WO2024204599A1 - Biomarker for bladder cancer - Google Patents
Biomarker for bladder cancer Download PDFInfo
- Publication number
- WO2024204599A1 WO2024204599A1 PCT/JP2024/012784 JP2024012784W WO2024204599A1 WO 2024204599 A1 WO2024204599 A1 WO 2024204599A1 JP 2024012784 W JP2024012784 W JP 2024012784W WO 2024204599 A1 WO2024204599 A1 WO 2024204599A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- bladder cancer
- adgrg6
- biomarker
- enhancer
- mutations
- Prior art date
Links
- 206010005003 Bladder cancer Diseases 0.000 title claims abstract description 91
- 239000000090 biomarker Substances 0.000 title claims abstract description 31
- 208000007097 Urinary Bladder Neoplasms Diseases 0.000 title description 59
- 201000005112 urinary bladder cancer Diseases 0.000 title description 53
- 230000035772 mutation Effects 0.000 claims abstract description 78
- 101000959602 Homo sapiens Adhesion G-protein coupled receptor G6 Proteins 0.000 claims abstract description 60
- 102100040023 Adhesion G-protein coupled receptor G6 Human genes 0.000 claims abstract description 59
- 239000003623 enhancer Substances 0.000 claims abstract description 45
- 210000003205 muscle Anatomy 0.000 claims abstract description 44
- 108090000623 proteins and genes Proteins 0.000 claims abstract description 6
- 102000004169 proteins and genes Human genes 0.000 claims abstract description 3
- 239000000523 sample Substances 0.000 claims description 76
- 108020004414 DNA Proteins 0.000 claims description 30
- 238000001514 detection method Methods 0.000 claims description 29
- 238000000034 method Methods 0.000 claims description 29
- 206010028980 Neoplasm Diseases 0.000 claims description 21
- OPTASPLRGRRNAP-UHFFFAOYSA-N cytosine Chemical group NC=1C=CNC(=O)N=1 OPTASPLRGRRNAP-UHFFFAOYSA-N 0.000 claims description 18
- 210000000349 chromosome Anatomy 0.000 claims description 17
- UYTPUPDQBNUYGX-UHFFFAOYSA-N guanine Chemical group O=C1NC(N)=NC2=C1N=CN2 UYTPUPDQBNUYGX-UHFFFAOYSA-N 0.000 claims description 16
- 238000004393 prognosis Methods 0.000 claims description 16
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 14
- 230000004083 survival effect Effects 0.000 claims description 14
- 238000007847 digital PCR Methods 0.000 claims description 11
- 229940104302 cytosine Drugs 0.000 claims description 9
- 125000003729 nucleotide group Chemical group 0.000 claims description 8
- 108020004635 Complementary DNA Proteins 0.000 claims description 6
- 238000010804 cDNA synthesis Methods 0.000 claims description 6
- 239000002299 complementary DNA Substances 0.000 claims description 6
- 239000002773 nucleotide Substances 0.000 claims description 6
- 238000010837 poor prognosis Methods 0.000 claims description 6
- 108091034117 Oligonucleotide Proteins 0.000 claims description 5
- 239000003550 marker Substances 0.000 claims description 5
- 230000008685 targeting Effects 0.000 claims description 5
- 239000007788 liquid Substances 0.000 claims description 3
- 108010017842 Telomerase Proteins 0.000 description 25
- 102100032938 Telomerase reverse transcriptase Human genes 0.000 description 25
- 238000011282 treatment Methods 0.000 description 15
- 210000004369 blood Anatomy 0.000 description 14
- 239000008280 blood Substances 0.000 description 14
- 239000013612 plasmid Substances 0.000 description 12
- 230000003321 amplification Effects 0.000 description 10
- 239000000126 substance Substances 0.000 description 10
- 102000039446 nucleic acids Human genes 0.000 description 9
- 108020004707 nucleic acids Proteins 0.000 description 9
- 150000007523 nucleic acids Chemical class 0.000 description 9
- 201000011510 cancer Diseases 0.000 description 8
- 238000006467 substitution reaction Methods 0.000 description 8
- 210000001519 tissue Anatomy 0.000 description 8
- 108700039691 Genetic Promoter Regions Proteins 0.000 description 7
- 238000012790 confirmation Methods 0.000 description 7
- 108091093088 Amplicon Proteins 0.000 description 6
- 238000002372 labelling Methods 0.000 description 6
- 108700028369 Alleles Proteins 0.000 description 5
- 108091092584 GDNA Proteins 0.000 description 5
- 101001001797 Homo sapiens Pleckstrin homology domain-containing family S member 1 Proteins 0.000 description 5
- 206010027476 Metastases Diseases 0.000 description 5
- 102100036244 Pleckstrin homology domain-containing family S member 1 Human genes 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 239000012634 fragment Substances 0.000 description 5
- 238000009801 radical cystectomy Methods 0.000 description 5
- 238000002271 resection Methods 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- 210000002700 urine Anatomy 0.000 description 5
- 238000010200 validation analysis Methods 0.000 description 5
- 238000002574 cystoscopy Methods 0.000 description 4
- 238000013461 design Methods 0.000 description 4
- 238000003745 diagnosis Methods 0.000 description 4
- 238000011304 droplet digital PCR Methods 0.000 description 4
- 238000001962 electrophoresis Methods 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 238000003384 imaging method Methods 0.000 description 4
- 230000003211 malignant effect Effects 0.000 description 4
- 230000009401 metastasis Effects 0.000 description 4
- 210000002381 plasma Anatomy 0.000 description 4
- 230000000306 recurrent effect Effects 0.000 description 4
- 238000007480 sanger sequencing Methods 0.000 description 4
- 238000001356 surgical procedure Methods 0.000 description 4
- RWQNBRDOKXIBIV-UHFFFAOYSA-N thymine Chemical compound CC1=CNC(=O)NC1=O RWQNBRDOKXIBIV-UHFFFAOYSA-N 0.000 description 4
- 230000002485 urinary effect Effects 0.000 description 4
- 239000013598 vector Substances 0.000 description 4
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 3
- 101150108583 ADGRG6 gene Proteins 0.000 description 3
- 206010064571 Gene mutation Diseases 0.000 description 3
- 101100378639 Homo sapiens ADGRG6 gene Proteins 0.000 description 3
- 238000002512 chemotherapy Methods 0.000 description 3
- 108091023290 ctRNA Proteins 0.000 description 3
- 239000000539 dimer Substances 0.000 description 3
- 239000007850 fluorescent dye Substances 0.000 description 3
- 230000009545 invasion Effects 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 238000012544 monitoring process Methods 0.000 description 3
- 238000010827 pathological analysis Methods 0.000 description 3
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 2
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 description 2
- 230000000692 anti-sense effect Effects 0.000 description 2
- 238000001574 biopsy Methods 0.000 description 2
- 210000001124 body fluid Anatomy 0.000 description 2
- 239000010839 body fluid Substances 0.000 description 2
- 108091092259 cell-free RNA Proteins 0.000 description 2
- 238000003748 differential diagnosis Methods 0.000 description 2
- 201000010099 disease Diseases 0.000 description 2
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 210000000265 leukocyte Anatomy 0.000 description 2
- 238000007834 ligase chain reaction Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 210000004877 mucosa Anatomy 0.000 description 2
- 210000000056 organ Anatomy 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 108091008146 restriction endonucleases Proteins 0.000 description 2
- 238000012163 sequencing technique Methods 0.000 description 2
- 229940113082 thymine Drugs 0.000 description 2
- 206010044412 transitional cell carcinoma Diseases 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 208000023747 urothelial carcinoma Diseases 0.000 description 2
- 229930024421 Adenine Natural products 0.000 description 1
- GFFGJBXGBJISGV-UHFFFAOYSA-N Adenine Chemical compound NC1=NC=NC2=C1N=CN2 GFFGJBXGBJISGV-UHFFFAOYSA-N 0.000 description 1
- 102000053602 DNA Human genes 0.000 description 1
- 108010014303 DNA-directed DNA polymerase Proteins 0.000 description 1
- 102000016928 DNA-directed DNA polymerase Human genes 0.000 description 1
- AHCYMLUZIRLXAA-SHYZEUOFSA-N Deoxyuridine 5'-triphosphate Chemical compound O1[C@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)[C@@H](O)C[C@@H]1N1C(=O)NC(=O)C=C1 AHCYMLUZIRLXAA-SHYZEUOFSA-N 0.000 description 1
- SHIBSTMRCDJXLN-UHFFFAOYSA-N Digoxigenin Natural products C1CC(C2C(C3(C)CCC(O)CC3CC2)CC2O)(O)C2(C)C1C1=CC(=O)OC1 SHIBSTMRCDJXLN-UHFFFAOYSA-N 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- 241000588724 Escherichia coli Species 0.000 description 1
- 208000034454 F12-related hereditary angioedema with normal C1Inh Diseases 0.000 description 1
- 101000666063 Homo sapiens WD repeat-containing protein 74 Proteins 0.000 description 1
- 238000007397 LAMP assay Methods 0.000 description 1
- 206010036790 Productive cough Diseases 0.000 description 1
- 108091028664 Ribonucleotide Proteins 0.000 description 1
- 108091081021 Sense strand Proteins 0.000 description 1
- 208000023915 Ureteral Neoplasms Diseases 0.000 description 1
- 206010046392 Ureteric cancer Diseases 0.000 description 1
- 208000006593 Urologic Neoplasms Diseases 0.000 description 1
- 102100038091 WD repeat-containing protein 74 Human genes 0.000 description 1
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 1
- 229960000643 adenine Drugs 0.000 description 1
- 239000011543 agarose gel Substances 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 239000002246 antineoplastic agent Substances 0.000 description 1
- 229940041181 antineoplastic drug Drugs 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000011616 biotin Substances 0.000 description 1
- 229960002685 biotin Drugs 0.000 description 1
- 235000020958 biotin Nutrition 0.000 description 1
- 210000001175 cerebrospinal fluid Anatomy 0.000 description 1
- 210000002808 connective tissue Anatomy 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000005547 deoxyribonucleotide Substances 0.000 description 1
- 125000002637 deoxyribonucleotide group Chemical group 0.000 description 1
- QONQRTHLHBTMGP-UHFFFAOYSA-N digitoxigenin Natural products CC12CCC(C3(CCC(O)CC3CC3)C)C3C11OC1CC2C1=CC(=O)OC1 QONQRTHLHBTMGP-UHFFFAOYSA-N 0.000 description 1
- SHIBSTMRCDJXLN-KCZCNTNESA-N digoxigenin Chemical compound C1([C@@H]2[C@@]3([C@@](CC2)(O)[C@H]2[C@@H]([C@@]4(C)CC[C@H](O)C[C@H]4CC2)C[C@H]3O)C)=CC(=O)OC1 SHIBSTMRCDJXLN-KCZCNTNESA-N 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 238000002651 drug therapy Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 208000016861 hereditary angioedema type 3 Diseases 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 239000000138 intercalating agent Substances 0.000 description 1
- 208000024312 invasive carcinoma Diseases 0.000 description 1
- 230000003902 lesion Effects 0.000 description 1
- 238000011528 liquid biopsy Methods 0.000 description 1
- 238000007403 mPCR Methods 0.000 description 1
- 230000036210 malignancy Effects 0.000 description 1
- 208000020984 malignant renal pelvis neoplasm Diseases 0.000 description 1
- 108020004999 messenger RNA Proteins 0.000 description 1
- 238000002703 mutagenesis Methods 0.000 description 1
- 231100000350 mutagenesis Toxicity 0.000 description 1
- 230000036438 mutation frequency Effects 0.000 description 1
- 238000001668 nucleic acid synthesis Methods 0.000 description 1
- 239000003129 oil well Substances 0.000 description 1
- 239000013610 patient sample Substances 0.000 description 1
- 210000004197 pelvis Anatomy 0.000 description 1
- 150000008300 phosphoramidites Chemical class 0.000 description 1
- 238000002616 plasmapheresis Methods 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 238000011248 postoperative chemotherapy Methods 0.000 description 1
- 239000013615 primer Substances 0.000 description 1
- 239000002987 primer (paints) Substances 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 238000001959 radiotherapy Methods 0.000 description 1
- 238000003753 real-time PCR Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 201000007444 renal pelvis carcinoma Diseases 0.000 description 1
- 239000002336 ribonucleotide Substances 0.000 description 1
- 125000002652 ribonucleotide group Chemical group 0.000 description 1
- 210000003296 saliva Anatomy 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000011519 second-line treatment Methods 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 210000001082 somatic cell Anatomy 0.000 description 1
- 210000003802 sputum Anatomy 0.000 description 1
- 208000024794 sputum Diseases 0.000 description 1
- 239000011550 stock solution Substances 0.000 description 1
- 210000004876 tela submucosa Anatomy 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 150000005691 triesters Chemical class 0.000 description 1
- 201000011294 ureter cancer Diseases 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/115—Aptamers, i.e. nucleic acids binding a target molecule specifically and with high affinity without hybridising therewith ; Nucleic acids binding to non-nucleic acids, e.g. aptamers
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6813—Hybridisation assays
- C12Q1/6827—Hybridisation assays for detection of mutation or polymorphism
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6844—Nucleic acid amplification reactions
- C12Q1/686—Polymerase chain reaction [PCR]
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6876—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
- C12Q1/6883—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
- C12Q1/6886—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
Definitions
- the present invention broadly relates to biomarkers for bladder cancer, etc.
- Non-Patent Document 1 In many cancers, including bladder cancer, point mutations occur in the promoter region of TERT (telomerase reverse transcriptase).
- TERT telomerase reverse transcriptase
- the C to T substitution at position 1,295,228 of chromosome 5 and the C to T substitution at position 1,295,250 of chromosome 5 are known as so-called hotspot mutations commonly seen in multiple patients (Non-Patent Document 1).
- Non-Patent Document 2 In addition to the TERT promoter, hotspots are known in bladder cancer, such as ADGRG6, PLEKHS1, and WDR74, and it has been suggested that these could serve as biomarkers for bladder cancer (Non-Patent Document 2).
