WO2024209821A1 - Light detection device and electronic apparatus - Google Patents
Light detection device and electronic apparatus Download PDFInfo
- Publication number
- WO2024209821A1 WO2024209821A1 PCT/JP2024/006372 JP2024006372W WO2024209821A1 WO 2024209821 A1 WO2024209821 A1 WO 2024209821A1 JP 2024006372 W JP2024006372 W JP 2024006372W WO 2024209821 A1 WO2024209821 A1 WO 2024209821A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- semiconductor layer
- wiring layer
- multilayer wiring
- suppression film
- recessed portion
- Prior art date
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 13
- 239000004065 semiconductor Substances 0.000 claims abstract description 166
- 230000001629 suppression Effects 0.000 claims abstract description 91
- 238000003384 imaging method Methods 0.000 claims description 55
- 238000006243 chemical reaction Methods 0.000 claims description 41
- 238000012545 processing Methods 0.000 claims description 29
- 230000003287 optical effect Effects 0.000 claims description 16
- 229910000679 solder Inorganic materials 0.000 claims description 14
- 239000010410 layer Substances 0.000 description 252
- 238000005516 engineering process Methods 0.000 description 38
- 238000009792 diffusion process Methods 0.000 description 22
- 238000012546 transfer Methods 0.000 description 18
- 238000002955 isolation Methods 0.000 description 11
- 230000002093 peripheral effect Effects 0.000 description 11
- 230000003321 amplification Effects 0.000 description 10
- 238000010586 diagram Methods 0.000 description 10
- 238000003199 nucleic acid amplification method Methods 0.000 description 10
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 8
- 239000010949 copper Substances 0.000 description 8
- 230000000694 effects Effects 0.000 description 8
- 229910052581 Si3N4 Inorganic materials 0.000 description 7
- 238000000034 method Methods 0.000 description 7
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 7
- 239000000758 substrate Substances 0.000 description 7
- 230000006870 function Effects 0.000 description 6
- 239000011229 interlayer Substances 0.000 description 6
- 229910052814 silicon oxide Inorganic materials 0.000 description 6
- 230000004048 modification Effects 0.000 description 5
- 238000012986 modification Methods 0.000 description 5
- 230000005669 field effect Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 229910044991 metal oxide Inorganic materials 0.000 description 3
- 150000004706 metal oxides Chemical class 0.000 description 3
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 3
- 125000005372 silanol group Chemical group 0.000 description 3
- 229910000838 Al alloy Inorganic materials 0.000 description 2
- 229910000881 Cu alloy Inorganic materials 0.000 description 2
- -1 SiOC Chemical compound 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 2
- 238000012937 correction Methods 0.000 description 2
- 230000000875 corresponding effect Effects 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000001312 dry etching Methods 0.000 description 2
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 2
- 238000000206 photolithography Methods 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- VZSRBBMJRBPUNF-UHFFFAOYSA-N 2-(2,3-dihydro-1H-inden-2-ylamino)-N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]pyrimidine-5-carboxamide Chemical class C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C(=O)NCCC(N1CC2=C(CC1)NN=N2)=O VZSRBBMJRBPUNF-UHFFFAOYSA-N 0.000 description 1
- MKYBYDHXWVHEJW-UHFFFAOYSA-N N-[1-oxo-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propan-2-yl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical class O=C(C(C)NC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 MKYBYDHXWVHEJW-UHFFFAOYSA-N 0.000 description 1
- NIPNSKYNPDTRPC-UHFFFAOYSA-N N-[2-oxo-2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical class O=C(CNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 NIPNSKYNPDTRPC-UHFFFAOYSA-N 0.000 description 1
- AFCARXCZXQIEQB-UHFFFAOYSA-N N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical class O=C(CCNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 AFCARXCZXQIEQB-UHFFFAOYSA-N 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 238000005411 Van der Waals force Methods 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 230000003139 buffering effect Effects 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 238000006482 condensation reaction Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 239000005001 laminate film Substances 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 230000001151 other effect Effects 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L25/00—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
- H01L25/03—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
- H01L25/04—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
- H01L25/065—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L25/00—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
- H01L25/03—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
- H01L25/04—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
- H01L25/07—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L25/00—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
- H01L25/18—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/14—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
- H01L27/144—Devices controlled by radiation
- H01L27/146—Imager structures
Definitions
- This technology (the technology disclosed herein) relates to photodetection devices and electronic devices, and in particular to technology that is effective when applied to photodetection devices and electronic devices that have a warp suppression layer.
- Patent Document 1 discloses a solid-state imaging device with a two-stage stacked structure in which two semiconductor layers are stacked. Patent Document 1 also discloses a technology in which a warpage suppression film (warpage correction layer) is provided to suppress warpage of a semiconductor substrate including a semiconductor layer and a multilayer wiring layer.
- a warpage suppression film warpage correction layer
- a multi-layer wiring layer is provided on one side of a semiconductor layer, and a warpage suppression film is provided on the side of the multi-layer wiring layer opposite the semiconductor layer.
- the multi-layer wiring layer provided on one side of the semiconductor layer and an external electrode pad provided on the side opposite the semiconductor layer are electrically connected through a recessed portion provided in the semiconductor layer.
- the purpose of this technology is to provide technology that can further improve the reliability of photodetection devices and electronic devices.
- a photodetector a semiconductor layer having a first surface and a second surface positioned opposite to each other in a thickness direction; a multilayer wiring layer provided on the first surface side of the semiconductor layer; a warpage suppression film provided on a side of the multilayer wiring layer opposite to the semiconductor layer; a recessed portion that overlaps the warp suppression film in a plan view and extends from the second surface side of the semiconductor layer to the multilayer wiring layer; It is equipped with:
- the warp suppression film has an opening in an overlapping region that overlaps with the recessed portion in a plan view.
- a photodetector a first semiconductor layer having a first surface and a second surface opposite to each other and including a photoelectric conversion unit configured to perform photoelectric conversion on light incident from the second surface side; a first multilayer wiring layer provided on the first surface side of the first semiconductor layer; a second semiconductor layer having a third surface and a fourth surface opposite to each other and including a transistor; a second multilayer wiring layer provided on the third surface side of the second semiconductor layer so as to overlap the first multilayer wiring layer; a warpage suppression film provided between the first multilayer wiring layer and the second multilayer wiring layer; a recessed portion that overlaps the warp suppression film in a plan view and extends from the fourth surface side of the second semiconductor layer to the second multilayer wiring layer; It is equipped with:
- the warp suppression film has an opening in an overlapping region that overlaps with the recessed portion in a plan view.
- An electronic device includes: The photodetector; an optical lens that forms an image of image light from a subject on an imaging surface of the detection device; a signal processing circuit for processing a signal output from the photodetector; It is equipped with:
- FIG. 1 is a chip layout diagram showing a configuration example of a solid-state imaging device according to a first embodiment of the present technology.
- 1 is a block diagram showing a configuration example of a solid-state imaging device according to a first embodiment of the present technology.
- 1 is an equivalent circuit diagram showing a configuration example of a pixel and a pixel circuit according to a first embodiment of the present technology.
- 2 is a longitudinal sectional view showing a schematic longitudinal sectional structure taken along the a1-a1 cutting line in FIG. 1.
- FIG. 5 is a development view of FIG.
- FIG. 6 is an enlarged development view of a part of FIG. 5 .
- FIG. 1 is a plan view showing a schematic planar pattern in an overlapping region of a warpage suppressing film
- 11 is a longitudinal sectional view showing a schematic diagram of deformation in an overlapping region where a bonding interface between a first laminate and a second laminate overlaps a recessed portion in a conventional solid-state imaging device.
- FIG. 4 is a longitudinal sectional view showing a schematic diagram of deformation in an overlapping region where a bonding interface between a first stack and a second stack overlaps with a recessed portion in the solid-state imaging device of the first embodiment;
- FIG. FIG. 1 is a plan view illustrating a modified example 1-1 of the first embodiment of the present technology.
- FIG. 11 is a plan view illustrating a modified example 1-2 of the first embodiment of the present technology.
- FIG. 11 is a longitudinal sectional view illustrating a modified example 1-3 of the first embodiment of the present technology.
- FIG. 11 is a longitudinal sectional view illustrating a modified example 1-4 of the first embodiment of the present technology.
- 11 is a chip layout diagram showing a configuration example of a solid-state imaging device according to a second embodiment of the present technology.
- FIG. 15 is a longitudinal sectional view showing a schematic longitudinal sectional structure taken along the a14-a14 cutting line in FIG. 14.
- FIG. 13 is a diagram showing a configuration example of an electronic device according to a third embodiment of the present technology.
- up and down and other directions in the following explanation are merely for the convenience of explanation and do not limit the technical ideas of this technology. For example, if an object is rotated 90 degrees and observed, up and down are converted into left and right and read, and of course, if it is rotated 180 degrees and observed, up and down are read inverted.
- a first direction and a second direction that are mutually orthogonal in the same plane are defined as the X direction and the Y direction, respectively, and a third direction that is orthogonal to each of the first and second directions is defined as the Z direction.
- the thickness direction of the semiconductor layers 30 and 70 described later will be described as the Z direction.
- CMOS complementary metal oxide semiconductor
- the solid-state imaging device 1A is mainly composed of a semiconductor chip 2 having a rectangular two-dimensional planar shape when viewed in a plane. That is, the solid-state imaging device 1A is mounted on the semiconductor chip 2, and the semiconductor chip 2 can be regarded as the solid-state imaging device 1A. As shown in Fig. 1, the solid-state imaging device 1A according to the first embodiment of the present technology is mainly composed of a semiconductor chip 2 having a rectangular two-dimensional planar shape when viewed in a plane. That is, the solid-state imaging device 1A is mounted on the semiconductor chip 2, and the semiconductor chip 2 can be regarded as the solid-state imaging device 1A. As shown in Fig.
- this solid-state imaging device 1A (101) takes in image light (incident light 106) from a subject via an optical lens 102, converts the amount of incident light 106 formed on an imaging surface into an electrical signal on a pixel-by-pixel basis, and outputs the electrical signal as a pixel signal.
- the semiconductor chip 2 on which the solid-state imaging device 1A is mounted has a square sensor pixel array section 2A provided in the center in a two-dimensional plane including mutually orthogonal X and Y directions, and a peripheral section 2B provided outside the sensor pixel array section 2A so as to surround the sensor pixel array section 2A.
- the semiconductor chip 2 is formed by dicing a semiconductor wafer including first and second semiconductor layers 30, 70 described below into chip formation regions. Therefore, the configuration of the solid-state imaging device 1A described below is generally the same in the wafer state before the semiconductor wafer is diced. In other words, this technology can be applied in the state of a semiconductor chip and in the state of a semiconductor wafer.
- the sensor pixel array section 2A is a light receiving surface that receives light focused by, for example, an optical lens (optical system) 102 shown in FIG. 16.
- a plurality of sensor pixels (pixels) 3 are arranged in a matrix on a two-dimensional plane including the X direction and the Y direction.
- the sensor pixels 3 are repeatedly arranged in each of the X direction and the Y direction that are mutually orthogonal on the two-dimensional plane.
- a plurality of external electrode pads 94 are arranged on the peripheral portion 2B. As shown in FIG. 4, the plurality of external electrode pads 94 are provided on the side of the semiconductor chip 2 opposite the sensor pixel array portion 2A. As shown in FIG. 1, each of the plurality of external electrode pads 94 is arranged, for example, along each of the four sides of the semiconductor chip 2 in a two-dimensional plane. Each of the plurality of external electrode pads 94 functions as an input/output terminal that electrically connects the semiconductor chip 2 to an external device.
- the semiconductor chip 2 includes a logic circuit 13 shown in Fig. 2.
- the logic circuit 13 includes a vertical drive circuit 4, a column signal processing circuit 5, a horizontal drive circuit 6, an output circuit 7, and a control circuit 8.
- the logic circuit 13 is configured of a CMOS (Complementary MOS) circuit having, as field effect transistors, for example, an n-channel conductivity type Metal Oxide Semiconductor Field Effect Transistor (MOSFET) and a p-channel conductivity type MOSFET.
- CMOS Complementary MOS
- the vertical drive circuit 4 shown in FIG. 2 is composed of, for example, a shift register.
- the vertical drive circuit 4 sequentially selects the desired pixel drive lines 10, supplies pulses to the selected pixel drive lines 10 for driving the sensor pixels 3, and drives each sensor pixel 3 row by row. That is, the vertical drive circuit 4 sequentially selects and scans each sensor pixel 3 in the sensor pixel array section 2A vertically row by row, and supplies pixel signals from the sensor pixels 3 based on signal charges generated by the photoelectric conversion section (photoelectric conversion element) of each sensor pixel 3 according to the amount of light received to the column signal processing circuit 5 via the vertical signal line 11.
- the column signal processing circuit 5 shown in FIG. 2 is arranged, for example, for each column of sensor pixels 3, and performs signal processing such as noise removal for each pixel column on signals output from one row of sensor pixels 3.
- the column signal processing circuit 5 performs signal processing such as CDS (Correlated Double Sampling) and AD (Analog-to-Digital) conversion to remove pixel-specific fixed pattern noise.
- the horizontal drive circuit 6 shown in FIG. 2 is composed of, for example, a shift register.
- the horizontal drive circuit 6 sequentially outputs horizontal scanning pulses to the column signal processing circuits 5, thereby selecting each of the column signal processing circuits 5 in turn, and causing each of the column signal processing circuits 5 to output a pixel signal that has been subjected to signal processing to the horizontal signal line 12.
- the output circuit 7 shown in FIG. 2 processes and outputs pixel signals sequentially supplied from each of the column signal processing circuits 5 through the horizontal signal line 12.
- the signal processing may include buffering, black level adjustment, column variation correction, various types of digital signal processing, etc.
- the control circuit 8 shown in FIG. 2 generates clock signals and control signals that serve as the basis for the operation of the vertical drive circuit 4, column signal processing circuit 5, horizontal drive circuit 6, etc., based on the vertical synchronization signal, horizontal synchronization signal, and master clock signal. The control circuit 8 then outputs the generated clock signals and control signals to the vertical drive circuit 4, column signal processing circuit 5, horizontal drive circuit 6, etc.
- each of the sensor pixels 3 includes a photoelectric conversion region 32 and a pixel circuit (readout circuit) 15.
- the photoelectric conversion region 32 includes a photoelectric conversion unit 34, a transfer transistor TR as a pixel transistor, and a floating diffusion region FD as a charge holding unit.
- the pixel circuit 15 is electrically connected to the floating diffusion region FD of the photoelectric conversion region 32.
- a circuit configuration is used in which one pixel circuit 15 is assigned to one sensor pixel 3, but the present invention is not limited to this first embodiment.
- a circuit configuration may be used in which one pixel circuit 15 is shared by multiple sensor pixels 3.
- a circuit configuration may be used in which one pixel circuit 15 is shared by one sensor pixel group (photoelectric conversion group) in which four sensor pixels 3 are arranged in a 2 ⁇ 2 arrangement, two in each of the X and Y directions, as one unit.
- a circuit configuration may be used in which one pixel circuit 15 is shared by one sensor pixel group (photoelectric conversion group) in which two sensor pixels 3 are arranged as one unit.
- a circuit configuration may be used in which one pixel circuit 15 is shared by one sensor pixel group (photoelectric conversion group) in which four or more sensor pixels 3 are arranged as one unit.
- the photoelectric conversion unit 34 shown in FIG. 3 is composed of, for example, a pn junction type photodiode (PD) and generates a signal charge according to the amount of light received.
- the cathode side of the photoelectric conversion unit 34 is electrically connected to the source region of the transfer transistor TR, and the anode side is electrically connected to a reference potential line (for example, ground).
- the transfer transistor TR shown in FIG. 3 transfers the signal charge photoelectrically converted by the photoelectric conversion unit 34 to the floating diffusion region FD.
- the source region of the transfer transistor RT is electrically connected to the cathode side of the photoelectric conversion unit 34, and the drain region of the transfer transistor TR is electrically connected to the floating diffusion region FD.
- the gate electrode of the transfer transistor TR is electrically connected to the transfer transistor drive line of the pixel drive line 10 shown in FIG. 2.
- the floating diffusion region FD shown in FIG. 3 temporarily holds (accumulates) the signal charge transferred from the photoelectric conversion unit 24 via the transfer transistor TR.
- the photoelectric conversion region 32 which includes the photoelectric conversion unit 34, the transfer transistor TR, and the floating diffusion region FD, is mounted for each sensor pixel 3 on the first semiconductor layer 30 shown in Figures 4 and 5.
- the pixel circuit 15 shown in FIG. 3 reads out the signal charge held in the floating diffusion region FD and outputs a pixel signal based on the read-out signal charge.
- the pixel circuit 15 includes, but is not limited to, an amplification transistor AMP, a selection transistor SEL, and a reset transistor RST as pixel transistors Q.
- Each of these pixel transistors (AMP, SEL, RST) and the transfer transistor TR described above is configured as a field effect transistor, for example, a MOSFET having a gate insulating film made of a silicon oxide (SiO 2 ) film, a gate electrode, and a pair of main electrode regions functioning as a source region and a drain region.
- these transistors may be MISFETs (Metal Insulator Semiconductor FETs) whose gate insulating film is made of a silicon nitride (Si 3 N 4 ) film or a laminated film such as a silicon nitride film and a silicon oxide film.
- MISFETs Metal Insulator Semiconductor FETs
- the amplifier transistor AMP shown in FIG. 3 has a source region electrically connected to the drain region of the select transistor SEL, and a drain region electrically connected to the power supply line Vdd and the drain region of the reset transistor RST.
- the gate electrode of the amplifier transistor AMP is electrically connected to the floating diffusion region FD and the source region of the reset transistor RST.
- the selection transistor SEL shown in FIG. 3 has a source electrically connected to the vertical signal line 11 (VSL) and a drain region electrically connected to the source region of the amplification transistor AMP.
- the gate electrode of the selection transistor SEL is electrically connected to the selection transistor drive line of the pixel drive line 10 shown in FIG. 2.
- the reset transistor RST shown in FIG. 3 has a source region electrically connected to the floating diffusion region FD and the gate electrode of the amplifier transistor AMP, and a drain region electrically connected to the power supply line Vdd and the drain region of the amplifier transistor AMP.
- the gate electrode of the reset transistor RST is electrically connected to the reset transistor drive line of the pixel drive line 10 shown in FIG. 2.
- the transfer transistor TR transfers the signal charge generated in the photoelectric conversion unit 24 to the floating diffusion region FD.
- the selection transistor SEL controls the output timing of the pixel signal from the pixel circuit 15.
- the amplification transistor AMP shown in FIG. 3 generates a pixel signal whose voltage corresponds to the level of the signal charge held in the floating diffusion region FD.
- the amplification transistor AMP constitutes a source-follower type amplifier, and outputs a pixel signal whose voltage corresponds to the level of the signal charge generated in the photoelectric conversion unit 24.
- the selection transistor SEL is turned on, the amplification transistor AMP amplifies the potential of the floating diffusion region FD, and outputs a voltage corresponding to that potential to the column signal processing circuit 5 via the vertical signal line 11 (VSL).
- the signal charge generated in the photoelectric conversion unit 34 of the sensor pixel 3 is held (accumulated) in the floating diffusion region FD via the transfer transistor TR of the sensor pixel 3.
- the signal charge held in the floating diffusion region FD is read out by the pixel circuit 15 and applied to the gate electrode of the amplification transistor AMP of the pixel circuit 15.
- a horizontal line selection control signal is provided to the gate electrode of the selection transistor SEL of the pixel circuit 15 from the vertical shift register.
- the selection transistor SEL becomes conductive, and a current corresponding to the potential of the floating diffusion region FD amplified by the amplification transistor AMP flows in the vertical signal line 11. Also, by setting the reset control signal applied to the gate electrode of the reset transistor RST of the pixel circuit 15 to a high (H) level, the reset transistor RST becomes conductive, and the signal charge accumulated in the floating diffusion region FD is reset.
- the selection transistor SEL may be omitted if necessary.
- the source region of the amplification transistor AMP is electrically connected to the vertical signal line 11 (VSL).
- a switching transistor may also be provided between the reset transistor RST and the gate electrode of the floating diffusion region FD and the amplifier transistor AMP.
- the switching transistor controls charge retention by the floating diffusion region FD and adjusts the voltage multiplication factor according to the potential amplified by the amplifier transistor AMP.
- the switching transistor is also used to switch the conversion efficiency.
- the FD capacitance C of the charge holding section needs to be large so that the voltage V when converted to voltage by the amplification transistor AMP does not become too large (in other words, to become small).
- the switching transistor when the switching transistor is turned on, the gate capacitance of the switching transistor increases, so the overall FD capacitance C becomes large.
- the switching transistor when the switching transistor is turned off, the overall FD capacitance C becomes small. In this way, by switching the switching transistor on/off, the FD capacitance C can be made variable and the conversion efficiency can be switched.
- the solid-state imaging device 1A (semiconductor chip 2) includes a first stack (first semiconductor substrate) 20 and a second stack (second semiconductor substrate) 60.
- the first stack 20 and the second stack 60 are bonded with their bonding surfaces 20a, 60a facing each other.
- the first stack 20 is equipped with a sensor pixel array section 2A, a control circuit 8, a pixel circuit 15, and the like.
- the second stack 60 is equipped with a logic circuit 13 including a vertical drive circuit 4, a column signal processing circuit 5, a horizontal drive circuit 6, an output circuit 7, and the like.
- the first stack 20 includes a first semiconductor layer 30 having a first surface S1 and a second surface S2 located opposite each other in the thickness direction (Z direction), a first multilayer wiring layer 40 provided on the first surface S1 side of the first semiconductor layer 30, and a light-collecting layer 50 provided on the second surface S2 side of the first semiconductor layer 30.
- the first laminate 20 also includes a warp suppression film 46 and a bonding layer 47 laminated in sequence from the first multilayer wiring layer 40 side on the side of the first multilayer wiring layer 40 opposite the first semiconductor layer 30 side.
- the first surface S1 of the first semiconductor layer 30 may be referred to as the main surface or element formation surface
- the second surface S2 may be referred to as the back surface.
- the solid-state imaging device 1A photoelectrically converts incident light incident from the second surface S2 side of the first semiconductor layer 30 in a photoelectric conversion unit 34 (photodiode PD) provided in a photoelectric conversion region 32 of the first semiconductor layer 30. Therefore, in this first embodiment, the second surface S2 of the first semiconductor layer 30 may be referred to as the light incident surface.
- the second stack 60 comprises a second semiconductor layer 70 having a third surface S3 and a fourth surface S4 located opposite each other in the thickness direction (Z direction), and a second multilayer wiring layer 80 provided on the third surface S3 side of the second semiconductor layer 70.
- the second laminate 60 also includes a recessed portion 91 extending from the third surface S3 side of the second semiconductor layer 70 to the second multilayer wiring layer 80, an isolation insulating film 92 provided along the inner wall of the recessed portion 91, and a contact electrode 93 provided along the inner wall of the recessed portion 91 via the isolation insulating film 92 and electrically connected to the second multilayer wiring layer 80.
- the second laminate 60 also includes an external electrode pad 94 provided on the fourth surface S4 side of the second semiconductor layer 70 and electrically connected to the contact electrode 93, and a solder resist film 95 provided in the recessed portion 91 via the contact electrode 93.
- the second laminate 60 also includes a warp suppression film 86 and a bonding layer 87 laminated in sequence from the second multilayer wiring layer 80 side on the side of the second multilayer wiring layer 80 opposite the second semiconductor layer 70 side.
- the third surface S3 of the second semiconductor layer 70 may be called the main surface or element formation surface
- the fourth surface S4 may be called the back surface.
- the light collecting layer 50 is provided on the second surface S2 side of the first semiconductor layer 30.
- the light collecting layer 50 has a layered structure in which, for example, but not limited to, a planarizing film 51, an optical filter 53, and an on-chip lens 54 are layered in this order from the second surface S2 side of the first semiconductor layer 30.
- the planarization film 51 is provided on the second surface S2 side of the semiconductor layer 30 so as to cover the second surface S2 of the semiconductor layer 30, and planarizes the second surface S2 side of the semiconductor layer 30.
- the optical filter 53 and the microlens 54 are provided for each sensor pixel 3.
- the optical filter 53 separates the color of the incident light that is incident from the light incident surface side (second surface S2 side) of the semiconductor chip 2.
- the microlens 54 collects the irradiated light and allows the collected light to efficiently enter the sensor pixel 3 (photoelectric conversion region 32).
- the first semiconductor layer 30 is provided on the third surface S3 side of the second semiconductor layer 70 via a first multi-layer wiring layer 40 and a second multi-layer wiring layer 80.
- the first semiconductor layer 30 is made of, for example, a p-type single crystal silicon substrate.
- a photoelectric conversion region 32 is provided for each sensor pixel 3 in a region overlapping with the sensor pixel array section 2A in a planar view.
