, and even after application.
接着性フィルムを形成する樹脂が高温に曝されると、樹脂が劣化して、接着性フィルムの特性が低下(例えば金属端子への密着性の低下など)する可能性がある。 If the resin that forms the adhesive film is exposed to high temperatures, the resin may deteriorate, causing the properties of the adhesive film to decrease (for example, reduced adhesion to metal terminals).
本開示の発明者等は、接着性フィルムを形成する樹脂が所定の温度に加熱されたことを外観から把握するという、新規な課題を設定した。このような課題が解決されれば、例えば特性が劣化している可能性がある接着性フィルムを外観から識別できるという、優れた効果が発揮される。 The inventors of this disclosure have set a new problem: determining from the appearance that the resin forming the adhesive film has been heated to a specified temperature. If such a problem is solved, it will have an excellent effect of making it possible to identify from the appearance, for example, an adhesive film whose characteristics may have deteriorated.
このような状況下、本開示は、蓄電デバイス素子の電極に電気的に接続された金属端子と、前記蓄電デバイス素子を封止する蓄電デバイス用外装材との間に介在される、金属端子用接着性フィルムであって、所定の温度に加熱されたことが外観から把握可能な、金属端子用接着性フィルムを提供することを主な目的とする。さらに、本開示は、当該金属端子用接着性フィルムの製造方法、金属端子用接着性フィルム付き金属端子、蓄電デバイス用外装材、蓄電デバイス用外装材と当該金属端子用接着性フィルムを備えるキット、蓄電デバイス及び当該蓄電デバイスの製造方法を提供することも目的とする。 Under these circumstances, the main objective of the present disclosure is to provide an adhesive film for metal terminals that is interposed between a metal terminal electrically connected to an electrode of an electricity storage device element and an exterior material for an electricity storage device that encapsulates the electricity storage device element, and that allows the appearance of the film to indicate that it has been heated to a predetermined temperature. Furthermore, the present disclosure also aims to provide a method for manufacturing the adhesive film for metal terminals, a metal terminal with an adhesive film for metal terminals, an exterior material for an electricity storage device, a kit including an exterior material for an electricity storage device and the adhesive film for metal terminals, an electricity storage device, and a method for manufacturing the electricity storage device.
本開示の発明者等は、上記の課題を解決すべく鋭意検討を行った。その結果、蓄電デバイス素子の電極に電気的に接続された金属端子と、前記蓄電デバイス素子を封止する蓄電デバイス用外装材との間に介在される、金属端子用接着性フィルムにおいて、熱変色層を設けることにより、金属端子用接着性フィルムに含まれる樹脂が、所定の温度に加熱されたことが外観から把握することができることを見出した。本開示は、かかる知見に基づいて更に検討を重ねることにより完成したものである。 The inventors of the present disclosure conducted intensive research to solve the above problems. As a result, they discovered that by providing a thermochromic layer in an adhesive film for metal terminals, which is interposed between a metal terminal electrically connected to an electrode of an electricity storage device element and an exterior material for an electricity storage device that encapsulates the electricity storage device element, it is possible to tell from the outside that the resin contained in the adhesive film for metal terminals has been heated to a predetermined temperature. The present disclosure was completed through further research based on this knowledge.
即ち、本開示は、下記に掲げる態様の発明を提供する。
蓄電デバイス素子の電極に電気的に接続された金属端子と、前記蓄電デバイス素子を封止する蓄電デバイス用外装材との間に介在される、金属端子用接着性フィルムであって、
前記金属端子用接着性フィルムは、熱変色層を備える、金属端子用接着性フィルム。
That is, the present disclosure provides the inventions of the following aspects.
An adhesive film for a metal terminal, which is interposed between a metal terminal electrically connected to an electrode of an electricity storage device element and an exterior material for an electricity storage device that encapsulates the electricity storage device element,
The adhesive film for a metal terminal includes a thermochromic layer.
本開示によれば、蓄電デバイス素子の電極に電気的に接続された金属端子と、前記蓄電デバイス素子を封止する蓄電デバイス用外装材との間に介在される、金属端子用接着性フィルムであって、所定の温度に加熱されたことが外観から把握可能な、金属端子用接着性フィルムを提供することができる。さらに、本開示は、当該金属端子用接着性フィルムの製造方法、金属端子用接着性フィルム付き金属端子、蓄電デバイス用外装材、蓄電デバイス用外装材と金属端子用接着性フィルムを備えるキット、並びに、蓄電デバイス及びその製造方法を提供することも目的とする。 According to the present disclosure, it is possible to provide an adhesive film for metal terminals that is interposed between a metal terminal electrically connected to an electrode of an electricity storage device element and an exterior material for an electricity storage device that seals the electricity storage device element, and that allows the appearance of the adhesive film to indicate that it has been heated to a predetermined temperature. Furthermore, the present disclosure also aims to provide a method for manufacturing the adhesive film for metal terminals, a metal terminal with an adhesive film for metal terminals, an exterior material for an electricity storage device, a kit including an exterior material for an electricity storage device and an adhesive film for metal terminals, and an electricity storage device and a method for manufacturing the same.
本開示の金属端子用接着性フィルムは、蓄電デバイス素子の電極に電気的に接続された金属端子と、前記蓄電デバイス素子を封止する蓄電デバイス用外装材との間に介在される、金属端子用接着性フィルムであって、前記金属端子用接着性フィルムは、熱変色層を備えることを特徴とする。 The adhesive film for metal terminals disclosed herein is an adhesive film for metal terminals that is interposed between a metal terminal electrically connected to an electrode of an electricity storage device element and an exterior material for an electricity storage device that seals the electricity storage device element, and is characterized in that the adhesive film for metal terminals has a thermochromic layer.
また、本開示の蓄電デバイスは、少なくとも、正極、負極、及び電解質を備えた蓄電デバイス素子と、当該蓄電デバイス素子を封止する蓄電デバイス用外装材と、正極及び負極のそれぞれに電気的に接続され、蓄電デバイス用外装材の外側に突出した金属端子とを備える蓄電デバイスであって、金属端子と蓄電デバイス用外装材との間に、本開示の金属端子用接着性フィルムが介在されてなることを特徴とする。 The electricity storage device of the present disclosure is an electricity storage device that includes at least an electricity storage device element having a positive electrode, a negative electrode, and an electrolyte, an exterior material for an electricity storage device that seals the electricity storage device element, and metal terminals that are electrically connected to the positive electrode and the negative electrode, respectively, and protrude to the outside of the exterior material for an electricity storage device, and is characterized in that the adhesive film for metal terminals of the present disclosure is interposed between the metal terminals and the exterior material for an electricity storage device.
以下、本開示の金属端子用接着性フィルム及びその製造方法、蓄電デバイス及びその製造方法について詳述する。 The adhesive film for metal terminals and its manufacturing method, and the electricity storage device and its manufacturing method disclosed herein are described in detail below.
なお、本明細書において、数値範囲については、「~」で示される数値範囲は「以上」、「以下」を意味する。例えば、2~15mmとの表記は、2mm以上15mm以下を意味する。本開示に段階的に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、別個に記載された、上限値と上限値、上限値と下限値、又は下限値と下限値を組み合わせて、それぞれ、数値範囲としてもよい。また、本開示に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、実施例に示されている値に置き換えてもよい。 In this specification, the numerical ranges indicated with "~" mean "greater than or equal to" or "less than or equal to." For example, the expression 2 to 15 mm means 2 mm or greater and 15 mm or less. In the numerical ranges described in this disclosure in stages, the upper or lower limit value described in a certain numerical range may be replaced with the upper or lower limit value of another numerical range described in stages. Furthermore, a numerical range may be formed by combining an upper limit value and an upper limit value, an upper limit value and a lower limit value, or a lower limit value and a lower limit value, each of which is described separately. Furthermore, in the numerical ranges described in this disclosure, the upper or lower limit value described in a certain numerical range may be replaced with a value shown in the examples.
1.金属端子用接着性フィルム
本開示の金属端子用接着性フィルムは、蓄電デバイス素子の電極に電気的に接続された金属端子と、蓄電デバイス素子を封止する蓄電デバイス用外装材との間に介在されるものである。具体的には、例えば図1から図3に示されるように、本開示の金属端子用接着性フィルム1は、蓄電デバイス素子4の電極に電気的に接続されている金属端子2と、蓄電デバイス素子4を封止する蓄電デバイス用外装材3との間に介在されている。また、金属端子2は、蓄電デバイス用外装材3の外側に突出しており、ヒートシールされた蓄電デバイス用外装材3の周縁部3aにおいて、金属端子用接着性フィルム1を介して、蓄電デバイス用外装材3に挟持されている。
1. Adhesive film for metal terminal The adhesive film for metal terminal of the present disclosure is interposed between a metal terminal electrically connected to an electrode of an electricity storage device element and an exterior material for an electricity storage device that seals the electricity storage device element. Specifically, as shown in, for example, Figures 1 to 3, the adhesive film for metal terminal 1 of the present disclosure is interposed between a metal terminal 2 electrically connected to an electrode of an electricity storage device element 4 and an exterior material for an electricity storage device 3 that seals the electricity storage device element 4. In addition, the metal terminal 2 protrudes outside the exterior material for an electricity storage device 3, and is sandwiched by the exterior material for an electricity storage device 3 via the adhesive film for metal terminal 1 at the peripheral portion 3a of the heat-sealed exterior material for an electricity storage device 3.
なお、本開示において、金属端子用接着性フィルムの金属端子への仮接着工程は、例えば、温度140~160℃程度、圧力0.01~1.0MPa程度、時間3~15秒間程度、回数3~6回程度の条件で行われ、本接着工程は、例えば、温度160~240℃程度、圧力0.01~1.0MPa程度、時間3~15秒間程度、回数1~3回程度の条件で行われる。また、蓄電デバイス用外装材に金属端子用接着性フィルム付き金属端子を介在させてヒートシールする際の加熱温度としては、通常180~210℃程度の範囲、圧力としては、通常1.0~2.0MPa程度、時間3~5秒間程度、回数1回程度の条件で行われる。 In the present disclosure, the temporary adhesion process of the adhesive film for metal terminals to the metal terminals is carried out under conditions of, for example, a temperature of about 140-160°C, a pressure of about 0.01-1.0 MPa, a time of about 3-15 seconds, and about 3-6 cycles, while the main adhesion process is carried out under conditions of, for example, a temperature of about 160-240°C, a pressure of about 0.01-1.0 MPa, a time of about 3-15 seconds, and about 1-3 cycles. In addition, the heating temperature when the metal terminal with the adhesive film for metal terminal is interposed between the exterior material for the electricity storage device and heat sealed is usually in the range of about 180-210°C, and the pressure is usually about 1.0-2.0 MPa, a time of about 3-5 seconds, and about 1 cycle.
本開示の金属端子用接着性フィルム1は、金属端子2と蓄電デバイス用外装材3との密着性を高めるために設けられている。金属端子2と蓄電デバイス用外装材3との密着性が高められることにより、蓄電デバイス素子4の密封性が向上する。上述のとおり、蓄電デバイス素子4をヒートシールする際には、蓄電デバイス素子4の電極に電気的に接続された金属端子2が蓄電デバイス用外装材3の外側に突出するようにして、蓄電デバイス素子が封止される。このとき、金属により形成された金属端子2と、蓄電デバイス用外装材3の最内層に位置する熱融着性樹脂層35(ポリオレフィンなどの熱融着性樹脂により形成された層)とは異種材料により形成されているため、このような接着性フィルムを用いない場合には、金属端子2と熱融着性樹脂層35との界面において、蓄電デバイス素子の密封性が低くなりやすい。 The adhesive film 1 for metal terminals of the present disclosure is provided to improve the adhesion between the metal terminal 2 and the exterior material 3 for the electric storage device. By improving the adhesion between the metal terminal 2 and the exterior material 3 for the electric storage device, the sealing property of the electric storage device element 4 is improved. As described above, when the electric storage device element 4 is heat-sealed, the electric storage device element is sealed so that the metal terminal 2 electrically connected to the electrode of the electric storage device element 4 protrudes outside the exterior material 3 for the electric storage device. At this time, since the metal terminal 2 made of metal and the heat-sealable resin layer 35 (a layer made of a heat-sealable resin such as polyolefin) located in the innermost layer of the exterior material 3 for the electric storage device are made of different materials, if such an adhesive film is not used, the sealing property of the electric storage device element is likely to be reduced at the interface between the metal terminal 2 and the heat-sealable resin layer 35.
[熱変色層]
本開示の金属端子用接着性フィルム1は、少なくとも熱変色層を備える。熱変色層は、例えば、示温材と樹脂を含む樹脂組成物により形成された樹脂層である。示温材とは、ある温度環境におかれると色が変化する性質を有する材料(化合物)を意味しており、後述の通り、このような性質を有する材料として、各種の無機化合物、有機化合物が知られている。
[Thermochromic layer]
The adhesive film 1 for metal terminals of the present disclosure includes at least a thermochromic layer. The thermochromic layer is, for example, a resin layer formed of a resin composition containing a temperature indicator and a resin. The temperature indicator means a material (compound) that has a property of changing color when placed in a certain temperature environment. As described later, various inorganic compounds and organic compounds are known as materials that have such a property.
熱変色層は、金属端子用接着性フィルム1の少なくとも一方の表面を形成する層(すなわち、最外層であり、例えば後述の第1樹脂層12a、第2樹脂層12bなど)であってもよいし、当該表面を構成しない層(例えば後述の中間層11、接着促進剤層13)であってもよい。 The thermochromic layer may be a layer that forms at least one surface of the adhesive film for metal terminals 1 (i.e., the outermost layer, such as the first resin layer 12a or the second resin layer 12b described below), or it may be a layer that does not form the surface (such as the intermediate layer 11 or the adhesion promoter layer 13 described below).
本開示の効果を奏することを限度として、本開示の金属端子用接着性フィルム1は、図4に示すように単層であってもよいし、図5~7に示すように複層であってよい。 As long as the effects of the present disclosure are achieved, the adhesive film 1 for metal terminals of the present disclosure may be a single layer as shown in FIG. 4, or may be multilayer as shown in FIGS. 5 to 7.
本開示の金属端子用接着性フィルム1が単層である場合、金属端子用接着性フィルム1は、熱変色層により構成されており、金属端子側の表面と蓄電デバイス用外装材の表面は、当該熱変色層によって形成されている。この場合、金属端子用接着性フィルム1の蓄電デバイス用外装材側の表面を形成する樹脂と、金属端子側の表面を形成する樹脂とが、共通する樹脂(すなわち、熱変色層を形成する樹脂)である。なお、金属端子用接着性フィルム1の蓄電デバイス用外装材側の表面を形成する樹脂と、金属端子側の表面を形成する樹脂とが、共通するとは、これらの樹脂中の成分のうち、例えば、80質量%以上が同一であること、90質量%以上が同一であること、95質量%以上が同一であること、100質量%が同一であることなどを意味している。 When the adhesive film 1 for metal terminals of the present disclosure is a single layer, the adhesive film 1 for metal terminals is composed of a thermochromic layer, and the surface on the metal terminal side and the surface of the exterior material for a storage device are formed by the thermochromic layer. In this case, the resin forming the surface on the exterior material for a storage device side of the adhesive film 1 for metal terminals and the resin forming the surface on the metal terminal side are a common resin (i.e., a resin that forms a thermochromic layer). Note that the resin forming the surface on the exterior material for a storage device side of the adhesive film 1 for metal terminals and the resin forming the surface on the metal terminal side being common means that, for example, 80% by mass or more of the components in these resins are the same, 90% by mass or more are the same, 95% by mass or more are the same, or 100% by mass are the same.
本開示の金属端子用接着性フィルム1が複層である場合、例えば図5に示すように、本開示の金属端子用接着性フィルム1が2層構造である場合、金属端子用接着性フィルム1は、第1樹脂層12aと第2樹脂層12bの積層体であり、第1樹脂層12a及び第2樹脂層12bのうち少なくとも1層が熱変色層である。本開示の金属端子用接着性フィルム1が複層である場合にも、蓄電デバイス用外装材側の表面を形成する樹脂と、金属端子側の表面を形成する樹脂とが、共通する樹脂であってもよい。 When the adhesive film 1 for metal terminals of the present disclosure is a multi-layer structure, for example as shown in FIG. 5, when the adhesive film 1 for metal terminals of the present disclosure has a two-layer structure, the adhesive film 1 for metal terminals is a laminate of a first resin layer 12a and a second resin layer 12b, and at least one of the first resin layer 12a and the second resin layer 12b is a thermochromic layer. Even when the adhesive film 1 for metal terminals of the present disclosure is a multi-layer structure, the resin forming the surface on the exterior material side for the electricity storage device and the resin forming the surface on the metal terminal side may be the same resin.
例えば図6に示すように、本開示の金属端子用接着性フィルム1が3層構造である場合、金属端子用接着性フィルム1は、第1樹脂層12aと中間層11と第2樹脂層12bとがこの順に積層された積層体である。本開示においては、第1樹脂層12aが金属端子側の表面を構成し、第2樹脂層12bが蓄電デバイス用外装材側の表面を構成する。 For example, as shown in FIG. 6, when the adhesive film 1 for metal terminals of the present disclosure has a three-layer structure, the adhesive film 1 for metal terminals is a laminate in which a first resin layer 12a, an intermediate layer 11, and a second resin layer 12b are laminated in this order. In the present disclosure, the first resin layer 12a forms the surface on the metal terminal side, and the second resin layer 12b forms the surface on the exterior material side for the electricity storage device.
本開示の金属端子用接着性フィルム1において、熱変色層は、金属(金属端子を構成する金属)に対する熱融着性を備えていることが好ましい。この場合、熱変色層を金属端子用接着性フィルム1の金属端子側に配置して使用することができる。例えば、本開示においては、第1樹脂層12aと第2樹脂層12bのうち、少なくとも第1樹脂層12aを熱変色層によって形成することができる。 In the adhesive film 1 for metal terminals of the present disclosure, it is preferable that the thermochromic layer has thermal adhesion to metal (the metal constituting the metal terminal). In this case, the thermochromic layer can be disposed on the metal terminal side of the adhesive film 1 for metal terminals. For example, in the present disclosure, of the first resin layer 12a and the second resin layer 12b, at least the first resin layer 12a can be formed by the thermochromic layer.
本開示の金属端子用接着性フィルム1の蓄電デバイス用外装材側の表面(例えば第2樹脂層12b)は、後述する熱融着性樹脂層に対する熱融着性を備えている。熱変色層は、後述する熱融着性樹脂層に対する熱融着性も備えていることが好ましい。熱変色層を金属端子用接着性フィルム1の蓄電デバイス用外装材側に配置して使用することができる。例えば、本開示においては、第1樹脂層12aと第2樹脂層12bのうち、少なくとも第2樹脂層12bを熱変色層によって形成することができる。 The surface of the adhesive film 1 for metal terminals of the present disclosure that faces the exterior material for an electrical storage device (e.g., the second resin layer 12b) has thermal adhesion to the thermally adhesive resin layer described below. It is preferable that the thermochromic layer also has thermal adhesion to the thermally adhesive resin layer described below. The thermochromic layer can be disposed on the exterior material side for an electrical storage device of the adhesive film 1 for metal terminals and used. For example, in the present disclosure, of the first resin layer 12a and the second resin layer 12b, at least the second resin layer 12b can be formed by a thermochromic layer.
また、熱変色層は、第1樹脂層12aと第2樹脂層12bとの間に位置する中間層11として使用することもできる。 The thermochromic layer can also be used as an intermediate layer 11 located between the first resin layer 12a and the second resin layer 12b.
熱変色層は、示温材を含む層である。すなわち、熱変色層は、例えば、示温材と樹脂を含む樹脂組成物により形成された樹脂層である。 The thermochromic layer is a layer that contains a temperature-indicating material. That is, the thermochromic layer is, for example, a resin layer formed from a resin composition that contains a temperature-indicating material and a resin.
示温材としては、ある温度環境におかれると色が変化する性質を有する材料(化合物)であれば特に制限されず、このような性質を有する材料として、各種の無機化合物、有機化合物が知られている。 There are no particular limitations on the temperature-indicating material, so long as it is a material (compound) that has the property of changing color when placed in a certain temperature environment, and various inorganic and organic compounds are known as materials that have this property.
示温材が常温(25℃)から加熱されて色が変化する温度は、それぞれの示温材に固有の温度であるため、金属端子用接着性フィルム1の外観から把握すべき加熱温度に応じて、示温材を選択すれば良い。本開示で使用される示温材が常温(25℃)から加熱されて色が変化する温度の範囲としては、例えば、120~150℃の間、200~240℃の間、280~320℃の間などが挙げられる。例えば、金属端子用接着性フィルム1がポリオレフィンを含む場合であれば、ポリオレフィンが劣化し始める280~320℃の間で変色することが好ましい。また、金属端子用接着性フィルム1を金属端子に予めヒートシールする際、また、金属端子用接着性フィルム1を介して蓄電デバイス用外装材をヒートシールする際、金属端子用接着性フィルム1がヒートシールされていることを確認する観点からは、200~240℃の間で変色することが好ましく、ヒートシールの際の温度が高すぎたことを把握する観点からは、280~320℃で変色することが好ましい。また、蓄電デバイスが熱暴走して高温になっていることを金属端子用接着性フィルム1から把握する場合には、120~150℃の間で変色することが好ましい。前記の通り、例えば窒化チタンは300℃程度まで加熱されると、黒色から白色に変化する。 The temperature at which the temperature indicator changes color when heated from room temperature (25°C) is unique to each temperature indicator, so a temperature indicator can be selected according to the heating temperature to be determined from the appearance of the adhesive film 1 for metal terminals. Examples of the temperature range at which the temperature indicator used in this disclosure changes color when heated from room temperature (25°C) include between 120 and 150°C, between 200 and 240°C, and between 280 and 320°C. For example, if the adhesive film 1 for metal terminals contains polyolefin, it is preferable that the color change occurs between 280 and 320°C, at which point the polyolefin begins to deteriorate. In addition, when the adhesive film 1 for metal terminals is preheat-sealed to the metal terminal, and when the exterior material for the power storage device is heat-sealed via the adhesive film 1 for metal terminals, it is preferable that the color change occurs between 200 and 240°C from the viewpoint of confirming that the adhesive film 1 for metal terminals has been heat-sealed, and it is preferable that the color change occurs between 280 and 320°C from the viewpoint of determining that the temperature during heat sealing was too high. In addition, if the adhesive film 1 for metal terminals is used to determine whether the power storage device has experienced thermal runaway and is reaching a high temperature, it is preferable for the color to change between 120 and 150°C. As mentioned above, for example, titanium nitride changes from black to white when heated to about 300°C.
例えば、本開示において示温材として用いることが好ましい窒化チタン(チタンブラック)は、常温(25℃)では黒色であり、例えば280℃に加熱されても黒色のままであるが、300℃に加熱されると酸化されて二酸化チタンへと変化し、色は白色に変化する。このため、熱変色層の示温材として窒化チタン(チタンブラック)を使用すれば、金属端子用接着性フィルム1は、常温から280℃までは黒色を保持しているが、300℃まで加熱されると白色に変化するため、300℃という非常に高温環境に曝されたことが外観から判断することができる。金属端子用接着性フィルム1が300℃という高温環境に曝されると、樹脂が劣化して、金属端子用接着性フィルム1の特性が低下しやすいことから、金属端子用接着性フィルム1の特性低下の虞を外観から判断することが可能となる。また、金属端子用接着性フィルム1の製造工程においても、樹脂が300℃まで加熱される場合がある。このような場合にも、熱変色層が黒色として製造されるはずが、白色に変化していることを確認することで、金属端子用接着性フィルム1の特性低下の虞を外観から判断することが可能となる。 For example, titanium nitride (titanium black), which is preferably used as a temperature indicator in this disclosure, is black at room temperature (25°C) and remains black even when heated to, for example, 280°C, but when heated to 300°C, it is oxidized to titanium dioxide and changes color to white. Therefore, if titanium nitride (titanium black) is used as a temperature indicator for the thermochromic layer, the adhesive film 1 for metal terminals retains its black color from room temperature to 280°C, but changes color to white when heated to 300°C, so that it can be determined from the appearance that it has been exposed to a very high temperature environment of 300°C. When the adhesive film 1 for metal terminals is exposed to a high temperature environment of 300°C, the resin deteriorates and the properties of the adhesive film 1 for metal terminals tend to deteriorate, so that it is possible to determine from the appearance whether the properties of the adhesive film 1 for metal terminals are likely to deteriorate. In addition, the resin may be heated to 300°C in the manufacturing process of the adhesive film 1 for metal terminals. Even in such cases, by confirming that the thermochromic layer, which should have been manufactured as black, has changed to white, it is possible to judge from the appearance whether there is a risk of a deterioration in the properties of the adhesive film 1 for metal terminals.
