WO2024204729A1 - Automatic analysis method, light calibration curve creation method, and automatic analysis device - Google Patents
Automatic analysis method, light calibration curve creation method, and automatic analysis device Download PDFInfo
- Publication number
- WO2024204729A1 WO2024204729A1 PCT/JP2024/013078 JP2024013078W WO2024204729A1 WO 2024204729 A1 WO2024204729 A1 WO 2024204729A1 JP 2024013078 W JP2024013078 W JP 2024013078W WO 2024204729 A1 WO2024204729 A1 WO 2024204729A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- digital
- measurement
- value
- measurement value
- calibration curve
- Prior art date
Links
- 238000011088 calibration curve Methods 0.000 title claims abstract description 61
- 238000004458 analytical method Methods 0.000 title claims abstract description 31
- 238000000034 method Methods 0.000 title claims description 63
- 238000005259 measurement Methods 0.000 claims abstract description 212
- 239000000126 substance Substances 0.000 claims abstract description 36
- 239000003153 chemical reaction reagent Substances 0.000 claims abstract description 25
- 238000002372 labelling Methods 0.000 claims abstract description 22
- 230000003287 optical effect Effects 0.000 claims description 59
- 238000012360 testing method Methods 0.000 claims description 36
- 238000006243 chemical reaction Methods 0.000 claims description 25
- 238000012937 correction Methods 0.000 claims description 8
- 239000000203 mixture Substances 0.000 claims description 4
- 239000013076 target substance Substances 0.000 claims 1
- 239000007788 liquid Substances 0.000 description 37
- 239000000523 sample Substances 0.000 description 25
- 239000012295 chemical reaction liquid Substances 0.000 description 12
- 239000006249 magnetic particle Substances 0.000 description 11
- 238000010438 heat treatment Methods 0.000 description 9
- 238000010586 diagram Methods 0.000 description 6
- 238000004020 luminiscence type Methods 0.000 description 6
- 230000007423 decrease Effects 0.000 description 5
- 239000008280 blood Substances 0.000 description 4
- 210000004369 blood Anatomy 0.000 description 4
- 239000007790 solid phase Substances 0.000 description 4
- 210000002700 urine Anatomy 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 235000019557 luminance Nutrition 0.000 description 3
- 230000035945 sensitivity Effects 0.000 description 3
- WYTGDNHDOZPMIW-RCBQFDQVSA-N alstonine Natural products C1=CC2=C3C=CC=CC3=NC2=C2N1C[C@H]1[C@H](C)OC=C(C(=O)OC)[C@H]1C2 WYTGDNHDOZPMIW-RCBQFDQVSA-N 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000003672 processing method Methods 0.000 description 2
- 238000002835 absorbance Methods 0.000 description 1
- 230000003466 anti-cipated effect Effects 0.000 description 1
- 239000012472 biological sample Substances 0.000 description 1
- 230000023555 blood coagulation Effects 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000003018 immunoassay Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000002572 peristaltic effect Effects 0.000 description 1
- 238000013139 quantization Methods 0.000 description 1
- 238000012889 quartic function Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/75—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
- G01N21/76—Chemiluminescence; Bioluminescence
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
Definitions
- the present invention relates to an automatic analysis method and an automatic analysis device that can obtain measurement information for various test items by reacting test objects (specimens and samples) such as blood and urine with various reagents and measuring the reaction process, reaction progress, reaction results, etc., and in particular to an automatic analysis method and an automatic analysis device that can contribute to improving the accuracy of measurements using electrochemiluminescence.
- Automatic analyzers such as blood coagulation analyzers and analyzers using immunoassays, are known in various forms that can obtain measurement information for various test items by reacting test objects containing components to be measured, such as blood and urine, with various reagents and measuring the reaction process and reaction results.
- test objects containing components to be measured such as blood and urine
- reagents such as glucose, glucose, and glucose.
- Such automatic analyzers dispense a specimen as the test object from a specimen container into a reaction container, and then dispense and mix the dispensed specimen with a reagent according to the test item to perform various measurements and analyses.
- an automatic analyzer for clinical testing dispenses a fixed amount of the test object and a reagent to react with each other, and then measures the amount of luminescence or absorbance of this reaction liquid within or after a fixed time, and obtains test values such as the concentration and activity value of the substance to be measured based on the measurement results (photometric results).
- Measurement using electrochemiluminescence is known as a method for measuring the amount of luminescence from a reaction solution (containing the object to be measured).
- a reagent containing a labeling substance is reacted with the object to be tested, a complex containing the object to be measured and the labeling substance is captured, and the number of photons is measured by generating electrochemiluminescence from the labeling substance.
- a reaction liquid (therefore a liquid containing a complex formed by binding the measurement target, solid phase carrier, and labeling substance) containing a reagent containing magnetic particles (magnetic solid phase carrier) and a reagent containing a labeling substance is first poured into the flow path of the flow cell constituting the measurement section, and the complex is captured in a part of the flow path by the magnetic field.
- the magnetic field is generated by contacting a magnet with the outer wall of the flow path at the electrode section consisting of a working electrode and a counter electrode facing each other across the flow path of the flow cell.
- the magnetic field is removed by, for example, removing the magnet in this captured state, and then a voltage is applied to the electrode section to measure the number of photons generated by the electrochemiluminescence of the labeling substance, thereby qualitatively or quantitatively measuring the measurement target (measurement target component).
- the above-mentioned correction method which assumes pulse overlap probabilistically, is a correction method that only assumes pulse overlap, and therefore cannot deal with photometric errors that cannot be corrected by probabilistic methods alone. In this case, if there is a decrease in sensitivity that cannot be explained by pulse overlap alone, the accuracy of the measurement value will decrease as the amount of light increases.
- the present invention was made with a focus on the above-mentioned problems, and aims to provide an automatic analysis method and automatic analysis device that can improve the accuracy of measurement data.
- the automatic analysis method is an automatic analysis method that accepts a test object and a reagent containing a labeled substance, digitally measures the amount of light obtained from the labeled substance, and qualitatively or quantitatively measures the measurement object contained in the test object, characterized in that the digital measurement value of the amount of light of the test object is converted into a digital estimated value using an optical calibration curve obtained from analog measurement values obtained by analog measurement of a plurality of sample specimens containing different concentrations of the measurement object and digital measurement values obtained by digital measurement, and the converted digital estimated value is used to measure the measurement object of the test object.
- the invention creates an optical calibration curve for each automatic analyzer based on data obtained by digitally measuring a plurality of sample specimens using each automatic analyzer and data obtained by separate analog measurement, converts the digital measurement value obtained by measuring the test object to be analyzed using the optical calibration curve into a digital estimated value, and measures the test object based on the digital estimated value, thereby improving measurement accuracy.
- the measurement value of the light amount is converted into a digital estimated value using the optical calibration curve, and by constructing a calibration curve taking into account factors that cannot be explained (imagined) by probability theory alone, it is possible to suppress the increase in photometric value error that occurs with an increase in the light amount, and to improve the accuracy of the measurement results obtained digitally for the test object (the accuracy of measurement data in the photon counting method can be improved).
- the optical calibration curve can be generated by determining the digital estimated value from a regression line between the analog measurement values obtained by analog measurement and the digital measurement values obtained by digital measurement of a plurality of sample specimens containing different concentrations of the object to be measured, and then using the regression line between the digital estimated value and the digital measurement values.
- the regression line can be determined, for example, from the analog measurement values and the digital measurement values by the least squares method, etc.
- the process of generating an optical calibration curve includes the steps of preparing a plurality of types of sample specimens (sample specimens with known contents of the substance to be measured, hereinafter simply referred to as "sample specimens") with known amounts of light and different brightnesses, acquiring analog measurement values obtained by an analog method for each of the sample specimens, acquiring digital measurement values obtained by a digital method for each of the sample specimens, plotting the analog measurement values and the digital measurement values on a two-dimensional coordinate plane, one of which is the X coordinate and the other is the Y coordinate, and converting the plotted data on the two-dimensional coordinate plane into data.
- the method includes a step of calculating a linear equation using the least squares method with the analog measurement value and the digital measurement value as two variables within the range of the digital measurement values where linearity is recognized in the data, a step of acquiring a digital estimated value by substituting the analog measurement value into the linear equation, including the range of the digital measurement values where linearity is not recognized in the plot on the two-dimensional coordinate plane, and a step of calculating, as the optical calibration curve, a conversion equation that converts the digital measurement value into a corrected digital estimated value using the least squares method using the digital measurement value and the digital estimated value.
- the optical calibration curve By constructing the optical calibration curve in this way, it is possible to expand the range of digital measurement values where linearity is observed in a plot of analog measurement values and digital measurement values on a two-dimensional coordinate plane to the range of digital measurement values where linearity is not observed (the linear range of the photon counting method can be expanded), and differences due to individual differences in the measurement system can be corrected using only the information on the coefficients of the optical calibration curve conversion formula, thereby saving on the amount of information to be attached to each unit. In other words, simply by storing coefficient information for each device in advance, it is possible to correct for differences due to individual differences in circuits, etc., and as a result, the amount of information to be stored in the device can be reduced.
- the present invention also provides a method for creating an optical calibration curve that converts digitally measured values into digital estimated values in an automatic analyzer, using a method similar to that used for creating the optical calibration curve in the above-mentioned automatic analysis method.
- the automatic analyzer includes a mixture introduction section for receiving a test object and a reagent containing a labeled substance, and a measurement section and measurement control section for qualitatively or quantitatively measuring a measurement object contained in the test object from a digital measurement value obtained by measuring the amount of light obtained from the labeled substance, the measurement control section storing an optical calibration curve created according to any one of claims 5 to 7, converting the digital measurement value into a digital estimated value using the optical calibration curve, and qualitatively or quantitatively measuring the measurement object based on the digital estimated value.
- the digital measurement value of the test object can be converted into a digital estimated value using the optical calibration curve, thereby providing an automatic analyzer that can accurately measure the test object.
- the automated analysis method and automated analysis device of the present invention can improve the accuracy of measurement data in the photon counting method by using digital estimates that correct various measurement errors, including measurement errors caused by individual differences in the automated analysis device.
- FIG. 1 is a schematic diagram of a main configuration of an automatic analyzer according to one embodiment of the present invention.
- 1 is a diagram in which analog measurement values (X coordinate) and digital measurement values (Y coordinate) of light quantities are plotted on a two-dimensional coordinate plane.
- FIG. 3 is a diagram showing a linear line calculated by the least squares method using analog measurement values and digital measurement values as two variables within the range of digital measurement values where linearity is recognized in the plot on the two-dimensional coordinate plane in FIG. 2 .
- FIG. 4 is a diagram showing an optical calibration curve obtained by the least squares method as a conversion formula for converting digital measurement values into digital estimated values obtained by substituting analog measurement values into the linear line in FIG. 3 .
- 13 is a table showing an example of measurement value data regarding 14 samples with different luminance values. 13 is a flowchart of process steps for obtaining a light calibration curve that converts measured values of light quantities into digital estimates.
- 2 is a functional block diagram showing an example of a control unit of the automatic analyzer 1 and a configuration for generating an optical calibration curve. FIG.
- the automatic analyzer 1 of the present embodiment shown in Fig. 1 is not shown in its entirety, but includes a reaction unit that holds a reaction vessel into which a specimen such as blood or urine collected from a person is dispensed, and a reagent supply unit that supplies the reagent in the reagent vessel to the reaction vessel.
- the automatic analyzer 1 obtains measurement information for a predetermined test item by reacting the reagent supplied from the reagent supply unit to the reaction vessel with the specimen and measuring the reaction process (measuring the reaction liquid obtained by mixing the reagent and the specimen).