- the present invention aims to provide new biomarkers for bladder cancer.
- the inventors discovered that base changes in the ADGRG6 enhancer are found in non-muscle invasive bladder cancer, leading to the completion of the present invention.
- a biomarker for non-muscle invasive bladder cancer comprising: A biomarker that is one or more mutations in the ADGRG6 enhancer.
- the biomarker according to [1], wherein the mutation is a single nucleotide polymorphism.
- the single nucleotide polymorphism is a mutation of guanine at position 142,706,206 and/or cytosine at position 142,706,209 of chromosome 6.
- a method for detecting one or more mutations in the ADGRG6 enhancer in a sample from a subject having or suspected of having non-muscle invasive bladder cancer comprising: A method comprising detecting the presence of one or more mutations in the ADGRG6 enhancer in a sample obtained from the subject, compared to a wild-type ADGRG6 enhancer. [10] The method according to [9], wherein if a mutation is detected, the subject's prognosis is poor. [11] The method according to [9] or [10], wherein the nucleic acid amplification method used in the detection step is digital PCR. [12] The method according to any one of [9] to [11], wherein the sample is a liquid sample.
- a primer for detecting the presence of non-muscle invasive bladder cancer in a specimen comprising: A primer that is an oligonucleotide of at least 16 bases and no more than 21 bases in length that targets one or more mutations in the ADGRG6 enhancer.
- a probe for detecting the presence of non-muscle invasive bladder cancer in a specimen the probe targeting one or more mutations in the ADGRG6 enhancer.
- a kit comprising the primer according to [14] and/or the probe according to [15].
- Non-muscle invasive bladder cancer is the most common type of untreated bladder cancer, and in particular high-grade non-muscle invasive bladder cancer, which has a high chance of recurrence, cases with poor prognosis require early detection of recurrence and metastasis, and prevention of further malignant progression. Therefore, mutations in the ADGRG6 enhancer can be a useful marker for non-muscle invasive bladder cancer.
- Prognostic markers such as base changes in the ADGRG6 enhancer, when combined with conventional prognostic markers such as TERT promoter mutations, which have been shown to be useful as poor prognostic markers in bladder cancer, will enable multifaceted clinical follow-up.
- the newly designed primers and probes for detecting base changes in the ADGRG6 enhancer can be combined with conventional methods for detecting TERT promoter mutations to cover a larger number of bladder cancer patients.
- FIG. 1 shows the coverage rate (proportion of positive detection) of biomarkers indicating TERT promoter mutations and TERT promoter and ADGRG6 enhancer mutations (43 cases).
- Biomarkers In a first aspect, a biomarker for non-muscle invasive bladder cancer is provided, the biomarker being one or more mutations in a protein encoded by the ADGRG6 enhancer.
- Bladder cancer is a general term for cancer that occurs in the bladder, and originates from the urothelial mucosa of the bladder. The majority of bladder cancers are urothelial carcinomas. Bladder cancer is characterized by the fact that even if it is discovered early and the lesion is resected, it often recurs, yet the prognosis is difficult to predict. Depending on the depth of invasion, bladder cancer is divided into non-muscle invasive bladder cancer (NMIBC), in which the cancer remains in the mucosa and submucosa, and muscle invasive bladder cancer (MIBC), in which the cancer has spread to the muscle layer or connective tissue.
- NMIBC non-muscle invasive bladder cancer
- MIBC muscle invasive bladder cancer
- bladder cancer The diagnosis of bladder cancer is known to those skilled in the art, and can be made, for example, in accordance with the Bladder Cancer Clinical Practice Guidelines (Japan Urological Association). According to the Bladder Cancer Clinical Practice Guidelines, the presence or absence of muscle invasion is determined by transurethral resection of bladder tumor (TURBT) or radical cystectomy specimens.
- TURBT transurethral resection of bladder tumor
- Bladder cancer is graded according to its grade, with two stages, low grade and high grade, or three stages, G1 to G3. High grade or G3 is the most malignant.
- the timing of recurrence of high-grade non-muscle-invasive bladder cancer varies from patient to patient, but in the case of Japanese patients, the recurrence-free survival (RFS) for each year from 1 to 5 years is 70% at 1 year, 55% at 3 years, and more than half at 5 years.
- ADGRG6 enhancer refers to the enhancer region of the ADGRG6 gene, which corresponds to positions 142,705,538 to 142,707,537 on chromosome 6.
- a change in one or more bases refers to a state in which one or more bases in the ADGRG6 enhancer are changed to one or more different bases compared to a control.
- Single nucleotide polymorphism changes such as SNPs and SNVs are preferred. For example, if the bases at positions 142,706,206 and/or 142,706,209 of chromosome 6 (the former is guanine and the latter is cytosine in the wild type), which are located in the enhancer region of the ADGRG6 gene, are replaced with other bases, the bases in the ADGRG6 enhancer are determined to be changed.
- Such a determination can be made by directly measuring the change in the bases in the ADGRG6 enhancer, or through the change in the corresponding bases in the antisense strand, etc.
- changes can be easily confirmed using a means for detecting circulating tumor DNA (ctDNA), cell-free DNA (cfDNA), genomic DNA, or complementary DNA (cDNA).
- the nucleic acid for which the change is confirmed is not limited to DNA, but may be RNA such as mRNA or circulating tumor RNA.
- the base change may be evaluated as the amount of change in allele frequency. For example, if the mutant allele frequency increases over time, it may be evaluated as a sign of recurrence.
- a control having a base before the change which is used as a reference when determining the change in one or more bases of the ADGRG6 enhancer, may be a subject treated for bladder cancer or a healthy individual having a wild type for the corresponding base.
- the change in the base can be confirmed by repeatedly sequencing the ADGRG6 enhancer over time. Such sequencing can be performed at the timing of follow-up.
- the timing of follow-up is not particularly limited, and may be performed within several months to one year after treatment, for example, within 3 months to 10 months after treatment.
- the frequency is also expected to be several months, for example, about once every 3 months.
- follow-up of bladder cancer is usually performed once every 3 months, but since non-muscle invasive bladder cancer is a type of cancer with a relatively good prognosis, if there is no recurrence for 2 years, the frequency may be once every 6 months.
- NMIBC non-muscle invasive bladder cancer
- MIBC muscle invasive bladder cancer
- the ADGRG6 enhancer is sequenced over time in a subject after bladder cancer surgery to determine base changes compared to previous times.
- the base changes may be evaluated as the amount of change in allele frequency. For example, a patient who shows a relatively increased mutant allele frequency from the beginning of monitoring may be evaluated as having an indication of recurrence.
- the one or more base changes in the ADGRG6 enhancer are a guanine change at position 142,706,206 on chromosome 6 and/or a cytosine change at position 142,706,209 on chromosome 6.
- a change in one or more bases in the ADGRG6 enhancer serves as an indicator (biomarker) for predicting the prognosis of bladder cancer.
- prognosis refers to the medical outlook for the progress of a patient after some treatment for bladder cancer, such as transurethral bladder tumor resection, intravesical infusion therapy in which a drug is injected into the bladder, radical cystectomy, drug therapy, etc., and the patient's life expectancy.
- the treatment method is appropriately determined depending on the degree of progression of the cancer.
- Evaluation items related to the prognosis of bladder cancer include the presence or absence of recurrence, recurrence-free survival, survival rate, and survival time.
- evaluation items include other primary and secondary evaluation items, such as disease-free survival (DFS), non-urothelial recurrence-free survival (NUTRFS), distant metastasis-free survival (DMFS), progression-free survival until second-line treatment (PFS2), etc.
- DFS disease-free survival
- NUTRFS non-urothelial recurrence-free survival
- DMFS distant metastasis-free survival
- PFS2 progression-free survival until second-line treatment
- the use of the biomarker is preferably to predict prognosis, and more preferably to predict recurrence.
- NMIBC non-muscle invasive bladder cancer
- Mutations in guanine at positions 142,706,206 and/or cytosine at positions 142,706,209 on chromosome 6 can be markers of poor prognosis.
- the group with significantly improved survival in terms of recurrence-free survival time and survival rate is judged to be the "good prognosis group,” while the group with worsening survival is judged to be the “poor prognosis group.”
- a method for detecting one or more mutations in the ADGRG6 enhancer in a sample from a subject suffering from or suspected of suffering from non-muscle invasive bladder cancer comprising detecting the presence of one or more mutations in the ADGRG6 enhancer in a sample obtained from the subject in comparison to a wild-type ADGRG6 enhancer.
- Samples are taken from subjects suspected of having bladder cancer.
- the bladder cancer may be either non-muscle invasive or muscle invasive. Samples may be taken once or multiple times for purposes such as prognosis monitoring after bladder cancer treatment.
- the sample is not particularly limited as long as it can detect one or more base changes in the ADGRG6 enhancer, but is preferably a liquid sample containing cfDNA, such as blood or other body fluids. More specifically, the sample is preferably blood, serum, plasma, urine, stool, saliva, sputum, tissue fluid, cerebrospinal fluid, swab, or other body fluid or a dilution thereof, particularly preferably plasma.
- a step of extracting ctDNA or ctRNA from the sample and a step of removing impurities may be carried out before nucleic acid amplification.
- the recovery rate of ctDNA and ctRNA can be increased by performing known means such as plasmapheresis.
- Nucleic acid amplification methods include PCR, which includes standard PCR, digital PCR, multiplex PCR, LAMP (Loop-mediated isothermal AMPlification), ICAN (Isothermal and Chimeric primer-initiated Amplification of Nucleic acids), RCA (Rolling Circle Amplification), LCR (Ligase Chain Reaction), and SDA (Strand Displacement Amplification).
- PCR includes standard PCR, digital PCR, multiplex PCR, LAMP (Loop-mediated isothermal AMPlification), ICAN (Isothermal and Chimeric primer-initiated Amplification of Nucleic acids), RCA (Rolling Circle Amplification), LCR (Ligase Chain Reaction), and SDA (Strand Displacement Amplification).
- the nucleic acid amplification method is preferably digital PCR.
- Digital PCR may be droplet digital PCR.
- one or more bases of the ADGRG6 enhancer are guanine at position 142,706,206 and/or cytosine at position 142,706,209 of chromosome 6.
- telomeres may be detected in hotspot regions in genes associated with bladder cancer, such as the TERT promoter region and the PLEKHS1 promoter region.
- Other steps and sample collection may be performed before or after the detection step.
- a specimen may be collected from a subject suspected of having bladder cancer before the detection step.
- the detection step may be performed multiple times, for example, specimens from the same subject may be collected periodically and subjected to the detection step each time they are collected.
- the prognosis of bladder cancer in the subject from whom the sample was derived is predicted. This can assist doctors in diagnosing bladder cancer and determining subsequent treatment methods.
- diagnoses and determinations include other known auxiliary diagnoses for bladder cancer, as well as definitive diagnoses such as urine cytology, bladder biopsy, and histopathological examination of biopsy tissue.
- Subjects diagnosed with recurrence can undergo surgery (surgical treatment) such as transurethral bladder tumor resection and radical cystectomy, chemotherapy (anticancer drug treatment) such as preoperative chemotherapy, postoperative chemotherapy, and recurrence chemotherapy, and radiation therapy.
- the subject's prognosis is determined to be poor if a mutation in one or more bases in the ADGRG6 enhancer is detected.
- a primer for detecting the presence of non-muscle invasive bladder cancer in a sample is provided, the primer being an oligonucleotide of 16 bases or more and 21 bases or less in length that targets one or more mutations in the ADGRG6 enhancer.
- the one or more mutations in the ADGRG6 enhancer are a substitution of guanine at position 142,706,206 on chromosome 6 with adenine (hereinafter also referred to as "206G>A”) and/or a substitution of cytosine at position 142,706,209 on chromosome 6 with thymine (hereinafter also referred to as "209C>T").
- the primer is an oligonucleotide that is at least 16 bases long and at most 21 bases long. Among them, those with a low Tm value are preferable. Specifically, by setting the Tm value of the reverse primer 1 to 3°C higher than that of the probe, the probe anneals to the template DNA first, and then the reverse primer anneals.
- the primers can be designed so that the size of the amplified amplicon is less than 200 bp.
- primers based on the above design concept that amplify a sequence containing a probe for detecting the 206G>A and 209C>T mutations include the forward primer (TGCATATTTCACATGGAC) described in SEQ ID NO: 1, which has a base length of 20 bases, and the reverse primer (ATCCTGGAGGGAGAATAC) described in SEQ ID NO: 2, which has a base length of 20 bases. It is preferable to use primers consisting of the sequences described in SEQ ID NOs: 1 and 2. These primers may be combined with known primers that amplify hotspot regions in genes related to bladder cancer, such as the TERT promoter region and the PLEKHS1 promoter region.
- the TERT promoter mutation may be a C to T substitution at position 1,295,228 of chromosome 5 (hereinafter also referred to as "228C>T”), a C to T substitution at position 1,295,250 of chromosome 5 (hereinafter also referred to as "250C>T”), or both. It is known that 228C>T has a high detection rate in bladder cancer, and 250C>T has a high detection rate in non-muscle invasive bladder cancer.
- Primers that amplify sequences containing probes that detect both the 228C>T and 250C>T mutations include BioRad primers (TERT C228T_113: dHsaEXD72405942, TERT C250T_113: dHsaEXD46675715) (amplicon size: 113 bp) (see also J Mol Diagn. 2019 Mar;21(2)274-285).
- the mutation in the PLEKHS1 promoter may be a G to A substitution at position 115,511,590 of chromosome 10 (hereinafter also referred to as "590G>A”), a C to T substitution at position 115,511,593 of chromosome 10 (hereinafter also referred to as "593C>T”), or both.
- 590G>A G to A substitution at position 115,511,590 of chromosome 10
- 593C>T C to T substitution at position 115,511,593 of chromosome 10
- the nucleotides constituting the base sequence of a primer or the like may be either ribonucleotides or deoxyribonucleotides. These oligonucleotides can be synthesized by known methods, for example, by any nucleic acid synthesis method such as the solid-phase phosphoramidite method or the triester method, according to the base sequence.
