[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2024205090A1 - 냉동장치의 증발기 제상장치 및 제상방법 - Google Patents

냉동장치의 증발기 제상장치 및 제상방법 Download PDF

Info

Publication number
WO2024205090A1
WO2024205090A1 PCT/KR2024/003355 KR2024003355W WO2024205090A1 WO 2024205090 A1 WO2024205090 A1 WO 2024205090A1 KR 2024003355 W KR2024003355 W KR 2024003355W WO 2024205090 A1 WO2024205090 A1 WO 2024205090A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
evaporator
line
liquid
discharged
Prior art date
Application number
PCT/KR2024/003355
Other languages
English (en)
French (fr)
Inventor
김봉석
김수민
Original Assignee
(주)하이세이브아시아
김봉석
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)하이세이브아시아, 김봉석 filed Critical (주)하이세이브아시아
Publication of WO2024205090A1 publication Critical patent/WO2024205090A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • F25B41/26Disposition of valves, e.g. of on-off valves or flow control valves of fluid flow reversing valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/40Fluid line arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles

Definitions

  • the present invention relates to an evaporator defrosting device and a defrosting method for a refrigerating device, and more specifically, to an evaporator defrosting device and a defrosting method for a refrigerating device configured to most efficiently remove frost attached to the evaporator of a refrigerating device installed in a room storing cooled and frozen/refrigerated food or goods, and in a freezer, refrigerator, showcase, etc.
  • the refrigeration cycle of a refrigerator consists of a compression process, a condensation process, an expansion process, and an evaporation process. If we look at each process, in the compression process, the low-temperature and low-pressure refrigerant gas evaporated through the evaporator is converted into high-temperature and high-pressure refrigerant gas through a compressor so that it condenses well. In the condensation process, the high-temperature and high-pressure refrigerant gas is condensed and liquefied through heat exchange with a heat exchange medium such as air or water, thereby converting it into a high-temperature liquid refrigerant.
  • a heat exchange medium such as air or water
  • the high-temperature liquid refrigerant is rapidly expanded to become a refrigerant in a foggy state, which is then supplied to the evaporator.
  • the refrigerant in a foggy state that is rapidly expanded by the expansion valve is converted into a low-temperature and low-pressure gaseous state through a heat exchange action that takes heat from the heat exchange medium around the evaporator.
  • the surrounding temperature is rapidly lowered and the cold air is supplied to indoor spaces, freezer/refrigerator rooms, showcases, etc., thereby cooling indoor spaces or cooling and freezing/refrigerating/refrigerating food, etc.
  • the evaporator absorbs the surrounding heat and changes it into a low-temperature gaseous state, and as a result of the rapid temperature difference with the surrounding temperature, frost is generated, and when this frost grows, the freezing and refrigeration efficiency of the freezer and refrigerator drops sharply.
  • a defrosting device for removing frost that forms on the evaporator during operation of a conventional refrigeration device a spray defrosting device for removing frost by spraying water, an electric heater defrosting device for removing frost by installing an electric heater on the evaporator, and a hot gas defrosting device are used.
  • the spraying defrosting device has been pointed out as a problem in that it requires additional installation of piping facilities for spraying defrosting water, which makes the evaporator structure larger and increases the installation cost.
  • the electric heater defrosting device has been pointed out as a problem in that it requires a lot of electric energy to heat the evaporator to a certain temperature that can melt the frost formed on the evaporator, and after removing the frost, it is difficult to expect normal freezing/refrigeration efficiency of the evaporator until the temperature of the evaporator is restored to the original low temperature state before removing the frost.
  • the hot gas defrosting device of the prior art is configured to connect the outlet line (210) of the compressor (200) provided in the middle of the refrigerant circulation line (100) configured as a closed circuit to the inlet line (310) of the condenser (300), so that the high temperature and high pressure gaseous refrigerant compressed and discharged from the compressor (200) is introduced into the condenser (300), and the liquid refrigerant that is introduced into the condenser (300) and condensed and liquefied through heat exchange with an external heat exchange medium is discharged through the outlet line (320) and is stored in the receiver (400) through the inlet line (410) of the receiver, and the liquid refrigerant stored in the receiver (400) is discharged through the outlet line (420) to the liquid refrigerant transfer line (500), and is supplied to the expansion valve (700) through the electronic valve (600) and rapidly expanded, and the The refrigerant in a mist state that rapidly expands in the expansion valve
  • the hot gas defrosting device of the prior art is configured such that the outlet line (210) of the compressor (200) and the inlet line (810) of the evaporator (800) are connected to a hot gas bypass line (900), and an electronic valve (910) is installed in the hot gas bypass line (900).
  • the hot gas defrosting device of the prior art configured as described above is configured to remove frost formed on the evaporator (800) by supplying a portion of the high-temperature, high-pressure gaseous refrigerant discharged through the outlet line (210) of the compressor (200) to the evaporator (800), by connecting the outlet line (210) of the compressor (200) and the inlet line (810) of the evaporator (800) to a hot gas bypass line (900), and to install an electronic valve (910) in the hot gas bypass line (900), so that frost formed on the evaporator (800) can be periodically removed while the refrigeration device is being operated.
  • the electronic valve (910) installed in the hot gas bypass line (900) is turned off, and the high temperature and high pressure gaseous refrigerant compressed and discharged from the compressor (200) is completely introduced into the condenser (300). Therefore, the liquid refrigerant that is introduced into the condenser (300) and condensed and liquefied through heat exchange with an external heat exchange medium (air, water, etc.) is discharged through the outlet line (320) and temporarily stored in the receiver (400). The liquid refrigerant stored in the receiver (400) is discharged through the outlet line (420) and transferred to the liquid refrigerant transfer line (500) and rapidly expanded in the expansion valve (700).
  • the refrigerant in a foggy state that is rapidly expanded in the expansion valve (700) is supplied to the evaporator (800).
  • the foggy state supplied to the evaporator (800) The refrigerant lowers the temperature of the surroundings by taking heat from the surroundings through heat exchange with the indoor or internal heat exchange medium (air, water, etc.), and the refrigerant in the form of a mist supplied to the evaporator (800) evaporates in the process of taking heat from the indoor or internal heat exchange medium through heat absorption, and the low-temperature gaseous refrigerant that evaporates in this way is discharged through the outlet line (820) and introduced into the compressor (200) through the compressor inlet line (220) to repeat the compression operation.
  • the electronic valve (910) formed in the hot gas bypass line (900) is operated in the on (open) state, and when the electronic valve (910) installed in the hot gas bypass line (900) is operated in the on state, the high temperature and high pressure gaseous refrigerant compressed and discharged from the compressor (200) is not transferred in full to the condenser (300) but some of it is transferred to the hot gas bypass line (900) in which the electronic valve (910) is opened (on).
  • the solenoid valve (910) installed in the hot gas bypass line (900) is opened to the on operating state, a portion of the high temperature and high pressure gaseous refrigerant discharged from the compressor (200) is transferred to the hot gas bypass line (900) and supplied to the evaporator (800) through the inlet line (810) of the evaporator, and the high temperature and high pressure gaseous refrigerant transferred to the hot gas bypass line (900) and supplied to the evaporator (800) removes the frost formed on the evaporator (800).
  • the high temperature and high pressure gaseous refrigerant supplied to the evaporator (800) is condensed and liquefied in the process of removing the frost.
  • the present invention has been proposed to solve various problems appearing in the above-mentioned prior art, and is configured to remove frost formed and formed in the evaporator by selectively controlling whether the entire amount of high-temperature, high-pressure gaseous refrigerant discharged through the outlet line of the compressor provided in the middle of the refrigerant circulation line constituting the refrigerating device is transferred to the condenser side or the evaporator side, and further, the invention aims to provide a refrigerating device configured so that only evaporated gaseous refrigerant can be introduced into the compressor even when the entire amount of high-temperature, high-pressure gaseous refrigerant discharged from the compressor is selectively controlled to be transferred to either the condenser side or the evaporator side.
  • the present invention is a means for pursuing the above-mentioned object, and the evaporator defrosting device of the refrigerating device of the present invention comprises a compressor provided in the middle of a refrigerant circulation line, a condenser for condensing and liquefying high-temperature and high-pressure gaseous refrigerant compressed and discharged from the compressor, a receiver for storing the liquid refrigerant at room temperature condensed and liquefied in the condenser, an expansion valve for rapidly expanding the liquid refrigerant discharged from the receiver, and an evaporator for cooling or cooling the interior to a set temperature by heat exchange with a heat exchange medium inside the interior, wherein a mist refrigerant circulation passage through which mist refrigerant rapidly expanded by an expansion valve formed in a first liquid refrigerant discharge line connected to a first discharge port through which liquid refrigerant stored in the receiver is discharged circulates, and a liquid refrigerant circulation passage through which liquid refrigerant
  • It is characterized in that it is configured to include a plate heat exchanger, and further includes a four-way solenoid valve for removing frost, which is installed between the compressor and the condenser and is configured to supply high-temperature, high-pressure gaseous refrigerant by selecting either the condenser or the evaporator from the high-temperature, high-pressure gas discharged through the outlet line of the compressor.
  • the four-way solenoid valve for removing the refrigerant is characterized in that it is configured to have a main refrigerant inlet connected to the outlet line of the compressor so that the high temperature and high pressure gaseous refrigerant discharged from the compressor can be introduced therein, a one-side refrigerant inlet for supplying the gaseous refrigerant introduced into the main refrigerant inlet to the condenser, a central refrigerant inlet to which a refrigerant transfer line for transporting the refrigerant discharged to the liquid refrigerant outlet of the liquid refrigerant circulation passage provided in parallel to the plate heat exchanger is connected, and the other-side refrigerant inlet to which a refrigerant supply line for transporting the refrigerant introduced into the central refrigerant inlet to the evaporator side is connected.
  • the four-way solenoid valve for removing the refrigerant is configured so that, when the valve is in the on (open) operation, the high-temperature, high-pressure gaseous refrigerant discharged through the outlet line of the compressor flows into the main refrigerant inlet and is discharged to the condenser side through the refrigerant inlet on one side, while the liquid refrigerant flowing into the liquid refrigerant inlet of the liquid refrigerant circulation passage of the plate heat exchanger is cooled by heat exchange with the mist refrigerant circulating in the mist refrigerant circulation passage while circulating in the liquid refrigerant circulation passage, and is discharged through the liquid refrigerant outlet to the cooled refrigerant transfer line and flows into the central refrigerant inlet and is discharged through the refrigerant supply line connected to the refrigerant inlet on the other side, so that the liquid refrigerant cooled while circulating in the liquid refrigerant circulation passage of the plate heat exchanger can be supplied
  • the four-way solenoid valve for removing frost is configured so that, when the valve is in the off (closed) operation, the high temperature and high pressure gaseous refrigerant discharged through the outlet line of the compressor flows into the main refrigerant inlet and is supplied to the evaporator side through the refrigerant supply line connected to the refrigerant outlet on the other side, thereby removing frost formed on the evaporator, and, while the cooled liquid refrigerant that circulates through the liquid refrigerant circulation passage of the plate heat exchanger and is discharged through the liquid refrigerant outlet is configured so that it flows into the central refrigerant inlet through the cooled refrigerant transfer line and can be supplied to the condenser through the refrigerant outlet on one side.
  • it is characterized in that it further includes a four-way solenoid valve for frost delay, which is installed between the plate heat exchanger and the evaporator and has a function of controlling the refrigerant flowing in through the main refrigerant inlet to be supplied by selecting either the inlet of the evaporator or the outlet of the evaporator.
  • a four-way solenoid valve for frost delay which is installed between the plate heat exchanger and the evaporator and has a function of controlling the refrigerant flowing in through the main refrigerant inlet to be supplied by selecting either the inlet of the evaporator or the outlet of the evaporator.
  • the refrigerant recovery line for recovering the refrigerant that has performed heat exchange with an indoor (or internal) heat exchange medium while circulating through the evaporator and the second liquid refrigerant transfer line for transferring the liquid refrigerant discharged from the second discharge port of the receiver are connected to a bypass line having a refrigerant recovery solenoid valve installed, and the refrigerant recovery line is characterized in that it is connected to the receiver by a refrigerant recovery extension line having a refrigerant recovery solenoid valve installed so that the refrigerant recovered from the evaporator can be stored in the receiver.
  • liquid separator is inserted and installed inside the receiver, and the gas refrigerant outlet of the mist refrigerant circulation passage installed in the plate heat exchanger and the inlet of the liquid separator are connected to a gas refrigerant suction line, and the outlet of the liquid separator and the inlet line of the compressor are connected to a gas refrigerant discharge line.
  • the evaporator defrosting method of the refrigerating device of the present invention comprises a refrigerating cycle comprising a compressor provided in the middle of a refrigerant circulation line, a condenser for condensing and liquefying high-temperature and high-pressure gaseous refrigerant extruded and discharged from the compressor, a receiver for storing the high-temperature liquid refrigerant condensed and liquefied in the condenser, an expansion valve for rapidly expanding the liquid refrigerant discharged from the receiver, and an evaporator for cooling the interior to a set temperature by heat exchange with an indoor heat exchange medium, wherein the refrigerating device is configured to selectively supply high-temperature and high-pressure gaseous refrigerant discharged from the compressor to either the condenser or the evaporator by the on/off operation of a four-way solenoid valve for defrosting, the main refrigerant inlet of which is connected to the outlet line of the compressor, and when it
  • the refrigerant recovery solenoid valve installed in the bypass line connecting the second liquid refrigerant transfer line connected to the second discharge port of the receiver and the refrigerant recovery line for recovering the refrigerant that has performed the evaporation is operated in the on state
  • the refrigerant recovery solenoid valve installed in the refrigerant recovery extension line formed as an extension to the refrigerant recovery line is operated in the off state
  • the refrigerant recovered through the refrigerant recovery line after circulating through the evaporator is transferred to the bypass line where the refrigerant recovery solenoid valve is operated in the on state and transferred to the plate heat exchanger side through the second liquid refrigerant transfer line
  • the refrigerant recovery solenoid valve installed in the bypass line is operated in the off state
  • the refrigerant recovery solenoid valve installed in the refrigerant recovery extension line is operated in the on state
  • the refrigeration cycle of the refrigeration device is operated in normal operation, and the high-temperature, high-pressure gaseous refrigerant discharged from the compressor is entirely transferred to the condenser, and the room-temperature liquid refrigerant condensed and liquefied in the condenser is transferred to and stored in a receiver, and the liquid refrigerant stored in the receiver is transferred to the first and second liquid refrigerant transfer lines, respectively, and transferred to and circulated in the mist refrigerant circulation passage and the liquid refrigerant circulation passage respectively installed in the plate heat exchanger, and the gaseous refrigerant discharged through the gas refrigerant outlet of the mist refrigerant circulation passage is fed into the compressor, and the cooled liquid refrigerant discharged through the liquid refrigerant outlet of the liquid refrigerant circulation passage is supplied to the evaporator and circulated, and the operation is
  • the refrigerant in a fog state circulating in the fog refrigerant circulation passage installed in conjunction with the plate heat exchanger can supply the gaseous refrigerant to the compressor by evaporating through a heat exchange action that takes heat from the liquid refrigerant circulating in the liquid refrigerant circulation passage, thereby having the effect of preventing and eliminating the cause of compressor failure in advance.
  • Figure 1 is a circuit configuration diagram showing the circulation operation state of the refrigerant circulating in the refrigerant circulation line of the refrigeration cycle during normal operation of the refrigeration device of the present invention.
  • Figure 2 is a circuit configuration diagram showing the circulation operation state of the refrigerant circulating in the refrigerant circulation line of the refrigeration cycle during the defrosting operation of the refrigeration device of the present invention.
  • Figure 3 is a refrigeration cycle circuit configuration diagram of another embodiment of the refrigeration device of the present invention.
  • Figures 4(a) and (b) are enlarged views of the “X” portion of Figure 2, showing the operating status of a four-way solenoid valve for delaying frost formation on an evaporator of a refrigerating device of the present invention and the circulation status of refrigerant.
  • Figure 5 is a plan view of a four-way solenoid valve for removing frost and delaying frost deposition that constitutes the refrigeration cycle of the refrigeration device of the present invention.
  • Figures 6 and 7 are operation state diagrams of the four-way solenoid valve for removing frost and delaying frost deposition that constitute the refrigeration cycle of the refrigeration device of the present invention.
  • Figure 6 shows the refrigerant circulation operation state when the piston valve of the four-way solenoid valve has moved to the right.
  • Figure 7 shows the refrigerant circulation operation state when the piston valve of the four-way solenoid valve has moved to the left.
  • Figure 8 is a refrigeration cycle circuit configuration diagram of a conventional refrigeration device.
  • the city of Fig. 1 is a refrigeration cycle circuit configuration diagram of a preferred embodiment of the refrigeration device of the present invention, and is a diagram showing the refrigerant circulation operation state when the refrigeration device is in normal operation.
  • the normal operation of the refrigeration device of the present invention means that the high temperature and high pressure gaseous refrigerant discharged through the outlet line (21) of the compressor (2) provided in the middle of the refrigerant circulation line (1) of the refrigeration cycle configured as a closed circuit is configured to flow into the condenser (3) and sequentially circulate through the receiver (4), expansion valve (6), plate heat exchanger (7), and evaporator (8).
  • the main refrigerant inlet (11) of a four-way solenoid valve (10a) for removing frost is connected to the outlet line (21) of the compressor (2) provided in the middle of the refrigerant circulation line (1) of the refrigeration cycle, and the inlet line (31) of the condenser (3) is connected to the refrigerant outlet (12) on one side of the four-way solenoid valve (10a) for removing frost.
  • the outlet line (32) of the above condenser (3) is connected to the inlet (41) of the receiver (4), a first liquid refrigerant transfer line (51) is connected to the first discharge port (42) of the receiver (4), and a second liquid refrigerant transfer line (52) is connected to the second discharge port (43) of the receiver (4).
  • an electronic valve (53) and an expansion valve (6) are installed at regular intervals, and in the second liquid refrigerant transfer line (52) connected to the second discharge port (43) of the above-mentioned receiver (4), a refrigerant pump (5) is installed.
  • each of the first and second liquid refrigerant transfer lines (51)(52) is connected to a plate heat exchanger (7), and the first liquid refrigerant transfer line (51) is connected to a gas refrigerant inlet (71) of a mist refrigerant circulation passage (7a) installed in parallel with the plate heat exchanger (7) so as to supply mist refrigerant rapidly expanded by the expansion valve (6) to the mist refrigerant circulation passage (7a), and the second liquid refrigerant transfer line (52) is connected to a liquid refrigerant inlet (73) of a liquid refrigerant circulation passage (7b) installed in parallel with the mist refrigerant circulation passage (7a) to the plate heat exchanger (7) so as to supply liquid refrigerant pumped by the refrigerant pump (5) to the liquid refrigerant inlet (73) of the liquid refrigerant circulation passage (7b).
  • the refrigerant in the fog state circulating in the fog refrigerant circulation passage (7a) installed in the plate heat exchanger (7) is evaporated into a low-temperature gaseous state in the process of performing a heat exchange operation in which heat is taken from the liquid refrigerant circulating in the liquid refrigerant circulation passage (7b), discharged through the gas refrigerant outlet (72), and introduced into the compressor (2) through the inlet line (22) of the compressor, and the liquid refrigerant circulating in the liquid refrigerant circulation passage (7b) installed in the plate heat exchanger (7) is cooled through the heat exchange operation in which heat is taken from the fog refrigerant circulating in the fog refrigerant circulation passage (7a), discharged through the liquid refrigerant outlet (74), and introduced into the central refrigerant inlet (13) formed in the four-way solenoid valve (10a) for frost removal through the cooled refrigerant transfer line (75), and the cooled liquid refrigerant introduced into the central refrigerant inlet (13) is
  • liquid refrigerant transferred to the refrigerant supply line (76) passes through the opened solenoid valve (77) and is transferred to the four-way solenoid valve (10b) for frost deposition delay
  • liquid refrigerant transferred to the four-way solenoid valve (10b) for frost deposition delay is supplied to the evaporator (8) side and is configured to perform heat exchange operation with a heat exchange medium (air, water, etc.) existing indoors (meaning the space where the evaporator is installed) while circulating through the refrigerant circulation coil (not shown) installed in the evaporator.
  • a heat exchange medium air, water, etc.
  • the four-way solenoid valve (10a) for removing frost and the four-way valve (10b) for delaying frost formation that supplies refrigerant to the evaporator (8) connected to the outlet line (21) of the compressor (2) above use valve parts currently used in the refrigeration system industry, so a description of their specific configuration and operation will be omitted. However, a description will be made of the configuration and operation effects necessary to remove frost formed on the evaporator using the refrigerant circulating in the refrigeration cycle in the refrigeration device of the present invention.
  • the above four-way solenoid valve (10a) for removing frost and the four-way solenoid valve (10b) for delaying frost are each equipped with a cylinder valve body (15a), a piston valve (15b) that is inserted and installed inside the cylinder valve body (15a) so as to be able to reciprocate in the longitudinal direction of the cylinder valve body (15a), an solenoid valve body (15c) that is installed in a state exposed to one side of the cylinder valve body (15a), and an operating unit (15d) configured to alternately supply the high-temperature, high-pressure gaseous refrigerant that is introduced into the main refrigerant inlet (11) by the solenoid valve body (15c) through the one-side and the other-side refrigerant inlets (16a)(16b) formed at both ends of the cylinder valve body (15a), and also the above A piston valve (15b) is configured such that a one-side connecting passage (17) for transferring high-temperature, high-pressure gaseous refrigerant flowing into the main ref
  • the one-side connecting passage (17) connects the main refrigerant inlet (11) and the one-side refrigerant outlet (12) at the same time, the U-shaped connecting passage (19) connects the central refrigerant outlet (13) and the other-side refrigerant outlet (14), and both ends of the other-side connecting passage (18) are blocked by the inner surface of the cylinder valve body (15a), and in contrast, as illustrated in FIG. 7, the piston valve (15b) moves to the right in the drawing due to the refrigerant injection pressure injected through the other-side refrigerant inlet (16b).
  • the other-side connecting passage (18) connects the main refrigerant inlet (11) and the other-side refrigerant outlet (14), and at the same time, the U-shaped connecting passage (19) connects the central refrigerant outlet (13) and one-side refrigerant outlet (12), and both ends of the one-side connecting passage (17) are blocked by the inner surface of the cylinder valve body (15a).
  • the four-way solenoid valve (10a) for removing frost in which the main refrigerant inlet (11) is connected to the outlet line (21) of the compressor (2), is turned on.
  • the piston valve (15b) of the four-way solenoid valve (10a) for removing frost is moved to the left in the drawing, so that the high-temperature and high-pressure gaseous refrigerant discharged through the outlet line (21) of the compressor (2) flows into the main refrigerant inlet (11), is discharged through the one-side connecting passage (17) to the one-side refrigerant inlet (12), and flows into the condenser (3).
  • the high-temperature and high-pressure gaseous refrigerant flowing into the condenser (3) is condensed and liquefied through heat exchange with a heat exchange medium (air, water, etc.) from the outside (meaning the space where the condenser is installed) and is discharged through the outlet line (32). It flows into the sap receiver (4) through the inlet (41) of the sap receiver (41) and is temporarily stored.
  • a heat exchange medium air, water, etc.
  • the liquid refrigerant stored in the above-mentioned receiver (4) is discharged through the first and second discharge ports (42)(43) and transferred to the first and second liquid refrigerant transfer lines (51)(52).
  • the liquid refrigerant transferred to the first liquid refrigerant transfer line (51) is rapidly expanded into a refrigerant in a fog state by the expansion valve (6) and flows into the gas refrigerant inlet (71) of the fog refrigerant circulation passage (7a) installed in the plate heat exchanger (7) and circulated
  • the liquid refrigerant transferred to the second liquid refrigerant transfer line (52) is pumped by the refrigerant pump (5) and flows into the liquid refrigerant inlet (73) of the liquid refrigerant circulation passage (7b) installed in the plate heat exchanger (7) and circulated.
  • the fog refrigerant circulation passage (7a) installed in the plate heat exchanger (7) and the liquid refrigerant
  • the mist-state refrigerant and the liquid-state refrigerant circulating separately through each of the circulation passages (7b) exchange heat with each other.
  • the mist-state refrigerant circulating through the mist-state refrigerant circulation passage (7a) evaporates into a gaseous state in the process of performing a heat exchange operation that takes heat from the liquid-state refrigerant circulating through the liquid-state refrigerant circulation passage (7b), is discharged through the gaseous refrigerant outlet (72), and is introduced into the compressor (2) through the inlet line (22) of the compressor (2).
  • the liquid-state refrigerant circulating through the liquid-state refrigerant circulation passage (7b) is cooled through a heat exchange operation that takes heat from the mist-state refrigerant circulating through the mist-state refrigerant circulation passage (7a).