- the automatic analyzer 1 of the present embodiment digitally measures the amount of luminescence of the measurement object obtained from the reaction liquid after a certain time, converts the measurement information (side light value of the amount of luminescence) into a digital estimated value corrected based on a predetermined optical calibration curve, and obtains test values such as the concentration and activity value of the measurement object based on the converted digital estimated value.
- the electrochemiluminescence method is used to measure the amount of luminescence of the object to be measured.
- a reaction liquid (hence a liquid containing a complex containing the labeling substance, the object to be measured, and the solid phase carrier) in which a reagent containing a magnetic solid phase carrier (magnetic particles in this embodiment) and a sample containing the object to be measured and a reagent containing a labeling substance are mixed is poured into the flow path of the flow cell constituting the measurement section.
- the complex is then captured in a part of the flow path by a magnetic field.
- the magnetic field is generated by contacting a magnet with the outer wall of the flow path at the electrode section consisting of a working electrode and a counter electrode facing each other across the flow path of the flow cell. Then, the magnetic particles that have captured the object to be measured are captured and remain on the electrode section due to the magnetic attraction force of this magnet. Then, in this captured state, for example, the magnet is removed to remove the magnetic field, and then a voltage is applied to the electrode section to generate electrochemiluminescence of the labeling substance (the labeling substance that forms a complex with the magnetic particles and the object to be measured emits light), and the number of photons is measured.
- a digital estimate is calculated by correcting the digitally measured number of photons (photometric value), and this digital estimate is used to qualitatively or quantitatively measure the object to be measured (the component to be measured).
- the automatic analyzer 1 includes a heating unit 50 for heating the liquid required for measurement to a desired temperature using a heater 24, an introduction nozzle (a complex liquid introduction unit that receives a complex liquid containing a test object (specimen or sample) and a reagent containing a labeling substance) 99 as an introduction tube for injecting the above-mentioned reaction liquid into the liquid required for measurement heated by the heating unit 50 to produce a liquid containing the object to be measured, and a measurement unit 60 that magnetically captures a complex formed by the object to be measured and the labeling substance bound to magnetic particles from the liquid containing the object to be measured using an electrode unit 70 and measures the complex using an electrochemiluminescence method.
- the measurement unit 60 constitutes a flow cell and is kept at a constant temperature by a heater (not shown), and obtains measurement information related to a specified analysis item of the object to be measured.
- liquid containing the object to be measured refers to any physical form that should be supplied to the measurement unit 60 in a state necessary for measuring the object for a specific analysis item, such as a mixture (reaction liquid) of a sample (specimen) and a reagent (calibration liquid).
- object to be measured refers to a substance to be measured by the measurement unit 60, and refers to the specimen itself, a substance contained in the specimen, or a component to be measured contained in the test object.
- test object refers to a liquid containing a component to be measured, and refers to a biological sample (specimen) such as blood or urine, or a liquid (sample specimen) adjusted to show a known concentration or brightness, such as a control reagent or calibration reagent.
- the liquids required for measurement are a cleaning liquid (CC liquid) that cleans the introduction nozzle 99 and washes away substances not required for measurement and substances after measurement, and a luminescent electrolyte (EB liquid) used in measurement by electrochemiluminescence method. Therefore, the automatic analyzer 1 of this embodiment has a liquid supply unit 20 for supplying CC liquid and a liquid supply unit 22 for supplying EB liquid.
- the heating unit 50 is made up of a temperature control block equipped with a coiled tube 35 through which the liquid required for the measurement flows, and the liquid required for the measurement in the coiled tube 35 is heated by heating the coiled tube 35 with a heater 24.
- the liquid supply units 20 and 22 are connected to the coiled tube 35 of the heating unit 50 via the supply flow paths 26 and 27.
- a connecting trough 34 with a four-way solenoid valve 33 is interposed between the heating section 50 and the introduction nozzle 99.
- the four-way solenoid valve 33 has a first port 33a connected to an air intake pipe (not shown) that communicates with the outside air, a second port 33b connected to a communication pipe 31 that communicates with the liquid supply section 20 for the CC liquid via a serpentine 35, and a third port 33c connected to a communication pipe 32 that communicates with the liquid supply section 22 for the EB liquid via a serpentine 35.
- the introduction nozzle 99 is joined to the combination trough 34 except when it is moved to the installation location of the reaction liquid containing the measurement target to aspirate the reaction liquid.
- a flow path is formed that flows the liquid necessary for measurement from the heating unit 50 and the reaction liquid (liquid containing the measurement target) introduced by the introduction nozzle 99 into the flow path 60a of the measurement unit 60 via the connection flow path 40.
- the "liquid necessary for measurement” moves inside the introduction nozzle 99 and mixes with the reaction liquid to become the "liquid containing the measurement target.”
- the measurement unit 60 constituting the flow cell is constructed by protecting the periphery of a metal box with a thermal insulating material, and includes a flow path 60a through which a liquid containing the object to be measured flows, an optical sensor 60b (an optical device including a light receiving element: for example, a photomultiplier tube) that measures the amount of light emitted, and an electrode unit 70 that magnetically captures a complex formed by binding the object to be measured and the labeling substance to the magnetic particles.
- an optical sensor 60b an optical device including a light receiving element: for example, a photomultiplier tube
- the electrode unit 70 is composed of a working electrode 71 and a counter electrode 72 that face each other across the flow path 60a, and has a magnet 73 that generates a magnetic field when brought close to (or in contact with) the outer wall of the flow path 60a on the working electrode 71 side.
- the magnetic attraction force of this magnet 73 causes the magnetic particles containing the object to be measured (i.e., the complex) to be captured and remain on the working electrode 71.
- the magnetic field is removed, for example by removing the magnet 73, and a voltage is applied to the electrode section 70 to generate electrochemiluminescence of the labeled substance that forms a complex (the labeled substance that forms a complex with the magnetic particles and the object to be measured emits light), thereby digitally measuring the number of photons.
- This measured digital value is converted into a digital estimate (corrected photometric value) using an "optical calibration curve".
- the converted digital estimate is then used to qualitatively or quantitatively measure the object to be measured (the component to be measured) based on the calibration curve "which shows the relationship between the amount of light and the concentration or activity value, etc.”
- the measuring unit 60 is provided with a temperature sensor 75 that detects the temperature of the liquid containing the object to be measured.
- a pump (e.g., a peristaltic pump) 49 is inserted downstream of the flow path extending from the measuring unit 60, and is driven to supply the liquid required for measurement from the liquid supply units 20, 22 to the measuring unit 60 via the heating unit 50.
- a tank 74 is provided to collect the liquid containing the object to be measured after it has been measured as waste liquid.
- the automated analyzer 1 of this embodiment also includes a control unit 10 that controls the operation of the introduction nozzle 99, the electrode unit 70, the optical sensor 60b, and the pump 49.
- the electrical connection lines between the control unit 10 and each unit are indicated by dashed arrows. Note that the electrodes 71 and 72 of the measurement unit 60, the temperature sensor 75, the magnet drive unit (not shown) that drives the magnet 73, and the like are also electrically connected to the control unit 10, but the connection lines have been omitted from FIG. 1 for simplification.
- the automated analyzer 1 of this embodiment having the above configuration is configured to measure the amount of light emitted by the labeled substance using a photon counting method (digital method) in cooperation with the measurement unit 60 having a light receiving sensor (light receiving device) 60b and the measurement control unit 16 (see Figure 7) of the control unit 10, and to convert the measured value of the amount of light into a digital estimated value using an optical calibration curve.
- the optical calibration curve specific to the automated analyzer 1 is created before installing (carrying in) the automated analyzer 1, and is stored in the optical calibration curve storage unit 16b.
- the optical calibration curve is generated from digital measurement values obtained by digitally measuring multiple sample specimens whose luminance changes according to the concentration of the substance to be measured using the automatic analyzer 1 and analog measurement values obtained using an analog measuring device.
- FIG. 7 shows an example of a functional block diagram of the control unit of the automatic analyzer 1 and the configuration required to generate the optical calibration curve.
- the control unit 10 of the automatic analyzer 1 includes an input/output interface 11 for inputting and outputting data to and from each unit of the automatic analyzer, a main control unit 12 for controlling the entire device, an operation control unit 15 for controlling the operation of the nozzle, valve, heater, and other units, a measurement control unit 16 for controlling digital measurement by the measurement unit 60, and an optical calibration curve generation unit 17 for generating the optical calibration curve.
- an external optical calibration curve generation device 117 can also be used, and in this case, it is not necessary to provide the optical calibration curve generation unit 17 within the automatic analyzer 1.
- the same sample specimens as those digitally measured by the automatic analyzer 1 are measured by the analog measuring device 160, and both the digital and analog measurement values of multiple sample specimens with different concentrations are input to the optical calibration curve generating unit 17 or the optical calibration curve generating device 117.
- the multiple sample specimens used for measurement do not need to be kept in the automatic analyzer 1 at all times, and it is sufficient if they can be dispensed using the introduction nozzle 99 and digitally measured when creating the optical calibration curve (before the device 1 is brought in).
- Analog measurements can be made using an analog measuring device if the automatic analyzer 1 is equipped with one, but typically measurements are made using an external analog measuring device 160.
- FIG. 6 An example of the process for generating an optical calibration curve is shown in FIG. 6.
- the optical calibration curve can be generated, for example, by the process steps shown in FIG. 6.
- a description will be given of a case where a photomultiplier tube is used as the light receiving sensor 60b for measurement.
- the formula for calculating the digital estimate is created in the following procedure and stored in the automatic analyzer 1 before the automatic analyzer 1 is shipped from the factory or before the automatic analyzer 1 is installed.
- the "analog method” refers to a signal processing method in which the electronic output of the photomultiplier tube is treated as a current
- the “digital method” refers to a signal processing method in which the pulsed output is converted to a binary value and counted.
- the analog method is used for measurements that require a wide measurement range, while the digital method is used to measure weak light.
- sample specimens sample specimens of the test object
- step S1 in FIG. 6 multiple types of sample specimens (sample specimens of the test object) with known light quantities and different brightnesses depending on the concentration, etc. are prepared (step S1 in FIG. 6).
- 14 levels of Ru-labeled antibody-bound magnetic particle samples showing brightnesses (count values) within the range of light intensity to be measured are prepared.
- FIG. 5 shows an example of measurement value data for each of 14 Ru-labeled antibody-bound magnetic particle samples S1 to S14 with different brightnesses.
- A indicates the analog measurement value (count value) of the light quantity
- B indicates the digital measurement value of the light quantity
- C indicates the digital estimate obtained from the linear equation described later
- D indicates the conversion value (corrected digital estimate) of the digital estimate using the conversion equation (optical calibration curve) described later.
- FIG. 5 also shows the percentage of error after correction of the digital estimate (corrected coefficient error).
- sample specimens S1 to S14 with different luminances are prepared, and analog measurement values obtained by an analog method are obtained for each sample specimen S1 to S14 (step S2).
- analog measurement value A A1 to A14 of the light intensity shown in Figure 5 is obtained for each sample specimen S1 to S14 using an apparatus equipped with a photoreceiver with good linearity (an analog measurement apparatus capable of analog measurement).
- step S3 digital measurement values obtained by a digital method for each of the same 14 sample specimens S1 to S14 are obtained.
- the same 14 sample specimens S1 to S14 are measured on a digital measuring device for which optical calibration is to be performed, and digital measurement values (digital actual measurements) B (B1 to B14) are obtained.
- the 14 acquired analog measurement values A1 to A14 and the 14 acquired digital measurement values B1 to B14 are treated as data to be plotted on a two-dimensional coordinate plane, one of which is the x coordinate and the other is the y coordinate.