- the photoelectric conversion region 32 is partitioned by a separation region provided in the first semiconductor layer 30. Note that the number of sensor pixels 3 is not limited to that shown in Figures 4 and 5.
- the photoelectric conversion region 32 although not shown, has, for example, a p-type well region and an n-type semiconductor region (photoelectric conversion section) embedded inside this well region.
- the photoelectric conversion element PD shown in FIG. 3 is configured in the photoelectric conversion region 32 including the well region and photoelectric conversion section of the first semiconductor layer 30.
- the photoelectric conversion region 32 is provided with, but is not limited to, a floating diffusion region (charge holding section) FD made of, for example, an n-type semiconductor region, and a transfer transistor TR.
- a plurality of transistors Q1 are provided on the first surface S1 of the first semiconductor layer 30.
- the transistors Q1 are provided in the semiconductor layer 30 directly below the peripheral portion 2B in a plan view.
- the transistors Q1 are, for example, transistors that constitute the control circuit 8 shown in Figure 2.
- a MOS transistor Metal Oxide Semiconductor Field Effect Transistor
- Figures 4 and 5 show four transistors Q1 as an example representing the plurality of transistors.
- the first multilayer wiring layer 40 is laminated on the first surface S1 side of the first semiconductor layer 30.
- the first multilayer wiring layer 40 has a multilayer wiring structure in which wiring layers 42 are laminated in multiple stages via an interlayer insulating film 41.
- FIGS. 1-10 a three-layer wiring structure in which the wiring layers 42 are laminated in three stages is illustrated in FIGS.
- the interlayer insulating film 41 is made of, for example, a silicon oxide film.
- the wiring layer 42 is made of, for example, a copper (Cu) film or a Cu alloy film mainly composed of Cu, or an aluminum (Al) film or an Al alloy film mainly composed of Al.
- the second semiconductor layer 70 is provided on the first surface S1 side of the first semiconductor layer 30 via a second multilayer wiring layer 80 and a first multilayer wiring layer 40.
- the second semiconductor layer 70 is made of, for example, a p-type single crystal silicon substrate.
- a plurality of transistors Q2 are provided on the third surface S3 of the semiconductor layer 70.
- the transistors Q2 are, for example, pixel transistors constituting the pixel circuit (readout circuit) 15 shown in Figure 3, or transistors constituting the logic circuit 13 shown in Figure 2.
- a MOS transistor is used as the transistor Q2. Seven transistors Q2 are shown in Figures 4 and 5 to represent the plurality of transistors.
- the second multilayer wiring layer 80 is laminated on the third surface S3 side of the second semiconductor layer 70.
- the second multilayer wiring layer 80 has a multilayer wiring structure in which wiring layers 82 are laminated in multiple stages via an interlayer insulating film 81.
- a three-layer wiring structure in which the wiring layers 82 are laminated in three stages is illustrated in FIG.
- the second multilayer wiring layer 80 has an internal electrode pad 83.
- This internal electrode pad 83 is provided in the first wiring layer 82, counting from the second semiconductor layer 70 side of the second multilayer wiring layer 80.
- the interlayer insulating film 81 is made of, for example, a silicon oxide film.
- the wiring layer 82 is made of, for example, a copper (Cu) film or a Cu alloy film mainly composed of Cu, or an aluminum (Al) film or an Al alloy film mainly composed of Al.
- the dug portion 91 is provided at a position overlapping with the internal electrode pad 83 of the second multilayer wiring layer 80 in a plan view.
- the dug portion 91 extends from the third surface S3 side of the second semiconductor layer 70 across the second multilayer wiring layer 80, and reaches the internal electrode pad 83.
- the dug portion 91 can be formed by selectively etching the second semiconductor layer 70 and the second multilayer wiring layer 80 using well-known photolithography and anisotropic dry etching techniques. As shown in FIG. 1, a plurality of recessed portions 91 are provided in the peripheral portion 2B, for example, but not limited to this.
- the isolation insulating film 92 is provided along the side surface of the inner wall of the recessed portion 91, and is also provided on the fourth surface S4 side of the second semiconductor layer 70. In other words, the isolation insulating film 92 is provided across the side surface of the inner wall of the recessed portion 91 and the fourth surface S4 of the second semiconductor layer 70.
- the isolation insulating film 92 is composed of, for example, a silicon oxide film.
- the contact electrode 93 is provided along the inner wall of the dug portion 91 via the isolation insulating film 92, and is provided along the internal electrode pad 83 located at the bottom of the dug portion 91.
- the contact electrode 93 is electrically and mechanically connected to the internal electrode pad 83.
- the contact electrode 93 is electrically insulated and separated from the second semiconductor layer 70 via the isolation insulating film 92.
- the external electrode pad 94 is provided on the fourth surface S4 side of the second semiconductor layer 70 via an isolation insulating film 92.
- the external electrode pad 94 is integrally formed with the contact electrode 93 and is electrically connected to the contact electrode 93. That is, the external electrode pad 94 is electrically connected to the internal electrode pad 83 of the second multilayer wiring layer 80 through the recessed portion 91.
- the recessed portion 91 is a through hole for electrically connecting the internal electrode pad 83 on the third surface S3 side of the second semiconductor layer 70 and the external electrode pad 94 on the fourth surface S4 side of the second semiconductor layer 70, and penetrates the second semiconductor layer 70 along the thickness direction (Z direction) of the second semiconductor layer 70.
- the external electrode pad 94 is electrically insulated and separated from the second semiconductor layer 70 via the isolation insulating film 92.
- the contact electrode 93 and the external electrode pad 94 can be formed, for example, by forming a conductive film on the fourth surface S4 side of the second semiconductor layer 70 and inside the recessed portion 91 with a thickness that conforms to the inner wall of the recessed portion 91, and then patterning this conductive film using well-known photolithography and anisotropic dry etching techniques.
- the conductive film can be, for example, a laminate film of a titanium (Ti) film as a barrier film and a copper (Cu) film as a seed film.
- multiple external electrode pads 94 are provided, for example but not limited to, on the peripheral portion 2B of the semiconductor chip 2.
- solder resist film 95 is provided inside the dug portion 91 so as to cover the contact electrode 93, and is also provided so as to cover the fourth surface S4 of the second semiconductor layer 70. In other words, the solder resist film 95 is provided across the inside of the dug portion 91 and the fourth surface S4 of the second semiconductor layer 70.
- the solder resist film 95 is provided mainly for the purpose of protecting the contact electrodes 93 and the wiring (not shown) provided on the fourth surface S4 side of the second semiconductor layer 70.
- the solder resist film 95 is provided with an opening 95a that exposes the external electrode pad 94.
- Connecting members such as solder bumps and bonding wires are connected to the external electrode pads 94 through the openings 95a in the solder resist film 95.
- the bonding layer 47 on the first laminate 20 side is provided on the bonding surface of the first multilayer wiring layer 40 opposite the first semiconductor layer 30 side so as to cover the warpage suppression film 46.
- the bonding layer 46 is provided across the sensor pixel array portion 2A and the peripheral portion 2B of the semiconductor chip 2, and is provided over a wide range so as to cover the entire area of the first multilayer wiring layer 40 in a plan view.
- the bonding layer 87 on the second laminate 20 side is provided on the bonding surface side of the second multilayer wiring layer 80 opposite the second semiconductor layer 70 side so as to cover the warpage suppression film 86.
- the bonding layer 87 is provided across the sensor pixel array portion 2A and the peripheral portion 2B of the semiconductor chip 2, and is provided over a wide area so as to cover the entire area of the second multilayer wiring layer 80 in a plan view.
- the surface of the bonding layer 47 functions as the bonding surface 20a of the first laminate 20.
- the bonding layer 87 functions as the bonding surface 60a of the second laminate 60.
- the bonding layer 47 of the first laminate 20 and the bonding layer 87 of the second laminate 60 are bonded together.
- the first laminate 20 and the second laminate 60 are bonded together in line in their respective thickness directions (Z direction).
- the bonding layer 47 of the first stack 20 and the bonding layer 87 of the second stack 60 can be bonded together by, for example, a plasma bonding method.
- silanol groups are formed by irradiating a silicon oxide layer serving as a bonding layer with plasma.
- the surfaces on which the silanol groups have been formed are then placed face to face, and the laminates are pressed together and bonded by van der Waals force.
- a heat treatment of, for example, 400°C/60 min is applied, causing a dehydration condensation reaction between the silanol groups.
- the warp suppression film 46 is provided on the side of the first multilayer wiring layer 40 opposite to the first semiconductor layer 30, and is covered with a bonding layer 47.
- the warp suppression film 46 is provided across the sensor pixel array portion 2A and the peripheral portion 2B of the semiconductor chip 2, and is provided over a wide range so as to cover the entire area of the first multilayer wiring layer 40 in a plan view.
- the warpage suppression film 46 is for suppressing warpage of the first stack 20 in which the first semiconductor layer 30 and the first multilayer wiring layer 40, which have different thermal expansion coefficients, are stacked, and is made of a layer having an internal stress opposite to the warpage of the first stack 20.
- a material that can be formed by a plasma CVD method such as SiN, SiO2, SiOC, SiC, SiCN, FSG, FTEOS, or a material that can be formed by a coating method, such as an induction material or SOG, can be used.
- the film formed by the plasma CVD method can control the internal stress by changing conditions such as the pressure in the chamber of the CVD device and the RF power.
- the warpage suppression film 46 it is preferable to use a material film formed by the plasma CVD method as the warpage suppression film 46.
- a silicon nitride (SiN) film is used as the warpage suppression film 46.
- the warp suppression film 86 is provided on the side of the second multilayer wiring layer 80 opposite to the second semiconductor layer 70, and is covered with a bonding layer 87.
- the warp suppression film 86 is provided across the pixel array portion 2A and the peripheral portion 2B of the semiconductor chip 2, and is provided over a wide range so as to cover the entire area of the second multilayer wiring layer 80 in a plan view.
- the warpage suppression film 86 is intended to suppress warpage of the second laminate 60, which is a laminate of the second semiconductor layer 70 and the second multilayer wiring layer 80, which have different thermal expansion coefficients, and is made of a layer that has an internal stress opposite to the warpage of the second laminate 60.
- the warpage suppression film 46 can be configured in the same way as the warpage suppression film 46 that suppresses warpage of the first laminate 20 described above.
- a silicon nitride (SiN) film is used as the warpage suppression film 86.
- each of the warp suppression films 86 and 46 is provided between the second multilayer wiring layer 80 and the first multilayer wiring layer 40 .
- the solid-state imaging device 1A of the first embodiment comprises a second semiconductor layer 70, a second multilayer wiring layer 80 provided on the third surface S3 side of the second semiconductor layer 70, a warp suppression film 86 provided on the side of the second multilayer wiring layer 80 opposite the second semiconductor layer 70 side, and a recessed portion 91 that overlaps the warp suppression film 86 in a planar view and extends from the fourth surface S4 side of the second semiconductor layer 70 to the second multilayer wiring layer.
- the warpage suppression film 86 has openings 86a1 in an overlapping region 86a that overlaps with the recessed portion 91 in a plan view.
- the openings 86a1 are, for example, scattered, but are not limited to this.
- the overlapping region 86a of the warpage suppression film 86 has a lattice-like planar pattern including the openings 86a1 . 6 , the opening 86a1 penetrates, for example, the warp suppression film 86.
- the planar shape of the opening 86a1 is, for example, rectangular, as shown in FIG.
- the warp suppression film 46 also has openings 46a1 in an overlapping region 46a that overlaps with the recessed portion 91 in a plan view. Like the openings 86a1 of the warp suppression film 86 described above, the openings 46a1 are also, for example, scattered. The overlapping region 46a of the warp suppression film 46 also has a lattice-like planar pattern including the openings 46a1 . Like the openings 86a1 described above, the openings 46a1 of the warp suppression film 46 also penetrate the warp suppression film 46, for example, and the planar shape of the openings 46a1 is, for example, rectangular .
- FIG. 8 is a vertical cross-sectional view showing a schematic diagram of deformation in an overlapping region where the bonding interface R1 between the first laminate 20 and the second laminate 60 overlaps with the recessed portion 91 in a conventional solid-state imaging device.
- FIG. 9 is a vertical cross-sectional view showing a schematic diagram of deformation in the overlapping region where the bonding interface between the first laminate 20 and the second laminate 60 overlaps with the recessed portion 91 in the solid-state imaging device 1A of this first embodiment.
- the overlapping regions 86a, 46a of the warp suppression films 86, 46 that overlap the recessed portion 91 of the second semiconductor layer 70 in a planar view are in a solid film state. That is, the entire recessed portion 91 is covered with the warp suppression films 86, 46 in a planar view. For this reason, stress caused by the warp suppression films 86, 46 is locally concentrated around the recessed portion 91, and deformation (warp amount A) may occur in the portion of the second multilayer wiring layer 80 that overlaps the recessed portion 91 of the second semiconductor layer 70 in a planar view. This deformation of the second multilayer wiring layer 80 causes warping or peeling in the wiring of the second multilayer wiring layer 80 and the internal electrode pads 83, which reduces reliability.
- the warp suppression films 86, 46 have openings 86a1, 46a1 in overlapping regions 86a, 46a that overlap the recessed portion 91 of the second semiconductor layer 70 in a planar view. This makes it possible to mitigate the phenomenon in which stress caused by the warp suppression films 86, 46 is locally concentrated around the recessed portion 91, and to suppress deformation (warpage amount A) in the portion of the second multilayer wiring layer 80 that overlaps the recessed portion 91 of the second semiconductor layer 70 in a planar view.
- the solid-state imaging device 1A according to the first embodiment can achieve even greater reliability.
- the openings 86a.sub.1 , 46a.sub.1 of the warp suppression films 86, 46 have a rectangular planar shape.
- the present technology is not limited to the rectangular shape.
- the openings 86a1, 46a1 of the warp suppression films 86 , 46 may be formed to have a circular planar shape, with the same effects as those of the first embodiment being obtained in this case as well.
- the openings 86a1, 46a1 are dotted in the overlapping regions 86a, 46a of the warp suppression films 86, 46.
- the present technology is not limited to the configuration in which the openings 86a1 , 46a1 are dotted in the overlapping regions 86a, 46a of the warp suppression films 86, 46. 11, the openings 86a 1 and 46a 1 may be provided in the overlapping regions 86a and 46a of the warp suppression films 86 and 46. In this case as well, the same effects as those of the first embodiment can be obtained.
- a recessed portion 91 is provided in the second semiconductor layer 70 that overlaps with the peripheral portion 2B of the semiconductor chip 2 in a planar view, and openings 86a1 , 46a1 are provided in overlapping regions 86a, 46a of the warp suppression films 86, 46 that overlap with this recessed portion 91.
- the present technology is not limited to the recessed portion 91 of the above-described first embodiment.
- a recessed portion 91 may be provided in the second semiconductor layer 70 that overlaps with the sensor pixel array portion 2A of the semiconductor chip 2 in a plan view, and openings 86a1, 46a1 may be provided in overlapping regions 86a, 46a of the warp suppression films 86 , 46 that overlap with this recessed portion 91.
- openings 86a1, 46a1 may be provided in overlapping regions 86a, 46a of the warp suppression films 86 , 46 that overlap with this recessed portion 91.
- deformation (warping amount A) in the portion of the second multilayer wiring layer 80 that overlaps with the recessed portion 91 directly below the sensor pixel array portion 2A in a plan view can be suppressed, thereby suppressing warping of the internal electrode pad 83.
- the warp suppression films 86, 46 are provided on both the first laminate 20 and the second laminate 60, but the present technology can also be applied to a case where a warp suppression film is provided on at least one of the first laminate 20 and the second laminate 60.
- Fig. 13 illustrates a case where the warp suppression film 86 is provided on the second laminate 60 of the first laminate 20 and the second laminate 60.
- An opening 86a is provided in an overlapping region 86a of the warp suppression film 86 on the second laminate 60 side.
- the solid-state imaging device 1B of the second embodiment of the present technology is basically configured in the same manner as the solid-state imaging device 1A of the first embodiment described above, with the configurations of the external electrode pads and the recessed portions being different.
- a recessed portion 91 is provided in the second laminate 60 so as to overlap with the internal electrode pad 83 of the second multilayer wiring layer 80 in a plan view, and openings 86a1 , 46a1 are provided in overlapping regions 86a, 46a of the warp suppression films 86, 46 that overlap with this recessed portion 91.
- a recessed portion 56 is provided in the first laminate 20 so as to overlap with the internal electrode pad 44 of the first multilayer wiring layer 40 in a plan view, and openings 46 b 1 , 86 b 1 are provided in the overlapping regions 46 b , 86 b of the warp suppression films 46 , 86 that overlap with this recessed portion 56.
- the internal electrode pads 44 are provided, for example, in the third wiring layer 42 counting from the first semiconductor layer 30 side of the first multilayer wiring layer 40.
- the internal electrode pads 44 function as input/output terminals that electrically connect the semiconductor chip 2 to an external device. Then, connecting members such as solder bumps and bonding wires are connected to the internal electrode pads 44.
- the recessed portion 56 extends from the second surface S2 of the first semiconductor layer 30 toward the first multilayer wiring layer 40, and reaches the internal electrode pad 44 of the first multilayer wiring layer 40. That is, the recessed portion 56 penetrates the first semiconductor layer 30 across the first surface S1 and the second surface S2, and reaches the internal electrode pad 44 of the first multilayer wiring layer 40.
- the overlapping regions 46b, 86b of the warp suppressing films 46, 86 have, for example, a lattice-like planar pattern including openings 46b 1 , 86b 1 , similar to the overlapping regions 46a, 86b of the above-described first embodiment.
- the solid-state imaging device 1B according to the second embodiment also provides the same effects as the solid-state imaging device 1A according to the first embodiment described above.
- the present technology can be applied to various electronic devices, such as imaging devices such as digital still cameras and digital video cameras, mobile phones with imaging functions, or other devices with imaging functions.
- FIG. 16 is a diagram showing the schematic configuration of an electronic device (e.g., a camera) according to a third embodiment of the present technology.
- an electronic device e.g., a camera
- electronic device 100 includes solid-state imaging device 101, optical lens 102, shutter device 103, drive circuit 104, and signal processing circuit 105.
- This electronic device 100 shows an embodiment in which solid-state imaging device 1A according to the first embodiment of the present technology is used as solid-state imaging device 101 in an electronic device (e.g., a camera).
- the optical lens 102 focuses image light (incident light 106) from the subject on the imaging surface of the solid-state imaging device 101. This causes signal charge to accumulate in the solid-state imaging device 101 for a certain period of time.
- the shutter device 103 controls the light irradiation period and light blocking period for the solid-state imaging device 101.
- the drive circuit 104 supplies a drive signal that controls the transfer operation of the solid-state imaging device 101 and the shutter operation of the shutter device 103.
- the drive signal (timing signal) supplied from the drive circuit 104 transfers charge in the solid-state imaging device 101.
- the signal processing circuit 105 performs various signal processing on the signal (pixel signal (image signal)) output from the solid-state imaging device 101.
- the video signal that has undergone signal processing is stored in a storage medium such as a memory, or output to a monitor.
- This configuration further improves the reliability of the solid-state imaging device 101, and therefore the reliability of the electronic device 100 of the third embodiment can also be further improved.
- the electronic device 100 to which the solid-state imaging device of the above-described embodiment can be applied is not limited to a camera, but can also be applied to other electronic devices.
- the solid-state imaging device may be applied to an imaging device such as a camera module for mobile devices such as mobile phones and tablet terminals.
- this technology can be applied to all light detection devices, including not only the solid-state imaging devices that serve as image sensors described above, but also distance measurement sensors known as ToF (Time of Flight) sensors that measure distance.
- Distance measurement sensors emit light toward an object, detect the light that is reflected back from the surface of the object, and calculate the distance to the object based on the flight time from when the light is emitted to when the reflected light is received.
- the pixel transistors described above can also be used in these distance measurement sensors.
- the present technology may be configured as follows. (1) a semiconductor layer having a first surface and a second surface positioned opposite to each other in a thickness direction; a multilayer wiring layer provided on the first surface side of the semiconductor layer; a warpage suppression film provided on a side of the multilayer wiring layer opposite to the semiconductor layer; a recessed portion that overlaps the warp suppression film in a plan view and extends from the second surface side of the semiconductor layer to the multilayer wiring layer; Equipped with the warp suppression film has an opening in an overlapping region that overlaps with the recessed portion in a plan view. (2) The light detection device according to (1) above, wherein the openings are scattered.
- the contact electrode is provided along an inner wall of the recessed portion
- a solder resist film is provided in the recess so as to cover the contact electrode.
- a first semiconductor layer having a first surface and a second surface opposite to each other and including a photoelectric conversion portion configured to photoelectrically convert light incident from the second surface side; a first multilayer wiring layer provided on the first surface side of the first semiconductor layer; a second semiconductor layer having a third surface and a fourth surface opposite to each other and including a transistor; a second multilayer wiring layer provided on the third surface side of the second semiconductor layer so as to overlap the first multilayer wiring layer; a warpage suppression film provided between the first multilayer wiring layer and the second multilayer wiring layer; a recessed portion that overlaps the warp suppression film in a plan view and extends from the fourth surface side of the second semiconductor layer to the second multilayer wiring layer; Equipped with the warp suppression film has an opening in an overlapping region that overlaps with the recessed portion in a plan view.
- a contact electrode provided in the recess and connected to a wiring layer of the multilayer wiring layer;
- the second multilayer wiring layer has an internal electrode pad between the warp suppression film and the recessed portion, The photodetector according to (11) above, wherein the contact electrode is connected to the internal electrode pad.
- the contact electrode is provided along an inner wall of the recessed portion,
- the light detection device includes: a semiconductor layer having a first surface and a second surface positioned opposite to each other in a thickness direction; a multilayer wiring layer provided on the first surface side of the semiconductor layer; a warpage suppression film provided on a side of the multilayer wiring layer opposite to the semiconductor layer; a recessed portion that overlaps the warp suppression film in a plan view and extends from the second surface side of the semiconductor layer to the multilayer wiring layer; Equipped with The warp suppression film has an opening in an overlapping region that overlaps with the recessed portion in a plan view.
- Pixel circuit 20 First stacked body 30 First semiconductor layer 32 Photoelectric conversion region 34 Photoelectric conversion section 40 First multilayer wiring layer 41 Interlayer insulating film 42 Wiring layer 44 Internal electrode pad 46 Warp suppression film 46a, 46b Overlapping region 46a 1 , 46b 1 Opening 47 Bonding layer 50 Light collecting layer 51 Planarization film 53 Optical filter 54 On-chip lens 56 Carved section 60 Second stacked body 70 Second semiconductor layer 80 Second multilayer wiring layer 81 Interlayer insulating film 82 Wiring layer 83 Internal electrode pad 86 Warp suppressing film 86a, 86b Overlapping region 86a1 , 86b1 Opening 87 Bonding layer 91 Engraved portion 92 Isolation insulating film 93 Contact electrode 94 External electrode pad
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Electromagnetism (AREA)
- Solid State Image Pick-Up Elements (AREA)
Abstract
The present invention further improves the reliability of a light detection device and an electronic apparatus. This light detection device is provided with: a semiconductor layer having a first surface and a second surface that are positioned on mutually opposite sides in the thickness direction; a multilayer wiring layer provided on the first surface side of the semiconductor layer; a warpage suppression film provided on the opposite side of the multilayer wiring layer from the semiconductor layer side; and a dug-in part overlapping the warpage suppression film in a plan view and extending from the second surface side of the semiconductor layer to the multilayer wiring layer. The warpage suppression film has an opening in an overlapping region overlapping the dug-in part in the plan view.
Description
本技術(本開示に係る技術)は、光検出装置及び電子機器に関し、特に、反り抑制層を有する光検出装置及び電子機器に適用して有効な技術に関するものである。
This technology (the technology disclosed herein) relates to photodetection devices and electronic devices, and in particular to technology that is effective when applied to photodetection devices and electronic devices that have a warp suppression layer.
固体撮像装置や測距装置などの光検出装置では、素子が形成される半導体層を複数段に積層した積層型が知られている。この積層型の光検出装置は、信号を高速で転送することが可能となる。特許文献1には、2つの半導体層を積層した2段積層構造の固体撮像装置が開示されている。そして、特許文献1には、半導体層及び多層配線層を含む半導体基体の反りを抑制する反り抑制膜(反り補正層)を設けた技術も開示されている。
In photodetection devices such as solid-state imaging devices and distance measuring devices, a stacked type is known in which semiconductor layers in which elements are formed are stacked in multiple stages. This stacked type photodetection device is capable of transferring signals at high speed. Patent Document 1 discloses a solid-state imaging device with a two-stage stacked structure in which two semiconductor layers are stacked. Patent Document 1 also discloses a technology in which a warpage suppression film (warpage correction layer) is provided to suppress warpage of a semiconductor substrate including a semiconductor layer and a multilayer wiring layer.