- probe In a fourth aspect, there is provided a probe for detecting the presence of bladder cancer in a specimen, the probe targeting one or more mutations in the ADGRG6 enhancer.
- the sequence constituting the probe is not limited as long as it can detect a mutation in the ADGRG6 enhancer, and a probe that can detect, for example, the 206G>A or 209C>T mutation is preferred.
- the probe for detecting the 206G>A mutation has the sequence set forth in SEQ ID NO:3 (AGGCTCTTTGTATGTTTATACAAAG).
- the probe preferably consists of the sequence set forth in SEQ ID NO:3.
- the probe for detecting the 209C>T mutation has the sequence set forth in SEQ ID NO: 4 (AGGCTCTTTGTATATTCATACAAAG).
- the probe preferably consists of the sequence set forth in SEQ ID NO: 4.
- the probe may be partially modified, for example, with aminated ends or with some bases modified with linker bases.
- a different base may be inserted into part of the base sequence, some bases in the base sequence may be deleted or replaced with another base, or replaced with a substance other than a base.
- kits In a fifth aspect, there is provided a kit comprising a primer and/or a probe for detecting the presence of bladder cancer in a specimen.
- the primer may be any of those described above.
- the kit may further include a probe that targets a mutation in the ADGRG6 enhancer.
- a probe that detects the 206G>A mutation is one having the base sequence set forth in SEQ ID NO:3.
- An example of a probe that detects the 209C>T mutation is one having the base sequence set forth in SEQ ID NO:4.
- the kit may further include one or more pairs of primers and probes targeting hotspot regions in genes associated with bladder cancer, such as the TERT promoter region, the PLEKHS1 promoter region, etc.
- a labeling substance capable of specifically recognizing the amplified products may be used.
- labeling substances include fluorescent dyes, biotin, and digoxigenin.
- the fluorescence can be detected using a fluorescent microscope, a fluorescent plate reader, etc.
- a substance that intercalates into the amplified product can also be used as the labeling substance.
- the intercalator there are no particular limitations on the intercalator, so long as it is a substance that intercalates into double-stranded DNA and emits fluorescence.
- detection may be performed by known methods, such as electrophoresis using polyacrylamide or agarose gels.
- electrophoresis the presence of an amplification product can be identified by its mobility relative to that of a marker of known molecular weight.
- Primer/probe design 1 Determination of probe recognition site The base sequence around positions 142,706,206 and/or 142,706,209 of chromosome 6 was obtained from NCBI etc., and the recognition site of the detection probe was set at the site containing the mutation. The recognition position and base length of the probe were determined taking into consideration the GC content and Tm value.
- primer pairs were designed to amplify sequences including the probe, and the presence or absence of nonspecific amplicon formation in gDNA and cfDNA, and primer dimer evaluation were confirmed by PCR electrophoresis, and the PCR efficiency for each primer pair was confirmed by quantitative PCR.
- the amplicon was in the range of 80-150 mer, and the sequence and number of bases of the primer were determined taking into account the Tm value calculated from the probe. The most efficient primer pair was determined taking into account PCR efficiency, primer dimers, and nonspecific bands, and it was confirmed by Sanger sequencing that the target region was correctly amplified.
- DNA derived from tumor tissue was extracted as tDNA (tumor DNA), DNA derived from somatic cells (peripheral white blood cells) as gDNA (genomic DNA), and DNA circulating in the plasma as cfDNA (cell-free DNA).
- DNA was extracted by column purification using a kit (QIAGEN QIAamp DNA Blood Mini Kit or QIAamp Circulating Nucleic Acid Kit).
- Tumor tissue and blood samples were collected from patients with bladder cancer (both non-muscle invasive and muscle invasive) as subjects. Blood samples were collected every three months from patients diagnosed with muscle invasive bladder cancer, even after treatment.
- validation plasmids were prepared in the following order: (i) Extraction of genomic DNA from patient tumor samples. (ii) Amplification by PCR of a DNA fragment containing the region at positions 142,706,206 or 142,706,209 of wild-type ADGRG6. (iii) Insertion of the ADGRG6 fragment into the vector. (iv) The vector is introduced into E. coli, and about 10 to 20 colonies are isolated and cultured in large quantities. (v) The vectors were recovered by mini prep, and each vector was confirmed to be WT or mutant by Sanger sequencing.
- the detection accuracy of the primers/probes was confirmed using the validation plasmid in the following order.
- (i) Confirmation of detection accuracy by dPCR using a wild-type primer/probe set and a mutant-type primer/probe set for each of the wild-type ADGRG6-introduced plasmids and the mutant-type ADGRG6-introduced plasmids.
- the forward primer used to detect wild-type ADGRG6 and mutant ADGRG6 was the sequence (TGCATATTTCACATGGAC) set forth in SEQ ID NO: 1, and the reverse primer was the sequence (ATCCTGGAGGGAGAATAC) set forth in SEQ ID NO: 2.
- TERT and ADGRG6 mutations were used to detect TERT and ADGRG6 mutations by dPCR.
- Mutation detection confirmation using tDNA and gDNA samples (27 samples each) using the validated wild-type ADGRG6 primers/probes and mutant-type ADGRG6 primers/probes.
- mutation detection confirmation was performed using tDNA and gDNA (27 samples each) using TERT primers/probes.
- the TERT primers/probes were commercially available products (BioRad primer/probe set (TERT C228T_113: dHsaEXD72405942, TERT C250T_113: dHsaEXD46675715) (amplicon size: 113 bp)).
- the amplicon size of both types is 113 bp.
- primers are generally designed around the mutation site and the probe is designed so that the mutation site is hit, it is considered that the primers and probes are located within a range of 113 bp upstream or downstream from C228 or C250 as the starting point. Design may be performed within a range of 50 to 200 bp upstream or downstream from the above mutation site.
- mutation detection and MAF were calculated using cfDNA as a sample. If the mutation frequency in the tumor was low, it was expected that detection in the blood would be difficult, so cases with a mutation rate of 10% or more in tDNA were considered mutation-positive.
- Mutant Allele Frequency (MAF) of cfDNA from mutation-positive patients was analyzed over time, it did not exceed 0.3% over time in any patient. This is thought to reflect the fact that no patient has been diagnosed with recurrence by imaging to date.
- cases in which a mutation from G (guanine) at position 142,706,206 of ADGRG6 to C (cytosine) or a mutation from C (cytosine) at position 142,706,209 to T (thymine) could be detected were registered as mutation-positive cases.
- cases in which the 206th G>A and 209th C>T mutations were found simultaneously were also registered in the same way. In this case, cases in which mutations were found at two locations simultaneously were also counted as "1" in the number of cases.
- Non-muscle invasive bladder cancer which accounts for the majority of bladder cancer cases, requires early detection of recurrence and metastasis and prevention of further malignant progression, so changes in the ADGRG6 enhancer can be a poor prognostic marker for non-muscle invasive bladder cancer (NMIBC), especially high-grade non-muscle invasive bladder cancer, which is highly malignant.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Genetics & Genomics (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- General Health & Medical Sciences (AREA)
- Biophysics (AREA)
- Immunology (AREA)
- Analytical Chemistry (AREA)
- Physics & Mathematics (AREA)
- Biochemistry (AREA)
- Microbiology (AREA)
- Biomedical Technology (AREA)
- Pathology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oncology (AREA)
- Hospice & Palliative Care (AREA)
- Plant Pathology (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
The present invention provides a biomarker for non-muscle invasive bladder cancer, wherein the biomarker is one or multiple mutations in a protein encoded by the ADGRG6 enhancer.
Description
本発明は広く、膀胱癌のバイオマーカー等に関する。
The present invention broadly relates to biomarkers for bladder cancer, etc.
膀胱癌等の多くの癌では、TERT(telomerase reverse transcriptase)のプロモーター領域に点変異が起きている。中でも、5番染色体の1,295,228位におけるCからTへの置換、5番染色体の1,295,250位におけるCからTへの置換は複数の患者に共通で見られる変異、いわゆるホットスポットとして知られている(非特許文献1)。
In many cancers, including bladder cancer, point mutations occur in the promoter region of TERT (telomerase reverse transcriptase). In particular, the C to T substitution at position 1,295,228 of chromosome 5 and the C to T substitution at position 1,295,250 of chromosome 5 are known as so-called hotspot mutations commonly seen in multiple patients (Non-Patent Document 1).
膀胱癌では、TERTプロモーター以外にも、ADGRG6、PLEKHS1、WDR74等におけるホットスポットが知られており、これらが膀胱癌のバイオマーカーとなり得ることが示唆されている(非特許文献2)。
In addition to the TERT promoter, hotspots are known in bladder cancer, such as ADGRG6, PLEKHS1, and WDR74, and it has been suggested that these could serve as biomarkers for bladder cancer (Non-Patent Document 2).
本発明は、膀胱癌の新規バイオマーカー等の提供を目的とする。
The present invention aims to provide new biomarkers for bladder cancer.
本発明者らは、ADGRG6エンハンサーの塩基の変化が筋層非浸潤性膀胱癌で見られることを見出し、本発明を完成させるに至った。
The inventors discovered that base changes in the ADGRG6 enhancer are found in non-muscle invasive bladder cancer, leading to the completion of the present invention.
すなわち、本願は以下の発明を包含する。
[1]
筋層非浸潤性膀胱癌のバイオマーカーであって、
ADGRG6エンハンサーの1又は複数の変異である、バイオマーカー。
[2]
変異が一塩基多型である、[1]に記載のバイオマーカー。
[3]
一塩基多型が、6番染色体の142,706,206位のグアニン及び/又は142,706,209位のシトシンの変異である、[2]に記載のバイオマーカー。
[4]
筋層非浸潤性膀胱癌の予後を予測するための、[1]~[3]のいずれかに記載のバイオマーカー。
[5]
筋層非浸潤性膀胱癌が高異型度筋層非浸潤性膀胱癌である、[1]~[4]のいずれかに記載のバイオマーカー。
[6]
予後が無再発生存期間の長さ又は再発のリスクの高低である、[4]又は[5]に記載のバイオマーカー。
[7]
予後不良マーカーである、[4]~[6]のいずれかに記載のバイオマーカー。
[8]
変異が、循環腫瘍DNA(ctDNA)、セルフリーDNA(cfDNA)、ゲノムDNA又は相補的DNA(cDNA)に存在する、[1]~[7]のいずれかに記載のバイオマーカー。
[9]
筋層非浸潤性膀胱癌に罹患しているか、罹患している可能性がある対象由来の検体におけるADGRG6エンハンサーの1又は複数の変異を検出する方法であって、
野生型ADGRG6エンハンサーとの比較で、前記対象から得られた検体における、ADGRG6エンハンサーの1又は複数の変異の存在を検出する工程を含む、方法。
[10]
変異が検出された場合には、対象の予後が不良である、[9]に記載の方法。
[11]
検出工程で使用される核酸増幅法がデジタルPCRである、[9]又は[10]に記載の方法。
[12]
検体が液性検体である、[9]~[11]のいずれかに記載の方法。
[13]
検体が血中循環DNA(cfDNA)を含む、[9]~[12]のいずれか一項に記載の方法。
[14]
検体における筋層非浸潤性膀胱癌の存在を検出するためのプライマーであって、
ADGRG6エンハンサーの1又は複数の変異を標的とする、16塩基長以上で且つ21塩基長以下のオリゴヌクレオチドであるプライマー。
[15]
検体における筋層非浸潤性膀胱癌の存在を検出するためのプローブであって、ADGRG6エンハンサーの1又は複数の変異を標的とする、プローブ。
[16]
[14]に記載のプライマー及び/又は[15]に記載のプローブを含む、キット。 That is, the present application includes the following inventions.
[1]
A biomarker for non-muscle invasive bladder cancer, comprising:
A biomarker that is one or more mutations in the ADGRG6 enhancer.
[2]
The biomarker according to [1], wherein the mutation is a single nucleotide polymorphism.
[3]
The biomarker according to [2], wherein the single nucleotide polymorphism is a mutation of guanine at position 142,706,206 and/or cytosine at position 142,706,209 of chromosome 6.
[4]
A biomarker according to any one of [1] to [3] for predicting the prognosis of non-muscle invasive bladder cancer.
[5]
The biomarker according to any one of [1] to [4], wherein the non-muscle invasive bladder cancer is high-grade non-muscle invasive bladder cancer.
[6]
The biomarker according to [4] or [5], wherein the prognosis is the length of recurrence-free survival or the level of risk of recurrence.
[7]
The biomarker according to any one of [4] to [6], which is a poor prognosis marker.
[8]
The biomarker according to any one of [1] to [7], wherein the mutation is present in circulating tumor DNA (ctDNA), cell-free DNA (cfDNA), genomic DNA or complementary DNA (cDNA).
[9]
1. A method for detecting one or more mutations in the ADGRG6 enhancer in a sample from a subject having or suspected of having non-muscle invasive bladder cancer, comprising:
A method comprising detecting the presence of one or more mutations in the ADGRG6 enhancer in a sample obtained from the subject, compared to a wild-type ADGRG6 enhancer.
[10]
The method according to [9], wherein if a mutation is detected, the subject's prognosis is poor.
[11]
The method according to [9] or [10], wherein the nucleic acid amplification method used in the detection step is digital PCR.
[12]
The method according to any one of [9] to [11], wherein the sample is a liquid sample.
[13]
The method according to any one of [9] to [12], wherein the sample comprises circulating DNA (cfDNA).
[14]
1. A primer for detecting the presence of non-muscle invasive bladder cancer in a specimen, comprising:
A primer that is an oligonucleotide of at least 16 bases and no more than 21 bases in length that targets one or more mutations in the ADGRG6 enhancer.
[15]
A probe for detecting the presence of non-muscle invasive bladder cancer in a specimen, the probe targeting one or more mutations in the ADGRG6 enhancer.