- the analog measurement value (analog measurement value) A is plotted as the x coordinate
- the digital measurement value (digital photometric value) B is plotted as the y coordinate on the two-dimensional coordinate plane (step S4).
- Such a plot is shown in Figure 2.
- a linear equation is calculated by the least squares method with analog measurement value A and digital measurement value B as two variables within the range of digital measurement values where linearity is recognized in the plot (plot data) on the two-dimensional coordinate plane in Figure 2 (step S5).
- the least squares method is used for the digital measurement values (e.g. B3 to B7) within the linearity range of the digital measuring device and the analog measurement values (e.g. A3 to A7) within the corresponding range obtained by the analog measuring device to calculate a linear equation with analog measurement value A as the x-coordinate (e.g. by linear fitting using the least squares method with Excel (registered trademark)).
- digital estimate values C1 to C14 are obtained, including the range of digital measurement values B where no linearity was observed in the plot on the two-dimensional coordinate plane shown in Figure 2 (step S6).
- the digital measurement values B1 to B14 are plotted on a two-dimensional coordinate plane as the x coordinates and the digital estimate values C1 to C14 obtained from the linear equation in Fig. 3 are plotted as the y coordinates, and a conversion equation for converting the digital measurement values (digital actual measurements) B into corrected digital estimate values (linear digital estimate values) D is calculated as an optical calibration curve by the least squares method (step S7).
- "E” is an exponential notation (E notation) in a computer, and for example, (8E-24) in the equation represents "8 x 10 to the power of -24".
- the digital estimated value may also be calculated using a comparison table or graph, etc.
- the conversion formula is considered to be a composite function that includes pulse reduction due to overlapping of output pulses from the light receiving sensor, as well as other photometric errors.
- the automated analyzer 1 of this embodiment uses the optical calibration curve obtained as described above to convert the digital measurement value of the light quantity into a corrected digital estimate, so that not only can the increase in photometric value error that accompanies an increase in the light quantity be suppressed and the accuracy of the measurement results obtained digitally for the sample be improved (the accuracy of the measurement data in the photon counting method can be improved), but also the range of digital measurement values in which linearity is recognized in a plot of analog measurement values and digital measurement values on a two-dimensional coordinate plane can be expanded to the range of digital measurement values in which linearity is not recognized (the linear range of the photon counting method can be expanded), and differences due to individual differences in the measurement system can be corrected using only the information on the coefficients of the conversion formula for the optical calibration curve, thereby reducing the amount of information to be attached to each unit.
- the present invention is not limited to the above-described embodiment and can be modified in various ways without departing from the gist of the invention.
- the configuration of the measurement unit, etc. is not limited to the above-described configuration.
- numerical processing may be performed, for example, as data in a memory, without actually plotting the measured values.
- some or all of the above-described embodiments may be combined, or part of the configuration may be omitted from one of the above-described embodiments, without departing from the gist of the present invention.
Landscapes
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Plasma & Fusion (AREA)
- Engineering & Computer Science (AREA)
- Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
Abstract
Provided are an automatic analysis method and automatic analysis device that improve the accuracy of measurement data by correcting various measurement errors including errors caused by individual differences among automatic analysis devices. The present invention improves measurement accuracy by means of an automatic analysis method in which an examination target and a reagent containing a labeling substance are received, the amount of light obtained from the labeling substance is measured, and the examination target is qualitatively or quantitatively measured, wherein: a light calibration curve is created for each of a plurality of automatic analysis devices on the basis of data obtained by digitally measuring a plurality of samples using each of the automatic analysis devices and data obtained by separate analog measurement of said samples; the relevant light calibration curve is used to convert a digital measurement value obtained by measuring the examination target serving as the subject of analysis into a digital estimation value; and a measurement target in the examination target is measured on the basis of the digital estimation value.
Description
本発明は、血液や尿などの検査対象物(検体及びサンプル試料)を種々の試薬と反応させてその反応過程、反応経過、反応結果等を測定することにより様々な検査項目に関して測定情報を得ることができる自動分析方法及び自動分析装置に関し、特に、電気化学発光法による測定の精度向上に寄与し得る自動分析方法及び自動分析装置に関する。
The present invention relates to an automatic analysis method and an automatic analysis device that can obtain measurement information for various test items by reacting test objects (specimens and samples) such as blood and urine with various reagents and measuring the reaction process, reaction progress, reaction results, etc., and in particular to an automatic analysis method and an automatic analysis device that can contribute to improving the accuracy of measurements using electrochemiluminescence.
血液凝固分析装置や、免疫測定法を用いた分析装置など、血液や尿などの測定対象となる成分を含む検査対象物を種々の試薬と反応させてその反応過程や反応結果を測定することにより様々な検査項目に関して測定情報を得ることができる自動分析装置は、従来から様々な形態のものが知られている。例えば、そのような自動分析装置は、検査対象物としての検体を検体容器から反応容器に分注し、その分注した検体に検査項目に応じた試薬を分注混合させて各種の測定及び分析を行なう。具体的には、例えば、臨床検査用の自動分析装置では、検査対象物と試薬とを一定量分注して反応させた後、この反応液の一定時間内又は一定時間後の発光量や吸光度を測定し、測定結果(測光結果)に基づき測定対象物質の濃度や活性値等の検査値を求める。
Automatic analyzers, such as blood coagulation analyzers and analyzers using immunoassays, are known in various forms that can obtain measurement information for various test items by reacting test objects containing components to be measured, such as blood and urine, with various reagents and measuring the reaction process and reaction results. For example, such automatic analyzers dispense a specimen as the test object from a specimen container into a reaction container, and then dispense and mix the dispensed specimen with a reagent according to the test item to perform various measurements and analyses. Specifically, for example, an automatic analyzer for clinical testing dispenses a fixed amount of the test object and a reagent to react with each other, and then measures the amount of luminescence or absorbance of this reaction liquid within or after a fixed time, and obtains test values such as the concentration and activity value of the substance to be measured based on the measurement results (photometric results).
反応液(測定対象物を含む)の発光量の測定に関しては、電気化学発光法による測定が知られている。この方法では、標識物質を含有する試薬と検査対象物とを反応させ、測定対象物と標識物質を含む複合体を捕捉し、標識物質の電気化学発光を発生させることにより、光子の数を計測する。
Measurement using electrochemiluminescence is known as a method for measuring the amount of luminescence from a reaction solution (containing the object to be measured). In this method, a reagent containing a labeling substance is reacted with the object to be tested, a complex containing the object to be measured and the labeling substance is captured, and the number of photons is measured by generating electrochemiluminescence from the labeling substance.
具体的には、磁気的に測定対象物と標識物質を含む複合体を捕捉する例では、例えば、最初に、磁性粒子(磁性を有する固相担体)を含む試薬と検査対象物、標識物質含む試薬とを混合した反応液(したがって、測定対象物と固相担体、標識物質とを結合させてできた複合体を含む液体)を、測定部を構成するフローセルの流路に流し込んで、磁場により流路の一部に複合体を捕捉する。この場合、磁場は、フローセルの流路を挟んで対向する作用電極と対向電極とから成る電極部の部位で、流路の外壁に磁石を接触させることにより発生される。そして、この磁石による磁気的な吸引により、測定対象物を捉えた磁性粒子のみが電極部に吸着捕捉されて残る。その後、この捕捉状態で例えば磁石を離脱させることにより磁場を除去した後、電極部に電圧を印加することで、標識物質の電気化学発光により発生する光子の数を計測するなどして、測定対象物(測定対象成分)を定性的又は定量的に測定する。
Specifically, in an example of magnetically capturing a complex containing a measurement target and a labeling substance, for example, a reaction liquid (therefore a liquid containing a complex formed by binding the measurement target, solid phase carrier, and labeling substance) containing a reagent containing magnetic particles (magnetic solid phase carrier) and a reagent containing a labeling substance is first poured into the flow path of the flow cell constituting the measurement section, and the complex is captured in a part of the flow path by the magnetic field. In this case, the magnetic field is generated by contacting a magnet with the outer wall of the flow path at the electrode section consisting of a working electrode and a counter electrode facing each other across the flow path of the flow cell. Then, only the magnetic particles that have captured the measurement target are attracted and captured by the electrode section due to magnetic attraction by this magnet. After that, the magnetic field is removed by, for example, removing the magnet in this captured state, and then a voltage is applied to the electrode section to measure the number of photons generated by the electrochemiluminescence of the labeling substance, thereby qualitatively or quantitatively measuring the measurement target (measurement target component).
ところで、このような電気化学発光による測定では、微弱な光を測定するため、フォトンカウンティングレベルで光を検出する必要がある。微小光を測定するこのフォトンカウンティング法は、入射光の光子が受光素子にパルスを発生させ、このパルスを数える方法であるが、受光素子への入射光量が増大するにつれて、パルスの重なり合いや、パルス増大による受光素子の感度低下などにより、光量の量子化効率が低下するという欠点がある。また、パルス幅や回路の個体差により、受光素子の感度の低下度合いもユニットごとに異なる。このため、フォトンカウンティング法では、入射光量が多い場合に正確な光量を測定できないという課題があった。したがって、従来から、大光量時においてもフォトンカウンティング法による計測データの精度を上げるべく様々な試みがなされている。例えば、パルスの重なり合いを確率論的に想定する補正方法によって計測値を修正することや、半導体光変換素子を用いることにより、フォトンカウンティング法における計測データの精度を向上させることも試みられている(特許文献1参照)。
However, in such electrochemical luminescence measurements, it is necessary to detect light at the photon counting level in order to measure weak light. In this photon counting method for measuring weak light, photons of incident light generate pulses in a light receiving element, and these pulses are counted. However, as the amount of light incident on the light receiving element increases, the quantization efficiency of the amount of light decreases due to pulse overlap and a decrease in the sensitivity of the light receiving element due to an increase in the pulse. In addition, the degree of decrease in the sensitivity of the light receiving element differs from unit to unit due to individual differences in pulse width and circuit. For this reason, the photon counting method has a problem in that it cannot measure the amount of light accurately when the amount of incident light is large. Therefore, various attempts have been made to improve the accuracy of measurement data using the photon counting method even when the amount of light is large. For example, attempts have been made to improve the accuracy of measurement data in the photon counting method by correcting the measurement value using a correction method that stochastically assumes pulse overlap, or by using a semiconductor light conversion element (see Patent Document 1).
しかしながら、パルスの重なり合いを確率論的に想定する前述した補正方法は、パルスの重なり合いのみを想定した補正方法であるため、確率論法だけでは補正しきれない測光値誤差に対しては対処できない。この場合、パルスの重なりだけでは説明できない感度の低下がある場合、光量が増大するにつれて、計測値の精度が下がる。
However, the above-mentioned correction method, which assumes pulse overlap probabilistically, is a correction method that only assumes pulse overlap, and therefore cannot deal with photometric errors that cannot be corrected by probabilistic methods alone. In this case, if there is a decrease in sensitivity that cannot be explained by pulse overlap alone, the accuracy of the measurement value will decrease as the amount of light increases.
このように、測光値誤差には確率論だけでは説明できない(想定できない)要素も存在することを考えると、パルスの重なり合いのみを想定した前述の補正方法では、光量が増大するにつれて測光値誤差が増大するなどの課題があり、更なる補正方法の確立が望まれている。
In this way, considering that there are factors in photometric errors that cannot be explained (anticipated) by probability theory alone, the above-mentioned correction method, which assumes only pulse overlap, has issues such as increasing photometric error as the amount of light increases, and there is a need to establish further correction methods.