ところで、積層型の光検出装置は、半導体層の一面側に多層配線層が設けられ、更に多層配線層の半導体層側とは反対側に反り抑制膜が設けられている。そして、半導体層の一面側に設けられた多層配線層と、半導体層の一面側とは反対側に設けられた外部電極パッドとが、半導体層に設けられた掘り込み部を通して電気的に接続されている。
In a stacked-type photodetector, a multi-layer wiring layer is provided on one side of a semiconductor layer, and a warpage suppression film is provided on the side of the multi-layer wiring layer opposite the semiconductor layer. The multi-layer wiring layer provided on one side of the semiconductor layer and an external electrode pad provided on the side opposite the semiconductor layer are electrically connected through a recessed portion provided in the semiconductor layer.
このような構成の場合、掘り込み部の周囲に局所的に応力が集中し、平面視で半導体層の掘り込み部と重畳する多層配線層の部分に変形が生じることがある。この多層配線層の変形は、多層配線層の配線や内部電極パッドに反りや剥離を発生させ、信頼性を低下させる要因となることから、改良の余地があった。
In this type of configuration, stress is concentrated locally around the recessed portion, which can cause deformation in the portion of the multilayer wiring layer that overlaps the recessed portion of the semiconductor layer in a planar view. This deformation of the multilayer wiring layer can cause warping or peeling in the wiring and internal electrode pads of the multilayer wiring layer, reducing reliability, and therefore leaving room for improvement.
本技術の目的は、光検出装置及び電子機器のより一層の信頼性の向上を図ることが可能な技術を提供することにある。
The purpose of this technology is to provide technology that can further improve the reliability of photodetection devices and electronic devices.
(1)本技術の一態様に係る光検出装置は、
厚さ方向で互いに反対側に位置する第1の面及び第2の面を有する半導体層と、
上記半導体層の上記第1の面側に設けられた多層配線層と、
上記多層配線層の上記半導体層側とは反対側に設けられた反り抑制膜と、
平面視で上記反り抑制膜と重畳し、かつ上記半導体層の上記第2の面側から上記多層配線層に亘って延伸する掘り込み部と、
を備えている。
そして、上記反り抑制膜は、平面視で上記掘り込み部と重畳する重畳領域に開口部を有する。 (1) A photodetector according to an aspect of the present disclosure,
a semiconductor layer having a first surface and a second surface positioned opposite to each other in a thickness direction;
a multilayer wiring layer provided on the first surface side of the semiconductor layer;
a warpage suppression film provided on a side of the multilayer wiring layer opposite to the semiconductor layer;
a recessed portion that overlaps the warp suppression film in a plan view and extends from the second surface side of the semiconductor layer to the multilayer wiring layer;
It is equipped with:
The warp suppression film has an opening in an overlapping region that overlaps with the recessed portion in a plan view.
厚さ方向で互いに反対側に位置する第1の面及び第2の面を有する半導体層と、
上記半導体層の上記第1の面側に設けられた多層配線層と、
上記多層配線層の上記半導体層側とは反対側に設けられた反り抑制膜と、
平面視で上記反り抑制膜と重畳し、かつ上記半導体層の上記第2の面側から上記多層配線層に亘って延伸する掘り込み部と、
を備えている。
そして、上記反り抑制膜は、平面視で上記掘り込み部と重畳する重畳領域に開口部を有する。 (1) A photodetector according to an aspect of the present disclosure,
a semiconductor layer having a first surface and a second surface positioned opposite to each other in a thickness direction;
a multilayer wiring layer provided on the first surface side of the semiconductor layer;
a warpage suppression film provided on a side of the multilayer wiring layer opposite to the semiconductor layer;
a recessed portion that overlaps the warp suppression film in a plan view and extends from the second surface side of the semiconductor layer to the multilayer wiring layer;
It is equipped with:
The warp suppression film has an opening in an overlapping region that overlaps with the recessed portion in a plan view.
(2)本技術の他の態様に係る光検出装置は、
互いに反対側に位置する第1の面及び第2の面を有し、かつ上記第2の面側から入射した光を光電変換する光電変換部が設けられた第1半導体層と、
上記第1半導体層の上記第1の面側に設けられた第1多層配線層と、
互いに反対側に位置する第3の面及び第4の面を有し、かつトランジスタが設けられた第2半導体層と、
上記第2半導体層の上記第3の面側に上記第1多層配線層と重畳して設けられた第2多層配線層と、
上記第1多層配線層と上記第2多層配線層との間に設けられた反り抑制膜と、
平面視で上記反り抑制膜と重畳し、かつ上記第2半導体層の上記第4の面側から上記第2多層配線層に亘って延伸する掘り込み部と、
を備えている。
そして、上記反り抑制膜は、平面視で上記掘り込み部と重畳する重畳領域に開口部を有する。 (2) A photodetector according to another aspect of the present technology,
a first semiconductor layer having a first surface and a second surface opposite to each other and including a photoelectric conversion unit configured to perform photoelectric conversion on light incident from the second surface side;
a first multilayer wiring layer provided on the first surface side of the first semiconductor layer;
a second semiconductor layer having a third surface and a fourth surface opposite to each other and including a transistor;
a second multilayer wiring layer provided on the third surface side of the second semiconductor layer so as to overlap the first multilayer wiring layer;
a warpage suppression film provided between the first multilayer wiring layer and the second multilayer wiring layer;
a recessed portion that overlaps the warp suppression film in a plan view and extends from the fourth surface side of the second semiconductor layer to the second multilayer wiring layer;
It is equipped with:
The warp suppression film has an opening in an overlapping region that overlaps with the recessed portion in a plan view.
互いに反対側に位置する第1の面及び第2の面を有し、かつ上記第2の面側から入射した光を光電変換する光電変換部が設けられた第1半導体層と、
上記第1半導体層の上記第1の面側に設けられた第1多層配線層と、
互いに反対側に位置する第3の面及び第4の面を有し、かつトランジスタが設けられた第2半導体層と、
上記第2半導体層の上記第3の面側に上記第1多層配線層と重畳して設けられた第2多層配線層と、
上記第1多層配線層と上記第2多層配線層との間に設けられた反り抑制膜と、
平面視で上記反り抑制膜と重畳し、かつ上記第2半導体層の上記第4の面側から上記第2多層配線層に亘って延伸する掘り込み部と、
を備えている。
そして、上記反り抑制膜は、平面視で上記掘り込み部と重畳する重畳領域に開口部を有する。 (2) A photodetector according to another aspect of the present technology,
a first semiconductor layer having a first surface and a second surface opposite to each other and including a photoelectric conversion unit configured to perform photoelectric conversion on light incident from the second surface side;
a first multilayer wiring layer provided on the first surface side of the first semiconductor layer;
a second semiconductor layer having a third surface and a fourth surface opposite to each other and including a transistor;
a second multilayer wiring layer provided on the third surface side of the second semiconductor layer so as to overlap the first multilayer wiring layer;
a warpage suppression film provided between the first multilayer wiring layer and the second multilayer wiring layer;
a recessed portion that overlaps the warp suppression film in a plan view and extends from the fourth surface side of the second semiconductor layer to the second multilayer wiring layer;
It is equipped with:
The warp suppression film has an opening in an overlapping region that overlaps with the recessed portion in a plan view.
(3)本技術の他の態様に係る電子機器は、
上記光検出装置と、
被写体からの像光を上記検出装置の撮像面上に結像される光学レンズと、
上記光検出装置から出力される信号に信号処理を行う信号処理回路と、
を備えている。 (3) An electronic device according to another aspect of the present technology includes:
The photodetector;
an optical lens that forms an image of image light from a subject on an imaging surface of the detection device;
a signal processing circuit for processing a signal output from the photodetector;
It is equipped with:
上記光検出装置と、
被写体からの像光を上記検出装置の撮像面上に結像される光学レンズと、
上記光検出装置から出力される信号に信号処理を行う信号処理回路と、
を備えている。 (3) An electronic device according to another aspect of the present technology includes:
The photodetector;
an optical lens that forms an image of image light from a subject on an imaging surface of the detection device;
a signal processing circuit for processing a signal output from the photodetector;
It is equipped with:
以下、図面を参照して本技術の実施形態を詳細に説明する。
なお、以下の説明で参照する図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。ただし、図面は模式的なものであり、厚みと平面寸法との関係、各層の厚みの比率等は現実のものとは異なることに留意すべきである。したがって、具体的な厚みや寸法は以下の説明を参酌して判断すべきものである。 Hereinafter, embodiments of the present technology will be described in detail with reference to the drawings.
In the drawings referred to in the following description, the same or similar parts are denoted by the same or similar reference numerals. However, it should be noted that the drawings are schematic, and the relationship between thickness and planar dimensions, the thickness ratio of each layer, etc., differ from the actual ones. Therefore, the specific thickness and dimensions should be determined by taking into consideration the following description.
なお、以下の説明で参照する図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。ただし、図面は模式的なものであり、厚みと平面寸法との関係、各層の厚みの比率等は現実のものとは異なることに留意すべきである。したがって、具体的な厚みや寸法は以下の説明を参酌して判断すべきものである。 Hereinafter, embodiments of the present technology will be described in detail with reference to the drawings.
In the drawings referred to in the following description, the same or similar parts are denoted by the same or similar reference numerals. However, it should be noted that the drawings are schematic, and the relationship between thickness and planar dimensions, the thickness ratio of each layer, etc., differ from the actual ones. Therefore, the specific thickness and dimensions should be determined by taking into consideration the following description.
また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。また、本明細書中に記載された効果はあくまで例示であって限定されるものでは無く、また他の効果があってもよい。
Of course, there are parts in which the dimensional relationships and ratios differ between the drawings. Furthermore, the effects described in this specification are merely examples and are not limiting, and other effects may also exist.
また、以下の実施形態は、本技術の技術的思想を具体化するための装置や方法を例示するものであり、構成を下記のものに特定するものではない。即ち、本技術の技術的思想は、特許請求の範囲に記載された技術的範囲内において、種々の変更を加えることができる。
Furthermore, the following embodiments are merely examples of devices and methods for embodying the technical ideas of the present technology, and are not intended to limit the configuration to those described below. In other words, the technical ideas of the present technology can be modified in various ways within the technical scope described in the claims.
また、以下の説明における上下等の方向の定義は、単に説明の便宜上の定義であって、本技術の技術的思想を限定するものではない。例えば、対象を90°回転して観察すれば上下は左右に変換して読まれ、180°回転して観察すれば上下は反転して読まれることは勿論である。
Furthermore, the definitions of up and down and other directions in the following explanation are merely for the convenience of explanation and do not limit the technical ideas of this technology. For example, if an object is rotated 90 degrees and observed, up and down are converted into left and right and read, and of course, if it is rotated 180 degrees and observed, up and down are read inverted.
また、以下の実施形態では、空間内で互に直交する三方向において、同一平面内で互に直交する第1の方向及び第2の方向をそれぞれX方向、Y方向とし、第1の方向及び第2の方向のそれぞれと直交する第3の方向をZ方向とする。そして、以下の実施形態では、後述する半導体層30,70の厚さ方向をZ方向として説明する。
In the following embodiment, of the three mutually orthogonal directions in space, a first direction and a second direction that are mutually orthogonal in the same plane are defined as the X direction and the Y direction, respectively, and a third direction that is orthogonal to each of the first and second directions is defined as the Z direction. In the following embodiment, the thickness direction of the semiconductor layers 30 and 70 described later will be described as the Z direction.
〔第1実施形態〕
この第1実施形態では、光検出装置として、裏面照射型のCMOS(Complementary Metal Oxide Semiconductor)イメージセンサである固体撮像装置に本技術を適用した一例について説明する。
また、この第1実施形態では、第1積層体(第1半導体基体)と第2積層体(第2半導体基体)との間に設けられた反り抑制膜(反り調整膜)について説明する。 First Embodiment
In the first embodiment, an example in which the present technology is applied to a solid-state imaging device that is a back-illuminated complementary metal oxide semiconductor (CMOS) image sensor as a photodetector will be described.
In addition, in this first embodiment, a warpage suppressing film (warpage adjusting film) provided between the first stack (first semiconductor substrate) and the second stack (second semiconductor substrate) will be described.
この第1実施形態では、光検出装置として、裏面照射型のCMOS(Complementary Metal Oxide Semiconductor)イメージセンサである固体撮像装置に本技術を適用した一例について説明する。
また、この第1実施形態では、第1積層体(第1半導体基体)と第2積層体(第2半導体基体)との間に設けられた反り抑制膜(反り調整膜)について説明する。 First Embodiment
In the first embodiment, an example in which the present technology is applied to a solid-state imaging device that is a back-illuminated complementary metal oxide semiconductor (CMOS) image sensor as a photodetector will be described.
In addition, in this first embodiment, a warpage suppressing film (warpage adjusting film) provided between the first stack (first semiconductor substrate) and the second stack (second semiconductor substrate) will be described.
≪固体撮像装置の全体構成≫
まず、固体撮像装置1Aの全体構成について説明する。
図1に示すように、本技術の第1実施形態に係る固体撮像装置1Aは、平面視したときの二次元平面形状が方形状の半導体チップ2を主体に構成されている。即ち、固体撮像装置1Aは半導体チップ2に搭載されており、半導体チップ2を固体撮像装置1Aとみなすことができる。この固体撮像装置1A(101)は、図16に示すように、光学レンズ102を介して被写体からの像光(入射光106)を取り込み、撮像面上に結像された入射光106の光量を画素単位で電気信号に変換して画素信号として出力する。 <Overall configuration of solid-state imaging device>
First, the overall configuration of the solid-state imaging device 1A will be described.
As shown in Fig. 1, the solid-state imaging device 1A according to the first embodiment of the present technology is mainly composed of a semiconductor chip 2 having a rectangular two-dimensional planar shape when viewed in a plane. That is, the solid-state imaging device 1A is mounted on the semiconductor chip 2, and the semiconductor chip 2 can be regarded as the solid-state imaging device 1A. As shown in Fig. 16, this solid-state imaging device 1A (101) takes in image light (incident light 106) from a subject via an optical lens 102, converts the amount of incident light 106 formed on an imaging surface into an electrical signal on a pixel-by-pixel basis, and outputs the electrical signal as a pixel signal.
まず、固体撮像装置1Aの全体構成について説明する。
図1に示すように、本技術の第1実施形態に係る固体撮像装置1Aは、平面視したときの二次元平面形状が方形状の半導体チップ2を主体に構成されている。即ち、固体撮像装置1Aは半導体チップ2に搭載されており、半導体チップ2を固体撮像装置1Aとみなすことができる。この固体撮像装置1A(101)は、図16に示すように、光学レンズ102を介して被写体からの像光(入射光106)を取り込み、撮像面上に結像された入射光106の光量を画素単位で電気信号に変換して画素信号として出力する。 <Overall configuration of solid-state imaging device>
First, the overall configuration of the solid-state imaging device 1A will be described.
As shown in Fig. 1, the solid-state imaging device 1A according to the first embodiment of the present technology is mainly composed of a semiconductor chip 2 having a rectangular two-dimensional planar shape when viewed in a plane. That is, the solid-state imaging device 1A is mounted on the semiconductor chip 2, and the semiconductor chip 2 can be regarded as the solid-state imaging device 1A. As shown in Fig. 16, this solid-state imaging device 1A (101) takes in image light (incident light 106) from a subject via an optical lens 102, converts the amount of incident light 106 formed on an imaging surface into an electrical signal on a pixel-by-pixel basis, and outputs the electrical signal as a pixel signal.
図1に示すように、固体撮像装置1Aが搭載された半導体チップ2は、互いに直交するX方向及びY方向を含む二次元平面において、中央部に設けられた方形状のセンサ画素アレイ部2Aと、このセンサ画素アレイ部2Aの外側にセンサ画素アレイ部2Aを囲むようにして設けられた周辺部2Bとを備えている。半導体チップ2は、製造プロセスにおいて、後述の第1及び第2半導体層30,70を含む半導体ウエハをチップ形成領域毎に小片化することによって形成される。したがって、以下に説明する固体撮像装置1Aの構成は、半導体ウエハを小片化する前のウエハ状態においても概ね同様である。即ち、本技術は、半導体チップの状態及び半導体ウエハの状態において適用が可能である。
As shown in FIG. 1, the semiconductor chip 2 on which the solid-state imaging device 1A is mounted has a square sensor pixel array section 2A provided in the center in a two-dimensional plane including mutually orthogonal X and Y directions, and a peripheral section 2B provided outside the sensor pixel array section 2A so as to surround the sensor pixel array section 2A. In the manufacturing process, the semiconductor chip 2 is formed by dicing a semiconductor wafer including first and second semiconductor layers 30, 70 described below into chip formation regions. Therefore, the configuration of the solid-state imaging device 1A described below is generally the same in the wafer state before the semiconductor wafer is diced. In other words, this technology can be applied in the state of a semiconductor chip and in the state of a semiconductor wafer.
センサ画素アレイ部2Aは、例えば図16に示す光学レンズ(光学系)102により集光される光を受光する受光面である。そして、センサ画素アレイ部2Aには、X方向及びY方向を含む二次元平面において複数のセンサ画素(画素)3が行列状に配置されている。換言すれば、センサ画素3は、二次元平面内で互いに直交するX方向及びY方向のそれぞれの方向に繰り返し配置されている。
The sensor pixel array section 2A is a light receiving surface that receives light focused by, for example, an optical lens (optical system) 102 shown in FIG. 16. In the sensor pixel array section 2A, a plurality of sensor pixels (pixels) 3 are arranged in a matrix on a two-dimensional plane including the X direction and the Y direction. In other words, the sensor pixels 3 are repeatedly arranged in each of the X direction and the Y direction that are mutually orthogonal on the two-dimensional plane.
図1に示すように、周辺部2Bには、複数の外部電極パッド94が配置されている。この複数の外部電極パッド94は、図4に示すように、半導体チップ2のセンサ画素アレイ部2A側とは反対側に設けられている。複数の外部電極パッド94の各々は、図1に示すように、例えば、半導体チップ2の二次元平面における4つの辺の各々の辺に沿って配列されている。複数の外部電極パッド94の各々は、半導体チップ2と外部装置とを電気的に接続する入出力端子として機能する。
As shown in FIG. 1, a plurality of external electrode pads 94 are arranged on the peripheral portion 2B. As shown in FIG. 4, the plurality of external electrode pads 94 are provided on the side of the semiconductor chip 2 opposite the sensor pixel array portion 2A. As shown in FIG. 1, each of the plurality of external electrode pads 94 is arranged, for example, along each of the four sides of the semiconductor chip 2 in a two-dimensional plane. Each of the plurality of external electrode pads 94 functions as an input/output terminal that electrically connects the semiconductor chip 2 to an external device.
<ロジック回路>
半導体チップ2は、図2に示すロジック回路13を備えている。ロジック回路13は、図2に示すように、垂直駆動回路4、カラム信号処理回路5、水平駆動回路6、出力回路7及び制御回路8などを含む。ロジック回路13は、電界効果トランジスタとして、例えば、nチャネル導電型のMOSFET(Metal Oxide Semiconductor Field Effect Transistor)及びpチャネル導電型のMOSFETを有するCMOS(Complementary MOS)回路で構成されている。 <Logic circuit>
The semiconductor chip 2 includes a logic circuit 13 shown in Fig. 2. As shown in Fig. 2, the logic circuit 13 includes a vertical drive circuit 4, a column signal processing circuit 5, a horizontal drive circuit 6, an output circuit 7, and a control circuit 8. The logic circuit 13 is configured of a CMOS (Complementary MOS) circuit having, as field effect transistors, for example, an n-channel conductivity type Metal Oxide Semiconductor Field Effect Transistor (MOSFET) and a p-channel conductivity type MOSFET.
半導体チップ2は、図2に示すロジック回路13を備えている。ロジック回路13は、図2に示すように、垂直駆動回路4、カラム信号処理回路5、水平駆動回路6、出力回路7及び制御回路8などを含む。ロジック回路13は、電界効果トランジスタとして、例えば、nチャネル導電型のMOSFET(Metal Oxide Semiconductor Field Effect Transistor)及びpチャネル導電型のMOSFETを有するCMOS(Complementary MOS)回路で構成されている。 <Logic circuit>
The semiconductor chip 2 includes a logic circuit 13 shown in Fig. 2. As shown in Fig. 2, the logic circuit 13 includes a vertical drive circuit 4, a column signal processing circuit 5, a horizontal drive circuit 6, an output circuit 7, and a control circuit 8. The logic circuit 13 is configured of a CMOS (Complementary MOS) circuit having, as field effect transistors, for example, an n-channel conductivity type Metal Oxide Semiconductor Field Effect Transistor (MOSFET) and a p-channel conductivity type MOSFET.
図2に示す垂直駆動回路4は、例えばシフトレジスタによって構成されている。垂直駆動回路4は、所望の画素駆動線10を順次選択し、選択した画素駆動線10にセンサ画素3を駆動するためのパルスを供給し、各センサ画素3を行単位で駆動する。即ち、垂直駆動回路4は、センサ画素アレイ部2Aの各センサ画素3を行単位で順次垂直方向に選択走査し、各センサ画素3の光電変換部(光電変換素子)が受光量に応じて生成した信号電荷に基づくセンサ画素3からの画素信号を、垂直信号線11を通してカラム信号処理回路5に供給する。
The vertical drive circuit 4 shown in FIG. 2 is composed of, for example, a shift register. The vertical drive circuit 4 sequentially selects the desired pixel drive lines 10, supplies pulses to the selected pixel drive lines 10 for driving the sensor pixels 3, and drives each sensor pixel 3 row by row. That is, the vertical drive circuit 4 sequentially selects and scans each sensor pixel 3 in the sensor pixel array section 2A vertically row by row, and supplies pixel signals from the sensor pixels 3 based on signal charges generated by the photoelectric conversion section (photoelectric conversion element) of each sensor pixel 3 according to the amount of light received to the column signal processing circuit 5 via the vertical signal line 11.
図2に示すカラム信号処理回路5は、例えばセンサ画素3の列毎に配置されており、1行分のセンサ画素3から出力される信号に対して画素列毎にノイズ除去等の信号処理を行う。例えばカラム信号処理回路5は、画素固有の固定パターンノイズを除去するためのCDS(Correlated Double Sampling:相関2重サンプリング)及びAD(Analog Digital)変換等の信号処理を行う。
The column signal processing circuit 5 shown in FIG. 2 is arranged, for example, for each column of sensor pixels 3, and performs signal processing such as noise removal for each pixel column on signals output from one row of sensor pixels 3. For example, the column signal processing circuit 5 performs signal processing such as CDS (Correlated Double Sampling) and AD (Analog-to-Digital) conversion to remove pixel-specific fixed pattern noise.
図2に示す水平駆動回路6は、例えばシフトレジスタによって構成されている。水平駆動回路6は、水平走査パルスをカラム信号処理回路5に順次出力することによって、カラム信号処理回路5の各々を順番に選択し、カラム信号処理回路5の各々から信号処理が行われた画素信号を水平信号線12に出力させる。
The horizontal drive circuit 6 shown in FIG. 2 is composed of, for example, a shift register. The horizontal drive circuit 6 sequentially outputs horizontal scanning pulses to the column signal processing circuits 5, thereby selecting each of the column signal processing circuits 5 in turn, and causing each of the column signal processing circuits 5 to output a pixel signal that has been subjected to signal processing to the horizontal signal line 12.
図2に示す出力回路7は、カラム信号処理回路5の各々から水平信号線12を通して順次に供給される画素信号に対し、信号処理を行って出力する。信号処理としては、例えば、バッファリング、黒レベル調整、列ばらつき補正、各種デジタル信号処理等を用いることができる。
The output circuit 7 shown in FIG. 2 processes and outputs pixel signals sequentially supplied from each of the column signal processing circuits 5 through the horizontal signal line 12. For example, the signal processing may include buffering, black level adjustment, column variation correction, various types of digital signal processing, etc.
図2に示す制御回路8は、垂直同期信号、水平同期信号、及びマスタクロック信号に基づいて、垂直駆動回路4、カラム信号処理回路5、及び水平駆動回路6等の動作の基準となるクロック信号や制御信号を生成する。そして、制御回路8は、生成したクロック信号や制御信号を、垂直駆動回路4、カラム信号処理回路5、及び水平駆動回路6等に出力する。
The control circuit 8 shown in FIG. 2 generates clock signals and control signals that serve as the basis for the operation of the vertical drive circuit 4, column signal processing circuit 5, horizontal drive circuit 6, etc., based on the vertical synchronization signal, horizontal synchronization signal, and master clock signal. The control circuit 8 then outputs the generated clock signals and control signals to the vertical drive circuit 4, column signal processing circuit 5, horizontal drive circuit 6, etc.