[16]
A kit comprising the primer according to [14] and/or the probe according to [15].
[1]
筋層非浸潤性膀胱癌のバイオマーカーであって、
ADGRG6エンハンサーの1又は複数の変異である、バイオマーカー。
[2]
変異が一塩基多型である、[1]に記載のバイオマーカー。
[3]
一塩基多型が、6番染色体の142,706,206位のグアニン及び/又は142,706,209位のシトシンの変異である、[2]に記載のバイオマーカー。
[4]
筋層非浸潤性膀胱癌の予後を予測するための、[1]~[3]のいずれかに記載のバイオマーカー。
[5]
筋層非浸潤性膀胱癌が高異型度筋層非浸潤性膀胱癌である、[1]~[4]のいずれかに記載のバイオマーカー。
[6]
予後が無再発生存期間の長さ又は再発のリスクの高低である、[4]又は[5]に記載のバイオマーカー。
[7]
予後不良マーカーである、[4]~[6]のいずれかに記載のバイオマーカー。
[8]
変異が、循環腫瘍DNA(ctDNA)、セルフリーDNA(cfDNA)、ゲノムDNA又は相補的DNA(cDNA)に存在する、[1]~[7]のいずれかに記載のバイオマーカー。
[9]
筋層非浸潤性膀胱癌に罹患しているか、罹患している可能性がある対象由来の検体におけるADGRG6エンハンサーの1又は複数の変異を検出する方法であって、
野生型ADGRG6エンハンサーとの比較で、前記対象から得られた検体における、ADGRG6エンハンサーの1又は複数の変異の存在を検出する工程を含む、方法。
[10]
変異が検出された場合には、対象の予後が不良である、[9]に記載の方法。
[11]
検出工程で使用される核酸増幅法がデジタルPCRである、[9]又は[10]に記載の方法。
[12]
検体が液性検体である、[9]~[11]のいずれかに記載の方法。
[13]
検体が血中循環DNA(cfDNA)を含む、[9]~[12]のいずれか一項に記載の方法。
[14]
検体における筋層非浸潤性膀胱癌の存在を検出するためのプライマーであって、
ADGRG6エンハンサーの1又は複数の変異を標的とする、16塩基長以上で且つ21塩基長以下のオリゴヌクレオチドであるプライマー。
[15]
検体における筋層非浸潤性膀胱癌の存在を検出するためのプローブであって、ADGRG6エンハンサーの1又は複数の変異を標的とする、プローブ。
[16]
[14]に記載のプライマー及び/又は[15]に記載のプローブを含む、キット。 That is, the present application includes the following inventions.
[1]
A biomarker for non-muscle invasive bladder cancer, comprising:
A biomarker that is one or more mutations in the ADGRG6 enhancer.
[2]
The biomarker according to [1], wherein the mutation is a single nucleotide polymorphism.
[3]
The biomarker according to [2], wherein the single nucleotide polymorphism is a mutation of guanine at position 142,706,206 and/or cytosine at position 142,706,209 of chromosome 6.
[4]
A biomarker according to any one of [1] to [3] for predicting the prognosis of non-muscle invasive bladder cancer.
[5]
The biomarker according to any one of [1] to [4], wherein the non-muscle invasive bladder cancer is high-grade non-muscle invasive bladder cancer.
[6]
The biomarker according to [4] or [5], wherein the prognosis is the length of recurrence-free survival or the level of risk of recurrence.
[7]
The biomarker according to any one of [4] to [6], which is a poor prognosis marker.
[8]
The biomarker according to any one of [1] to [7], wherein the mutation is present in circulating tumor DNA (ctDNA), cell-free DNA (cfDNA), genomic DNA or complementary DNA (cDNA).
[9]
1. A method for detecting one or more mutations in the ADGRG6 enhancer in a sample from a subject having or suspected of having non-muscle invasive bladder cancer, comprising:
A method comprising detecting the presence of one or more mutations in the ADGRG6 enhancer in a sample obtained from the subject, compared to a wild-type ADGRG6 enhancer.
[10]
The method according to [9], wherein if a mutation is detected, the subject's prognosis is poor.
[11]
The method according to [9] or [10], wherein the nucleic acid amplification method used in the detection step is digital PCR.
[12]
The method according to any one of [9] to [11], wherein the sample is a liquid sample.
[13]
The method according to any one of [9] to [12], wherein the sample comprises circulating DNA (cfDNA).
[14]
1. A primer for detecting the presence of non-muscle invasive bladder cancer in a specimen, comprising:
A primer that is an oligonucleotide of at least 16 bases and no more than 21 bases in length that targets one or more mutations in the ADGRG6 enhancer.
[15]
A probe for detecting the presence of non-muscle invasive bladder cancer in a specimen, the probe targeting one or more mutations in the ADGRG6 enhancer.
[16]
A kit comprising the primer according to [14] and/or the probe according to [15].
未治療膀胱癌の中で最も症例数の多い群である筋層非浸潤性膀胱癌(NMIBC)、特に、再発の可能性が高い高異型度の筋層非浸潤性膀胱癌の症例群のうち、予後不良な症例は、再発や転移の早期発見、そしてさらなる悪性化の抑制が必要とされる。そのため、ADGRG6エンハンサーの変異は、筋層非浸潤性膀胱癌の有用なマーカーとなり得る。
Non-muscle invasive bladder cancer (NMIBC) is the most common type of untreated bladder cancer, and in particular high-grade non-muscle invasive bladder cancer, which has a high chance of recurrence, cases with poor prognosis require early detection of recurrence and metastasis, and prevention of further malignant progression. Therefore, mutations in the ADGRG6 enhancer can be a useful marker for non-muscle invasive bladder cancer.
ADGRG6エンハンサーの塩基の変化のような予後マーカーは、膀胱癌の予後不良マーカーとしての有用性が示されているTERTプロモーター変異のような従来の予後マーカー等との組み合わせで臨床上の多面的なフォローアップを可能にする。
Prognostic markers such as base changes in the ADGRG6 enhancer, when combined with conventional prognostic markers such as TERT promoter mutations, which have been shown to be useful as poor prognostic markers in bladder cancer, will enable multifaceted clinical follow-up.
更に、ADGRG6エンハンサーの塩基の変化を検出するために新たに設計したプライマー及びプローブは、従来のTERTプロモーター変異の検出方法との組み合わせでより多くの膀胱癌患者をカバーすることができる。
Furthermore, the newly designed primers and probes for detecting base changes in the ADGRG6 enhancer can be combined with conventional methods for detecting TERT promoter mutations to cover a larger number of bladder cancer patients.
以下、本発明の実施の形態(以下、「本実施形態」という。)について説明するが、本発明の範囲は以下の実施形態に限定して解釈されない。
The following describes an embodiment of the present invention (hereinafter referred to as the "present embodiment"); however, the scope of the present invention is not to be interpreted as being limited to the following embodiment.
(バイオマーカー)
第一の態様において、筋層非浸潤性膀胱癌のバイオマーカーであって、ADGRG6エンハンサーがコードするタンパク質の1又は複数の変異である、バイオマーカーが提供される。 (Biomarkers)
In a first aspect, a biomarker for non-muscle invasive bladder cancer is provided, the biomarker being one or more mutations in a protein encoded by the ADGRG6 enhancer.
第一の態様において、筋層非浸潤性膀胱癌のバイオマーカーであって、ADGRG6エンハンサーがコードするタンパク質の1又は複数の変異である、バイオマーカーが提供される。 (Biomarkers)
In a first aspect, a biomarker for non-muscle invasive bladder cancer is provided, the biomarker being one or more mutations in a protein encoded by the ADGRG6 enhancer.
膀胱癌は膀胱に発生する癌の総称であり、膀胱の尿路上皮粘膜より発生する。膀胱癌の大半が尿路上皮癌である。膀胱癌は、初期に発見して病巣を切除しても再発を繰り返すことが多いにもかかわらず、予後の予測が困難という特徴を有する。膀胱癌は深達度により、癌が粘膜から粘膜下層に留まっている筋層非浸潤性膀胱癌(NMIBC)と、癌が筋層や結合組織に及んでいる筋層浸潤性膀胱癌(MIBC)に分けられる。膀胱癌の診断は当業者に公知であり、例えば、膀胱癌診療ガイドライン(日本泌尿器科学会)に準拠して行うことができる。膀胱癌診療ガイドラインによると、筋層浸潤の有無は経尿道的膀胱腫瘍切除術(trans urethral resection of bladder tumor:TURBT)又は膀胱全摘除術標本により判定される。
Bladder cancer is a general term for cancer that occurs in the bladder, and originates from the urothelial mucosa of the bladder. The majority of bladder cancers are urothelial carcinomas. Bladder cancer is characterized by the fact that even if it is discovered early and the lesion is resected, it often recurs, yet the prognosis is difficult to predict. Depending on the depth of invasion, bladder cancer is divided into non-muscle invasive bladder cancer (NMIBC), in which the cancer remains in the mucosa and submucosa, and muscle invasive bladder cancer (MIBC), in which the cancer has spread to the muscle layer or connective tissue. The diagnosis of bladder cancer is known to those skilled in the art, and can be made, for example, in accordance with the Bladder Cancer Clinical Practice Guidelines (Japan Urological Association). According to the Bladder Cancer Clinical Practice Guidelines, the presence or absence of muscle invasion is determined by transurethral resection of bladder tumor (TURBT) or radical cystectomy specimens.
膀胱癌はその異型度により低異型度(low grade)と高異型度(high grade)の2段階、又はG1からG3までの3段階で評価される。高異型度又はG3が最も悪性度が高い。高異型度筋層非浸潤性膀胱癌の再発のタイミングは患者によって異なるが、日本人の場合、1~5年の各年次の無再発生存期間(RFS: Relapse free survival)において、1年時に70%、3年時に55%、5年時には半数以上が再発する。
Bladder cancer is graded according to its grade, with two stages, low grade and high grade, or three stages, G1 to G3. High grade or G3 is the most malignant. The timing of recurrence of high-grade non-muscle-invasive bladder cancer varies from patient to patient, but in the case of Japanese patients, the recurrence-free survival (RFS) for each year from 1 to 5 years is 70% at 1 year, 55% at 3 years, and more than half at 5 years.
本明細書で使用する場合、「ADGRG6エンハンサー」とは、ADGRG6遺伝子のエンハンサー領域を指し、6番染色体の142,705,538位から142,707,537位に相当する。
As used herein, "ADGRG6 enhancer" refers to the enhancer region of the ADGRG6 gene, which corresponds to positions 142,705,538 to 142,707,537 on chromosome 6.
本明細書で使用する場合、「1又は複数の塩基の変化」とは、ADGRG6エンハンサーにおける1又は複数の塩基がコントロールとの比較で1又は複数の異なる塩基に変化している状態を意味する。SNPやSNVのような一塩基多型変化が好ましい。例えば、ADGRG6遺伝子のエンハンサー領域内にある、6番染色体の142,706,206位及び/又は142,706,209位の位置にある塩基(野生型の場合、前者はグアニン、後者はシトシン)が他の塩基に置換されている場合、ADGRG6エンハンサーにおける塩基が変化していると決定される。そのような決定はADGRG6エンハンサーの塩基の変化を直接測定して行うこともできるし、アンチセンス鎖等における対応の塩基の変化を通じて行うこともできる。例えば、そのような変化は循環腫瘍DNA(ctDNA)、セルフリーDNA(cfDNA)、ゲノムDNA又は相補的DNA(cDNA)を検出する手段を用いて簡便に確認することができる。変化を確認する核酸はDNAに限定されず、mRNA、血中循環腫瘍RNA等のRNAでもよい。塩基の変化はアレル頻度の変化の量として評価してもよい。例えば、変異アレル頻度が経時的に上昇した場合、再発兆候があると評価され得る。
As used herein, "a change in one or more bases" refers to a state in which one or more bases in the ADGRG6 enhancer are changed to one or more different bases compared to a control. Single nucleotide polymorphism changes such as SNPs and SNVs are preferred. For example, if the bases at positions 142,706,206 and/or 142,706,209 of chromosome 6 (the former is guanine and the latter is cytosine in the wild type), which are located in the enhancer region of the ADGRG6 gene, are replaced with other bases, the bases in the ADGRG6 enhancer are determined to be changed. Such a determination can be made by directly measuring the change in the bases in the ADGRG6 enhancer, or through the change in the corresponding bases in the antisense strand, etc. For example, such changes can be easily confirmed using a means for detecting circulating tumor DNA (ctDNA), cell-free DNA (cfDNA), genomic DNA, or complementary DNA (cDNA). The nucleic acid for which the change is confirmed is not limited to DNA, but may be RNA such as mRNA or circulating tumor RNA. The base change may be evaluated as the amount of change in allele frequency. For example, if the mutant allele frequency increases over time, it may be evaluated as a sign of recurrence.
ADGRG6エンハンサーの1又は複数の塩基の変化を決定する際に基準となる、変化前の塩基を有するコントロールは、膀胱癌の治療がされた対象や、該当の塩基について野生型を有する健常者であってもよい。塩基の変化は、ADGRG6エンハンサーの配列決定を経時的に繰り返し行うことにより確認することができる。そのような配列決定は経過観察のタイミングで実施することができる。経過観察のタイミングは特に限定されず、治療の数ヶ月後乃至1年以内、例えば治療の3ヶ月後乃至10ヶ月以内に行ってもよい。頻度も数ヶ月、例えば3ヶ月に一度程度が想定される。膀胱癌の経過観察は通常3ヶ月に1回行われるが、筋層非浸潤性膀胱癌は予後が比較的良好なタイプの癌であるため、2年無再発の場合は頻度を6ヶ月に1回としてもよい。
A control having a base before the change, which is used as a reference when determining the change in one or more bases of the ADGRG6 enhancer, may be a subject treated for bladder cancer or a healthy individual having a wild type for the corresponding base. The change in the base can be confirmed by repeatedly sequencing the ADGRG6 enhancer over time. Such sequencing can be performed at the timing of follow-up. The timing of follow-up is not particularly limited, and may be performed within several months to one year after treatment, for example, within 3 months to 10 months after treatment. The frequency is also expected to be several months, for example, about once every 3 months. Follow-up of bladder cancer is usually performed once every 3 months, but since non-muscle invasive bladder cancer is a type of cancer with a relatively good prognosis, if there is no recurrence for 2 years, the frequency may be once every 6 months.