  • the liquid-state refrigerant cooled through the heat exchange operation while circulating through the liquid-state refrigerant circulation passage (7b) is discharged through the liquid-state refrigerant outlet (74) and is transferred to the cooling refrigerant transfer line (75) and is supplied to the center of the four-way solenoid valve (10a) for removing frost.
  • the cooled liquid refrigerant flowing into the central refrigerant inlet (13) is transported through the U-shaped connecting passage (19) and discharged through the refrigerant inlet (14) on the other side.
  • the cooled liquid refrigerant discharged through the other refrigerant inlet (14) of the four-way solenoid valve (10a) for frost removal is transferred to the refrigerant supply line (76) and flows into the main refrigerant inlet (11) of the four-way solenoid valve (10b) for frost formation delay, and is supplied to the evaporator (8) side and circulated.
  • the four-way solenoid valve (10b) for frost formation delay is a means for supplying the cooled liquid refrigerant flowing into the main refrigerant inlet (11) to the inlet (81) side of the evaporator (8) or to the outlet (82) side of the evaporator (8), and can delay the formation of frost generated by the temperature difference in the evaporator (8).
  • the cooled liquid refrigerant flowing into the main refrigerant inlet (11) is discharged through the one-side connecting passage (17) to the one-side refrigerant outlet (12) and circulates in the forward direction through the refrigerant circulation coil (not shown) installed in the pipe to the evaporator (8) through the inlet (81) of the evaporator (8), and then performs a heat exchange action with the heat exchange medium in the room (meaning the space where the evaporator is installed), and then is discharged through the outlet (82), flows into the other-side refrigerant outlet (14), is transferred to the U-shaped connecting passage (19), is discharged through the central refrigerant outlet (13), and is transferred to the refrigerant recovery line (83).
  • the four-way solenoid valve for frost-delay can be configured to
  • the cooled liquid refrigerant flowing into the main refrigerant inlet (11) is discharged to the other side refrigerant inlet (14) through the other side connecting passage (18), circulates in the reverse direction through the refrigerant circulation coil (not shown) installed in the evaporator (8) through the outlet (82) of the evaporator (8), performs a heat exchange action with the heat exchange medium in the room (meaning the space where the evaporator is installed), and is then discharged through the inlet (81), flows into the one-side refrigerant inlet (12) of the four-way solenoid valve (10b) for frost deposition delay, is transferred to the U-shaped connecting passage (19), discharged through the central refrigerant inlet (13), and transferred to the refrigerant recovery line (83).
  • the above four-way solenoid valve (10b) for delayed frost attachment is configured to perform an on/off operation periodically for a certain period of time, and can be configured to delay frost attachment generated in the evaporator (8).
  • the liquid refrigerant supplied to the evaporator (8) performs a heat exchange operation with a heat exchange medium (air, etc.) existing indoors (meaning the space where the evaporator is installed) while circulating through a refrigerant circulation coil (not shown) installed in the evaporator (8) and then is discharged from the evaporator (8) and transferred to the refrigerant recovery line (83).
  • a heat exchange medium air, etc.
  • the refrigerant may be transferred to the second liquid refrigerant transfer line (52) connected to the second discharge port (43) of the receiver (4) through a bypass line (84) connecting the refrigerant recovery line (83) and the second liquid refrigerant transfer line (52), or may be stored in the receiver (4) through a refrigerant recovery extension line (85) that is extended from the refrigerant recovery line (83).
  • each of the bypass line (84) and the refrigerant recovery extension line (85) is configured to be alternately turned on/off.
  • a refrigerant recovery electronic valve (86) and a refrigerant recovery electronic valve (87) are each installed.
  • the refrigerant recovery electronic valve (86) installed in the bypass line (84) is operated in the on state
  • the refrigerant recovery electronic valve (87) installed in the refrigerant recovery extension line (85) is configured to operate in the off state, so that the refrigerant supplied to the evaporator (8) and transferred to the refrigerant recovery line (73) after performing a heat exchange operation is not transferred to the receiver (4) side, but is transferred to the bypass line (84) and circulated through the liquid refrigerant circulation path (7b) installed in parallel to the plate heat exchanger (7) through the second liquid refrigerant transfer line (52).
  • the refrigerant recovery electronic valve (86) installed in the bypass line (84) is operated in the off state
  • the refrigerant recovery electronic valve (87) installed in the refrigerant recovery extension line (85) is configured to operate in the off state.
  • the refrigerant supplied to the evaporator (8) and transferred to the refrigerant recovery line (83) after performing a heat exchange operation can be configured to be transferred to the refrigerant recovery extension line (85) instead of being transferred to the bypass line (84) and stored in the receiver (4).
  • the refrigeration device of the present invention is another embodiment in which a liquid separator is inserted and installed inside a liquid receiver as illustrated in FIG. 3 to configure a refrigeration cycle
  • the refrigeration cycle of the other embodiment is configured such that a gaseous refrigerant suction line (93) is connected to the inlet (91) of the liquid separator (9) inserted and installed in a state of being immersed in liquid refrigerant stored inside the liquid receiver (4) and a gaseous refrigerant discharge line (94) is connected to the outlet (92) of the mist refrigerant circulation passage (7a) installed in conjunction with the plate heat exchanger (7), and the gaseous refrigerant discharged through the gaseous refrigerant outlet (72) of the mist refrigerant circulation passage (7a) installed in conjunction with the plate heat exchanger (7) is configured such that the gaseous refrigerant discharged through the gaseous refrigerant outlet (72) of the mist refrigerant circulation passage (7a) installed in conjunction with the plate heat exchanger (7) is introduced into
  • the outlet (92) of the liquid separator (9) is configured so that the evaporated gaseous refrigerant can be discharged and introduced into the compressor (2), and since the other refrigerant circulation configuration is similar to the preferred embodiment of Fig. 1, a description of the specific configuration and operational effects will be omitted.
  • the solenoid valve for removing frost (10a) and the solenoid valve for delaying frost deposition (10b) must be operated in the on state, and then the solenoid valves installed at various locations in the refrigerant circulation line (1) for circulating and supplying refrigerant to each of the major components must be controlled by a control means that selectively operates them on (open) and off (close).
  • each of the solenoid valves (10a) (10b) moves the piston valve (15b) to the right in the drawing as shown in FIG. 6, and accordingly, the main refrigerant inlet (11) and the one-side refrigerant outlet (12) are connected by the one-side connecting passage (17), and the central refrigerant outlet (13) and the other-side refrigerant outlet (14) are connected by the U-shaped connecting passage (19).
  • the refrigeration device is operated normally by turning the solenoid valves installed at various locations of the above-described refrigerant circulation line (1) on/off.
  • the high temperature and high pressure gaseous refrigerant discharged through the outlet line (21) of the compressor (2) flows into the main refrigerant inlet (11) of the defrosting solenoid valve (10a) and is discharged through the one-side connecting passage (17) to the one-side refrigerant inlet (12).
  • the high temperature and high pressure gaseous refrigerant discharged through the one-side refrigerant inlet (12) of the defrosting solenoid valve (10a) flows into the inlet line (31) of the condenser (3).
  • the high temperature and high pressure gaseous refrigerant flowing into the condenser (3) is condensed and liquefied through heat exchange with a heat exchange medium (air, water, etc.) in the outdoors (meaning the space where the condenser is installed) and discharged through the outlet line (32).
  • a heat exchange medium air, water, etc.
  • the refrigerant condensed and liquefied through heat exchange with the heat exchange medium in the condenser (3) is at room temperature (approximately 40°C).
  • the liquid refrigerant flows in through the inlet (41) of the receiver (4) and is temporarily stored in the receiver (4).
  • the liquid refrigerant stored in the above-mentioned receiver (4) is discharged through the first and second discharge ports (42)(43). At this time, the liquid refrigerant discharged through the first discharge port (42) of the receiver (4) is transferred to the first liquid refrigerant transfer line (51), passes through the opened solenoid valve (53), and is rapidly expanded by the expansion valve (6).
  • the refrigerant in a fog state rapidly expanded through the expansion valve (6) is introduced into the gas refrigerant inlet (71) of the fog refrigerant circulation passage (7a) installed in the plate heat exchanger (7) and circulates through the fog refrigerant circulation passage (7a).
  • the liquid refrigerant discharged through the second discharge port (43) of the receiver (4) is transferred by the pumping operation of the refrigerant pump (5) installed in the second liquid refrigerant transfer line (52) and is circulated through the liquid refrigerant installed in the plate heat exchanger (7). It flows into the liquid refrigerant inlet (73) of the circulation passage (7b) and circulates through the liquid refrigerant circulation passage (7b).
  • the fog-state refrigerant and the liquid-state refrigerant circulating through the fog-state refrigerant circulation passage (7a) and the liquid-state refrigerant circulation passage (7b) respectively provided in the plate heat exchanger (7) circulate while performing a heat exchange action with each other.
  • the fog-state refrigerant circulating through the fog-state refrigerant circulation passage (7a) evaporates by taking heat from the liquid-state refrigerant circulating through the liquid-state refrigerant circulation passage (7b), whereas the liquid-state refrigerant circulating through the liquid-state refrigerant circulation passage (7b) is cooled by taking heat from the fog-state refrigerant circulating through the fog-state refrigerant circulation passage (7a).
  • the fog-state refrigerant and the liquid-state refrigerant which perform heat exchange while circulating separately through the fog-state refrigerant circulation passage (7a) and the liquid-state refrigerant circulation passage (7b) installed in parallel to the plate heat exchanger (7), respectively, perform heat exchange with each other.
  • the fog-state refrigerant is evaporated into a gaseous state through a heat exchange action that takes away heat, discharged through the gaseous refrigerant outlet (72), and then introduced into the compressor (2) through the inlet line (22) of the compressor, and this operation is repeated.
  • liquid-state refrigerant circulating through the liquid-state refrigerant circulation passage (7b) is cooled through a heat exchange action that takes away heat during circulation, and the liquid-state refrigerant that is cooled in this way is discharged through the liquid-state refrigerant outlet (74) and transferred to the cooling refrigerant transfer line (75) and then to the other side refrigerant inlet (14) of the four-way solenoid valve (10a) for removing frost.
  • the cooled liquid refrigerant flowing into the other side refrigerant inlet (14) is transported to the central refrigerant inlet (13) through the U-shaped connecting passage (19) and discharged.
  • the cooled liquid refrigerant discharged through the central refrigerant inlet (13) of the above-mentioned four-way solenoid valve (10a) for frost removal is transferred to the refrigerant supply line (76), passes through the opened solenoid valve (77), and flows into the main refrigerant inlet (11) of the four-way solenoid valve (10b) for frost delay.
  • the cooled liquid refrigerant flowing into the main refrigerant inlet (11) is transferred and discharged to the one-side refrigerant inlet (12) through the one-side connecting passage (17) and flows into the inlet (81) of the evaporator (8).
  • the cooled liquid refrigerant flowing into the inlet (81) in this way is piped to the evaporator (8). While circulating in the forward direction through the refrigerant circulation coil (not shown), the refrigerant performs a heat exchange action with the heat exchange medium in the room (meaning the space where the evaporator is installed) and is then discharged through the outlet (82).
  • the cooled liquid refrigerant flowing into the inlet (81) of the evaporator (8) is in a cooled state where heat has been taken from the refrigerant in a mist state while circulating through the liquid refrigerant circulation passage (7b) of the plate heat exchanger (7), so that the room (the space where the evaporator is installed) can be cooled or cooled to a comfortable temperature while circulating through the evaporator (8).
  • frost may form and frost may form on a certain length of the refrigerant circulation coil (not shown) connected to the inlet (81) of the evaporator (8) due to the temperature difference, whereas frost does not form on a certain length of the refrigerant circulation coil (not shown) connected to the outlet (82) of the evaporator (8).
  • frost does not form on a certain length of the refrigerant circulation coil (not shown) connected to the outlet (82) of the evaporator (8).
  • the cooled liquid refrigerant flowing into the inlet (81) of the evaporator (8) increases in temperature through heat exchange with the heat exchange medium in the indoor space (the space where the evaporator is installed) while circulating through the refrigerant circulation coil (not shown).
  • the four-way solenoid valve (10b) for frost formation delay is repeatedly operated on and off at regular intervals, and the operation of discharging the liquid refrigerant flowing into the main refrigerant inlet (11) of the four-way solenoid valve (10b) for frost formation delay through one refrigerant outlet (12) and the operation of discharging it through the other refrigerant outlet (14) are alternately repeated, so that the cooled liquid refrigerant flowing into the main refrigerant inlet (11) of the four-way solenoid valve (10b) for frost formation delay can be transferred to the inlet (81) or the outlet (82) of the evaporator (8) at regular intervals.
  • the refrigerant circulation coil (not shown) installed in the evaporator (8) is subjected to frost. It can delay implantation.
  • the piston valve (15b) of the four-way solenoid valve (10b) for frost seizure delay moves to the right in the drawing as shown in Fig. 6, and accordingly, the cooled liquid refrigerant transferred to the refrigerant supply line (76) flows into the main refrigerant inlet (11), is transferred through the one-side connecting passage (17), is discharged through the one-side refrigerant outlet (12), flows in through the inlet (81) of the evaporator (8), circulates through the evaporator (8), and is discharged through the outlet (82) to be transferred to the refrigerant recovery line (83).
  • the liquid refrigerant that has circulated through the evaporator (8) and then recovered through the refrigerant recovery line (83) is not transferred to the refrigerant recovery extension line (85) in which the refrigerant recovery solenoid valve (87) is installed in an off (closed) operation, but is transferred to the second liquid refrigerant transfer line (52) connected to the second discharge port (43) of the receiver (4) through the bypass line (84) in which the refrigerant recovery solenoid valve (86) is installed in an on (open) operation, and is introduced into the liquid refrigerant inlet (73) of the liquid refrigerant circulation passage (7b) installed in parallel to the plate heat exchanger (7) by the pumping operation of the refrigerant pump (4) to repeat the circulation operation.
  • the high temperature and high pressure gaseous refrigerant compressed by the compressor (2) and discharged through the outlet line (21) flows into the main refrigerant inlet (11) by the on operation of the four-way solenoid valve (10a) for frost removal, discharges through the refrigerant inlet (12) on one side, and flows into the condenser (3) through the inlet line (31) of the condenser (3) and circulates.
  • the liquid refrigerant transferred through the first liquid refrigerant transfer line (51) is rapidly expanded by the expansion valve (6) and is transferred to the plate heat exchanger (7).
  • the liquid refrigerant is introduced into the attached mist refrigerant circulation passage (7a) and circulated, while the liquid refrigerant transferred to the second liquid refrigerant transfer line (52) is pumped by the refrigerant pump (5) and introduced into the liquid refrigerant circulation passage (7b) attached to the plate heat exchanger (7) and circulated.
  • the refrigerant in the fog state circulating in the fog refrigerant circulation passage (7a) installed in the plate heat exchanger (7) is changed into a gaseous state through a heat exchange action that takes heat from the liquid refrigerant while circulating in the liquid refrigerant circulation passage (7b) and is discharged through the gas refrigerant outlet (72) and is introduced into the compressor (2) through the inlet line (21) of the compressor (2), and this operation is repeated, while the liquid refrigerant circulating in the liquid refrigerant circulation passage (7b) is cooled through a heat exchange action that takes heat from the refrigerant in the fog state circulating in the fog refrigerant circulation passage (7a) and is discharged through the liquid refrigerant outlet (74), and the cooled liquid refrigerant discharged through the liquid refrigerant outlet (74) is transferred to the cooling refrigerant transfer line (75) and flows into the central refrigerant inlet (13) of the four-way solenoid valve (10a) for removing frost and is transferred through the U
  • the liquid refrigerant is discharged through the other side refrigerant inlet (14) and circulates through the refrigerant circulation coil (not shown) connected to the evaporator (8) through the inlet (81) or outlet (82) of the evaporator (8) by the four-way solenoid valve (10b) for frost deposition delay, and performs heat exchange with the heat exchange medium in the room (the space where the evaporator is installed) and then discharged and transferred to the refrigerant recovery line (83).
  • the liquid refrigerant transferred to the refrigerant recovery line (83) is transferred to the second liquid refrigerant transfer line (52) through the bypass line (84) in which the open-operated refrigerant recovery solenoid valve (86) is installed, and is introduced into the liquid refrigerant circulation passage (7b) of the plate heat exchanger (7) and circulated.
  • frost may form on a portion of the refrigerant circulation coil (not shown) connected to the inlet (81) of the evaporator (8) due to the temperature difference between the cooled liquid refrigerant and the heat exchange medium (air, water, etc.) in the room (the space where the evaporator is installed). Therefore, in order to delay the frost formation, the frost formation on the evaporator (8) can be delayed by means of alternately controlling the operation of the frost formation delay four-way solenoid valve (10b) to turn on/off at a predetermined time interval.
  • the cooled liquid refrigerant transferred through the refrigerant supply line (76) flows into the main refrigerant inlet (11), is transferred through the one-side connecting passage (17), is discharged through the one-side refrigerant outlet (12), flows into the inlet (81) of the evaporator (8), and performs a heat exchange action while circulating in the forward direction through the refrigerant circulation coil (not shown) installed in the evaporator (8) and is then discharged through the outlet (82).
  • the refrigerant discharged through the outlet (82) of the evaporator (8) flows into the other-side refrigerant outlet (14) and is discharged to the center through the U-shaped connecting passage (19).
  • the cooled liquid refrigerant flowing into the main refrigerant inlet (11) is discharged through the other side refrigerant inlet (14) by the other side connecting passage (18), flows into the outlet (82) of the evaporator (8), and performs a heat exchange action while circulating in the reverse direction through the refrigerant circulation coil (not shown) installed in the evaporator (8) through the pipe, and then is discharged through the inlet (81), flows into the one side refrigerant inlet (12), discharged to the central refrigerant inlet (13) by the U-shaped connecting passage (19), and transferred to the refrigerant recovery line (83).
  • the phenomenon of frost deposition on the refrigerant circulation coil (not shown) installed in the evaporator (8) can be delayed to some extent.
  • the refrigerant discharged and transferred to the refrigerant recovery line (83) performs a heat exchange operation, and is transferred to a bypass line (84) in which a refrigerant recovery solenoid valve (86) controlled to open operation is installed, and is introduced into the liquid refrigerant circulation passage (7b) of the plate heat exchanger (7) through the second liquid refrigerant transfer line (52) and the circulation operation is repeated.
  • the solenoid valve (10a) for removing frost is operated in the off state, while the solenoid valve (10b) for delaying frost deposition is operated in the on state.
  • the solenoid valves installed in various places of the refrigerant circulation line (1) of the refrigeration cycle for circulating and supplying refrigerant to each of the major components must be controlled by a control means that selectively operates on (open) and off (close).
  • the piston valve (15b) that is movably inserted and installed inside the cylinder valve body (15a) as shown in Fig. 7 moves to the left in the drawing, and accordingly, the main refrigerant inlet (11) and the other side refrigerant inlet (14) are connected by the other side connection passage (18), and the one side refrigerant inlet (12) and the central refrigerant inlet (13) are connected by the U-shaped connection passage (19).
  • the refrigerator when the refrigerator is operated in the defrosting operation with each of the electronic valves installed in various places of the refrigeration cycle of the refrigerator adjusted to the on or off operation as shown in Fig. 2, the high temperature and high pressure gaseous refrigerant compressed in the compressor (2) and discharged through the outlet line (21) flows into the main refrigerant inlet (11) of the four-way electronic valve (10a) for frost removal adjusted to the off operation state, is discharged through the other side connecting passage (18) to the other side refrigerant outlet (14), is transferred to the refrigerant supply line (76), passes through the open electronic valve (77), and is transferred to the evaporator (8) through the four-way electronic valve (10b) for frost deposition delay.
  • the high temperature and high pressure gaseous refrigerant transferred to the evaporator (8) melts and removes the frost formed on the refrigerant circulation coil (not shown) installed in the pipe of the evaporator (8). It will be performed.
  • the evaporator (8) operates as a condenser, and the high-temperature, high-pressure gaseous refrigerant flowing into the evaporator (8) operating as a condenser is condensed and liquefied through heat exchange with the heat exchange medium in the room (the space where the evaporator is installed) to become a liquid refrigerant at room temperature and transferred to the refrigerant recovery line (83).
  • the refrigerant recovery solenoid valve (86) installed in the bypass line (84) is adjusted to the off (closed) state, so the liquid refrigerant at room temperature transferred to the refrigerant recovery line (83) is not transferred to the bypass line (84) but is transferred to the refrigerant recovery extension line (85) in which the refrigerant recovery solenoid valve (87) is adjusted to the on (open) state and is then transferred to the receiver (4) through the recovery port (44) of the receiver (4) and stored, while the first and second refrigerant recovery lines (4) are The liquid refrigerant discharged through the discharge port (42)(43) and transferred to the first liquid refrigerant transfer line (51) and the second liquid refrigerant transfer line (52), respectively, is transferred to the mist refrigerant circulation passage (7a) and the liquid refrigerant circulation passage (7b) installed in parallel to the plate heat exchanger (7).
  • the liquid refrigerant transferred to the first liquid transfer line (51) is rapidly expanded into a refrigerant in a fog state through the expansion valve (6) and flows into the gas refrigerant inlet (71) of the fog refrigerant circulation passage (7a) installed in the plate heat exchanger (7) and circulates through the fog refrigerant circulation passage (7a), while the liquid refrigerant transferred to the second liquid refrigerant transfer line (52) is transferred by the pumping operation of the refrigerant pump (5) and flows into the liquid refrigerant inlet (73) of the liquid refrigerant circulation passage (7b) installed in the plate heat exchanger (7) and circulates.
  • the fog refrigerant and the liquid refrigerant circulating through the fog refrigerant circulation passage (7a) and the liquid refrigerant circulation passage (7b) installed in the plate heat exchanger (7) are separately transferred through the fog refrigerant circulation passage (7a) and the liquid refrigerant circulation passage (7b).
  • the refrigerant in the fog state circulating through the fog refrigerant circulation passage (7a) evaporates into a gaseous state through a heat exchange action that takes heat from the liquid refrigerant circulating through the liquid refrigerant circulation passage (7b), is discharged through the gas refrigerant outlet (72), and is introduced into the compressor (2) through the inlet line (22) of the compressor (2) and compressed, repeating the operation.
  • the liquid refrigerant circulating through the liquid refrigerant circulation passage (7b) is cooled through a heat exchange action that takes heat from the fog refrigerant circulating through the fog refrigerant circulation passage (7a), is discharged through the liquid refrigerant outlet (74), and is transferred to the cooling refrigerant transfer line (75), and is introduced into the central refrigerant inlet (13) of the four-way solenoid valve (10a) for frost removal, and is discharged and transferred to the refrigerant inlet (12) on one side through the U-shaped connecting passage (19), and is discharged and transferred through the inlet line (31) of the condenser (3).
  • the condenser (3) operates as an evaporator, so it is condensed and liquefied into a liquid refrigerant at room temperature through heat exchange with a heat exchange medium outside (the space where the condenser is installed), and the operation of flowing into the receiver (4) through the inlet (41) of the receiver (4) and storing it is repeated.
  • the refrigeration device of the present invention can be configured in another embodiment in which a liquid separator (9) is inserted and installed inside the receiver (4) as illustrated in FIG. 3, and the refrigeration device of this other embodiment causes the gaseous refrigerant discharged through the gas refrigerant outlet (72) of the mist refrigerant circulation passage (7a) of the plate heat exchanger (7) to flow into the inlet (91) of the liquid separator (9) inserted and installed inside the receiver (4) through the gas refrigerant suction line (93), and while the gaseous refrigerant flowing into the inlet (91) of the liquid separator (9) is transferred to the outlet (92), the refrigerant that has not been evaporated into a gaseous state is evaporated through the heat exchange action with the liquid refrigerant at room temperature stored in the receiver (4), so that the evaporated gaseous refrigerant is discharged through the outlet (92) to the gas refrigerant discharge line (94) and flows into the compressor (2) through the inlet line (22) of the compressor (2), so that the refrig
  • the refrigeration device of the present invention operates in a configuration in which, during normal operation, the high temperature and high pressure gaseous refrigerant compressed at high temperature and high pressure by the compressor (2) and discharged through the outlet line (21) is transferred to the condenser (3), and, during defrosting operation of the refrigeration device, the high temperature and high pressure gaseous refrigerant discharged from the compressor (2) is transferred to the evaporator (8), thereby having the high temperature and high pressure gaseous refrigerant transferred to the evaporator (8) and circulated, thereby having the effect of melting and quickly removing frost formed on the refrigerant circulation coil (not shown) installed in the evaporator (8).
  • the present invention has a simple configuration in which a four-way solenoid valve (10a) for removing frost is added and connected to the outlet line (21) of the compressor (2), so that the evaporator (8) installed in the existing refrigeration device can be used without structural modification, thereby having the effect of allowing a defrosting device to be provided in the refrigeration device at a low cost.
  • 10a Four-way solenoid valve for removing the penis
  • 10b Four-way solenoid valve for delaying the penis implantation
  • 16a One side refrigerant inlet 16b: Other side refrigerant inlet
  • Cooling refrigerant transfer line 76 Refrigerant supply line