<センサ画素の回路構成>
図3に示すように、複数のセンサ画素3の各々のセンサ画素3は、光電変換領域32及び画素回路(読出し回路)15を備えている。光電変換領域32は、光電変換部34と、画素トランジスタとしての転送トランジスタTRと、電荷保持部としてのフローティングディフュージョン(Floating Diffusion)領域FDとを備えている。画素回路15は、光電変換領域32のフローティングディフュージョン領域FDと電気的に接続されている。 <Circuit configuration of sensor pixel>
3, each of the sensor pixels 3 includes a photoelectric conversion region 32 and a pixel circuit (readout circuit) 15. The photoelectric conversion region 32 includes a photoelectric conversion unit 34, a transfer transistor TR as a pixel transistor, and a floating diffusion region FD as a charge holding unit. The pixel circuit 15 is electrically connected to the floating diffusion region FD of the photoelectric conversion region 32.
図3に示すように、複数のセンサ画素3の各々のセンサ画素3は、光電変換領域32及び画素回路(読出し回路)15を備えている。光電変換領域32は、光電変換部34と、画素トランジスタとしての転送トランジスタTRと、電荷保持部としてのフローティングディフュージョン(Floating Diffusion)領域FDとを備えている。画素回路15は、光電変換領域32のフローティングディフュージョン領域FDと電気的に接続されている。 <Circuit configuration of sensor pixel>
3, each of the sensor pixels 3 includes a photoelectric conversion region 32 and a pixel circuit (readout circuit) 15. The photoelectric conversion region 32 includes a photoelectric conversion unit 34, a transfer transistor TR as a pixel transistor, and a floating diffusion region FD as a charge holding unit. The pixel circuit 15 is electrically connected to the floating diffusion region FD of the photoelectric conversion region 32.
この第1実施形態では、一例として1つのセンサ画素3に1つの画素回路15を割り与えた回路構成としているが、この第1実施形態に限定されるものではない。例えば、1つの画素回路15を複数のセンサ画素3で共有する回路構成としてもよい。具体的には、X方向及びY方向の各々の方向に2つずつ配置された2×2配置の4つのセンサ画素3を一単位とする1つのセンサ画素群(光電変換群)で1つの画素回路15を共有する回路構成としてもよい。また、2つのセンサ画素3を一単位とする1つのセンサ画素群(光電変換群)で1つの画素回路15を共有する回路構成としてもよい。また、4つ以上のセンサ画素3を一単位とする1つのセンサ画素群(光電変換群)で1つの画素回路15を共有する回路構成としてもよい。
In the first embodiment, as an example, a circuit configuration is used in which one pixel circuit 15 is assigned to one sensor pixel 3, but the present invention is not limited to this first embodiment. For example, a circuit configuration may be used in which one pixel circuit 15 is shared by multiple sensor pixels 3. Specifically, a circuit configuration may be used in which one pixel circuit 15 is shared by one sensor pixel group (photoelectric conversion group) in which four sensor pixels 3 are arranged in a 2×2 arrangement, two in each of the X and Y directions, as one unit. Also, a circuit configuration may be used in which one pixel circuit 15 is shared by one sensor pixel group (photoelectric conversion group) in which two sensor pixels 3 are arranged as one unit. Also, a circuit configuration may be used in which one pixel circuit 15 is shared by one sensor pixel group (photoelectric conversion group) in which four or more sensor pixels 3 are arranged as one unit.
図3に示す光電変換部34は、例えばpn接合型のフォトダイオード(PD)で構成され、受光量に応じた信号電荷を生成する。光電変換部34は、カソード側が転送トランジスタTRのソース領域と電気的に接続され、アノード側が基準電位線(例えばグランド)と電気的に接続されている。
The photoelectric conversion unit 34 shown in FIG. 3 is composed of, for example, a pn junction type photodiode (PD) and generates a signal charge according to the amount of light received. The cathode side of the photoelectric conversion unit 34 is electrically connected to the source region of the transfer transistor TR, and the anode side is electrically connected to a reference potential line (for example, ground).
図3に示す転送トランジスタTRは、光電変換部34で光電変換された信号電荷をフローティングディフュージョン領域FDに転送する。転送トランジスタRTのソース領域は光電変換部34のカソード側と電気的に接続され、転送トランジスタTRのドレイン領域はフローティングディフュージョン領域FDと電気的に接続されている。そして、転送トランジスタTRのゲート電極は、図2に示す画素駆動線10のうちの転送トランジスタ駆動線と電気的に接続されている。
The transfer transistor TR shown in FIG. 3 transfers the signal charge photoelectrically converted by the photoelectric conversion unit 34 to the floating diffusion region FD. The source region of the transfer transistor RT is electrically connected to the cathode side of the photoelectric conversion unit 34, and the drain region of the transfer transistor TR is electrically connected to the floating diffusion region FD. The gate electrode of the transfer transistor TR is electrically connected to the transfer transistor drive line of the pixel drive line 10 shown in FIG. 2.
図3に示すフローティングディフュージョン領域FDは、光電変換部24から転送トランジスタTRを介して転送された信号電荷を一時的に保持(蓄積)する。
The floating diffusion region FD shown in FIG. 3 temporarily holds (accumulates) the signal charge transferred from the photoelectric conversion unit 24 via the transfer transistor TR.
光電変換部34、転送トランジスタTR及びフローティングディフュージョン領域FDを含む光電変換領域32は、図4及び図5に示す第1半導体層30にセンサ画素3毎に搭載されている。
The photoelectric conversion region 32, which includes the photoelectric conversion unit 34, the transfer transistor TR, and the floating diffusion region FD, is mounted for each sensor pixel 3 on the first semiconductor layer 30 shown in Figures 4 and 5.
図3に示す画素回路15は、フローティングディフュージョン領域FDに保持された信号電荷を読み出し、読み出した信号電荷に基づく画素信号を出力する。画素回路15は、これに限定されないが、画素トランジスタQとして、例えば、増幅トランジスタAMPと、選択トランジスタSELと、リセットトランジスタRSTと、を備えている。これらの画素トランジスタ(AMP,SEL,RST)、及び上述の転送トランジスタTRの各々は、電界効果トランジスタとして、例えば、酸化シリコン(SiO2)膜からなるゲート絶縁膜と、ゲート電極と、ソース領域及びドレイン領域として機能する一対の主電極領域と、を有するMOSFETで構成されている。また、これらのトランジスタとしては、ゲート絶縁膜が窒化シリコン(Si3N4)膜、或いは窒化シリコン膜及び酸化シリコン膜などの積層膜からなるMISFET(Metal Insulator Semiconductor FET)でも構わない。
The pixel circuit 15 shown in FIG. 3 reads out the signal charge held in the floating diffusion region FD and outputs a pixel signal based on the read-out signal charge. The pixel circuit 15 includes, but is not limited to, an amplification transistor AMP, a selection transistor SEL, and a reset transistor RST as pixel transistors Q. Each of these pixel transistors (AMP, SEL, RST) and the transfer transistor TR described above is configured as a field effect transistor, for example, a MOSFET having a gate insulating film made of a silicon oxide (SiO 2 ) film, a gate electrode, and a pair of main electrode regions functioning as a source region and a drain region. In addition, these transistors may be MISFETs (Metal Insulator Semiconductor FETs) whose gate insulating film is made of a silicon nitride (Si 3 N 4 ) film or a laminated film such as a silicon nitride film and a silicon oxide film.
図3に示す増幅トランジスタAMPは、ソース領域が選択トランジスタSELのドレイン領域と電気的に接続され、ドレイン領域が電源線Vdd及びリセットトランジスタRSTのドレイン領域と電気的に接続されている。そして、増幅トランジスタAMPのゲート電極は、フローティングディフュージョン領域FD及びリセットトランジスタRSTのソース領域と電気的に接続されている。
The amplifier transistor AMP shown in FIG. 3 has a source region electrically connected to the drain region of the select transistor SEL, and a drain region electrically connected to the power supply line Vdd and the drain region of the reset transistor RST. The gate electrode of the amplifier transistor AMP is electrically connected to the floating diffusion region FD and the source region of the reset transistor RST.
図3に示す選択トランジスタSELは、ソースが垂直信号線11(VSL)と電気的に接続され、ドレイン領域が増幅トランジスタAMPのソース領域と電気的に接続されている。そして、選択トランジスタSELのゲート電極は、図2に示す画素駆動線10のうちの選択トランジスタ駆動線と電気的に接続されている。
The selection transistor SEL shown in FIG. 3 has a source electrically connected to the vertical signal line 11 (VSL) and a drain region electrically connected to the source region of the amplification transistor AMP. The gate electrode of the selection transistor SEL is electrically connected to the selection transistor drive line of the pixel drive line 10 shown in FIG. 2.
図3に示すリセットトランジスタRSTは、ソース領域がフローティングディフュージョン領域FD及び増幅トランジスタAMPのゲート電極と電気的に接続され、ドレイン領域が電源線Vdd及び増幅トランジスタAMPのドレイン領域と電気的に接続されている。そして、リセットトランジスタRSTのゲート電極は、図2に示す画素駆動線10のうちのリセットトランジスタ駆動線と電気的に接続されている。
The reset transistor RST shown in FIG. 3 has a source region electrically connected to the floating diffusion region FD and the gate electrode of the amplifier transistor AMP, and a drain region electrically connected to the power supply line Vdd and the drain region of the amplifier transistor AMP. The gate electrode of the reset transistor RST is electrically connected to the reset transistor drive line of the pixel drive line 10 shown in FIG. 2.
図3に示す転送トランジスタTRは、転送トランジスタTRGがオン状態となると、光電変換部24で生成された信号電荷をフローティングディフュージョン領域FDに転送する。
When the transfer transistor TRG shown in FIG. 3 is turned on, the transfer transistor TR transfers the signal charge generated in the photoelectric conversion unit 24 to the floating diffusion region FD.
図3に示すリセットトランジスタRSTは、リセットトランジスタRSTがオン状態となると、フローティングディフュージョン領域FDの電位(信号電荷)を電源線Vddの電位にリセットする。選択トランジスタSELは、画素回路15からの画素信号の出力タイミングを制御する。
When the reset transistor RST shown in FIG. 3 is turned on, it resets the potential (signal charge) of the floating diffusion region FD to the potential of the power supply line Vdd. The selection transistor SEL controls the output timing of the pixel signal from the pixel circuit 15.
図3に示す増幅トランジスタAMPは、画素信号として、フローティングディフュージョン領域FDに保持された信号電荷のレベルに応じた電圧の信号を生成する。増幅トランジスタAMPは、ソースフォロア型のアンプを構成しており、光電変換部24で生成された信号電荷のレベルに応じた電圧の画素信号を出力するものである。増幅トランジスタAMPは、選択トランジスタSELがオン状態となると、フローティングディフュージョン領域FDの電位を増幅して、その電位に応じた電圧を、垂直信号線11(VSL)を介してカラム信号処理回路5に出力する。
The amplification transistor AMP shown in FIG. 3 generates a pixel signal whose voltage corresponds to the level of the signal charge held in the floating diffusion region FD. The amplification transistor AMP constitutes a source-follower type amplifier, and outputs a pixel signal whose voltage corresponds to the level of the signal charge generated in the photoelectric conversion unit 24. When the selection transistor SEL is turned on, the amplification transistor AMP amplifies the potential of the floating diffusion region FD, and outputs a voltage corresponding to that potential to the column signal processing circuit 5 via the vertical signal line 11 (VSL).
ここで、図3を参照して説明すれば、この第1実施形態に係る固体撮像装置1Aの動作時には、センサ画素3の光電変換部34で生成された信号電荷がセンサ画素3の転送トランジスタTRを介してフローティングディフュージョン領域FDに保持(蓄積)される。そして、フローティングディフュージョン領域FDに保持された信号電荷が画素回路15により読み出されて、画素回路15の増幅トランジスタAMPのゲート電極に印加される。画素回路15の選択トランジスタSELのゲート電極には水平ラインの選択用制御信号が垂直シフトレジスタから与えられる。そして、選択用制御信号をハイ(H)レベルにすることにより、選択トランジスタSELが導通し、増幅トランジスタAMPで増幅された、フローティングディフュージョン領域FDの電位に対応する電流が垂直信号線11に流れる。また、画素回路15のリセットトランジスタRSTのゲート電極に印加するリセット用制御信号をハイ(H)レベルにすることにより、リセットトランジスタRSTが導通し、フローティングディフュージョン領域FDに蓄積された信号電荷をリセットする。
Now, referring to FIG. 3, during operation of the solid-state imaging device 1A according to the first embodiment, the signal charge generated in the photoelectric conversion unit 34 of the sensor pixel 3 is held (accumulated) in the floating diffusion region FD via the transfer transistor TR of the sensor pixel 3. The signal charge held in the floating diffusion region FD is read out by the pixel circuit 15 and applied to the gate electrode of the amplification transistor AMP of the pixel circuit 15. A horizontal line selection control signal is provided to the gate electrode of the selection transistor SEL of the pixel circuit 15 from the vertical shift register. Then, by setting the selection control signal to a high (H) level, the selection transistor SEL becomes conductive, and a current corresponding to the potential of the floating diffusion region FD amplified by the amplification transistor AMP flows in the vertical signal line 11. Also, by setting the reset control signal applied to the gate electrode of the reset transistor RST of the pixel circuit 15 to a high (H) level, the reset transistor RST becomes conductive, and the signal charge accumulated in the floating diffusion region FD is reset.
<他の画素回路>
なお、選択トランジスタSELは、必要に応じて省略してもよい。選択トランジスタSELを省略する場合は、増幅トランジスタAMPのソース領域が垂直信号線11(VSL)と電気的に接続される。 <Other pixel circuits>
The selection transistor SEL may be omitted if necessary. In the case where the selection transistor SEL is omitted, the source region of the amplification transistor AMP is electrically connected to the vertical signal line 11 (VSL).
なお、選択トランジスタSELは、必要に応じて省略してもよい。選択トランジスタSELを省略する場合は、増幅トランジスタAMPのソース領域が垂直信号線11(VSL)と電気的に接続される。 <Other pixel circuits>
The selection transistor SEL may be omitted if necessary. In the case where the selection transistor SEL is omitted, the source region of the amplification transistor AMP is electrically connected to the vertical signal line 11 (VSL).
また、リセットトランジスタRSTと、フローティングディフュージョン領域FD及び増幅トランジスタAMPのゲート電極との間に切替トランジスタを設けてもよい。切替トランジスタは、フローティングディフュージョン領域FDによる電荷保持を制御すると共に、増幅トランジスタAMPで増幅される電位に応じた電圧の増倍率を調整する。
A switching transistor may also be provided between the reset transistor RST and the gate electrode of the floating diffusion region FD and the amplifier transistor AMP. The switching transistor controls charge retention by the floating diffusion region FD and adjusts the voltage multiplication factor according to the potential amplified by the amplifier transistor AMP.
また、切替トランジスタは、変換効率を切り替える際に用いられる。一般に、暗い場所での撮影時には画素信号が小さい。Q=CVに基づき、電荷電圧変換を行う際に、電荷保持部(フローティングディフュージョン領域FD)のFD容量C(フローティングディフュージョン容量C)が大きければ、増幅トランジスタAMPで電圧に変換した際の電圧Vが小さくなってしまう。一方、明るい場所では、画素信号が大きくなるので、電荷保持部のFD容量Cが大きくなければ、電荷保持部で、光電変換部24(フォトダイオードPD)の電荷を受けきれない。さらに、増幅トランジスタAMPで電圧に変換した際の電圧Vが大きくなりすぎないように(言い換えると、小さくなるように)、電荷保持部のFD容量Cが大きくなっている必要がある。これらを踏まえると、切替トランジスタをオンにしたときには、切替トランジスタ分のゲート容量が増えるので、全体のFD容量Cが大きくなる。一方、切替トランジスタをオフにしたときには、全体のFD容量Cが小さくなる。このように、切替トランジスタのオン/オフを切り替えることで、FD容量Cを可変にし、変換効率を切り替えることができる。
The switching transistor is also used to switch the conversion efficiency. In general, the pixel signal is small when shooting in a dark place. Based on Q=CV, when performing charge-voltage conversion, if the FD capacitance C (floating diffusion capacitance C) of the charge holding section (floating diffusion region FD) is large, the voltage V when converted to voltage by the amplification transistor AMP will be small. On the other hand, in a bright place, the pixel signal is large, so if the FD capacitance C of the charge holding section is not large, the charge holding section cannot receive the charge of the photoelectric conversion section 24 (photodiode PD). Furthermore, the FD capacitance C of the charge holding section needs to be large so that the voltage V when converted to voltage by the amplification transistor AMP does not become too large (in other words, to become small). In light of this, when the switching transistor is turned on, the gate capacitance of the switching transistor increases, so the overall FD capacitance C becomes large. On the other hand, when the switching transistor is turned off, the overall FD capacitance C becomes small. In this way, by switching the switching transistor on/off, the FD capacitance C can be made variable and the conversion efficiency can be switched.
≪固体撮像装置の具体的な構成≫
次に、固体撮像装置1Aの具体的な構成について、図4から図7を用いて説明する。
図4及び図5に示すように、固体撮像装置1A(半導体チップ2)は、第1積層体(第1半導体基体)20と第2積層体(第2半導体基体)60とを備えている。そして、第1積層体20及び第2積層体60は、各々の接合面20a,60aを互いに向かい合わせた状態で接合されている。第1積層体20には、センサ画素アレイ部2A、制御回路8及び画素回路15などが搭載されている。第2積層体60には、垂直駆動回路4、カラム信号処理回路5、水平駆動回路6及び出力回路7などを含むロジック回路13が搭載されている。 <<Specific configuration of solid-state imaging device>>
Next, a specific configuration of the solid-state imaging device 1A will be described with reference to FIGS.
As shown in Fig. 4 and Fig. 5, the solid-state imaging device 1A (semiconductor chip 2) includes a first stack (first semiconductor substrate) 20 and a second stack (second semiconductor substrate) 60. The first stack 20 and the second stack 60 are bonded with their bonding surfaces 20a, 60a facing each other. The first stack 20 is equipped with a sensor pixel array section 2A, a control circuit 8, a pixel circuit 15, and the like. The second stack 60 is equipped with a logic circuit 13 including a vertical drive circuit 4, a column signal processing circuit 5, a horizontal drive circuit 6, an output circuit 7, and the like.
次に、固体撮像装置1Aの具体的な構成について、図4から図7を用いて説明する。
図4及び図5に示すように、固体撮像装置1A(半導体チップ2)は、第1積層体(第1半導体基体)20と第2積層体(第2半導体基体)60とを備えている。そして、第1積層体20及び第2積層体60は、各々の接合面20a,60aを互いに向かい合わせた状態で接合されている。第1積層体20には、センサ画素アレイ部2A、制御回路8及び画素回路15などが搭載されている。第2積層体60には、垂直駆動回路4、カラム信号処理回路5、水平駆動回路6及び出力回路7などを含むロジック回路13が搭載されている。 <<Specific configuration of solid-state imaging device>>
Next, a specific configuration of the solid-state imaging device 1A will be described with reference to FIGS.
As shown in Fig. 4 and Fig. 5, the solid-state imaging device 1A (semiconductor chip 2) includes a first stack (first semiconductor substrate) 20 and a second stack (second semiconductor substrate) 60. The first stack 20 and the second stack 60 are bonded with their bonding surfaces 20a, 60a facing each other. The first stack 20 is equipped with a sensor pixel array section 2A, a control circuit 8, a pixel circuit 15, and the like. The second stack 60 is equipped with a logic circuit 13 including a vertical drive circuit 4, a column signal processing circuit 5, a horizontal drive circuit 6, an output circuit 7, and the like.
<第1積層体>
図4及び図5に示すように、第1積層体20は、厚さ方向(Z方向)で互いに反対側に位置する第1の面S1及び第2の面S2を有する第1半導体層30と、第1半導体層30の第1の面S1側に設けられた第1多層配線層40と、第1半導体層30の第2の面S2側に設けられた集光層50と、を備えている。
また、第1積層体20は、第1多層配線層40の第1半導体層30側とは反対側に、第1多層配線層40側から順次積層された反り抑制膜46及び接合層47を備えている。
ここで、第1半導体層30の第1の面S1を主面又は素子形成面、第2の面S2を裏面と呼ぶこともある。そして、この第1実施形態に係る固体撮像装置1Aは、後で詳細に説明するが、第1半導体層30の第2の面S2側から入射した入射光を、第1半導体層30の光電変換領域32に設けられた光電変換部34(フォトダイオードPD)で光電変換する。したがって、この第1実施形態では、第1半導体層30の第2の面S2を光入射面と呼ぶこともある。 <First laminate>
As shown in Figures 4 and 5, the first stack 20 includes a first semiconductor layer 30 having a first surface S1 and a second surface S2 located opposite each other in the thickness direction (Z direction), a first multilayer wiring layer 40 provided on the first surface S1 side of the first semiconductor layer 30, and a light-collecting layer 50 provided on the second surface S2 side of the first semiconductor layer 30.
The first laminate 20 also includes a warp suppression film 46 and a bonding layer 47 laminated in sequence from the first multilayer wiring layer 40 side on the side of the first multilayer wiring layer 40 opposite the first semiconductor layer 30 side.
Here, the first surface S1 of the first semiconductor layer 30 may be referred to as the main surface or element formation surface, and the second surface S2 may be referred to as the back surface. As will be described in detail later, the solid-state imaging device 1A according to the first embodiment photoelectrically converts incident light incident from the second surface S2 side of the first semiconductor layer 30 in a photoelectric conversion unit 34 (photodiode PD) provided in a photoelectric conversion region 32 of the first semiconductor layer 30. Therefore, in this first embodiment, the second surface S2 of the first semiconductor layer 30 may be referred to as the light incident surface.
図4及び図5に示すように、第1積層体20は、厚さ方向(Z方向)で互いに反対側に位置する第1の面S1及び第2の面S2を有する第1半導体層30と、第1半導体層30の第1の面S1側に設けられた第1多層配線層40と、第1半導体層30の第2の面S2側に設けられた集光層50と、を備えている。
また、第1積層体20は、第1多層配線層40の第1半導体層30側とは反対側に、第1多層配線層40側から順次積層された反り抑制膜46及び接合層47を備えている。
ここで、第1半導体層30の第1の面S1を主面又は素子形成面、第2の面S2を裏面と呼ぶこともある。そして、この第1実施形態に係る固体撮像装置1Aは、後で詳細に説明するが、第1半導体層30の第2の面S2側から入射した入射光を、第1半導体層30の光電変換領域32に設けられた光電変換部34(フォトダイオードPD)で光電変換する。したがって、この第1実施形態では、第1半導体層30の第2の面S2を光入射面と呼ぶこともある。 <First laminate>
As shown in Figures 4 and 5, the first stack 20 includes a first semiconductor layer 30 having a first surface S1 and a second surface S2 located opposite each other in the thickness direction (Z direction), a first multilayer wiring layer 40 provided on the first surface S1 side of the first semiconductor layer 30, and a light-collecting layer 50 provided on the second surface S2 side of the first semiconductor layer 30.
The first laminate 20 also includes a warp suppression film 46 and a bonding layer 47 laminated in sequence from the first multilayer wiring layer 40 side on the side of the first multilayer wiring layer 40 opposite the first semiconductor layer 30 side.
Here, the first surface S1 of the first semiconductor layer 30 may be referred to as the main surface or element formation surface, and the second surface S2 may be referred to as the back surface. As will be described in detail later, the solid-state imaging device 1A according to the first embodiment photoelectrically converts incident light incident from the second surface S2 side of the first semiconductor layer 30 in a photoelectric conversion unit 34 (photodiode PD) provided in a photoelectric conversion region 32 of the first semiconductor layer 30. Therefore, in this first embodiment, the second surface S2 of the first semiconductor layer 30 may be referred to as the light incident surface.
<第2積層体>
第2積層体60は、厚さ方向(Z方向)で互いに反対側に位置する第3の面S3及び第4の面S4を有する第2半導体層70と、第2半導体層70の第3の面S3側に設けられた第2多層配線層80と、を備えている。
また、第2積層体60は、第2半導体層70の第3の面S3側から第2多層配線層80に亘って延伸する掘り込み部91と、掘り込み部91の内壁に沿って設けられた分離絶縁膜92と、分離絶縁膜92を介して掘り込み部91の内壁に沿って設けられ、かつ第2多層配線層80と電気的に接続されたコンタクト電極93と、を備えている。
また、第2積層体60は、第2半導体層70の第4の面S4側に設けられ、かつコンタクト電極93と電気的に接続された外部電極パッド94と、掘り込み部91にコンタクト電極93を介して設けられたソルダーレジスト膜95と、を備えている。
また、第2積層体60は、第2多層配線層80の第2半導体層70側とは反対側に、第2多層配線層80側から順次積層された反り抑制膜86及び接合層87を備えている。
ここで、第2半導体層70の第3の面S3を主面又は素子形成面、第4の面S4を裏面と呼ぶこともある。 <Second laminate>
The second stack 60 comprises a second semiconductor layer 70 having a third surface S3 and a fourth surface S4 located opposite each other in the thickness direction (Z direction), and a second multilayer wiring layer 80 provided on the third surface S3 side of the second semiconductor layer 70.