本発明は、上記した問題に着目してなされたものであり、計測データの精度を向上させることができる自動分析方法及び自動分析装置を提供することを目的とする。
The present invention was made with a focus on the above-mentioned problems, and aims to provide an automatic analysis method and automatic analysis device that can improve the accuracy of measurement data.
上記した目的を達成するために、本発明の第1の態様に係る自動分析方法は、検査対象物及び標識物質を含む試薬を受け入れ、前記標識物質から得られる光量をデジタル計測し、前記検査対象物に含まれる測定対象物を定性的又は定量的に測定する自動分析方法において、異なる濃度の前記測定対象物を含む複数のサンプル試料をアナログ計測したアナログ計測値とデジタル計測したデジタル計測値から得られる光検量線を用いて、前記検査対象物の前記光量のデジタル計測値をデジタル推定値に換算し、換算した該デジタル推定値を用いて前記検査対象物の前記測定対象物を計測することを特徴とする。
In order to achieve the above-mentioned object, the automatic analysis method according to the first aspect of the present invention is an automatic analysis method that accepts a test object and a reagent containing a labeled substance, digitally measures the amount of light obtained from the labeled substance, and qualitatively or quantitatively measures the measurement object contained in the test object, characterized in that the digital measurement value of the amount of light of the test object is converted into a digital estimated value using an optical calibration curve obtained from analog measurement values obtained by analog measurement of a plurality of sample specimens containing different concentrations of the measurement object and digital measurement values obtained by digital measurement, and the converted digital estimated value is used to measure the measurement object of the test object.
すなわち、第1の態様に係る発明は、複数のサンプル試料を個々の自動分析装置を用いてそれぞれデジタル計測したデータと、別途アナログ計測したデータとに基づいて、個々の自動分析装置毎に光検量線を作成し、該光量線を用いて分析対象となる検査対象物を計測したデジタル計測値をデジタル推定値に換算し、該デジタル推定値に基づいて検査対象物の測定対象物を計測することにより、計測精度を向上させる。この自動分析方法によれば、光量の計測値を、光検量線を用いてデジタル推定値に換算するようにしているため、確率論だけで説明できない(想定できない)要素を加味して検量線を構築することにより、光量の増大に伴って測光値誤差が増大することを抑制でき、検査対象物に関してデジタル方式により得られる計測結果の精度を高めることができる(フォトンカウンティング法における計測データの精度を向上させることができる)。
In other words, the invention according to the first aspect creates an optical calibration curve for each automatic analyzer based on data obtained by digitally measuring a plurality of sample specimens using each automatic analyzer and data obtained by separate analog measurement, converts the digital measurement value obtained by measuring the test object to be analyzed using the optical calibration curve into a digital estimated value, and measures the test object based on the digital estimated value, thereby improving measurement accuracy. According to this automatic analysis method, the measurement value of the light amount is converted into a digital estimated value using the optical calibration curve, and by constructing a calibration curve taking into account factors that cannot be explained (imagined) by probability theory alone, it is possible to suppress the increase in photometric value error that occurs with an increase in the light amount, and to improve the accuracy of the measurement results obtained digitally for the test object (the accuracy of measurement data in the photon counting method can be improved).
前記光検量線は、異なる濃度の前記測定対象物を含む複数のサンプル試料を、アナログ計測した前記アナログ計測値とデジタル計測した前記デジタル計測値の回帰直線から前記デジタル推定値を求め、該デジタル推定値 と前記デジタル計測値の回帰線により生成することができる。回帰直線は例えば、アナログ計測値とデジタル計測値から、最小二乗法等により求めることができる。
The optical calibration curve can be generated by determining the digital estimated value from a regression line between the analog measurement values obtained by analog measurement and the digital measurement values obtained by digital measurement of a plurality of sample specimens containing different concentrations of the object to be measured, and then using the regression line between the digital estimated value and the digital measurement values. The regression line can be determined, for example, from the analog measurement values and the digital measurement values by the least squares method, etc.
さらに詳しくは、光検量線の生成工程は、光量が既知で輝度が互いに異なる複数種のサンプル試料(測定対象物の含有量が既知のサンプル試料、以下単に「サンプル試料」と称する)を用意するステップと、前記各サンプル試料に関してアナログ方式により得られるアナログ計測値を取得するステップと、前記各サンプル試料に関してデジタル方式により得られるデジタル計測値を取得するステップと、前記アナログ計測値及び前記デジタル計測値を、その一方がX座標、他方がY座標となる二次元座標平面上にプロットされるデータとするステップと、前記二次元座標平面上のプロットデータにおいて直線性が認められる前記デジタル計測値の範囲内で、前記アナログ計測値及び前記デジタル計測値を2つの変数とする一次直線式を最小二乗法により算出するステップと、前記一次直線式に前記アナログ計測値を代入することにより、前記二次元座標平面上のプロットにおいて直線性が認められなかった前記デジタル計測値の範囲も含めて、デジタル推定値を取得するステップと、前記デジタル計測値及び前記デジタル推定値を用いて最小二乗法により前記デジタル計測値を補正されたデジタル推定値に換算する換算式を前記光検量線として算出するステップとを含むことが好ましい。
More specifically, the process of generating an optical calibration curve includes the steps of preparing a plurality of types of sample specimens (sample specimens with known contents of the substance to be measured, hereinafter simply referred to as "sample specimens") with known amounts of light and different brightnesses, acquiring analog measurement values obtained by an analog method for each of the sample specimens, acquiring digital measurement values obtained by a digital method for each of the sample specimens, plotting the analog measurement values and the digital measurement values on a two-dimensional coordinate plane, one of which is the X coordinate and the other is the Y coordinate, and converting the plotted data on the two-dimensional coordinate plane into data. It is preferable that the method includes a step of calculating a linear equation using the least squares method with the analog measurement value and the digital measurement value as two variables within the range of the digital measurement values where linearity is recognized in the data, a step of acquiring a digital estimated value by substituting the analog measurement value into the linear equation, including the range of the digital measurement values where linearity is not recognized in the plot on the two-dimensional coordinate plane, and a step of calculating, as the optical calibration curve, a conversion equation that converts the digital measurement value into a corrected digital estimated value using the least squares method using the digital measurement value and the digital estimated value.
このような光検量線の構築態様によれば、アナログ計測値及びデジタル計測値の二次元座標平面上のプロットにおいて直線性が認められるデジタル計測値の範囲を直線性が認められないデジタル計測値の範囲まで拡張できるようになり(フォトンカウンティング法の直線域を拡張することができ)、光検量線の換算式の係数のみの情報で測定系の固体差による違いを補正できるため、ユニット毎に付属させる情報量を節約することができる。すなわち、予め装置毎に係数情報を持たせておくだけで回路等の個体差による違いを含めて補正することができ、結果として、装置に持たせる情報量が少なくて済む。
By constructing the optical calibration curve in this way, it is possible to expand the range of digital measurement values where linearity is observed in a plot of analog measurement values and digital measurement values on a two-dimensional coordinate plane to the range of digital measurement values where linearity is not observed (the linear range of the photon counting method can be expanded), and differences due to individual differences in the measurement system can be corrected using only the information on the coefficients of the optical calibration curve conversion formula, thereby saving on the amount of information to be attached to each unit. In other words, simply by storing coefficient information for each device in advance, it is possible to correct for differences due to individual differences in circuits, etc., and as a result, the amount of information to be stored in the device can be reduced.
また、本発明は、上述の自動分析方法で採用した光検量線の作成と同様の方法により、自動分析装置においてデジタル計測値をデジタル推定値に換算する光検量線を作成する、光検量線の作成方法を提供するものである。
The present invention also provides a method for creating an optical calibration curve that converts digitally measured values into digital estimated values in an automatic analyzer, using a method similar to that used for creating the optical calibration curve in the above-mentioned automatic analysis method.
さらに、この発明の第1の態様に係る自動分析装置は、検査対象物及び標識物質を含む試薬を受け入れる混合液導入部と、前記標識物質から得られる光量を計測したデジタル計測値から、前記検査対象物に含まれる測定対象物を定性的又は定量的に測定する測定部及び測定制御部とを備え、前記測定制御部は、請求項5乃至7のいずれか1項により作成した光検量線を記憶しており、該光検量線を用いて前記デジタル計測値をデジタル推定値に変換し、該デジタル推定値に基づいて前記測定対象物を定性的又は定量的に測定する、
ことを特徴とする。
この光検量線の作成方法により作成した光検量線を、自動分析装置内に記憶しておくことにより、検査対象物のデジタル測定値を光検量線を用いてデジタル推定値に換算して、検査対象物を正確に計測することができる自動分析装置を提供するものである。 Further, the automatic analyzer according to the first aspect of the present invention includes a mixture introduction section for receiving a test object and a reagent containing a labeled substance, and a measurement section and measurement control section for qualitatively or quantitatively measuring a measurement object contained in the test object from a digital measurement value obtained by measuring the amount of light obtained from the labeled substance, the measurement control section storing an optical calibration curve created according to any one ofclaims 5 to 7, converting the digital measurement value into a digital estimated value using the optical calibration curve, and qualitatively or quantitatively measuring the measurement object based on the digital estimated value.
It is characterized by:
By storing the optical calibration curve created by this method for creating an optical calibration curve within the automatic analyzer, the digital measurement value of the test object can be converted into a digital estimated value using the optical calibration curve, thereby providing an automatic analyzer that can accurately measure the test object.
ことを特徴とする。
この光検量線の作成方法により作成した光検量線を、自動分析装置内に記憶しておくことにより、検査対象物のデジタル測定値を光検量線を用いてデジタル推定値に換算して、検査対象物を正確に計測することができる自動分析装置を提供するものである。 Further, the automatic analyzer according to the first aspect of the present invention includes a mixture introduction section for receiving a test object and a reagent containing a labeled substance, and a measurement section and measurement control section for qualitatively or quantitatively measuring a measurement object contained in the test object from a digital measurement value obtained by measuring the amount of light obtained from the labeled substance, the measurement control section storing an optical calibration curve created according to any one of
It is characterized by:
By storing the optical calibration curve created by this method for creating an optical calibration curve within the automatic analyzer, the digital measurement value of the test object can be converted into a digital estimated value using the optical calibration curve, thereby providing an automatic analyzer that can accurately measure the test object.
本発明の自動分析方法及び自動分析装置によれば、自動分析装置の個体差に起因する測定誤差を含む各種の計測誤差を補正するデジタル推定値を用いることにより、フォトンカウンティング法における計測データの精度を向上させることができる。
The automated analysis method and automated analysis device of the present invention can improve the accuracy of measurement data in the photon counting method by using digital estimates that correct various measurement errors, including measurement errors caused by individual differences in the automated analysis device.
以下、図面を参照しながら本発明の実施形態について説明する。
図1に示される本実施形態の自動分析装置1は、その全体を図示しないが、例えば、血液や尿などの人から採取した検体が分注された反応容器を保持する反応部と、試薬容器内の試薬を反応容器に供給する試薬供給部とを備える。そして、この自動分析装置1は、試薬供給部から反応容器に供給される試薬を検体と反応させて反応過程を測定する(試薬と検体とを混合して反応させた反応液を測定する)ことにより所定の検査項目に関して測定情報を得る。具体的には、本実施形態の自動分析装置1は、一例として、反応液から得られる測定対象物の一定時間後の発光量をデジタル測定し、測定情報(発光量の側光値)を所定の光検量線に基づいて補正したデジタル推定値に換算し、換算後のデジタル推定値に基づいて測定対象物質の濃度や活性値等の検査値を求める。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
Theautomatic analyzer 1 of the present embodiment shown in Fig. 1 is not shown in its entirety, but includes a reaction unit that holds a reaction vessel into which a specimen such as blood or urine collected from a person is dispensed, and a reagent supply unit that supplies the reagent in the reagent vessel to the reaction vessel. The automatic analyzer 1 obtains measurement information for a predetermined test item by reacting the reagent supplied from the reagent supply unit to the reaction vessel with the specimen and measuring the reaction process (measuring the reaction liquid obtained by mixing the reagent and the specimen). Specifically, the automatic analyzer 1 of the present embodiment digitally measures the amount of luminescence of the measurement object obtained from the reaction liquid after a certain time, converts the measurement information (side light value of the amount of luminescence) into a digital estimated value corrected based on a predetermined optical calibration curve, and obtains test values such as the concentration and activity value of the measurement object based on the converted digital estimated value.