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Fluid Mechanics (AREA)
  • Defrosting Systems (AREA)

Abstract

본 발명은, 압축기와, 응축기와, 수액기와, 팽창밸브 및 증발기가 구비되어 있는 냉동사이클로 구성되는 냉동장치의 증발기 제상장치에 관한 것으로, 수액기에 저장되는 액상냉매가 배출되는 제1 배출구에 연결되는 제1 액상냉매 배출라인에 형성된 팽창밸브에서 급속 팽창되는 안개상태의 냉매가 순환하는 안개냉매 순환통로와 수액기의 제2 배출구에 연결되는 제2 액상냉매 이송라인에 설치된 냉매펌프의 펌핑작동으로 공급되는 액상냉매가 순환하는 액상냉매순환통로가 병설되어 있는 판형열교환기, 및 압축기와 응축기 사이에 설치되어 압축기의 출구라인으로 토출되는 고온고압의 기체를 응축기 또는 증발기 중 어느 일측을 선택하여 고온고압의 기체냉매를 공급할 수 있도록 구성되는 성에제거용 사방전자밸브를 포함한다.

Description

냉동장치의 증발기 제상장치 및 제상방법
본 발명은 냉동장치의 증발기 제상장치 및 제상방법에 관한 것으로, 보다 상세하게는 냉방 및 냉동·냉장 식품이나 물품 등을 보관하는 실내와 냉동·냉장고 및 쇼케이스 등에 설치되는 냉동장치의 증발기에 부착되는 성에(서리)를 가장 효율적으로 제거할 수 있도록 구성되는 냉동장치의 증발기 제상장치 및 제상방법에 관한 것이다.
일반적으로 냉장고의 냉동사이클은 압축공정, 응축공정, 팽창공정 및 증발공정 등으로 구성되며, 각각의 공정을 살펴보면 압축공정에서는 증발기를 통해 증발된 저온·저압의 냉매가스가 응축이 잘 되도록 압축기를 통해 고온고압의 냉매가스로 만들어 주며, 응축공정에서는 고온고압의 냉매가스가 공기 또는 물 등의 열교환매체와의 열교환작용으로 응축, 액화되도록 하여 고온의 액체냉매로 변환시키고, 팽창공정에서는 고온의 액체냉매를 급속 팽창시켜 안개상태의 냉매로 만들고, 이를 증발기에 공급하게 되며, 증발공정에서는 팽창밸브에서 급속 팽창되어 공급되는 안개상태의 냉매로 하여금 증발기 주위의 열교환매체로부터 열을 빼앗는 열교환작용을 통하여 저온저압의 가스상태로 변환되게 하는 과정에서 주위의 온도를 급격히 떨어뜨린 냉기를 실내 및 냉동·냉장실이나 쇼케이스 등에 공급하게 됨으로써 실내를 냉방하거나 식품 등을 냉방 및 냉동·냉장 저장할 수 있게 된다.
그러나, 상기와 같이 증발공정에서 안개상태의 냉매로 하여금 증발기 주위의 열교환매체가 가진 열을 빼앗는 열교환작용으로 증발되게 하는 과정에서 주위의 열을 흡수한 후 저온의 기체상태로 변화시키는 증발기에는 주위 온도와의 급격한 온도차로 성에(서리)가 생성하게 되며, 이러한 성에가 성장하게 되면 냉동고 및 냉장고의 냉동·냉장 효율이 급격히 떨어지게 된다.
따라서 냉동장치를 운전하는 도중에 증발기에 생성되는 성에가 착상되면 열 교환 효율이 떨어지게 되므로 주기적으로 증발기에 착상되는 성에를 제거하여 줌으로써 증발기의 열교환 효율이 감소되지 않도록 하는 것이 냉동장치를 효율적으로 운전할 수 있게 된다.
종래 냉동장치의 운전 중 증발기에 착상되는 성에를 제거하기 위한 제상장치로서는, 물을 뿌려주는 방법으로 성에를 제거하기 위한 살수제상장치와, 증발기에 전기히터를 설치하여 성에를 제거하기 위한 전기히터 제상장치 및 핫가스 제상장치 등이 사용되고 있다.
상기한 종래 기술의 냉동장치의 증발기 제상장치 중 물을 뿌려주는 방법으로 성에를 제거하는 살수제상장치는 제상수를 뿌려주기 위한 배관설비 등을 추가로 설치하여야 하기 때문에 증발기의 구조가 커지게 되고 설치비용이 비싸지게 된다는 것이 문제점으로 지적되고 있으며, 전기히터 제상장치는 증발기에 착상된 성에를 녹일 수 있는 일정 온도로 증발기를 가열시켜야 하기 때문에 전기 에너지가 많이 소요될 뿐 아니라 성에를 제거한 후에는 증발기의 온도를 성에 제거하기 전 원래의 낮은 온도상태로 온도를 환원시킬 때까지는 증발기의 정상적인 냉동·냉장 효율을 기대하기 곤란하다는 것이 문제점으로 지적되어 왔다.
또한, 종래 기술의 핫가스 제상장치는, 도 8에 도시되어 있는 바와 같이 냉동 장치는 폐회로상으로 구성된 냉매순환라인(100)의 도중에 마련된 압축기(200)의 출구라인(210)을 응축기(300)의 입구라인(310)에 연결하는 구성으로 상기 압축기(200)에서 압축되어 토출되는 고온고압의 기체냉매가 응축기(300)에 유입되도록 하며, 상기 응축기(300)에 유입되어 외부의 열교환매체와의 열교환작용으로 응축되어 액화된 액상냉매는 출구라인(320)으로 배출되어 수액기의 입구라인(410)을 통해 수액기(400)에 유입되어 저장되며, 상기 수액기(400)에 저장된 액상냉매는 출구라인(420)을 통해 액상냉매 이송라인(500)으로 배출되어 전자밸브(600)를 거쳐 팽창밸브(700)로 공급되어 급속 팽창되며, 상기 팽창밸브(700)에서 급속 팽창되는 안개상태의 냉매는 증발기의 입구라인(810)을 통해 증발기(800)에 공급되며, 상기 증발기(800)에 공급되어 실내 또는 내부의 열교환매체와의 열교환작용으로 증발기(800) 주위의 열을 빼앗는 열 흡수작용으로 증발하게 되는 저온의 기체냉매를 출구라인(820)으로 배출되어 압축기의 입구라인(220)을 통해 압축기(200)에 유입되어 고온고압으로 압축되는 작동을 반복하도록 구성되어 있는데, 종래 기술의 핫가스 제상장치는 상기 압축기(200)의 출구라인(210)과 증발기(800)의 입구라인(810)을 핫가스 바이패스라인(900)으로 연결하고, 상기 핫가스 바이패스라인(900)에는 전자밸브(910)가 장설되어 있도록 구성되어 있다.
상기와 같이 구성된 종래 기술의 핫가스 제상장치는, 상기 압축기(200)의 출구라인(210)으로 토출되는 고온고압의 기체냉매의 일부를 증발기(800)에 공급하는 방법으로 증발기(800)에 착상되어 있는 성에를 제거할 수 있도록 상기 압축기(200)의 출구라인(210)과 증발기(800)의 입구라인(810)을 핫가스 바이패스라인(900)으로 연결하며, 상기 핫가스 바이패스라인(900)에는 전자밸브(910)를 장설하는 구성으로 냉동장치를 운전하는 도중에 증발기(800)에서 생성되어 착상되는 성에를 주기적으로 제거할 수 있도록 구성되어 있다.
즉, 상기한 종래 기술은 냉동장치를 정상운전으로 작동시키고자 할 때에는 상기 핫가스 바이패스라인(900)에 설치되어 있는 전자밸브(910)를 오프(off) 상태로 작동시키게 되면 상기 압축기(200)에서 압축되어 토출되는 고온고압의 기체냉매는 전량 응축기(300)에 유입되므로, 상기 응축기(300)에 유입되어 외부의 열교환매체(공기, 물 등)와의 열교환작용으로 응축 액화되는 액상냉매는 출구라인(320)으로 배출되어 수액기(400)에 일시 저장되며, 상기 수액기(400)에 저장되는 액상냉매는 출구라인(420)으로 배출되어 액상냉매 이송라인(500)으로 이송되어 팽창밸브(700)에서 급속 팽창되며, 상기 팽창밸브(700)에서 급속 팽창되는 안개상태의 냉매는 증발기(800)에 공급되며, 상기 증발기(800)에 공급되는 안개상태의 냉매는 실내 또는 내부의 열교환매체(공기, 물 등)와의 열교환작용으로 주위의 열을 빼앗아 주위의 온도를 저하시키게 되며, 이와 같이 증발기(800)에 공급되는 안개상태의 냉매가 실내 또는 내부의 열교환매체가 가진 열을 빼앗는 열 흡수작용으로 증발하는 과정에서 증발하게 되고, 이같이 증발하게 되는 저온의 기체냉매는 출구라인(820)으로 배출되어 압축기의 입구라인(220)을 통해 압축기(200)에 유입되어 압축되는 작동을 반복하게 된다.
한편, 상기 증발기(800)에서 생성되어 착상되는 성에를 제거하고자 할 때에는 상기 핫가스 바이패스라인(900)에 형성되어 있는 전자밸브(910)를 온(on : 개방) 상태로 작동시키게 되며, 이와 같이 핫가스 바이패스라인(900)에 설치되어 있는 전자 밸브(910)가 온(on) 작동하게 되면 상기 압축기(200)에서 압축되어 토출되는 고온고압의 기체냉매는 응축기(300)쪽으로 전량 이송되지 않고 그 일부는 전자밸브(910)가 개방(on)된 핫가스 바이패스라인(900)으로 이송되는 상태가 된다.
상기와 같이 핫가스 바이패스라인(900)에 설치된 전자밸브(910)가 온(on) 작동상태로 개방되었을 때에는 상기 압축기(200)에서 토출되는 고온고압의 기체냉매의 일부는 핫가스 바이패스라인(900)으로 이송되어 증발기의 입구라인(810)을 통해 증발기(800)에 공급되는 상태가 되며, 상기 핫가스 바이패스라인(900)으로 이송되어 증발기(800)에 공급되는 고온고압의 기체냉매로 하여금 증발기(800)에 착상되어 있는 성에를 제거하게 되지만, 이같이 상기 증발기(800)에 공급되는 고온고압의 기체냉매는 성에를 제거하는 과정에서 응축 액화되는데, 이와 같이 기체냉매가 응축 액화되는 과정에서 증발하지 아니한 냉매가 존재하게 되며, 이에 따라 증발되지 아니한 냉매가 압축기(200)에 유입될 경우에는 압축기(200)의 압축작동시 액압축으로 인한 압축기 마모를 일으킬 수 있게 되고, 이는 압축기(200)의 고장원인이 된다는 것이 문제점으로 지적되고 있다.
본 발명은 상기와 같은 종래 기술에서 나타나는 제반 문제를 해결하기 위하여 제안된 것으로, 냉동장치를 구성하는 냉매순환라인의 도중에 마련된 압축기의 출구라인으로 토출되는 고온고압의 기체냉매 전량을 응축기측으로 이송되게 하거나 또는 증발기측으로 이송되게 하는 것을 선택하여 조절할 수 있도록 함으로써 증발기에 생성되어 착상되는 성에를 제거할 수 있도록 구성하였으며, 또한 상기 압축기에서 토출되는 고온고압의 기체냉매 전량을 응축기측이나 증발기측으로 이송되도록 선택하여 조절하게 되더라도 압축기에는 증발된 기체상태의 냉매만 유입될 수 있도록 구성된 냉동장치를 제공하는데 목적을 두고 발명한 것이다.
본 발명은 상기와 같은 목적을 추구하기 위한 수단으로서, 본 발명의 냉동장치의 증발기 제상장치는, 냉매순환라인의 도중에 마련된 압축기와, 상기 압축기에서 압축되어 토출되는 고온고압의 기체냉매를 응축 액화시키기 위한 응축기와, 상기 응축기에서 응축 액화된 상온의 액상냉매를 저장하기 위한 수액기와, 상기 수액기에서 배출되는 액상냉매를 급속 팽창시키기 위한 팽창밸브 및 실내의 열교환매체와의 열교환작용으로 실내를 설정된 온도로 냉방 또는 냉각시키기 위한 증발기가 구비되어 있는 냉동사이클로 구성되는 냉동장치에 있어서, 상기 수액기에 저장되는 액상냉매가 배출되는 제1 배출구에 연결되는 제1 액상냉매 배출라인에 형성된 팽창밸브에서 급속 팽창되는 안개상태의 냉매가 순환하는 안개냉매 순환통로와, 상기 수액기의 제2 배출구에 연결되는 제2 액상냉매 이송라인에 설치된 냉매펌프의 펌핑작동으로 공급되는 액상냉매가 순환하는 액상냉매 순환통로가 병설되어 있는 판형열교환기를 포함하고 있도록 구성되어 있으며, 상기 압축기와 응축기 사이에 설치되어 압축기의 출구라인으로 토출되는 고온고압의 기체를 응축기 또는 증발기 중 어느 일측을 선택하여 고온고압의 기체냉매를 공급할 수 있도록 구성되는 성에제거용 사방전자밸브를 더 포함하고 있도록 구성된 것을 특징으로 한다.
또한, 상기 성에제거용 사방전자밸브는 압축기의 출구라인에 연결되어 압축기에서 토출되는 고온고압의 기체냉매가 유입되도록 상기 압축기의 출구라인에 연결되는 메인냉매입구와, 상기 메인냉매입구로 유입되는 기체냉매를 응축기에 공급하기 위한 일측 냉매출입구와, 상기 판형열교환기에 병설되어 있는 액상냉매 순환통로의 액상냉매출구로 배출되는 냉각냉매를 이송하는 냉각냉매 이송라인이 연결되는 중앙 냉매출입구와, 상기 중앙 냉매출입구로 유입되는 냉각냉매를 증발기측으로 이송하기 위한 냉매공급라인이 연결되는 타측 냉매출입구가 형성되어 있도록 구성된 것을 특징으로 한다.
또한, 상기 성에제거용 사방전자밸브는 온(on : 개방) 작동시 압축기의 출구 라인으로 토출되는 고온고압의 기체냉매가 메인냉매입구로 유입되어 일측 냉매출입구를 통해 응축기측으로 배출되도록 구성하는 한편, 상기 판형열교환기의 액상냉매 순환통로의 액상냉매입구로 유입되는 액상냉매는 액상냉매 순환통로를 순환하는 동안 안개냉매 순환통로를 순환하는 안개상태의 냉매와의 열교환작용으로 냉각되어 액상냉매출구를 통해 냉각냉매 이송라인으로 배출되어 중앙 냉매출입구로 유입되어 타측 냉매출입구에 연결된 냉매공급라인을 통해 배출되도록 구성하여 상기 판형열교환기의 액상냉매 순환통로를 순환하는 동안 냉각되는 액상냉매를 증발기에 공급할 수 있도록 구성된 것을 특징으로 한다.
또한, 상기 성에제거용 사방전자밸브는 오프(off : 폐쇄) 작동시 압축기의 출구라인으로 토출되는 고온고압의 기체냉매가 메인냉매입구로 유입되어 타측 냉매출입구에 연결된 냉매공급라인을 통해 증발기측으로 공급하도록 구성하여 증발기에 착상되어 있는 성에를 제거하도록 구성하는 한편, 상기 판형열교환기의 액상냉매 순환통로를 순환하는 동안 냉각되어 액상냉매출구로 배출되는 냉각된 액상냉매는 냉각냉매 이송라인을 통해 중앙 냉매출입구로 유입되어 일측 냉매출입구를 통해 응축기에 공급할 수 있도록 구성된 것을 특징으로 한다.
또한, 상기 판형열교환기와 증발기 사이에 설치되며, 메인냉매입구를 통해 유입되는 냉매를 증발기의 입구 또는 증발기의 출구 중 어느 한 곳을 선택하여 공급할 수 있도록 제어하는 기능을 가진 성에착상지연용 사방전자밸브를 더 포함하고 있도록 구성된 것을 특징으로 한다.
또한, 상기 증발기를 순환하는 동안 실내(또는 내부)의 열교환매체와의 열교환작용을 수행한 냉매를 회수하는 냉매회수라인과 수액기의 제2 배출구에서 배출되는 액상냉매를 이송하는 제2 액상냉매 이송라인에는 냉매우회용 전자밸브가 장설된 바이패스라인으로 연결되어 있으며, 상기 냉매회수라인에는 증발기에서 회수되는 냉매를 수액기에 저장할 수 있도록 냉매회수용 전자밸브가 설치되어 있는 냉매회수연장라인에 의하여 수액기에 연결되어 있도록 구성된 것을 특징으로 한다.
또한, 상기 수액기의 내부에는 액분리기가 삽입 설치되어 있으며, 상기 판형열교환기에 병설되어 있는 안개냉매 순환통로의 기체냉매출구와 상기 액분리기의 입구는 기체냉매 흡입라인으로 연결되고, 액분리기의 출구와 압축기의 입구라인은 기체냉매 배출라인으로 연결되어 있도록 구성된 것을 특징으로 한다.
본 발명의 냉동장치의 증발기 제상방법은, 냉매순환라인의 도중에 마련된 압축기와, 상기 압축기에서 압출되어 토출되는 고온고압의 기체냉매를 응축 액화시키기 위한 응축기와, 상기 응축기에서 응축 액화된 고온의 액상냉매를 저장하기 위한 수액기와, 상기 수액기에서 배출되는 액상냉매를 급속 팽창시키기 위한 팽창밸브 및 실내의 열교환매체와의 열교환작용으로 실내를 설정된 온도로 냉각시키기 위한 증발기가 구비되어 있는 냉동사이클로 구성되는 냉동장치에 있어서, 상기 압축기의 출구라인에 메인냉매입구가 연결되는 성에제거용 사방전자밸브의 온(on)/오프(off) 작동에 의하여 압축기에서 토출되는 고온고압의 기체냉매를 응축기 또는 증발기 중 어느 한쪽으로 선택 공급할 수 있도록 구성되어 있으며, 상기 증발기에 착상되어 있는 성에를 제거하고자 할 때에는 압축기의 출구라인에 메인냉매입구가 연결되어 있는 성에제거용 사방전자밸브를 오프(off) 작동으로 조작하여 압축기에서 토출되는 고온고압의 기체냉매가 메인냉매입구로 유입되어 타측 냉매출입구로 배출되어 냉매공급라인을 통해 증발기에 공급되도록 하여 상기 증발기에 공급되어 순환하는 고온고압의 기체냉매로 하여금 증발기에 착상된 성에를 제거하도록 구성되어 있으며, 상기 판형열교환기에 병설되어 있는 안개냉매 순환통로의 기체냉매출구로 배출되는 기체냉매는 압축기에 유입되는 작동을 반복하도록 구성되어 있는 한편, 상기 판형열교환기에 병설되어 있는 액상냉매 순환통로의 액상냉매출구로 배출되는 냉각된 냉매는 냉각냉매 이송라인을 통해 성에제거용 사방전자밸브의 중앙 냉매출입구로 유입되어 일측 냉매출입구로 배출되어 응축기에 공급되어 외부 열교환매체와의 열교환작용으로 응축 액화되어 수액기에 저장되었다가 제1 및 제2 액상냉매 이송라인을 통해 판형열교환기에 병설되어 있는 안개냉매 순환통로 및 액상냉매 순환통로 각각으로 공급되는 순환작동을 반복하도록 구성하여서 된 것을 특징으로 한다.