The second laminate 60 also includes a recessed portion 91 extending from the third surface S3 side of the second semiconductor layer 70 to the second multilayer wiring layer 80, an isolation insulating film 92 provided along the inner wall of the recessed portion 91, and a contact electrode 93 provided along the inner wall of the recessed portion 91 via the isolation insulating film 92 and electrically connected to the second multilayer wiring layer 80.
The second laminate 60 also includes an external electrode pad 94 provided on the fourth surface S4 side of the second semiconductor layer 70 and electrically connected to the contact electrode 93, and a solder resist film 95 provided in the recessed portion 91 via the contact electrode 93.
The second laminate 60 also includes a warp suppression film 86 and a bonding layer 87 laminated in sequence from the second multilayer wiring layer 80 side on the side of the second multilayer wiring layer 80 opposite the second semiconductor layer 70 side.
Here, the third surface S3 of the second semiconductor layer 70 may be called the main surface or element formation surface, and the fourth surface S4 may be called the back surface.
第2積層体60は、厚さ方向(Z方向)で互いに反対側に位置する第3の面S3及び第4の面S4を有する第2半導体層70と、第2半導体層70の第3の面S3側に設けられた第2多層配線層80と、を備えている。
また、第2積層体60は、第2半導体層70の第3の面S3側から第2多層配線層80に亘って延伸する掘り込み部91と、掘り込み部91の内壁に沿って設けられた分離絶縁膜92と、分離絶縁膜92を介して掘り込み部91の内壁に沿って設けられ、かつ第2多層配線層80と電気的に接続されたコンタクト電極93と、を備えている。
また、第2積層体60は、第2半導体層70の第4の面S4側に設けられ、かつコンタクト電極93と電気的に接続された外部電極パッド94と、掘り込み部91にコンタクト電極93を介して設けられたソルダーレジスト膜95と、を備えている。
また、第2積層体60は、第2多層配線層80の第2半導体層70側とは反対側に、第2多層配線層80側から順次積層された反り抑制膜86及び接合層87を備えている。
ここで、第2半導体層70の第3の面S3を主面又は素子形成面、第4の面S4を裏面と呼ぶこともある。 <Second laminate>
The second stack 60 comprises a second semiconductor layer 70 having a third surface S3 and a fourth surface S4 located opposite each other in the thickness direction (Z direction), and a second multilayer wiring layer 80 provided on the third surface S3 side of the second semiconductor layer 70.
The second laminate 60 also includes a recessed portion 91 extending from the third surface S3 side of the second semiconductor layer 70 to the second multilayer wiring layer 80, an isolation insulating film 92 provided along the inner wall of the recessed portion 91, and a contact electrode 93 provided along the inner wall of the recessed portion 91 via the isolation insulating film 92 and electrically connected to the second multilayer wiring layer 80.
The second laminate 60 also includes an external electrode pad 94 provided on the fourth surface S4 side of the second semiconductor layer 70 and electrically connected to the contact electrode 93, and a solder resist film 95 provided in the recessed portion 91 via the contact electrode 93.
The second laminate 60 also includes a warp suppression film 86 and a bonding layer 87 laminated in sequence from the second multilayer wiring layer 80 side on the side of the second multilayer wiring layer 80 opposite the second semiconductor layer 70 side.
Here, the third surface S3 of the second semiconductor layer 70 may be called the main surface or element formation surface, and the fourth surface S4 may be called the back surface.
<集光層>
図4及び図5に示すように、集光層50は、第1半導体層30の第2の面S2側に設けられている。そして、集光層50は、第1半導体層30の第2の面S2側から、これに限定されないが、例えば、平坦化膜51と、光学フィルタ53と、オンチップレンズ54とが、この順で積層された積層構造を有する。 <Light-collecting layer>
4 and 5, the light collecting layer 50 is provided on the second surface S2 side of the first semiconductor layer 30. The light collecting layer 50 has a layered structure in which, for example, but not limited to, a planarizing film 51, an optical filter 53, and an on-chip lens 54 are layered in this order from the second surface S2 side of the first semiconductor layer 30.
図4及び図5に示すように、集光層50は、第1半導体層30の第2の面S2側に設けられている。そして、集光層50は、第1半導体層30の第2の面S2側から、これに限定されないが、例えば、平坦化膜51と、光学フィルタ53と、オンチップレンズ54とが、この順で積層された積層構造を有する。 <Light-collecting layer>
4 and 5, the light collecting layer 50 is provided on the second surface S2 side of the first semiconductor layer 30. The light collecting layer 50 has a layered structure in which, for example, but not limited to, a planarizing film 51, an optical filter 53, and an on-chip lens 54 are layered in this order from the second surface S2 side of the first semiconductor layer 30.
平坦化膜51は、半導体層30の第2の面S2側に、半導体層30の第2の面部S2を覆うようにして設けられ、半導体層30の第2の面S2側を平坦化している。
The planarization film 51 is provided on the second surface S2 side of the semiconductor layer 30 so as to cover the second surface S2 of the semiconductor layer 30, and planarizes the second surface S2 side of the semiconductor layer 30.
光学フィルタ53及びマイクロレンズ54は、それぞれセンサ画素3毎に設けられている。光学フィルタ53は、半導体チップ2の光入射面側(第2の面S2側)から入射した入射光を色分離する。マイクロレンズ54は、照射光を集光し、集光した光をセンサ画素3(光電変換領域32)に効率良く入射させる。
The optical filter 53 and the microlens 54 are provided for each sensor pixel 3. The optical filter 53 separates the color of the incident light that is incident from the light incident surface side (second surface S2 side) of the semiconductor chip 2. The microlens 54 collects the irradiated light and allows the collected light to efficiently enter the sensor pixel 3 (photoelectric conversion region 32).
<第1半導体層>
図4及び図5に示すように、第1半導体層30は、第2半導体層70の第3の面S3側に第1多層配線層40及び第2多層配線層80を介して設けられている。第1半導体層30は、例えばp型の単結晶シリコン基板で構成されている。第1半導体層30のうち、平面視でセンサ画素アレイ部2Aと重なる領域には、光電変換領域32がセンサ画素3毎に設けられている。光電変換領域32は、図示していないが、第1半導体層30に設けられた分離領域によって区画されている。なお、センサ画素3の数は、図4及び図5に限定されるものではない。 <First Semiconductor Layer>
As shown in Figures 4 and 5, the first semiconductor layer 30 is provided on the third surface S3 side of the second semiconductor layer 70 via a first multi-layer wiring layer 40 and a second multi-layer wiring layer 80. The first semiconductor layer 30 is made of, for example, a p-type single crystal silicon substrate. In the first semiconductor layer 30, a photoelectric conversion region 32 is provided for each sensor pixel 3 in a region overlapping with the sensor pixel array section 2A in a planar view. Although not shown, the photoelectric conversion region 32 is partitioned by a separation region provided in the first semiconductor layer 30. Note that the number of sensor pixels 3 is not limited to that shown in Figures 4 and 5.
図4及び図5に示すように、第1半導体層30は、第2半導体層70の第3の面S3側に第1多層配線層40及び第2多層配線層80を介して設けられている。第1半導体層30は、例えばp型の単結晶シリコン基板で構成されている。第1半導体層30のうち、平面視でセンサ画素アレイ部2Aと重なる領域には、光電変換領域32がセンサ画素3毎に設けられている。光電変換領域32は、図示していないが、第1半導体層30に設けられた分離領域によって区画されている。なお、センサ画素3の数は、図4及び図5に限定されるものではない。 <First Semiconductor Layer>
As shown in Figures 4 and 5, the first semiconductor layer 30 is provided on the third surface S3 side of the second semiconductor layer 70 via a first multi-layer wiring layer 40 and a second multi-layer wiring layer 80. The first semiconductor layer 30 is made of, for example, a p-type single crystal silicon substrate. In the first semiconductor layer 30, a photoelectric conversion region 32 is provided for each sensor pixel 3 in a region overlapping with the sensor pixel array section 2A in a planar view. Although not shown, the photoelectric conversion region 32 is partitioned by a separation region provided in the first semiconductor layer 30. Note that the number of sensor pixels 3 is not limited to that shown in Figures 4 and 5.
光電変換領域32は、図示していないが、例えばp型のウエル領域と、このウエル領域の内部に埋設されたn型の半導体領域(光電変換部)と、を有する。図3に示す光電変換素子PDは、第1半導体層30のウエル領域と光電変換部とを含む光電変換領域32に構成されている。また、光電変換領域32には、これに限定されないが、例えばn型の半導体領域からなるフローティングディフュージョン領域(電荷保持部)FDと、転送トランジスタTRと、が設けられている。
The photoelectric conversion region 32, although not shown, has, for example, a p-type well region and an n-type semiconductor region (photoelectric conversion section) embedded inside this well region. The photoelectric conversion element PD shown in FIG. 3 is configured in the photoelectric conversion region 32 including the well region and photoelectric conversion section of the first semiconductor layer 30. In addition, the photoelectric conversion region 32 is provided with, but is not limited to, a floating diffusion region (charge holding section) FD made of, for example, an n-type semiconductor region, and a transfer transistor TR.
図4及び図5に示すように、第1半導体層30の第1の面S1には、複数のトランジスタQ1が設けられている。このトランジスタQ1は、平面視で周辺部2B直下の半導体層30に設けられている。このトランジスタQ1は、例えば図2に示す制御回路8を構成するトランジスタである。トランジスタQ1としては、例えばMOSトランジスタ(Metal Oxide Semiconductor Field Effect Transistor)が用いられている。図4及び図5では、複数のトランジスタを代表して4つのトランジスタQ1を例示している。
As shown in Figures 4 and 5, a plurality of transistors Q1 are provided on the first surface S1 of the first semiconductor layer 30. The transistors Q1 are provided in the semiconductor layer 30 directly below the peripheral portion 2B in a plan view. The transistors Q1 are, for example, transistors that constitute the control circuit 8 shown in Figure 2. For example, a MOS transistor (Metal Oxide Semiconductor Field Effect Transistor) is used as the transistor Q1. Figures 4 and 5 show four transistors Q1 as an example representing the plurality of transistors.
<第1多層配線層>
図4及び図5に示すように、第1多層配線層40は、第1半導体層30の第1の面S1側に積層されている。第1多層配線層40は、層間絶縁膜41を介して配線層42が複数段積層された多層配線構造になっている。図4及び図5では、これに限定されないが、例えば配線層42が三段に積層された3層配線構造を例示している。 <First multi-layer wiring layer>
4 and 5, the first multilayer wiring layer 40 is laminated on the first surface S1 side of the first semiconductor layer 30. The first multilayer wiring layer 40 has a multilayer wiring structure in which wiring layers 42 are laminated in multiple stages via an interlayer insulating film 41. Although not limited thereto, for example, a three-layer wiring structure in which the wiring layers 42 are laminated in three stages is illustrated in FIGS.
図4及び図5に示すように、第1多層配線層40は、第1半導体層30の第1の面S1側に積層されている。第1多層配線層40は、層間絶縁膜41を介して配線層42が複数段積層された多層配線構造になっている。図4及び図5では、これに限定されないが、例えば配線層42が三段に積層された3層配線構造を例示している。 <First multi-layer wiring layer>
4 and 5, the first multilayer wiring layer 40 is laminated on the first surface S1 side of the first semiconductor layer 30. The first multilayer wiring layer 40 has a multilayer wiring structure in which wiring layers 42 are laminated in multiple stages via an interlayer insulating film 41. Although not limited thereto, for example, a three-layer wiring structure in which the wiring layers 42 are laminated in three stages is illustrated in FIGS.
層間絶縁膜41は、例えば酸化シリコン膜で構成されている。配線層42は、例えば、銅(Cu)膜又はCuを主成分とするCu合金膜、若しくはアルミニウム(Al)膜又はAlを主成分とするAl合金膜で構成されている。
The interlayer insulating film 41 is made of, for example, a silicon oxide film. The wiring layer 42 is made of, for example, a copper (Cu) film or a Cu alloy film mainly composed of Cu, or an aluminum (Al) film or an Al alloy film mainly composed of Al.
<第2半導体層>
図4及び図5に示すように、第2半導体層70は、第1半導体層30の第1の面S1側に第2多層配線層80及び第1多層配線層40を介して設けられている。第2半導体層70は、例えばp型の単結晶シリコン基板で構成されている。 <Second Semiconductor Layer>
4 and 5, the second semiconductor layer 70 is provided on the first surface S1 side of the first semiconductor layer 30 via a second multilayer wiring layer 80 and a first multilayer wiring layer 40. The second semiconductor layer 70 is made of, for example, a p-type single crystal silicon substrate.
図4及び図5に示すように、第2半導体層70は、第1半導体層30の第1の面S1側に第2多層配線層80及び第1多層配線層40を介して設けられている。第2半導体層70は、例えばp型の単結晶シリコン基板で構成されている。 <Second Semiconductor Layer>
4 and 5, the second semiconductor layer 70 is provided on the first surface S1 side of the first semiconductor layer 30 via a second multilayer wiring layer 80 and a first multilayer wiring layer 40. The second semiconductor layer 70 is made of, for example, a p-type single crystal silicon substrate.
図4及び図5に示すように、半導体層70の第3の面S3には、複数のトランジスタQ2が設けられている。このトランジスタQ2は、例えば図3に示す画素回路(読出し回路)15を構成する画素トランジスタや、図2に示すロジック回路13を構成するトランジスタである。トランジスタQ2としては、例えばMOSトランジスタが用いられている。図4及び図5では、複数のトランジスタを代表して7つのトランジスタQ2を示している。
As shown in Figures 4 and 5, a plurality of transistors Q2 are provided on the third surface S3 of the semiconductor layer 70. The transistors Q2 are, for example, pixel transistors constituting the pixel circuit (readout circuit) 15 shown in Figure 3, or transistors constituting the logic circuit 13 shown in Figure 2. For example, a MOS transistor is used as the transistor Q2. Seven transistors Q2 are shown in Figures 4 and 5 to represent the plurality of transistors.
<第2多層配線層>
図4及び図5に示すように、第2多層配線層80は、第2半導体層70の第3の面S3側に積層されている。第2多層配線層80は、層間絶縁膜81を介して配線層82が複数段積層された多層配線構造になっている。図4及び図5では、これに限定されないが、例えば配線層82が三段に積層された3層配線構造を例示している。 <Second Multilayer Wiring Layer>
4 and 5, the second multilayer wiring layer 80 is laminated on the third surface S3 side of the second semiconductor layer 70. The second multilayer wiring layer 80 has a multilayer wiring structure in which wiring layers 82 are laminated in multiple stages via an interlayer insulating film 81. Although not limited thereto, for example, a three-layer wiring structure in which the wiring layers 82 are laminated in three stages is illustrated in FIG.
図4及び図5に示すように、第2多層配線層80は、第2半導体層70の第3の面S3側に積層されている。第2多層配線層80は、層間絶縁膜81を介して配線層82が複数段積層された多層配線構造になっている。図4及び図5では、これに限定されないが、例えば配線層82が三段に積層された3層配線構造を例示している。 <Second Multilayer Wiring Layer>
4 and 5, the second multilayer wiring layer 80 is laminated on the third surface S3 side of the second semiconductor layer 70. The second multilayer wiring layer 80 has a multilayer wiring structure in which wiring layers 82 are laminated in multiple stages via an interlayer insulating film 81. Although not limited thereto, for example, a three-layer wiring structure in which the wiring layers 82 are laminated in three stages is illustrated in FIG.
図4及び図5に示すように、第2多層配線層80は、内部電極パッド83を有する。この内部電極パッド83は、第2多層配線層80の第2半導体層70側から数えて第1層目の配線層82に設けられている。
As shown in Figures 4 and 5, the second multilayer wiring layer 80 has an internal electrode pad 83. This internal electrode pad 83 is provided in the first wiring layer 82, counting from the second semiconductor layer 70 side of the second multilayer wiring layer 80.
層間絶縁膜81は、例えば酸化シリコン膜で構成されている。配線層82は、例えば、銅(Cu)膜又はCuを主成分とするCu合金膜、若しくはアルミニウム(Al)膜又はAlを主成分とするAl合金膜で構成されている。
The interlayer insulating film 81 is made of, for example, a silicon oxide film. The wiring layer 82 is made of, for example, a copper (Cu) film or a Cu alloy film mainly composed of Cu, or an aluminum (Al) film or an Al alloy film mainly composed of Al.
<掘り込み部,分離絶縁膜>
図4及び図5に示すように、掘り込み部91は、平面視で第2多層配線層80の内部電極パッド83と重畳する位置に設けられている。そして、掘り込み部91は、第2半導体層70の第3の面S3側から第2多層配線層80に亘って延伸し、内部電極パッド83に到達している。掘り込み部91は、周知のフォトリソグラフィ技術及び異方性ドライエッチング技術を使用して、第2半導体層70及び第2多層配線層80を選択的にエッチングすることによって形成することができる。
図1に示すように、掘り込み部91は、これに限定されないが、例えば周辺部2Bに複数設けられている。 <Dug-in portion, isolation insulating film>
4 and 5, the dug portion 91 is provided at a position overlapping with the internal electrode pad 83 of the second multilayer wiring layer 80 in a plan view. The dug portion 91 extends from the third surface S3 side of the second semiconductor layer 70 across the second multilayer wiring layer 80, and reaches the internal electrode pad 83. The dug portion 91 can be formed by selectively etching the second semiconductor layer 70 and the second multilayer wiring layer 80 using well-known photolithography and anisotropic dry etching techniques.
As shown in FIG. 1, a plurality of recessed portions 91 are provided in the peripheral portion 2B, for example, but not limited to this.
図4及び図5に示すように、掘り込み部91は、平面視で第2多層配線層80の内部電極パッド83と重畳する位置に設けられている。そして、掘り込み部91は、第2半導体層70の第3の面S3側から第2多層配線層80に亘って延伸し、内部電極パッド83に到達している。掘り込み部91は、周知のフォトリソグラフィ技術及び異方性ドライエッチング技術を使用して、第2半導体層70及び第2多層配線層80を選択的にエッチングすることによって形成することができる。
図1に示すように、掘り込み部91は、これに限定されないが、例えば周辺部2Bに複数設けられている。 <Dug-in portion, isolation insulating film>
4 and 5, the dug portion 91 is provided at a position overlapping with the internal electrode pad 83 of the second multilayer wiring layer 80 in a plan view. The dug portion 91 extends from the third surface S3 side of the second semiconductor layer 70 across the second multilayer wiring layer 80, and reaches the internal electrode pad 83. The dug portion 91 can be formed by selectively etching the second semiconductor layer 70 and the second multilayer wiring layer 80 using well-known photolithography and anisotropic dry etching techniques.
As shown in FIG. 1, a plurality of recessed portions 91 are provided in the peripheral portion 2B, for example, but not limited to this.
図4及び図5に示すように、分離絶縁膜92は、掘り込み部91の内壁の側面に沿って設けられていると共に、第2半導体層70の第4の面S4側にも設けられている。即ち、分離絶縁膜92は、掘り込み部91の内壁の側面及び第2半導体層70の第4の面S4に亘って設けられている。分離絶縁膜92は、例えば酸化シリコン膜で構成されている。
As shown in Figures 4 and 5, the isolation insulating film 92 is provided along the side surface of the inner wall of the recessed portion 91, and is also provided on the fourth surface S4 side of the second semiconductor layer 70. In other words, the isolation insulating film 92 is provided across the side surface of the inner wall of the recessed portion 91 and the fourth surface S4 of the second semiconductor layer 70. The isolation insulating film 92 is composed of, for example, a silicon oxide film.
<コンタクト電極,外部電極パッド>
図4及び図5に示すように、コンタクト電極93は、分離絶縁膜92を介して掘り込み部91の内壁に沿って設けられていると共に、掘り込み部91の底部に位置する内部電極パッド83に沿って設けられている。そして、コンタクト電極93は、内部電極パッド83と電気的及び機械的に接続されている。そして、コンタクト電極93は、分離絶縁膜92を介して第2半導体層70と電気的に絶縁分離されている。 <Contact electrodes, external electrode pads>
4 and 5, the contact electrode 93 is provided along the inner wall of the dug portion 91 via the isolation insulating film 92, and is provided along the internal electrode pad 83 located at the bottom of the dug portion 91. The contact electrode 93 is electrically and mechanically connected to the internal electrode pad 83. The contact electrode 93 is electrically insulated and separated from the second semiconductor layer 70 via the isolation insulating film 92.
図4及び図5に示すように、コンタクト電極93は、分離絶縁膜92を介して掘り込み部91の内壁に沿って設けられていると共に、掘り込み部91の底部に位置する内部電極パッド83に沿って設けられている。そして、コンタクト電極93は、内部電極パッド83と電気的及び機械的に接続されている。そして、コンタクト電極93は、分離絶縁膜92を介して第2半導体層70と電気的に絶縁分離されている。 <Contact electrodes, external electrode pads>
4 and 5, the contact electrode 93 is provided along the inner wall of the dug portion 91 via the isolation insulating film 92, and is provided along the internal electrode pad 83 located at the bottom of the dug portion 91. The contact electrode 93 is electrically and mechanically connected to the internal electrode pad 83. The contact electrode 93 is electrically insulated and separated from the second semiconductor layer 70 via the isolation insulating film 92.
図4及び図5に示すように、外部電極パッド94は、第2半導体層70の第4の面S4側に分離絶縁膜92を介して設けられている。外部電極パッド94は、コンタクト電極93と一体で構成され、コンタクト電極93と電気的に接続されている。即ち、外部電極パッド94は、掘り込み部91を通して第2多層配線層80の内部電極パッド83と電気的に接続されている。そして、掘り込み部91は、第2半導体層70の第3の面S3側の内部電極パッド83と第2半導体層70の第4の面S4側の外部電極パッド94とを電気的に接続するための貫通孔であり、第2半導体層70の厚さ方向(Z方向)に沿って第2半導体層70を貫通している。そして、外部電極パッド94は、分離絶縁膜92を介して第2半導体層70と電気的に絶縁分離されている。
4 and 5, the external electrode pad 94 is provided on the fourth surface S4 side of the second semiconductor layer 70 via an isolation insulating film 92. The external electrode pad 94 is integrally formed with the contact electrode 93 and is electrically connected to the contact electrode 93. That is, the external electrode pad 94 is electrically connected to the internal electrode pad 83 of the second multilayer wiring layer 80 through the recessed portion 91. The recessed portion 91 is a through hole for electrically connecting the internal electrode pad 83 on the third surface S3 side of the second semiconductor layer 70 and the external electrode pad 94 on the fourth surface S4 side of the second semiconductor layer 70, and penetrates the second semiconductor layer 70 along the thickness direction (Z direction) of the second semiconductor layer 70. The external electrode pad 94 is electrically insulated and separated from the second semiconductor layer 70 via the isolation insulating film 92.
コンタクト電極93及び外部電極パッド94は、例えば、第2半導体層70の第4の面S4側及び掘り込み部91の内部に掘り込み部91の内壁に沿う膜厚で導電膜を成膜し、その後、この導電膜を周知のフォトリソグラフィ技術及び異方性ドライエッチング技術でパターンニングすることによって形成することができる。導電膜としては、例えば、バリア膜としてのチタン(Ti)膜とシード膜としての銅(Cu)膜との積層膜を用いることができる。
The contact electrode 93 and the external electrode pad 94 can be formed, for example, by forming a conductive film on the fourth surface S4 side of the second semiconductor layer 70 and inside the recessed portion 91 with a thickness that conforms to the inner wall of the recessed portion 91, and then patterning this conductive film using well-known photolithography and anisotropic dry etching techniques. The conductive film can be, for example, a laminate film of a titanium (Ti) film as a barrier film and a copper (Cu) film as a seed film.
図1に示すように、外部電極パッド94は、これに限定されないが、例えば半導体チップ2の周辺部2Bに複数設けられている。
As shown in FIG. 1, multiple external electrode pads 94 are provided, for example but not limited to, on the peripheral portion 2B of the semiconductor chip 2.
<ソルダーレジスト>
図4及び図5に示すように、ソルダーレジスト膜95は、掘り込み部91の内部にコンタクト電極93を覆うようにして設けられていると共に、第2半導体層70の第4の面S4を覆うようにして設けられている。即ち、ソルダーレジスト膜95は、掘り込み部91の内部及び第2半導体層70の第4の面S4に亘って設けられている。 <Solder resist>
4 and 5 , the solder resist film 95 is provided inside the dug portion 91 so as to cover the contact electrode 93, and is also provided so as to cover the fourth surface S4 of the second semiconductor layer 70. In other words, the solder resist film 95 is provided across the inside of the dug portion 91 and the fourth surface S4 of the second semiconductor layer 70.