図1に示される本実施形態の自動分析装置1は、その全体を図示しないが、例えば、血液や尿などの人から採取した検体が分注された反応容器を保持する反応部と、試薬容器内の試薬を反応容器に供給する試薬供給部とを備える。そして、この自動分析装置1は、試薬供給部から反応容器に供給される試薬を検体と反応させて反応過程を測定する(試薬と検体とを混合して反応させた反応液を測定する)ことにより所定の検査項目に関して測定情報を得る。具体的には、本実施形態の自動分析装置1は、一例として、反応液から得られる測定対象物の一定時間後の発光量をデジタル測定し、測定情報(発光量の側光値)を所定の光検量線に基づいて補正したデジタル推定値に換算し、換算後のデジタル推定値に基づいて測定対象物質の濃度や活性値等の検査値を求める。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
The
測定対象物の発光量の測定に関しては、電気化学発光法を用いる。この方法では、磁性を有する固相担体(本実施形態では磁性粒子)を含む試薬と測定対象物を含む検体及び標識物質を含む試薬とを混合した反応液(したがって、標識物質と測定対象物及び固相担体を含む複合体を含有する液体)を、測定部を構成するフローセルの流路に流し込む。その後、磁場により流路の一部に複合体を捕捉する。この場合、磁場は、フローセルの流路を挟んで対向する作用電極と対向電極とから成る電極部の部位で、流路の外壁に磁石を接触させることにより発生される。そして、この磁石による磁気的な吸引力により、測定対象物を捉えた磁性粒子が電極部に捕捉されて残る。その後、この捕捉状態で例えば磁石を離脱させることにより磁場を除去した後、電極部に電圧を印加して標識物質の電気化学発光が発生する(磁性粒子及び測定対象物と複合体を形成する標識物質が発光する)ことにより、光子の数を計測してする。本発明では、デジタル計測した光子数(測光値)を補正したデジタル推定値を算出し、このデジタル推定値を用いて測定対象物(測定対象成分)を定性的又は定量的に測定する。
The electrochemiluminescence method is used to measure the amount of luminescence of the object to be measured. In this method, a reaction liquid (hence a liquid containing a complex containing the labeling substance, the object to be measured, and the solid phase carrier) in which a reagent containing a magnetic solid phase carrier (magnetic particles in this embodiment) and a sample containing the object to be measured and a reagent containing a labeling substance are mixed is poured into the flow path of the flow cell constituting the measurement section. The complex is then captured in a part of the flow path by a magnetic field. In this case, the magnetic field is generated by contacting a magnet with the outer wall of the flow path at the electrode section consisting of a working electrode and a counter electrode facing each other across the flow path of the flow cell. Then, the magnetic particles that have captured the object to be measured are captured and remain on the electrode section due to the magnetic attraction force of this magnet. Then, in this captured state, for example, the magnet is removed to remove the magnetic field, and then a voltage is applied to the electrode section to generate electrochemiluminescence of the labeling substance (the labeling substance that forms a complex with the magnetic particles and the object to be measured emits light), and the number of photons is measured. In the present invention, a digital estimate is calculated by correcting the digitally measured number of photons (photometric value), and this digital estimate is used to qualitatively or quantitatively measure the object to be measured (the component to be measured).
次に、このような電気化学発光法を用いた測定を実現し得る本実施形態の自動分析装置1の構成について図1を参照して簡単に説明する。
Next, the configuration of the automated analyzer 1 of this embodiment, which can perform measurements using this electrochemiluminescence method, will be briefly described with reference to FIG. 1.
図1に示されるように、本実施形態に係る自動分析装置1は、測定に必要な液体をヒータ24により所望の温度に加温するための加温部50と、加温部50で加温された測定に必要な液体に前述した反応液を注入して測定対象物を含んだ液体とする導入管としての導入ノズル(検査対象物(検体又はサンプル試料)及び標識物質を含む試薬を含む複合液を受け入れる複合液導入部)99と、測定対象物を含んだ液体から、磁性粒子に測定対象物及び標識物質が結合されて成る複合体を、電極部70により磁気的に捕捉して、複合体に対して電気化学発光法を用いた測定を行なう測定部60とを備える。測定部60は、フローセルを構成するとともに図示しないヒータによって一定の温度に保たれるようになっており、測定対象物の所定の分析項目に関する測定情報を得る。
As shown in FIG. 1, the automatic analyzer 1 according to this embodiment includes a heating unit 50 for heating the liquid required for measurement to a desired temperature using a heater 24, an introduction nozzle (a complex liquid introduction unit that receives a complex liquid containing a test object (specimen or sample) and a reagent containing a labeling substance) 99 as an introduction tube for injecting the above-mentioned reaction liquid into the liquid required for measurement heated by the heating unit 50 to produce a liquid containing the object to be measured, and a measurement unit 60 that magnetically captures a complex formed by the object to be measured and the labeling substance bound to magnetic particles from the liquid containing the object to be measured using an electrode unit 70 and measures the complex using an electrochemiluminescence method. The measurement unit 60 constitutes a flow cell and is kept at a constant temperature by a heater (not shown), and obtains measurement information related to a specified analysis item of the object to be measured.
ここで、「測定対象物を含んだ液体」とは、例えば、試料(検体)と試薬(校正液)等との混合物(反応液)など、検体を所定の分析項目に関して測定するために必要な状態で測定部60に供給されるべき物性形態のもの全てを指す。また、「測定対象物」とは、測定部60で測定されるべき物質のことであり、検体それ自体又は検体に含まれる物質、又は検査対象物に含まれる測定対象となる成分を指す。「検査対象物(検体又はサンプル試料)」とは、測定対象となる成分を含む液体を指し、血液や尿などの生体試料(検体)又は、コントロール試薬やキャリブレーション試薬など、既知の濃度、輝度を示すよう調整した液体(サンプル試料)を指す。また、本実施形態では、測定に必要な液体(検体を含まない)として、導入ノズル99を洗浄するとともに測定に不要な物質や測定後の物質を洗い流す洗浄液(CC液)と、電気化学発光法による測定で用いられる発光電解液(EB液)とが使用され、したがって、本実施形態の自動分析装置1は、CC液を供給するための液体供給部20と、EB液を供給するための液体供給部22とを有する。
Here, the term "liquid containing the object to be measured" refers to any physical form that should be supplied to the measurement unit 60 in a state necessary for measuring the object for a specific analysis item, such as a mixture (reaction liquid) of a sample (specimen) and a reagent (calibration liquid). The term "object to be measured" refers to a substance to be measured by the measurement unit 60, and refers to the specimen itself, a substance contained in the specimen, or a component to be measured contained in the test object. The term "test object (specimen or sample specimen)" refers to a liquid containing a component to be measured, and refers to a biological sample (specimen) such as blood or urine, or a liquid (sample specimen) adjusted to show a known concentration or brightness, such as a control reagent or calibration reagent. In this embodiment, the liquids required for measurement (not including the specimen) are a cleaning liquid (CC liquid) that cleans the introduction nozzle 99 and washes away substances not required for measurement and substances after measurement, and a luminescent electrolyte (EB liquid) used in measurement by electrochemiluminescence method. Therefore, the automatic analyzer 1 of this embodiment has a liquid supply unit 20 for supplying CC liquid and a liquid supply unit 22 for supplying EB liquid.
本実施形態において、加温部50は、測定に必要な液体が流通する蛇管35を備える温調ブロックから成り、蛇管35をヒータ24により加熱することによって蛇管35内の測定に必要な液体を加温するようになっている。また、この加温部50の蛇管35には供給流路26,27を介して液体供給部20,22が接続されている。
In this embodiment, the heating unit 50 is made up of a temperature control block equipped with a coiled tube 35 through which the liquid required for the measurement flows, and the liquid required for the measurement in the coiled tube 35 is heated by heating the coiled tube 35 with a heater 24. In addition, the liquid supply units 20 and 22 are connected to the coiled tube 35 of the heating unit 50 via the supply flow paths 26 and 27.
また、加温部50と導入ノズル99との間には、4方電磁弁33を伴う結合トラフ34が介挿されている。この場合、4方電磁弁33は、外気に連通するエア取り込み管(図示せず)が接続する第1のポート33aと、蛇管35を経由してCC液用の液体供給部20に連通する連通管31が接続する第2のポート33bと、蛇管35を経由してEB液用の液体供給部22に連通する連通管32が接続する第3のポート33cとを有する。
A connecting trough 34 with a four-way solenoid valve 33 is interposed between the heating section 50 and the introduction nozzle 99. In this case, the four-way solenoid valve 33 has a first port 33a connected to an air intake pipe (not shown) that communicates with the outside air, a second port 33b connected to a communication pipe 31 that communicates with the liquid supply section 20 for the CC liquid via a serpentine 35, and a third port 33c connected to a communication pipe 32 that communicates with the liquid supply section 22 for the EB liquid via a serpentine 35.
導入ノズル99は、測定対象物を含む反応液の設置箇所に移動して反応液を吸引するとき以外は、結合トラフ34に接合しており、導入ノズル99が結合トラフ34に接合(接続)されることにより、加温部50からの測定に必要な液体と導入ノズル99により導入される反応液(測定対象物を含んだ液体)とを接続流路40を介して測定部60の流路60aへ流し込む流通路が形成される。そして、反応液(したがって、測定対象物)を吸引した導入ノズル99が結合トラフ34に接合した後に、「測定に必要な液体」が導入ノズル99内を移動することにより反応液と混合して「測定対象物を含んだ液体」となる。
The introduction nozzle 99 is joined to the combination trough 34 except when it is moved to the installation location of the reaction liquid containing the measurement target to aspirate the reaction liquid. By joining (connecting) the introduction nozzle 99 to the combination trough 34, a flow path is formed that flows the liquid necessary for measurement from the heating unit 50 and the reaction liquid (liquid containing the measurement target) introduced by the introduction nozzle 99 into the flow path 60a of the measurement unit 60 via the connection flow path 40. Then, after the introduction nozzle 99, which has aspirated the reaction liquid (and therefore the measurement target), is joined to the combination trough 34, the "liquid necessary for measurement" moves inside the introduction nozzle 99 and mixes with the reaction liquid to become the "liquid containing the measurement target."