또한, 상기 냉동장치의 정상운전시에는 수액기의 제2 배출구에 연결된 제2 액상냉매 이송라인과 증발기를 수행한 냉매를 회수하기 위한 냉매회수라인을 연결하는 바이패스라인에 설치된 냉매우회용 전자밸브는 온(on) 작동되는 한편, 냉매회수라인에 연장 형성되어 있는 냉매회수 연장라인에 설치된 냉매회수용 전자밸브는 오프(off) 작동되어 증발기를 순환한 후 냉매회수라인으로 회수되는 냉매는 냉매우회용 전자밸브가 온(on) 작동되어 있는 바이패스라인으로 이송되어 제2 액상냉매 이송라인을 통해 판형열교환기측으로 이송되도록 구성되어 있으며, 상기 냉동장치의 제상운전시에는 바이패스라인에 설치된 냉매우회용 전자밸브를 오프(off) 작동되는 한편, 냉매회수 연장라인에 설치된 냉매회수용 전자밸브는 온(on) 작동되어 증발기를 순환한 후 냉매회수라인으로 회수되는 냉매는 온(on) 작동으로 개방된 냉매회수용 전자밸브가 설치되어 있는 냉매회수 연장라인으로 이송되어 수액기에 저장되도록 구성하여서 된 것을 특징으로 한다.
본 발명에 의하면 냉동장치를 이용하여 실내를 냉방하거나 식품이나 물품 등을 냉동 및 냉장 보관하고자 할 때에는 냉동장치의 냉동사이클을 정상운전으로 작동시키는 수단으로, 압축기에서 토출되는 고온고압의 기체냉매가 전량 응축기측으로 이송되고, 상기 응축기에서 응축 액화되는 상온의 액상냉매는 수액기로 이송되어 저장되며, 상기 수액기에 저장되는 액상냉매는 제1 및 제2 액상냉매 이송라인 각각으로 이송되어 판형열교환기에 병설되어 있는 안개냉매 순환통로 및 액상냉매 순환통로 각각으로 이송되어 순환한 후 안개냉매 순환통로의 기체냉매출구로 배출되는 기체냉매는 압축기에 유입되고, 상기 액상냉매 순환통로의 액상냉매출구로 배출되는 냉각된 액상냉매는 증발기에 공급되어 순환하는 작동을 반복하도록 구성되어 있으며, 상기 냉동장치의 냉동사이클을 제상운전으로 작동시키는 수단으로, 압축기에서 토출되는 고온고압의 기체냉매는 성에제거용 사방전자밸브의 오프(off) 작동에 의하여 증발기측으로 이송되어 증발기에 착상된 성에를 제거하도록 구성하는 한편, 판형열교환기의 액상냉매 순환통로를 순환한 후 배출되는 냉매는 성에제거용 사방전자 밸브의 오프(off) 작동에 의하여 응축기측으로 이송되도록 순환하도록 구성함으로써 상기 압축기에서 토출되는 고온고압의 기체냉매 전량을 증발기측으로 공급하여 증발기에 착상되어 있는 성에를 빠르게 제거할 수 있도록 하는 효과가 있다.
또한, 상기 판형열교환기에 병설되어 있는 안개냉매 순환통로를 순환하는 안개상태의 냉매는 액상냉매 순환통로를 순환하는 액상냉매로부터 열을 빼앗는 열교환작용으로 증발하는 기체냉매를 압축기에 공급할 수 있으므로 압축기의 고장원인을 미연에 방지 및 제거할 수 있도록 하는 효과가 있다.
도 1은 본 발명의 냉동장치의 정상운전시 냉동사이클의 냉매순환라인을 순환하는 냉매의 순환작동상태를 나타낸 회로구성도.
도 2는 본 발명의 냉동장치의 제상운전시 냉동사이클의 냉매순환라인을 순환하는 냉매의 순환작동상태를 나타낸 회로구성도.
도 3은 본 발명의 냉동장치의 다른 실시예의 냉동사이클 회로구성도.
도 4의 (가)(나)도시는 도 2의 "X"부분 확대도로서, 본 발명의 냉동장치의 증발기에 성에의 착상현상을 지연시키기 위한 성에착상지연용 사방전자밸브의 작동상태 및 냉매의 순환상태도.
도 5는 본 발명의 냉동장치의 냉동사이클을 구성하는 성에제거용 및 성에착상지연용 사방전자밸브의 평면도.
도 6 및 도 7은 본 발명의 냉동장치의 냉동사이클을 구성하는 성에제거용 및 성에착상지연용 사방전자밸브의 작동상태도로서,
도 6은 사방전자밸브의 피스톤밸브가 우측으로 이동한 상태에서의 냉매순환작동상태이고,
도 7은 사방전자밸브의 피스톤밸브가 좌측으로 이동한 상태에서의 냉매순환작동상태이다.
도 8은 종래 기술의 냉동장치의 냉동사이클 회로구성도.
본 명세서에 개시되어 있는 본 발명의 개념에 따른 실시예들에 대해서 특정한 구조적 또는 기능적 설명들은 단지 본 발명의 개념에 따른 실시예들을 설명하기 위한 목적으로 예시된 것으로서, 본 발명의 개념에 따른 실시예들은 다양한 형태로 실시될 수 있으며 본 명세서에 설명된 실시예들에 한정되지 않는다.
본 발명에 의한 냉동장치의 증발기 제상장치 및 제상방법에 대한 구체적인 실시예를 첨부한 도면에 따라 상세히 설명하면 다음과 같다.
도 1의 도시는 본 발명의 냉동장치의 바람직한 실시예의 냉동사이클 회로구성도로서, 냉동장치를 정상운전시 냉매의 순환작동상태를 나타낸 도면이다.
본 발명의 냉동장치의 정상운전시 작동은, 폐회로상으로 구성되는 냉동사이클의 냉매순환라인(1)의 도중에 마련된 압축기(2)의 출구라인(21)으로 토출되는 고온고압의 기체냉매가 응축기(3)로 유입되어 수액기(4), 팽창밸브(6), 판형열교환기(7) 및 증발기(8) 등을 순차적으로 순환하도록 구성되는 것을 말한다.
본 발명의 냉동장치는 냉동사이클의 냉매순환라인(1)의 도중에 마련되어 있는 압축기(2)의 출구라인(21)에는 성에제거용 사방전자밸브(10a)의 메인냉매입구(11)가 연결되어 있으며, 상기 성에제거용 사방전자밸브(10a)의 일측 냉매출입구(12)에는 응축기(3)의 입구라인(31)이 연결되어 있다.
상기 응축기(3)의 출구라인(32)은 수액기(4)의 입구(41)에 연결되며, 상기 수액기(4)의 제1 배출구(42)에는 제1 액상냉매 이송라인(51)이 연결되고, 상기 수액기(4)의 제2 배출구(43)에는 제2 액상냉매 이송라인(52)이 연결된다.
상기 수액기(4)의 제1 배출구(42)에 연결되는 제1 액상냉매 이송라인(51)에는 전자밸브(53)와 팽창밸브(6)가 각각 일정간격으로 이격되어 있는 상태로 설치되어 있으며, 상기 수액기(4)의 제2 배출구(43)에 연결되는 제2 액상냉매 이송라인(52)에는 냉매펌프(5)가 설치되어 있다.
또한, 상기 제1 및 제2 액상냉매 이송라인(51)(52) 각각은 판형열교환기(7)에 연결되는데, 상기 제1 액상냉매 이송라인(51)은 판형열교환기(7)에 병설되어 있는 안개냉매 순환통로(7a)의 기체냉매입구(71)에 연결되어 팽창밸브(6)에서 급속 팽창되는 안개상태의 냉매를 안개냉매 순환통로(7a)로 공급할 수 있도록 구성되어 있으며, 상기 제2 액상냉매 이송라인(52)은 판형열교환기(7)에 안개냉매 순환통로(7a)와 함께 병설되어 있는 액상냉매 순환통로(7b)의 액상냉매입구(73)에 연결되어 냉매펌프(5)에 의해 펌핑되는 액상냉매를 액상냉매 순환통로(7b)의 액상냉매입구(73)로 공급할 수 있도록 구성되어 있다.
그리고 상기 판형열교환기(7)에 병설되어 있는 안개냉매 순환통로(7a)를 순환하는 안개상태의 냉매는 액상냉매 순환통로(7b)를 순환하는 액상냉매로부터 열을 빼앗는 열교환작용을 수행하는 과정에서 저온의 기체상태로 증발되어 기체냉매출구(72)로 배출되어 압축기의 입구라인(22)을 통해 압축기(2)로 유입되며, 상기 판형열교환기(7)에 병설되어 있는 액상냉매 순환통로(7b)를 순환하는 액상냉매는 안개냉매순환통로(7a)를 순환하는 안개상태의 냉매로부터 열을 빼앗기는 열교환작용으로 냉각되어 액상냉매출구(74)로 배출되어 냉각냉매 이송라인(75)을 통해 성에제거용 사방전자밸브(10a)에 형성된 중앙 냉매출입구(13)로 유입되고, 상기 중앙 냉매출입구(13)로 유입되는 냉각된 액상냉매는 타측 냉매출입구(14)로 배출되어 냉매공급라인(76)으로 이송되도록 구성되어 있다.
또한, 상기 냉매공급라인(76)으로 이송되는 액상냉매는 개방작동된 전자밸브(77)를 통과하여 성에착상지연용 사방전자밸브(10b)로 이송되며, 상기 성에착상지연용 사방전자밸브(10b)로 이송되는 액상냉매는 증발기(8)측으로 공급되어 증발기에 배관 설치되어 있는 냉매순환코일(미도시)을 순환하면서 실내(증발기가 설치되어 있는 공간을 말함)에 존재하는 열교환매체(공기, 물 등)와의 열교환작동을 수행하도록 구성되어 있다.
한편, 상기에서 압축기(2)의 출구라인(21)에 연결되는 성에제거용 사방전자밸브(10a)와 증발기(8)에 냉각냉매를 공급하는 성에착상지연용 사방밸브(10b)는 현재 냉동시스템 업계에서 사용되고 있는 밸브부품을 그대로 이용하고 있으므로, 이에 대한 구체적인 구성 및 작용에 대해서 설명을 생략하기로 하며, 다만 본 발명의 냉동 장치에서 냉동사이클을 순환하는 냉매를 이용하여 증발기에 착상되는 성에를 제거하는데 필요한 구성 및 작용효과에 대하여 설명하기로 한다.
상기 성에제거용 사방전자밸브(10a)와 성에착상지연용 사방전자밸브(10b)는 동일한 구성으로 구성되어 있으므로 각 구성부분은 같은 명칭을 사용하여 설명하기로 한다.
상기 성에제거용 사방전자밸브(10a)와 성에착상지연용 사방전자밸브(10b) 각각은 실린더밸브본체(15a)와, 상기 실린더밸브본체(15a)의 내부에 삽입설치되어 실린더밸브본체(15a)의 길이방향을 향해 왕복 이동이 가능하게 설치되는 피스톤밸브(15b) 및 상기 실린더밸브본체(15a)의 일측에 노출되는 상태로 설치되는 전자밸브몸체(15c)와 상기 전자밸브몸체(15c)에 의해 메인냉매입구(11)로 유입되는 고온고압의 기체냉매를 실린더밸브본체(15a)의 양단에 형성되어 있는 일측 및 타측 냉매주입구(16a)(16b) 각각을 통해 냉매를 교번적(交番的)으로 엇갈리게 공급하도록 구성되는 작동부(15d)가 구비되어 있으며, 또한 상기 피스톤밸브(15b)에는 메인냉매입구(11)로 유입되는 고온고압의 기체냉매를 일측 냉매출입구(12)로 이송시키기 위한 일측 연결통로(17)와 상기 메인냉매입구(11)로 유입되는 고온고압의 기체냉매를 타측 냉매출입구(14)로 이송시키기 위한 타측 연결통로(18)가 대칭상으로 형성되어 있으며, 상기 일측 및 타측 연결통로(17)(18) 사이에는 중앙 냉매출입구(13)를 타측 냉매출입구(14) 및 일측 냉매출입구(12) 각각에 교번적으로 엇갈리게 연결하기 위한 U자형 연결통로(19)가 형성되어 있도록 구성되어 있다.
또한, 상기와 같이 구성된 성에제거용 사방전자밸브(10a)와 성에착상지연용 사방전자밸브(10b) 각각은 온(on) 작동시에는 도 6에 도시되어 있는 바와 같이 일측 냉매주입구(16a)를 통해 주입되는 냉매주입압력에 의해 피스톤밸브(15b)가 도면상 우측으로 이동하게 되며, 이 경우에는 일측 연결통로(17)가 메인냉매입구(11)와 일측 냉매출입구(12)를 연결하는 동시에 U자형 연결통로(19)는 중앙 냉매출입구(13)와 타측 냉매출입구(14)를 연결하게 되고, 타측 연결통로(18)의 양단은 실린더밸브본체(15a)의 내면에 의해 차단된 상태가 되며, 이와는 달리 도 7에 도시되어 있는 바와 같이 타측 냉매주입구(16b)를 통해 주입되는 냉매주입압력에 의해 피스톤밸브(15b)가 도면상 좌측으로 이동하게 될 때에는 타측 연결통로(18)가 메인냉매입구(11)와 타측 냉매출입구(14)를 연결하게 되는 동시에 U자형 연결통로(19)가 중앙 냉매출입구(13)와 일측 냉매출입구(12)를 연결하게 되고, 일측 연결통로(17)의 양단은 실린더 밸브본체(15a)의 내면에 의해 차단되는 상태가 된다.
상기에서 설명한 바와 같이 본 발명의 냉동장치의 냉동사이클을 정상운전시에는 압축기(2)의 출구라인(21)에 메인냉매입구(11)가 연결되어 있는 성에제거용 사방전자밸브(10a)가 온(on) 작동된 상태가 되며, 이 경우에는 상기 성에제거용 사방전자밸브(10a)는 도 6의 도시와 같이 피스톤밸브(15b)가 도면상 좌측으로 이동된 상태가 되므로, 상기 압축기(2)의 출구라인(21)으로 토출되는 고온고압의 기체냉매는 메인냉매입구(11)로 유입되어 일측 연결통로(17)를 통해 일측 냉매출입구(12)로 배출되어 응축기(3)로 유입되며, 상기 응축기(3)에 유입되는 고온고압의 기체냉매는 외부(응축기가 설치되어 있는 공간을 말함)의 열교환매체(공기, 물 등)와의 열교환작용으로 응축 액화되어 출구라인(32)으로 배출되어 수액기(41)의 입구(41)를 통해 수액기(4) 내부로 유입되어 일시 저장된다.
상기 수액기(4)에 저장되는 액상냉매는 제1 및 제2 배출구(42)(43)로 배출되어 제1 및 제2 액상냉매 이송라인(51)(52)으로 이송되는데, 이때 제1 액상냉매 이송라인(51)으로 이송되는 액상냉매는 팽창밸브(6)에서 안개상태의 냉매로 급속 팽창되어 판형열교환기(7)에 병설되어 있는 안개냉매 순환통로(7a)의 기체냉매입구(71)로 유입되어 순환하게 되는 한편, 제2 액상냉매 이송라인(52)으로 이송되는 액상냉매는 냉매펌프(5)에 의해 펌핑되어 판형열교환기(7)에 병설되어 있는 액상냉매 순환통로(7b)의 액상냉매입구(73)로 유입되어 순환하게 되며, 이와 같이 판형열교환기(7)에 병설되어 있는 안개냉매 순환통로(7a) 및 액상냉매 순환통로(7b) 각각을 따로따로 순환하는 안개상태의 냉매와 액상냉매는 서로 열교환하게 되는데, 이때 상기 안개냉매 순환통로(7a)를 순환하는 안개상태의 냉매는 액상냉매 순환통로(7b)를 순환하는 액상냉매로부터 열을 빼앗는 열교환작용을 수행하는 과정에서 기체상태로 증발되어 기체냉매출구(72)로 배출되어 압축기(2)의 입구라인(22)을 통해 압축기(2)로 유입되는 한편, 상기 액상냉매 순환통로(7b)를 순환하는 액상냉매는 안개냉매 순환통로(7a)를 순환하는 안개상태의 냉매로부터 열을 빼앗기는 열교환작용으로 냉각되며, 이같이 액상냉매 순환통로(7b)를 순환하는 동안 열교환작용에 의해 냉각되는 액상냉매는 액상냉매출구(74)로 배출되어 냉각냉매 이송라인(75)으로 이송되어 성에제거용 사방 전자밸브(10a)의 중앙 냉매출입구(13)로 유입되며, 상기 중앙 냉매출입구(13)로 유입되는 냉각된 액상냉매는 U자형 연결통로(19)를 통해 이송되어 타측 냉매출입구(14)로 배출된다.
상기와 같이 냉동장치의 정상운전시 성에제거용 사방전자밸브(10a)의 타측 냉매출입구(14)로 배출되는 냉각된 액상냉매는 냉매공급라인(76)으로 이송되어 성에 착상지연용 사방전자밸브(10b)의 메인냉매입구(11)로 유입되어 증발기(8)측으로 공급되어 순환하도록 구성되는데, 상기 성에착상지연용 사방전자밸브(10b)는 메인냉매입구(11)로 유입되는 냉각된 액상냉매를 증발기(8)의 입구(81)측으로 공급하거나 또는 증발기(8)의 출구(82)측으로 공급하는 수단으로, 상기 증발기(8)에 온도차이로 생성되는 성에의 착상을 지연시킬 수 있다.