示温材の具体例としては、窒化チタン(チタンブラック)、二酸化チタン、硫化亜鉛などの無機化合物、サーモクロミック液晶(コレステロール誘導体やシアノビフェニル)などの有機化合物が挙げられる。また、例えば、無機粒子は、電解液に対する溶出の虞がない。また、無機粒子は、着色効果が大きく接着性を阻害しない程度の添加量で充分な着色効果を得られると共に、熱で溶融することがなく、添加した樹脂の見かけの溶融粘度を高くすることができる。さらに、熱接着時(ヒートシール時)に加圧部が薄肉となることを防止して、蓄電デバイス用外装材と金属端子の間における優れた密封性を付与できる。熱変色層に含まれる示温材は、1種類のみであってもよいし、2種類以上であってもよい。本開示の効果をより一層好適に発揮する観点から、これらの示温材の中でも、特に窒化チタン(チタンブラック)が好ましい。 Specific examples of the temperature indicator include inorganic compounds such as titanium nitride (titanium black), titanium dioxide, and zinc sulfide, and organic compounds such as thermochromic liquid crystals (cholesterol derivatives and cyanobiphenyls). For example, inorganic particles are unlikely to dissolve in the electrolyte. In addition, inorganic particles have a large coloring effect and can obtain a sufficient coloring effect with an amount added that does not inhibit adhesion, and can increase the apparent melt viscosity of the added resin without melting with heat. Furthermore, they can prevent the pressurized part from becoming thin during thermal adhesion (heat sealing), and can provide excellent sealing between the exterior material for the power storage device and the metal terminal. The thermochromic layer may contain only one type of temperature indicator, or two or more types. From the viewpoint of more suitably exerting the effects of the present disclosure, titanium nitride (titanium black) is particularly preferable among these temperature indicators.
示温材の色は、特に制限されないが、本開示の効果をより一層好適に発揮する観点から、黒色、灰色などが好ましく、黒色が特に好ましい。熱変色層は、示温材の色に対応した色に着色することができ、本開示の金属端子用接着性フィルム1は、熱変色層の色を外観から視認することができる。 The color of the temperature indicator is not particularly limited, but from the viewpoint of more optimally exerting the effects of the present disclosure, black, gray, etc. are preferred, and black is particularly preferred. The thermochromic layer can be colored in a color corresponding to the color of the temperature indicator, and the adhesive film 1 for metal terminals of the present disclosure allows the color of the thermochromic layer to be visually recognized from the outside.
熱変色層は、SCI方式、視野10°及び光源F2の測定条件で測定される、反射光のL*a*b*色空間におけるL*値が、好ましくは約90以下、より好ましくは約80以下、さらに好ましくは約70以下であり、また、好ましくは約10以上、より好ましくは約20以上、さらに好ましくは約30以上であり、好ましい範囲としては、10~90程度、10~80程度、10~70程度、20~90程度、20~80程度、20~70程度、30~90程度、30~80程度、30~70程度が挙げられる。 The thermochromic layer has an L * value in the L * a * b * color space of reflected light measured under the measurement conditions of the SCI method, a visual field of 10°, and a light source F2, which is preferably about 90 or less, more preferably about 80 or less, and even more preferably about 70 or less, and is preferably about 10 or more, more preferably about 20 or more, and even more preferably about 30 or more. Preferred ranges include about 10 to 90, about 10 to 80, about 10 to 70, about 20 to 90, about 20 to 80, about 20 to 70, about 30 to 90, about 30 to 80, and about 30 to 70.
また、金属端子用接着性フィルム1を加熱する前後における前記L*の差が大きい程、加熱前後の金属端子用接着性フィルム1の色による外観変化を認識することが容易となる。このため、金属端子用接着性フィルム1の加熱前後における前記L*の差は、好ましくは約10以上、より好ましくは約20以上、さらに好ましくは約30以上であり、上限については通常約90以下であり、好ましい範囲としては、10~90程度、20~90程度、30~90程度が挙げられる。 Furthermore, the greater the difference in L * before and after heating the adhesive film 1 for metal terminal, the easier it is to recognize the change in appearance due to the color of the adhesive film 1 for metal terminal before and after heating. For this reason, the difference in L * before and after heating the adhesive film 1 for metal terminal is preferably about 10 or more, more preferably about 20 or more, and even more preferably about 30 or more, with the upper limit usually being about 90 or less, and preferred ranges include about 10 to 90, about 20 to 90, and about 30 to 90.
本開示の効果をより一層好適に発揮する観点から、示温材の平均粒子径は、好ましくは約300nm以下、より好ましくは約200nm以下、さらに好ましくは約100nm以下であり、また、好ましくは約10nm以上、より好ましくは約20nm以上、さらに好ましくは約30nm以上であり、さらに好ましくは約50nm以上であり、好ましい範囲としては、10~300nm程度、10~200nm程度、10~100nm程度、20~300nm程度、20~200nm程度、20~100nm程度、30~300nm程度、30~200nm程度、30~100nm程度、50~300nm程度、50~200nm程度、50~100nm程度が挙げられる。なお、示温材の平均粒子径は、レーザ回折/散乱式粒子径分布測定装置で測定されたメジアン径とする。 In order to more effectively exert the effects of the present disclosure, the average particle diameter of the temperature indicator is preferably about 300 nm or less, more preferably about 200 nm or less, and even more preferably about 100 nm or less, and is preferably about 10 nm or more, more preferably about 20 nm or more, even more preferably about 30 nm or more, and even more preferably about 50 nm or more. Preferred ranges include about 10 to 300 nm, about 10 to 200 nm, about 10 to 100 nm, about 20 to 300 nm, about 20 to 200 nm, about 20 to 100 nm, about 30 to 300 nm, about 30 to 200 nm, about 30 to 100 nm, about 50 to 300 nm, about 50 to 200 nm, and about 50 to 100 nm. The average particle diameter of the temperature indicator is the median diameter measured by a laser diffraction/scattering type particle size distribution measuring device.
本開示の効果をより一層好適に発揮する観点から、熱変色層中の示温材の含有率としては、好ましくは約50質量%以下、より好ましくは約40質量%以下、さらに好ましくは約30質量%以下、さらに好ましくは約20質量%以下であり、また、好ましくは約0.01質量%以上、より好ましくは約0.1質量%以上であり、好ましい範囲としては、0.01~50質量%程度、0.01~40質量%程度、0.01~30質量%程度、0.01~20質量%程度、0.1~50質量%程度、0.1~40質量%程度、0.1~30質量%程度、0.1~20質量%程度が挙げられる。 In order to more effectively exert the effects of the present disclosure, the content of the temperature indicator in the thermochromic layer is preferably about 50% by mass or less, more preferably about 40% by mass or less, even more preferably about 30% by mass or less, and even more preferably about 20% by mass or less, and is preferably about 0.01% by mass or more, more preferably about 0.1% by mass or more, and preferred ranges include about 0.01 to 50% by mass, about 0.01 to 40% by mass, about 0.01 to 30% by mass, about 0.01 to 20% by mass, about 0.1 to 50% by mass, about 0.1 to 40% by mass, about 0.1 to 30% by mass, and about 0.1 to 20% by mass.
熱変色層に含まれる樹脂としては、例えば、ポリオレフィン系樹脂、ポリアミド系樹脂、ポリエステル系樹脂、エポキシ樹脂、アクリル樹脂、フッ素樹脂、珪素樹脂、フェノール樹脂、ポリエーテルイミド、ポリイミド、ポリカーボネート及びこれらの混合物や共重合物等が挙げられ、これらの中でも、特にポリオレフィン系樹脂が好ましい。ポリオレフィン系樹脂としては、ポリオレフィン、酸変性ポリオレフィンなどが挙げられる。 Examples of resins contained in the thermochromic layer include polyolefin resins, polyamide resins, polyester resins, epoxy resins, acrylic resins, fluororesins, silicone resins, phenolic resins, polyetherimides, polyimides, polycarbonates, and mixtures and copolymers thereof, among which polyolefin resins are particularly preferred. Examples of polyolefin resins include polyolefins and acid-modified polyolefins.
本開示の効果をより一層好適に発揮する観点から、熱変色層は、ポリオレフィン系樹脂を含む(すなわち、ポリオレフィン骨格を有する)ことが好ましく、ポリオレフィンを含むことが好ましく、ポリオレフィンにより形成された層であることがさらに好ましい。熱変色層は、ポリオレフィン系樹脂の中でも、ポリオレフィンまたは酸変性ポリオレフィンを含むことが好ましい。さらに、ポリオレフィンは、ポリプロピレンであることが好ましく、酸変性ポリオレフィンは、酸変性ポリプロピレンであることが好ましい。 From the viewpoint of more optimally exerting the effects of the present disclosure, the thermochromic layer preferably contains a polyolefin resin (i.e., has a polyolefin skeleton), preferably contains a polyolefin, and is more preferably a layer formed of a polyolefin. Of the polyolefin resins, the thermochromic layer preferably contains a polyolefin or an acid-modified polyolefin. Furthermore, the polyolefin is preferably polypropylene, and the acid-modified polyolefin is preferably acid-modified polypropylene.
熱変色層に含まれる樹脂は、1種類のみであってもよいし、2種類以上であってもよい。製膜性の観点からは、熱変色層の樹脂は、2種以上の樹脂成分を組み合わせたブレンドポリマーであることが好ましい。ブレンドポリマーとする場合、例えば酸変性ポリプロピレンを含む熱変色層であれば、酸変性ポリプロピレンを主成分(50質量%以上の成分)とし、50質量%以下を他の樹脂(柔軟性を向上させる観点からは、好ましくはポリエチレン)とすることが好ましい。また、ポリプロピレンを含む熱変色層であれば、ポリプロピレンを主成分(50質量%以上の成分)とし、50質量%以下を他の樹脂(柔軟性を向上させる観点からは、好ましくはポリエチレン)とすることが好ましい。一方、熱変色層の耐電解液性の観点からは、酸変性ポリプロピレンを含む熱変色層は、樹脂として酸変性ポリプロピレンを単独で含むことが好ましく、ポリプロピレンを含む熱変色層は、樹脂として酸変性ポリプロピレン又はポリプロピレンを単独で含むことが好ましい。 The thermochromic layer may contain only one type of resin, or two or more types. From the viewpoint of film-forming properties, the resin of the thermochromic layer is preferably a blended polymer combining two or more types of resin components. In the case of a blended polymer, for example, a thermochromic layer containing acid-modified polypropylene is preferably made of acid-modified polypropylene as the main component (50% by mass or more of a component) and 50% by mass or less of other resins (preferably polyethylene from the viewpoint of improving flexibility). Also, a thermochromic layer containing polypropylene is preferably made of polypropylene as the main component (50% by mass or more of a component) and 50% by mass or less of other resins (preferably polyethylene from the viewpoint of improving flexibility). On the other hand, from the viewpoint of electrolyte resistance of the thermochromic layer, a thermochromic layer containing acid-modified polypropylene preferably contains acid-modified polypropylene alone as a resin, and a thermochromic layer containing polypropylene is preferably made of acid-modified polypropylene or polypropylene alone as a resin.
金属端子に対する密着性に優れることから、熱変色層は、酸変性ポリオレフィンを含むことが好ましい。本開示の効果をより好適に発揮する観点から、熱変色層は、示温材を含む酸変性ポリオレフィンにより形成されていることが好ましい。すなわち、熱変色層は、示温材を含む酸変性ポリオレフィンフィルムにより好適に構成することができる。 The thermochromic layer preferably contains an acid-modified polyolefin, since this provides excellent adhesion to the metal terminal. From the viewpoint of more suitably exerting the effects of the present disclosure, the thermochromic layer is preferably formed from an acid-modified polyolefin containing a temperature indicator. In other words, the thermochromic layer can be suitably formed from an acid-modified polyolefin film containing a temperature indicator.
酸変性ポリオレフィンとしては、酸変性されたポリオレフィンであれば特に制限されないが、好ましくは不飽和カルボン酸またはその無水物でグラフト変性されたポリオレフィンが挙げられる。 The acid-modified polyolefin is not particularly limited as long as it is an acid-modified polyolefin, but preferably includes polyolefins graft-modified with an unsaturated carboxylic acid or anhydride thereof.
酸変性されるポリオレフィンとしては、具体的には、低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、線状低密度ポリエチレン等のポリエチレン;ホモポリプロピレン、ポリプロピレンのブロックコポリマー(例えば、プロピレンとエチレンのブロックコポリマー)、ポリプロピレンのランダムコポリマー(例えば、プロピレンとエチレンのランダムコポリマー)等の結晶性又は非晶性のポリプロピレン;エチレン-ブテン-プロピレンのターポリマー等が挙げられる。これらのポリオレフィンの中でも、好ましくはポリエチレン及びポリプロピレンが挙げられ、特に好ましくはポリプロピレンである。 Specific examples of polyolefins to be acid-modified include polyethylenes such as low-density polyethylene, medium-density polyethylene, high-density polyethylene, and linear low-density polyethylene; crystalline or amorphous polypropylenes such as homopolypropylene, block copolymers of polypropylene (e.g., block copolymers of propylene and ethylene), and random copolymers of polypropylene (e.g., random copolymers of propylene and ethylene); and ethylene-butene-propylene terpolymers. Among these polyolefins, polyethylene and polypropylene are preferred, and polypropylene is particularly preferred.
また、酸変性されるポリオレフィンは、環状ポリオレフィンであってもよい。例えば、カルボン酸変性環状ポリオレフィンとは、環状ポリオレフィンを構成するモノマーの一部を、α,β-不飽和カルボン酸又はその無水物に代えて共重合することにより、或いは環状ポリオレフィンに対してα,β-不飽和カルボン酸又はその無水物をブロック重合又はグラフト重合することにより得られるポリマーである。 The polyolefin to be acid-modified may also be a cyclic polyolefin. For example, a carboxylic acid-modified cyclic polyolefin is a polymer obtained by copolymerizing a portion of the monomers constituting the cyclic polyolefin with an α,β-unsaturated carboxylic acid or its anhydride, or by block polymerizing or graft polymerizing an α,β-unsaturated carboxylic acid or its anhydride onto a cyclic polyolefin.
酸変性される環状ポリオレフィンは、オレフィンと環状モノマーとの共重合体であり、前記環状ポリオレフィンの構成モノマーであるオレフィンとしては、例えば、エチレン、プロピレン、4-メチル-1-ペンテン、ブタジエン、イソプレン等が挙げられる。また、前記環状ポリオレフィンの構成モノマーである環状モノマーとしては、例えば、ノルボルネン等の環状アルケン;具体的には、シクロペンタジエン、ジシクロペンタジエン、シクロヘキサジエン、ノルボルナジエン等の環状ジエン等が挙げられる。これらのポリオレフィンの中でも、好ましくは環状アルケン、さらに好ましくはノルボルネンが挙げられる。構成モノマーとしては、スチレンも挙げられる。 The acid-modified cyclic polyolefin is a copolymer of an olefin and a cyclic monomer, and examples of the olefins constituting the cyclic polyolefin include ethylene, propylene, 4-methyl-1-pentene, butadiene, and isoprene. Examples of the cyclic monomers constituting the cyclic polyolefin include cyclic alkenes such as norbornene; specifically, cyclic dienes such as cyclopentadiene, dicyclopentadiene, cyclohexadiene, and norbornadiene. Among these polyolefins, cyclic alkenes are preferred, and norbornene is even more preferred. Styrene is also an example of a constituting monomer.
酸変性に使用されるカルボン酸またはその無水物としては、例えば、マレイン酸、アクリル酸、イタコン酸、クロトン酸、無水マレイン酸、無水イタコン酸等が挙げられる。熱変色層は、赤外分光法で分析すると、無水マレイン酸に由来するピークが検出されることが好ましい。例えば、赤外分光法にて無水マレイン酸変性ポリオレフィンを測定すると、波数1760cm-1付近と波数1780cm-1付近に無水マレイン酸由来のピークが検出される。熱変色層が無水マレイン酸変性ポリオレフィンより構成された層である場合、赤外分光法にて測定すると、無水マレイン酸由来のピークが検出される。ただし、酸変性度が低いとピークが小さくなり検出されない場合がある。その場合は核磁気共鳴分光法にて分析可能である。 Examples of the carboxylic acid or its anhydride used for acid modification include maleic acid, acrylic acid, itaconic acid, crotonic acid, maleic anhydride, and itaconic anhydride. When the thermochromic layer is analyzed by infrared spectroscopy, a peak derived from maleic anhydride is preferably detected. For example, when maleic anhydride-modified polyolefin is measured by infrared spectroscopy, a peak derived from maleic anhydride is detected at a wave number of about 1760 cm - 1 and a wave number of about 1780 cm -1 . When the thermochromic layer is a layer composed of maleic anhydride-modified polyolefin, a peak derived from maleic anhydride is detected by infrared spectroscopy. However, if the degree of acid modification is low, the peak may be small and not detected. In that case, it can be analyzed by nuclear magnetic resonance spectroscopy.
熱変色層には、本開示の効果を阻害しないことを限度として、示温材及び樹脂に加えて、必要に応じて、充填剤などの公知の添加剤がさらに含まれていてもよい。 The thermochromic layer may contain, in addition to the temperature indicator and resin, known additives such as fillers, as necessary, to the extent that the effect of the present disclosure is not impaired.
例えば、熱変色層は、必要に応じて充填剤を含んでいてもよい。熱変色層が充填剤を含むことにより、充填剤がスペーサー(Spacer)として機能するために、金属端子2と蓄電デバイス用外装材3のバリア層33との間の短絡を効果的に抑制することが可能となる。充填剤の粒径としては、0.1~35μm程度、好ましくは5.0~30μm程度、さらに好ましくは10~25μm程度の範囲が挙げられる。また、充填剤の含有量としては、熱変色層を形成する樹脂成分100質量部に対して、それぞれ、5~30質量部程度、より好ましくは10~20質量部程度が挙げられる。 For example, the thermochromic layer may contain a filler as necessary. When the thermochromic layer contains a filler, the filler functions as a spacer, making it possible to effectively suppress short circuits between the metal terminal 2 and the barrier layer 33 of the exterior material 3 for a storage battery device. The particle size of the filler is about 0.1 to 35 μm, preferably about 5.0 to 30 μm, and more preferably about 10 to 25 μm. The content of the filler is about 5 to 30 parts by mass, and more preferably about 10 to 20 parts by mass, per 100 parts by mass of the resin component that forms the thermochromic layer.
充填剤としては、無機系、有機系のいずれも用いることができる。無機系充填剤としては、例えば、炭素(カーボン、グラファイト)、シリカ、酸化アルミニウム、チタン酸バリウム、酸化鉄、シリコンカーバイド、酸化ジルコニウム、珪酸ジルコニウム、酸化マグネシウム、酸化チタン、アルミ酸カルシウム、水酸化カルシウム、水酸化アルミニウム、水酸化マグネシウム、炭酸カルシウム等が挙げられる。また、有機系充填剤としては、例えば、フッ素樹脂、フェノール樹脂、ユリア樹脂、エポキシ樹脂、アクリル樹脂、ベンゾグアナミン・ホルムアルデヒド縮合物、メラミン・ホルムアルデヒド縮合物、ポリメタクリル酸メチル架橋物、ポリエチレン架橋物等が挙げられる。形状の安定性、剛性、内容物耐性の点から、酸化アルミニウム、シリカ、フッ素樹脂、アクリル樹脂、ベンゾグアナミン・ホルムアルデヒド縮合物が好ましく、特にこの中でも球状の酸化アルミニウム、シリカがより好ましい。熱変色層を形成する樹脂成分への充填剤の混合方法としては、予めバンバリーミキサー等で両者をメルトブレンドし、マスターバッチ化したものを所定の混合比にする方法、樹脂成分との直接混合方法などを採用することができる。 Both inorganic and organic fillers can be used. Examples of inorganic fillers include carbon (carbon, graphite), silica, aluminum oxide, barium titanate, iron oxide, silicon carbide, zirconium oxide, zirconium silicate, magnesium oxide, titanium oxide, calcium aluminate, calcium hydroxide, aluminum hydroxide, magnesium hydroxide, calcium carbonate, etc. Examples of organic fillers include fluororesin, phenolic resin, urea resin, epoxy resin, acrylic resin, benzoguanamine-formaldehyde condensate, melamine-formaldehyde condensate, polymethyl methacrylate crosslinked product, polyethylene crosslinked product, etc. From the viewpoints of shape stability, rigidity, and content resistance, aluminum oxide, silica, fluororesin, acrylic resin, and benzoguanamine-formaldehyde condensate are preferred, and among these, spherical aluminum oxide and silica are more preferred. The filler can be mixed into the resin component that forms the thermochromic layer by melt-blending the two in advance using a Banbury mixer or similar to create a master batch and mixing it in a specified ratio, or by directly mixing it with the resin component.
なお、熱変色層に充填剤を添加する場合、熱変色層に示温材と顔料を添加してもよいが、金属端子用接着性フィルム1の熱融着性を阻害しない観点からは、充填剤及び顔料は、異なる層(例えば後述の第1樹脂層12a、第2樹脂層12b、中間層11など)に分けて添加することが好ましい。 When adding a filler to the thermochromic layer, a temperature indicator and a pigment may be added to the thermochromic layer, but from the viewpoint of not impairing the thermal fusion properties of the adhesive film for metal terminals 1, it is preferable to add the filler and pigment separately to different layers (for example, the first resin layer 12a, the second resin layer 12b, the intermediate layer 11, etc. described below).
本開示の効果をより好適に奏する観点から、熱変色層の融解ピーク温度は、好ましくは110℃以上、より好ましくは約120℃以上、さらに好ましくは約130℃以上である。同様の観点から、当該融解ピーク温度は、例えば200℃以下、好ましくは190℃以下、より好ましくは180℃以下、さらに好ましくは約175℃以下、さらに好ましくは約170℃以下である。当該融解ピーク温度の好ましい範囲としては、110~200℃程度、110~190℃程度、110~180℃程度、110~175℃程度、110~170℃程度、120~200℃程度、120~190℃程度、120~180℃程度、120~175℃程度、120~170℃程度、130~200℃程度、130~190℃程度、130~180℃程度、130~175℃程度、130~170℃程度が挙げられる。本開示において、融解ピーク温度の測定方法は、以下の通りである。 From the viewpoint of more suitably achieving the effects of the present disclosure, the melting peak temperature of the thermochromic layer is preferably 110°C or higher, more preferably about 120°C or higher, and even more preferably about 130°C or higher. From the same viewpoint, the melting peak temperature is, for example, 200°C or lower, preferably 190°C or lower, more preferably 180°C or lower, even more preferably about 175°C or lower, and even more preferably about 170°C or lower. Preferred ranges of the melting peak temperature include about 110 to 200°C, about 110 to 190°C, about 110 to 180°C, about 110 to 175°C, about 110 to 170°C, about 120 to 200°C, about 120 to 190°C, about 120 to 180°C, about 120 to 175°C, about 120 to 170°C, about 130 to 200°C, about 130 to 190°C, about 130 to 180°C, about 130 to 175°C, and about 130 to 170°C. In this disclosure, the method for measuring the melting peak temperature is as follows.
<融解ピーク温度の測定>
各測定サンプルについて、JIS K7121:2012(プラスチックの転移温度測定方法(JIS K7121:1987の追補1))の規定に準拠して融解ピーク温度を測定する。測定は、示差走査熱量計(DSC、例えばティー・エイ・インスツルメント製の示差走査熱量計Q200)を用いて行う。測定サンプルを、-50℃で15分間保持した後、10℃/分の昇温速度で-50℃から210℃まで昇温させて、1回目の融解ピーク温度P(℃)を測定した後、210℃にて10分間保持する。次に、10℃/分の降温速度で210℃から-50℃まで降温させて15分間保持する。さらに、10℃/分の昇温速度で-50℃から210℃まで昇温させて2回目の融解ピーク温度Q(℃)を測定する。なお、窒素ガスの流量は50ml/分とする。以上の手順によって、1回目に測定される融解ピーク温度P(℃)と、2回目に測定される融解ピーク温度Q(℃)を求める。以上の手順によって、1回目に測定される融解ピーク温度P(℃)の値を採用する。
<Measurement of Melting Peak Temperature>
The melting peak temperature of each measurement sample is measured in accordance with the provisions of JIS K7121:2012 (Method of measuring transition temperature of plastics (JIS K7121:1987 Supplement 1)). The measurement is performed using a differential scanning calorimeter (DSC, for example, a differential scanning calorimeter Q200 manufactured by TA Instruments). The measurement sample is held at -50°C for 15 minutes, then heated from -50°C to 210°C at a heating rate of 10°C/min, the first melting peak temperature P (°C) is measured, and then held at 210°C for 10 minutes. Next, the temperature is lowered from 210°C to -50°C at a heating rate of 10°C/min and held for 15 minutes. Furthermore, the temperature is raised from -50°C to 210°C at a heating rate of 10°C/min to measure the second melting peak temperature Q (°C). The flow rate of nitrogen gas is 50 ml/min. By the above procedure, the melting peak temperature P (°C) measured the first time and the melting peak temperature Q (°C) measured the second time are obtained. The melting peak temperature P (°C) measured the first time by the above procedure is adopted.