また、本実施形態において、フローセルを構成する測定部60は、金属ボックスの周囲を断熱材で保護して構成され、測定対象物を含んだ液体が流通される流路60a、発光量を測定する光学センサ60b(受光素子を含む光学装置:例えば、光電子増倍管など)、磁性粒子に測定対象物及び標識物質が結合されて成る複合体を磁気的に捕捉する電極部70等を有する。電極部70は、流路60aを挟んで対向する作用電極71と対向電極72とから成るとともに、作用電極71の側で流路60aの外壁に近接(又は接触)されることにより磁場を発生する磁石73を有する。この磁石73による磁気的な吸引力により、測定対象物を含む磁性粒子(すなわち、複合体)が作用電極71に捕捉されて残る。
In this embodiment, the measurement unit 60 constituting the flow cell is constructed by protecting the periphery of a metal box with a thermal insulating material, and includes a flow path 60a through which a liquid containing the object to be measured flows, an optical sensor 60b (an optical device including a light receiving element: for example, a photomultiplier tube) that measures the amount of light emitted, and an electrode unit 70 that magnetically captures a complex formed by binding the object to be measured and the labeling substance to the magnetic particles. The electrode unit 70 is composed of a working electrode 71 and a counter electrode 72 that face each other across the flow path 60a, and has a magnet 73 that generates a magnetic field when brought close to (or in contact with) the outer wall of the flow path 60a on the working electrode 71 side. The magnetic attraction force of this magnet 73 causes the magnetic particles containing the object to be measured (i.e., the complex) to be captured and remain on the working electrode 71.
その後、この捕捉状態で例えば磁石73を離脱させることにより磁場を除去した後、電極部70に電圧を印加して複合体を形成する標識物質の電気化学発光を発生させる(磁性粒子及び測定対象物と複合体を形成する標識物質が発光する)ことにより、光子の数をデジタル計測する。この計測したデジタル値を、「光検量線」を用いてデジタル推定値(補正された測光値)に換算する。その後、換算したデジタル推定値を用いて「光量と濃度又は活性値等の関係を示す」検量線に基づいて、測定対象物(測定対象成分)を定性的又は定量的に測定する。
Then, in this captured state, the magnetic field is removed, for example by removing the magnet 73, and a voltage is applied to the electrode section 70 to generate electrochemiluminescence of the labeled substance that forms a complex (the labeled substance that forms a complex with the magnetic particles and the object to be measured emits light), thereby digitally measuring the number of photons. This measured digital value is converted into a digital estimate (corrected photometric value) using an "optical calibration curve". The converted digital estimate is then used to qualitatively or quantitatively measure the object to be measured (the component to be measured) based on the calibration curve "which shows the relationship between the amount of light and the concentration or activity value, etc."
なお、測定部60には、測定対象物を含んだ液体の温度を検出する温度センサ75が設けられる。また、測定部60から延びる流路の下流側には、液体供給部20,22から測定に必要な液体を加温部50を通じて測定部60に供給するべく駆動するポンプ(例えばペリスタポンプ)49が介挿されており、その下流側端部には、測定済みの測定対象物を含んだ液体等を廃液として回収するタンク74が設けられている。
The measuring unit 60 is provided with a temperature sensor 75 that detects the temperature of the liquid containing the object to be measured. A pump (e.g., a peristaltic pump) 49 is inserted downstream of the flow path extending from the measuring unit 60, and is driven to supply the liquid required for measurement from the liquid supply units 20, 22 to the measuring unit 60 via the heating unit 50. At the downstream end of the flow path, a tank 74 is provided to collect the liquid containing the object to be measured after it has been measured as waste liquid.
また、本実施形態の自動分析装置1は、導入ノズル99、電極部70、光学センサ60b、及びポンプ49の動作を制御する制御部10を備える。図1において、制御部10と各部の電気的な接続線は破線の矢印線で示している。なお、測定部60の電極71、72、温度センサ75、磁石73を駆動する磁石駆動部(図示せず)等も、制御部10と電気的に接続されているが、図1では簡略化のために接続線を省略している。
The automated analyzer 1 of this embodiment also includes a control unit 10 that controls the operation of the introduction nozzle 99, the electrode unit 70, the optical sensor 60b, and the pump 49. In FIG. 1, the electrical connection lines between the control unit 10 and each unit are indicated by dashed arrows. Note that the electrodes 71 and 72 of the measurement unit 60, the temperature sensor 75, the magnet drive unit (not shown) that drives the magnet 73, and the like are also electrically connected to the control unit 10, but the connection lines have been omitted from FIG. 1 for simplification.
ところで、上記構成を備える本実施形態の自動分析装置1は、受光センサ(受光装置)60bを有する測定部60と、制御部10の計測制御部16(図7参照)との協働により、標識物質の発光に伴ってその光量をフォトンカウンティング方式(デジタル方式)により計測し、光量の計測値を、光検量線を用いてデジタル推定値に換算するよう構成される。自動分析装置1に固有の光検量線は、自動分析装置1をインストール(搬入)する前に作成されて、光検量線記憶部16bに記憶される。
The automated analyzer 1 of this embodiment having the above configuration is configured to measure the amount of light emitted by the labeled substance using a photon counting method (digital method) in cooperation with the measurement unit 60 having a light receiving sensor (light receiving device) 60b and the measurement control unit 16 (see Figure 7) of the control unit 10, and to convert the measured value of the amount of light into a digital estimated value using an optical calibration curve. The optical calibration curve specific to the automated analyzer 1 is created before installing (carrying in) the automated analyzer 1, and is stored in the optical calibration curve storage unit 16b.
光検量線は、測定対象物の濃度に応じて輝度が変化する複数のサンプル試料を、自動分析装置1によりデジタル計測したデジタル計測値と、アナログ計測器によるアナログ計測値とにより生成する。図7に、自動分析装置1の制御部及び光検量線を生成するために必要な構成の機能ブロック図の一例を示す。自動分析装置1の制御部10は、自動分析装置各部とのデータの入出力ための入出力インターフェース11と、装置全体を制御する主制御部12、ノズル、弁、ヒータ、その他の各部の動作を制御する動作制御部15,測定部60によるデジタル計測を制御する測定制御部16、光検量線を生成する光検量線生成部17を備えている。光検量線生成部17に代えて、外部の光検量線生成装置117を使用することも可能であり、この場合には、光検量線生成部17を自動分析装置1内に設ける必要はない。
The optical calibration curve is generated from digital measurement values obtained by digitally measuring multiple sample specimens whose luminance changes according to the concentration of the substance to be measured using the automatic analyzer 1 and analog measurement values obtained using an analog measuring device. FIG. 7 shows an example of a functional block diagram of the control unit of the automatic analyzer 1 and the configuration required to generate the optical calibration curve. The control unit 10 of the automatic analyzer 1 includes an input/output interface 11 for inputting and outputting data to and from each unit of the automatic analyzer, a main control unit 12 for controlling the entire device, an operation control unit 15 for controlling the operation of the nozzle, valve, heater, and other units, a measurement control unit 16 for controlling digital measurement by the measurement unit 60, and an optical calibration curve generation unit 17 for generating the optical calibration curve. Instead of the optical calibration curve generation unit 17, an external optical calibration curve generation device 117 can also be used, and in this case, it is not necessary to provide the optical calibration curve generation unit 17 within the automatic analyzer 1.
光検量線を生成する場合、自動分析装置1でデジタル計測するサンプル試料と同じものをアナログ計測器160で計測し、濃度の異なる複数のサンプル試料のデジタル計測値とアナログ計測値の双方を光検量線生成部17又は光検量線生成装置117に入力する。測定に使用する複数のサンプル試料は、常時自動分析装置1に備える必要はなく、光検量線作成のときに(装置1を搬入する前に)、導入ノズル99により分注してデジタル測定できれば良い。アナログ計測は、自動分析装置1がアナログ計測器を備える場合にはそれを用いることが可能であるが、通常、外部アナログ計測器160を用いて計測する。
When generating an optical calibration curve, the same sample specimens as those digitally measured by the automatic analyzer 1 are measured by the analog measuring device 160, and both the digital and analog measurement values of multiple sample specimens with different concentrations are input to the optical calibration curve generating unit 17 or the optical calibration curve generating device 117. The multiple sample specimens used for measurement do not need to be kept in the automatic analyzer 1 at all times, and it is sufficient if they can be dispensed using the introduction nozzle 99 and digitally measured when creating the optical calibration curve (before the device 1 is brought in). Analog measurements can be made using an analog measuring device if the automatic analyzer 1 is equipped with one, but typically measurements are made using an external analog measuring device 160.
光検量線の生成工程の一例を図6に示す。光検量線は、例えば、図6に示されるような処理ステップによって生成することができる。以下、受光センサ60bとして光電子増倍管を使用して測定するものとして説明する。デジタル推定値を算出する式は、自動分析装置1が工場出荷される前又は自動分析装置1がインストールされる前に、以下の手順で作成されて、自動分析装置1内に記憶される。
An example of the process for generating an optical calibration curve is shown in FIG. 6. The optical calibration curve can be generated, for example, by the process steps shown in FIG. 6. In the following, a description will be given of a case where a photomultiplier tube is used as the light receiving sensor 60b for measurement. The formula for calculating the digital estimate is created in the following procedure and stored in the automatic analyzer 1 before the automatic analyzer 1 is shipped from the factory or before the automatic analyzer 1 is installed.
光電子増倍管に光が入射すると光電面から光電子が放出され、その電子が電子増倍部で段階的に増幅され、陽極に達し、出力処理回路に接続される。「アナログ方式」とは、光電子増倍管の電子出力を電流量として扱う信号処理方法をいい、「デジタル方式」とは、パルス状になったものを二値化して計数する信号処理方法をいう。一般的にはアナログ方式は広い測定レンジが必要な測定に使用され、デジタル方式は微弱光の測定に使用される。
When light enters a photomultiplier tube, photoelectrons are emitted from the photocathode, which are then amplified in stages in the electron multiplier section before reaching the anode and being connected to an output processing circuit. The "analog method" refers to a signal processing method in which the electronic output of the photomultiplier tube is treated as a current, while the "digital method" refers to a signal processing method in which the pulsed output is converted to a binary value and counted. In general, the analog method is used for measurements that require a wide measurement range, while the digital method is used to measure weak light.
光検量線の構築においては、最初に、光量が既知で濃度等に応じて輝度が互いに異なる複数種のサンプル試料(検査対象物のサンプル試料)を用意する(図6のステップS1)。特に、ここでは、一例として、測定したい受光強度範囲内の輝度(カウント値)を示すRu標識抗体結合磁気粒子サンプルを14段階分用意する。これに関連して、図5には、輝度が互いに異なる14個のRu標識抗体結合磁気粒子サンプル試料S1~S14のそれぞれに関する計測値データの一例が示されている。図中、Aは、光量のアナログ計測値(カウント値)を示し、Bは、光量のデジタル計測値を示し、Cは、後述する一次直線式から得られたデジタル推定値を示し、Dは、後述する換算式(光検量線)によるデジタル推定値の変換値(補正されたデジタル推定値)を示している。また、図5には、これらの値A、B,C,Dに加えて、デジタル推定値の補正後の誤差の割合(補正後係数誤差)も示されている。
In constructing the optical calibration curve, first, multiple types of sample specimens (sample specimens of the test object) with known light quantities and different brightnesses depending on the concentration, etc. are prepared (step S1 in FIG. 6). In particular, here, as an example, 14 levels of Ru-labeled antibody-bound magnetic particle samples showing brightnesses (count values) within the range of light intensity to be measured are prepared. In relation to this, FIG. 5 shows an example of measurement value data for each of 14 Ru-labeled antibody-bound magnetic particle samples S1 to S14 with different brightnesses. In the figure, A indicates the analog measurement value (count value) of the light quantity, B indicates the digital measurement value of the light quantity, C indicates the digital estimate obtained from the linear equation described later, and D indicates the conversion value (corrected digital estimate) of the digital estimate using the conversion equation (optical calibration curve) described later. In addition to these values A, B, C, and D, FIG. 5 also shows the percentage of error after correction of the digital estimate (corrected coefficient error).