이를 위해, 도 4의 (가)에 도시되어 있는 바와 같이 성에착상지연용 사방전자 밸브(10b)를 온(on) 작동으로 조절하게 되면 메인냉매입구(11)로 유입되는 냉각된 액상냉매는 일측 연결통로(17)에 의해 일측 냉매출입구(12)로 배출되어 증발기(8)의 입구(81)를 통해 증발기(8)에 배관 설치되어 있는 냉매순환코일(미도시)을 순방향으로 순환하면서 실내(증발기가 설치되어 있는 공간을 말함)의 열교환매체와의 열교환작용을 수행한 후 출구(82)를 통해 배출되어 타측 냉매출입구(14)로 유입되어 U자형 연결통로(19)로 이송되어 중앙 냉매출입구(13)를 통해 배출되어 냉매회수라인(83)으로 이송되게 구성할 수 있으며, 이와는 달리 도 4의 (나)에 도시되어 있는 바와 같이 성에착상지연용 사방전자밸브(10b)를 오프(off) 작동으로 조절하게 되면 메인냉매입구(11)로 유입되는 냉각된 액상냉매는 타측 연결통로(18)에 의해 타측 냉매출입구(14)로 배출되어 증발기(8)의 출구(82)를 통해 증발기(8)에 배관 설치되어 있는 냉매순환코일(미도시)을 역방향으로 순환하면서 실내(증발기가 설치되어 있는 공간을 말함)의 열교환매체와의 열교환작용을 수행한 후 입구(81)를 통해 배출되어 성에착상지연용 사방전자밸브(10b)의 일측 냉매출입구(12)로 유입되어 U자형 연결통로(19)로 이송되어 중앙 냉매출입구(13)를 통해 배출되어 냉매회수라인(83)으로 이송되게 구성할 수 있다.
상기 성에착상지연용 사방전자밸브(10b)는 일정시간 동안 주기적으로 온(on)/오프(off) 작동을 수행할 수 있도록 구성하는 수단으로, 증발기(8)에서 생성되는 성에의 착상을 지연시킬 수 있도록 구성할 수 있다.
한편, 상기 증발기(8)에 공급되는 액상냉매는 증발기(8)에 배관 설치되어 있는 냉매순환코일(미도시)을 순환하는 동안 실내(증발기가 설치되어 있는 공간을 말함)에 존재하는 열교환매체(공기 등)와의 열교환작용을 수행한 후 증발기(8)에서 배출되어 냉매회수라인(83)으로 이송되는 냉매는 수액기(4)의 제2 배출구(43)에 연결되는 제2 액상냉매 이송라인(52)과 냉매회수라인(83)을 연결하는 바이패스라인(84)을 통해 제2 액상냉매 이송라인(52)으로 이송되거나 또는 냉매회수라인(83)에 연장 형성되어 있는 냉매회수 연장라인(85)을 통해 수액기(4)에 저장될 수 있도록 구성할 수 있는데, 이를 위해 상기 바이패스라인(84) 및 냉매회수 연장라인(85) 각각에는 서로 교번적으로 엇갈리게 온(on)/오프(off) 작동하게 되는 냉매우회용 전자밸브(86) 및 냉매회수용 전자밸브(87)가 각각 설치되어 있다.
예를 들어, 냉동장치를 정상운전으로 작동시킬 때에는 바이패스라인(84)에 설치되어 있는 냉매우회용 전자밸브(86)는 온(on) 작동되는 반면, 냉매회수 연장라인(85)에 설치되어 있는 냉매회수용 전자밸브(87)는 오프(off) 작동되도록 구성함으로 써, 상기 증발기(8)에 공급되어 열교환작용을 수행한 후 냉매회수라인(73)으로 이송되는 냉매는 수액기(4)측으로 이송되지 않고 바이패스라인(84)으로 이송되어 제2 액상냉매 이송라인(52)을 통해 판형열교환기(7)에 병설되어 있는 액상냉매 순환통로(7b)를 순환하도록 구성할 수 있으며, 이와는 달리 냉동장치를 제상운전으로 작동시킬 때에는 바이패스라인(84)에 설치된 냉매우회용 전자밸브(86)는 오프(off) 작동되는 반면, 냉매회수 연장라인(85)에 설치된 냉매회수용 전자밸브(87)는 온(on) 작동되도록 구성함으로써, 상기 증발기(8)에 공급되어 열교환작용을 수행한 후 냉매회수라인(83)으로 이송되는 냉매는 바이패스라인(84)으로 이송되지 않고 냉매회수 연장라인(85)으로 이송되어 수액기(4)에 저장될 수 있도록 구성할 수 있다.
또한, 본 발명의 냉동장치는 도 3의 도시와 같이 수액기의 내부에 액분리기를 삽입 설치하여 냉동사이클을 구성하는 다른 실시예로 있으며, 다른 실시예의 냉동 사이클은 수액기(4)의 내부에 저장되는 액상냉매에 침지되는 상태로 삽입 설치되는 액분리기(9)의 입구(91)에는 판형열교환기(7)에 병설되어 있는 안개냉매 순환통로(7a)의 출구(72)로 배출되는 기체냉매가 이송되는 기체냉매 흡입라인(93)이 연결되고, 상기 액분리기(9)의 출구(92)에는 기체냉매 배출라인(94)이 연결되어 있도록 구성하는 수단으로, 상기 판형열교환기(7)에 병설된 안개냉매 순환통로(7a)의 기체냉매출구(72)로 배출되는 기체냉매가 액분리기(9)의 입구(91)로 유입되어 출구(92)로 배출되는 동안 수액기(4)에 저장되어 있는 액상냉매와 열교환작용을 수행토록 구성함으로써 상기 액분리기(9)의 출구(92)를 통해서는 증발된 기체냉매가 배출되어 압축기(2)로 유입될 수 있도록 구성된 것이며, 그 외의 냉매순환구성은 도 1의 바람직한 실시예와 대동소이하므로 구체적인 구성 및 작용효과에 대한 설명은 생략하기로 한다.
이와 같이 구성된 본 발명의 냉동장치를 정상운전으로 작동시킬 때 및 제상운전으로 작동시킬 때에 따른 작용효과를 설명하면 다음과 같다.
먼저, 냉동장치의 냉동사이클을 정상운전으로 작동시킬 때에 대하여 설명하기로 한다.
냉동장치의 냉동사이클 정상운전시에는 도 1에 도시되어 있는 바와 같이 성에제거용 전자밸브(10a)와 성에착상지연용 전자밸브(10b)는 온(on) 상태로 작동시키고, 이어서 냉매순환라인(1)의 곳곳에 설치되어 주요 구성요소 각각에 냉매를 순환 공급하기 위한 전자밸브들을 선택적으로 온(on : 개방) 및 오프(off : 폐쇄) 작동시키는 제어수단으로 조절하여야 한다.
예를 들어, 수액기(4)와 판형열교환기(7)에 병설되어 있는 안개냉매 순환통로(7a)의 기체냉매입구(71)를 연결되는 제1 액상냉매 이송라인(51)에 설치된 전자밸브(53)와, 성에제거용 사방전자밸브(10a)의 타측 냉매출입구(14)와 성에착상지연용 사방전자밸브(10b)의 메인냉매입구(11)를 연결하는 냉매공급라인(76)에 설치된 전자밸브(77) 및 수액기(4)의 제2 배출구(43)에 연결되는 제2 액상냉매 이송라인(52)과 증발기(8)를 순환하는 동안 열교환매체와의 열교환작용을 수행한 후 배출되는 냉매를 회수하는 냉매회수라인(83)을 연결하는 바이패스라인(84)에 설치된 냉매우회용 전자 밸브(86)는 온(on : 개방) 상태로 작동시키는 반면에, 상기 냉매회수라인(83)으로 회수되는 냉매를 수액기(4)에 저장하기 위해 냉매회수 연장라인(85)에 설치되는 냉매 회수용 전자밸브(87)는 오프(off : 폐쇄) 상태로 작동시킨다.
또한, 상기 성에제거용 전자밸브(10a)와 성에착상지연용 전자밸브(10b)를 온(on) 상태로 작동시키게 되면, 상기한 전자밸브(10a)(10b) 각각은 도 6의 도시와 같이 피스톤밸브(15b)가 도면상 우측으로 이동하게 되므로, 이에 따라 메인냉매입구(11)와 일측 냉매출입구(12)는 일측 연결통로(17)에 의해 연결되고, 중앙 냉매출입구(13)와 타측 냉매출입구(14)는 U자형 연결통로(19)에 의해 연결되는 상태가 되며, 또한, 상기 냉매순환라인(1)의 해당 위치 곳곳에 설치되어 있는 전자밸브들을 온(on)/오프(off) 작동시킨 상태에서 냉동장치를 정상운전으로 작동시키게 된다.
상기와 같이 냉동장치의 냉동사이클을 정상운전으로 작동시키게 되면, 상기 압축기(2)의 출구라인(21)으로 토출되는 고온고압의 기체냉매는 성에제거용 전자밸브(10a)의 메인냉매입구(11)로 유입되어 일측 연결통로(17)를 통해 일측 냉매출입구(12)로 배출되며, 이같이 성에제거용 전자밸브(10a)의 일측 냉매출입구(12)로 배출되는 고온고압의 기체냉매는 응축기(3)의 입구라인(31)을 통해 유입되며, 상기 응축기(3)로 유입되는 고온고압의 기체냉매는 실외(응축기가 설치되어 있는 공간을 말함)의 열교환매체(공기, 물 등)와의 열교환작용으로 응축 액화되어 출구라인(32)으로 배출되는데, 이때 상기 응축기(3)에 열교환매체와의 열교환작용으로 응축 액화되는 냉매는 상온(대략 40℃)의 액상냉매가 수액기(4)의 입구(41)를 통해 유입되어 수액기(4)에 일시 저장되는 상태가 된다.
상기 수액기(4)에 저장되는 액상냉매는 제1 및 제2 배출구(42)(43)를 통해 배출되는데, 이때 상기 수액기(4)의 제1 배출구(42)로 배출되는 액상냉매는 제1 액상냉매 이송라인(51)으로 이송되어 개방된 전자밸브(53)를 통과하여 팽창밸브(6)에 의해 급속 팽창되며, 상기 팽창밸브(6)에서 급속 팽창되는 안개상태의 냉매는 판형열교환기(7)에 병설되어 있는 안개냉매 순환통로(7a)의 기체냉매입구(71)로 유입되어 안개냉매 순환통로(7a)를 순환하게 되는 한편, 상기 수액기(4)의 제2 배출구(43)로 배출되는 액상냉매는 제2 액상냉매 이송라인(52)에 설치되어 있는 냉매펌프(5)의 펌핑작동으로 이송되어 판형열교환기(7)에 병설되어 있는 액상냉매 순환통로(7b)의 액상냉매입구(73)로 유입되어 액상냉매 순환통로(7b)를 순환하게 된다.
따라서, 상기 판형열교환기(7)에 병설되어 있는 안개냉매 순환통로(7a)와 액상냉매 순환통로(7b) 각각을 순환하는 안개상태의 냉매와 액상냉매는 상호 열교환작용을 수행하면서 순환하게 되는데, 이때 상기 안개냉매 순환통로(7a)를 순환하는 안개상태의 냉매는 액상냉매 순환통로(7b)를 순환하는 액상냉매로부터 열을 빼앗는 작용으로 증발하게 되는 반면에, 상기 액상냉매 순환통로(7b)를 순환하는 액상냉매는 안개냉매 순환통로(7a)를 순환하는 안개상태의 냉매로부터 열을 빼앗기는 작용으로 냉각되는 상태가 된다.
상기와 같이 판형열교환기(7)에 병설되어 있는 안개냉매 순환통로(7a)와 액상냉매 순환통로(7b) 각각을 따로따로 순환하면서 서로 열교환작용을 수행하는 안개상태의 냉매와 액상냉매 각각은 안개냉매 순환통로(7a) 및 액상냉매 순환통로(7b) 각각을 따로따로 순환하는 동안 안개상태의 냉매는 열을 빼앗는 열교환작용으로 기체상태로 증발되어 기체냉매출구(72)로 배출되어 압축기의 입구라인(22)을 통해 압축기(2)로 유입되는 작동을 반복하게 되는 한편, 액상냉매 순환통로(7b)를 순환하는 액상냉매는 순환하는 동안 열을 빼앗기는 열교환작용으로 냉각되며, 이같이 냉각되는 액상냉매는 액상냉매출구(74)로 배출되어 냉각냉매 이송라인(75)으로 이송되어 상기 성에제거용 사방전자밸브(10a)의 타측 냉매출입구(14)로 유입되며, 상기 타측냉매출입구(14)로 유입되는 냉각된 액상냉매는 U자형 연결통로(19)를 통해 중앙 냉매출입구(13)로 이송되어 배출되는 상태가 된다.
상기 성에제거용 사방전자밸브(10a)의 중앙 냉매출입구(13)로 배출되는 냉각된 액상냉매는 냉매공급라인(76)으로 이송되어 개방작동된 전자밸브(77)를 통과하여 성에착상지연용 사방전자밸브(10b)의 메인냉매입구(11)로 유입되는데, 이때 상기 성에착상지연용 사방전자밸브(10b)는 온(on) 작동된 상태이므로 압축기(2)의 출구라인(21)에 연결 설치된 성에제거용 사방전자밸브(10a)와 마찬가지로 메인냉매입구(11)로 유입되는 냉각된 액상냉매는 일측 연결통로(17)에 의해 일측 냉매출입구(12)로 이송배출되어 증발기(8)의 입구(81)로 유입되며, 이같이 입구(81)로 유입되는 냉각된 액상냉매는 증발기(8)에 배관 설치되어 있는 냉매순환코일(미도시)을 순방향으로 순환하면서 실내(증발기가 설치되어 있는 공간을 말함)의 열교환매체와의 열교환작용을 수행한 후 출구(82)로 배출되는데, 이때 상기 증발기(8)의 입구(81)로 유입되는 냉각된 액상냉매는 판형열교환기(7)의 액상냉매 순환통로(7b)를 순환하는 동안 안개상태의 냉매로부터 열을 빼앗긴 냉각된 상태이기 때문에 증발기(8)를 순환하는 동안 실내(증발기가 설치된 공간)를 쾌적한 온도로 냉방 또는 냉각시킬 수 있게 된다.
하지만, 상기와 같이 판형열교환기(7)의 액상냉매 순환통로(7b)를 순환하는 동안 안개상태의 냉매와의 열교환작용으로 냉각된 액상냉매가 증발기(8)의 입구(81)를 통해 유입되어 순환하게 될 때 입구(81)에 연결되는 냉매순환코일(미도시)의 일정 길이부분에는 성에가 착상되는 현상이 나타날 수 있다. 왜냐하면, 증발기(8)의 입구(81)로 유입되는 냉각된 액상냉매는 실내 온도보다 훨씬 낮은 상태이기 때문에 온도 차이로 인해 증발기(8)의 입구(81)에 연결되는 냉매순환코일(미도시)의 일정 길이 부분에는 성에가 생성되어 착상되는 현상이 나타날 수 있는 반면에, 증발기(8)의 출구(82)에 연결되는 냉매순환코일(미도시)의 일정 길이부분에는 성에가 생성되지 않게 되는데, 이는 증발기(8)의 입구(81)로 유입되는 냉각된 액상냉매는 냉매순환코일(미도시)을 순환하는 동안 실내(증발기가 설치된 공간)의 열교환매체와의 열교환하는 작용으로 온도가 높아지는 상태가 되기 때문이다.
따라서 상기와 같이 증발기(8)에 배관 설치되어 있는 냉매순환코일(미도시)에 성에가 착상되는 현상을 지연시킬 필요가 있으며, 이를 위해 상기 성에착상지연용 사방전자밸브(10b)를 일정시간을 주기로 하여 온(on)/오프(off) 작동시키는 반복하는 방법으로 상기 성에착상지연용 사방전자밸브(10b)의 메인냉매입구(11)로 유입되는 액상냉매를 일측 냉매출입구(12)로 배출시키는 작동 및 타측 냉매출입구(14)로 배출시키는 작동을 교번적으로 반복하게 되면, 상기 성에착상지연용 사방전자밸브(10b)의 메인냉매입구(11)로 유입되는 냉각된 액상냉매를 일정시간을 주기로 하여 증발기(8)의 입구(81)로 이송시키거나 또는 출구(82)로 이송시킬 수 있다.
상기 성에제거용 사방전자밸브(10a) 및 성에착상지연용 사방전자밸브(10b) 각각은 온(on) 작동시에는 도 6에 도시되어 있는 바와 같이 피스톤밸브(15b)가 도면상 우측으로 이동하게 되며, 이와는 달리 오프(off) 작동시에는 도 7에 도시되어 있는 바와 같이 피스톤밸브(15b)가 도면상 좌측으로 이동하게 되어 메인냉매입구(11)는 타측 연결통로(18)에 의해 타측 냉매출입구(14)와 연결되고, 중앙 냉매출입구(13)와 일측 냉매출입구(12)는 U자형 연결통로(19)에 의해 연결되는 상태가 되므로, 따라서 성에착상지연용 사방전자밸브(10b)를 일정시간을 주기로 하여 온(on) 작동으로 조절하거나 또는 오프(off) 작동으로 조절하게 되면 증발기(8)에 배관 설치되어 있는 냉매순환코일(미도시)에 성에의 착상을 지연시킬 수 있다.
즉, 도 4의 (가)도시와 같이 성에착상지연용 사방전자밸브(10b)를 온(on) 작동으로 조절하게 되면 성에착상지연용 사방전자밸브(10b)의 피스톤밸브(15b)가 도 6의 도시와 같이 도면상 우측으로 이동하게 되므로, 이에 따라 냉매공급라인(76)으로 이송되는 냉각된 액상냉매는 메인냉매입구(11)로 유입되어 일측 연결통로(17)에 의해 이송되어 일측 냉매출입구(12)로 배출되어 증발기(8)의 입구(81)를 통해 유입되어 증발기(8)를 순환한 후 출구(82)로 배출되어 냉매회수라인(83)으로 이송되는 상태가 되며, 도 4의 (나)도시와 같이 성에착상지연용 사방전자밸브(10b)를 오프(off) 작동으로 조절하게 되면 도 7의 도시와 같이 피스톤밸브(15b)가 도면상 좌측으로 이동하게 되며, 이에 따라 냉매공급라인(76)으로 이송되는 냉각된 액상냉매는 메인냉매입구(11)로 유입되어 타측 연결통로(18)에 의해 타측 냉매출입구(14)로 이송되어 배출되며, 이같이 타측 냉매출입구(14)로 배출되는 냉각된 액상냉매는 증발기(8)의 출구(82)를 통해 증발기(8)에 배관 설치되어 있는 냉매순환코일(미도시)을 순환하면서 실내(증발기가 설치된 공간)의 열교환매체와의 열교환작용을 수행한 후 입구(81)로 배출되어 성에착상지연용 사방전자밸브(10b)의 일측 냉매출입구(12)로 유입되어 U자형 연결통로(19)를 통해 중앙 냉매출입구(13)로 배출되어 냉매회수라인(83)으로 이송되는 상태가 된다.
상기와 같이 냉동장치의 냉동사이클 정상운전시 증발기(8)를 순환한 후 냉매회수라인(83)으로 회수되는 액상냉매는 오프(off : 폐쇄) 작동된 냉매회수용 전자밸브(87)가 설치된 냉매회수 연장라인(85)으로는 이송되지 않고 온(on : 개방) 작동된 냉매우회용 전자밸브(86)가 설치된 바이패스라인(84)을 통해 수액기(4)의 제2 배출구(43)에 연결되어 있는 제2 액상냉매 이송라인(52)으로 이송되어 냉매펌프(4)의 펌핑 작동에 의해 판형열교환기(7)에 병설되어 있는 액상냉매 순환통로(7b)의 액상냉매입구(73)로 유입되어 순환하는 작동을 반복하게 된다.