図4及び図5に示すように、ソルダーレジスト膜95は、掘り込み部91の内部にコンタクト電極93を覆うようにして設けられていると共に、第2半導体層70の第4の面S4を覆うようにして設けられている。即ち、ソルダーレジスト膜95は、掘り込み部91の内部及び第2半導体層70の第4の面S4に亘って設けられている。 <Solder resist>
4 and 5 , the solder resist film 95 is provided inside the dug portion 91 so as to cover the contact electrode 93, and is also provided so as to cover the fourth surface S4 of the second semiconductor layer 70. In other words, the solder resist film 95 is provided across the inside of the dug portion 91 and the fourth surface S4 of the second semiconductor layer 70.
ソルダーレジスト膜95は、主に、コンタクト電極93や、図示していないが、第2半導体層70の第4の面S4側に設けられた配線を保護する目的で設けられている。そして、ソルダーレジスト膜95には、外部電極パッド94を露出する開口部95aが設けられている。
The solder resist film 95 is provided mainly for the purpose of protecting the contact electrodes 93 and the wiring (not shown) provided on the fourth surface S4 side of the second semiconductor layer 70. The solder resist film 95 is provided with an opening 95a that exposes the external electrode pad 94.
外部電極パッド94には、ソルダーレジスト膜95の開口部95aを通して半田バンプやボンディングワイヤなどの接続部材が接続される。
Connecting members such as solder bumps and bonding wires are connected to the external electrode pads 94 through the openings 95a in the solder resist film 95.
<接合層>
図5に示すように、第1積層体20側の接合層47は、反り抑制膜46を覆うようにして第1多層配線層40の第1半導体層30側とは反対側の接合面側に設けられている。接合層46は、半導体チップ2のセンサ画素アレイ部2A及び周辺部2Bに亘って設けられ、平面視で第1多層配線層40の全域を覆うように広範囲に設けられている。 <Bonding layer>
5, the bonding layer 47 on the first laminate 20 side is provided on the bonding surface of the first multilayer wiring layer 40 opposite the first semiconductor layer 30 side so as to cover the warpage suppression film 46. The bonding layer 46 is provided across the sensor pixel array portion 2A and the peripheral portion 2B of the semiconductor chip 2, and is provided over a wide range so as to cover the entire area of the first multilayer wiring layer 40 in a plan view.
図5に示すように、第1積層体20側の接合層47は、反り抑制膜46を覆うようにして第1多層配線層40の第1半導体層30側とは反対側の接合面側に設けられている。接合層46は、半導体チップ2のセンサ画素アレイ部2A及び周辺部2Bに亘って設けられ、平面視で第1多層配線層40の全域を覆うように広範囲に設けられている。 <Bonding layer>
5, the bonding layer 47 on the first laminate 20 side is provided on the bonding surface of the first multilayer wiring layer 40 opposite the first semiconductor layer 30 side so as to cover the warpage suppression film 46. The bonding layer 46 is provided across the sensor pixel array portion 2A and the peripheral portion 2B of the semiconductor chip 2, and is provided over a wide range so as to cover the entire area of the first multilayer wiring layer 40 in a plan view.
図5に示すように、第2積層体20側の接合層87は、反り抑制膜86を覆うようにして第2多層配線層80の第2半導体層70側とは反対側の接合面側に設けられている。接合層87は、半導体チップ2のセンサ画素アレイ部2A及び周辺部2Bに亘って設けられ、平面視で第2多層配線層80の全域を覆うように広範囲で設けられている。
As shown in FIG. 5, the bonding layer 87 on the second laminate 20 side is provided on the bonding surface side of the second multilayer wiring layer 80 opposite the second semiconductor layer 70 side so as to cover the warpage suppression film 86. The bonding layer 87 is provided across the sensor pixel array portion 2A and the peripheral portion 2B of the semiconductor chip 2, and is provided over a wide area so as to cover the entire area of the second multilayer wiring layer 80 in a plan view.
接合層47の表面は、第1積層体20の接合面20aとして機能する。一方、接合層87は、第2積層体60の接合面60aとして機能する。そして、第1積層体20の接合層47と第2積層体60の接合層87とが接合されている。そして、第1積層体20の接合層47と第2積層体60の接合層87とが接合されることにより、第1積層体20と第2積層体60とが各々の厚さ方向(Z方向)に並んで接合される。
The surface of the bonding layer 47 functions as the bonding surface 20a of the first laminate 20. Meanwhile, the bonding layer 87 functions as the bonding surface 60a of the second laminate 60. The bonding layer 47 of the first laminate 20 and the bonding layer 87 of the second laminate 60 are bonded together. By bonding the bonding layer 47 of the first laminate 20 and the bonding layer 87 of the second laminate 60 together, the first laminate 20 and the second laminate 60 are bonded together in line in their respective thickness directions (Z direction).
<プラズマ接合法>
第1積層体20の接合層47と第2積層体60の接合層87との接合は、例えばプラズマ接合法によって行うことができる。 <Plasma bonding method>
The bonding layer 47 of the first stack 20 and the bonding layer 87 of the second stack 60 can be bonded together by, for example, a plasma bonding method.
第1積層体20の接合層47と第2積層体60の接合層87との接合は、例えばプラズマ接合法によって行うことができる。 <Plasma bonding method>
The bonding layer 47 of the first stack 20 and the bonding layer 87 of the second stack 60 can be bonded together by, for example, a plasma bonding method.
プラズマ接合法は、接合層としての酸化シリコン層にプラズマ照射を施すことにより、シラノール基を形成する。そして、シラノール基を形成した面同士を向かい合わせ、積層体同士を押し付けてファンデルワールス力により接合する。その後、接合界面の密着力を更に高めるため、例えば400℃/60minの熱処理を加えてシラノール基同士を脱水縮合反応させる。このような、分子レベルの制御を積層体の接合層に行うことで、積層体同士の接合が可能となる。この第1積層体20の接合層47と第2積層体60の接合層87との接合は、ウエハの状態で行われる。
In the plasma bonding method, silanol groups are formed by irradiating a silicon oxide layer serving as a bonding layer with plasma. The surfaces on which the silanol groups have been formed are then placed face to face, and the laminates are pressed together and bonded by van der Waals force. After that, to further increase the adhesion at the bonding interface, a heat treatment of, for example, 400°C/60 min is applied, causing a dehydration condensation reaction between the silanol groups. By controlling the bonding layer of the laminates in this way at the molecular level, it becomes possible to bond the laminates together. The bonding between the bonding layer 47 of the first laminate 20 and the bonding layer 87 of the second laminate 60 is performed in the form of a wafer.
<反り抑制膜>
図5に示すように、反り抑制膜46は、第1多層配線層40の第1半導体層30側とは反対側に設けられ、かつ接合層47で覆われている。反り抑制膜46は、半導体チップ2のセンサ画素アレイ部2A及び周辺部2Bに亘って設けられ、平面視で第1多層配線層40の全域を覆うように広範囲で設けられている。 <Warpage suppression film>
5, the warp suppression film 46 is provided on the side of the first multilayer wiring layer 40 opposite to the first semiconductor layer 30, and is covered with a bonding layer 47. The warp suppression film 46 is provided across the sensor pixel array portion 2A and the peripheral portion 2B of the semiconductor chip 2, and is provided over a wide range so as to cover the entire area of the first multilayer wiring layer 40 in a plan view.
図5に示すように、反り抑制膜46は、第1多層配線層40の第1半導体層30側とは反対側に設けられ、かつ接合層47で覆われている。反り抑制膜46は、半導体チップ2のセンサ画素アレイ部2A及び周辺部2Bに亘って設けられ、平面視で第1多層配線層40の全域を覆うように広範囲で設けられている。 <Warpage suppression film>
5, the warp suppression film 46 is provided on the side of the first multilayer wiring layer 40 opposite to the first semiconductor layer 30, and is covered with a bonding layer 47. The warp suppression film 46 is provided across the sensor pixel array portion 2A and the peripheral portion 2B of the semiconductor chip 2, and is provided over a wide range so as to cover the entire area of the first multilayer wiring layer 40 in a plan view.
反り抑制膜46は、熱膨張係数の異なる第1半導体層30と第1多層配線層40とが積層された第1積層体20の反りを抑制するためのものであり、この第1積層体20の反りとは逆の内部応力を持つ層からなる。反り抑制膜46としては、例えば、SiN、SiO2、SiOC、SiC、SiCN、FSG、FTEOSなどのプラズマCVD法で形成可能な材料、又は、誘起材料やSOGなどの塗布法により形成可能な材料を用いることができる。特に、プラズマCVD法を用いた膜は、CVD装置のチャンバー内の圧力やRFパワーなどの条件を変更することにより、内部応力を制御することができる。したがって、プラズマCVD法を用いた材料膜を反り抑制膜46として用いることが好ましい。この第1実施形態では、反り抑制膜46として、例えば窒化シリコン(SiN)膜を用いている。
図5に示すように、反り抑制膜86は、第2多層配線層80の第2半導体層70側とは反対側に設けられ、かつ接合層87で覆われている。反り抑制膜86は、半導体チップ2の画素アレイ部2A及び周辺部2Bに亘って設けられ、平面視で第2多層配線層80の全域を覆うように広範囲で設けられている。 The warpage suppression film 46 is for suppressing warpage of the first stack 20 in which the first semiconductor layer 30 and the first multilayer wiring layer 40, which have different thermal expansion coefficients, are stacked, and is made of a layer having an internal stress opposite to the warpage of the first stack 20. As the warpage suppression film 46, for example, a material that can be formed by a plasma CVD method, such as SiN, SiO2, SiOC, SiC, SiCN, FSG, FTEOS, or a material that can be formed by a coating method, such as an induction material or SOG, can be used. In particular, the film formed by the plasma CVD method can control the internal stress by changing conditions such as the pressure in the chamber of the CVD device and the RF power. Therefore, it is preferable to use a material film formed by the plasma CVD method as the warpage suppression film 46. In this first embodiment, for example, a silicon nitride (SiN) film is used as the warpage suppression film 46.
5, the warp suppression film 86 is provided on the side of the second multilayer wiring layer 80 opposite to the second semiconductor layer 70, and is covered with a bonding layer 87. The warp suppression film 86 is provided across the pixel array portion 2A and the peripheral portion 2B of the semiconductor chip 2, and is provided over a wide range so as to cover the entire area of the second multilayer wiring layer 80 in a plan view.
図5に示すように、反り抑制膜86は、第2多層配線層80の第2半導体層70側とは反対側に設けられ、かつ接合層87で覆われている。反り抑制膜86は、半導体チップ2の画素アレイ部2A及び周辺部2Bに亘って設けられ、平面視で第2多層配線層80の全域を覆うように広範囲で設けられている。 The warpage suppression film 46 is for suppressing warpage of the first stack 20 in which the first semiconductor layer 30 and the first multilayer wiring layer 40, which have different thermal expansion coefficients, are stacked, and is made of a layer having an internal stress opposite to the warpage of the first stack 20. As the warpage suppression film 46, for example, a material that can be formed by a plasma CVD method, such as SiN, SiO2, SiOC, SiC, SiCN, FSG, FTEOS, or a material that can be formed by a coating method, such as an induction material or SOG, can be used. In particular, the film formed by the plasma CVD method can control the internal stress by changing conditions such as the pressure in the chamber of the CVD device and the RF power. Therefore, it is preferable to use a material film formed by the plasma CVD method as the warpage suppression film 46. In this first embodiment, for example, a silicon nitride (SiN) film is used as the warpage suppression film 46.
5, the warp suppression film 86 is provided on the side of the second multilayer wiring layer 80 opposite to the second semiconductor layer 70, and is covered with a bonding layer 87. The warp suppression film 86 is provided across the pixel array portion 2A and the peripheral portion 2B of the semiconductor chip 2, and is provided over a wide range so as to cover the entire area of the second multilayer wiring layer 80 in a plan view.
反り抑制膜86は、熱膨張係数の異なる第2半導体層70と第2多層配線層80とが積層された第2積層体60の反りを抑制するためのものであり、この第2積層体60の反りとは逆の内部応力を持つ層からなる。反り抑制膜46としては、上述の第1積層体20の反りを抑制する反り抑制膜46と同様の構成とすることができる。この第1実施形態では、反り抑制膜86として、例えば窒化シリコン(SiN)膜を用いている。
The warpage suppression film 86 is intended to suppress warpage of the second laminate 60, which is a laminate of the second semiconductor layer 70 and the second multilayer wiring layer 80, which have different thermal expansion coefficients, and is made of a layer that has an internal stress opposite to the warpage of the second laminate 60. The warpage suppression film 46 can be configured in the same way as the warpage suppression film 46 that suppresses warpage of the first laminate 20 described above. In this first embodiment, for example, a silicon nitride (SiN) film is used as the warpage suppression film 86.
図5に示すように、反り抑制膜86及び46の各々は、第2多層配線層80と第1多層配線層40との間に設けられている。
即ち、この第1実施形態に係る固体撮像装置1Aは、第2半導体層70と、この第2半導体層70の第3の面S3側に設けられた第2多層配線層80と、この第2多層配線層80の第2半導体層70側とは反対側に設けられた反り抑制膜86と、平面視で反り抑制膜86と重畳し、かつ第2半導体層70の第4の面S4側から第2多層配線層に亘って延伸する掘り込み部91と、を備えている。 As shown in FIG. 5 , each of the warp suppression films 86 and 46 is provided between the second multilayer wiring layer 80 and the first multilayer wiring layer 40 .
That is, the solid-state imaging device 1A of the first embodiment comprises a second semiconductor layer 70, a second multilayer wiring layer 80 provided on the third surface S3 side of the second semiconductor layer 70, a warp suppression film 86 provided on the side of the second multilayer wiring layer 80 opposite the second semiconductor layer 70 side, and a recessed portion 91 that overlaps the warp suppression film 86 in a planar view and extends from the fourth surface S4 side of the second semiconductor layer 70 to the second multilayer wiring layer.
即ち、この第1実施形態に係る固体撮像装置1Aは、第2半導体層70と、この第2半導体層70の第3の面S3側に設けられた第2多層配線層80と、この第2多層配線層80の第2半導体層70側とは反対側に設けられた反り抑制膜86と、平面視で反り抑制膜86と重畳し、かつ第2半導体層70の第4の面S4側から第2多層配線層に亘って延伸する掘り込み部91と、を備えている。 As shown in FIG. 5 , each of the warp suppression films 86 and 46 is provided between the second multilayer wiring layer 80 and the first multilayer wiring layer 40 .
That is, the solid-state imaging device 1A of the first embodiment comprises a second semiconductor layer 70, a second multilayer wiring layer 80 provided on the third surface S3 side of the second semiconductor layer 70, a warp suppression film 86 provided on the side of the second multilayer wiring layer 80 opposite the second semiconductor layer 70 side, and a recessed portion 91 that overlaps the warp suppression film 86 in a planar view and extends from the fourth surface S4 side of the second semiconductor layer 70 to the second multilayer wiring layer.
<反り抑制膜の重畳領域>
図6及び図7に示すように、反り抑制膜86は、平面視で掘り込み部91と重畳する重畳領域86aに開口部86a1を有する。開口部86a1は、これに限定されないが、例えば点在している。そして、反り抑制膜86の重畳領域86aは、開口部86a1を含む格子状平面パターンになっている。
開口部86a1は、図6に示すように、例えば反り抑制膜86を貫通している。そして、開口部46a1の平面形状は、図7に示すように、例えば方形状になっている。 <Overlapping area of warpage suppression film>
6 and 7, the warpage suppression film 86 has openings 86a1 in an overlapping region 86a that overlaps with the recessed portion 91 in a plan view. The openings 86a1 are, for example, scattered, but are not limited to this. The overlapping region 86a of the warpage suppression film 86 has a lattice-like planar pattern including the openings 86a1 .
6 , the opening 86a1 penetrates, for example, the warp suppression film 86. The planar shape of the opening 86a1 is, for example, rectangular, as shown in FIG.
図6及び図7に示すように、反り抑制膜86は、平面視で掘り込み部91と重畳する重畳領域86aに開口部86a1を有する。開口部86a1は、これに限定されないが、例えば点在している。そして、反り抑制膜86の重畳領域86aは、開口部86a1を含む格子状平面パターンになっている。
開口部86a1は、図6に示すように、例えば反り抑制膜86を貫通している。そして、開口部46a1の平面形状は、図7に示すように、例えば方形状になっている。 <Overlapping area of warpage suppression film>
6 and 7, the warpage suppression film 86 has openings 86a1 in an overlapping region 86a that overlaps with the recessed portion 91 in a plan view. The openings 86a1 are, for example, scattered, but are not limited to this. The overlapping region 86a of the warpage suppression film 86 has a lattice-like planar pattern including the openings 86a1 .
6 , the opening 86a1 penetrates, for example, the warp suppression film 86. The planar shape of the opening 86a1 is, for example, rectangular, as shown in FIG.
図6に示すように、反り抑制膜46も、上述の反り抑制膜86と同様に、平面視で掘り込み部91と重畳する重畳領域46aに開口部46a1を有する。この開口部46a1も、上述の反り抑制膜86の開口部86a1と同様に、例えば点在している。そして、反り抑制膜46の重畳領域46aも、開口部46a1を含む格子状平面パターンになっている。そして、反り抑制膜46の開口部46a1も、上述の開口部86a1と同様に、例えば反り抑制膜46を貫通し、開口部46a1の平面形状は、例えば方形状になっている。
6, like the warp suppression film 86 described above, the warp suppression film 46 also has openings 46a1 in an overlapping region 46a that overlaps with the recessed portion 91 in a plan view. Like the openings 86a1 of the warp suppression film 86 described above, the openings 46a1 are also, for example, scattered. The overlapping region 46a of the warp suppression film 46 also has a lattice-like planar pattern including the openings 46a1 . Like the openings 86a1 described above, the openings 46a1 of the warp suppression film 46 also penetrate the warp suppression film 46, for example, and the planar shape of the openings 46a1 is, for example, rectangular .
≪第1実施形態の主な効果≫
次に、この第1実施形態の主な効果について、図8及び図9を参照して説明する。 <<Main Effects of the First Embodiment>>
Next, main effects of the first embodiment will be described with reference to FIGS.
次に、この第1実施形態の主な効果について、図8及び図9を参照して説明する。 <<Main Effects of the First Embodiment>>
Next, main effects of the first embodiment will be described with reference to FIGS.
図8は、従来の固体撮像装置において、第1積層体20と第2積層体60との接合界面R1が掘り込み部91と重畳する重畳領域での変形を模式的に示す縦断面図である。
FIG. 8 is a vertical cross-sectional view showing a schematic diagram of deformation in an overlapping region where the bonding interface R1 between the first laminate 20 and the second laminate 60 overlaps with the recessed portion 91 in a conventional solid-state imaging device.
図9は、この第1実施形態の固体撮像装置1Aにおいて、第1積層体20と第2積層体60との接合界面が掘り込み部91と重畳する重畳領域での変形を模式的に示す縦断面図である。
FIG. 9 is a vertical cross-sectional view showing a schematic diagram of deformation in the overlapping region where the bonding interface between the first laminate 20 and the second laminate 60 overlaps with the recessed portion 91 in the solid-state imaging device 1A of this first embodiment.
図8に示すように、従来の固体撮像装置では、平面視で第2半導体層70の掘り込み部91と重畳する反り抑制膜86,46の重畳領域86a,46aがベタ膜状態となっている。即ち、平面視で掘り込み部91の全体が反り抑制膜86,46で覆われた状態となっている。このため、反り抑制膜86,46に起因する応力が掘り込み部91の周囲に局所的に集中し、平面視で第2半導体層70の掘り込み部91と重畳する第2多層配線層80の部分に変形(反り量A)が生じることがある。この第2多層配線層80の変形は、第2多層配線層80の配線や内部電極パッド83に反りや剥離を発生させ、信頼性を低下させる要因となる。
As shown in FIG. 8, in a conventional solid-state imaging device, the overlapping regions 86a, 46a of the warp suppression films 86, 46 that overlap the recessed portion 91 of the second semiconductor layer 70 in a planar view are in a solid film state. That is, the entire recessed portion 91 is covered with the warp suppression films 86, 46 in a planar view. For this reason, stress caused by the warp suppression films 86, 46 is locally concentrated around the recessed portion 91, and deformation (warp amount A) may occur in the portion of the second multilayer wiring layer 80 that overlaps the recessed portion 91 of the second semiconductor layer 70 in a planar view. This deformation of the second multilayer wiring layer 80 causes warping or peeling in the wiring of the second multilayer wiring layer 80 and the internal electrode pads 83, which reduces reliability.
これに対し、図9に示すように、この第1実施形態の固体撮像装置1Aでは、反り抑制膜86,46が、平面視で第2半導体層70の掘り込み部91と重畳する重畳領域86a,46aに開口部86a1,46a1を有する。このため、反り抑制膜86,46に起因する応力が掘り込み部91の周囲に局所的に集中する現象を緩和することができ、平面視で第2半導体層70の掘り込み部91と重畳する第2多層配線層80の部分における変形(反り量A)を抑制することができる。
In contrast, as shown in Figure 9, in the solid-state imaging device 1A of the first embodiment, the warp suppression films 86, 46 have openings 86a1, 46a1 in overlapping regions 86a, 46a that overlap the recessed portion 91 of the second semiconductor layer 70 in a planar view. This makes it possible to mitigate the phenomenon in which stress caused by the warp suppression films 86, 46 is locally concentrated around the recessed portion 91, and to suppress deformation (warpage amount A) in the portion of the second multilayer wiring layer 80 that overlaps the recessed portion 91 of the second semiconductor layer 70 in a planar view.
これにより、第2多層配線層80の局所的な変形に起因して多層配線層80の配線や内部電極パッド83に生じる反りや剥離を抑制することができる。
This makes it possible to suppress warping and peeling of the wiring of the multilayer wiring layer 80 and the internal electrode pads 83 caused by local deformation of the second multilayer wiring layer 80.
したがって、この第1実施形態に係る固体撮像装置1Aによれば、より一層の信頼性の向上を図ることが可能となる。
Therefore, the solid-state imaging device 1A according to the first embodiment can achieve even greater reliability.
≪第1実施形態の変形例≫
<変形例1-1>
上述の第1実施形態では、図7に示すように、反り抑制膜86,46の開口部86a1,46a1の平面形状を方形状で構成した場合について説明したが、本技術は、方形状に限定されるものではない。
例えば、図10に示すように、反り抑制膜86,46の開口部86a1,46a1は、円形状の平面形状で構成してもよい。この場合においても、上述の第1実施形態と同様の効果が得られる。 <Modification of the First Embodiment>
<Modification 1-1>
In the above-described first embodiment, as shown in FIG. 7, the openings 86a.sub.1 , 46a.sub.1 of the warp suppression films 86, 46 have a rectangular planar shape. However, the present technology is not limited to the rectangular shape.
For example, as shown in Fig. 10, the openings 86a1, 46a1 of the warp suppression films 86 , 46 may be formed to have a circular planar shape, with the same effects as those of the first embodiment being obtained in this case as well.
<変形例1-1>
上述の第1実施形態では、図7に示すように、反り抑制膜86,46の開口部86a1,46a1の平面形状を方形状で構成した場合について説明したが、本技術は、方形状に限定されるものではない。
例えば、図10に示すように、反り抑制膜86,46の開口部86a1,46a1は、円形状の平面形状で構成してもよい。この場合においても、上述の第1実施形態と同様の効果が得られる。 <Modification of the First Embodiment>
<Modification 1-1>
In the above-described first embodiment, as shown in FIG. 7, the openings 86a.sub.1 , 46a.sub.1 of the warp suppression films 86, 46 have a rectangular planar shape. However, the present technology is not limited to the rectangular shape.
For example, as shown in Fig. 10, the openings 86a1, 46a1 of the warp suppression films 86 , 46 may be formed to have a circular planar shape, with the same effects as those of the first embodiment being obtained in this case as well.
<変形例1-2>
また、上述の第1実施形態では、図7に示すように、反り抑制膜86,46の重畳領域86a,46aに開口部86a1,46a1を点在させた場合について説明したが、本技術は、反り抑制膜86,46の重畳領域86a,46aに開口部86a1,46a1が点在する構成に限定されるものではない。
例えば、図11に示すように、開口部86a1,46a1は、反り抑制膜86,46の重畳領域86a,46aに1つ設けた構成としてもよい。この場合においても、上述の第1実施形態と同様の効果が得られる。 <Modification 1-2>
In the above-described first embodiment, as shown in FIG. 7 , the openings 86a1, 46a1 are dotted in the overlapping regions 86a, 46a of the warp suppression films 86, 46. However, the present technology is not limited to the configuration in which the openings 86a1 , 46a1 are dotted in the overlapping regions 86a, 46a of the warp suppression films 86, 46.
11, the openings 86a 1 and 46a 1 may be provided in the overlapping regions 86a and 46a of the warp suppression films 86 and 46. In this case as well, the same effects as those of the first embodiment can be obtained.