本開示の金属端子用接着性フィルム1が熱変色層の単層により構成されている場合、後述する金属端子用接着性フィルム1の総厚みが、熱変色層の厚みに対応する。 When the adhesive film 1 for metal terminals disclosed herein is composed of a single layer of a thermochromic layer, the total thickness of the adhesive film 1 for metal terminals described below corresponds to the thickness of the thermochromic layer.
本開示の金属端子用接着性フィルム1が複層により構成されている場合、本開示の効果をより好適に奏する観点から、熱変色層の厚さは、好ましくは約20μm以上、より好ましくは約30μm以上、さらに好ましくは約40μm以上であり、また、好ましくは約200μm以下、より好ましくは約150μm以下、さらに好ましくは100μm以下である。熱変色層の厚さの好ましい範囲としては、20~200μm程度、20~150μm程度、20~100μm程度、30~200μm程度、30~150μm程度、30~100μm程度、40~200μm程度、40~150μm程度、40~100μm程度が挙げられる。なお、本開示の金属端子用接着性フィルム1に熱変色層が複数含まれている場合、各熱変色層の厚みが、それぞれ、前記の厚みであることが好ましい。 When the adhesive film 1 for metal terminals of the present disclosure is composed of multiple layers, from the viewpoint of more suitably exerting the effects of the present disclosure, the thickness of the thermochromic layer is preferably about 20 μm or more, more preferably about 30 μm or more, even more preferably about 40 μm or more, and also preferably about 200 μm or less, more preferably about 150 μm or less, even more preferably 100 μm or less. Preferred ranges of the thickness of the thermochromic layer include about 20 to 200 μm, about 20 to 150 μm, about 20 to 100 μm, about 30 to 200 μm, about 30 to 150 μm, about 30 to 100 μm, about 40 to 200 μm, about 40 to 150 μm, and about 40 to 100 μm. Note that when the adhesive film 1 for metal terminals of the present disclosure includes multiple thermochromic layers, it is preferable that the thickness of each thermochromic layer is the above-mentioned thickness.
また、本開示の金属端子用接着性フィルム1が、第1樹脂層12aとして熱変色層を有する場合、本開示の効果をより好適に奏する観点から、熱変色層の厚さは、好ましくは約20μm以上、より好ましくは約30μm以上、さらに好ましくは約40μm以上であり、また、好ましくは約200μm以下、より好ましくは約150μm以下、さらに好ましくは100μm以下である。熱変色層の厚さの好ましい範囲としては、20~200μm程度、20~150μm程度、20~100μm程度、30~200μm程度、30~150μm程度、30~100μm程度、40~200μm程度、40~150μm程度、40~100μm程度が挙げられる。 In addition, when the adhesive film 1 for metal terminals of the present disclosure has a thermochromic layer as the first resin layer 12a, from the viewpoint of more suitably achieving the effects of the present disclosure, the thickness of the thermochromic layer is preferably about 20 μm or more, more preferably about 30 μm or more, even more preferably about 40 μm or more, and is preferably about 200 μm or less, more preferably about 150 μm or less, even more preferably 100 μm or less. Preferred ranges for the thickness of the thermochromic layer include about 20 to 200 μm, about 20 to 150 μm, about 20 to 100 μm, about 30 to 200 μm, about 30 to 150 μm, about 30 to 100 μm, about 40 to 200 μm, about 40 to 150 μm, and about 40 to 100 μm.
また、本開示の金属端子用接着性フィルム1が、第2樹脂層12bとして熱変色層を有する場合、本開示の効果をより好適に奏する観点から、熱変色層の厚さは、好ましくは約20μm以上、より好ましくは約30μm以上、さらに好ましくは約40μm以上であり、また、好ましくは約200μm以下、より好ましくは約150μm以下、さらに好ましくは100μm以下である。当該熱変色層の厚さの好ましい範囲としては、40~100μm程度が挙げられる。 Furthermore, when the adhesive film 1 for metal terminals of the present disclosure has a thermochromic layer as the second resin layer 12b, from the viewpoint of more suitably achieving the effects of the present disclosure, the thickness of the thermochromic layer is preferably about 20 μm or more, more preferably about 30 μm or more, even more preferably about 40 μm or more, and is preferably about 200 μm or less, more preferably about 150 μm or less, even more preferably 100 μm or less. A preferred range for the thickness of the thermochromic layer is about 40 to 100 μm.
また、本開示の金属端子用接着性フィルム1が、中間層11として熱変色層を有する場合、本開示の効果をより好適に奏する観点から、熱変色層の厚さは、好ましくは約20μm以上、より好ましくは約30μm以上、さらに好ましくは約40μm以上であり、また、好ましくは約200μm以下、より好ましくは約150μm以下、さらに好ましくは100μm以下である。当該熱変色層の厚さの好ましい範囲としては、20~200μm程度、20~150μm程度、20~100μm程度、30~200μm程度、30~150μm程度、30~100μm程度、40~200μm程度、40~150μm程度、40~100μm程度が挙げられる。 When the adhesive film 1 for metal terminals of the present disclosure has a thermochromic layer as the intermediate layer 11, from the viewpoint of more suitably achieving the effects of the present disclosure, the thickness of the thermochromic layer is preferably about 20 μm or more, more preferably about 30 μm or more, even more preferably about 40 μm or more, and is preferably about 200 μm or less, more preferably about 150 μm or less, even more preferably 100 μm or less. Preferred ranges for the thickness of the thermochromic layer include about 20 to 200 μm, about 20 to 150 μm, about 20 to 100 μm, about 30 to 200 μm, about 30 to 150 μm, about 30 to 100 μm, about 40 to 200 μm, about 40 to 150 μm, and about 40 to 100 μm.
前記の通り、本開示の金属端子用接着性フィルム1は、例えば図6に示すように、少なくとも、第1樹脂層12aと、中間層11と、第2樹脂層12bとがこの順に積層された構成とすることができる。本開示の金属端子用接着性フィルム1においては、当該構成において、第1樹脂層12aが金属端子2側に配置され、第2樹脂層12bが、蓄電デバイス用外装材3側に配置されることとする。当該構成において、両面側の表面に、それぞれ第1樹脂層12a及び第2樹脂層12bが位置している。 As described above, the adhesive film 1 for metal terminals of the present disclosure can be configured, for example as shown in FIG. 6, to have at least a first resin layer 12a, an intermediate layer 11, and a second resin layer 12b laminated in this order. In the adhesive film 1 for metal terminals of the present disclosure, in this configuration, the first resin layer 12a is disposed on the metal terminal 2 side, and the second resin layer 12b is disposed on the exterior material 3 side for an electrical storage device. In this configuration, the first resin layer 12a and the second resin layer 12b are located on the surfaces of both sides, respectively.
第2樹脂層12bは、樹脂により構成された層である。第2樹脂層12bは、熱変色層によって形成されていてもよいし、熱変色層とは異なる樹脂層B(すなわち、樹脂層Bは、示温材を含まない樹脂層である)によって形成されていてもよい。 The second resin layer 12b is a layer made of resin. The second resin layer 12b may be formed of a thermochromic layer, or may be formed of a resin layer B different from the thermochromic layer (i.e., the resin layer B is a resin layer that does not contain a thermochromic material).
また、中間層11についても、熱変色層より形成されていてもよいし、熱変色層とは異なる樹脂層Bにより形成されていてもよい。 The intermediate layer 11 may also be formed from a thermochromic layer, or may be formed from a resin layer B that is different from the thermochromic layer.
[樹脂層B]
樹脂層Bは、熱変色層とは異なる樹脂層(すなわち、樹脂層Bは、前記の熱変色層が熱変色する温度では熱変色しない、非熱変色層ということができ、例えば、示温材を含まない樹脂層)である。
[Resin layer B]
Resin layer B is a resin layer different from the thermochromic layer (i.e., resin layer B can be said to be a non-thermochromic layer that does not thermochromic at the temperature at which the thermochromic layer thermochromic changes, for example, a resin layer that does not contain a temperature indicating material).
樹脂層Bを構成する樹脂としては、例えば、ポリオレフィン系樹脂、ポリアミド系樹脂、ポリエステル系樹脂、エポキシ樹脂、アクリル樹脂、フッ素樹脂、珪素樹脂、フェノール樹脂、ポリエーテルイミド、ポリイミド、ポリカーボネート及びこれらの混合物や共重合物等が挙げられ、これらの中でも、特にポリオレフィン系樹脂が好ましい。ポリオレフィン系樹脂としては、ポリオレフィン、酸変性ポリオレフィンなどが挙げられる。 Examples of the resin constituting the resin layer B include polyolefin resins, polyamide resins, polyester resins, epoxy resins, acrylic resins, fluororesins, silicone resins, phenolic resins, polyetherimides, polyimides, polycarbonates, and mixtures and copolymers thereof, among which polyolefin resins are particularly preferred. Examples of polyolefin resins include polyolefins and acid-modified polyolefins.
樹脂層Bに含まれる樹脂は、1種類のみであってもよいし、2種類以上であってもよい。製膜性の観点からは、樹脂層Bの樹脂は、2種以上の樹脂成分を組み合わせたブレンドポリマーであることが好ましい。ブレンドポリマーとする場合、例えば酸変性ポリプロピレンを含む樹脂層Bであれば、酸変性ポリプロピレンを主成分(50質量%以上の成分)とし、50質量%以下を他の樹脂(柔軟性を向上させる観点からは、好ましくはポリエチレン)とすることが好ましい。また、ポリプロピレンを含む樹脂層Bであれば、ポリプロピレンを主成分(50質量%以上の成分)とし、50質量%以下を他の樹脂(柔軟性を向上させる観点からは、好ましくはポリエチレン)とすることが好ましい。一方、樹脂層Bの耐電解液性の観点からは、酸変性ポリプロピレンを含む樹脂層Bは、樹脂として酸変性ポリプロピレンを単独で含むことが好ましく、ポリプロピレンを含む樹脂層Bは、樹脂として酸変性ポリプロピレン又はポリプロピレンを単独で含むことが好ましい。 The resin contained in the resin layer B may be only one type, or may be two or more types. From the viewpoint of film-forming properties, the resin of the resin layer B is preferably a blended polymer combining two or more types of resin components. In the case of a blended polymer, for example, if the resin layer B contains acid-modified polypropylene, it is preferable that the acid-modified polypropylene is the main component (a component of 50 mass% or more) and 50 mass% or less of other resins (preferably polyethylene from the viewpoint of improving flexibility). Also, if the resin layer B contains polypropylene, it is preferable that the polypropylene is the main component (a component of 50 mass% or more) and 50 mass% or less of other resins (preferably polyethylene from the viewpoint of improving flexibility). On the other hand, from the viewpoint of the electrolyte resistance of the resin layer B, the resin layer B containing acid-modified polypropylene preferably contains acid-modified polypropylene alone as a resin, and the resin layer B containing polypropylene preferably contains acid-modified polypropylene or polypropylene alone as a resin.
樹脂層Bの融解ピーク温度は好ましくは110℃以上、より好ましくは約120℃以上、さらに好ましくは約130℃以上である。当該融解ピーク温度は、例えば200℃以下、好ましくは190℃以下、より好ましくは180℃以下、さらに好ましくは約175℃以下、さらに好ましくは約170℃以下である。当該融解ピーク温度の好ましい範囲としては、110~200℃程度、110~190℃程度、110~180℃程度、110~175℃程度、110~170℃程度、120~200℃程度、120~190℃程度、120~180℃程度、120~175℃程度、120~170℃程度、130~200℃程度、130~190℃程度、130~180℃程度、130~175℃程度、130~170℃程度が挙げられる。 The melting peak temperature of resin layer B is preferably 110° C. or higher, more preferably about 120° C. or higher, and even more preferably about 130° C. or higher. The melting peak temperature is, for example, 200° C. or lower, preferably 190° C. or lower, more preferably 180° C. or lower, even more preferably about 175° C. or lower, and even more preferably about 170° C. or lower. Preferred ranges for the melting peak temperature include about 110 to 200°C, about 110 to 190°C, about 110 to 180°C, about 110 to 175°C, about 110 to 170°C, about 120 to 200°C, about 120 to 190°C, about 120 to 180°C, about 120 to 175°C, about 120 to 170°C, about 130 to 200°C, about 130 to 190°C, about 130 to 180°C, about 130 to 175°C, and about 130 to 170°C.
また、本開示の金属端子用接着性フィルム1が、第1樹脂層12aとして樹脂層Bを有する場合、本開示の効果をより好適に奏する観点から、樹脂層Bの厚さは、好ましくは約20μm以上、より好ましくは約30μm以上、さらに好ましくは約40μm以上であり、また、好ましくは約200μm以下、より好ましくは約150μm以下、さらに好ましくは100μm以下である。当該樹脂層Bの厚さの好ましい範囲としては、20~200μm程度、20~150μm程度、20~100μm程度、30~200μm程度、30~150μm程度、30~100μm程度、40~200μm程度、40~150μm程度、40~100μm程度が挙げられる。 In addition, when the adhesive film 1 for metal terminals of the present disclosure has a resin layer B as the first resin layer 12a, from the viewpoint of more suitably achieving the effects of the present disclosure, the thickness of the resin layer B is preferably about 20 μm or more, more preferably about 30 μm or more, even more preferably about 40 μm or more, and is preferably about 200 μm or less, more preferably about 150 μm or less, even more preferably 100 μm or less. Preferred ranges for the thickness of the resin layer B include about 20 to 200 μm, about 20 to 150 μm, about 20 to 100 μm, about 30 to 200 μm, about 30 to 150 μm, about 30 to 100 μm, about 40 to 200 μm, about 40 to 150 μm, and about 40 to 100 μm.
また、本開示の金属端子用接着性フィルム1が、第2樹脂層12bとして樹脂層Bを有する場合、本開示の効果をより好適に奏する観点から、樹脂層Bの厚さは、好ましくは約20μm以上、より好ましくは約30μm以上、さらに好ましくは約40μm以上であり、また、好ましくは約200μm以下、より好ましくは約150μm以下、さらに好ましくは100μm以下である。当該樹脂層Bの厚さの好ましい範囲としては、20~200μm程度、20~150μm程度、20~100μm程度、30~200μm程度、30~150μm程度、30~100μm程度、40~200μm程度、40~150μm程度、40~100μm程度が挙げられる。 When the adhesive film 1 for metal terminals of the present disclosure has a resin layer B as the second resin layer 12b, from the viewpoint of more suitably achieving the effects of the present disclosure, the thickness of the resin layer B is preferably about 20 μm or more, more preferably about 30 μm or more, even more preferably about 40 μm or more, and is preferably about 200 μm or less, more preferably about 150 μm or less, even more preferably 100 μm or less. Preferred ranges for the thickness of the resin layer B include about 20 to 200 μm, about 20 to 150 μm, about 20 to 100 μm, about 30 to 200 μm, about 30 to 150 μm, about 30 to 100 μm, about 40 to 200 μm, about 40 to 150 μm, and about 40 to 100 μm.
また、本開示の金属端子用接着性フィルム1が、中間層11として樹脂層Bを有する場合、本開示の効果をより好適に奏する観点から、樹脂層Bの厚さは、好ましくは約20μm以上、より好ましくは約30μm以上、さらに好ましくは約40μm以上であり、また、好ましくは約200μm以下、より好ましくは約150μm以下、さらに好ましくは100μm以下である。当該樹脂層Bの厚さの好ましい範囲としては、20~200μm程度、20~150μm程度、20~100μm程度、30~200μm程度、30~150μm程度、30~100μm程度、40~200μm程度、40~150μm程度、40~100μm程度が挙げられる。 When the adhesive film 1 for metal terminals of the present disclosure has a resin layer B as the intermediate layer 11, from the viewpoint of more suitably achieving the effects of the present disclosure, the thickness of the resin layer B is preferably about 20 μm or more, more preferably about 30 μm or more, even more preferably about 40 μm or more, and is preferably about 200 μm or less, more preferably about 150 μm or less, even more preferably 100 μm or less. Preferred ranges for the thickness of the resin layer B include about 20 to 200 μm, about 20 to 150 μm, about 20 to 100 μm, about 30 to 200 μm, about 30 to 150 μm, about 30 to 100 μm, about 40 to 200 μm, about 40 to 150 μm, and about 40 to 100 μm.
樹脂層Bには、熱変色層と同様、公知の添加剤(顔料、充填剤など)が含まれていてもよい。例えば、樹脂層Bには、顔料が含まれていてもよい。顔料としては、無機系の各種顔料を用いることができる。顔料の具体例としては、上記充填剤で例示した炭素(カーボン、グラファイト)が好ましく例示できる。炭素(カーボン、グラファイト)は、一般に蓄電デバイスの内部に使用されている材料であり、電解液に対する溶出の虞がない。また、着色効果が大きく接着性を阻害しない程度の添加量で充分な着色効果を得られると共に、熱で溶融することがなく、添加した樹脂の見かけの溶融粘度を高くすることができる。さらに、熱接着時(ヒートシール時)に加圧部が薄肉となることを防止して、蓄電デバイス用外装材と金属端子の間における優れた密封性を付与できる。また、例えば、樹脂層Bには、充填剤が含まれていてもよい。充填剤の種類や添加量については、熱変色層と同様である。 Like the thermochromic layer, the resin layer B may contain known additives (pigments, fillers, etc.). For example, the resin layer B may contain a pigment. As the pigment, various inorganic pigments can be used. As a specific example of the pigment, carbon (carbon, graphite) exemplified as the filler above can be preferably exemplified. Carbon (carbon, graphite) is a material generally used inside the electric storage device, and there is no risk of dissolving in the electrolyte. In addition, it has a large coloring effect, and a sufficient coloring effect can be obtained with an amount added that does not inhibit adhesion, and it does not melt with heat, and the apparent melt viscosity of the added resin can be increased. Furthermore, it is possible to prevent the pressurized part from becoming thin during heat adhesion (heat sealing), and to provide excellent sealing between the exterior material for the electric storage device and the metal terminal. In addition, for example, the resin layer B may contain a filler. The type and amount of the filler are the same as those of the thermochromic layer.
樹脂層Bは、着色されていてもよいし、無色透明であってもよい。 The resin layer B may be colored or colorless and transparent.
本開示の効果をより好適に奏する観点から、金属端子用接着性フィルム1の総厚みとしては、例えば約50μm以上、好ましくは約100μm以上、より好ましくは約150μm以上である。また、本開示の金属端子用接着性フィルム1の総厚みは、好ましくは約400μm以下、より好ましくは約350μm以下、さらに好ましくは約300μm以下である。本開示の金属端子用接着性フィルム1の総厚みの好ましい範囲としては、50~400μm程度、50~350μm程度、50~300μm程度、100~400μm程度、100~350μm程度、100~300μm程度、150~400μm程度、150~350μm程度、150~300μm程度が挙げられる。 From the viewpoint of more suitably achieving the effects of the present disclosure, the total thickness of the adhesive film 1 for metal terminals is, for example, about 50 μm or more, preferably about 100 μm or more, and more preferably about 150 μm or more. The total thickness of the adhesive film 1 for metal terminals of the present disclosure is preferably about 400 μm or less, more preferably about 350 μm or less, and even more preferably about 300 μm or less. Preferred ranges for the total thickness of the adhesive film 1 for metal terminals of the present disclosure include about 50 to 400 μm, about 50 to 350 μm, about 50 to 300 μm, about 100 to 400 μm, about 100 to 350 μm, about 100 to 300 μm, about 150 to 400 μm, about 150 to 350 μm, and about 150 to 300 μm.
本開示の金属端子用接着性フィルム1は、最外層の少なくとも一方の表面に微細な凹凸を備えていることが好ましい。これにより、蓄電デバイス用外装材3の熱融着性樹脂層35または金属端子2との密着性をより一層向上させることができる。なお、金属端子用接着性フィルム1の最外層の表面に微細な凹凸を形成する方法としては、微粒子などの添加剤を最外層に添加する方法、表面に凹凸を有する冷却ロールを当接させ賦型する方法などが挙げられる。微細な凹凸としては、好ましくは、最外層の表面の十点平均粗さが、好ましくは約0.1μm以上、より好ましくは約0.2μm以上であり、また、好ましくは約35μm以下、より好ましくは約10μm以下であり、好ましい範囲としては、0.1~35μm程度、0.1~10μm程度、0.2~35μm程度、0.2~10μm程度が挙げられる。なお、十点平均粗さは、JIS B0601:1994の規定に準拠した方法において、キーエンス製レーザー顕微鏡VK-9710を用い、対物レンズ50倍、カットオフなしの測定条件で測定した値である。 The adhesive film 1 for metal terminals of the present disclosure preferably has fine irregularities on at least one surface of the outermost layer. This can further improve adhesion to the heat-sealable resin layer 35 of the exterior material 3 for an electrical storage device or the metal terminal 2. Methods for forming fine irregularities on the surface of the outermost layer of the adhesive film 1 for metal terminals include a method of adding additives such as fine particles to the outermost layer, and a method of applying a cooling roll having an irregular surface to the outermost layer to form a shape. As for the fine irregularities, the ten-point average roughness of the surface of the outermost layer is preferably about 0.1 μm or more, more preferably about 0.2 μm or more, and is also preferably about 35 μm or less, more preferably about 10 μm or less, with preferred ranges being about 0.1 to 35 μm, about 0.1 to 10 μm, about 0.2 to 35 μm, and about 0.2 to 10 μm. The ten-point average roughness was measured using a Keyence VK-9710 laser microscope in accordance with the method specified in JIS B0601:1994, with an objective lens of 50x and no cutoff.
本開示の金属端子用接着性フィルム1は、ポリオレフィン系樹脂により形成されていることが好ましい。例えば、本開示の金属端子用接着性フィルム1に含まれる樹脂成分は、酸変性ポリオレフィンのみであるか、酸変性ポリオレフィンとポリオレフィンのみであることが好ましい。好ましい酸変性ポリオレフィンとポリオレフィンについては、熱変色層及び樹脂層Bで説明した通りである。 The adhesive film 1 for metal terminals of the present disclosure is preferably formed from a polyolefin resin. For example, the resin components contained in the adhesive film 1 for metal terminals of the present disclosure are preferably only acid-modified polyolefins, or only acid-modified polyolefins and polyolefins. The preferred acid-modified polyolefins and polyolefins are as described in the thermochromic layer and resin layer B.
本開示の金属端子用接着性フィルム1は、第1樹脂層12a、中間層11、及び第2樹脂層12bをこの順に備える積層体から構成されていることが好ましい。以下、本開示の金属端子用接着性フィルム1が、少なくとも、第1樹脂層12a、中間層11、及び第2樹脂層12bをこの順に備える積層体から構成される場合を例にして、本開示の金属端子用接着性フィルム1の好ましい態様について、詳述する。 The adhesive film 1 for metal terminals of the present disclosure is preferably composed of a laminate having a first resin layer 12a, an intermediate layer 11, and a second resin layer 12b in this order. Below, a preferred embodiment of the adhesive film 1 for metal terminals of the present disclosure will be described in detail, taking as an example a case where the adhesive film 1 for metal terminals of the present disclosure is composed of a laminate having at least a first resin layer 12a, an intermediate layer 11, and a second resin layer 12b in this order.