상기와 같이 냉동장치의 냉동사이클 정상운전시에는 압축기(2)에서 압축되어 출구라인(21)으로 토출되는 고온고압의 기체냉매는 성에제거용 사방전자밸브(10a)의 온(on) 작동으로 메인냉매입구(11)로 유입되어 일측 냉매출입구(12)를 통해 배출되어 응축기(3)의 입구라인(31)을 통해 응축기(3)로 유입되어 순환하게 되며, 상기 응축기(3)를 순환한 후 출구라인(32)으로 배출되는 상온의 액상냉매는 수액기(4)에 유입되어 일시 저장된 후 제1 및 제2 배출구(42)(43)로 배출되어 제1 및 제2 액상냉매 이송라인(51)(52)을 통해 판형열교환기(7)로 이송되는데, 상기 제1 액상냉매 이송라인(51)으로 이송되는 액상냉매는 팽창밸브(6)에서 급속 팽창되어 판형열교환기(7)에 병설되어 있는 안개냉매 순환통로(7a)로 유입되어 순환하게 되는 한편, 상기 제2 액상냉매 이송라인(52)으로 이송되는 액상냉매는 냉매펌프(5)에서 펌핑되어 판형열교환기(7)에 병설되어 있는 액상냉매 순환통로(7b)로 유입되어 순환하게 된다.
그리고 상기 판형열교환기(7)에 병설되어 있는 안개냉매 순환통로(7a)를 순환하는 안개상태의 냉매는 액상냉매 순환통로(7b)를 순환하는 동안 액상냉매로부터 열을 빼앗는 열교환작용으로 기체상태로 변하여 기체냉매출구(72)로 배출되어 압축기(2)의 입구라인(21)을 통해 압축기(2)로 유입되는 작동을 반복하게 되며, 한편 액상냉매 순환통로(7b)로 순환하는 액상냉매는 안개냉매 순환통로(7a)를 순환하는 안개 상태의 냉매로부터 열을 빼앗기는 열교환작용으로 냉각되어 액상냉매출구(74)로 배출되며, 상기 액상냉매출구(74)로 배출되는 냉각된 액상냉매는 냉각냉매 이송라인(75)으로 이송되어 성에제거용 사방전자밸브(10a)의 중앙 냉매출입구(13)로 유입되어 U자형 연결통로(19)에 의해 이송되어 타측 냉매출입구(14)를 통해 배출되어 성에착상지연용 사방전자밸브(10b)에 의해 증발기(8)의 입구(81) 또는 출구(82)를 통해 증발기(8)에 배관되어 있는 냉매순환코일(미도시)을 순환하면서 실내(증발기가 설치된 공간)의 열교환매체와의 열교환작용을 수행한 후 배출되어 냉매회수라인(83)으로 이송되며, 상기 냉매회수라인(83)으로 이송되는 액상냉매는 개방작동된 냉매우회용 전자밸브(86)가 설치되어 있는 바이패스라인(84)을 통해 제2 액상냉매 이송라인(52)으로 이송되어 판형열교환기(7)의 액상냉매 순환통로(7b)로 유입되어 순환하는 작동을 반복하는 작동으로 증발기(8)가 설치되어 있는 실내를 설정된 쾌적한 온도로 냉방하거나 또는 증발기(8)가 설치되어 있는 쇼케이스 등의 내부를 낮은 온도로 냉각하여 식품 등을 안전하게 냉장 및 냉동 보관하게 된다.
한편, 상기와 같이 냉동장치를 정상운전시의 작동으로 판형열교환기(7)의 액상냉매 순환통로(7b)를 순환하는 동안 냉각된 액상냉매를 증발기(8)의 입구(81)를 통해 지속적으로 유입시키게 될 경우에는 상기 증발기(8)의 입구(81)에 연결되는 냉매순환코일(미도시)의 일정 길이부분에는 냉각된 액상냉매와 실내(증발기가 설치된 공간)에 있는 열교환매체(공기, 물 등)와의 온도 차이로 인해 증발기(8)에 배관 설치되어 있는 냉매순환코일(미도시)의 일부에 성에가 착상되는 현상이 나타날 수 있기 때문에 이같이 성에가 착상되는 현상을 지연시키기 위해 상기 성에착상지연용 사방전자밸브(10b)를 온(on)/오프(off) 작동시키는 작동을 일정시간을 주기로 하여 교번적으로 조절하는 수단으로 증발기(8)에 성에가 착상되는 현상을 지연시킬 수 있게 된다.
즉, 도 4의 (가)도시와 같이 성에착상지연용 사방전자밸브(10b)를 온(on) 작동상태로 조절하게 되면, 실린더밸브본체(15a)의 내부에 형성된 피스톤밸브(15b)가 도 6의 도시와 같이 도면상 우측으로 이동하게 되며, 이에 따라 냉매공급라인(76)을 통해 이송되는 냉각된 액상냉매는 메인냉매입구(11)로 유입되어 일측 연결통로(17)에 의해 이송되어 일측 냉매출입구(12)를 통해 배출되어 증발기(8)의 입구(81)로 유입되어 증발기(8)에 배관 설치되어 있는 냉매순환코일(미도시)을 순방향으로 순환하면서 열교환작용을 수행한 후 출구(82)로 배출되는데, 상기 증발기(8)의 출구(82)로 배출되는 냉매는 타측 냉매출입구(14)로 유입되어 U자형연결통로(19)에 의해 중앙 냉매출입구(13)로 배출되어 냉매회수라인(83)으로 이송되며, 이와는 달리 도 4의 (나)도시와 같이 성에착상지연용 사방전자밸브(10b)를 오프(off) 작동상태로 조절하게 되면, 피스톤밸브(15b)가 도 7의 도시와 같이 도면상 좌측으로 이동하게 되며, 이때에는 메인냉매입구(11)로 유입되는 냉각된 액상냉매가 타측 연결통로(18)에 의해 타측 냉매출입구(14)를 통해 배출되어 증발기(8)의 출구(82)로 유입되어 증발기(8)에 배관 설치되어 있는 냉매순환코일(미도시)을 역방향으로 순환하면서 열교환작용을 수행한 후 입구(81)를 통해 배출되어 일측 냉매출입구(12)로 유입되어 U자형 연결통로(19)에 의해 중앙 냉매출입구(13)로 배출되어 냉매회수라인(83)으로 이송되는데, 이와 같이 상기 성에착상지연용 사방전자밸브(10b)의 온(on)/오프(off) 작동을 일정 시간을 주기로 교번적으로 조절하게 되면 증발기(8)에 배관 설치되어 있는 냉매순환코일(미도시)에 성에가 착상되는 현상을 어느 정도 지연시킬 수 있게 된다.
그리고 상기 증발기(8)의 입구(81) 및 출구(82)를 통해 증발기(8)에 배관 설치된 냉매순환코일(미도시)을 순방향 또는 역방향으로 순환하는 동안 열교환작용을 수행한 후 냉매회수라인(83)으로 배출되어 이송되는 냉매는 개방작동으로 조절되어 있는 냉매우회용 전자밸브(86)가 설치된 바이패스라인(84)으로 이송되어 제2 액상냉매 이송라인(52)을 통해 판형열교환기(7)의 액상냉매 순환통로(7b)로 유입되어 순환하는 작동을 반복하게 된다.
다음, 냉동장치의 냉동사이클을 제상운전으로 작동시킬 때에 대하여 설명하면 다음과 같다.
냉동장치의 냉동사이클 제상운전시에는 도 2에 도시되어 있는 바와 같이 성에제거용 전자밸브(10a)는 오프(off) 작동시키는 반면, 성에착상지연용 전자밸브(10b)는 온(on) 상태로 작동시킨 다음, 냉동사이클의 냉매순환라인(1) 곳곳에 설치되어 주요 구성요소 각각에 냉매를 순환 공급하기 위한 전자밸브들을 선택적으로 온(on : 개방) 및 오프(off : 폐쇄) 작동시키는 제어수단으로 조절하여야 한다.
예를 들어, 수액기(4)와 판형열교환기(7)에 병설되어 있는 안개냉매 순환통로(7a)의 기체냉매입구(71)를 연결되는 제1 액상냉매 이송라인(51)에 설치된 전자밸브(53)와, 성에제거용 사방전자밸브(10a)의 타측 냉매출입구(14)와 성에착상지연용 사방전자밸브(10b)의 메인냉매입구(11)를 연결하는 냉매공급라인(76)에 설치된 전자밸브(77) 및 상기 냉매회수라인(83)으로 회수되는 냉매를 수액기(4)에 저장하기 위해 냉매회수 연장라인(85)에 설치되는 냉매회수용 전자밸브(87)는 온(on : 개방) 작동시킨 상태로 조절하는 반면에, 수액기(4)의 제2 배출구(43)에 연결되는 제2 액상냉매 이송라인(52)과 증발기(8)를 순환한 후 배출되는 냉매를 회수하는 냉매회수라인(83)을 연결하는 바이패스라인(84)에 설치된 냉매우회용 전자밸브(86)는 오프(off : 폐쇄) 작동된 상태로 조절한다.
상기 성에제거용 전자밸브(10a)를 오프(off) 작동시키게 되면 도 7의 도시와 같이 실린더밸브본체(15a)의 내부에 이동가능하게 삽입 설치되어 있는 피스톤밸브(15b)가 도면상 좌측으로 이동하게 되므로, 이에 따라 메인냉매입구(11)와 타측 냉매 출입구(14)는 타측 연결통로(18)에 의해 연결되고, 일측 냉매출입구(12)와 중앙 냉매 출입구(13)는 U자형 연결통로(19)에 의해 연결되는 상태가 된다.
상기와 같이 냉동장치의 냉동사이클 곳곳에 설치되어 있는 각 전자밸브들을 도 2의 도시와 같이 제상운전시 설정되어 있는 상태로 온(on) 또는 오프(off) 작동으로 조절한 상태로 냉동장치를 제상운전으로 작동하게 되면, 압축기(2)에서 압축되어 출구라인(21)으로 토출되는 고온고압의 기체냉매는 오프(off) 작동상태로 조절되어 있는 성에제거용 사방전자밸브(10a)의 메인냉매입구(11)로 유입되어 타측 연결통로(18)에 의해 타측 냉매출입구(14)로 배출되어 냉매공급라인(76)으로 이송되어 개방된 전자밸브(77)를 통과하여 성에착상지연용 사방전자밸브(10b)를 통해 증발기(8)로 이송되는데, 이때 상기 증발기(8)로 이송되는 고온고압의 기체냉매는 증발기(8)에 배관 설치되어 있는 냉매순환코일(미도시)에 착상되어 있는 성에를 녹여 제거하는 작동을 수행하게 된다.
상기와 같이 냉동장치를 제상운전으로 작동시킬 때에는 증발기(8)는 응축기의 기능으로 작동하는 상태가 되며, 이같이 응축기의 기능으로 작동하는 증발기(8)로 유입되는 고온고압의 기체냉매는 실내(증발기가 설치된 공간)의 열교환매체와의 열교환작용으로 응축 액화되어 상온의 액상냉매가 되어 냉매회수라인(83)으로 이송되는데, 이때 바이패스라인(84)에 설치된 냉매우회용 전자밸브(86)는 오프(off : 폐쇄) 상태로 조절되어 있으므로 냉매회수라인(83)으로 이송되는 상온의 액상냉매는 바이패스라인(84)으로 이송되지 않고 온(on : 개방) 상태로 조절되어 있는 냉매회수용 전자밸브(87)가 설치된 냉매회수 연장라인(85)으로 이송되어 수액기(4)의 회수구(44)를 통해 수액기(4)로 유입되어 저장되는 한편, 상기 수액기(4)의 제1 및 제2 배출구(42)(43)로 배출되어 제1 액상냉매 이송라인(51) 및 제2 액상냉매 이송라인(52) 각각으로 이송되는 액상냉매는 판형열교환기(7)에 병설되어 있는 안개냉매 순환통로(7a)및 액상냉매 순환통로(7b)로 이송된다.
상기 제1 액상 이송라인(51)으로 이송되는 액상냉매는 팽창밸브(6)에서 안개 상태의 냉매로 급속 팽창되어 판형열교환기(7)에 병설되어 있는 안개냉매 순환통로(7a)의 기체냉매입구(71)로 유입되어 안개냉매 순환통로(7a)를 순환하게 되는 한편, 제2 액상냉매 이송라인(52)으로 이송된 액상냉매는 냉매펌프(5)의 펌핑작동으로 이송되어 판형열교환기(7)에 병설되어 있는 액상냉매 순환통로(7b)의 액상냉매입구(73)로 유입되어 순환하게 되는데, 상기 판형열교환기(7)에 병설되어 있는 안개냉매 순환통로(7a)와 액상냉매 순환통로(7b)를 각각 순환하는 안개상태의 냉매와 액상냉매는 안개냉매 순환통로(7a) 및 액상냉매 순환통로(7b)를 따로따로 순환하면서 열교환 작용을 수행하게 되는데, 이때 상기 안개냉매 순환통로(7a)를 순환하는 안개상태의 냉매는 액상냉매 순환통로(7b)를 순환하는 액상냉매로부터 열을 빼앗는 열교환작용으로 기체상태로 증발하여 기체냉매출구(72)로 배출되어 압축기(2)의 입구라인(22)을 통해 압축기(2)에 유입되어 압축되는 작동을 반복하게 되며, 상기 액상냉매 순환통로(7b)를 순환하는 액상냉매는 안개냉매 순환통로(7a)를 순환하는 안개상태의 냉매로부터 열을 빼앗기는 열교환작용으로 냉각되어 액상냉매출구(74)로 배출되어 냉각 냉매 이송라인(75)으로 이송되어 성에제거용 사방전자밸브(10a)의 중앙 냉매출입구(13)로 유입되어 U자형 연결통로(19)에 의해 일측 냉매출입구(12)로 배출 이송되어 응축기(3)의 입구라인(31)을 통해 응축기(3)로 유입되는데, 이때 상기 응축기(3)는 증발기의 기능으로 작동하게 되므로 실외(응축기가 설치된 공간)의 열교환매체와의 열교환작용으로 상온의 액상냉매로 응축 액화되어 수액기(4)의 입구(41)를 통해 수액기(4)로 유입 저장되는 작동을 반복하게 된다.
그리고, 본 발명의 냉동장치는 도 3의 도시와 같이 수액기(4)의 내부에 액분리기(9)가 삽입 설치되는 다른 실시예로 구성할 수 있으며, 이러한 다른 실시예의 냉동장치는 판형열교환기(7)의 안개냉매 순환통로(7a)의 기체냉매출구(72)로 배출되는 기체상태의 냉매를 기체냉매 흡입라인(93)을 통해 수액기(4)의 내부에 삽입 설치된 액분리기(9)의 입구(91)로 유입시키게 되면 상기 액분리기(9)의 입구(91)로 유입된 기체상태의 냉매가 출구(92)로 이송되는 동안 수액기(4)에 저장되어 있는 상온의 액상냉매와의 열교환작용으로 기체상태로 증발되지 아니한 냉매를 증발시키게 되므로 출구(92)를 통해서는 증발된 기체냉매가 기체냉매 배출라인(94)으로 배출되어 압축기(2)의 입구라인(22)을 통해 압축기(2)로 유입되므로 압축기(2)에 증발되지 아니한 냉매가 절대 유입되는 일이 없도록 하여 액압축으로 인한 압축기(2)가 고장을 일으키는 원인을 미연에 방지 및 차단할 수 있게 된다.
이상에서 설명한 바와 같이 본 발명의 냉동장치는 정상운전시에는 압축기(2)에서 고온고압으로 압축되어 출구라인(21)으로 토출되는 고온고압의 기체냉매가 응축기(3)로 이송시키는 구성으로 작동하게 되며, 냉동장치의 제상운전시에는 압축기(2)에 토출되는 고온고압의 기체냉매를 증발기(8)로 이송시키도록 구성하는 수단으로, 증발기(8)에 이송되어 순환하는 고온고압의 기체냉매로 하여금 증발기(8)에 배관 설치되어 있는 냉매순환코일(미도시)에 착상되는 성에를 녹여서 빠르게 제거할 수 있도록 하는 효과가 있으며, 또한 본 발명은 압축기(2)의 출구라인(21)에 성에제거용 사방전자밸브(10a)의 구성을 추가하여 연결하는 간단한 구성으로 기존의 냉동장치에 설치되어 있는 증발기(8)를 구조변경없이 사용할 수 있게 되므로 냉동장치에 제상장치를 저렴한 비용으로 구성하여 제공할 수 있도록 하는 효과가 있다.
이상에서와 같이, 본 발명은 상술한 특정의 바람직한 실시예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변형실시가 가능한 것은 물론이고, 그와 같은 변경은 청구범위 기재의 범위 내에 있게 된다.
부호의 설명
1 : 냉매순환라인
10a : 성에제거용 사방전자밸브 10b : 성에착상지연용 사방전자밸브
11 : 메인냉매입구 12 : 일측 냉매출입구
13 : 중앙 냉매출입구 14 : 타측 냉매출입구
15a : 실린더밸브본체 15b : 피스톤밸브
15d : 작동부 15c : 전자밸브체
16a : 일측 냉매주입구 16b : 타측 냉매주입구
17 : 일측 연결통로 18 : 타측 연결통로
19 : U자형 연결통로
2 : 압축기
21,22 : 입구라인 및 출구라인
3 : 응축기
31,32 : 입구라인 및 출구라인
4 : 수액기
41 : 입구 42,43 : 제1 및 제2 배출구
44 : 회수구
5 : 냉매펌프
51 : 제1 액상냉매 이송라인 52 : 제2 액상냉매 이송라인
53 : 전자밸브
6 : 팽창밸브
7 : 판형열교환기
7a : 안개냉매 순환통로 7b : 액상냉매 순환통로
71 : 기체냉매입구 72 : 기체냉매출구
73 : 액상냉매입구 74 : 액상냉매출구
75 : 냉각냉매 이송라인 76 : 냉매공급라인
77 : 전자밸브
8 : 증발기
81,82 : 입구 및 출구 83 : 냉매회수라인
84 : 바이패스라인 85 : 냉매회수 연장라인
86 : 냉매우회용 전자밸브 87 : 냉매회수용 전자밸브
9 : 액분리기
91,92 : 입구 및 출구
93 : 기체냉매 흡입라인 94 : 기체냉매 배출라인