経過観察の方法は膀胱癌の種類によって異なる。例えば、筋層非浸潤性膀胱癌(NMIBC)は経過観察において尿細胞診及び膀胱鏡検査を行うのが一般的である。NMIBCは非浸潤性であり、他臓器転移の可能性が臨床的に低いため、画像診断(CT)は行われないことが多い。筋層浸潤性膀胱癌(MIBC)は治療にて膀胱が全摘されるため、経過観察では膀胱鏡検査が適応外となる。その代わり、MIBCの経過観察では尿細胞診とCTによる画像診断が行われる。
Follow-up methods vary depending on the type of bladder cancer. For example, in the case of non-muscle invasive bladder cancer (NMIBC), urinary cytology and cystoscopy are generally performed during follow-up. Because NMIBC is non-invasive and has a clinically low risk of metastasis to other organs, imaging diagnostics (CT) are often not performed. In the case of muscle invasive bladder cancer (MIBC), the bladder is completely removed during treatment, so cystoscopy is not indicated for follow-up. Instead, urinary cytology and imaging diagnostics using CT are performed during follow-up of MIBC.
一実施形態において、膀胱癌術後の対象においてADGRG6エンハンサーの配列決定を経時的に行い、以前のものとの比較で塩基の変化が決定される。塩基の変化はアレル頻度の変化の量として評価してもよい。例えば、モニタリング開始当初より相対的に上昇した変異アレル頻度を示す患者は、再発兆候があると評価され得る。
In one embodiment, the ADGRG6 enhancer is sequenced over time in a subject after bladder cancer surgery to determine base changes compared to previous times. The base changes may be evaluated as the amount of change in allele frequency. For example, a patient who shows a relatively increased mutant allele frequency from the beginning of monitoring may be evaluated as having an indication of recurrence.
一実施形態において、ADGRG6エンハンサーの1又は複数の塩基の変化は、6番染色体の142,706,206位のグアニンの変化及び/又は6番染色体の142,706,209位のシトシンの変化である。
In one embodiment, the one or more base changes in the ADGRG6 enhancer are a guanine change at position 142,706,206 on chromosome 6 and/or a cytosine change at position 142,706,209 on chromosome 6.
ADGRG6エンハンサーの1又は複数の塩基の変化は、膀胱癌の予後を予測するための指標(バイオマーカー)となる。本明細書で使用する場合、「予後」とは、膀胱癌について何らかの治療、例えば経尿道的膀胱腫瘍切除術、薬物を膀胱内に注入する膀胱内注入療法、膀胱全摘除術、薬物療法等を施した後の患者の経過についての医学的見通しや、患者の余命を意味する。治療方法は癌の進行の程度に応じて適宜決定される。膀胱癌の予後に関する評価項目としては、再発の有無、無再発生存期間、生存率、生存期間が挙げられる。これらの評価項目には、その他の主要評価項目や副次評価項目、例えば無病生存期間(DFS)、非尿路上皮無再発生存期間(NUTRFS)、無遠隔転移生存期間(DMFS)、2次治療までの無増悪生存期間(PFS2)等が含まれる。バイオマーカーの用途は、好ましくは予後の予測、より好ましくは再発の予測である。
A change in one or more bases in the ADGRG6 enhancer serves as an indicator (biomarker) for predicting the prognosis of bladder cancer. As used herein, "prognosis" refers to the medical outlook for the progress of a patient after some treatment for bladder cancer, such as transurethral bladder tumor resection, intravesical infusion therapy in which a drug is injected into the bladder, radical cystectomy, drug therapy, etc., and the patient's life expectancy. The treatment method is appropriately determined depending on the degree of progression of the cancer. Evaluation items related to the prognosis of bladder cancer include the presence or absence of recurrence, recurrence-free survival, survival rate, and survival time. These evaluation items include other primary and secondary evaluation items, such as disease-free survival (DFS), non-urothelial recurrence-free survival (NUTRFS), distant metastasis-free survival (DMFS), progression-free survival until second-line treatment (PFS2), etc. The use of the biomarker is preferably to predict prognosis, and more preferably to predict recurrence.
予後の予測は、筋層非浸潤性膀胱癌(NMIBC)の経過観察中に行われる。筋層非浸潤性膀胱癌の経過観察には尿細胞診や膀胱鏡検査が含まれる。経過観察において変異が確認された場合には速やかな治療の実施が可能となる。変異をモニタリングするタイミングは一般的に尿細胞診や膀胱鏡検査を行うタイミングと同時期であることが想定される。
Prognosis is predicted during follow-up of non-muscle invasive bladder cancer (NMIBC). Follow-up of NMIBC includes urine cytology and cystoscopy. If a mutation is identified during follow-up, treatment can be initiated promptly. The timing of mutation monitoring is generally expected to be the same as that of urine cytology and cystoscopy.
6番染色体の142,706,206位のグアニン及び/又は142,706,209位のシトシンの変異は予後不良マーカーとなり得る。ある2つの群を見たときに、無再発生存期間や生存率において有意差をもって生存改善しているのが「予後良好群」、生存が悪化している群が「予後不良群」と判断される。
Mutations in guanine at positions 142,706,206 and/or cytosine at positions 142,706,209 on chromosome 6 can be markers of poor prognosis. When two groups are examined, the group with significantly improved survival in terms of recurrence-free survival time and survival rate is judged to be the "good prognosis group," while the group with worsening survival is judged to be the "poor prognosis group."
(検出方法)
第二の態様において、筋層非浸潤性膀胱癌に罹患しているか、罹患している可能性がある対象由来の検体におけるADGRG6エンハンサーの1又は複数の変異を検出する方法であって、野生型ADGRG6エンハンサーとの比較で、前記対象から得られた検体における、ADGRG6エンハンサーの1又は複数の変異の存在を検出する工程を含む、方法が提供される。 (Detection Method)
In a second aspect, a method is provided for detecting one or more mutations in the ADGRG6 enhancer in a sample from a subject suffering from or suspected of suffering from non-muscle invasive bladder cancer, the method comprising detecting the presence of one or more mutations in the ADGRG6 enhancer in a sample obtained from the subject in comparison to a wild-type ADGRG6 enhancer.
第二の態様において、筋層非浸潤性膀胱癌に罹患しているか、罹患している可能性がある対象由来の検体におけるADGRG6エンハンサーの1又は複数の変異を検出する方法であって、野生型ADGRG6エンハンサーとの比較で、前記対象から得られた検体における、ADGRG6エンハンサーの1又は複数の変異の存在を検出する工程を含む、方法が提供される。 (Detection Method)
In a second aspect, a method is provided for detecting one or more mutations in the ADGRG6 enhancer in a sample from a subject suffering from or suspected of suffering from non-muscle invasive bladder cancer, the method comprising detecting the presence of one or more mutations in the ADGRG6 enhancer in a sample obtained from the subject in comparison to a wild-type ADGRG6 enhancer.
検体は、膀胱癌を有すると疑われる対象から採取される。膀胱癌は筋層非浸潤性又は筋層浸潤性のいずれでもよい。採取回数は1回でもよいし、膀胱癌治療後の予後観察等の目的のために複数回であってもよい。
Samples are taken from subjects suspected of having bladder cancer. The bladder cancer may be either non-muscle invasive or muscle invasive. Samples may be taken once or multiple times for purposes such as prognosis monitoring after bladder cancer treatment.
検体は、ADGRG6エンハンサーの1又は複数の塩基の変化を検出できるものであれば特に限定されないが、cfDNAを含む液性検体、例えば血液やその他の体液であることが好ましい。より具体的には、検体は血液、血清、血漿、尿、便、唾液、喀痰、組織液、髄液、ぬぐい液等の体液等又はその希釈物等、特に血漿であることが好ましい。
The sample is not particularly limited as long as it can detect one or more base changes in the ADGRG6 enhancer, but is preferably a liquid sample containing cfDNA, such as blood or other body fluids. More specifically, the sample is preferably blood, serum, plasma, urine, stool, saliva, sputum, tissue fluid, cerebrospinal fluid, swab, or other body fluid or a dilution thereof, particularly preferably plasma.
リキッドバイオプシーで得られるcfDNAやcfRNA中に含まれる膀胱癌由来のDNA(ctDNA)やRNA(ctRNA)の割合は非常に少ないため、検体の種類によって、核酸増幅前に検体からctDNAやctRNAを抽出する工程や、夾雑物等を除去する工程を実施してもよい。血液を例に説明すると、血漿分離交換法等の公知の手段を行うによりctDNAやctRNAの回収率を増大させることができる。
Since the proportion of DNA (ctDNA) and RNA (ctRNA) derived from bladder cancer contained in the cfDNA and cfRNA obtained by liquid biopsy is very small, depending on the type of sample, a step of extracting ctDNA or ctRNA from the sample and a step of removing impurities may be carried out before nucleic acid amplification. Taking blood as an example, the recovery rate of ctDNA and ctRNA can be increased by performing known means such as plasmapheresis.
核酸増幅法としてはPCR法があり、通常のPCRに加え、デジタルPCR、マルチプレックスPCR、LAMP(Loop-mediated isothermal AMPlification)法、ICAN(Isothermal and Chimeric primer-initiated Amplification of Nucleic acids)法、RCA(Rolling Circle Amplification)法、LCR(Ligase Chain Reaction)法、SDA(Strand Displacement Amplification)法等を挙げることができる。
Nucleic acid amplification methods include PCR, which includes standard PCR, digital PCR, multiplex PCR, LAMP (Loop-mediated isothermal AMPlification), ICAN (Isothermal and Chimeric primer-initiated Amplification of Nucleic acids), RCA (Rolling Circle Amplification), LCR (Ligase Chain Reaction), and SDA (Strand Displacement Amplification).
cfDNA又はcfRNA中の変異を対象とする場合、核酸増幅法はデジタルPCRであることが好ましい。デジタルPCRはドロップレットデジタルPCRであってもよい。
When targeting mutations in cfDNA or cfRNA, the nucleic acid amplification method is preferably digital PCR. Digital PCR may be droplet digital PCR.
一実施形態において、ADGRG6エンハンサーの1又は複数の塩基は6番染色体の142,706,206位のグアニン及び/又は142,706,209位のシトシンである。
In one embodiment, one or more bases of the ADGRG6 enhancer are guanine at position 142,706,206 and/or cytosine at position 142,706,209 of chromosome 6.
ADGRG6エンハンサーの1又は複数の塩基の変化を検出する際、TERTプロモーター領域、PLEKHS1プロモーター領域等の膀胱癌に関連する遺伝子上のホットスポット領域の変異も併せて検出することが好ましい。検出工程の前後に他の工程、試料の採取を実施してもよい。例えば、検体は、検出工程前に、膀胱癌を有すると疑われる対象から採取され得る。検出工程は複数回行ってもよく、例えば同一の対象に由来する検体を定期的に採取して、それらを採取の都度検出工程にかけることもできる。
When detecting one or more base changes in the ADGRG6 enhancer, it is preferable to also detect mutations in hotspot regions in genes associated with bladder cancer, such as the TERT promoter region and the PLEKHS1 promoter region. Other steps and sample collection may be performed before or after the detection step. For example, a specimen may be collected from a subject suspected of having bladder cancer before the detection step. The detection step may be performed multiple times, for example, specimens from the same subject may be collected periodically and subjected to the detection step each time they are collected.
ADGRG6エンハンサーの1又は複数の塩基の変化が検出された場合、検体の由来となった対象における膀胱癌の予後が予測される。これにより、医師等による膀胱癌の診断やその後の治療方法の決定を補助することができる。そのような診断や決定は、膀胱癌について公知のその他の補助的な診断や、尿細胞診、膀胱生検、生検組織の病理組織学的検査等の確定診断を含む。再発していると診断された対象に対しては、経尿道的膀胱腫瘍切除術、根治的膀胱摘出術等の手術(外科治療)、術前化学療法、術後化学療法、再発化学療法等の化学療法(抗癌剤治療)、放射線治療を行うことができる。
When a change in one or more bases in the ADGRG6 enhancer is detected, the prognosis of bladder cancer in the subject from whom the sample was derived is predicted. This can assist doctors in diagnosing bladder cancer and determining subsequent treatment methods. Such diagnoses and determinations include other known auxiliary diagnoses for bladder cancer, as well as definitive diagnoses such as urine cytology, bladder biopsy, and histopathological examination of biopsy tissue. Subjects diagnosed with recurrence can undergo surgery (surgical treatment) such as transurethral bladder tumor resection and radical cystectomy, chemotherapy (anticancer drug treatment) such as preoperative chemotherapy, postoperative chemotherapy, and recurrence chemotherapy, and radiation therapy.
一実施形態において、ADGRG6エンハンサーの1又は複数の塩基の変異が検出された場合には、対象の予後が不良であると判断される。
In one embodiment, if a mutation in one or more bases in the ADGRG6 enhancer is detected, the subject's prognosis is determined to be poor.
(プライマー)
第三の態様において、検体における筋層非浸潤性膀胱癌の存在を検出するためのプライマーであって、ADGRG6エンハンサーの1又は複数の変異を標的とする、16塩基長以上で且つ21塩基長以下のオリゴヌクレオチドであるプライマーが提供される。 (Primer)
In a third aspect, a primer for detecting the presence of non-muscle invasive bladder cancer in a sample is provided, the primer being an oligonucleotide of 16 bases or more and 21 bases or less in length that targets one or more mutations in the ADGRG6 enhancer.