蓄電デバイス10の金属端子2と蓄電デバイス用外装材3との間に、本開示の金属端子用接着性フィルム1が配置されると、金属により構成された金属端子2の表面と、蓄電デバイス用外装材3の熱融着性樹脂層35(ポリオレフィンなどの熱融着性樹脂により形成された層)とが、金属端子用接着性フィルム1を介して接着される。金属端子用接着性フィルム1の第1樹脂層12aが金属端子2側に配置され、第2樹脂層12bが蓄電デバイス用外装材3側に配置され、第1樹脂層12aが金属端子2と密着し、第2樹脂層12bが蓄電デバイス用外装材3の熱融着性樹脂層35と密着する。 When the adhesive film 1 for metal terminals of the present disclosure is placed between the metal terminal 2 of the electricity storage device 10 and the exterior material 3 for the electricity storage device, the surface of the metal terminal 2 made of metal and the heat-sealable resin layer 35 (a layer formed of a heat-sealable resin such as polyolefin) of the exterior material 3 for the electricity storage device are bonded via the adhesive film 1 for metal terminals. The first resin layer 12a of the adhesive film 1 for metal terminals is placed on the metal terminal 2 side, and the second resin layer 12b is placed on the exterior material 3 for the electricity storage device, with the first resin layer 12a in close contact with the metal terminal 2 and the second resin layer 12b in close contact with the heat-sealable resin layer 35 of the exterior material 3 for the electricity storage device.
[第1樹脂層12a及び第2樹脂層12b]
本開示の好ましい態様に係る金属端子用接着性フィルム1は、図6に示すように、中間層11の一方面側に第1樹脂層12aを備え、他方面側に第2樹脂層12bを備えている。第1樹脂層12aが金属端子2側に配置される。また、第2樹脂層12bが蓄電デバイス用外装材3側に配置される。本開示の金属端子用接着性フィルム1においては、両面側の表面に、それぞれ第1樹脂層12a及び第2樹脂層12bが位置している。
[First resin layer 12a and second resin layer 12b]
As shown in Fig. 6, the adhesive film 1 for metal terminal according to a preferred embodiment of the present disclosure comprises a first resin layer 12a on one side of an intermediate layer 11, and a second resin layer 12b on the other side. The first resin layer 12a is disposed on the metal terminal 2 side. The second resin layer 12b is disposed on the exterior material 3 for an electrical storage device. In the adhesive film 1 for metal terminal according to the present disclosure, the first resin layer 12a and the second resin layer 12b are located on the surfaces of both sides, respectively.
本開示において、第1樹脂層12a、中間層11、及び第2樹脂層12bのうち、少なくとも1層が前述の熱変色層により形成されている。 In the present disclosure, at least one of the first resin layer 12a, the intermediate layer 11, and the second resin layer 12b is formed from the aforementioned thermochromic layer.
前記の通り、第1樹脂層12a及び第2樹脂層12bは、それぞれ、ポリオレフィン系樹脂を含む(すなわち、ポリオレフィン骨格を有する)ことが好ましく、ポリオレフィンを含むことが好ましく、ポリオレフィンにより形成された層であることがさらに好ましい。第1樹脂層12aは、ポリオレフィン系樹脂の中でも、ポリオレフィンまたは酸変性ポリオレフィンを含むことが好ましく、酸変性ポリオレフィンを含むことがより好ましく、酸変性ポリオレフィンフィルムにより形成された層であることがさらに好ましい。ポリオレフィン系樹脂は、ポリプロピレン系樹脂であることが好ましい。第2樹脂層12bは、ポリオレフィン系樹脂の中でも、ポリオレフィンまたは酸変性ポリオレフィンを含むことが好ましく、ポリオレフィンを含むことがより好ましく、ポリオレフィンフィルムにより形成された層であることがさらに好ましい。ポリオレフィン系樹脂は、ポリプロピレン系樹脂であることが好ましい。ポリオレフィンは、ポリプロピレンであることが好ましく、酸変性ポリオレフィンは、ポリプロピレンであることが好ましい。 As described above, the first resin layer 12a and the second resin layer 12b each preferably contain a polyolefin-based resin (i.e., have a polyolefin skeleton), preferably contain a polyolefin, and more preferably are layers formed of a polyolefin. The first resin layer 12a preferably contains a polyolefin or an acid-modified polyolefin among polyolefin-based resins, more preferably contains an acid-modified polyolefin, and more preferably is a layer formed of an acid-modified polyolefin film. The polyolefin-based resin is preferably a polypropylene-based resin. The second resin layer 12b preferably contains a polyolefin or an acid-modified polyolefin among polyolefin-based resins, more preferably contains a polyolefin, and more preferably is a layer formed of a polyolefin film. The polyolefin-based resin is preferably a polypropylene-based resin. The polyolefin is preferably polypropylene, and the acid-modified polyolefin is preferably polypropylene.
第1樹脂層12aの融解ピーク温度は、好ましくは110℃以上、より好ましくは約120℃以上、さらに好ましくは約130℃以上である。当該融解ピーク温度は、例えば200℃以下、好ましくは190℃以下、より好ましくは180℃以下、さらに好ましくは約175℃以下、さらに好ましくは約170℃以下である。当該融解ピーク温度の好ましい範囲としては、110~200℃程度、110~190℃程度、110~180℃程度、110~175℃程度、110~170℃程度、120~200℃程度、120~190℃程度、120~180℃程度、120~175℃程度、120~170℃程度、130~200℃程度、130~190℃程度、130~180℃程度、130~175℃程度、130~170℃程度が挙げられる。 The melting peak temperature of the first resin layer 12a is preferably 110°C or higher, more preferably about 120°C or higher, and even more preferably about 130°C or higher. The melting peak temperature is, for example, 200°C or lower, preferably 190°C or lower, more preferably 180°C or lower, even more preferably about 175°C or lower, and even more preferably about 170°C or lower. Preferred ranges for the melting peak temperature include about 110 to 200°C, about 110 to 190°C, about 110 to 180°C, about 110 to 175°C, about 110 to 170°C, about 120 to 200°C, about 120 to 190°C, about 120 to 180°C, about 120 to 175°C, about 120 to 170°C, about 130 to 200°C, about 130 to 190°C, about 130 to 180°C, about 130 to 175°C, and about 130 to 170°C.
第2樹脂層12bの融解ピーク温度は、好ましくは110℃以上、より好ましくは約120℃以上、さらに好ましくは約130℃以上である。当該融解ピーク温度は、例えば200℃以下、好ましくは190℃以下、より好ましくは180℃以下、さらに好ましくは約175℃以下、さらに好ましくは約170℃以下である。当該融解ピーク温度の好ましい範囲としては、110~200℃程度、110~190℃程度、110~180℃程度、110~175℃程度、110~170℃程度、120~200℃程度、120~190℃程度、120~180℃程度、120~175℃程度、120~170℃程度、130~200℃程度、130~190℃程度、130~180℃程度、130~175℃程度、130~170℃程度が挙げられる。 The melting peak temperature of the second resin layer 12b is preferably 110° C. or higher, more preferably about 120° C. or higher, and even more preferably about 130° C. or higher. The melting peak temperature is, for example, 200° C. or lower, preferably 190° C. or lower, more preferably 180° C. or lower, even more preferably about 175° C. or lower, and even more preferably about 170° C. or lower. Preferred ranges for the melting peak temperature include about 110 to 200°C, about 110 to 190°C, about 110 to 180°C, about 110 to 175°C, about 110 to 170°C, about 120 to 200°C, about 120 to 190°C, about 120 to 180°C, about 120 to 175°C, about 120 to 170°C, about 130 to 200°C, about 130 to 190°C, about 130 to 180°C, about 130 to 175°C, and about 130 to 170°C.
本開示の効果をより好適に奏する観点から、第1樹脂層12aの厚さは、好ましくは約20μm以上、より好ましくは約30μm以上、さらに好ましくは約40μm以上であり、また、好ましくは約200μm以下、より好ましくは約150μm以下、さらに好ましくは100μm以下である。第1樹脂層12aの厚さの好ましい範囲としては、40~100μm程度が挙げられる。 From the viewpoint of more optimally achieving the effects of the present disclosure, the thickness of the first resin layer 12a is preferably at least about 20 μm, more preferably at least about 30 μm, even more preferably at least about 40 μm, and is preferably no more than about 200 μm, more preferably no more than about 150 μm, even more preferably no more than 100 μm. A preferred range for the thickness of the first resin layer 12a is about 40 to 100 μm.
また、本開示の効果をより好適に奏する観点から、第2樹脂層12bの厚さは、好ましくは約20μm以上、より好ましくは約30μm以上、さらに好ましくは約40μm以上であり、また、好ましくは約200μm以下、より好ましくは約150μm以下、さらに好ましくは100μm以下である。第2樹脂層12bの厚さの好ましい範囲としては、20~200μm程度、20~150μm程度、20~100μm程度、30~200μm程度、30~150μm程度、30~100μm程度、40~200μm程度、40~150μm程度、40~100μm程度が挙げられる。 In order to more effectively achieve the effects of the present disclosure, the thickness of the second resin layer 12b is preferably at least about 20 μm, more preferably at least about 30 μm, and even more preferably at least about 40 μm, and is preferably no more than about 200 μm, more preferably no more than about 150 μm, and even more preferably no more than 100 μm. Preferred ranges for the thickness of the second resin layer 12b include about 20 to 200 μm, about 20 to 150 μm, about 20 to 100 μm, about 30 to 200 μm, about 30 to 150 μm, about 30 to 100 μm, about 40 to 200 μm, about 40 to 150 μm, and about 40 to 100 μm.
[中間層11]
金属端子用接着性フィルム1において、中間層11は、金属端子用接着性フィルム1の支持体として機能する層である。
[Intermediate layer 11]
In the adhesive film 1 for a metal terminal, the intermediate layer 11 is a layer that functions as a support for the adhesive film 1 for a metal terminal.
中間層11は、前述の熱変色層より形成されていてもよいし、前述の樹脂層Bにより形成されていてもよい。 The intermediate layer 11 may be formed from the thermochromic layer described above, or may be formed from the resin layer B described above.
中間層11を形成する素材については、特に制限されるものではない。中間層11を形成する素材としては、例えば、ポリオレフィン系樹脂、ポリアミド系樹脂、ポリエステル系樹脂、エポキシ樹脂、アクリル樹脂、フッ素樹脂、珪素樹脂、フェノール樹脂、ポリエーテルイミド、ポリイミド、ポリカーボネート及びこれらの混合物や共重合物等が挙げられ、これらの中でも、特にポリオレフィン系樹脂が好ましい。すなわち、中間層11を形成する素材は、ポリオレフィン、酸変性ポリオレフィンなどのポリオレフィン骨格を含む樹脂が好ましい。中間層11を構成している樹脂がポリオレフィン骨格を含むことは、例えば、赤外分光法、ガスクロマトグラフィー質量分析法などにより分析可能である。 The material forming the intermediate layer 11 is not particularly limited. Examples of materials forming the intermediate layer 11 include polyolefin resins, polyamide resins, polyester resins, epoxy resins, acrylic resins, fluororesins, silicone resins, phenolic resins, polyetherimides, polyimides, polycarbonates, and mixtures and copolymers thereof. Among these, polyolefin resins are particularly preferred. In other words, the material forming the intermediate layer 11 is preferably a resin containing a polyolefin skeleton, such as polyolefin or acid-modified polyolefin. Whether the resin constituting the intermediate layer 11 contains a polyolefin skeleton can be analyzed, for example, by infrared spectroscopy, gas chromatography mass spectrometry, or the like.
前記の通り、中間層11は、ポリオレフィン系樹脂を含むことが好ましく、ポリオレフィンを含むことが好ましく、ポリオレフィンにより形成された層であることがさらに好ましい。ポリオレフィンにより形成された層は、延伸ポリオレフィンフィルムであってもよいし、未延伸ポリオレフィンフィルムであってもよいが、未延伸ポリオレフィンフィルムであることが好ましい。ポリオレフィンとしては、具体的には、低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、線状低密度ポリエチレン等のポリエチレン;ホモポリプロピレン、ポリプロピレンのブロックコポリマー(例えば、プロピレンとエチレンのブロックコポリマー)、ポリプロピレンのランダムコポリマー(例えば、プロピレンとエチレンのランダムコポリマー)等の結晶性又は非晶性のポリプロピレン;エチレン-ブテン-プロピレンのターポリマー等が挙げられる。これらのポリオレフィンの中でも、好ましくはポリエチレン及びポリプロピレンが挙げられ、より好ましくはポリプロピレンが挙げられる。また、耐電解液性に優れることから、中間層11は、ホモポリプロピレンを含むことが好ましく、ホモポリプロピレンにより形成されていることがより好ましく、未延伸ホモポリプロピレンフィルムであることがさらに好ましい。 As described above, the intermediate layer 11 preferably contains a polyolefin resin, more preferably contains a polyolefin, and more preferably is a layer formed of a polyolefin. The layer formed of a polyolefin may be a stretched polyolefin film or an unstretched polyolefin film, but is preferably an unstretched polyolefin film. Specific examples of polyolefin include polyethylene such as low-density polyethylene, medium-density polyethylene, high-density polyethylene, and linear low-density polyethylene; crystalline or amorphous polypropylene such as homopolypropylene, block copolymers of polypropylene (e.g., block copolymers of propylene and ethylene), and random copolymers of polypropylene (e.g., random copolymers of propylene and ethylene); and ethylene-butene-propylene terpolymers. Among these polyolefins, polyethylene and polypropylene are preferred, and polypropylene is more preferred. In addition, because of its excellent electrolyte resistance, the intermediate layer 11 preferably contains homopolypropylene, more preferably is formed of homopolypropylene, and even more preferably is an unstretched homopolypropylene film.
ポリアミドとしては、具体的には、ナイロン6、ナイロン66、ナイロン610、ナイロン12、ナイロン46、ナイロン6とナイロン66との共重合体等の脂肪族系ポリアミド;テレフタル酸及び/又はイソフタル酸に由来する構成単位を含むナイロン6I、ナイロン6T、ナイロン6IT、ナイロン6I6T(Iはイソフタル酸、Tはテレフタル酸を表す)等のヘキサメチレンジアミン-イソフタル酸-テレフタル酸共重合ポリアミド、ポリメタキシリレンアジパミド(MXD6)等の芳香族を含むポリアミド;ポリアミノメチルシクロヘキシルアジパミド(PACM6)等の脂環系ポリアミド;さらにラクタム成分や、4,4’-ジフェニルメタン-ジイソシアネート等のイソシアネート成分を共重合させたポリアミド、共重合ポリアミドとポリエステルやポリアルキレンエーテルグリコールとの共重合体であるポリエステルアミド共重合体やポリエーテルエステルアミド共重合体;これらの共重合体等が挙げられる。これらのポリアミドは、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。 Specific examples of polyamides include aliphatic polyamides such as nylon 6, nylon 66, nylon 610, nylon 12, nylon 46, and copolymers of nylon 6 and nylon 66; hexamethylenediamine-isophthalic acid-terephthalic acid copolymer polyamides such as nylon 6I, nylon 6T, nylon 6IT, and nylon 6I6T (I represents isophthalic acid and T represents terephthalic acid) which contain structural units derived from terephthalic acid and/or isophthalic acid, and aromatic polyamides such as polymetaxylylene adipamide (MXD6); alicyclic polyamides such as polyaminomethylcyclohexyl adipamide (PACM6); polyamides copolymerized with lactam components or isocyanate components such as 4,4'-diphenylmethane diisocyanate; polyesteramide copolymers and polyetheresteramide copolymers which are copolymers of copolymerized polyamides with polyesters or polyalkylene ether glycols; and copolymers of these. These polyamides may be used alone or in combination of two or more.
ポリエステルとしては、具体的には、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート、ポリエチレンイソフタレート、エチレンテレフタレートを繰り返し単位の主体とした共重合ポリエステル、ブチレンテレフタレートを繰り返し単位の主体とした共重合ポリエステル等が挙げられる。また、エチレンテレフタレートを繰り返し単位の主体とした共重合ポリエステルとしては、具体的には、エチレンテレフタレートを繰り返し単位の主体としてエチレンイソフタレートと重合する共重合体ポリエステル(以下、ポリエチレン(テレフタレート/イソフタレート)にならって略す)、ポリエチレン(テレフタレート/イソフタレート)、ポリエチレン(テレフタレート/アジペート)、ポリエチレン(テレフタレート/ナトリウムスルホイソフタレート)、ポリエチレン(テレフタレート/ナトリウムイソフタレート)、ポリエチレン(テレフタレート/フェニル-ジカルボキシレート)、ポリエチレン(テレフタレート/デカンジカルボキシレート)等が挙げられる。また、ブチレンテレフタレートを繰り返し単位の主体とした共重合ポリエステルとしては、具体的には、ブチレンテレフタレートを繰り返し単位の主体としてブチレンイソフタレートと重合する共重合体ポリエステル(以下、ポリブチレン(テレフタレート/イソフタレート)にならって略す)、ポリブチレン(テレフタレート/アジペート)、ポリブチレン(テレフタレート/セバケート)、ポリブチレン(テレフタレート/デカンジカルボキシレート)、ポリブチレンナフタレート等が挙げられる。これらのポリエステルは、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。 Specific examples of polyesters include polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polybutylene naphthalate, polyethylene isophthalate, copolymer polyesters whose main repeating units are ethylene terephthalate, and copolymer polyesters whose main repeating units are butylene terephthalate. Specific examples of copolymer polyesters whose main repeating units are ethylene terephthalate include copolymer polyesters in which ethylene terephthalate is the main repeating unit and is polymerized with ethylene isophthalate (hereinafter abbreviated as polyethylene (terephthalate/isophthalate)), polyethylene (terephthalate/isophthalate), polyethylene (terephthalate/adipate), polyethylene (terephthalate/sodium sulfoisophthalate), polyethylene (terephthalate/sodium isophthalate), polyethylene (terephthalate/phenyl-dicarboxylate), and polyethylene (terephthalate/decanedicarboxylate). Specific examples of copolymer polyesters containing butylene terephthalate as the main repeating unit include copolymer polyesters in which butylene terephthalate is the main repeating unit and is polymerized with butylene isophthalate (hereinafter abbreviated as polybutylene (terephthalate/isophthalate)), polybutylene (terephthalate/adipate), polybutylene (terephthalate/sebacate), polybutylene (terephthalate/decanedicarboxylate), polybutylene naphthalate, etc. These polyesters may be used alone or in combination of two or more.
また、中間層11は、上記の樹脂で形成された不織布により形成されていてもよい。中間層11が不織布である場合、中間層11は、前述のポリオレフィン系樹脂、ポリアミド樹脂等で構成されていることが好ましい。 The intermediate layer 11 may also be formed of a nonwoven fabric made of the above-mentioned resin. When the intermediate layer 11 is a nonwoven fabric, it is preferable that the intermediate layer 11 is composed of the above-mentioned polyolefin resin, polyamide resin, etc.
中間層11の融解ピーク温度は、好ましくは110℃以上、より好ましくは約120℃以上、さらに好ましくは約130℃以上である。同様の観点から、当該融解ピーク温度は、例えば300℃以下、好ましくは290℃以下、より好ましくは280℃以下、さらに好ましくは約275℃以下、さらに好ましくは約270℃以下である。当該融解ピーク温度の好ましい範囲としては、110~300℃程度、110~290℃程度、110~280℃程度、110~275℃程度、110~270℃程度、120~300℃程度、120~290℃程度、120~280℃程度、120~275℃程度、120~270℃程度、130~300℃程度、130~290℃程度、130~280℃程度、130~275℃程度、130~270℃程度が挙げられる。 The melting peak temperature of the intermediate layer 11 is preferably 110°C or higher, more preferably about 120°C or higher, and even more preferably about 130°C or higher. From a similar perspective, the melting peak temperature is, for example, 300°C or lower, preferably 290°C or lower, more preferably 280°C or lower, even more preferably about 275°C or lower, and even more preferably about 270°C or lower. Preferred ranges for the melting peak temperature include about 110 to 300°C, about 110 to 290°C, about 110 to 280°C, about 110 to 275°C, about 110 to 270°C, about 120 to 300°C, about 120 to 290°C, about 120 to 280°C, about 120 to 275°C, about 120 to 270°C, about 130 to 300°C, about 130 to 290°C, about 130 to 280°C, about 130 to 275°C, and about 130 to 270°C.
中間層11は、単層であってもよいし、複層であってもよい。 The intermediate layer 11 may be a single layer or multiple layers.
また、中間層11に着色剤を配合することにより、中間層11を、着色剤を含む層とすることもできる。また、透明度の低い樹脂を選択して、光透過度を調整することもできる。中間層11がフィルムの場合は、着色フィルムを用いることや、透明度の低いフィルムを用いることもできる。また、中間層11が不織布の場合は、着色剤を含む繊維やバインダーを用いた不織布や、透明度の低い不織布を用いることができる。 Furthermore, by blending a colorant into the intermediate layer 11, the intermediate layer 11 can be a layer containing the colorant. Also, light transmittance can be adjusted by selecting a resin with low transparency. If the intermediate layer 11 is a film, a colored film or a film with low transparency can be used. If the intermediate layer 11 is a nonwoven fabric, a nonwoven fabric using fibers or a binder containing a colorant, or a nonwoven fabric with low transparency can be used.
中間層11が樹脂フィルムにより構成されている場合、中間層11の表面には、必要に応じて、コロナ放電処理、オゾン処理、プラズマ処理等の公知の易接着手段が施されていてもよい。 When the intermediate layer 11 is made of a resin film, the surface of the intermediate layer 11 may be subjected to a known adhesion enhancing method such as corona discharge treatment, ozone treatment, or plasma treatment, if necessary.
また、本開示の効果をより好適に奏する観点から、中間層11の厚さは、好ましくは約20μm以上、より好ましくは約30μm以上、さらに好ましくは約40μm以上であり、また、好ましくは約200μm以下、より好ましくは約150μm以下、さらに好ましくは100μm以下である。中間層11の厚さの好ましい範囲としては、20~200μm程度、20~150μm程度、20~100μm程度、30~200μm程度、30~150μm程度、30~100μm程度、40~200μm程度、40~150μm程度、40~100μm程度が挙げられる。 In order to more effectively achieve the effects of the present disclosure, the thickness of the intermediate layer 11 is preferably at least about 20 μm, more preferably at least about 30 μm, and even more preferably at least about 40 μm, and is preferably no more than about 200 μm, more preferably no more than about 150 μm, and even more preferably no more than 100 μm. Preferred ranges for the thickness of the intermediate layer 11 include about 20 to 200 μm, about 20 to 150 μm, about 20 to 100 μm, about 30 to 200 μm, about 30 to 150 μm, about 30 to 100 μm, about 40 to 200 μm, about 40 to 150 μm, and about 40 to 100 μm.
同様の観点から、第1樹脂層12a及び第2樹脂層12bの合計厚みに対する、中間層11の厚みの比としては、好ましくは約0.3以上、より好ましくは約0.4以上であり、また、好ましくは約1.0以下、より好ましくは約0.8以下であり、好ましい範囲としては、0.3~1.0程度、0.3~0.8程度、0.4~1.0程度、0.4~0.8程度が挙げられる。 From the same viewpoint, the ratio of the thickness of the intermediate layer 11 to the total thickness of the first resin layer 12a and the second resin layer 12b is preferably at least about 0.3, more preferably at least about 0.4, and is preferably at most about 1.0, more preferably at most about 0.8, with preferred ranges being around 0.3 to 1.0, around 0.3 to 0.8, around 0.4 to 1.0, and around 0.4 to 0.8.
また、金属端子用接着性フィルム1の総厚みを100%とした場合、第1樹脂層12a及び第2樹脂層12bの合計厚みの割合としては、好ましくは30~80%程度、より好ましくは50~70%程度である。 In addition, if the total thickness of the adhesive film 1 for metal terminals is taken as 100%, the ratio of the total thickness of the first resin layer 12a and the second resin layer 12b is preferably about 30 to 80%, and more preferably about 50 to 70%.
本開示の金属端子用接着性フィルム1は、例えば、中間層11の両表面上に、それぞれ、第1樹脂層12a及び第2樹脂層12bを積層することにより製造することができる。中間層11と第1樹脂層12a及び第2樹脂層12bとの積層は、押出ラミネート法、Tダイ法、インフレーション法、サーマルラミネート法などの公知の方法により積層することができる。 The adhesive film 1 for metal terminals of the present disclosure can be manufactured, for example, by laminating a first resin layer 12a and a second resin layer 12b on both surfaces of an intermediate layer 11. The intermediate layer 11 can be laminated with the first resin layer 12a and the second resin layer 12b by a known method such as an extrusion lamination method, a T-die method, an inflation method, or a thermal lamination method.