Claims (9)

  1. 냉매순환라인(1)의 도중에 마련된 압축기(2)와, 상기 압축기에서 압축되어 토출되는 고온고압의 기체냉매를 응축 액화시키기 위한 응축기(3)와, 상기 응축기에서 응축 액화된 상온의 액상냉매를 저장하기 위한 수액기(4)와, 상기 수액기에서 배출되는 액상냉매를 급속 팽창시키기 위한 팽창밸브(6) 및 실내의 열교환매체와의 열교환작용으로 실내를 설정된 온도로 냉방 또는 냉각시키기 위한 증발기(8)가 구비되어 있는 냉동사이클로 구성되는 냉동장치에 있어서,
    상기 수액기(4)에 저장되는 액상냉매가 배출되는 제1 배출구(42)에 연결되는 제1 액상냉매 배출라인(51)에 형성된 팽창밸브(6)에서 급속 팽창되는 안개상태의 냉매가 순환하는 안개냉매 순환통로(7a)와 상기 수액기(4)의 제2 배출구(43)에 연결되는 제2 액상냉매 이송라인(52)에 설치된 냉매펌프(5)의 펌핑작동으로 공급되는 액상냉매가 순환하는 액상냉매 순환통로(7b)가 병설되어 있는 판형열교환기(7)를 포함하고 있도록 구성되어 있으며,
    상기 압축기(2)와 응축기(3) 사이에 설치되어 압축기(2)의 출구라인(21)으로 토출되는 고온고압의 기체를 응축기(3) 또는 증발기(8) 중 어느 일측을 선택하여 고온고압의 기체냉매를 공급할 수 있도록 구성되는 성에제거용 사방전자밸브(10a)를 더 포함하고 있도록 구성된 것을 특징으로 하는 냉동장치의 증발기 제상장치.
  2. 제 1 항에 있어서,
    상기 성에제거용 사방전자밸브(10a)는 압축기(2)의 출구라인(21)에 연결되어 압축기에서 토출되는 고온고압의 기체냉매가 유입되도록 상기 압축기(2)의 출구라인(21)에 연결되는 메인냉매입구(11)와, 상기 메인냉매입구로 유입되는 기체냉매를 응축기(3)에 공급하기 위한 일측 냉매출입구(12)와, 상기 판형열교환기(7)에 병설되어 있는 액상냉매 순환통로(7b)의 액상냉매출구(74)로 배출되는 냉각된 액상냉매를 이송하는 냉각냉매 이송라인(75)이 연결되는 중앙 냉매출입구(13)와, 상기 중앙 냉매출입구로 유입되는 냉각냉매를 증발기(8)측으로 이송하기 위한 냉매공급라인(76)이 연결되는 타측 냉매출입구(14)가 형성되어 있도록 구성된 것을 특징으로 하는 냉동장치의 증발기 제상장치.
  3. 제 1 항에 있어서,
    상기 성에제거용 사방전자밸브(10a)는 온(on : 개방) 작동시 압축기(2)의 출구라인(21)으로 토출되는 고온고압의 기체냉매가 메인냉매입구(11)로 유입되어 일측 냉매출입구(12)를 통해 응축기(3)측으로 배출되도록 구성하는 한편, 상기 판형열교환기(7)의 액상냉매 순환통로(7b)의 액상냉매입구(73)로 유입되는 액상냉매는 액상냉매순환통로(7b)를 순환하는 동안 안개냉매 순환통로(7a)를 순환하는 안개상태의 냉매와의 열교환작용으로 냉각되어 액상냉매출구(74)를 통해 냉각냉매 이송라인(75)으로 배출되어 중앙 냉매출입구(13)로 유입되어 타측 냉매출입구(14)에 연결된 냉매공급라인(76)을 통해 배출되도록 구성하여 상기 판형열교환기(7)의 액상냉매 순환통로(7b)를 순환하는 동안 냉각된 액상냉매를 증발기(8)에 공급할 수 있도록 구성된 것을 특징으로 하는 냉동장치의 증발기 제상장치.
  4. 제 1 항에 있어서,
    상기 성에제거용 사방전자밸브(10a)는 오프(off : 폐쇄) 작동시 압축기(2)의 출구라인(21)으로 토출되는 고온고압의 기체냉매가 메인냉매입구(11)로 유입되어 타측 냉매출입구(14)에 연결된 냉매공급라인(76)을 통해 증발기(8)측으로 공급되도록 구성하여 증발기(8)에 착상되어 있는 성에를 제거하도록 구성하는 한편, 상기 판형열교환기(7)의 액상냉매 순환통로(7b)를 순환하는 동안 냉각되어 액상냉매출구(74)로 배출되는 냉각된 액상냉매는 냉각냉매 이송라인(76)을 통해 중앙 냉매출입구(13)로 유입되어 일측 냉매출입구(12)를 통해 응축기(3)에 공급할 수 있도록 구성된 것을 특징으로 하는 냉동장치의 증발기 제상장치.
  5. 제 1 항에 있어서,
    상기 판형열교환기(7)와 증발기(8) 사이에 설치되며, 메인냉매입구(11)를 통해 유입되는 냉매를 증발기(8)의 입구(81) 또는 증발기(8)의 출구(82) 중 어느 한곳을 선택하여 공급할 수 있도록 제어하는 기능을 가진 성에착상지연용 사방전자밸브(10b)를 더 포함하고 있도록 구성된 것을 특징으로 하는 냉동장치의 증발기 제상장치.
  6. 제 1 항에 있어서,
    상기 증발기(8)를 순환하는 동안 실내의 열교환매체와의 열교환작용을 수행한 냉매를 회수하는 냉매회수라인(83)과 수액기(4)의 제2 배출구(43)에서 배출되는 액상냉매를 이송하는 제2 액상냉매 이송라인(52)에는 냉매우회용 전자밸브(86)가 장설된 바이패스라인(84)으로 연결되어 있으며, 상기 냉매회수라인(83)에는 증발기(8)에서 회수되는 냉매를 수액기(4)에 저장할 수 있도록 냉매회수용 전자밸브(87)가 설치되어 있는 냉매회수 연장라인(85)을 연장 형성되어 있으며, 상기 냉매회수라인(83)은 냉매회수 연장라인(85)에 의하여 수액기(4)의 회수구(44)에 연결되어 있도록 구성된 것을 특징으로 하는 냉동장치의 증발기 제상장치.
  7. 제 1 항에 있어서,
    상기 수액기(4)의 내부에는 액분리기(9)가 삽입 설치되어 있으며, 상기 판형 열교환기(7)에 병설되어 있는 안개냉매 순환통로(7a)를 순환하는 동안 액상냉매 순환통로(7b)를 순환하는 액상냉매와의 열교환작용으로 증발되는 기체냉매를 액분리기(9)에 유입시킬 수 있도록 상기 액분리기(9)의 입구(91)는 기체냉매 흡입라인(93)에 의해 안개냉매 순환통로(7a)의 기체냉매출구(72)에 연결되어 있으며, 상기 액분리기(9)에서 배출되는 기체냉매를 압축기(2)에 유입시킬 수 있도록 하기 위하여 액분리기(9)의 출구(92)와 압축기(2)의 입구라인(22)에는 기체냉매 배출라인(84)이 연결되어 있도록 구성된 것을 특징으로 하는 냉동장치의 증발기 제상장치.
  8. 냉매순환라인(1)의 도중에 마련된 압축기(2)와, 상기 압축기에서 압축되어 토출되는 고온고압의 기체냉매를 응축 액화시키기 위한 응축기(3)와, 상기 응축기에서 응축 액화된 상온의 액상냉매를 저장하기 위한 수액기(4)와, 상기 수액기에서 배출되는 액상냉매를 급속 팽창시키기 위한 팽창밸브(6) 및 실내의 열교환매체와의 열교환작용으로 실내를 설정된 온도로 냉방 또는 냉각시키기 위한 증발기(8)가 구비되어 있는 냉동사이클로 구성되는 냉동장치의 증발기 제상방법에 있어서,
    상기 압축기(2)의 출구라인(21)에 메인냉매입구(11)가 연결되는 성에제거용 사방전자밸브(10a)의 온(on)/오프(off) 작동에 의하여 압축기(2)에서 토출되는 고온고압의 기체냉매를 응축기(3) 또는 증발기(8) 중 어느 한쪽으로 선택 공급할 수 있도록 구성되어 있으며,
    상기 증발기(8)에 착상되어 있는 성에를 제거하고자 할 때에는 압축기(2)의 출구라인(21)에 메인냉매입구(11)가 연결되어 있는 성에제거용 사방전자밸브(10a)를 오프(off) 상태로 작동하여 압축기(2)에서 토출되는 고온고압의 기체냉매가 메인냉매입구(11)로 유입되어 타측 냉매출입구(14)로 배출되어 냉매공급라인(76)을 통해 증발기(8)측으로 공급되도록 구성하여 상기 증발기(8)에 공급되어 순환하는 고온고압의 기체냉매로 하여금 증발기(8)에 착상된 성에를 제거하도록 구성되어 있으며,
    상기 판형열교환기(7)에 병설되어 있는 안개냉매 순환통로(7a)의 기체냉매출구(72)로 배출되는 기체냉매는 압축기(2)에 유입되는 작동을 반복하도록 구성되어 있는 한편, 상기 판형열교환기(7)에 병설되어 있는 액상냉매 순환통로(7b)의 액상냉매출구(74)로 배출되는 냉각된 냉매는 냉각냉매 이송라인(75)을 통해 성에제거용 사방전자밸브(10a)의 중앙 냉매출입구(13)로 유입되어 일측 냉매출입구(12)로 배출되어 응축기(8)에 공급되어 외부 열교환매체와의 열교환작용으로 응축 액화되어 수액기(4)에 일시 저장되었다가 제1 및 제2 액상냉매 이송라인(51)(52)을 통해 판형열교환기(7)에 병설되어 있는 안개냉매 순환통로(7a) 및 액상냉매 순환통로(7b) 각각으로 공급되는 순환작동을 반복하도록 구성하여서 된 것을 특징으로 하는 냉동장치의 증발기 제상방법.
  9. 제 8 항에 있어서,
    상기 냉동장치의 정상운전시에는 수액기(4)의 제2 배출구(43)에 연결된 제2 액상냉매 이송라인(52)과 증발기(8)를 순환하는 동안 열교환작용을 수행하고 배출되는 냉매를 회수하기 위한 냉매회수라인(83)을 연결하는 바이패스라인(84)에 설치된 냉매우회용 전자밸브(86)는 온(on) 작동되는 한편, 냉매회수라인(83)에 연장 형성되어 있는 냉매회수 연장라인(85)에 설치된 냉매회수용 전자밸브(87)는 오프(off) 작동되어 증발기(8)를 순환하고 배출되어 냉매회수라인(83)으로 회수되는 냉매는 냉매우회용 전자밸브(86)가 온(on) 작동되어 있는 바이패스라인(84)으로 이송되어 제2 액상냉매 이송라인(52)을 통해 판형열교환기(7)측으로 이송되도록 구성되어 있으며,
    상기 냉동장치의 제상운전시에는 바이패스라인(84)에 설치된 냉매우회용 전자밸브(86)는 오프(off) 작동되는 반면, 냉매회수 연장라인(85)에 설치된 냉매회수용 전자밸브(87)는 온(on) 작동되어 증발기(8)를 순환하고 배출되어 냉매회수라인(83)으로 회수되는 냉매는 온(on) 작동으로 개방된 냉매회수용 전자밸브(87)가 설치되어 있는 냉매회수 연장라인(85)으로 이송되어 수액기(4)에 저장되도록 구성하여서 된 것을 특징으로 하는 냉동장치의 증발기 제상방법.
PCT/KR2024/003355 2023-03-27 2024-03-18 냉동장치의 증발기 제상장치 및 제상방법 WO2024205090A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2023-0039443 2023-03-27
KR1020230039443A KR20240145101A (ko) 2023-03-27 2023-03-27 냉동장치의 증발기 제상장치 및 제상방법