第三の態様において、検体における筋層非浸潤性膀胱癌の存在を検出するためのプライマーであって、ADGRG6エンハンサーの1又は複数の変異を標的とする、16塩基長以上で且つ21塩基長以下のオリゴヌクレオチドであるプライマーが提供される。 (Primer)
In a third aspect, a primer for detecting the presence of non-muscle invasive bladder cancer in a sample is provided, the primer being an oligonucleotide of 16 bases or more and 21 bases or less in length that targets one or more mutations in the ADGRG6 enhancer.
一実施形態において、ADGRG6エンハンサーの1又は複数の変異は、6番染色体の142,706,206位のグアニンのアデニンへの置換(以下、「206G>A」ともいう。)及び/又は6番染色体の142,706,209位のシトシンのチミンへの置換(以下、「209C>T」ともいう。)である。
In one embodiment, the one or more mutations in the ADGRG6 enhancer are a substitution of guanine at position 142,706,206 on chromosome 6 with adenine (hereinafter also referred to as "206G>A") and/or a substitution of cytosine at position 142,706,209 on chromosome 6 with thymine (hereinafter also referred to as "209C>T").
プライマーは16塩基長以上で且つ21塩基長以下のオリゴヌクレオチドである。中でも、Tm値が低いものが好ましい。具体的には、リバースプライマーのTm値をプローブより1~3℃高く設定することで、鋳型DNAに対して先にプローブがアニールし、その後、リバースプライマーがアニールするようになる。
The primer is an oligonucleotide that is at least 16 bases long and at most 21 bases long. Among them, those with a low Tm value are preferable. Specifically, by setting the Tm value of the reverse primer 1 to 3°C higher than that of the probe, the probe anneals to the template DNA first, and then the reverse primer anneals.
更に、プライマーは増幅するアンプリコンのサイズが200bp未満になるように設計され得る。
Furthermore, the primers can be designed so that the size of the amplified amplicon is less than 200 bp.
上記のような設計思想に基づくプライマーであって、206G>A及び209C>Tの変異を検出するプローブを含む配列を増幅するプライマーの例として、塩基長20塩基である配列番号1に記載のフォワードプライマー(TGCATATTTCACATGGAC)、塩基長が20塩基である配列番号2に記載のリバースプライマー(ATCCTGGAGGGAGAATAC)が挙げられる。プライマーは、配列番号1及び2に記載の配列から成るものを使用することが好ましい。これらのプライマーを、TERTプロモーター領域、PLEKHS1プロモーター領域等の膀胱癌に関連する遺伝子上のホットスポット領域を増幅する公知のプライマーと組み合わせてもよい。
Examples of primers based on the above design concept that amplify a sequence containing a probe for detecting the 206G>A and 209C>T mutations include the forward primer (TGCATATTTCACATGGAC) described in SEQ ID NO: 1, which has a base length of 20 bases, and the reverse primer (ATCCTGGAGGGAGAATAC) described in SEQ ID NO: 2, which has a base length of 20 bases. It is preferable to use primers consisting of the sequences described in SEQ ID NOs: 1 and 2. These primers may be combined with known primers that amplify hotspot regions in genes related to bladder cancer, such as the TERT promoter region and the PLEKHS1 promoter region.
一実施形態において、TERTプロモーターの変異は、5番染色体の1,295,228位におけるCからTへの置換(以下、「228C>T」ともいう。)、5番染色体の1,295,250位におけるCからTへの置換(以下、「250C>T」ともいう。)又はその両方であってもよい。228C>Tは膀胱癌において、そして250C>Tは筋層非浸潤性膀胱癌において検出率が高いことが知られている。
In one embodiment, the TERT promoter mutation may be a C to T substitution at position 1,295,228 of chromosome 5 (hereinafter also referred to as "228C>T"), a C to T substitution at position 1,295,250 of chromosome 5 (hereinafter also referred to as "250C>T"), or both. It is known that 228C>T has a high detection rate in bladder cancer, and 250C>T has a high detection rate in non-muscle invasive bladder cancer.
228C>Tと250C>Tの両方の変異を検出するプローブを含む配列を増幅するプライマーとしては、BioRad社製のプライマー(TERT C228T_113:dHsaEXD72405942,TERT C250T_113:dHsaEXD46675715)(アンプリコンサイズ:113bp)(J Mol Diagn. 2019 Mar;21(2)274-285も参照のこと。)がある。
Primers that amplify sequences containing probes that detect both the 228C>T and 250C>T mutations include BioRad primers (TERT C228T_113: dHsaEXD72405942, TERT C250T_113: dHsaEXD46675715) (amplicon size: 113 bp) (see also J Mol Diagn. 2019 Mar;21(2)274-285).
一実施形態において、PLEKHS1プロモーターの変異は、10番染色体の115,511,590位におけるGからAへの置換(以下、「590G>A」ともいう。)、10番染色体の115,511,593位におけるCからTへの置換(以下、「593C>T」ともいう。)又はその両方であってもよい。
In one embodiment, the mutation in the PLEKHS1 promoter may be a G to A substitution at position 115,511,590 of chromosome 10 (hereinafter also referred to as "590G>A"), a C to T substitution at position 115,511,593 of chromosome 10 (hereinafter also referred to as "593C>T"), or both.
プライマー等の塩基配列を構成するヌクレオチドは、リボヌクレオチド又はデオキシリボヌクレオチドのいずれでもよい。これらのオリゴヌクレオチドは、既知の方法で合成することができ、例えば、塩基配列に従って、固相ホスホルアミダイト法及びトリエステル法等の任意の核酸合成法により合成され得る。
The nucleotides constituting the base sequence of a primer or the like may be either ribonucleotides or deoxyribonucleotides. These oligonucleotides can be synthesized by known methods, for example, by any nucleic acid synthesis method such as the solid-phase phosphoramidite method or the triester method, according to the base sequence.
上記プライマーを用いる核酸増幅反応により、膀胱癌に関連するホットスポット領域を含む配列を増幅することが可能になる。
By using the above primers in a nucleic acid amplification reaction, it becomes possible to amplify sequences containing hotspot regions associated with bladder cancer.
(プローブ)
第四の態様において、検体における膀胱癌の存在を検出するためのプローブであって、ADGRG6エンハンサーの1又は複数の変異を標的とする、プローブ、が提供される。 (probe)
In a fourth aspect, there is provided a probe for detecting the presence of bladder cancer in a specimen, the probe targeting one or more mutations in the ADGRG6 enhancer.
第四の態様において、検体における膀胱癌の存在を検出するためのプローブであって、ADGRG6エンハンサーの1又は複数の変異を標的とする、プローブ、が提供される。 (probe)
In a fourth aspect, there is provided a probe for detecting the presence of bladder cancer in a specimen, the probe targeting one or more mutations in the ADGRG6 enhancer.
プローブを構成する配列はADGRG6エンハンサーの変異を検出できるものであれば限定されず、例えば206G>A又は209C>Tの変異を検出できるプローブが好ましい。
The sequence constituting the probe is not limited as long as it can detect a mutation in the ADGRG6 enhancer, and a probe that can detect, for example, the 206G>A or 209C>T mutation is preferred.
一実施形態において、206G>Aの変異を検出するプローブは配列番号3に記載の配列(AGGCTCTTTGTATGTTTATACAAAG)を有する。プローブは配列番号3に記載の配列から成るものが好ましい。
In one embodiment, the probe for detecting the 206G>A mutation has the sequence set forth in SEQ ID NO:3 (AGGCTCTTTGTATGTTTATACAAAG). The probe preferably consists of the sequence set forth in SEQ ID NO:3.
一実施形態において、209C>Tの変異を検出するプローブは配列番号4に記載の配列(AGGCTCTTTGTATATTCATACAAAG)を有する。プローブは配列番号4に記載の配列から成るものが好ましい。
In one embodiment, the probe for detecting the 209C>T mutation has the sequence set forth in SEQ ID NO: 4 (AGGCTCTTTGTATATTCATACAAAG). The probe preferably consists of the sequence set forth in SEQ ID NO: 4.
プローブはその一部が修飾されていてもよく、その例として、末端がアミノ化されたものや、一部の塩基がリンカーとなる塩基で修飾されたもの等が挙げられる。また、塩基配列の一部へ別の塩基を挿入したり、その塩基配列の一部の塩基を欠失させたり、又は別の塩基に置換したり、あるいは塩基以外の物質に置換してもよい。
The probe may be partially modified, for example, with aminated ends or with some bases modified with linker bases. In addition, a different base may be inserted into part of the base sequence, some bases in the base sequence may be deleted or replaced with another base, or replaced with a substance other than a base.
更に、プローブは標識物質等で修飾されていてもよく、例えば蛍光色素とそのクエンチャーを有してもよい。そのような標識物質は市販のものを使用することができる。クエンチャーは蛍光色素からの蛍光をクエンチできるものであれば特に制限されない。プローブを構成するヌクレオチド残基自体に修飾が施されていてもよく、例えば、人工的に修飾されたヌクレオチド残基に置換されていてもよい。
Furthermore, the probe may be modified with a labeling substance, etc., and may have, for example, a fluorescent dye and its quencher. Such labeling substances can be commercially available. There are no particular limitations on the quencher, so long as it can quench the fluorescence from the fluorescent dye. The nucleotide residues themselves that constitute the probe may be modified, and may be replaced with, for example, artificially modified nucleotide residues.
(キット)
第五の態様において、検体における膀胱癌の存在を検出するためのプライマー及び/又はプローブを含むキットが提供される。プライマーは上述したものを使用することができる。 (kit)
In a fifth aspect, there is provided a kit comprising a primer and/or a probe for detecting the presence of bladder cancer in a specimen. The primer may be any of those described above.
第五の態様において、検体における膀胱癌の存在を検出するためのプライマー及び/又はプローブを含むキットが提供される。プライマーは上述したものを使用することができる。 (kit)
In a fifth aspect, there is provided a kit comprising a primer and/or a probe for detecting the presence of bladder cancer in a specimen. The primer may be any of those described above.
キットはADGRG6エンハンサーの変異を標的とするプローブを更に含んでもよい。206G>Aの変異を検出するプローブとして、配列番号3に記載の塩基配列を有するものが挙げられる。また、209C>Tの変異を検出するプローブとして、配列番号4に記載の塩基配列を有するものが挙げられる。
The kit may further include a probe that targets a mutation in the ADGRG6 enhancer. An example of a probe that detects the 206G>A mutation is one having the base sequence set forth in SEQ ID NO:3. An example of a probe that detects the 209C>T mutation is one having the base sequence set forth in SEQ ID NO:4.
キットは更に、TERTプロモーター領域、PLEKHS1プロモーター領域等の膀胱癌に関連する遺伝子上のホットスポット領域を標的とする、1又は複数の対のプライマーとプローブを含んでもよい。
The kit may further include one or more pairs of primers and probes targeting hotspot regions in genes associated with bladder cancer, such as the TERT promoter region, the PLEKHS1 promoter region, etc.
デジタルPCRで核酸を増幅する場合、上記プライマー、プローブ、検体、及びDNAポリメラーゼを含む反応溶液が調製される。反応溶液は、ウェルやドロップレットに分配された後、増幅反応にかけられる。
When amplifying nucleic acids using digital PCR, a reaction solution is prepared containing the above primers, probe, sample, and DNA polymerase. The reaction solution is distributed into wells or droplets and then subjected to an amplification reaction.
核酸増幅反応で得られる増幅産物の検出には、増幅産物を特異的に認識することができる標識物質を利用してもよい。そのような標識物質としては蛍光色素、ビオチン、ジゴキシゲニン等が挙げられる。標識体として蛍光を用いた場合には、その蛍光を蛍光顕微鏡、蛍光プレートリーダー等を用いて検出することができる。
To detect the amplified products obtained in a nucleic acid amplification reaction, a labeling substance capable of specifically recognizing the amplified products may be used. Examples of such labeling substances include fluorescent dyes, biotin, and digoxigenin. When fluorescent substances are used as the labeling substance, the fluorescence can be detected using a fluorescent microscope, a fluorescent plate reader, etc.
標識物質として、増幅産物にインターカレートする物質を使用することもできる。インターカレーターは、二本鎖DNAにインターカレートして蛍光を発する物質であれば特に限定されない。
A substance that intercalates into the amplified product can also be used as the labeling substance. There are no particular limitations on the intercalator, so long as it is a substance that intercalates into double-stranded DNA and emits fluorescence.
あるいは、ポリアクリルアミド又はアガロースゲルを用いた電気泳動法など、既知の方法で検出を行ってもよい。例えば、電気泳動では、分子量が既知のマーカーの移動度に対する増幅産物の移動度から、増幅産物の存在を同定することができる。
Alternatively, detection may be performed by known methods, such as electrophoresis using polyacrylamide or agarose gels. For example, in electrophoresis, the presence of an amplification product can be identified by its mobility relative to that of a marker of known molecular weight.
以下に実施例を挙げて本発明を更に具体的に説明するが、本発明はこれらに限定されるものではない
The present invention will be explained in more detail below with reference to examples, but the present invention is not limited to these.
1.プライマー/プローブの設計
1)プローブの認識部位の決定
6番染色体の142,706,206位及び/又は142,706,209位周辺の塩基配列をNCBI等で取得し、変異を含む箇所に検出用プローブの認識部位を設定した。プローブの認識位置・塩基長は、GC含有率とTm値を考慮して決定した。 1. Primer/probe design 1) Determination of probe recognition site The base sequence around positions 142,706,206 and/or 142,706,209 of chromosome 6 was obtained from NCBI etc., and the recognition site of the detection probe was set at the site containing the mutation. The recognition position and base length of the probe were determined taking into consideration the GC content and Tm value.
1)プローブの認識部位の決定
6番染色体の142,706,206位及び/又は142,706,209位周辺の塩基配列をNCBI等で取得し、変異を含む箇所に検出用プローブの認識部位を設定した。プローブの認識位置・塩基長は、GC含有率とTm値を考慮して決定した。 1. Primer/probe design 1) Determination of probe recognition site The base sequence around positions 142,706,206 and/or 142,706,209 of chromosome 6 was obtained from NCBI etc., and the recognition site of the detection probe was set at the site containing the mutation. The recognition position and base length of the probe were determined taking into consideration the GC content and Tm value.