また、上述の第1実施形態では、図7に示すように、反り抑制膜86,46の重畳領域86a,46aに開口部86a1,46a1を点在させた場合について説明したが、本技術は、反り抑制膜86,46の重畳領域86a,46aに開口部86a1,46a1が点在する構成に限定されるものではない。
例えば、図11に示すように、開口部86a1,46a1は、反り抑制膜86,46の重畳領域86a,46aに1つ設けた構成としてもよい。この場合においても、上述の第1実施形態と同様の効果が得られる。 <Modification 1-2>
In the above-described first embodiment, as shown in FIG. 7 , the openings 86a1, 46a1 are dotted in the overlapping regions 86a, 46a of the warp suppression films 86, 46. However, the present technology is not limited to the configuration in which the openings 86a1 , 46a1 are dotted in the overlapping regions 86a, 46a of the warp suppression films 86, 46.
11, the openings 86a 1 and 46a 1 may be provided in the overlapping regions 86a and 46a of the warp suppression films 86 and 46. In this case as well, the same effects as those of the first embodiment can be obtained.
<変形例1-3>
上述の第1実施形態では、図4に示すように、平面視で半導体チップ2の周辺部2Bと重畳する第2半導体層70に掘り込み部91が設けられ、この掘り込み部91と重畳する反り抑制膜86,46の重畳領域86a,46aに開口部86a1,46a1が設けたれた場合について説明したが、本技術は、上述の第1実施形態の掘り込み部91に限定されるものではない。 <Modification 1-3>
In the above-described first embodiment, as shown in FIG. 4 , a recessed portion 91 is provided in the second semiconductor layer 70 that overlaps with the peripheral portion 2B of the semiconductor chip 2 in a planar view, and openings 86a1 , 46a1 are provided in overlapping regions 86a, 46a of the warp suppression films 86, 46 that overlap with this recessed portion 91. However, the present technology is not limited to the recessed portion 91 of the above-described first embodiment.
上述の第1実施形態では、図4に示すように、平面視で半導体チップ2の周辺部2Bと重畳する第2半導体層70に掘り込み部91が設けられ、この掘り込み部91と重畳する反り抑制膜86,46の重畳領域86a,46aに開口部86a1,46a1が設けたれた場合について説明したが、本技術は、上述の第1実施形態の掘り込み部91に限定されるものではない。 <Modification 1-3>
In the above-described first embodiment, as shown in FIG. 4 , a recessed portion 91 is provided in the second semiconductor layer 70 that overlaps with the peripheral portion 2B of the semiconductor chip 2 in a planar view, and openings 86a1 , 46a1 are provided in overlapping regions 86a, 46a of the warp suppression films 86, 46 that overlap with this recessed portion 91. However, the present technology is not limited to the recessed portion 91 of the above-described first embodiment.
例えば、図12に示すように、平面視で半導体チップ2のセンサ画素アレイ部2Aと重畳する第2半導体層70に掘り込み部91が設けられ、この掘り込み部91と重畳する反り抑制膜86,46の重畳領域86a,46aに開口部86a1,46a1を設けてもよい。この場合においても、上述の第1実施形態と同様の効果が得られる。
12, for example, a recessed portion 91 may be provided in the second semiconductor layer 70 that overlaps with the sensor pixel array portion 2A of the semiconductor chip 2 in a plan view, and openings 86a1, 46a1 may be provided in overlapping regions 86a, 46a of the warp suppression films 86 , 46 that overlap with this recessed portion 91. In this case as well, the same effects as those of the first embodiment described above can be obtained.
また、平面視でセンサ画素アレイ部2Aの直下の掘り込み部91と重畳する第2多層配線層80の部分における変形(反り量A)を抑制することができるので、内部電極パッド83の反りを抑制することができる。これにより、内部電極パッド83で反射した光が内部電極パッド83の反りに起因して集光し、投影像として現れる現象を抑制することができ、より一層の高画質化を図ることができる。
In addition, deformation (warping amount A) in the portion of the second multilayer wiring layer 80 that overlaps with the recessed portion 91 directly below the sensor pixel array portion 2A in a plan view can be suppressed, thereby suppressing warping of the internal electrode pad 83. This makes it possible to suppress the phenomenon in which light reflected by the internal electrode pad 83 is condensed due to the warping of the internal electrode pad 83 and appears as a projected image, thereby achieving even higher image quality.
<変形例1-4>
また、上述の第1実施形態では、図6に示すように、第1積層体20及び第2積層体60の両方に反り抑制膜86,46を設けた場合について説明したが、本技術は、第1積層体20及び第2積層体60の少なくとも何れか一方に反り抑制膜を設けた場合にも適用することができる。図13では、第1積層体20及び第2積層体60のうち、第2積層体60に反り抑制膜86を設けた場合を例示している。そして、この第2積層体60側の反り抑制膜86の重畳領域86aに開口部86aが設けられている。 <Modification 1-4>
In the above-described first embodiment, as shown in Fig. 6, the warp suppression films 86, 46 are provided on both the first laminate 20 and the second laminate 60, but the present technology can also be applied to a case where a warp suppression film is provided on at least one of the first laminate 20 and the second laminate 60. Fig. 13 illustrates a case where the warp suppression film 86 is provided on the second laminate 60 of the first laminate 20 and the second laminate 60. An opening 86a is provided in an overlapping region 86a of the warp suppression film 86 on the second laminate 60 side.
また、上述の第1実施形態では、図6に示すように、第1積層体20及び第2積層体60の両方に反り抑制膜86,46を設けた場合について説明したが、本技術は、第1積層体20及び第2積層体60の少なくとも何れか一方に反り抑制膜を設けた場合にも適用することができる。図13では、第1積層体20及び第2積層体60のうち、第2積層体60に反り抑制膜86を設けた場合を例示している。そして、この第2積層体60側の反り抑制膜86の重畳領域86aに開口部86aが設けられている。 <Modification 1-4>
In the above-described first embodiment, as shown in Fig. 6, the warp suppression films 86, 46 are provided on both the first laminate 20 and the second laminate 60, but the present technology can also be applied to a case where a warp suppression film is provided on at least one of the first laminate 20 and the second laminate 60. Fig. 13 illustrates a case where the warp suppression film 86 is provided on the second laminate 60 of the first laminate 20 and the second laminate 60. An opening 86a is provided in an overlapping region 86a of the warp suppression film 86 on the second laminate 60 side.
〔第2実施形態〕
図14及び図15に示すように、本技術の第2実施形態に係る固体撮像装置1Bは、基本的に上述の第1実施形態に係る固体撮像装置1Aと同様の構成になっており、外部電極パッド及び掘り込み部の構成が異なっている。 Second Embodiment
As shown in Figures 14 and 15, the solid-state imaging device 1B of the second embodiment of the present technology is basically configured in the same manner as the solid-state imaging device 1A of the first embodiment described above, with the configurations of the external electrode pads and the recessed portions being different.
図14及び図15に示すように、本技術の第2実施形態に係る固体撮像装置1Bは、基本的に上述の第1実施形態に係る固体撮像装置1Aと同様の構成になっており、外部電極パッド及び掘り込み部の構成が異なっている。 Second Embodiment
As shown in Figures 14 and 15, the solid-state imaging device 1B of the second embodiment of the present technology is basically configured in the same manner as the solid-state imaging device 1A of the first embodiment described above, with the configurations of the external electrode pads and the recessed portions being different.
即ち、図5に示すように、上述の第1実施形態では、平面視で第2多層配線層80の内部電極パッド83と重畳して第2積層体60に掘り込み部91が設けられ、この掘り込み部91と重畳する反り抑制膜86,46の重畳領域86a,46aに開口部86a1,46a1が設けられた構成になっている。
That is, as shown in FIG. 5, in the first embodiment described above, a recessed portion 91 is provided in the second laminate 60 so as to overlap with the internal electrode pad 83 of the second multilayer wiring layer 80 in a plan view, and openings 86a1 , 46a1 are provided in overlapping regions 86a, 46a of the warp suppression films 86, 46 that overlap with this recessed portion 91.
これに対し、図15に示すように、この第2実施形態では、平面視で第1多層配線層40の内部電極パッド44と重畳して第1積層体20に掘り込部56が設けられ、かつ、この掘り込み部56と重畳する反り抑制膜46,86の重畳領域46b,86bに開口部46b1,86b1が設けられた構成になっている。
In contrast, as shown in FIG. 15 , in the second embodiment, a recessed portion 56 is provided in the first laminate 20 so as to overlap with the internal electrode pad 44 of the first multilayer wiring layer 40 in a plan view, and openings 46 b 1 , 86 b 1 are provided in the overlapping regions 46 b , 86 b of the warp suppression films 46 , 86 that overlap with this recessed portion 56.
図15に示すように、内部電極パッド44は、例えば第1多層配線層40の第1半導体層30側から数えて第3層目の配線層42に設けられている。内部電極パッド44は、半導体チップ2と外部装置とを電気的に接続する入出力端子として機能する。そして、内部電極パッド44には、半田バンプやボンディングワイヤなどの接続部材が接続される。
As shown in FIG. 15, the internal electrode pads 44 are provided, for example, in the third wiring layer 42 counting from the first semiconductor layer 30 side of the first multilayer wiring layer 40. The internal electrode pads 44 function as input/output terminals that electrically connect the semiconductor chip 2 to an external device. Then, connecting members such as solder bumps and bonding wires are connected to the internal electrode pads 44.
掘り込み部56は、第1半導体層30の第2の面S2側から第1多層配線層40に向かって延伸し、第1多層配線層40の内部電極パッド44に到達している。即ち、掘り込み部56は、第1半導体層30を第1の面S1及び第2の面S2に亘って貫通し、第1多層配線層40の内部電極パッド44に到達している。
The recessed portion 56 extends from the second surface S2 of the first semiconductor layer 30 toward the first multilayer wiring layer 40, and reaches the internal electrode pad 44 of the first multilayer wiring layer 40. That is, the recessed portion 56 penetrates the first semiconductor layer 30 across the first surface S1 and the second surface S2, and reaches the internal electrode pad 44 of the first multilayer wiring layer 40.
反り抑制膜46,86の重畳領域46b,86bは、例えば、上述の第1実施形態の重畳領域46a,86bと同様に、開口部46b1,86b1を含む格子状の平面パターンになっている。
The overlapping regions 46b, 86b of the warp suppressing films 46, 86 have, for example, a lattice-like planar pattern including openings 46b 1 , 86b 1 , similar to the overlapping regions 46a, 86b of the above-described first embodiment.
この第2実施形態に係る固体撮像装置1Bにおいても、上述の第1実施形態に係る固体撮像装置1Aと同様の効果が得られる。
The solid-state imaging device 1B according to the second embodiment also provides the same effects as the solid-state imaging device 1A according to the first embodiment described above.
〔第3実施形態〕
≪電子機器への応用例≫
本技術(本開示に係る技術)は、例えば、デジタルスチルカメラ、デジタルビデオカメラ等の撮像装置、撮像機能を備えた携帯電話機、又は、撮像機能を備えた他の機器といった各種の電子機器に適用することができる。 Third Embodiment
<Applications to electronic devices>
The present technology (technology related to the present disclosure) can be applied to various electronic devices, such as imaging devices such as digital still cameras and digital video cameras, mobile phones with imaging functions, or other devices with imaging functions.
≪電子機器への応用例≫
本技術(本開示に係る技術)は、例えば、デジタルスチルカメラ、デジタルビデオカメラ等の撮像装置、撮像機能を備えた携帯電話機、又は、撮像機能を備えた他の機器といった各種の電子機器に適用することができる。 Third Embodiment
<Applications to electronic devices>
The present technology (technology related to the present disclosure) can be applied to various electronic devices, such as imaging devices such as digital still cameras and digital video cameras, mobile phones with imaging functions, or other devices with imaging functions.
図16は、本技術の第3実施形態に係る電子機器(例えば、カメラ)の概略構成を示す図である。
FIG. 16 is a diagram showing the schematic configuration of an electronic device (e.g., a camera) according to a third embodiment of the present technology.
図16に示すように、電子機器100は、固体撮像装置101と、光学レンズ102と、シャッタ装置103と、駆動回路104と、信号処理回路105とを備えている。この電子機器100は、固体撮像装置101として、本技術の第1実施形態に係る固体撮像装置1Aを電子機器(例えばカメラ)に用いた場合の実施形態を示す。
As shown in FIG. 16, electronic device 100 includes solid-state imaging device 101, optical lens 102, shutter device 103, drive circuit 104, and signal processing circuit 105. This electronic device 100 shows an embodiment in which solid-state imaging device 1A according to the first embodiment of the present technology is used as solid-state imaging device 101 in an electronic device (e.g., a camera).
光学レンズ102は、被写体からの像光(入射光106)を固体撮像装置101の撮像面上に結像させる。これにより、固体撮像装置101内に一定期間にわたって信号電荷が蓄積される。シャッタ装置103は、固体撮像装置101への光照射期間及び遮光期間を制御する。駆動回路104は、固体撮像装置101の転送動作及びシャッタ装置103のシャッタ動作を制御する駆動信号を供給する。駆動回路104から供給される駆動信号(タイミング信号)により、固体撮像装置101の電荷転送を行なう。信号処理回路105は、固体撮像装置101から出力される信号(画素信号(画像信号)に各種信号処理を行う。信号処理が行われた映像信号は、メモリ等の記憶媒体に記憶され、或いはモニタに出力される。
The optical lens 102 focuses image light (incident light 106) from the subject on the imaging surface of the solid-state imaging device 101. This causes signal charge to accumulate in the solid-state imaging device 101 for a certain period of time. The shutter device 103 controls the light irradiation period and light blocking period for the solid-state imaging device 101. The drive circuit 104 supplies a drive signal that controls the transfer operation of the solid-state imaging device 101 and the shutter operation of the shutter device 103. The drive signal (timing signal) supplied from the drive circuit 104 transfers charge in the solid-state imaging device 101. The signal processing circuit 105 performs various signal processing on the signal (pixel signal (image signal)) output from the solid-state imaging device 101. The video signal that has undergone signal processing is stored in a storage medium such as a memory, or output to a monitor.
このような構成により、固体撮像装置101において、より一層の信頼性向上がはかられてため、第3実施形態の電子機器100においても、より一層の信頼性の向上を図ることができる。
This configuration further improves the reliability of the solid-state imaging device 101, and therefore the reliability of the electronic device 100 of the third embodiment can also be further improved.
なお、上述の実施形態の固体撮像装置を適用できる電子機器100としては、カメラに限られるものではなく、他の電子機器にも適用することができる。例えば、携帯電話機やタブレット端末等のモバイル機器向けカメラモジュール等の撮像装置に適用してもよい。
The electronic device 100 to which the solid-state imaging device of the above-described embodiment can be applied is not limited to a camera, but can also be applied to other electronic devices. For example, the solid-state imaging device may be applied to an imaging device such as a camera module for mobile devices such as mobile phones and tablet terminals.
また、本技術は、上述したイメージセンサとしての固体撮像装置の他、ToF(Time of Flight)センサと呼称され、距離を測定する測定する測距センサなども含む光検出装置全般に適用することができる。測距センサは、物体に向かって照射光を発光し、その照射光が物体の表面で反射されて返ってくる反射光を検出し、照射光が発光されてから反射光が受光されるまでの飛行時間に基づいて物体までの距離を算出するセンサである。この測距センサにおいても、上述した画素トランジスタを採用することができる。
Furthermore, this technology can be applied to all light detection devices, including not only the solid-state imaging devices that serve as image sensors described above, but also distance measurement sensors known as ToF (Time of Flight) sensors that measure distance. Distance measurement sensors emit light toward an object, detect the light that is reflected back from the surface of the object, and calculate the distance to the object based on the flight time from when the light is emitted to when the reflected light is received. The pixel transistors described above can also be used in these distance measurement sensors.
なお、本技術は、以下のような構成としてもよい。
(1)
厚さ方向で互いに反対側に位置する第1の面及び第2の面を有する半導体層と、
前記半導体層の前記第1の面側に設けられた多層配線層と、
前記多層配線層の前記半導体層側とは反対側に設けられた反り抑制膜と、
平面視で前記反り抑制膜と重畳し、かつ前記半導体層の前記第2の面側から前記多層配線層に亘って延伸する掘り込み部と、
を備え、
前記反り抑制膜は、平面視で前記掘り込み部と重畳する重畳領域に開口部を有する、光検出装置。
(2)
前記開口部は、点在している、上記(1)に記載の光検出装置。
(3)
前記反り抑制膜の前記重畳領域は、前記開口部を含む格子状平面パターンになっている、上記(1)又は(2)に記載の光検出装置。
(4)
前記掘り込み部に設けられ、かつ前記多層配線層の配線層と接続されたコンタクト電極と、
前記半導体層の前記第2の面側に設けられ、かつ前記コンタクト電極と接続された外部電極パッドと、を更に備えている、上記(1)から(3)の何れかに記載の光検出装置。
(5)
前記多層配線層は、前記反り抑制膜と前記掘り込み部との間に内部電極パッドを有し、
前記コンタクト電極は、前記内部電極パッドと接続されている、上記(4)に記載の光検出装置。
(6)
前記コンタクト電極は、前記掘り込み部の内壁に沿って設けられ、
前記掘り込み部に前記コンタクト電極を覆うようにしてソルダーレジスト膜が設けられている、上記(4)に記載の光検出装置。
(7)
前記反り抑制膜は、前記半導体層及び配線層の反りを抑制する、上記(1)から(6)の何れかに記載の光検出装置。
(8)
互いに反対側に位置する第1の面及び第2の面を有し、かつ前記第2の面側から入射した光を光電変換する光電変換部が設けられた第1半導体層と、
前記第1半導体層の前記第1の面側に設けられた第1多層配線層と、
互いに反対側に位置する第3の面及び第4の面を有し、かつトランジスタが設けられた第2半導体層と、
前記第2半導体層の前記第3の面側に前記第1多層配線層と重畳して設けられた第2多層配線層と、
前記第1多層配線層と前記第2多層配線層との間に設けられた反り抑制膜と、
平面視で前記反り抑制膜と重畳し、かつ前記第2半導体層の前記第4の面側から前記第2多層配線層に亘って延伸する掘り込み部と、
を備え、
前記反り抑制膜は、平面視で前記掘り込み部と重畳する重畳領域に開口部を有する、光検出装置。
(9)
前記開口部は、点在している、上記(8)に記載の光検出装置。
(10)
前記反り抑制膜の前記重畳領域は、前記開口部を含む格子状平面パターンになっている、上記(8)又は(9)に記載の光検出装置。
(11)
前記掘り込み部に設けられ、かつ前記多層配線層の配線層と接続されたコンタクト電極と、
前記半導体層の前記第2の面側に設けられ、かつ前記コンタクト電極と接続された外部電極パッドと、を更に備えている、上記(8)に記載の光検出装置。
(12)
前記第2多層配線層は、前記反り抑制膜と前記掘り込み部との間に内部電極パッドを有し、
前記コンタクト電極は、前記内部電極パッドと接続されている、上記(11)に記載の光検出装置。
(13)
前記コンタクト電極は、前記掘り込み部の内壁に沿って設けられ、
前記掘り込み部に前記コンタクト電極を覆うようにしてソルダーレジスト膜が設けられている、上記(11)に記載の光検出装置。
(14)
前記反り抑制膜は、前記半導体層及び配線層の反りを抑制する、上記(8)から(12)の何れかに記載の光検出装置。
(15)
光検出装置と、
被写体からの像光を前記光検出装置の撮像面上に結像させる光学レンズと、
前記光検出装置から出力される信号に信号処理を行う信号処理回路と、
を備え、
前記光検出装置は、
厚さ方向で互いに反対側に位置する第1の面及び第2の面を有する半導体層と、
前記半導体層の前記第1の面側に設けられた多層配線層と、
前記多層配線層の前記半導体層側とは反対側に設けられた反り抑制膜と、
平面視で前記反り抑制膜と重畳し、かつ前記半導体層の前記第2の面側から前記多層配線層に亘って延伸する掘り込み部と、
を備え、
前記反り抑制膜は、平面視で前記掘り込み部と重畳する重畳領域に開口部を有する。 The present technology may be configured as follows.
(1)
a semiconductor layer having a first surface and a second surface positioned opposite to each other in a thickness direction;
a multilayer wiring layer provided on the first surface side of the semiconductor layer;
a warpage suppression film provided on a side of the multilayer wiring layer opposite to the semiconductor layer;
a recessed portion that overlaps the warp suppression film in a plan view and extends from the second surface side of the semiconductor layer to the multilayer wiring layer;
Equipped with
the warp suppression film has an opening in an overlapping region that overlaps with the recessed portion in a plan view.
(2)
The light detection device according to (1) above, wherein the openings are scattered.
(3)
The light-detecting device according to (1) or (2) above, wherein the overlapping region of the warp suppression film has a lattice-like planar pattern including the openings.
(4)
a contact electrode provided in the recess and connected to a wiring layer of the multilayer wiring layer;
The photodetector according to any one of (1) to (3) above, further comprising an external electrode pad provided on the second surface side of the semiconductor layer and connected to the contact electrode.
(5)
the multilayer wiring layer has an internal electrode pad between the warp suppression film and the recessed portion,
The photodetector according to claim 4, wherein the contact electrode is connected to the internal electrode pad.
(6)
the contact electrode is provided along an inner wall of the recessed portion,
The photodetector according to claim 4, wherein a solder resist film is provided in the recess so as to cover the contact electrode.
(7)
The photodetector according to any one of (1) to (6), wherein the warpage suppression film suppresses warpage of the semiconductor layer and the wiring layer.
(8)
a first semiconductor layer having a first surface and a second surface opposite to each other and including a photoelectric conversion portion configured to photoelectrically convert light incident from the second surface side;
a first multilayer wiring layer provided on the first surface side of the first semiconductor layer;
a second semiconductor layer having a third surface and a fourth surface opposite to each other and including a transistor;
a second multilayer wiring layer provided on the third surface side of the second semiconductor layer so as to overlap the first multilayer wiring layer;
a warpage suppression film provided between the first multilayer wiring layer and the second multilayer wiring layer;
a recessed portion that overlaps the warp suppression film in a plan view and extends from the fourth surface side of the second semiconductor layer to the second multilayer wiring layer;
Equipped with
the warp suppression film has an opening in an overlapping region that overlaps with the recessed portion in a plan view.
(9)
The light detection device according to (8) above, wherein the openings are scattered.
(10)
The light-detecting device according to (8) or (9) above, wherein the overlapping region of the warp suppression film has a lattice-like planar pattern including the openings.
(11)
a contact electrode provided in the recess and connected to a wiring layer of the multilayer wiring layer;
The photodetector according to claim 8, further comprising an external electrode pad provided on the second surface side of the semiconductor layer and connected to the contact electrode.
(12)
the second multilayer wiring layer has an internal electrode pad between the warp suppression film and the recessed portion,
The photodetector according to (11) above, wherein the contact electrode is connected to the internal electrode pad.
(13)
the contact electrode is provided along an inner wall of the recessed portion,
The photodetector according to (11) above, wherein a solder resist film is provided in the recessed portion so as to cover the contact electrode.
(14)
The photodetector according to any one of (8) to (12) above, wherein the warpage suppression film suppresses warpage of the semiconductor layer and the wiring layer.
(15)
A photodetector;
an optical lens that forms an image of image light from a subject on an imaging surface of the light detection device;
a signal processing circuit for processing a signal output from the photodetector;
Equipped with
The light detection device includes:
a semiconductor layer having a first surface and a second surface positioned opposite to each other in a thickness direction;
a multilayer wiring layer provided on the first surface side of the semiconductor layer;
a warpage suppression film provided on a side of the multilayer wiring layer opposite to the semiconductor layer;
a recessed portion that overlaps the warp suppression film in a plan view and extends from the second surface side of the semiconductor layer to the multilayer wiring layer;
Equipped with
The warp suppression film has an opening in an overlapping region that overlaps with the recessed portion in a plan view.