Publications (1)

Publication Number Publication Date
WO2024205090A1 true WO2024205090A1 (ko) 2024-10-03

Family

ID=92907097

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2024/003355 WO2024205090A1 (ko) 2023-03-27 2024-03-18 냉동장치의 증발기 제상장치 및 제상방법

Country Status (2)

Country Link
KR (1) KR20240145101A (ko)
WO (1) WO2024205090A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014206362A (ja) * 2012-11-16 2014-10-30 株式会社デンソー 冷凍サイクル装置
JP2018004150A (ja) * 2016-06-30 2018-01-11 ダイキン工業株式会社 冷凍装置
WO2021014525A1 (ja) * 2019-07-22 2021-01-28 三菱電機株式会社 空気調和装置および室外機
JP2021032441A (ja) * 2019-08-21 2021-03-01 ダイキン工業株式会社 冷凍装置及び中間ユニット
WO2022259287A1 (ja) * 2021-06-07 2022-12-15 三菱電機株式会社 冷凍装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101803811B1 (ko) 2009-12-07 2017-12-04 엘지이노텍 주식회사 냉장고의 성에 제거장치
KR101551645B1 (ko) 2013-11-11 2015-09-08 주식회사 신세기산업 냉동창고용 증발기 제상시스템
KR102041145B1 (ko) 2018-05-28 2019-11-07 주식회사 대단 증발기 제상 시스템

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014206362A (ja) * 2012-11-16 2014-10-30 株式会社デンソー 冷凍サイクル装置
JP2018004150A (ja) * 2016-06-30 2018-01-11 ダイキン工業株式会社 冷凍装置
WO2021014525A1 (ja) * 2019-07-22 2021-01-28 三菱電機株式会社 空気調和装置および室外機
JP2021032441A (ja) * 2019-08-21 2021-03-01 ダイキン工業株式会社 冷凍装置及び中間ユニット
WO2022259287A1 (ja) * 2021-06-07 2022-12-15 三菱電機株式会社 冷凍装置

Also Published As

Publication number Publication date
KR20240145101A (ko) 2024-10-07

Similar Documents

Publication Publication Date Title
WO2018135826A1 (ko) 급냉실 냉동실 냉장실의 3단계 냉각 및 제상 시스템
EP3172511A1 (en) A refrigerator and a method controlling the same
WO2011149151A1 (en) Hot water supply device associated with heat pump
WO2018016902A1 (ko) 차량용 공조 시스템 및 그 제어방법
WO2016003028A1 (ko) 복합 열원을 이용한 히트펌프 냉난방 시스템 및 그의 제어방법
WO2021157820A1 (en) Air conditioner
WO2011090309A2 (en) Refrigerator and method for controlling the same
WO2018199682A1 (ko) 실외기 및 그 제어방법
WO2019203621A1 (ko) 저온 저장고의 냉각 시스템
WO2024214937A1 (ko) 냉동시스템의 냉매를 증압 순환시키는 냉매액펌프의 흡입측에 낮은 온도의 냉매를 공급 순환시키기 위한 액상냉매 순환방법
WO2018155871A1 (ko) 차량용 히트펌프 시스템
WO2024205090A1 (ko) 냉동장치의 증발기 제상장치 및 제상방법
WO2019245096A1 (ko) 효율적인 제상 운전이 가능한 복합식 냉각 시스템
KR102240394B1 (ko) 저온 냉동 창고의 냉장과 제상 동시 운전 시스템
WO2019203620A1 (ko) 저온 저장고의 냉각 시스템
WO2021172868A1 (en) Heat pump
WO2022265140A1 (ko) 프리쿨링 냉동기를 구비한 데이터센터 국부 냉각시스템
WO2019045176A1 (ko) 냉동기 토출 가스에 의한 응축 폐열 회수를 이용한 냉동 시스템
WO2017115919A1 (ko) 냉장, 냉동 및 급냉 보관 장치
WO2018182303A1 (ko) 냉매 저장수단을 구비한 히트펌프
JPH09210515A (ja) 冷凍装置
WO2019027085A1 (ko) 공기열원 축냉운전과 수열원 축냉축열 동시운전을 갖는 다중열원 멀티 히트펌프 시스템 및 제어방법
WO2013027907A1 (ko) 공냉식 히트펌프 시스템
WO2023136459A1 (ko) 히트 펌프 시스템
WO2018143521A1 (ko) 재가열수단이 구비되는 유기랭킨사이클 발전시스템