金属端子用接着性フィルム1を金属端子2と蓄電デバイス用外装材3との間に介在させる方法としては、特に制限されず、例えば、図1~3に示すように、金属端子2が蓄電デバイス用外装材3によって挟持される部分において、金属端子2に金属端子用接着性フィルム1を巻き付けてもよい。また、図示を省略するが、金属端子2が蓄電デバイス用外装材3によって挟持される部分において、金属端子用接着性フィルム1が2つの金属端子2を横断するようにして、金属端子2の両面側に配置されてもよい。 The method for interposing the adhesive film 1 for metal terminals between the metal terminal 2 and the exterior material 3 for the electricity storage device is not particularly limited, and for example, as shown in Figures 1 to 3, the adhesive film 1 for metal terminals may be wrapped around the metal terminal 2 in the portion where the metal terminal 2 is sandwiched by the exterior material 3 for the electricity storage device. In addition, although not shown, the adhesive film 1 for metal terminals may be disposed on both sides of the metal terminal 2 so as to cross the two metal terminals 2 in the portion where the metal terminal 2 is sandwiched by the exterior material 3 for the electricity storage device.
接着促進剤層13は、中間層11と第1樹脂層12a、及び中間層11と第2樹脂層12bとを強固に接着することを目的として、必要に応じて設けられる層である(図7を参照)。接着促進剤層13は、中間層11と第1樹脂層12a及び第2樹脂層12bとの間の一方側のみに設けられていてもよいし、両側に設けられていてもよい。接着促進剤層に示温材が含まれていてもよい。 The adhesion promoter layer 13 is a layer that is provided as necessary for the purpose of firmly adhering the intermediate layer 11 to the first resin layer 12a, and between the intermediate layer 11 and the second resin layer 12b (see FIG. 7). The adhesion promoter layer 13 may be provided on only one side between the intermediate layer 11 and the first resin layer 12a and between the intermediate layer 11 and the second resin layer 12b, or on both sides. The adhesion promoter layer may contain a temperature indicator.
接着促進剤層13は、イソシアネート系、ポリエチレンイミン系、ポリエステル系、ポリウレタン系、ポリブタジエン系等の公知の接着促進剤を用いて形成することができる。強固な密着強度を得る観点からは、これらの中でも、イソシアネート系の接着促進剤により形成されていることが好ましい。イソシアネート系の接着促進剤としては、トリイソシアネートモノマー、ポリメリックMDIから選ばれたイソシアネート成分からなるものが、ラミネート強度に優れ、かつ、高温下でのラミネート強度の低下が少ない。特に、トリイソシアネートモノマーであるトリフェニルメタン-4,4’,4”-トリイソシアネートやポリメリックMDIであるポリメチレンポリフェニルポリイソシアネート(NCO含有率が約30%、粘度が200~700mPa・s)からなる接着促進剤によって形成することが特に好ましい。また、トリイソシアネートモノマーであるトリス(p-イソシアネートフェニル)チオホスフェートや、ポリエチレンイミン系を主剤とし、ポリカルボジイミドを架橋剤とした2液硬化型の接着促進剤により形成することも好ましい。 The adhesion promoter layer 13 can be formed using known adhesion promoters such as isocyanate-based, polyethyleneimine-based, polyester-based, polyurethane-based, polybutadiene-based, etc. From the viewpoint of obtaining strong adhesion strength, it is preferable that it is formed using an isocyanate-based adhesion promoter. As an isocyanate-based adhesion promoter, one consisting of an isocyanate component selected from triisocyanate monomer and polymeric MDI has excellent laminate strength and suffers little deterioration in laminate strength at high temperatures. It is particularly preferable to form the adhesive using an adhesion promoter made of triphenylmethane-4,4',4"-triisocyanate, which is a triisocyanate monomer, or polymethylene polyphenyl polyisocyanate, which is a polymeric MDI (NCO content of about 30%, viscosity of 200 to 700 mPa·s). It is also preferable to form the adhesive using triisocyanate monomer tris(p-isocyanatephenyl)thiophosphate, or a two-component curing adhesion promoter that uses a polyethyleneimine system as the main agent and polycarbodiimide as the crosslinking agent.
接着促進剤層13は、バーコート法、ロールコート法、グラビアコート法等の公知の塗布法で塗布・乾燥することにより形成することができる。接着促進剤の塗布量としては、トリイソシアネートからなる接着促進剤の場合は、20~100mg/m2程度、好ましくは40~60mg/m2程度であり、ポリメリックMDIからなる接着促進剤の場合は、40~150mg/m2程度、好ましくは60~100mg/m2程度であり、ポリエチレンイミン系を主剤とし、ポリカルボジイミドを架橋剤とした2液硬化型の接着促進剤の場合は、5~50mg/m2程度、好ましくは10~30mg/m2程度である。なお、トリイソシアネートモノマーは、1分子中にイソシアネート基を3個持つモノマーであり、ポリメリックMDIは、MDIおよびMDIが重合したMDIオリゴマーの混合物であり、下記式で示されるものである。 The adhesion promoter layer 13 can be formed by coating and drying using a known coating method such as bar coating, roll coating, gravure coating, etc. The amount of the adhesion promoter to be applied is about 20 to 100 mg/m 2 , preferably about 40 to 60 mg/m 2 , in the case of an adhesion promoter made of triisocyanate, about 40 to 150 mg/m 2 , preferably about 60 to 100 mg/m 2 , in the case of an adhesion promoter made of polymeric MDI, and about 5 to 50 mg/m 2 , preferably about 10 to 30 mg/m 2 , in the case of a two-liquid curing type adhesion promoter with a polyethyleneimine system as the main agent and a polycarbodiimide as the crosslinking agent. The triisocyanate monomer is a monomer having three isocyanate groups in one molecule, and the polymeric MDI is a mixture of MDI and MDI oligomers polymerized from MDI, and is represented by the following formula.
本発明の効果をより好適に奏する観点から、第1樹脂層12aと中間層11とが接面しており、かつ、第2樹脂層12bと中間層11とが接面していることが好ましい。 In order to more effectively achieve the effects of the present invention, it is preferable that the first resin layer 12a and the intermediate layer 11 are in contact with each other, and that the second resin layer 12b and the intermediate layer 11 are in contact with each other.
本開示の金属端子用接着性フィルム1の好ましい積層構成の具体例としては、酸変性ポリプロピレンにより形成された第1樹脂層/ポリプロピレンにより形成された中間層(基材)/酸変性ポリプロピレンにより形成された第2樹脂層がこの順に積層された3層構成;酸変性ポリプロピレンにより形成された第1樹脂層/ポリプロピレンにより形成された中間層(基材)/ポリプロピレンにより形成された第2樹脂層がこの順に積層された3層構成などが挙げられ、これらの中でも、蓄電デバイス用外装材3の熱融着性樹脂層35と第2樹脂層12bとの接着性の観点で後者の3層構成が特に好ましい。 Specific examples of preferred laminated structures of the adhesive film 1 for metal terminals of the present disclosure include a three-layer structure in which a first resin layer formed from acid-modified polypropylene/an intermediate layer (substrate) formed from polypropylene/a second resin layer formed from acid-modified polypropylene are laminated in this order; a three-layer structure in which a first resin layer formed from acid-modified polypropylene/an intermediate layer (substrate) formed from polypropylene/a second resin layer formed from polypropylene are laminated in this order, and among these, the latter three-layer structure is particularly preferred in terms of adhesion between the heat-sealable resin layer 35 and the second resin layer 12b of the exterior material 3 for electrical storage devices.
[金属端子2]
本開示の金属端子用接着性フィルム1は、金属端子2と蓄電デバイス用外装材3との間に介在させて使用される。金属端子2(タブ)は、蓄電デバイス素子4の電極(正極または負極)に電気的に接続される導電部材であり、金属材料により構成されている。金属端子2を構成する金属材料としては、特に制限されず、例えば、アルミニウム、ニッケル、銅などが挙げられる。例えば、リチウムイオン蓄電デバイスの正極に接続される金属端子2は、通常、アルミニウムなどにより構成されている。また、リチウムイオン蓄電デバイスの負極に接続される金属端子2は、通常、銅、ニッケルなどにより構成されている。
[Metal terminal 2]
The adhesive film 1 for metal terminals of the present disclosure is used by being interposed between a metal terminal 2 and an exterior material 3 for an electricity storage device. The metal terminal 2 (tab) is a conductive member electrically connected to an electrode (positive electrode or negative electrode) of an electricity storage device element 4, and is made of a metal material. The metal material constituting the metal terminal 2 is not particularly limited, and examples thereof include aluminum, nickel, copper, and the like. For example, the metal terminal 2 connected to the positive electrode of a lithium ion electricity storage device is usually made of aluminum, etc. In addition, the metal terminal 2 connected to the negative electrode of a lithium ion electricity storage device is usually made of copper, nickel, etc.
金属端子2の表面は、耐電解液性を高める観点から、化成処理が施されていることが好ましい。例えば、金属端子2がアルミニウムにより形成されている場合、化成処理の具体例としては、リン酸塩、クロム酸塩、フッ化物、トリアジンチオール化合物などの耐食性皮膜を形成する公知の方法が挙げられる。耐食性皮膜を形成する方法の中でも、フェノール樹脂、フッ化クロム(III)化合物、リン酸の3成分から構成されたものを用いるリン酸クロメート処理が好適である。 The surface of the metal terminal 2 is preferably subjected to a chemical conversion treatment in order to enhance resistance to electrolyte. For example, when the metal terminal 2 is made of aluminum, specific examples of the chemical conversion treatment include known methods for forming a corrosion-resistant film using phosphates, chromates, fluorides, triazine thiol compounds, etc. Among the methods for forming a corrosion-resistant film, a phosphate chromate treatment using a compound consisting of three components: phenolic resin, chromium (III) fluoride compound, and phosphoric acid is preferable.
金属端子2の大きさは、使用される蓄電デバイスの大きさなどに応じて適宜設定すればよい。金属端子2の厚さとしては、好ましくは50~1000μm程度、より好ましくは70~800μm程度が挙げられる。また、金属端子2の長さとしては、好ましくは1~200mm程度、より好ましくは3~150mm程度が挙げられる。また、金属端子2の幅としては、好ましくは1~200mm程度、より好ましくは3~150mm程度が挙げられる。 The size of the metal terminal 2 may be set appropriately depending on the size of the electricity storage device to be used. The thickness of the metal terminal 2 is preferably about 50 to 1000 μm, more preferably about 70 to 800 μm. The length of the metal terminal 2 is preferably about 1 to 200 mm, more preferably about 3 to 150 mm. The width of the metal terminal 2 is preferably about 1 to 200 mm, more preferably about 3 to 150 mm.
[蓄電デバイス用外装材3]
蓄電デバイス用外装材3としては、少なくとも、基材層31、バリア層33、及び熱融着性樹脂層35をこの順に有する積層体からなる積層構造を有するものが挙げられる。図8に、蓄電デバイス用外装材3の断面構造の一例として、基材層31、必要に応じて設けられる接着剤層32、バリア層33、必要に応じて設けられる接着層34、及び熱融着性樹脂層35がこの順に積層されている態様について示す。蓄電デバイス用外装材3においては、基材層31が外層側になり、熱融着性樹脂層35が最内層になる。蓄電デバイスの組み立て時に、蓄電デバイス素子4の周縁に位置する熱融着性樹脂層35同士を接面させて熱融着することにより蓄電デバイス素子4が密封され、蓄電デバイス素子4が封止される。なお、図1から図3には、エンボス成形などによって成形されたエンボスタイプの蓄電デバイス用外装材3を用いた場合の蓄電デバイス10を図示しているが、蓄電デバイス用外装材3は成形されていないパウチタイプであってもよい。なお、パウチタイプには、三方シール、四方シール、ピロータイプなどが存在するが、何れのタイプであってもよい。
[Exterior material 3 for electricity storage device]
The exterior material 3 for an electric storage device may have a laminated structure including at least a base material layer 31, a barrier layer 33, and a heat-sealable resin layer 35 in this order. FIG. 8 shows an example of a cross-sectional structure of the exterior material 3 for an electric storage device, in which the base material layer 31, an adhesive layer 32 provided as needed, a barrier layer 33, an adhesive layer 34 provided as needed, and a heat-sealable resin layer 35 are laminated in this order. In the exterior material 3 for an electric storage device, the base material layer 31 is the outer layer, and the heat-sealable resin layer 35 is the innermost layer. When assembling the electric storage device, the heat-sealable resin layers 35 located on the periphery of the electric storage device element 4 are brought into contact with each other and heat-sealed to seal the electric storage device element 4. Note that FIGS. 1 to 3 show the electric storage device 10 in the case where an embossed type exterior material 3 for an electric storage device formed by embossing or the like is used, but the exterior material 3 for an electric storage device may be an unformed pouch type. The pouch type includes three-sided seal, four-sided seal, pillow type, etc., and any type may be used.
蓄電デバイス用外装材3を構成する積層体の厚みとしては、特に制限されないが、上限については、コスト削減、エネルギー密度向上等の観点からは、例えば約190μm以下、好ましくは約180μm以下、約160μm以下、約155μm以下、約140μm以下、約130μm以下、約120μm以下が挙げられ、下限については、蓄電デバイス素子4を保護するという蓄電デバイス用外装材3の機能を維持する観点からは、好ましくは約35μm以上、約45μm以上、約60μm以上、約80μm以上が挙げられ、好ましい範囲については、例えば、35~190μm程度、35~180μm程度、35~160μm程度、35~155μm程度、35~140μm程度、35~130μm程度、35~120μm程度、45~190μm程度、45~180μm程度、45~160μm程度、45~155μm程度、45~140μm程度、45~130μm程度、45~120μm程度、60~190μm程度、60~180μm程度、60~160μm程度、60~155μm程度、60~140μm程度、60~130μm程度、60~120μm程度、80~190μm程度、80~180μm程度、80~160μm程度、80~155μm程度、80~140μm程度、80~130μm程度、80~120μm程度が挙げられる。 The thickness of the laminate constituting the exterior material 3 for the electric storage device is not particularly limited, but from the viewpoint of cost reduction, energy density improvement, etc., the upper limit is, for example, about 190 μm or less, preferably about 180 μm or less, about 160 μm or less, about 155 μm or less, about 140 μm or less, about 130 μm or less, and about 120 μm or less, and from the viewpoint of maintaining the function of the exterior material 3 for the electric storage device to protect the electric storage device element 4, the lower limit is preferably about 35 μm or more, about 45 μm or more, about 60 μm or more, and about 80 μm or more, and preferred ranges are, for example, about 35 to 190 μm, about 35 to 180 μm, and about 35 to 160 μm. degree, about 35-155 μm, about 35-140 μm, about 35-130 μm, about 35-120 μm, about 45-190 μm, about 45-180 μm, about 45-160 μm, about 45-155 μm, about 45-140 μm, about 45-130 μm, about 45-120 μm, about 60-190 μm, 60~180μ These include about 60 to 160 μm, about 60 to 155 μm, about 60 to 140 μm, about 60 to 130 μm, about 60 to 120 μm, about 80 to 190 μm, about 80 to 180 μm, about 80 to 160 μm, about 80 to 155 μm, about 80 to 140 μm, about 80 to 130 μm, and about 80 to 120 μm.
(基材層31)
蓄電デバイス用外装材3において、基材層31は、蓄電デバイス用外装材の基材として機能する層であり、最外層側を形成する層である。
(Base material layer 31)
In the electrical storage device packaging material 3, the base material layer 31 is a layer that functions as a base material of the electrical storage device packaging material, and is a layer that forms the outermost layer side.
基材層31を形成する素材については、絶縁性を備えるものであることを限度として特に制限されるものではない。基材層31を形成する素材としては、例えば、ポリエステル、ポリアミド、エポキシ、アクリル樹脂、フッ素樹脂、ポリウレタン、珪素樹脂、フェノール、ポリエーテルイミド、ポリイミド、及びこれらの混合物や共重合物等が挙げられる。ポリエチレンテレフタレート、ポリブチレンテレフタレートなどのポリエステルは、耐電解液性に優れ、電解液の付着に対して白化等が発生し難いという利点があり、基材層31の形成素材として好適に使用される。また、ポリアミドフィルムは延伸性に優れており、成形時の基材層31の樹脂割れによる白化の発生を防ぐことができ、基材層31の形成素材として好適に使用される。 The material forming the base layer 31 is not particularly limited, as long as it is insulating. Examples of materials forming the base layer 31 include polyester, polyamide, epoxy, acrylic resin, fluororesin, polyurethane, silicone resin, phenol, polyetherimide, polyimide, and mixtures and copolymers thereof. Polyesters such as polyethylene terephthalate and polybutylene terephthalate have the advantage of being highly resistant to electrolyte and being less susceptible to whitening due to adhesion of electrolyte, and are therefore preferably used as materials for forming the base layer 31. In addition, polyamide film has excellent stretchability and can prevent whitening due to resin cracking of the base layer 31 during molding, and is therefore preferably used as materials for forming the base layer 31.
基材層31は、1軸又は2軸延伸された樹脂フィルムで形成されていてもよく、また未延伸の樹脂フィルムで形成してもよい。中でも、1軸又は2軸延伸された樹脂フィルム、とりわけ2軸延伸された樹脂フィルムは、配向結晶化することにより耐熱性が向上しているので、基材層31として好適に使用される。 The substrate layer 31 may be formed of a uniaxially or biaxially stretched resin film, or may be formed of an unstretched resin film. Among them, uniaxially or biaxially stretched resin films, especially biaxially stretched resin films, are preferably used as the substrate layer 31 because their heat resistance is improved by oriented crystallization.
これらの中でも、基材層31を形成する樹脂フィルムとして、好ましくはナイロン、ポリエステル、更に好ましくは2軸延伸ナイロン、2軸延伸ポリエステルが挙げられる。 Among these, the resin film forming the base layer 31 is preferably nylon or polyester, and more preferably biaxially oriented nylon or biaxially oriented polyester.
基材層31は、耐ピンホール性及び蓄電デバイスの包装体とした時の絶縁性を向上させるために、異なる素材の樹脂フィルムを積層化することも可能である。具体的には、ポリエステルフィルムとナイロンフィルムとを積層させた多層構造や、2軸延伸ポリエステルと2軸延伸ナイロンとを積層させた多層構造等が挙げられる。基材層31を多層構造にする場合、各樹脂フィルムは接着剤を介して接着してもよく、また接着剤を介さず直接積層させてもよい。接着剤を介さず接着させる場合には、例えば、共押出し法、サンドラミネート法、サーマルラミネート法等の熱溶融状態で接着させる方法が挙げられる。 The base layer 31 can be made by laminating resin films of different materials in order to improve pinhole resistance and insulation when used as a package for an electricity storage device. Specific examples include a multi-layer structure in which a polyester film is laminated with a nylon film, or a multi-layer structure in which biaxially oriented polyester is laminated with a biaxially oriented nylon. When the base layer 31 has a multi-layer structure, the resin films may be bonded via an adhesive, or may be laminated directly without an adhesive. When bonding without an adhesive, examples include a method of bonding in a hot melt state, such as co-extrusion, sand lamination, or thermal lamination.
また、基材層31は、成形性を向上させるために低摩擦化させておいてもよい。基材層31を低摩擦化させる場合、その表面の摩擦係数については特に制限されないが、例えば1.0以下が挙げられる。基材層31を低摩擦化するには、例えば、マット処理、スリップ剤の薄膜層の形成、これらの組み合わせ等が挙げられる。 The base layer 31 may be made low-friction to improve formability. When making the base layer 31 low-friction, there are no particular limitations on the coefficient of friction of its surface, but an example of this is 1.0 or less. Examples of ways to make the base layer 31 low-friction include matte treatment, forming a thin layer of a slip agent, and combinations of these.
基材層31の厚さについては、例えば、10~50μm程度、好ましくは15~30μm程度が挙げられる。 The thickness of the base layer 31 is, for example, about 10 to 50 μm, and preferably about 15 to 30 μm.
(接着剤層32)
蓄電デバイス用外装材3において、接着剤層32は、基材層31に密着性を付与させるために、必要に応じて、基材層31上に配置される層である。即ち、接着剤層32は、基材層31とバリア層33の間に設けられる。
(Adhesive layer 32)
In the exterior material 3 for an electricity storage device, the adhesive layer 32 is a layer that is disposed on the base material layer 31 as necessary in order to impart adhesion to the base material layer 31. That is, the adhesive layer 32 is provided between the base material layer 31 and the barrier layer 33.
接着剤層32は、基材層31とバリア層33とを接着可能である接着剤によって形成される。接着剤層32の形成に使用される接着剤は、2液硬化型接着剤であってもよく、また1液硬化型接着剤であってもよい。また、接着剤層32の形成に使用される接着剤の接着機構についても、特に制限されず、化学反応型、溶剤揮発型、熱溶融型、熱圧型等のいずれであってもよい。 The adhesive layer 32 is formed from an adhesive capable of bonding the base layer 31 and the barrier layer 33. The adhesive used to form the adhesive layer 32 may be a two-component curing adhesive or a one-component curing adhesive. There are also no particular limitations on the adhesion mechanism of the adhesive used to form the adhesive layer 32, and it may be any of a chemical reaction type, a solvent volatilization type, a thermal melting type, a thermal pressure type, etc.
接着剤層32の形成に使用できる接着剤の樹脂成分としては、展延性、高湿度条件下における耐久性や黄変抑制作用、ヒートシール時の熱劣化抑制作用等が優れ、基材層31とバリア層33との間のラミネート強度の低下を抑えてデラミネーションの発生を効果的に抑制するという観点から、好ましくはポリウレタン系2液硬化型接着剤;ポリアミド、ポリエステル、又はこれらと変性ポリオレフィンとのブレンド樹脂が挙げられる。 The resin component of the adhesive that can be used to form the adhesive layer 32 is preferably a polyurethane-based two-component curing adhesive; polyamide, polyester, or a blend resin of these with modified polyolefin, from the viewpoint of excellent ductility, durability under high humidity conditions, yellowing prevention, and thermal degradation prevention during heat sealing, and effectively suppressing the decrease in laminate strength between the base layer 31 and the barrier layer 33 and preventing the occurrence of delamination.
また、接着剤層32は異なる接着剤成分で多層化してもよい。接着剤層32を異なる接着剤成分で多層化する場合、基材層31とバリア層33とのラミネート強度を向上させるという観点から、基材層31側に配される接着剤成分として基材層31との接着性に優れる樹脂を選択し、バリア層33側に配される接着剤成分としてバリア層33との接着性に優れる接着剤成分を選択することが好ましい。接着剤層32は異なる接着剤成分で多層化する場合、具体的には、バリア層33側に配置される接着剤成分としては、好ましくは、酸変性ポリオレフィン、金属変性ポリオレフィン、ポリエステルと酸変性ポリオレフィンとの混合樹脂、共重合ポリエステルを含む樹脂等が挙げられる。 The adhesive layer 32 may be multi-layered with different adhesive components. When the adhesive layer 32 is multi-layered with different adhesive components, it is preferable to select a resin with excellent adhesion to the base layer 31 as the adhesive component arranged on the base layer 31 side, and an adhesive component with excellent adhesion to the barrier layer 33 as the adhesive component arranged on the barrier layer 33 side, from the viewpoint of improving the laminate strength between the base layer 31 and the barrier layer 33. When the adhesive layer 32 is multi-layered with different adhesive components, specifically, the adhesive component arranged on the barrier layer 33 side is preferably an acid-modified polyolefin, a metal-modified polyolefin, a mixed resin of polyester and acid-modified polyolefin, a resin containing a copolymerized polyester, etc.
接着剤層32の厚さについては、例えば、2~50μm程度、好ましくは3~25μm程度が挙げられる。 The thickness of the adhesive layer 32 is, for example, about 2 to 50 μm, and preferably about 3 to 25 μm.
(バリア層33)
蓄電デバイス用外装材3において、バリア層33は、蓄電デバイス用外装材の強度向上の他、蓄電デバイス内部に水蒸気、酸素、光などが侵入することを防止する機能を有する層である。バリア層33は、金属層、すなわち、金属で形成されている層であることが好ましい。バリア層33を構成する金属としては、具体的には、アルミニウム、ステンレス、チタンなどが挙げられ、好ましくはアルミニウムが挙げられる。バリア層33は、例えば、金属箔や金属蒸着膜、無機酸化物蒸着膜、炭素含有無機酸化物蒸着膜、これらの蒸着膜を設けたフィルムなどにより形成することができ、金属箔により形成することが好ましく、アルミニウム箔により形成することがさらに好ましい。蓄電デバイス用外装材の製造時に、バリア層33にしわやピンホールが発生することを防止する観点からは、バリア層は、例えば、焼きなまし処理済みのアルミニウム(JIS H4160:1994 A8021H-O、JIS H4160:1994 A8079H-O、JIS H4000:2014 A8021P-O、JIS H4000:2014 A8079P-O)など軟質アルミニウム箔により形成することがより好ましい。
(Barrier layer 33)
In the electrical storage device exterior material 3, the barrier layer 33 is a layer that has a function of preventing water vapor, oxygen, light, and the like from penetrating into the electrical storage device in addition to improving the strength of the electrical storage device exterior material. The barrier layer 33 is preferably a metal layer, that is, a layer formed of a metal. Specific examples of the metal constituting the barrier layer 33 include aluminum, stainless steel, and titanium, and preferably aluminum. The barrier layer 33 can be formed, for example, of a metal foil, a metal vapor deposition film, an inorganic oxide vapor deposition film, a carbon-containing inorganic oxide vapor deposition film, or a film provided with these vapor deposition films, and is preferably formed of a metal foil, and more preferably formed of an aluminum foil. From the viewpoint of preventing the occurrence of wrinkles or pinholes in the barrier layer 33 during the production of the exterior material for an electricity storage device, the barrier layer is more preferably formed from a soft aluminum foil such as annealed aluminum (JIS H4160:1994 A8021H-O, JIS H4160:1994 A8079H-O, JIS H4000:2014 A8021P-O, JIS H4000:2014 A8079P-O).