輝度が互いに異なる14個のサンプル試料S1~S14を用意し、各サンプル試料S1~S14に関してアナログ方式により得られるアナログ計測値を取得する(ステップS2)。ここでは、一例として、各サンプル試料S1~S14に関し、リニアリティの良い受光器を備える装置(アナログ測定が可能なアナログ測定装置)を用いて図5に示される光量のアナログ計測値A(A1~A14)を取得する。
Fourteen sample specimens S1 to S14 with different luminances are prepared, and analog measurement values obtained by an analog method are obtained for each sample specimen S1 to S14 (step S2). Here, as an example, an analog measurement value A (A1 to A14) of the light intensity shown in Figure 5 is obtained for each sample specimen S1 to S14 using an apparatus equipped with a photoreceiver with good linearity (an analog measurement apparatus capable of analog measurement).
その後、同じ14個の各サンプル試料S1~S14に関してデジタル方式により得られるデジタル計測値を取得する(ステップS3)。ここでは、同じ14個のサンプル試料S1~S14を、光検量性を作成したいデジタル測定装置上で計測し、デジタル計測値(デジタル実測値)B(B1~B14)を得る。
Then, digital measurement values obtained by a digital method for each of the same 14 sample specimens S1 to S14 are obtained (step S3). Here, the same 14 sample specimens S1 to S14 are measured on a digital measuring device for which optical calibration is to be performed, and digital measurement values (digital actual measurements) B (B1 to B14) are obtained.
続いて、取得した14個の前記アナログ計測値A1~A14及び取得した14個の前記デジタル計測値B1~B14を、その一方がx座標、他方がy座標となる二次元座標平面上にプロットされるデータとする。ここでは、アナログ計測値(アナログ測定値)Aをx座標として、また、デジタル計測値(デジタル測光値)Bをy座標としてそれぞれ二次元座標平面上にプロットする(ステップS4)。そのようなプロット図が図2に示される。
Then, the 14 acquired analog measurement values A1 to A14 and the 14 acquired digital measurement values B1 to B14 are treated as data to be plotted on a two-dimensional coordinate plane, one of which is the x coordinate and the other is the y coordinate. Here, the analog measurement value (analog measurement value) A is plotted as the x coordinate, and the digital measurement value (digital photometric value) B is plotted as the y coordinate on the two-dimensional coordinate plane (step S4). Such a plot is shown in Figure 2.
次に、図2の二次元座標平面上のプロット(プロットデータ)において直線性が認められるデジタル計測値の範囲内でアナログ計測値A及びデジタル計測値Bを2つの変数とする一次直線式を最小二乗法により算出する(ステップS5)。ここでは、前記デジタル測定装置のリニアリティ範囲内のデジタル計測値(例えばB3~B7)と前記アナログ測定装置で得られた対応する範囲内のアナログ計測値(例えばA3~A7)の数値とに最小二乗法を用いて(例えば、Excel(登録商標)を用いた最小二乗法による直線フィッティングにより)、アナログ計測値(アナログ測定値)Aをx座標とする一次直線式を算出する。そのような一次直線式の一例(y=72.159x-774304の直線L1)が図3に示される。
Next, a linear equation is calculated by the least squares method with analog measurement value A and digital measurement value B as two variables within the range of digital measurement values where linearity is recognized in the plot (plot data) on the two-dimensional coordinate plane in Figure 2 (step S5). Here, the least squares method is used for the digital measurement values (e.g. B3 to B7) within the linearity range of the digital measuring device and the analog measurement values (e.g. A3 to A7) within the corresponding range obtained by the analog measuring device to calculate a linear equation with analog measurement value A as the x-coordinate (e.g. by linear fitting using the least squares method with Excel (registered trademark)). An example of such a linear equation (straight line L1 with y = 72.159x - 774304) is shown in Figure 3.
このようにして得られた一次直線式にアナログ計測値A1~A14を代入することにより、図2に示される二次元座標平面上のプロットにおいて直線性が認められなかったデジタル計測値Bの範囲も含めて、デジタル推定値C1~C14を取得する(ステップS6)。
By substituting the analog measurement values A1 to A14 into the linear equation thus obtained, digital estimate values C1 to C14 are obtained, including the range of digital measurement values B where no linearity was observed in the plot on the two-dimensional coordinate plane shown in Figure 2 (step S6).
最後に、デジタル計測値B1~B14をx座標とし、図3の一次直線式から得られたデジタル推定値C1~C14をy座標として、二次元座標平面上にプロットし、最小二乗法によって、デジタル計測値(デジタル実測値)Bを補正されたデジタル推定値(直線性のあるデジタル推定値)Dに換算する換算式を光検量線として算出する(ステップS7)。ここでは、例えばExcel(登録商標)を用いた最小二乗法による関数のフィッティングによって4次関数の近似曲線C1(切片が0の4次式;y=(8E-24)x4-(4E-16)x3+(1E-0.8)x2+0.9229x)を得る。この式において、“E”はコンピュータにおける指数表記(E表記)であり、例えば式中の(8E―24)は、「8×10の-24乗」を表している。
なお、ここでは近似曲線C1の式でデジタル推定値を算出する例を示したが、比較テーブル又はグラフ等によりデジタル推定値を算出しても良い。 Finally, the digital measurement values B1 to B14 are plotted on a two-dimensional coordinate plane as the x coordinates and the digital estimate values C1 to C14 obtained from the linear equation in Fig. 3 are plotted as the y coordinates, and a conversion equation for converting the digital measurement values (digital actual measurements) B into corrected digital estimate values (linear digital estimate values) D is calculated as an optical calibration curve by the least squares method (step S7). Here, for example, an approximation curve C1 of a quartic function (quartic equation with an intercept of 0; y = (8E-24) x4 - (4E-16) x3 + (1E-0.8) x2 + 0.9229x) is obtained by fitting a function by the least squares method using Excel (registered trademark). In this equation, "E" is an exponential notation (E notation) in a computer, and for example, (8E-24) in the equation represents "8 x 10 to the power of -24".
Although an example has been given here in which the digital estimated value is calculated using the equation of the approximation curve C1, the digital estimated value may also be calculated using a comparison table or graph, etc.
なお、ここでは近似曲線C1の式でデジタル推定値を算出する例を示したが、比較テーブル又はグラフ等によりデジタル推定値を算出しても良い。 Finally, the digital measurement values B1 to B14 are plotted on a two-dimensional coordinate plane as the x coordinates and the digital estimate values C1 to C14 obtained from the linear equation in Fig. 3 are plotted as the y coordinates, and a conversion equation for converting the digital measurement values (digital actual measurements) B into corrected digital estimate values (linear digital estimate values) D is calculated as an optical calibration curve by the least squares method (step S7). Here, for example, an approximation curve C1 of a quartic function (quartic equation with an intercept of 0; y = (8E-24) x4 - (4E-16) x3 + (1E-0.8) x2 + 0.9229x) is obtained by fitting a function by the least squares method using Excel (registered trademark). In this equation, "E" is an exponential notation (E notation) in a computer, and for example, (8E-24) in the equation represents "8 x 10 to the power of -24".
Although an example has been given here in which the digital estimated value is calculated using the equation of the approximation curve C1, the digital estimated value may also be calculated using a comparison table or graph, etc.
ここで、受光センサの出力パルスの重なりによるパルス減、及びそれ以外の測光誤差を含んだ合成関数が、前記換算式になっていると考えられる。
Here, the conversion formula is considered to be a composite function that includes pulse reduction due to overlapping of output pulses from the light receiving sensor, as well as other photometric errors.
本実施形態の自動分析装置1は、以上のようにして得られる光検量線を用いて、光量のデジタル計測値を補正されたデジタル推定値に換算するようになっているため、光量の増大に伴って測光値誤差が増大することを抑制して、サンプルに関してデジタル方式により得られる計測結果の精度を高めることができる(フォトンカウンティング法における計測データの精度を向上させることができる)だけでなく、アナログ計測値及びデジタル計測値の二次元座標平面上のプロットにおいて直線性が認められるデジタル計測値の範囲を直線性が認められないデジタル計測値の範囲まで拡張できるようになり(フォトンカウンティング法の直線域を拡張することができ)、光検量線の換算式の係数のみの情報で測定系の固体差による違いを補正できるため、ユニット毎に付属させる情報量を節約することができる。
The automated analyzer 1 of this embodiment uses the optical calibration curve obtained as described above to convert the digital measurement value of the light quantity into a corrected digital estimate, so that not only can the increase in photometric value error that accompanies an increase in the light quantity be suppressed and the accuracy of the measurement results obtained digitally for the sample be improved (the accuracy of the measurement data in the photon counting method can be improved), but also the range of digital measurement values in which linearity is recognized in a plot of analog measurement values and digital measurement values on a two-dimensional coordinate plane can be expanded to the range of digital measurement values in which linearity is not recognized (the linear range of the photon counting method can be expanded), and differences due to individual differences in the measurement system can be corrected using only the information on the coefficients of the conversion formula for the optical calibration curve, thereby reducing the amount of information to be attached to each unit.
以上、本発明を一実施形態について説明してきたが、本発明は、前述した実施形態に限定されず、その要旨を逸脱しない範囲で種々変形して実施できる。例えば、本発明において、測定部等の構成は前述した構成に限定されない。また、実際に測定値をプロットすることなく例えばメモリ上のデータとして数値処理を行なってもよい。また、本発明の要旨を逸脱しない範囲内において、前述した実施の形態の一部または全部を組み合わせてもよく、あるいは、前述した実施の形態のうちの1つから構成の一部が省かれてもよい。
Although one embodiment of the present invention has been described above, the present invention is not limited to the above-described embodiment and can be modified in various ways without departing from the gist of the invention. For example, in the present invention, the configuration of the measurement unit, etc. is not limited to the above-described configuration. Furthermore, numerical processing may be performed, for example, as data in a memory, without actually plotting the measured values. Furthermore, some or all of the above-described embodiments may be combined, or part of the configuration may be omitted from one of the above-described embodiments, without departing from the gist of the present invention.