(1)
厚さ方向で互いに反対側に位置する第1の面及び第2の面を有する半導体層と、
前記半導体層の前記第1の面側に設けられた多層配線層と、
前記多層配線層の前記半導体層側とは反対側に設けられた反り抑制膜と、
平面視で前記反り抑制膜と重畳し、かつ前記半導体層の前記第2の面側から前記多層配線層に亘って延伸する掘り込み部と、
を備え、
前記反り抑制膜は、平面視で前記掘り込み部と重畳する重畳領域に開口部を有する、光検出装置。
(2)
前記開口部は、点在している、上記(1)に記載の光検出装置。
(3)
前記反り抑制膜の前記重畳領域は、前記開口部を含む格子状平面パターンになっている、上記(1)又は(2)に記載の光検出装置。
(4)
前記掘り込み部に設けられ、かつ前記多層配線層の配線層と接続されたコンタクト電極と、
前記半導体層の前記第2の面側に設けられ、かつ前記コンタクト電極と接続された外部電極パッドと、を更に備えている、上記(1)から(3)の何れかに記載の光検出装置。
(5)
前記多層配線層は、前記反り抑制膜と前記掘り込み部との間に内部電極パッドを有し、
前記コンタクト電極は、前記内部電極パッドと接続されている、上記(4)に記載の光検出装置。
(6)
前記コンタクト電極は、前記掘り込み部の内壁に沿って設けられ、
前記掘り込み部に前記コンタクト電極を覆うようにしてソルダーレジスト膜が設けられている、上記(4)に記載の光検出装置。
(7)
前記反り抑制膜は、前記半導体層及び配線層の反りを抑制する、上記(1)から(6)の何れかに記載の光検出装置。
(8)
互いに反対側に位置する第1の面及び第2の面を有し、かつ前記第2の面側から入射した光を光電変換する光電変換部が設けられた第1半導体層と、
前記第1半導体層の前記第1の面側に設けられた第1多層配線層と、
互いに反対側に位置する第3の面及び第4の面を有し、かつトランジスタが設けられた第2半導体層と、
前記第2半導体層の前記第3の面側に前記第1多層配線層と重畳して設けられた第2多層配線層と、
前記第1多層配線層と前記第2多層配線層との間に設けられた反り抑制膜と、
平面視で前記反り抑制膜と重畳し、かつ前記第2半導体層の前記第4の面側から前記第2多層配線層に亘って延伸する掘り込み部と、
を備え、
前記反り抑制膜は、平面視で前記掘り込み部と重畳する重畳領域に開口部を有する、光検出装置。
(9)
前記開口部は、点在している、上記(8)に記載の光検出装置。
(10)
前記反り抑制膜の前記重畳領域は、前記開口部を含む格子状平面パターンになっている、上記(8)又は(9)に記載の光検出装置。
(11)
前記掘り込み部に設けられ、かつ前記多層配線層の配線層と接続されたコンタクト電極と、
前記半導体層の前記第2の面側に設けられ、かつ前記コンタクト電極と接続された外部電極パッドと、を更に備えている、上記(8)に記載の光検出装置。
(12)
前記第2多層配線層は、前記反り抑制膜と前記掘り込み部との間に内部電極パッドを有し、
前記コンタクト電極は、前記内部電極パッドと接続されている、上記(11)に記載の光検出装置。
(13)
前記コンタクト電極は、前記掘り込み部の内壁に沿って設けられ、
前記掘り込み部に前記コンタクト電極を覆うようにしてソルダーレジスト膜が設けられている、上記(11)に記載の光検出装置。
(14)
前記反り抑制膜は、前記半導体層及び配線層の反りを抑制する、上記(8)から(12)の何れかに記載の光検出装置。
(15)
光検出装置と、
被写体からの像光を前記光検出装置の撮像面上に結像させる光学レンズと、
前記光検出装置から出力される信号に信号処理を行う信号処理回路と、
を備え、
前記光検出装置は、
厚さ方向で互いに反対側に位置する第1の面及び第2の面を有する半導体層と、
前記半導体層の前記第1の面側に設けられた多層配線層と、
前記多層配線層の前記半導体層側とは反対側に設けられた反り抑制膜と、
平面視で前記反り抑制膜と重畳し、かつ前記半導体層の前記第2の面側から前記多層配線層に亘って延伸する掘り込み部と、
を備え、
前記反り抑制膜は、平面視で前記掘り込み部と重畳する重畳領域に開口部を有する。 The present technology may be configured as follows.
(1)
a semiconductor layer having a first surface and a second surface positioned opposite to each other in a thickness direction;
a multilayer wiring layer provided on the first surface side of the semiconductor layer;
a warpage suppression film provided on a side of the multilayer wiring layer opposite to the semiconductor layer;
a recessed portion that overlaps the warp suppression film in a plan view and extends from the second surface side of the semiconductor layer to the multilayer wiring layer;
Equipped with
the warp suppression film has an opening in an overlapping region that overlaps with the recessed portion in a plan view.
(2)
The light detection device according to (1) above, wherein the openings are scattered.
(3)
The light-detecting device according to (1) or (2) above, wherein the overlapping region of the warp suppression film has a lattice-like planar pattern including the openings.
(4)
a contact electrode provided in the recess and connected to a wiring layer of the multilayer wiring layer;
The photodetector according to any one of (1) to (3) above, further comprising an external electrode pad provided on the second surface side of the semiconductor layer and connected to the contact electrode.
(5)
the multilayer wiring layer has an internal electrode pad between the warp suppression film and the recessed portion,
The photodetector according to claim 4, wherein the contact electrode is connected to the internal electrode pad.
(6)
the contact electrode is provided along an inner wall of the recessed portion,
The photodetector according to claim 4, wherein a solder resist film is provided in the recess so as to cover the contact electrode.
(7)
The photodetector according to any one of (1) to (6), wherein the warpage suppression film suppresses warpage of the semiconductor layer and the wiring layer.
(8)
a first semiconductor layer having a first surface and a second surface opposite to each other and including a photoelectric conversion portion configured to photoelectrically convert light incident from the second surface side;
a first multilayer wiring layer provided on the first surface side of the first semiconductor layer;
a second semiconductor layer having a third surface and a fourth surface opposite to each other and including a transistor;
a second multilayer wiring layer provided on the third surface side of the second semiconductor layer so as to overlap the first multilayer wiring layer;
a warpage suppression film provided between the first multilayer wiring layer and the second multilayer wiring layer;
a recessed portion that overlaps the warp suppression film in a plan view and extends from the fourth surface side of the second semiconductor layer to the second multilayer wiring layer;
Equipped with
the warp suppression film has an opening in an overlapping region that overlaps with the recessed portion in a plan view.
(9)
The light detection device according to (8) above, wherein the openings are scattered.
(10)
The light-detecting device according to (8) or (9) above, wherein the overlapping region of the warp suppression film has a lattice-like planar pattern including the openings.
(11)
a contact electrode provided in the recess and connected to a wiring layer of the multilayer wiring layer;
The photodetector according to claim 8, further comprising an external electrode pad provided on the second surface side of the semiconductor layer and connected to the contact electrode.
(12)
the second multilayer wiring layer has an internal electrode pad between the warp suppression film and the recessed portion,
The photodetector according to (11) above, wherein the contact electrode is connected to the internal electrode pad.
(13)
the contact electrode is provided along an inner wall of the recessed portion,
The photodetector according to (11) above, wherein a solder resist film is provided in the recessed portion so as to cover the contact electrode.
(14)
The photodetector according to any one of (8) to (12) above, wherein the warpage suppression film suppresses warpage of the semiconductor layer and the wiring layer.
(15)
A photodetector;
an optical lens that forms an image of image light from a subject on an imaging surface of the light detection device;
a signal processing circuit for processing a signal output from the photodetector;
Equipped with
The light detection device includes:
a semiconductor layer having a first surface and a second surface positioned opposite to each other in a thickness direction;
a multilayer wiring layer provided on the first surface side of the semiconductor layer;
a warpage suppression film provided on a side of the multilayer wiring layer opposite to the semiconductor layer;
a recessed portion that overlaps the warp suppression film in a plan view and extends from the second surface side of the semiconductor layer to the multilayer wiring layer;
Equipped with
The warp suppression film has an opening in an overlapping region that overlaps with the recessed portion in a plan view.
本技術の範囲は、図示され記載された例示的な実施形態に限定されるものではなく、本技術が目的とするものと均等な効果をもたらす全ての実施形態をも含む。さらに、本技術の範囲は、請求項により画される発明の特徴の組み合わせに限定されるものではなく、全ての開示されたそれぞれの特徴のうち特定の特徴のあらゆる所望する組み合わせによって画されうる。
The scope of the present technology is not limited to the exemplary embodiments shown and described, but includes all embodiments that achieve the same effect as the intended purpose of the present technology. Furthermore, the scope of the present technology is not limited to the combination of the features of the invention defined by the claims, but may be defined by any desired combination of specific features among all the respective features disclosed.
1A 固体撮像装置
2 半導体チップ
2A センサ画素アレイ部
2B 周辺部
3 センサ画素
4 垂直駆動回路
5 カラム信号処理回路
6 水平駆動回路
7 出力回路
8 制御回路
10 画素駆動線
11 垂直信号線
12 水平信号線
13 ロジック回路
15 画素回路
20 第1積層体
30 第1半導体層
32 光電変換領域
34 光電変換部
40 第1多層配線層
41 層間絶縁膜
42 配線層
44 内部電極パッド
46 反り抑制膜
46a,46b 重畳領域
46a1,46b1 開口部
47 接合層
50 集光層
51 平坦化膜
53 光学フィルタ
54 オンチップレンズ
56 掘り込み部
60 第2積層体
70 第2半導体層
80 第2多層配線層
81 層間絶縁膜
82 配線層
83 内部電極パッド
86 反り抑制膜
86a,86b 重畳領域
86a1,86b1 開口部
87 接合層
91 掘り込み部
92 分離絶縁膜
93 コンタクト電極
94 外部電極パッド
95 ソルダーレジスト膜
100 電子機器
101 固体撮像装置
102 光学系(光学レンズ)
103 シャッタ装置
104 駆動回路
105 信号処理回路
S1 第1の面
S2 第2の面
S3 第3の面
S4 第4の面
Q1,Q2 トランジスタ 1A Solid-state imaging device 2 Semiconductor chip 2A Sensor pixel array section 2B Peripheral section 3 Sensor pixel 4 Vertical drive circuit 5 Column signal processing circuit 6 Horizontal drive circuit 7 Output circuit 8 Control circuit 10 Pixel drive line 11 Vertical signal line 12 Horizontal signal line 13 Logic circuit 15 Pixel circuit 20 First stacked body 30 First semiconductor layer 32 Photoelectric conversion region 34 Photoelectric conversion section 40 First multilayer wiring layer 41 Interlayer insulating film 42 Wiring layer 44 Internal electrode pad 46 Warp suppression film 46a, 46b Overlapping region 46a 1 , 46b 1 Opening 47 Bonding layer 50 Light collecting layer 51 Planarization film 53 Optical filter 54 On-chip lens 56 Carved section 60 Second stacked body 70 Second semiconductor layer 80 Second multilayer wiring layer 81 Interlayer insulating film 82 Wiring layer 83 Internal electrode pad 86 Warp suppressing film 86a, 86b Overlapping region 86a1 , 86b1 Opening 87 Bonding layer 91 Engraved portion 92 Isolation insulating film 93 Contact electrode 94 External electrode pad 95 Solder resist film 100 Electronic device 101 Solid-state imaging device 102 Optical system (optical lens)
103: shutter device 104: drive circuit 105: signal processing circuit S1: first surface S2: second surface S3: third surface S4: fourth surface Q1, Q2: transistor
2 半導体チップ
2A センサ画素アレイ部
2B 周辺部
3 センサ画素
4 垂直駆動回路
5 カラム信号処理回路
6 水平駆動回路
7 出力回路
8 制御回路
10 画素駆動線
11 垂直信号線
12 水平信号線
13 ロジック回路
15 画素回路
20 第1積層体
30 第1半導体層
32 光電変換領域
34 光電変換部
40 第1多層配線層
41 層間絶縁膜
42 配線層
44 内部電極パッド
46 反り抑制膜
46a,46b 重畳領域
46a1,46b1 開口部
47 接合層
50 集光層
51 平坦化膜
53 光学フィルタ
54 オンチップレンズ
56 掘り込み部
60 第2積層体
70 第2半導体層
80 第2多層配線層
81 層間絶縁膜
82 配線層
83 内部電極パッド
86 反り抑制膜
86a,86b 重畳領域
86a1,86b1 開口部
87 接合層
91 掘り込み部
92 分離絶縁膜
93 コンタクト電極
94 外部電極パッド
95 ソルダーレジスト膜
100 電子機器
101 固体撮像装置
102 光学系(光学レンズ)
103 シャッタ装置
104 駆動回路
105 信号処理回路
S1 第1の面
S2 第2の面
S3 第3の面
S4 第4の面
Q1,Q2 トランジスタ 1A Solid-state imaging device 2 Semiconductor chip 2A Sensor pixel array section 2B Peripheral section 3 Sensor pixel 4 Vertical drive circuit 5 Column signal processing circuit 6 Horizontal drive circuit 7 Output circuit 8 Control circuit 10 Pixel drive line 11 Vertical signal line 12 Horizontal signal line 13 Logic circuit 15 Pixel circuit 20 First stacked body 30 First semiconductor layer 32 Photoelectric conversion region 34 Photoelectric conversion section 40 First multilayer wiring layer 41 Interlayer insulating film 42 Wiring layer 44 Internal electrode pad 46 Warp suppression film 46a, 46b Overlapping region 46a 1 , 46b 1 Opening 47 Bonding layer 50 Light collecting layer 51 Planarization film 53 Optical filter 54 On-chip lens 56 Carved section 60 Second stacked body 70 Second semiconductor layer 80 Second multilayer wiring layer 81 Interlayer insulating film 82 Wiring layer 83 Internal electrode pad 86 Warp suppressing film 86a, 86b Overlapping region 86a1 , 86b1 Opening 87 Bonding layer 91 Engraved portion 92 Isolation insulating film 93 Contact electrode 94 External electrode pad 95 Solder resist film 100 Electronic device 101 Solid-state imaging device 102 Optical system (optical lens)
103: shutter device 104: drive circuit 105: signal processing circuit S1: first surface S2: second surface S3: third surface S4: fourth surface Q1, Q2: transistor
Claims (15)
- 厚さ方向で互いに反対側に位置する第1の面及び第2の面を有する半導体層と、
前記半導体層の前記第1の面側に設けられた多層配線層と、
前記多層配線層の前記半導体層側とは反対側に設けられた反り抑制膜と、
平面視で前記反り抑制膜と重畳し、かつ前記半導体層の前記第2の面側から前記多層配線層に亘って延伸する掘り込み部と、
を備え、
前記反り抑制膜は、平面視で前記掘り込み部と重畳する重畳領域に開口部を有する、光検出装置。 a semiconductor layer having a first surface and a second surface positioned opposite to each other in a thickness direction;
a multilayer wiring layer provided on the first surface side of the semiconductor layer;
a warpage suppression film provided on a side of the multilayer wiring layer opposite to the semiconductor layer;
a recessed portion that overlaps the warp suppression film in a plan view and extends from the second surface side of the semiconductor layer to the multilayer wiring layer;
Equipped with
the warp suppression film has an opening in an overlapping region that overlaps with the recessed portion in a plan view. - 前記開口部は、点在している、請求項1に記載の光検出装置。 The optical detection device of claim 1, wherein the openings are scattered.
- 前記反り抑制膜の前記重畳領域は、前記開口部を含む格子状平面パターンになっている、請求項1に記載の光検出装置。 The photodetector according to claim 1, wherein the overlapping region of the warpage suppression film is a lattice-like planar pattern including the openings.
- 前記掘り込み部に設けられ、かつ前記多層配線層の配線層と接続されたコンタクト電極と、
前記半導体層の前記第2の面側に設けられ、かつ前記コンタクト電極と接続された外部電極パッドと、を更に備えている、請求項1に記載の光検出装置。 a contact electrode provided in the recess and connected to a wiring layer of the multilayer wiring layer;
2. The photodetector according to claim 1, further comprising an external electrode pad provided on the second surface side of the semiconductor layer and connected to the contact electrode. - 前記多層配線層は、前記反り抑制膜と前記掘り込み部との間に内部電極パッドを有し、
前記コンタクト電極は、前記内部電極パッドと接続されている、請求項4に記載の光検出装置。 the multilayer wiring layer has an internal electrode pad between the warp suppression film and the recessed portion,
The photodetector according to claim 4 , wherein the contact electrode is connected to the internal electrode pad. - 前記コンタクト電極は、前記掘り込み部の内壁に沿って設けられ、
前記掘り込み部に前記コンタクト電極を覆うようにしてソルダーレジスト膜が設けられている、請求項4に記載の光検出装置。 the contact electrode is provided along an inner wall of the recessed portion,
5. The light-detecting device according to claim 4, wherein a solder resist film is provided in the recess so as to cover the contact electrode. - 前記反り抑制膜は、前記半導体層及び配線層の反りを抑制する、請求項1に記載の光検出装置。 The photodetector according to claim 1, wherein the warpage suppression film suppresses warpage of the semiconductor layer and the wiring layer.
- 互いに反対側に位置する第1の面及び第2の面を有し、かつ前記第2の面側から入射した光を光電変換する光電変換部が設けられた第1半導体層と、
前記第1半導体層の前記第1の面側に設けられた第1多層配線層と、
互いに反対側に位置する第3の面及び第4の面を有し、かつトランジスタが設けられた第2半導体層と、
前記第2半導体層の前記第3の面側に前記第1多層配線層と重畳して設けられた第2多層配線層と、
前記第1多層配線層と前記第2多層配線層との間に設けられた反り抑制膜と、
平面視で前記反り抑制膜と重畳し、かつ前記第2半導体層の前記第4の面側から前記第2多層配線層に亘って延伸する掘り込み部と、
を備え、
前記反り抑制膜は、平面視で前記掘り込み部と重畳する重畳領域に開口部を有する、光検出装置。 a first semiconductor layer having a first surface and a second surface opposite to each other and including a photoelectric conversion portion configured to photoelectrically convert light incident from the second surface side;
a first multilayer wiring layer provided on the first surface side of the first semiconductor layer;
a second semiconductor layer having a third surface and a fourth surface opposite to each other and including a transistor;
a second multilayer wiring layer provided on the third surface side of the second semiconductor layer so as to overlap the first multilayer wiring layer;
a warpage suppression film provided between the first multilayer wiring layer and the second multilayer wiring layer;
a recessed portion that overlaps the warp suppression film in a plan view and extends from the fourth surface side of the second semiconductor layer to the second multilayer wiring layer;
Equipped with
the warp suppression film has an opening in an overlapping region that overlaps with the recessed portion in a plan view. - 前記開口部は、点在している、請求項8に記載の光検出装置。 The optical detection device of claim 8, wherein the openings are scattered.
- 前記反り抑制膜の前記重畳領域は、前記開口部を含む格子状平面パターンになっている、請求項8に記載の光検出装置。 The photodetector according to claim 8, wherein the overlapping region of the warpage suppression film is a lattice-like planar pattern including the openings.
- 前記掘り込み部に設けられ、かつ前記多層配線層の配線層と接続されたコンタクト電極と、
前記半導体層の前記第2の面側に設けられ、かつ前記コンタクト電極と接続された外部電極パッドと、を更に備えている、請求項8に記載の光検出装置。 a contact electrode provided in the recess and connected to a wiring layer of the multilayer wiring layer;
9. The photodetector according to claim 8, further comprising an external electrode pad provided on the second surface side of the semiconductor layer and connected to the contact electrode. - 前記第2多層配線層は、前記反り抑制膜と前記掘り込み部との間に内部電極パッドを有し、
前記コンタクト電極は、前記内部電極パッドと接続されている、請求項11に記載の光検出装置。 the second multilayer wiring layer has an internal electrode pad between the warp suppression film and the recessed portion,
The photodetector according to claim 11 , wherein the contact electrode is connected to the internal electrode pad. - 前記コンタクト電極は、前記掘り込み部の内壁に沿って設けられ、
前記掘り込み部に前記コンタクト電極を覆うようにしてソルダーレジスト膜が設けられている、請求項11に記載の光検出装置。 the contact electrode is provided along an inner wall of the recessed portion,
12. The light-detecting device according to claim 11, wherein a solder resist film is provided in the recess so as to cover the contact electrode. - 前記反り抑制膜は、前記半導体層及び配線層の反りを抑制する、請求項8に記載の光検出装置。 The photodetector according to claim 8, wherein the warpage suppression film suppresses warpage of the semiconductor layer and the wiring layer.
- 光検出装置と、
被写体からの像光を前記光検出装置の撮像面上に結像させる光学レンズと、
前記光検出装置から出力される信号に信号処理を行う信号処理回路と、
を備え、
前記光検出装置は、
厚さ方向で互いに反対側に位置する第1の面及び第2の面を有する半導体層と、
前記半導体層の前記第1の面側に設けられた多層配線層と、
前記多層配線層の前記半導体層側とは反対側に設けられた反り抑制膜と、
平面視で前記反り抑制膜と重畳し、かつ前記半導体層の前記第2の面側から前記多層配線層に亘って延伸する掘り込み部と、
を備え、
前記反り抑制膜は、平面視で前記掘り込み部と重畳する重畳領域に開口部を有する、電子機器。 A photodetector;
an optical lens that forms an image of image light from a subject on an imaging surface of the light detection device;
a signal processing circuit for processing a signal output from the photodetector;
Equipped with
The light detection device includes:
a semiconductor layer having a first surface and a second surface positioned opposite to each other in a thickness direction;
a multilayer wiring layer provided on the first surface side of the semiconductor layer;
a warpage suppression film provided on a side of the multilayer wiring layer opposite to the semiconductor layer;
a recessed portion that overlaps the warp suppression film in a plan view and extends from the second surface side of the semiconductor layer to the multilayer wiring layer;
Equipped with
the warp suppression film has an opening in an overlapping region that overlaps with the recessed portion in a plan view.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023-060791 | 2023-04-04 | ||
JP2023060791A JP2024147979A (en) | 2023-04-04 | 2023-04-04 | Photodetection device and electronic device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024209821A1 true WO2024209821A1 (en) | 2024-10-10 |
Family
ID=92971910
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2024/006372 WO2024209821A1 (en) | 2023-04-04 | 2024-02-21 | Light detection device and electronic apparatus |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2024147979A (en) |
WO (1) | WO2024209821A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011014847A (en) * | 2009-07-06 | 2011-01-20 | Shinko Electric Ind Co Ltd | Multilayer wiring board |
JP2012204810A (en) * | 2011-03-28 | 2012-10-22 | Sony Corp | Semiconductor device and semiconductor device manufacturing method |
WO2017163924A1 (en) * | 2016-03-24 | 2017-09-28 | ソニー株式会社 | Imaging device and electronic device |
US10575397B1 (en) * | 2019-04-30 | 2020-02-25 | Unimicron Technology Corp. | Circuit carrier structure, manufacturing method thereof and chip package structure |
-
2023
- 2023-04-04 JP JP2023060791A patent/JP2024147979A/en active Pending
-
2024
- 2024-02-21 WO PCT/JP2024/006372 patent/WO2024209821A1/en unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011014847A (en) * | 2009-07-06 | 2011-01-20 | Shinko Electric Ind Co Ltd | Multilayer wiring board |
JP2012204810A (en) * | 2011-03-28 | 2012-10-22 | Sony Corp | Semiconductor device and semiconductor device manufacturing method |
WO2017163924A1 (en) * | 2016-03-24 | 2017-09-28 | ソニー株式会社 | Imaging device and electronic device |
US10575397B1 (en) * | 2019-04-30 | 2020-02-25 | Unimicron Technology Corp. | Circuit carrier structure, manufacturing method thereof and chip package structure |
Also Published As
Publication number | Publication date |
---|---|
JP2024147979A (en) | 2024-10-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI773736B (en) | Solid-state imaging device | |
KR101679864B1 (en) | Solid-state imaging device, manufacturing method therefor, and electronic device | |
JP6920110B2 (en) | Solid-state image sensor and its manufacturing method | |
CN103247648B (en) | Semiconductor device and manufacture method thereof and electronic equipment | |
US9177981B2 (en) | Solid-state imaging device having a metallic pad periphery guard ring | |
US8169520B2 (en) | Solid-state imaging apparatus and camera | |
US10192919B2 (en) | Imaging systems with backside isolation trenches | |
JP5729100B2 (en) | Semiconductor device manufacturing method, semiconductor device, and electronic apparatus | |
JP2018101699A (en) | Solid-state imaging device, method of manufacturing the same, and electronic equipment | |
CN110678984B (en) | Imaging device and electronic apparatus | |
JP2012019147A (en) | Solid state imaging device | |
KR20060093285A (en) | Solid-state imager device, drive method of solid-state imager device and camera apparatus | |
JP6200035B2 (en) | Semiconductor device | |
WO2019171787A1 (en) | Imaging element and method for producing imaging element | |
JP2015088691A (en) | Solid state image sensor, manufacturing method thereof and electronic apparatus | |
CN116830270A (en) | sensor device | |
JP4270105B2 (en) | Solid-state image sensor | |
JP2006108497A (en) | Solid state imaging apparatus | |
WO2024209821A1 (en) | Light detection device and electronic apparatus | |
US20240021631A1 (en) | Solid-state imaging device and electronic device | |
US20220093671A1 (en) | Three-dimensional microelectronic circuit with optimised distribution of its digital and analogue functions | |
WO2023188891A1 (en) | Light detecting device and electronic apparatus | |
WO2024101028A1 (en) | Optical detection device and electronic apparatus | |
US20240175802A1 (en) | Photodetection device and electronic device | |
TWI856970B (en) | Solid-state imaging devices and electronic devices |