2)プライマー設計
プローブを含む配列を増幅するようなプライマーペアを複数設計し、gDNA、cfDNAにおける非特異的なアンプリコン形成の有無、プライマーダイマー評価をPCRの電気泳動で、プライマーペアごとのPCR効率を定量PCRで確認した。cfDNAを対象とするため、アンプリコンは80~150量体の範囲内とし、プライマーの配列・塩基数はプローブから算出されるTm値を考慮した。PCR効率、プライマーダイマー、非特異的なバンドを考慮し最も効率的なプライマーペアを決定し、ターゲットとしている領域が正しく増幅されていることをサンガーシーケンシングによって確認した。 2) Primer design Several primer pairs were designed to amplify sequences including the probe, and the presence or absence of nonspecific amplicon formation in gDNA and cfDNA, and primer dimer evaluation were confirmed by PCR electrophoresis, and the PCR efficiency for each primer pair was confirmed by quantitative PCR. In order to target cfDNA, the amplicon was in the range of 80-150 mer, and the sequence and number of bases of the primer were determined taking into account the Tm value calculated from the probe. The most efficient primer pair was determined taking into account PCR efficiency, primer dimers, and nonspecific bands, and it was confirmed by Sanger sequencing that the target region was correctly amplified.
プローブを含む配列を増幅するようなプライマーペアを複数設計し、gDNA、cfDNAにおける非特異的なアンプリコン形成の有無、プライマーダイマー評価をPCRの電気泳動で、プライマーペアごとのPCR効率を定量PCRで確認した。cfDNAを対象とするため、アンプリコンは80~150量体の範囲内とし、プライマーの配列・塩基数はプローブから算出されるTm値を考慮した。PCR効率、プライマーダイマー、非特異的なバンドを考慮し最も効率的なプライマーペアを決定し、ターゲットとしている領域が正しく増幅されていることをサンガーシーケンシングによって確認した。 2) Primer design Several primer pairs were designed to amplify sequences including the probe, and the presence or absence of nonspecific amplicon formation in gDNA and cfDNA, and primer dimer evaluation were confirmed by PCR electrophoresis, and the PCR efficiency for each primer pair was confirmed by quantitative PCR. In order to target cfDNA, the amplicon was in the range of 80-150 mer, and the sequence and number of bases of the primer were determined taking into account the Tm value calculated from the probe. The most efficient primer pair was determined taking into account PCR efficiency, primer dimers, and nonspecific bands, and it was confirmed by Sanger sequencing that the target region was correctly amplified.
3)プローブ配列の決定
それぞれのプライマーのTm値とプローブのTm値を比較し、センス鎖側に結合させるかアンチセンス鎖側に結合させるかプローブの塩基配列を決定した。 3) Determination of Probe Sequence The Tm value of each primer was compared with that of the probe, and the base sequence of the probe was determined as to whether it should be bound to the sense strand or the antisense strand.
それぞれのプライマーのTm値とプローブのTm値を比較し、センス鎖側に結合させるかアンチセンス鎖側に結合させるかプローブの塩基配列を決定した。 3) Determination of Probe Sequence The Tm value of each primer was compared with that of the probe, and the base sequence of the probe was determined as to whether it should be bound to the sense strand or the antisense strand.
2.膀胱癌確定診断と病理診断による患者の分類
膀胱がん診療ガイドライン(日本泌尿器科学会)に従い、膀胱癌疑いの患者について膀胱癌に罹患しているか否かの確定診断を行い、その後、病理診断により癌の性質を評価し、患者を分類した。手順を以下に示す。
・膀胱癌疑いの患者に対し尿細胞診を行い、陽性もしくは陰性判定を行って膀胱癌の確定診断を行う。
・膀胱癌と鑑別診断された患者のうち治療既往歴のない初発の患者を対象とする。
・膀胱癌と確定診断された患者に対し、経尿道的膀胱腫瘍切除術(trans urethral resection of bladder tumor:TURBT)もしくは膀胱全摘除術で得られた組織標本を用いて病理診断し、膀胱癌の固有筋層浸潤の有無を鑑別する。 2. Definitive diagnosis of bladder cancer and classification of patients by pathological diagnosis According to the Bladder Cancer Treatment Guidelines (Japan Urological Association), patients suspected of having bladder cancer were definitively diagnosed as having bladder cancer or not, and then the nature of the cancer was evaluated by pathological diagnosis, and the patients were classified. The procedure is as follows.
- Urine cytology is performed on patients suspected of having bladder cancer, and a positive or negative result is determined to make a definitive diagnosis of bladder cancer.
- The study will target patients with a differential diagnosis of bladder cancer who have no history of treatment and are experiencing their first case of the disease.
- For patients who have been definitively diagnosed with bladder cancer, a pathological diagnosis is performed using tissue specimens obtained through transurethral resection of bladder tumor (TURBT) or radical cystectomy to determine whether or not the bladder cancer has invaded the muscularis propria.
膀胱がん診療ガイドライン(日本泌尿器科学会)に従い、膀胱癌疑いの患者について膀胱癌に罹患しているか否かの確定診断を行い、その後、病理診断により癌の性質を評価し、患者を分類した。手順を以下に示す。
・膀胱癌疑いの患者に対し尿細胞診を行い、陽性もしくは陰性判定を行って膀胱癌の確定診断を行う。
・膀胱癌と鑑別診断された患者のうち治療既往歴のない初発の患者を対象とする。
・膀胱癌と確定診断された患者に対し、経尿道的膀胱腫瘍切除術(trans urethral resection of bladder tumor:TURBT)もしくは膀胱全摘除術で得られた組織標本を用いて病理診断し、膀胱癌の固有筋層浸潤の有無を鑑別する。 2. Definitive diagnosis of bladder cancer and classification of patients by pathological diagnosis According to the Bladder Cancer Treatment Guidelines (Japan Urological Association), patients suspected of having bladder cancer were definitively diagnosed as having bladder cancer or not, and then the nature of the cancer was evaluated by pathological diagnosis, and the patients were classified. The procedure is as follows.
- Urine cytology is performed on patients suspected of having bladder cancer, and a positive or negative result is determined to make a definitive diagnosis of bladder cancer.
- The study will target patients with a differential diagnosis of bladder cancer who have no history of treatment and are experiencing their first case of the disease.
- For patients who have been definitively diagnosed with bladder cancer, a pathological diagnosis is performed using tissue specimens obtained through transurethral resection of bladder tumor (TURBT) or radical cystectomy to determine whether or not the bladder cancer has invaded the muscularis propria.
固有筋層浸潤有無の鑑別診断の結果、筋層非浸潤性膀胱癌と鑑別された43症例と筋層浸潤性膀胱癌と鑑別された36症例を本研究にリクルートした。手術摘出組織標本の所見より、腫瘍の悪性度として組織学的異型度が低異型度もしくは高異型度かを鑑別した。
As a result of differential diagnosis based on the presence or absence of invasion into the proper muscle layer, 43 cases that were diagnosed as having non-muscle invasive bladder cancer and 36 cases that were diagnosed as having muscle invasive bladder cancer were recruited for this study. Based on the findings of the surgically removed tissue specimens, the malignancy of the tumor was classified as low-grade or high-grade histological atypia.
3.確定診断後の検体採取方法及び検体からの核酸抽出方法
膀胱癌に罹患していると確定診断され、本研究へ参加が可能な患者から、研究参加への同意を取得した後、治療もしくは経過観察中に採血を行った。腫瘍組織は経尿道的膀胱腫瘍切除術又は膀胱全摘除術を行った場合にのみ採取した。治療もしくは経過観察中の症例は、毎回採血を行った。採血方法は、通常採血(EDTA採血管)にて末梢白血球、血漿を回収、腫瘍組織は手術にて摘出された腫瘍組織を冷凍保存した。抽出・解析まで-80℃で冷凍保存とする。 3. Methods for collecting specimens after definitive diagnosis and methods for extracting nucleic acid from specimens From patients who were definitively diagnosed with bladder cancer and able to participate in this study, blood samples were taken during treatment or follow-up after consent to participate in the study was obtained. Tumor tissue was collected only when transurethral bladder tumor resection or radical cystectomy was performed. For cases undergoing treatment or follow-up, blood was collected every time. Blood was collected using standard blood collection methods (EDTA blood collection tubes) to collect peripheral white blood cells and plasma, and tumor tissue was removed during surgery and frozen. The tissue was stored frozen at -80°C until extraction and analysis.
膀胱癌に罹患していると確定診断され、本研究へ参加が可能な患者から、研究参加への同意を取得した後、治療もしくは経過観察中に採血を行った。腫瘍組織は経尿道的膀胱腫瘍切除術又は膀胱全摘除術を行った場合にのみ採取した。治療もしくは経過観察中の症例は、毎回採血を行った。採血方法は、通常採血(EDTA採血管)にて末梢白血球、血漿を回収、腫瘍組織は手術にて摘出された腫瘍組織を冷凍保存した。抽出・解析まで-80℃で冷凍保存とする。 3. Methods for collecting specimens after definitive diagnosis and methods for extracting nucleic acid from specimens From patients who were definitively diagnosed with bladder cancer and able to participate in this study, blood samples were taken during treatment or follow-up after consent to participate in the study was obtained. Tumor tissue was collected only when transurethral bladder tumor resection or radical cystectomy was performed. For cases undergoing treatment or follow-up, blood was collected every time. Blood was collected using standard blood collection methods (EDTA blood collection tubes) to collect peripheral white blood cells and plasma, and tumor tissue was removed during surgery and frozen. The tissue was stored frozen at -80°C until extraction and analysis.
得られた検体は、腫瘍組織由来のDNAをtDNA(腫瘍DNA)、体細胞(末梢白血球)由来のDNAをgDNA(ゲノムDNA)、血漿中の血液循環DNAをcfDNA(セルフリーDNA)として抽出した。DNAの抽出はキット(QIAGEN社製 QIAamp DNA Blood Mini KitもしくはQIAamp Circulating Nucleic Acid Kit)を用いたカラム精製により行った。
From the obtained samples, DNA derived from tumor tissue was extracted as tDNA (tumor DNA), DNA derived from somatic cells (peripheral white blood cells) as gDNA (genomic DNA), and DNA circulating in the plasma as cfDNA (cell-free DNA). DNA was extracted by column purification using a kit (QIAGEN QIAamp DNA Blood Mini Kit or QIAamp Circulating Nucleic Acid Kit).
膀胱癌(筋層非浸潤・筋層浸潤を問わない)患者における腫瘍組織・血液検体を対象検体として採取した。筋層浸潤性膀胱癌と診断された患者においては治療後も血液検体を3ヶ月毎に採取した。
Tumor tissue and blood samples were collected from patients with bladder cancer (both non-muscle invasive and muscle invasive) as subjects. Blood samples were collected every three months from patients diagnosed with muscle invasive bladder cancer, even after treatment.
4.デジタルPCRによる遺伝子変異解析方法
4.1.実験のフロー
デジタルPCRを用い、上記のとおり得られた血液検体中にADGRG6の変異が存在するかを確認した。まず、以下の順序で設計したプライマーの妥当性をチェックした。
(i) PCRによる断片の増幅。
(ii) DNA精製。
(iii) 電気泳動による目的断片の確認とプライマーダイマーの確認。
(iv) 断片のサンガーシーケンシングによる配列確認。 4. Gene Mutation Analysis Method by Digital PCR 4.1. Experimental Flow Using digital PCR, it was confirmed whether or not there was a mutation in ADGRG6 in the blood sample obtained as described above. First, the validity of the primers designed in the following order was checked.
(i) Amplification of the fragment by PCR.
(ii) DNA purification.
(iii) Confirmation of the target fragment and primer dimer by electrophoresis.
(iv) Sequence confirmation by Sanger sequencing of the fragments.
4.1.実験のフロー
デジタルPCRを用い、上記のとおり得られた血液検体中にADGRG6の変異が存在するかを確認した。まず、以下の順序で設計したプライマーの妥当性をチェックした。
(i) PCRによる断片の増幅。
(ii) DNA精製。
(iii) 電気泳動による目的断片の確認とプライマーダイマーの確認。
(iv) 断片のサンガーシーケンシングによる配列確認。 4. Gene Mutation Analysis Method by Digital PCR 4.1. Experimental Flow Using digital PCR, it was confirmed whether or not there was a mutation in ADGRG6 in the blood sample obtained as described above. First, the validity of the primers designed in the following order was checked.
(i) Amplification of the fragment by PCR.
(ii) DNA purification.
(iii) Confirmation of the target fragment and primer dimer by electrophoresis.
(iv) Sequence confirmation by Sanger sequencing of the fragments.
続いて、以下の順序でバリデーション用プラスミドを作製した。
(i) 患者の腫瘍サンプルからゲノムDNAの抽出。
(ii) 野生型ADGRG6の142,706,206位又は142,706,209位の領域を含むDNA断片のPCRによる増幅。
(iii) ベクターへADGRG6断片の挿入。
(iv) ベクターを大腸菌に導入し、10~20程度のコロニーを分離し大量培養。
(v) ベクターをmini prepで回収し、それぞれのベクターがWTかMutantかサンガーシーケンシングで確認。
(vi) WTのみ回収された場合、野生型ADGRG6導入プラスミドを鋳型にしたMutagenesisキットによる206G>A及び209C>T変異の導入。
(vii) 変異型ADGRG6導入プラスミドの取得。 Next, validation plasmids were prepared in the following order:
(i) Extraction of genomic DNA from patient tumor samples.
(ii) Amplification by PCR of a DNA fragment containing the region at positions 142,706,206 or 142,706,209 of wild-type ADGRG6.
(iii) Insertion of the ADGRG6 fragment into the vector.
(iv) The vector is introduced into E. coli, and about 10 to 20 colonies are isolated and cultured in large quantities.
(v) The vectors were recovered by mini prep, and each vector was confirmed to be WT or mutant by Sanger sequencing.