1 自動分析装置
10 制御部
16 測定制御部
17 光検量線生成部
60 測定部
117 光検量線生成装置
160 アナログ計測器Reference Signs List 1 Automatic analysis device 10 Control unit 16 Measurement control unit 17 Optical calibration curve generating unit 60 Measurement unit 117 Optical calibration curve generating device 160 Analog measuring instrument
10 制御部
16 測定制御部
17 光検量線生成部
60 測定部
117 光検量線生成装置
160 アナログ計測器
Claims (8)
- 検査対象物及び標識物質を含む試薬を受け入れ、前記標識物質から得られる光量をデジタル計測し、前記検査対象物に含まれる測定対象物を定性的又は定量的に測定する自動分析方法において、
異なる濃度の前記測定対象物を含む複数のサンプル試料をアナログ計測したアナログ計測値とデジタル計測したデジタル計測値から得られる光検量線を用いて、前記検査対象物の前記光量のデジタル計測値をデジタル推定値に換算し、換算した該デジタル推定値を用いて前記検査対象物の前記測定対象物を計測することを特徴とする自動分析方法。 1. An automatic analysis method for receiving a test object and a reagent containing a labeling substance, digitally measuring an amount of light obtained from the labeling substance, and qualitatively or quantitatively measuring a measurement object contained in the test object, comprising:
An automatic analysis method comprising the steps of: converting the digital measurement value of the light quantity of the test object into a digital estimated value using an optical calibration curve obtained from analog measurement values obtained by analog measurement and digital measurement values obtained by digital measurement of a plurality of sample specimens containing the test object at different concentrations; and measuring the test object of the test object using the converted digital estimated value. - 前記光検量線は、
異なる濃度の前記測定対象物を含む複数のサンプル試料を、アナログ計測した前記アナログ計測値とデジタル計測した前記デジタル計測値の回帰直線から前記デジタル推定値を求め、該デジタル推定値と前記デジタル計測値の回帰線により生成されることを特徴とする請求項1に記載の自動分析方法。 The optical calibration curve is
The automatic analysis method according to claim 1, characterized in that the digital estimated value is obtained from a regression line between the analog measurement value obtained by analog measurement and the digital measurement value obtained by digital measurement of a plurality of sample specimens containing the object to be measured at different concentrations, and the digital estimated value is generated from the regression line between the digital estimated value and the digital measurement value. - 前記光検量線の生成工程は、
光量が既知で輝度が互いに異なる複数種の前記サンプル試料を用意するステップと、
前記各サンプル試料に関してアナログ方式により得られる前記アナログ計測値を取得するステップと、
前記各サンプル試料に関してデジタル方式により得られる前記デジタル計測値を取得するステップと、
前記アナログ計測値及び前記デジタル計測値を、その一方がX座標、他方がY座標となる二次元座標平面上にプロットされるデータとするステップと、
前記二次元座標平面上のプロットデータにおいて直線性が認められる前記デジタル計測値の範囲内で、前記アナログ計測値及び前記デジタル計測値を2つの変数とする一次直線式を最小二乗法により算出するステップと、
前記一次直線式に前記アナログ計測値を代入することにより、前記二次元座標平面上のプロットにおいて直線性が認められなかった前記デジタル計測値の範囲も含めて、前記デジタル測定値の前記デジタル推定値を取得するステップと、
前記デジタル計測値及び前記デジタル推定値を用いて最小二乗法により前記デジタル計測値を補正したデジタル推定値に換算する換算式を前記光検量線として算出するステップと、
を含むことを特徴とする請求項1に記載の自動分析方法。 The step of generating an optical calibration curve includes:
preparing a plurality of sample specimens each having a known amount of light and different brightness;
obtaining the analog measurements of each sample obtained by an analog method;
obtaining said digital measurements for each said sample specimen;
A step of plotting the analog measurement value and the digital measurement value on a two-dimensional coordinate plane, one of which is an X coordinate and the other is a Y coordinate;
calculating a linear equation using a least squares method, the linear equation having the analog measurement value and the digital measurement value as two variables, within a range of the digital measurement value where linearity is recognized in the plot data on the two-dimensional coordinate plane;
Obtaining the digital estimate of the digital measurement value by substituting the analog measurement value into the linear equation, including the range of the digital measurement value where linearity was not observed in the plot on the two-dimensional coordinate plane;
calculating, as the optical calibration curve, a conversion formula for converting the digital measurement value into a corrected digital estimation value by a least squares method using the digital measurement value and the digital estimation value;
The method for automatic analysis according to claim 1, further comprising: - 前記換算式は切片が0の4次式であることを特徴とする請求項2に記載の自動分析方法。 The automatic analysis method according to claim 2, characterized in that the conversion formula is a fourth-order formula with an intercept of 0.
- 検査対象物及び標識物質を含む試薬を受け入れ、前記標識物質から得られる光量をデジタル値として計測し、前記検査対象物に含まれる測定対象物を定性的又は定量的に測定する自動装置において使用するデジタル推定値に換算する光検量線の作成方法であって、
異なる濃度の前記測定対象物を含む複数のサンプル試料をアナログ計測したアナログ計測値とデジタル計測したデジタル計測値との回帰直線を作成し、
前記回帰直線に基づいて、前記サンプル試料の前記デジタル計測値の補正値を求め、
前記補正値と前記サンプル試料のデジタル計測値とに基づいて、前記測定対象物のデジタル計測値を前記デジタル推定値に換算する光検量線を求める、
ことを特徴とする光検量線の作成方法。 A method for creating an optical calibration curve, comprising: receiving a test object and a reagent containing a labeling substance, measuring an amount of light obtained from the labeling substance as a digital value, and converting the measured value into a digital estimated value for use in an automatic device that qualitatively or quantitatively measures a measurement object contained in the test object,
A regression line is created between analog measurement values obtained by analog measurement of a plurality of sample specimens containing the measurement target substance at different concentrations and digital measurement values obtained by digital measurement of the same.
determining a correction value for the digital measurement value of the sample specimen based on the regression line;
determining an optical calibration curve for converting the digital measurement value of the measurement object into the digital estimated value based on the correction value and the digital measurement value of the sample specimen;
A method for creating an optical calibration curve. - 前記光検量線を作成する方法は、
光量が既知で輝度が互いに異なる複数種の前記サンプル試料を用意するステップと、
前記各サンプル試料に関してアナログ方式により得られる前記アナログ計測値を取得するステップと、
前記各サンプル試料に関してデジタル方式により得られる前記デジタル計測値を取得するステップと、
前記アナログ計測値及び前記デジタル計測値を、その一方がX座標、他方がY座標となる二次元座標平面上にプロットされるデータとするステップと、
前記二次元座標平面上のプロットデータにおいて直線性が認められる前記デジタル計測値の範囲内で、前記アナログ計測値及び前記デジタル計測値を2つの変数とする一次直線式を最小二乗法により算出するステップと、
前記一次直線式に前記アナログ計測値を代入することにより、前記二次元座標平面上のプロットにおいて直線性が認められなかった前記デジタル計測値の範囲も含めて、前記デジタル計測値の前記デジタル推定値を取得するステップと、
前記デジタル計測値及び前記デジタル推定値を用いて最小二乗法により前記デジタル計測値を補正されたデジタル推定値に換算する換算式を前記光検量線として生成するステップと、
を備えることを特徴とする請求項5に記載の光検量線の作成方法。 The method for creating the optical calibration curve includes the steps of:
preparing a plurality of sample specimens each having a known amount of light and different brightness;
obtaining the analog measurements of each sample obtained by an analog method;
obtaining said digital measurements for each said sample specimen;
A step of plotting the analog measurement value and the digital measurement value on a two-dimensional coordinate plane, one of which is an X coordinate and the other is a Y coordinate;
calculating a linear equation using a least squares method, the linear equation having the analog measurement value and the digital measurement value as two variables, within a range of the digital measurement value where linearity is recognized in the plot data on the two-dimensional coordinate plane;
acquiring the digital estimate of the digital measurement value, including a range of the digital measurement value in which linearity was not observed in the plot on the two-dimensional coordinate plane, by substituting the analog measurement value into the linear equation;
generating, as the optical calibration curve, a conversion equation for converting the digital measurement value into a corrected digital estimation value by a least squares method using the digital measurement value and the digital estimation value;
The method for creating an optical calibration curve according to claim 5, further comprising: - 前記換算式は切片が0の4次式であることを特徴とする請求項5に記載の自動分析装置。 The automatic analyzer according to claim 5, characterized in that the conversion formula is a fourth-order formula with an intercept of 0.
- 検査対象物及び標識物質を含む試薬を受け入れる混合液導入部と、
前記標識物質から得られる光量を計測したデジタル計測値から、前記検査対象物に含まれる測定対象物を定性的又は定量的に測定する測定部及び測定制御部と、を備え、
前記測定制御部は、請求項5乃至7のいずれか1項により作成した光検量線を記憶しており、該光検量線を用いて前記デジタル計測値をデジタル推定値に変換し、該デジタル推定値に基づいて前記測定対象物を定性的又は定量的に測定する、
ことを特徴とする自動分析装置。 a mixture introduction section for receiving a test object and a reagent containing a labeling substance;
A measurement unit and a measurement control unit that qualitatively or quantitatively measure a measurement target contained in the test target from a digital measurement value obtained by measuring the amount of light obtained from the labeling substance,
The measurement control unit stores an optical calibration curve created according to any one of claims 5 to 7, converts the digital measurement value into a digital estimated value using the optical calibration curve, and measures the measurement object qualitatively or quantitatively based on the digital estimated value.
An automatic analyzer characterized by:
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023055406 | 2023-03-30 | ||
JP2023-055406 | 2023-03-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024204729A1 true WO2024204729A1 (en) | 2024-10-03 |
Family
ID=92905904
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2024/013078 WO2024204729A1 (en) | 2023-03-30 | 2024-03-29 | Automatic analysis method, light calibration curve creation method, and automatic analysis device |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2024204729A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0718757B2 (en) * | 1989-12-11 | 1995-03-06 | アロカ株式会社 | Photon counting photometer |
JP2005207955A (en) * | 2004-01-23 | 2005-08-04 | Hamamatsu Photonics Kk | Circuit for photodetection, and photodetector |
WO2010087108A1 (en) * | 2009-01-30 | 2010-08-05 | 株式会社 日立ハイテクノロジーズ | Automatic analysis apparatus |
JP2013521500A (en) * | 2010-03-01 | 2013-06-10 | クワンテリクス コーポレーション | Method or system for extending the dynamic range in an assay to detect molecules or particles |
JP2014119282A (en) * | 2012-12-13 | 2014-06-30 | Fuji Electric Co Ltd | Linearity-compensating bleeder circuit and radiation detector |
-
2024
- 2024-03-29 WO PCT/JP2024/013078 patent/WO2024204729A1/en unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0718757B2 (en) * | 1989-12-11 | 1995-03-06 | アロカ株式会社 | Photon counting photometer |
JP2005207955A (en) * | 2004-01-23 | 2005-08-04 | Hamamatsu Photonics Kk | Circuit for photodetection, and photodetector |
WO2010087108A1 (en) * | 2009-01-30 | 2010-08-05 | 株式会社 日立ハイテクノロジーズ | Automatic analysis apparatus |
JP2013521500A (en) * | 2010-03-01 | 2013-06-10 | クワンテリクス コーポレーション | Method or system for extending the dynamic range in an assay to detect molecules or particles |
JP2014119282A (en) * | 2012-12-13 | 2014-06-30 | Fuji Electric Co Ltd | Linearity-compensating bleeder circuit and radiation detector |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5124498B2 (en) | Automatic analyzer | |
JP7041623B2 (en) | Electrochemiluminescent methods and equipment for detecting analytes in liquid samples | |
US9915594B2 (en) | Sample analyzer and a sample analyzing method | |
US20090169434A1 (en) | Dispensing apparatus and automatic analyzer | |
WO2015098473A1 (en) | Automatic analysis device and analysis method | |
US10690688B2 (en) | Automatic analyzer | |
CN101393227B (en) | Sample analyzer and sample analyzing method | |
CN110892253A (en) | Method for monitoring detection operation of analyte in liquid sample | |
JPWO2008155820A1 (en) | Abnormality identification method and analyzer | |
JP5977654B2 (en) | Luminescence method and analysis system for detecting an analyte in a liquid sample | |
JP5028350B2 (en) | Automatic analyzer | |
CN114137197A (en) | Calibration method and device of chemiluminescence immunoassay analyzer | |
CN111198181A (en) | Method and apparatus for electrochemiluminescence detection | |
WO2024204729A1 (en) | Automatic analysis method, light calibration curve creation method, and automatic analysis device | |
CN110869769A (en) | Test kit, test method, and dispensing device | |
CN110702767B (en) | Automatic analyzer | |
JPH06308131A (en) | Data processing apparatus | |
JP2012026728A (en) | Analyzer | |
CN112639455B (en) | Electrolyte measuring device | |
US20170138973A1 (en) | Automatic analyzer and method | |
WO2024204825A1 (en) | Analysis method for automated analysis device, and automated analysis device | |
JP6762927B2 (en) | Signal processing device and signal processing method | |
JP4838086B2 (en) | Chemiluminescence measuring device | |
CN115128061A (en) | Electrochemical luminescence analyzer | |
JP2008203008A (en) | Autoanalyzer |