バリア層33の厚さについては、蓄電デバイス用外装材を薄型化しつつ、成形によってもピンホールの発生し難いものとする観点から、好ましくは10~200μm程度、より好ましくは20~100μm程度が挙げられる。 The thickness of the barrier layer 33 is preferably about 10 to 200 μm, and more preferably about 20 to 100 μm, from the viewpoint of making the exterior material for the power storage device thinner while making it difficult for pinholes to occur during molding.
また、バリア層33は、接着の安定化、溶解や腐食の防止などのために、少なくとも一方の面、好ましくは両面が化成処理されていることが好ましい。ここで、化成処理とは、バリア層の表面に耐食性皮膜を形成する処理をいう。 In addition, it is preferable that at least one surface, and preferably both surfaces, of the barrier layer 33 are chemically treated to stabilize adhesion and prevent dissolution and corrosion. Here, chemical treatment refers to a process for forming a corrosion-resistant film on the surface of the barrier layer.
(接着層34)
蓄電デバイス用外装材3において、接着層34は、熱融着性樹脂層35を強固に接着させるために、バリア層33と熱融着性樹脂層35の間に、必要に応じて設けられる層である。
(Adhesive layer 34)
In the exterior packaging material 3 for an electricity storage device, the adhesive layer 34 is a layer that is provided, if necessary, between the barrier layer 33 and the heat-sealable resin layer 35 in order to firmly bond the heat-sealable resin layer 35 .
接着層34は、バリア層33と熱融着性樹脂層35を接着可能である接着剤によって形成される。接着層の形成に使用される接着剤の組成については、特に制限されないが、例えば、酸変性ポリオレフィンを含む樹脂組成物が挙げられる。酸変性ポリオレフィンとしては、第1樹脂層12a及び第2樹脂層12bで例示したものと同じものが例示できる。 The adhesive layer 34 is formed from an adhesive capable of bonding the barrier layer 33 and the heat-sealable resin layer 35. The composition of the adhesive used to form the adhesive layer is not particularly limited, but examples include a resin composition containing an acid-modified polyolefin. Examples of acid-modified polyolefins include the same ones exemplified for the first resin layer 12a and the second resin layer 12b.
接着層34の厚さについては、例えば、1~40μm程度、好ましくは2~30μm程度が挙げられる。 The thickness of the adhesive layer 34 is, for example, about 1 to 40 μm, and preferably about 2 to 30 μm.
(熱融着性樹脂層35)
蓄電デバイス用外装材3において、熱融着性樹脂層35は、最内層に該当し、蓄電デバイスの組み立て時に熱融着性樹脂層同士が熱融着して蓄電デバイス素子を密封する層である。
(Thermofusible resin layer 35)
In the exterior packaging material 3 for an electricity storage device, the heat-sealable resin layer 35 corresponds to the innermost layer, and is a layer that seals the electricity storage device elements by heat-sealing the heat-sealable resin layers together when assembling the electricity storage device. .
熱融着性樹脂層35に使用される樹脂成分については、熱融着可能であることを限度として特に制限されないが、例えば、ポリオレフィン、環状ポリオレフィンが挙げられる。 The resin components used in the heat-sealable resin layer 35 are not particularly limited, as long as they are heat-sealable, but examples include polyolefins and cyclic polyolefins.
前記ポリオレフィンとしては、具体的には、低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、線状低密度ポリエチレン等のポリエチレン;ホモポリプロピレン、ポリプロピレンのブロックコポリマー(例えば、プロピレンとエチレンのブロックコポリマー)、ポリプロピレンのランダムコポリマー(例えば、プロピレンとエチレンのランダムコポリマー)等の結晶性又は非晶性のポリプロピレン;エチレン-ブテン-プロピレンのターポリマー等が挙げられる。これらのポリオレフィンの中でも、好ましくはポリエチレン及びポリプロピレンが挙げられる。 Specific examples of the polyolefin include polyethylenes such as low-density polyethylene, medium-density polyethylene, high-density polyethylene, and linear low-density polyethylene; crystalline or amorphous polypropylenes such as homopolypropylene, block copolymers of polypropylene (e.g., block copolymers of propylene and ethylene), and random copolymers of polypropylene (e.g., random copolymers of propylene and ethylene); and ethylene-butene-propylene terpolymers. Among these polyolefins, polyethylene and polypropylene are preferred.
前記環状ポリオレフィンは、オレフィンと環状モノマーとの共重合体であり、前記環状ポリオレフィンの構成モノマーであるオレフィンとしては、例えば、エチレン、プロピレン、4-メチル-1-ペンテン、ブタジエン、イソプレン、等が挙げられる。また、前記環状ポリオレフィンの構成モノマーである環状モノマーとしては、例えば、ノルボルネン等の環状アルケン;具体的には、シクロペンタジエン、ジシクロペンタジエン、シクロヘキサジエン、ノルボルナジエン等の環状ジエン等が挙げられる。これらのポリオレフィンの中でも、好ましくは環状アルケン、さらに好ましくはノルボルネンが挙げられる。構成モノマーとしては、スチレンも挙げられる。 The cyclic polyolefin is a copolymer of an olefin and a cyclic monomer, and examples of the olefins constituting the cyclic polyolefin include ethylene, propylene, 4-methyl-1-pentene, butadiene, and isoprene. Examples of the cyclic monomers constituting the cyclic polyolefin include cyclic alkenes such as norbornene; specifically, cyclic dienes such as cyclopentadiene, dicyclopentadiene, cyclohexadiene, and norbornadiene. Among these polyolefins, cyclic alkenes are preferred, and norbornene is more preferred. Styrene is also an example of a constituting monomer.
これらの樹脂成分の中でも、好ましくは結晶性又は非晶性のポリオレフィン、環状ポリオレフィン、及びこれらのブレンドポリマー;さらに好ましくはポリエチレン、ポリプロピレン、エチレンとノルボルネンの共重合体、及びこれらの中の2種以上のブレンドポリマーが挙げられる。 Among these resin components, preferred are crystalline or amorphous polyolefins, cyclic polyolefins, and blended polymers thereof; more preferred are polyethylene, polypropylene, copolymers of ethylene and norbornene, and blended polymers of two or more of these.
熱融着性樹脂層35は、1種の樹脂成分単独で形成してもよく、また2種以上の樹脂成分を組み合わせたブレンドポリマーにより形成してもよい。さらに、熱融着性樹脂層35は、1層のみで形成されていてもよいが、同一又は異なる樹脂成分によって2層以上形成されていてもよい。第2樹脂層12bと熱融着性樹脂層35の樹脂が共通していると、これらの層間の密着性が向上することから、特に好ましい。 The heat-sealable resin layer 35 may be formed from one type of resin component alone, or may be formed from a blend polymer of two or more types of resin components. Furthermore, the heat-sealable resin layer 35 may be formed from only one layer, or may be formed from two or more layers of the same or different resin components. It is particularly preferable that the second resin layer 12b and the heat-sealable resin layer 35 are made of the same resin, as this improves the adhesion between these layers.
また、熱融着性樹脂層35の厚さとしては、特に制限されないが、2~2000μm程度、好ましくは5~1000μm程度、さらに好ましくは10~500μm程度が挙げられる。また、熱融着性樹脂層35の厚さとしては、例えば約100μm以下、好ましくは約85μm以下、より好ましくは15~85μm程度が挙げられる。なお、例えば、後述の接着層34の厚みが10μm以上である場合には、熱融着性樹脂層35の厚みとしては、好ましくは約85μm以下、より好ましくは15~45μm程度が挙げられ、例えば前述の接着層34の厚みが10μm未満である場合や接着層34が設けられていない場合には、熱融着性樹脂層35の厚みとしては、好ましくは約20μm以上、より好ましくは35~85μm程度が挙げられる。 The thickness of the heat-sealable resin layer 35 is not particularly limited, but may be about 2 to 2000 μm, preferably about 5 to 1000 μm, and more preferably about 10 to 500 μm. The thickness of the heat-sealable resin layer 35 may be, for example, about 100 μm or less, preferably about 85 μm or less, and more preferably about 15 to 85 μm. For example, when the thickness of the adhesive layer 34 described below is 10 μm or more, the thickness of the heat-sealable resin layer 35 is preferably about 85 μm or less, and more preferably about 15 to 45 μm. For example, when the thickness of the adhesive layer 34 described above is less than 10 μm or when the adhesive layer 34 is not provided, the thickness of the heat-sealable resin layer 35 is preferably about 20 μm or more, and more preferably about 35 to 85 μm.
本開示の蓄電デバイス用外装材は、蓄電デバイスに用いるための蓄電デバイス用外装材と、本開示の金属端子用接着性フィルムとを含む、キットの形態とすることもできる。この場合にも、適用対象となる蓄電デバイスは、少なくとも、正極、負極、及び電解質を備えた蓄電デバイス素子と、当該蓄電デバイス素子を封止する蓄電デバイス用外装材と、正極及び負極のそれぞれに電気的に接続され、蓄電デバイス用外装材の外側に突出した金属端子とを備えている。本開示のキットは、使用時(用時)に、金属端子と蓄電デバイス用外装材との間に、本開示の金属端子用接着性フィルムを介在させるように用いられる。 The exterior material for an electricity storage device of the present disclosure can also be in the form of a kit including the exterior material for an electricity storage device for use in an electricity storage device and the adhesive film for metal terminals of the present disclosure. In this case as well, the electricity storage device to which it is applied includes at least an electricity storage device element having a positive electrode, a negative electrode, and an electrolyte, the exterior material for an electricity storage device that seals the electricity storage device element, and metal terminals that are electrically connected to the positive electrode and the negative electrode, respectively, and protrude outside the exterior material for an electricity storage device. The kit of the present disclosure is used such that, when in use, the adhesive film for metal terminals of the present disclosure is interposed between the metal terminals and the exterior material for an electricity storage device.
2.蓄電デバイス
本開示の蓄電デバイス10は、少なくとも、正極、負極、及び電解質を備えた蓄電デバイス素子4と、当該蓄電デバイス素子4を封止する蓄電デバイス用外装材3と、正極及び負極のそれぞれに電気的に接続され、蓄電デバイス用外装材3の外側に突出した金属端子2とを備えている。本開示の蓄電デバイス10においては、金属端子2と蓄電デバイス用外装材3との間に、本開示の金属端子用接着性フィルム1が介在されてなることを特徴とする。すなわち、本開示の蓄電デバイス10は、金属端子2と蓄電デバイス用外装材3との間に、本開示の金属端子用接着性フィルム1が介在する工程を備える方法により製造することができる。
2. Electricity Storage Device The electricity storage device 10 of the present disclosure comprises at least an electricity storage device element 4 having a positive electrode, a negative electrode, and an electrolyte, an exterior material for an electricity storage device 3 that seals the electricity storage device element 4, and a metal terminal 2 that is electrically connected to each of the positive electrode and the negative electrode and protrudes to the outside of the exterior material for an electricity storage device 3. The electricity storage device 10 of the present disclosure is characterized in that the adhesive film for a metal terminal 1 of the present disclosure is interposed between the metal terminal 2 and the exterior material for an electricity storage device 3. That is, the electricity storage device 10 of the present disclosure can be manufactured by a method including a step of interposing the adhesive film for a metal terminal 1 of the present disclosure between the metal terminal 2 and the exterior material for an electricity storage device 3.
具体的には、少なくとも正極、負極、及び電解質を備えた蓄電デバイス素子4を、蓄電デバイス用外装材3で、正極及び負極の各々に接続された金属端子2を外側に突出させた状態で、本開示の金属端子用接着性フィルム1を金属端子2と熱融着性樹脂層35との間に介在させ、蓄電デバイス素子4の周縁に蓄電デバイス用外装材3のフランジ部(熱融着性樹脂層35同士が接触する領域であり、蓄電デバイス用外装材3の周縁部3a)が形成できるようにして被覆し、フランジ部の熱融着性樹脂層35同士をヒートシールして密封させることによって、蓄電デバイス用外装材3を使用した蓄電デバイス10が提供される。なお、蓄電デバイス用外装材3を用いて蓄電デバイス素子4を収容する場合、蓄電デバイス用外装材3の熱融着性樹脂層35が内側(蓄電デバイス素子4と接する面)になるようにして用いられる。 Specifically, an electric storage device element 4 having at least a positive electrode, a negative electrode, and an electrolyte is covered with an exterior material 3 for an electric storage device by interposing an adhesive film 1 for metal terminals of the present disclosure between the metal terminals 2 and a heat-sealable resin layer 35 in a state in which the metal terminals 2 connected to the positive and negative electrodes are protruding outward, and the electric storage device element 4 is covered so that a flange portion (a region where the heat-sealable resin layers 35 contact each other, the peripheral portion 3a of the exterior material 3 for an electric storage device) of the exterior material 3 for an electric storage device is formed, and the heat-sealable resin layers 35 of the flange portion are heat-sealed to seal them, thereby providing an electric storage device 10 using the exterior material 3 for an electric storage device. When the exterior material 3 for an electric storage device is used to house the electric storage device element 4, the exterior material 3 for an electric storage device is used so that the heat-sealable resin layer 35 of the exterior material 3 for an electric storage device is on the inside (the surface in contact with the electric storage device element 4).
本開示の蓄電デバイス用外装材は、電池(コンデンサー、キャパシター等を含む)などの蓄電デバイスに好適に使用することができる。また、本開示の蓄電デバイス用外装材は、一次電池、二次電池のいずれに使用してもよいが、好ましくは二次電池である。本開示の蓄電デバイス用外装材が適用される二次電池の種類については、特に制限されず、例えば、リチウムイオン電池、リチウムイオンポリマー電池、全固体電池、鉛蓄電池、ニッケル・水素蓄電池、ニッケル・カドミウム蓄電池、ニッケル・鉄蓄電池、ニッケル・亜鉛蓄電池、酸化銀・亜鉛蓄電池、金属空気電池、多価カチオン電池、コンデンサー、キャパシター等が挙げられる。これらの二次電池の中でも、本開示の蓄電デバイス用外装材の好適な適用対象として、リチウムイオン電池及びリチウムイオンポリマー電池が挙げられる。 The exterior material for an electricity storage device of the present disclosure can be suitably used for electricity storage devices such as batteries (including condensers, capacitors, etc.). The exterior material for an electricity storage device of the present disclosure may be used for either a primary battery or a secondary battery, but is preferably used for a secondary battery. The type of secondary battery to which the exterior material for an electricity storage device of the present disclosure is applied is not particularly limited, and examples thereof include lithium ion batteries, lithium ion polymer batteries, all-solid-state batteries, lead-acid batteries, nickel-hydrogen batteries, nickel-cadmium batteries, nickel-iron batteries, nickel-zinc batteries, silver oxide-zinc batteries, metal-air batteries, polyvalent cation batteries, condensers, capacitors, etc. Among these secondary batteries, suitable applications of the exterior material for an electricity storage device of the present disclosure include lithium ion batteries and lithium ion polymer batteries.
以下に実施例及び比較例を示して本開示を詳細に説明する。但し、本開示は実施例に限定されるものではない。 The present disclosure will be explained in detail below with examples and comparative examples. However, the present disclosure is not limited to the examples.
<金属端子用接着性フィルムの製造>
実施例1
押出機及びTダイキャスティング装置を用いて、中間層としてのポリプロピレン(PP層、ホモポリプロピレン、融解ピーク温度163℃、厚み50μm)の一方面に、外装材側の第2樹脂層として無水マレイン酸変性ポリプロピレン(PPa層、融解ピーク温度124℃)、他方面に、金属端子側の第1樹脂層(熱変色層)として、示温材としての窒化チタン(平均粒子径70nm)を0.1質量%含む無水マレイン酸変性ポリプロピレン(PPa層、融解ピーク温度140℃)を、それぞれ厚み50μmで押出し、第1樹脂層(窒化チタンを含む熱変色層、PPa層、融解ピーク温度140℃、厚み50μm)/中間層(基材)(PP層、融解ピーク温度163℃、厚み50μm)/第2樹脂層(PPa層、融解ピーク温度124℃、厚み50μm)が順に積層された接着性フィルム(総厚み150μm)を得た。得られた接着性フィルムは、第1樹脂層(熱変色層)に黒色の窒化チタンを含むことから、黒色の外観を有していた。なお、中間層及び第2樹脂層は無色透明である。
<Production of adhesive film for metal terminals>
Example 1
Using an extruder and a T-die casting device, a maleic anhydride-modified polypropylene (PP layer, homopolypropylene, melting peak temperature 163 ° C., thickness 50 μm) was extruded on one side of the polypropylene as an intermediate layer (PP layer, homopolypropylene, melting peak temperature 163 ° C., thickness 50 μm) as the second resin layer on the exterior material side, and a maleic anhydride-modified polypropylene (PPa layer, melting peak temperature 124 ° C.) containing 0.1 mass% titanium nitride (average particle diameter 70 nm) as a temperature indicator as the first resin layer (thermochromic layer) on the metal terminal side (PPa layer, melting peak temperature 140 ° C.) was extruded to a thickness of 50 μm, and an adhesive film (total thickness 150 μm) in which the first resin layer (thermochromic layer containing titanium nitride, PPa layer, melting peak temperature 140 ° C., thickness 50 μm) / intermediate layer (substrate) (PP layer, melting peak temperature 163 ° C., thickness 50 μm) / second resin layer (PPa layer, melting peak temperature 124 ° C., thickness 50 μm) was obtained. The adhesive film thus obtained had a black appearance due to the inclusion of black titanium nitride in the first resin layer (thermochromic layer), while the intermediate layer and the second resin layer were colorless and transparent.
実施例2
押出機及びTダイキャスティング装置を用いて、中間層としてのポリプロピレン(PP層、ホモポリプロピレン、融解ピーク温度163℃、厚み50μm)の一方面に、外装材側の第2樹脂層として無水マレイン酸変性ポリプロピレン(PPa層、融解ピーク温度124℃)、他方面に、金属端子側の第1樹脂層(熱変色層)として、示温材としての窒化チタン(平均粒子径70nm)を1.0質量%含む無水マレイン酸変性ポリプロピレン(PPa層、融解ピーク温度140℃)を、それぞれ厚み50μmで押出し、第1樹脂層(窒化チタンを含む熱変色層、PPa層、融解ピーク温度140℃、厚み50μm)/中間層(基材)(PP層、融解ピーク温度163℃、厚み50μm)/第2樹脂層(PPa層、融解ピーク温度124℃、厚み50μm)が順に積層された接着性フィルム(総厚み150μm)を得た。得られた接着性フィルムは、第1樹脂層(熱変色層)に黒色の窒化チタンを含むことから、黒色の外観を有していた。なお、中間層及び第2樹脂層は無色透明である。
Example 2
Using an extruder and a T-die casting device, a maleic anhydride-modified polypropylene (PP layer, homopolypropylene, melting peak temperature 163 ° C., thickness 50 μm) was extruded on one side of the intermediate layer as the second resin layer on the exterior material side (PPa layer, melting peak temperature 124 ° C.), and on the other side as the first resin layer (thermochromic layer) on the metal terminal side as the first resin layer (thermochromic layer) on the metal terminal side. Maleic anhydride-modified polypropylene (PPa layer, melting peak temperature 140 ° C.) containing 1.0 mass% titanium nitride (average particle diameter 70 nm) as a temperature indicator was extruded to a thickness of 50 μm, and an adhesive film (total thickness 150 μm) in which the first resin layer (thermochromic layer containing titanium nitride, PPa layer, melting peak temperature 140 ° C., thickness 50 μm) / intermediate layer (substrate) (PP layer, melting peak temperature 163 ° C., thickness 50 μm) / second resin layer (PPa layer, melting peak temperature 124 ° C., thickness 50 μm) was obtained. The adhesive film thus obtained had a black appearance due to the inclusion of black titanium nitride in the first resin layer (thermochromic layer), while the intermediate layer and the second resin layer were colorless and transparent.
実施例3
押出機及びTダイキャスティング装置を用いて、中間層としてのポリプロピレン(PP層、ホモポリプロピレン、融解ピーク温度163℃、厚み50μm)の一方面に、外装材側の第2樹脂層として無水マレイン酸変性ポリプロピレン(PPa層、融解ピーク温度124℃)、他方面に、金属端子側の第1樹脂層(熱変色層)として、示温材としての窒化チタン(平均粒子径20nm)を1.0質量%含む無水マレイン酸変性ポリプロピレン(PPa層、融解ピーク温度140℃)を、それぞれ厚み50μmで押出し、第1樹脂層(窒化チタンを含む熱変色層、PPa層、融解ピーク温度140℃、厚み50μm)/中間層(基材)(PP層、融解ピーク温度163℃、厚み50μm)/第2樹脂層(PPa層、融解ピーク温度124℃、厚み50μm)が順に積層された接着性フィルム(総厚み150μm)を得た。得られた接着性フィルムは、第1樹脂層(熱変色層)に黒色の窒化チタンを含むことから、黒色の外観を有していた。なお、中間層及び第2樹脂層は無色透明である。
Example 3
Using an extruder and a T-die casting device, a maleic anhydride-modified polypropylene (PP layer, homopolypropylene, melting peak temperature 163 ° C., thickness 50 μm) was extruded on one side of the polypropylene as an intermediate layer (PP layer, homopolypropylene, melting peak temperature 163 ° C., thickness 50 μm) as the second resin layer on the exterior material side, and a maleic anhydride-modified polypropylene (PPa layer, melting peak temperature 124 ° C.) containing 1.0 mass% titanium nitride (average particle diameter 20 nm) as a temperature indicator as the first resin layer (thermochromic layer) on the metal terminal side (PPa layer, melting peak temperature 140 ° C.) was extruded to a thickness of 50 μm, and an adhesive film (total thickness 150 μm) in which the first resin layer (thermochromic layer containing titanium nitride, PPa layer, melting peak temperature 140 ° C., thickness 50 μm) / intermediate layer (substrate) (PP layer, melting peak temperature 163 ° C., thickness 50 μm) / second resin layer (PPa layer, melting peak temperature 124 ° C., thickness 50 μm) was obtained. The adhesive film thus obtained had a black appearance due to the inclusion of black titanium nitride in the first resin layer (thermochromic layer), while the intermediate layer and the second resin layer were colorless and transparent.
実施例4
押出機及びTダイキャスティング装置を用いて、中間層としてのポリプロピレン(PP層、ホモポリプロピレン、融解ピーク温度163℃、厚み50μm)の一方面に、外装材側の第2樹脂層として無水マレイン酸変性ポリプロピレン(PPa層、融解ピーク温度124℃)、他方面に、金属端子側の第1樹脂層(熱変色層)として、示温材としての窒化チタン(平均粒子径50nm)を1.0質量%含む無水マレイン酸変性ポリプロピレン(PPa層、融解ピーク温度140℃)を、それぞれ厚み50μmで押出し、第1樹脂層(窒化チタンを含む熱変色層、PPa層、融解ピーク温度140℃、厚み50μm)/中間層(基材)(PP層、融解ピーク温度163℃、厚み50μm)/第2樹脂層(PPa層、融解ピーク温度124℃、厚み50μm)が順に積層された接着性フィルム(総厚み150μm)を得た。得られた接着性フィルムは、第1樹脂層(熱変色層)に黒色の窒化チタンを含むことから、黒色の外観を有していた。なお、中間層及び第2樹脂層は無色透明である。
Example 4
Using an extruder and a T-die casting device, a maleic anhydride-modified polypropylene (PP layer, homopolypropylene, melting peak temperature 163 ° C., thickness 50 μm) was extruded on one side of the intermediate layer as the second resin layer on the exterior material side (PPa layer, melting peak temperature 124 ° C.), and a maleic anhydride-modified polypropylene (PPa layer, melting peak temperature 140 ° C.) containing 1.0 mass% titanium nitride (average particle diameter 50 nm) as a temperature indicator was extruded on the other side as the first resin layer (thermochromic layer) on the metal terminal side, each with a thickness of 50 μm, to obtain an adhesive film (total thickness 150 μm) in which the first resin layer (thermochromic layer containing titanium nitride, PPa layer, melting peak temperature 140 ° C., thickness 50 μm) / intermediate layer (substrate) (PP layer, melting peak temperature 163 ° C., thickness 50 μm) / second resin layer (PPa layer, melting peak temperature 124 ° C., thickness 50 μm) were laminated in order. The adhesive film thus obtained had a black appearance due to the inclusion of black titanium nitride in the first resin layer (thermochromic layer), while the intermediate layer and the second resin layer were colorless and transparent.
実施例5
押出機及びTダイキャスティング装置を用いて、中間層としてのポリプロピレン(PP層、ホモポリプロピレン、融解ピーク温度163℃、厚み50μm)の一方面に、外装材側の第2樹脂層として無水マレイン酸変性ポリプロピレン(PPa層、融解ピーク温度124℃)、他方面に、金属端子側の第1樹脂層(熱変色層)として、示温材としての窒化チタン(平均粒子径70nm)を10.0質量%含む無水マレイン酸変性ポリプロピレン(PPa層、融解ピーク温度140℃)を、それぞれ厚み50μmで押出し、第1樹脂層(窒化チタンを含む熱変色層、PPa層、融解ピーク温度140℃、厚み50μm)/中間層(基材)(PP層、融解ピーク温度163℃、厚み50μm)/第2樹脂層(PPa層、融解ピーク温度124℃、厚み50μm)が順に積層された接着性フィルム(総厚み150μm)を得た。得られた接着性フィルムは、第1樹脂層(熱変色層)に黒色の窒化チタンを含むことから、黒色の外観を有していた。なお、中間層及び第2樹脂層は無色透明である。
Example 5
Using an extruder and a T-die casting machine, a polypropylene intermediate layer (PP layer, homopolypropylene, melting peak temperature 163°C, thickness 50 μm) was formed on one side of a maleic anhydride-modified polypropylene (PPa layer, melting peak temperature 124°C) as a second resin layer on the exterior material side, and a polypropylene layer containing 10.0 mass% titanium nitride (average particle size 70 nm) as a temperature indicator was formed on the other side of the first resin layer (thermochromic layer) on the metal terminal side. Water-maleic acid modified polypropylene (PPa layer, melting peak temperature 140°C) was extruded to a thickness of 50 μm, and an adhesive film (total thickness 150 μm) was obtained in which the first resin layer (thermochromic layer containing titanium nitride, PPa layer, melting peak temperature 140°C, thickness 50 μm) / intermediate layer (substrate) (PP layer, melting peak temperature 163°C, thickness 50 μm) / second resin layer (PPa layer, melting peak temperature 124°C, thickness 50 μm) were laminated in order. The obtained adhesive film had a black appearance because the first resin layer (thermochromic layer) contained black titanium nitride. The intermediate layer and the second resin layer were colorless and transparent.
実施例6
押出機及びTダイキャスティング装置を用いて、中間層としてのポリプロピレン(PP層、ホモポリプロピレン、融解ピーク温度163℃、厚み50μm)の一方面に、外装材側の第2樹脂層として無水マレイン酸変性ポリプロピレン(PPa層、融解ピーク温度124℃)、他方面に、金属端子側の第1樹脂層(熱変色層)として、示温材としての窒化チタン(平均粒子径70nm)を0.01質量%含む無水マレイン酸変性ポリプロピレン(PPa層、融解ピーク温度140℃)を、それぞれ厚み50μmで押出し、第1樹脂層(窒化チタンを含む熱変色層、PPa層、融解ピーク温度140℃、厚み50μm)/中間層(基材)(PP層、融解ピーク温度163℃、厚み50μm)/第2樹脂層(PPa層、融解ピーク温度124℃、厚み50μm)が順に積層された接着性フィルム(総厚み150μm)を得た。得られた接着性フィルムは、第1樹脂層(熱変色層)に黒色の窒化チタンを含むことから、黒色の外観を有していた。なお、中間層及び第2樹脂層は無色透明である。
Example 6
Using an extruder and a T-die casting machine, a polypropylene intermediate layer (PP layer, homopolypropylene, melting peak temperature 163°C, thickness 50 μm) was formed on one side of a maleic anhydride-modified polypropylene (PPa layer, melting peak temperature 124°C) as a second resin layer on the exterior material side, and a polypropylene resin layer containing 0.01 mass% titanium nitride (average particle size 70 nm) as a temperature indicator was formed on the other side of the first resin layer (thermochromic layer) on the metal terminal side. Water-maleic acid modified polypropylene (PPa layer, melting peak temperature 140°C) was extruded to a thickness of 50 μm, and an adhesive film (total thickness 150 μm) was obtained in which the first resin layer (thermochromic layer containing titanium nitride, PPa layer, melting peak temperature 140°C, thickness 50 μm) / intermediate layer (substrate) (PP layer, melting peak temperature 163°C, thickness 50 μm) / second resin layer (PPa layer, melting peak temperature 124°C, thickness 50 μm) were laminated in order. The obtained adhesive film had a black appearance because the first resin layer (thermochromic layer) contained black titanium nitride. The intermediate layer and the second resin layer were colorless and transparent.
実施例7
押出機及びTダイキャスティング装置を用いて、中間層としてのポリプロピレン(PP層、ホモポリプロピレン、融解ピーク温度163℃、厚み50μm)の一方面に、外装材側の第2樹脂層として無水マレイン酸変性ポリプロピレン(PPa層、融解ピーク温度124℃)、他方面に、金属端子側の第1樹脂層(熱変色層)として、示温材としての窒化チタン(平均粒子径70nm)を50.0質量%含む無水マレイン酸変性ポリプロピレン(PPa層、融解ピーク温度140℃)を、それぞれ厚み50μmで押出し、第1樹脂層(窒化チタンを含む熱変色層、PPa層、融解ピーク温度140℃、厚み50μm)/中間層(基材)(PP層、融解ピーク温度163℃、厚み50μm)/第2樹脂層(PPa層、融解ピーク温度124℃、厚み50μm)が順に積層された接着性フィルム(総厚み150μm)を得た。得られた接着性フィルムは、第1樹脂層(熱変色層)に黒色の窒化チタンを含むことから、黒色の外観を有していた。なお、中間層及び第2樹脂層は無色透明である。
Example 7
Using an extruder and a T-die casting machine, a polypropylene intermediate layer (PP layer, homopolypropylene, melting peak temperature 163°C, thickness 50 μm) was formed on one side of the outer casing material side of a maleic anhydride-modified polypropylene (PPa layer, melting peak temperature 124°C) as a second resin layer on the exterior material side, and a polypropylene layer containing 50.0 mass% titanium nitride (average particle size 70 nm) as a temperature indicator was formed on the other side of the outer casing material side of a first resin layer (thermochromic layer) on the metal terminal side. Water-maleic acid modified polypropylene (PPa layer, melting peak temperature 140°C) was extruded to a thickness of 50 μm, and an adhesive film (total thickness 150 μm) was obtained in which the first resin layer (thermochromic layer containing titanium nitride, PPa layer, melting peak temperature 140°C, thickness 50 μm) / intermediate layer (substrate) (PP layer, melting peak temperature 163°C, thickness 50 μm) / second resin layer (PPa layer, melting peak temperature 124°C, thickness 50 μm) were laminated in order. The obtained adhesive film had a black appearance because the first resin layer (thermochromic layer) contained black titanium nitride. The intermediate layer and the second resin layer were colorless and transparent.
比較例1
押出機及びTダイキャスティング装置を用いて、中間層としてのポリプロピレン(PP層、ホモポリプロピレン、融解ピーク温度163℃、厚み50μm)の一方面に、外装材側の第2樹脂層として無水マレイン酸変性ポリプロピレン(PPa層、融解ピーク温度124℃)、他方面に、金属端子側の第1樹脂層として、カーボンブラック(平均粒子径300nm)を0.5質量%含む無水マレイン酸変性ポリプロピレン(PPa層、融解ピーク温度140℃)を、それぞれ厚み50μmで押出し、第1樹脂層(カーボンブラックを含む層、PPa層、融解ピーク温度140℃、厚み50μm)/中間層(基材)(PP層、融解ピーク温度163℃、厚み50μm)/第2樹脂層(PPa層、融解ピーク温度124℃、厚み50μm)が順に積層された接着性フィルム(総厚み150μm)を得た。得られた接着性フィルムは、第1樹脂層に黒色のカーボンブラックを含むことから、黒色の外観を有していた。なお、中間層及び第2樹脂層は無色透明である。
Comparative Example 1
Using an extruder and a T-die casting device, a maleic anhydride-modified polypropylene (PP layer, homopolypropylene, melting peak temperature 163 ° C., thickness 50 μm) was extruded on one side of the polypropylene as an intermediate layer as the second resin layer on the exterior material side (PPa layer, melting peak temperature 124 ° C.), and a maleic anhydride-modified polypropylene (PPa layer, melting peak temperature 140 ° C.) containing 0.5% by mass of carbon black (average particle diameter 300 nm) was extruded on the other side as the first resin layer on the metal terminal side to a thickness of 50 μm, respectively, to obtain an adhesive film (total thickness 150 μm) in which the first resin layer (layer containing carbon black, PPa layer, melting peak temperature 140 ° C., thickness 50 μm) / intermediate layer (substrate) (PP layer, melting peak temperature 163 ° C., thickness 50 μm) / second resin layer (PPa layer, melting peak temperature 124 ° C., thickness 50 μm) were laminated in this order. The adhesive film obtained had a black appearance because the first resin layer contained black carbon black, while the intermediate layer and the second resin layer were colorless and transparent.
比較例2
押出機及びTダイキャスティング装置を用いて、中間層としてのポリプロピレン(PP層、ホモポリプロピレン、融解ピーク温度163℃、厚み50μm)の一方面に、外装材側の第2樹脂層として無水マレイン酸変性ポリプロピレン(PPa層、融解ピーク温度124℃)、他方面に、金属端子側の第1樹脂層として、無水マレイン酸変性ポリプロピレン(PPa層、融解ピーク温度140℃)を、それぞれ厚み50μmで押出し、第1樹脂層(PPa層、融解ピーク温度140℃、厚み50μm)/中間層(基材)(PP層、融解ピーク温度163℃、厚み50μm)/第2樹脂層(PPa層、融解ピーク温度124℃、厚み50μm)が順に積層された接着性フィルム(総厚み150μm)を得た。得られた接着性フィルムは、無色透明である。
Comparative Example 2
Using an extruder and a T-die casting device, a maleic anhydride-modified polypropylene (PP layer, homopolypropylene, melting peak temperature 163°C, thickness 50μm) was extruded on one side of a polypropylene intermediate layer (PP layer, homopolypropylene, melting peak temperature 163°C, thickness 50μm) as a second resin layer on the exterior material side, and a maleic anhydride-modified polypropylene (PPa layer, melting peak temperature 124°C) was extruded on the other side of a first resin layer on the metal terminal side, each with a thickness of 50μm, to obtain an adhesive film (total thickness 150μm) in which the first resin layer (PPa layer, melting peak temperature 140°C, thickness 50μm)/intermediate layer (substrate) (PP layer, melting peak temperature 163°C, thickness 50μm)/second resin layer (PPa layer, melting peak temperature 124°C, thickness 50μm) were laminated in this order. The obtained adhesive film was colorless and transparent.
比較例3
押出機及びTダイキャスティング装置を用いて、中間層としてのポリプロピレン(PP層、ホモポリプロピレン、融解ピーク温度163℃、厚み50μm)の一方面に、外装材側の第2樹脂層として無水マレイン酸変性ポリプロピレン(PPa層、融解ピーク温度124℃)、他方面に、金属端子側の第1樹脂層として、無水マレイン酸変性ポリプロピレン(PPa層、融解ピーク温度140℃)を、それぞれ厚み50μmで押出し、第1樹脂層(PPa層、融解ピーク温度140℃、厚み50μm)/中間層(基材)(PP層、融解ピーク温度163℃、厚み50μm)/第2樹脂層(PPa層、融解ピーク温度124℃、厚み50μm)が順に積層された接着性フィルム(総厚み150μm)を得た。得られた接着性フィルムは、無色透明である。
Comparative Example 3
Using an extruder and a T-die casting device, a maleic anhydride-modified polypropylene (PP layer, homopolypropylene, melting peak temperature 163°C, thickness 50μm) was extruded on one side of a polypropylene intermediate layer (PP layer, homopolypropylene, melting peak temperature 163°C, thickness 50μm) as a second resin layer on the exterior material side, and a maleic anhydride-modified polypropylene (PPa layer, melting peak temperature 124°C) was extruded on the other side of a first resin layer on the metal terminal side, each with a thickness of 50μm, to obtain an adhesive film (total thickness 150μm) in which the first resin layer (PPa layer, melting peak temperature 140°C, thickness 50μm)/intermediate layer (substrate) (PP layer, melting peak temperature 163°C, thickness 50μm)/second resin layer (PPa layer, melting peak temperature 124°C, thickness 50μm) were laminated in this order. The obtained adhesive film was colorless and transparent.
比較例4
押出機及びTダイキャスティング装置を用いて、中間層としてのポリプロピレン(PP層、ホモポリプロピレン、融解ピーク温度163℃、厚み50μm)の一方面に、外装材側の第2樹脂層として無水マレイン酸変性ポリプロピレン(PPa層、融解ピーク温度124℃)、他方面に、金属端子側の第1樹脂層として、カーボンブラック(平均粒子径300nm)を1.0質量%含む無水マレイン酸変性ポリプロピレン(PPa層、融解ピーク温度140℃)を、それぞれ厚み50μmで押出し、第1樹脂層(カーボンブラックを含む層、PPa層、融解ピーク温度140℃、厚み50μm)/中間層(基材)(PP層、融解ピーク温度163℃、厚み50μm)/第2樹脂層(PPa層、融解ピーク温度124℃、厚み50μm)が順に積層された接着性フィルム(総厚み150μm)を得た。得られた接着性フィルムは、第1樹脂層に黒色のカーボンブラックを含むことから、黒色の外観を有していた。なお、中間層及び第2樹脂層は無色透明である。
Comparative Example 4
Using an extruder and a T-die casting device, a maleic anhydride-modified polypropylene (PP layer, homopolypropylene, melting peak temperature 163 ° C., thickness 50 μm) was extruded on one side of the polypropylene as an intermediate layer as the second resin layer on the exterior material side (PPa layer, melting peak temperature 124 ° C.), and a maleic anhydride-modified polypropylene (PPa layer, melting peak temperature 140 ° C.) containing 1.0 mass% carbon black (average particle diameter 300 nm) as the first resin layer on the metal terminal side on the other side, each with a thickness of 50 μm, to obtain an adhesive film (total thickness 150 μm) in which the first resin layer (layer containing carbon black, PPa layer, melting peak temperature 140 ° C., thickness 50 μm) / intermediate layer (substrate) (PP layer, melting peak temperature 163 ° C., thickness 50 μm) / second resin layer (PPa layer, melting peak temperature 124 ° C., thickness 50 μm) were laminated in this order. The adhesive film obtained had a black appearance because the first resin layer contained black carbon black, while the intermediate layer and the second resin layer were colorless and transparent.
<融解ピーク温度の測定>
接着性フィルムについて、JIS K7121:2012(プラスチックの転移温度測定方法(JIS K7121:1987の追補1))の規定に準拠して融解ピーク温度を測定する。測定は、示差走査熱量計(DSC、ティー・エイ・インスツルメント製の示差走査熱量計Q200)を用いて行った。測定サンプルを、-50℃で15分間保持した後、10℃/分の昇温速度で-50℃から210℃まで昇温させて、1回目の融解ピーク温度P(℃)を測定した後、210℃にて10分間保持した。次に、10℃/分の降温速度で210℃から-50℃まで降温させて15分間保持した。さらに、10℃/分の昇温速度で-50℃から210℃まで昇温させて2回目の融解ピーク温度Q(℃)を測定した。なお、窒素ガスの流量は50ml/分とした。以上の手順によって、1回目に測定される融解ピーク温度P(℃)と、2回目に測定される融解ピーク温度Q(℃)を求めた。以上の手順によって、1回目に測定される融解ピーク温度P(℃)の値を採用した。
<Measurement of Melting Peak Temperature>
The adhesive film is measured for the melting peak temperature in accordance with the provisions of JIS K7121:2012 (Method for measuring transition temperature of plastics (JIS K7121:1987 Supplement 1)). The measurement was performed using a differential scanning calorimeter (DSC, differential scanning calorimeter Q200 manufactured by TA Instruments). The measurement sample was held at -50°C for 15 minutes, then heated from -50°C to 210°C at a heating rate of 10°C/min, the first melting peak temperature P (°C) was measured, and then held at 210°C for 10 minutes. Next, the temperature was lowered from 210°C to -50°C at a heating rate of 10°C/min and held for 15 minutes. Furthermore, the temperature was raised from -50°C to 210°C at a heating rate of 10°C/min to measure the second melting peak temperature Q (°C). The flow rate of nitrogen gas was 50 ml/min. The melting peak temperature P (°C) measured the first time and the melting peak temperature Q (°C) measured the second time were determined by the above procedure. The melting peak temperature P (°C) measured the first time was used.
<接着性フィルムの加熱前後のL*値の測定>
金属端子として、縦50mm、横45mm、厚み0.4mmのアルミニウム(JIS H4160:1994 A8079H-O)を用意した。また、実施例および比較例の金属端子用接着性フィルムを長さ45mm、幅10mmに裁断し、2枚準備した。次に、2枚の接着性フィルムの間に金属端子用接着性フィルムを挟み、接着性フィルム/金属端子/接着性フィルムの積層体を得た。このとき、金属端子の縦方向及び横方向が、それぞれ、金属端子用接着性フィルムの幅方向及び長さ方向と一致し、かつ、金属端子と金属端子用接着性フィルムの中心が一致するように積層した。得られた積層体をホットプレート上に静置した。次に、接着性フィルムを、各加熱条件(それぞれ、加熱温度は280℃及び300℃、加熱圧力は0.25MPa、加熱時間は16秒間)で加熱した。次に、加熱前及び加熱後の接着性フィルムの第1樹脂層側の表面について、それぞれ、以下の条件にて、L*a*b*色空間におけるL*値を測定した。白色校正キャップ(CM-A177:コニカミノルタ製)で校正したコニカミノルタ社製分光測色計(CM-700d)の観察条件を10°、観察光源をF2、SCIモードに設定(JIS Z8722-2009)した。次に、第1樹脂層側表面のL*値の測定を常温常湿下にて行った。測定径は8mmφに設定した。結果を表1に示す。なお、表1において、L*値は測定値の小数点第1位を四捨五入した値を示した。
<Measurement of L * value before and after heating of adhesive film>
As the metal terminal, aluminum (JIS H4160:1994 A8079H-O) with a length of 50 mm, a width of 45 mm, and a thickness of 0.4 mm was prepared. In addition, the adhesive film for metal terminal of the example and the comparative example was cut to a length of 45 mm and a width of 10 mm, and two sheets were prepared. Next, the adhesive film for metal terminal was sandwiched between the two adhesive films to obtain a laminate of adhesive film/metal terminal/adhesive film. At this time, the vertical direction and horizontal direction of the metal terminal were aligned with the width direction and length direction of the adhesive film for metal terminal, respectively, and the metal terminal and the adhesive film for metal terminal were aligned with each other. The obtained laminate was placed on a hot plate. Next, the adhesive film was heated under each heating condition (heating temperature of 280°C and 300°C, heating pressure of 0.25 MPa, heating time of 16 seconds). Next, the L * value in the L * a * b * color space was measured for the first resin layer side surface of the adhesive film before and after heating under the following conditions. The observation conditions of a Konica Minolta spectrophotometer (CM-700d) calibrated with a white calibration cap (CM-A177: manufactured by Konica Minolta) were set to 10°, the observation light source was set to F2, and SCI mode (JIS Z8722-2009). Next, the L * value of the first resin layer side surface was measured at normal temperature and humidity. The measurement diameter was set to 8 mmφ. The results are shown in Table 1. In Table 1, the L * value was rounded off to the nearest tenth of a decimal point.
<金属端子に対する密着性の評価>
前記の<接着性フィルムの加熱前後のL*値の測定>において、それぞれ、280℃及び300℃で加熱した接着性フィルムと同様の条件で加熱加圧した実施例及び比較例の接着性フィルムを準備し、これらの接着性フィルムの金属端子に対する密着性を、以下の方法で評価した。結果を表1に示す。なお、矩形状の短冊片の接着性フィルムのサイズの表現において、長さ、幅との記載は、長さはMD方向、幅はTD方向を規定するものである。金属端子として、縦50mm、横22.5mm、厚み0.4mmのアルミニウム(JIS H4160:1994 A8079H-O)を用意した。また、金属端子用接着性フィルムを長さ45mm、幅10mmに裁断した。次に、金属端子用接着性フィルムを金属端子の上に置き、金属端子/接着性フィルムの積層体を得た。このとき、金属端子の縦方向及び横方向が、それぞれ、金属端子用接着性フィルムの長さ方向及び幅方向と一致し、かつ、金属端子と金属端子用接着性フィルムの中心が一致するように積層した。また、金属端子用接着性フィルムの第1樹脂層が金属端子側に配置されている。次に、テトラフルオロエチレン-エチレン共重合体フィルム(ETFEフィルム、厚さ100μm)を、当該積層体の金属端子用接着性フィルムの上に置いた(ETFEフィルムで金属端子用接着性フィルムの表面を覆った)状態で、200℃に加熱されたプレス機上に載置する(金属端子がホットプレート側)と共に、シリコーンスポンジシートを載せて、圧力0.25MPa、16秒間静置して、接着性フィルムを金属端子に熱融着させた。熱融着後の積層体を25℃まで自然冷却した。次に、25℃の環境において、テンシロン万能材料試験機(エー・アンド・デイ社製のRTG-1210)で金属端子用接着性フィルムを金属端子から剥離させる。剥離時の最大強度を金属端子に対する密着強度(N/15mm)とした。なお、当該密着強度は、幅10mmでの測定結果から幅15mmの測定値への換算値である。剥離速度は50mm/分、剥離角度は180°、チャック間距離は30mmとし、3回測定した平均値とする。なお、温度200℃及び面圧0.25MPaの加熱加圧環境で16秒間静置する処理は、前記の仮接着工程及び本接着工程で加わる熱と圧力を想定した処理である。
(280℃及び300℃の密着性の評価基準)
A:密着強度が40N/15mm以上である
B:密着強度が40N/15mm未満である
<Evaluation of adhesion to metal terminals>
In the above-mentioned <Measurement of L * value before and after heating of adhesive film>, adhesive films of the examples and comparative examples were prepared by heating and pressing under the same conditions as the adhesive films heated at 280 ° C. and 300 ° C., respectively, and the adhesion of these adhesive films to metal terminals was evaluated by the following method. The results are shown in Table 1. In addition, in expressing the size of the rectangular strip adhesive film, the description of length and width specifies the length in the MD direction and the width in the TD direction. As the metal terminal, aluminum (JIS H4160: 1994 A8079H-O) with a length of 50 mm, a width of 22.5 mm, and a thickness of 0.4 mm was prepared. In addition, the adhesive film for metal terminal was cut to a length of 45 mm and a width of 10 mm. Next, the adhesive film for metal terminal was placed on the metal terminal to obtain a laminate of metal terminal/adhesive film. At this time, the metal terminal was laminated so that the longitudinal direction and the lateral direction of the metal terminal adhesive film were aligned with the longitudinal direction and the width direction of the metal terminal adhesive film, respectively, and the centers of the metal terminal and the metal terminal adhesive film were aligned. In addition, the first resin layer of the metal terminal adhesive film was disposed on the metal terminal side. Next, a tetrafluoroethylene-ethylene copolymer film (ETFE film, thickness 100 μm) was placed on the metal terminal adhesive film of the laminate (the surface of the metal terminal adhesive film was covered with the ETFE film), and the laminate was placed on a press machine heated to 200 ° C. (the metal terminal was on the hot plate side), and a silicone sponge sheet was placed on the laminate, and the laminate was left at a pressure of 0.25 MPa for 16 seconds to heat-seal the adhesive film to the metal terminal. The laminate after heat-sealing was naturally cooled to 25 ° C. Next, in an environment of 25 ° C., the adhesive film for metal terminal was peeled off from the metal terminal using a Tensilon universal material testing machine (RTG-1210 manufactured by A & D Co., Ltd.). The maximum strength at the time of peeling was taken as the adhesion strength (N/15 mm) to the metal terminal. The adhesion strength was a converted value from the measurement result at a width of 10 mm to the measurement value at a width of 15 mm. The peel speed was 50 mm/min, the peel angle was 180°, and the chuck distance was 30 mm, and the average value was taken from three measurements. The process of leaving the sample for 16 seconds in a heating and pressurizing environment at a temperature of 200°C and a surface pressure of 0.25 MPa was a process that assumed the heat and pressure applied in the temporary adhesion process and the main adhesion process.
(Evaluation criteria for adhesion at 280°C and 300°C)
A: Adhesion strength is 40N/15mm or more. B: Adhesion strength is less than 40N/15mm.
実施例1~7の金属端子用接着性フィルムは、前記金属端子用接着性フィルムは、示温材としての窒化チタンを含む熱変色層を備えており、280℃から320℃の間でL*値が大きく変化しており、所定の温度に加熱されたことが外観から把握可能であった。 The adhesive films for metal terminals of Examples 1 to 7 each have a thermochromic layer containing titanium nitride as a temperature indicator, and the L * value changes significantly between 280°C and 320°C. It was possible to tell from the appearance that the film had been heated to a specified temperature.
以上のとおり、本開示は、下記に掲げる態様の発明を提供する。
項1. 蓄電デバイス素子の電極に電気的に接続された金属端子と、前記蓄電デバイス素子を封止する蓄電デバイス用外装材との間に介在される、金属端子用接着性フィルムであって、
前記金属端子用接着性フィルムは、熱変色層を備える、金属端子用接着性フィルム。
項2. 前記熱変色層は、示温材と樹脂とを含む樹脂組成物により形成されている、項1に記載の金属端子用接着性フィルム。
項3. 前記示温材は、無機化合物を含む、項2に記載の金属端子用接着性フィルム。
項4. 前記示温材は、平均粒子径が10nm以上100nm以下である、項2または3に記載の金属端子用接着性フィルム。
項5. 前記熱変色層における前記示温材の含有率が、0.01質量%以上50質量%以下である、項2~4のいずれか1項に記載の金属端子用接着性フィルム。
項6. 前記示温材は、窒化チタンである、項2~5のいずれか1項に記載の金属端子用接着性フィルム。
項7. 前記熱変色層は、ポリオレフィン骨格を有する、項1~6のいずれか1項に記載の金属端子用接着性フィルム。
項8. 前記熱変色層は、赤外分光法で分析すると、無水マレイン酸に由来するピークが検出される、項1~7のいずれか1項に記載の金属端子用接着性フィルム。
項9. 前記熱変色層は、SCI方式、視野10°及び光源F2の測定条件で測定される、反射光のL*a*b*色空間におけるL*値が、80以下である、項1~8のいずれか1項に記載の金属端子用接着性フィルム。
項10. 前記金属端子用接着性フィルムは、前記金属端子側に配される第1樹脂層と、中間層と、前記蓄電デバイス用外装材側に配される第2樹脂層とをこの順に備える積層体から構成されており、
前記第1樹脂層、前記中間層及び前記第2樹脂層のうち少なくとも1層が、前記熱変色層である、項1~9のいずれか1項に記載の金属端子用接着性フィルム。
項11. 前記金属端子用接着性フィルムは、ポリオレフィン系樹脂により形成されている、項1~10のいずれか1項に記載の金属端子用接着性フィルム。
項12. 蓄電デバイス素子の電極に電気的に接続された金属端子と、前記蓄電デバイス素子を封止する蓄電デバイス用外装材との間に介在される、金属端子用接着性フィルムの製造方法であって、
前記金属端子用接着性フィルムは、熱変色層を備える、金属端子用接着性フィルムの製造方法。
項13. 金属端子に、項1~11のいずれか1項に記載の金属端子用接着性フィルムが取り付けられてなる、金属端子用接着性フィルム付き金属端子。
項14. 少なくとも、正極、負極、及び電解質を備えた蓄電デバイス素子と、前記蓄電デバイス素子を封止する蓄電デバイス用外装材と、前記正極及び前記負極のそれぞれに電気的に接続され、前記蓄電デバイス用外装材の外側に突出した前記金属端子とを備える蓄電デバイスであって、
前記金属端子と前記蓄電デバイス用外装材との間に、項1~11のいずれか1項に記載の金属端子用接着性フィルムが介在されてなる、蓄電デバイス。
項15. 少なくとも、正極、負極、及び電解質を備えた蓄電デバイス素子と、前記蓄電デバイス素子を封止する前記蓄電デバイス用外装材と、前記正極及び前記負極のそれぞれに電気的に接続され、前記蓄電デバイス用外装材の外側に突出した前記金属端子とを備える蓄電デバイスの製造方法であって、
前記金属端子と前記蓄電デバイス用外装材との間に、項1~11のいずれか1項に記載の金属端子用接着性フィルムを介在させて、前記蓄電デバイス素子を前記蓄電デバイス用外装材で封止する工程を備える、蓄電デバイスの製造方法。
項16. 蓄電デバイスに用いるための蓄電デバイス用外装材であって、
前記蓄電デバイスは、少なくとも、正極、負極、及び電解質を備えた蓄電デバイス素子と、前記蓄電デバイス素子を封止する前記蓄電デバイス用外装材と、前記正極及び前記負極のそれぞれに電気的に接続され、前記蓄電デバイス用外装材の外側に突出した前記金属端子とを備え、前記金属端子と前記蓄電デバイス用外装材との間に、金属端子用接着性フィルムが介在されてなり、
前記金属端子用接着性フィルムは、項1~11のいずれか1項に記載の金属端子用接着性フィルムであり、
前記蓄電デバイス用外装材は、少なくとも、基材層、バリア層、及び熱融着性樹脂層を備える積層体から構成されている、蓄電デバイス用外装材。
項17. 蓄電デバイスに用いるための蓄電デバイス用外装材と、項1~11のいずれか1項に記載の金属端子用接着性フィルムとを含む、キットであって、
前記蓄電デバイスは、少なくとも、正極、負極、及び電解質を備えた蓄電デバイス素子と、前記蓄電デバイス素子を封止する前記蓄電デバイス用外装材と、前記正極及び前記負極のそれぞれに電気的に接続され、前記蓄電デバイス用外装材の外側に突出した前記金属端子とを備え、
使用時に、前記金属端子と前記蓄電デバイス用外装材との間に、前記金属端子用接着性フィルムを介在させるように用いられる、キット。
As described above, the present disclosure provides the inventions of the following aspects.
Item 1. An adhesive film for a metal terminal, which is interposed between a metal terminal electrically connected to an electrode of an electricity storage device element and an exterior material for an electricity storage device that encapsulates the electricity storage device element,
The adhesive film for a metal terminal includes a thermochromic layer.
Item 2. The adhesive film for a metal terminal according to item 1, wherein the thermochromic layer is formed of a resin composition containing a temperature indicating material and a resin.
Item 3. The adhesive film for a metal terminal according to item 2, wherein the temperature indicator contains an inorganic compound.
Item 4. The adhesive film for a metal terminal according to item 2 or 3, wherein the temperature indicator has an average particle size of 10 nm or more and 100 nm or less.
Item 5. The adhesive film for metal terminal according to any one of Items 2 to 4, wherein the content of the temperature indicator in the thermochromic layer is 0.01% by mass or more and 50% by mass or less.
Item 6. The adhesive film for a metal terminal according to any one of Items 2 to 5, wherein the temperature indicator is titanium nitride.
Item 7. The adhesive film for a metal terminal according to any one of Items 1 to 6, wherein the thermochromic layer has a polyolefin skeleton.
Item 8. The adhesive film for a metal terminal according to any one of Items 1 to 7, wherein when the thermochromic layer is analyzed by infrared spectroscopy, a peak derived from maleic anhydride is detected.
Item 9. The adhesive film for metal terminal according to any one of items 1 to 8, wherein the thermochromic layer has an L * value in the L * a * b * color space of reflected light measured under the measurement conditions of SCI method, visual field 10°, and light source F2, of 80 or less.
Item 10. The adhesive film for a metal terminal is composed of a laminate including, in this order, a first resin layer disposed on the metal terminal side, an intermediate layer, and a second resin layer disposed on the exterior material for an electrical storage device;
Item 10. The adhesive film for metal terminal according to any one of items 1 to 9, wherein at least one of the first resin layer, the intermediate layer, and the second resin layer is the thermochromic layer.
Item 11. The adhesive film for a metal terminal according to any one of Items 1 to 10, wherein the adhesive film for a metal terminal is formed of a polyolefin resin.
Item 12. A method for producing an adhesive film for a metal terminal, which is interposed between a metal terminal electrically connected to an electrode of an electricity storage device element and an exterior material for an electricity storage device that encapsulates the electricity storage device element, comprising:
The method for producing an adhesive film for a metal terminal, wherein the adhesive film for a metal terminal has a thermochromic layer.
Item 13. A metal terminal with an adhesive film for a metal terminal, comprising the adhesive film for a metal terminal according to any one of items 1 to 11 attached to a metal terminal.
Item 14. An electricity storage device including at least an electricity storage device element having a positive electrode, a negative electrode, and an electrolyte, an exterior material for an electricity storage device that seals the electricity storage device element, and metal terminals that are electrically connected to the positive electrode and the negative electrode, respectively, and protrude to the outside of the exterior material for an electricity storage device,
Item 12. An electricity storage device, comprising the adhesive film for a metal terminal according to any one of items 1 to 11 interposed between the metal terminal and the exterior material for the electricity storage device.
Item 15. A method for manufacturing an electricity storage device including at least an electricity storage device element including a positive electrode, a negative electrode, and an electrolyte, an exterior material for an electricity storage device that seals the electricity storage device element, and metal terminals that are electrically connected to the positive electrode and the negative electrode, respectively, and protrude outside the exterior material for an electricity storage device,
Item 12. A method for manufacturing an electricity storage device, comprising: interposing the adhesive film for metal terminal according to any one of items 1 to 11 between the metal terminal and the exterior material for an electricity storage device; and sealing the electricity storage device element with the exterior material for an electricity storage device.
Item 16. An exterior material for an electricity storage device for use in an electricity storage device,
The electricity storage device includes at least an electricity storage device element having a positive electrode, a negative electrode, and an electrolyte, an exterior material for an electricity storage device that seals the electricity storage device element, and metal terminals that are electrically connected to the positive electrode and the negative electrode, respectively, and protrude to the outside of the exterior material for an electricity storage device, and an adhesive film for a metal terminal is interposed between the metal terminal and the exterior material for an electricity storage device,
The adhesive film for metal terminal is the adhesive film for metal terminal according to any one of items 1 to 11,
The electrical storage device packaging material is composed of a laminate including at least a base layer, a barrier layer, and a heat-sealable resin layer.
Item 17. A kit comprising an exterior material for an electricity storage device for use in an electricity storage device and the adhesive film for a metal terminal according to any one of items 1 to 11,
The electricity storage device includes at least an electricity storage device element having a positive electrode, a negative electrode, and an electrolyte, an exterior material for an electricity storage device that seals the electricity storage device element, and the metal terminals that are electrically connected to the positive electrode and the negative electrode, respectively, and protrude to the outside of the exterior material for an electricity storage device,
The kit is used such that, when in use, the adhesive film for a metal terminal is interposed between the metal terminal and the exterior material for an electricity storage device.
1 金属端子用接着性フィルム
2 金属端子
3 蓄電デバイス用外装材
3a 蓄電デバイス用外装材の周縁部
4 蓄電デバイス素子
10 蓄電デバイス
11 中間層
12a 第1樹脂層
12b 第2樹脂層
31 基材層
32 接着剤層
33 バリア層
34 接着層
35 熱融着性樹脂層
REFERENCE SIGNS LIST 1 adhesive film for metal terminal 2 metal terminal 3 exterior material for electricity storage device 3a peripheral portion of exterior material for electricity storage device 4 electricity storage device element 10 electricity storage device 11 intermediate layer 12a first resin layer 12b second resin layer 31 substrate layer 32 adhesive layer 33 barrier layer 34 adhesive layer 35 heat-sealable resin layer
Claims (17)
前記金属端子用接着性フィルムは、熱変色層を備える、金属端子用接着性フィルム。 An adhesive film for a metal terminal, which is interposed between a metal terminal electrically connected to an electrode of an electricity storage device element and an exterior material for an electricity storage device that encapsulates the electricity storage device element,
The adhesive film for a metal terminal includes a thermochromic layer.
前記第1樹脂層、前記中間層及び前記第2樹脂層のうち少なくとも1層が、前記熱変色層である、請求項1または2に記載の金属端子用接着性フィルム。 The adhesive film for a metal terminal is composed of a laminate including, in this order, a first resin layer disposed on the metal terminal side, an intermediate layer, and a second resin layer disposed on the exterior material for an electricity storage device,
The adhesive film for metal terminal according to claim 1 or 2, wherein at least one of the first resin layer, the intermediate layer and the second resin layer is the thermochromic layer.
前記金属端子用接着性フィルムは、熱変色層を備える、金属端子用接着性フィルムの製造方法。 A method for producing an adhesive film for a metal terminal, which is interposed between a metal terminal electrically connected to an electrode of an electricity storage device element and an exterior material for an electricity storage device that encapsulates the electricity storage device element, comprising:
The method for producing an adhesive film for a metal terminal, wherein the adhesive film for a metal terminal has a thermochromic layer.
前記金属端子と前記蓄電デバイス用外装材との間に、請求項1または2に記載の金属端子用接着性フィルムが介在されてなる、蓄電デバイス。 An electricity storage device comprising at least an electricity storage device element having a positive electrode, a negative electrode, and an electrolyte, an exterior material for an electricity storage device that seals the electricity storage device element, and metal terminals that are electrically connected to the positive electrode and the negative electrode, respectively, and protrude to an outside of the exterior material for an electricity storage device,
3. An electricity storage device, comprising the adhesive film for a metal terminal according to claim 1 or 2 interposed between the metal terminal and the exterior material for an electricity storage device.
前記金属端子と前記蓄電デバイス用外装材との間に、請求項1または2に記載の金属端子用接着性フィルムを介在させて、前記蓄電デバイス素子を前記蓄電デバイス用外装材で封止する工程を備える、蓄電デバイスの製造方法。 A method for manufacturing an electricity storage device including at least an electricity storage device element including a positive electrode, a negative electrode, and an electrolyte, an exterior material for an electricity storage device that seals the electricity storage device element, and metal terminals that are electrically connected to the positive electrode and the negative electrode, respectively, and protrude to an outside of the exterior material for an electricity storage device,
A method for manufacturing an electricity storage device, comprising a step of interposing the adhesive film for metal terminals according to claim 1 or 2 between the metal terminal and the exterior material for an electricity storage device, and sealing the electricity storage device element with the exterior material for an electricity storage device.
前記蓄電デバイスは、少なくとも、正極、負極、及び電解質を備えた蓄電デバイス素子と、前記蓄電デバイス素子を封止する前記蓄電デバイス用外装材と、前記正極及び前記負極のそれぞれに電気的に接続され、前記蓄電デバイス用外装材の外側に突出した前記金属端子とを備え、前記金属端子と前記蓄電デバイス用外装材との間に、金属端子用接着性フィルムが介在されてなり、
前記金属端子用接着性フィルムは、請求項1または2に記載の金属端子用接着性フィルムであり、
前記蓄電デバイス用外装材は、少なくとも、基材層、バリア層、及び熱融着性樹脂層を備える積層体から構成されている、蓄電デバイス用外装材。 An exterior material for an electricity storage device for use in an electricity storage device,
The electricity storage device includes at least an electricity storage device element having a positive electrode, a negative electrode, and an electrolyte, an exterior material for an electricity storage device that seals the electricity storage device element, and metal terminals that are electrically connected to the positive electrode and the negative electrode, respectively, and protrude to the outside of the exterior material for an electricity storage device, and an adhesive film for a metal terminal is interposed between the metal terminal and the exterior material for an electricity storage device,
The adhesive film for a metal terminal is the adhesive film for a metal terminal according to claim 1 or 2,
The electrical storage device packaging material is composed of a laminate including at least a base layer, a barrier layer, and a heat-sealable resin layer.
前記蓄電デバイスは、少なくとも、正極、負極、及び電解質を備えた蓄電デバイス素子と、前記蓄電デバイス素子を封止する前記蓄電デバイス用外装材と、前記正極及び前記負極のそれぞれに電気的に接続され、前記蓄電デバイス用外装材の外側に突出した前記金属端子とを備え、
使用時に、前記金属端子と前記蓄電デバイス用外装材との間に、前記金属端子用接着性フィルムを介在させるように用いられる、キット。 A kit comprising an exterior material for an electricity storage device for use in an electricity storage device and the adhesive film for a metal terminal according to claim 1 or 2,
The electricity storage device includes at least an electricity storage device element having a positive electrode, a negative electrode, and an electrolyte, an exterior material for an electricity storage device that seals the electricity storage device element, and the metal terminals that are electrically connected to the positive electrode and the negative electrode, respectively, and protrude to the outside of the exterior material for an electricity storage device,
The kit is used such that, when in use, the adhesive film for a metal terminal is interposed between the metal terminal and the exterior material for an electricity storage device.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023-061331 | 2023-04-05 | ||
JP2023061331 | 2023-04-05 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024210218A1 true WO2024210218A1 (en) | 2024-10-10 |
Family
ID=92973134
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2024/014195 WO2024210218A1 (en) | 2023-04-05 | 2024-04-05 | Metal-terminal adhesive film and manufacturing method therefor, metal terminal equipped with metal-terminal adhesive film, power-storage-device external packaging material, kit comprising power-storage-device external packaging material and metal-terminal adhesive film, and power storage device and manufacturing method therefor |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2024210218A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015141832A (en) * | 2014-01-29 | 2015-08-03 | 凸版印刷株式会社 | Terminal film for electricity storage device and electricity storage device |
JP2017220331A (en) * | 2016-06-06 | 2017-12-14 | 住友電気工業株式会社 | Lead material |
WO2021006351A1 (en) * | 2019-07-10 | 2021-01-14 | 大日本印刷株式会社 | Adhesive film for metal terminals, metal terminal with adhesive film for metal terminals, electricity storage device using said adhesive film for metal terminals, and method for producing electricity storage device |
JP2022035298A (en) * | 2020-08-20 | 2022-03-04 | Jsr株式会社 | Display device manufacturing method and display device |
WO2023022191A1 (en) * | 2021-08-19 | 2023-02-23 | 大日本印刷株式会社 | Adhesive film for metal terminal, method for producing adhesive film for metal terminal, metal terminal provided with adhesive film for metal terminal, power storage device, and method for producing power storage device |
-
2024
- 2024-04-05 WO PCT/JP2024/014195 patent/WO2024210218A1/en unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015141832A (en) * | 2014-01-29 | 2015-08-03 | 凸版印刷株式会社 | Terminal film for electricity storage device and electricity storage device |
JP2017220331A (en) * | 2016-06-06 | 2017-12-14 | 住友電気工業株式会社 | Lead material |
WO2021006351A1 (en) * | 2019-07-10 | 2021-01-14 | 大日本印刷株式会社 | Adhesive film for metal terminals, metal terminal with adhesive film for metal terminals, electricity storage device using said adhesive film for metal terminals, and method for producing electricity storage device |
JP2022035298A (en) * | 2020-08-20 | 2022-03-04 | Jsr株式会社 | Display device manufacturing method and display device |
WO2023022191A1 (en) * | 2021-08-19 | 2023-02-23 | 大日本印刷株式会社 | Adhesive film for metal terminal, method for producing adhesive film for metal terminal, metal terminal provided with adhesive film for metal terminal, power storage device, and method for producing power storage device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7600941B2 (en) | ADHESIVE FILM FOR METAL TERMINAL, METAL TERMINAL WITH ADHESIVE FILM FOR METAL TERMINAL, ELECTRICITY STORAGE DEVICE USING ADHESIVE FILM FOR METAL TERMINAL, AND METHOD FOR MANUFACTURING ELECTRICITY STORAGE DEVICE | |
JP7120491B2 (en) | Adhesive film for metal terminals, method for producing adhesive film for metal terminals, metal terminal with adhesive film for metal terminals, power storage device, and method for producing power storage device | |
JP7136102B2 (en) | Adhesive film for metal terminal, metal terminal with adhesive film for metal terminal, battery using said adhesive film for metal terminal, and method for manufacturing battery | |
US20220290011A1 (en) | Adhesive film for metal terminal, metal terminal with adhesive film for metal terminal, power storage device using said adhesive film for metal terminal, and method for producing power storage device | |
JP2021141049A (en) | Adhesive film for metal terminals, method for manufacturing adhesive film for metal terminals, metal terminal with adhesive film for metal terminals, power storage device using the adhesive film for metal terminals, and method for manufacturing power storage device | |
JP2023139019A (en) | Battery, manufacturing method thereof, metal terminal with adhesive film for metal terminal, and winding body for the adhesive film for metal terminal | |
JP6882617B1 (en) | Adhesive film for metal terminals, method for manufacturing adhesive film for metal terminals, metal terminal with adhesive film for metal terminals, power storage device using the adhesive film for metal terminals, and method for manufacturing power storage device | |
US20220352609A1 (en) | Adhesive film for metal terminal, method for manufacturing adhesive film for metal terminal, metal terminal with adhesive film for metal terminal, power storage device using said adhesive film for metal terminal, and method for manufacturing power storage device | |
WO2024210218A1 (en) | Metal-terminal adhesive film and manufacturing method therefor, metal terminal equipped with metal-terminal adhesive film, power-storage-device external packaging material, kit comprising power-storage-device external packaging material and metal-terminal adhesive film, and power storage device and manufacturing method therefor | |
JP2022175134A (en) | Metal terminal adhesive film, method of manufacturing the same, metal terminal with metal terminal adhesive film, power storage device including the metal terminal adhesive film, and method of manufacturing the power storage device | |
WO2024210217A1 (en) | Adhesive film for metal terminals and method for manufacturing same, metal terminal equipped with adhesive film for metal terminals, exterior material for power storage devices, kit equipped with exterior material for power storage devices and adhesive film for metal terminals, and power storage device and method for manufacturing same | |
JP7460852B2 (en) | Adhesive film, adhesive film manufacturing method, power storage device, and power storage device manufacturing method | |
WO2025018354A1 (en) | Metal-terminal adhesive film and manufacturing method for same, metal-terminal equipped with metal-terminal adhesive film, power-storage-device exterior material, kit comprising power-storage-device exterior material and metal-terminal adhesive film, and power storage device and manufacturing method for same | |
JP7311076B1 (en) | An adhesive film for a metal terminal and a method for producing the same, a metal terminal with an adhesive film for a metal terminal, an electricity storage device using the adhesive film for a metal terminal, a kit including an adhesive film for a metal terminal and an exterior material for an electricity storage device, and method for manufacturing power storage device | |
JP7355286B1 (en) | An adhesive film for metal terminals and a method for producing the same, a metal terminal with an adhesive film for metal terminals, an electricity storage device using the adhesive film for metal terminals, a kit including an adhesive film for metal terminals and an exterior material for electricity storage devices, and a method for manufacturing a power storage device | |
US20240405389A1 (en) | Adhesive film for metal terminals, method for producing adhesive film for metal terminals, metal terminal provided with adhesive film for metal terminals, power storage device, and method for producing power storage device | |
JP7031805B1 (en) | An adhesive film for metal terminals, a metal terminal with an adhesive film for metal terminals, a power storage device using the adhesive film for metal terminals, and a method for manufacturing the power storage device. | |
WO2025018353A1 (en) | Metal terminal adhesive film and method for producing same, metal terminal provided with metal terminal adhesive film, power storage device covering material, kit comprising power storage device covering material and metal terminal adhesive film, and power storage device and method for producing same | |
WO2023140338A1 (en) | Metal-terminal adhesive film, production method therefor, metal terminal having metal-terminal adhesive film, power storage device using said metal-terminal adhesive film, kit including metal-terminal adhesive film and power-storage-device exterior material, and production method for power storage device | |
WO2023210827A1 (en) | Adhesive film for metal terminals and method for producing same, metal terminal provided with adhesive film for metal terminals, outer package material for power storage devices, kit comprising outer package material for power storage devices and adhesive film for metal terminals, and power storage device and method for producing same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 24784999 Country of ref document: EP Kind code of ref document: A1 |