(vi) If only WT was recovered, introduction of the 206G>A and 209C>T mutations by Mutagenesis Kit using the wild-type ADGRG6 introduction plasmid as a template.
(vii) Obtaining a mutant ADGRG6 introduction plasmid.
(i) 患者の腫瘍サンプルからゲノムDNAの抽出。
(ii) 野生型ADGRG6の142,706,206位又は142,706,209位の領域を含むDNA断片のPCRによる増幅。
(iii) ベクターへADGRG6断片の挿入。
(iv) ベクターを大腸菌に導入し、10~20程度のコロニーを分離し大量培養。
(v) ベクターをmini prepで回収し、それぞれのベクターがWTかMutantかサンガーシーケンシングで確認。
(vi) WTのみ回収された場合、野生型ADGRG6導入プラスミドを鋳型にしたMutagenesisキットによる206G>A及び209C>T変異の導入。
(vii) 変異型ADGRG6導入プラスミドの取得。 Next, validation plasmids were prepared in the following order:
(i) Extraction of genomic DNA from patient tumor samples.
(ii) Amplification by PCR of a DNA fragment containing the region at positions 142,706,206 or 142,706,209 of wild-type ADGRG6.
(iii) Insertion of the ADGRG6 fragment into the vector.
(iv) The vector is introduced into E. coli, and about 10 to 20 colonies are isolated and cultured in large quantities.
(v) The vectors were recovered by mini prep, and each vector was confirmed to be WT or mutant by Sanger sequencing.
(vi) If only WT was recovered, introduction of the 206G>A and 209C>T mutations by Mutagenesis Kit using the wild-type ADGRG6 introduction plasmid as a template.
(vii) Obtaining a mutant ADGRG6 introduction plasmid.
以下の順序によりバリデーション用プラスミドを用いてプライマー/プローブの検出精度を確認した。
(i) 野生型ADGRG6導入プラスミドと変異型ADGRG6導入プラスミドそれぞれに対し、野生型プライマー/プローブセット、並びに変異型プライマー/プローブセットを用いたdPCRによる検出精度の確認。
なお、野生型ADGRG6及び変異型ADGRG6を検出するためのフォワードプライマーとして、配列番号1に記載の配列(TGCATATTTCACATGGAC)から成るものを、そして、リバースプライマーとして配列番号2に記載の配列(ATCCTGGAGGGAGAATAC)から成るものを使用した。この段階ではバリデーション用プラスミドはサンガーシーケンシングでの確認であり10%未満の正確な変異率がわからないため、この段階でバリデーション用プラスミドがほぼ100%野生型もしくはほぼ100%変異型であり次の(ii)で使用するに値するものかどうかも合わせて検証した。
(ii) 野生型・変異型プラスミドを多段階にスパイクインし100%、10%、1%、0.5%、0.25%、0.125%、0.0625%、0%変異プラスミドの作製。
(iii) 上記変異プラスミドの検出精度の確認。 The detection accuracy of the primers/probes was confirmed using the validation plasmid in the following order.
(i) Confirmation of detection accuracy by dPCR using a wild-type primer/probe set and a mutant-type primer/probe set for each of the wild-type ADGRG6-introduced plasmids and the mutant-type ADGRG6-introduced plasmids.
The forward primer used to detect wild-type ADGRG6 and mutant ADGRG6 was the sequence (TGCATATTTCACATGGAC) set forth in SEQ ID NO: 1, and the reverse primer was the sequence (ATCCTGGAGGGAGAATAC) set forth in SEQ ID NO: 2. At this stage, the validation plasmid was confirmed by Sanger sequencing, and the exact mutation rate of less than 10% was not known. Therefore, at this stage, it was also verified whether the validation plasmid was almost 100% wild-type or almost 100% mutant type and therefore worthy of use in the next step (ii).
(ii) Wild-type and mutant plasmids were spiked in in multiple steps to prepare 100%, 10%, 1%, 0.5%, 0.25%, 0.125%, 0.0625%, and 0% mutant plasmids.
(iii) Confirmation of the detection accuracy of the mutant plasmid.
(i) 野生型ADGRG6導入プラスミドと変異型ADGRG6導入プラスミドそれぞれに対し、野生型プライマー/プローブセット、並びに変異型プライマー/プローブセットを用いたdPCRによる検出精度の確認。
なお、野生型ADGRG6及び変異型ADGRG6を検出するためのフォワードプライマーとして、配列番号1に記載の配列(TGCATATTTCACATGGAC)から成るものを、そして、リバースプライマーとして配列番号2に記載の配列(ATCCTGGAGGGAGAATAC)から成るものを使用した。この段階ではバリデーション用プラスミドはサンガーシーケンシングでの確認であり10%未満の正確な変異率がわからないため、この段階でバリデーション用プラスミドがほぼ100%野生型もしくはほぼ100%変異型であり次の(ii)で使用するに値するものかどうかも合わせて検証した。
(ii) 野生型・変異型プラスミドを多段階にスパイクインし100%、10%、1%、0.5%、0.25%、0.125%、0.0625%、0%変異プラスミドの作製。
(iii) 上記変異プラスミドの検出精度の確認。 The detection accuracy of the primers/probes was confirmed using the validation plasmid in the following order.
(i) Confirmation of detection accuracy by dPCR using a wild-type primer/probe set and a mutant-type primer/probe set for each of the wild-type ADGRG6-introduced plasmids and the mutant-type ADGRG6-introduced plasmids.
The forward primer used to detect wild-type ADGRG6 and mutant ADGRG6 was the sequence (TGCATATTTCACATGGAC) set forth in SEQ ID NO: 1, and the reverse primer was the sequence (ATCCTGGAGGGAGAATAC) set forth in SEQ ID NO: 2. At this stage, the validation plasmid was confirmed by Sanger sequencing, and the exact mutation rate of less than 10% was not known. Therefore, at this stage, it was also verified whether the validation plasmid was almost 100% wild-type or almost 100% mutant type and therefore worthy of use in the next step (ii).
(ii) Wild-type and mutant plasmids were spiked in in multiple steps to prepare 100%, 10%, 1%, 0.5%, 0.25%, 0.125%, 0.0625%, and 0% mutant plasmids.
(iii) Confirmation of the detection accuracy of the mutant plasmid.
患者サンプルを用いて、dPCRによりTERT及びADGRG6変異を検出した。
(i) 検証済み野生型ADGRG6プライマー/プローブ及び変異型ADGRG6プライマー/プローブを用いた、tDNAおよびgDNA(各27検体)をサンプルとした変異検出確認。
(ii) 同様にTERTのプライマー/プローブを用いた、tDNAおよびgDNA(各27検体)をサンプルとした変異検出確認。なお、TERTのプライマー/プローブは市販品(BioRad社製のプライマー/プローブのセット(TERT C228T_113:dHsaEXD72405942,TERT C250T_113:dHsaEXD46675715)(アンプリコンサイズ:113bp))を使用した。それらの配列は不明であるが、アンプリコンサイズが2種とも113bpとなっており、また、一般的には変異箇所を中心にプライマーを設計し、変異箇所にプローブが当たるようにプローブを設計することから、C228もしくはC250を起点にして、上流もしくは下流の113bpの範囲内にプライマーとプローブがあると考えられる。上記変異箇所から上流もしくは下流に50~200bpの範囲内で設計を行ってもよい。
(iii) tDNAにおいて変異型陽性かつgDNAで変異型陰性であることが確認できた症例において、cfDNAをサンプルとした変異検出・MAFの算出。腫瘍において低頻度である場合、血中での検出が困難であることが予想されたため、tDNAにおいて変異率が10%以上のものを変異型陽性とした。 Patient samples were used to detect TERT and ADGRG6 mutations by dPCR.
(i) Mutation detection confirmation using tDNA and gDNA samples (27 samples each) using the validated wild-type ADGRG6 primers/probes and mutant-type ADGRG6 primers/probes.
(ii) Similarly, mutation detection confirmation was performed using tDNA and gDNA (27 samples each) using TERT primers/probes. The TERT primers/probes were commercially available products (BioRad primer/probe set (TERT C228T_113: dHsaEXD72405942, TERT C250T_113: dHsaEXD46675715) (amplicon size: 113 bp)). Although their sequences are unknown, the amplicon size of both types is 113 bp. In addition, since primers are generally designed around the mutation site and the probe is designed so that the mutation site is hit, it is considered that the primers and probes are located within a range of 113 bp upstream or downstream from C228 or C250 as the starting point. Design may be performed within a range of 50 to 200 bp upstream or downstream from the above mutation site.
(iii) In cases where tDNA was confirmed to be mutation-positive and gDNA was confirmed to be mutation-negative, mutation detection and MAF were calculated using cfDNA as a sample. If the mutation frequency in the tumor was low, it was expected that detection in the blood would be difficult, so cases with a mutation rate of 10% or more in tDNA were considered mutation-positive.
(i) 検証済み野生型ADGRG6プライマー/プローブ及び変異型ADGRG6プライマー/プローブを用いた、tDNAおよびgDNA(各27検体)をサンプルとした変異検出確認。
(ii) 同様にTERTのプライマー/プローブを用いた、tDNAおよびgDNA(各27検体)をサンプルとした変異検出確認。なお、TERTのプライマー/プローブは市販品(BioRad社製のプライマー/プローブのセット(TERT C228T_113:dHsaEXD72405942,TERT C250T_113:dHsaEXD46675715)(アンプリコンサイズ:113bp))を使用した。それらの配列は不明であるが、アンプリコンサイズが2種とも113bpとなっており、また、一般的には変異箇所を中心にプライマーを設計し、変異箇所にプローブが当たるようにプローブを設計することから、C228もしくはC250を起点にして、上流もしくは下流の113bpの範囲内にプライマーとプローブがあると考えられる。上記変異箇所から上流もしくは下流に50~200bpの範囲内で設計を行ってもよい。
(iii) tDNAにおいて変異型陽性かつgDNAで変異型陰性であることが確認できた症例において、cfDNAをサンプルとした変異検出・MAFの算出。腫瘍において低頻度である場合、血中での検出が困難であることが予想されたため、tDNAにおいて変異率が10%以上のものを変異型陽性とした。 Patient samples were used to detect TERT and ADGRG6 mutations by dPCR.
(i) Mutation detection confirmation using tDNA and gDNA samples (27 samples each) using the validated wild-type ADGRG6 primers/probes and mutant-type ADGRG6 primers/probes.
(ii) Similarly, mutation detection confirmation was performed using tDNA and gDNA (27 samples each) using TERT primers/probes. The TERT primers/probes were commercially available products (BioRad primer/probe set (TERT C228T_113: dHsaEXD72405942, TERT C250T_113: dHsaEXD46675715) (amplicon size: 113 bp)). Although their sequences are unknown, the amplicon size of both types is 113 bp. In addition, since primers are generally designed around the mutation site and the probe is designed so that the mutation site is hit, it is considered that the primers and probes are located within a range of 113 bp upstream or downstream from C228 or C250 as the starting point. Design may be performed within a range of 50 to 200 bp upstream or downstream from the above mutation site.
(iii) In cases where tDNA was confirmed to be mutation-positive and gDNA was confirmed to be mutation-negative, mutation detection and MAF were calculated using cfDNA as a sample. If the mutation frequency in the tumor was low, it was expected that detection in the blood would be difficult, so cases with a mutation rate of 10% or more in tDNA were considered mutation-positive.
デジタルPCRに用いた材料と方法を以下に記載する。
材料:
サンプルDNA(-20℃)
2x ddPCR Supermix for Probes(No dUTP) (4℃)
20x プライマー/プローブ:
制限酵素: HaeIII The materials and methods used for digital PCR are described below.
material:
Sample DNA (-20°C)
2x ddPCR Supermix for Probes (No dUTP) (4℃)
20x primers/probes:
Restriction enzyme: HaeIII
材料:
サンプルDNA(-20℃)
2x ddPCR Supermix for Probes(No dUTP) (4℃)
20x プライマー/プローブ:
制限酵素: HaeIII The materials and methods used for digital PCR are described below.
material:
Sample DNA (-20°C)
2x ddPCR Supermix for Probes (No dUTP) (4℃)
20x primers/probes:
Restriction enzyme: HaeIII
方法:
1.DNA溶液の濃度を<50ng/ウェル(7μLまで)に調整(10-50コピーの場合は15ng追加可)
2.室温でボルテックスし、遠心し、遮光しておく。
3.Mixを調製(制限酵素は原液10U/μL)
4.ミックスをボルテックスし、遠心し、室温で3分放置
5.DG8(登録商標)カートリッジのサンプルウェルに20μLのミックスを、オイルウェルに70μLのDroplet Generation Oilを添加。
6.Droplet Generatorに入れて溶液中のDropletを作製する
7.Droplet 40μLをPCR 96wellに入れてシーリング(アルミホイル)
8.Droplet Readerで解析
method:
1. Adjust the concentration of DNA solution to <50 ng/well (up to 7 μL) (15 ng can be added for 10-50 copies)
2. Vortex at room temperature, centrifuge and store protected from light.
3. Prepare the mix (restriction enzyme stock solution 10 U/μL)
4. Vortex the mix, centrifuge and leave at room temperature for 3 minutes. 5. Add 20 μL of the mix to the sample well and 70 μL of Droplet Generation Oil to the oil well of the DG8® cartridge.
6. Place in the Droplet Generator to create droplets in solution. 7. Place 40 μL of droplets in a PCR 96 well and seal with aluminum foil.
8. Analysis with Droplet Reader
1.DNA溶液の濃度を<50ng/ウェル(7μLまで)に調整(10-50コピーの場合は15ng追加可)
2.室温でボルテックスし、遠心し、遮光しておく。
3.Mixを調製(制限酵素は原液10U/μL)
5.DG8(登録商標)カートリッジのサンプルウェルに20μLのミックスを、オイルウェルに70μLのDroplet Generation Oilを添加。
6.Droplet Generatorに入れて溶液中のDropletを作製する
7.Droplet 40μLをPCR 96wellに入れてシーリング(アルミホイル)
1. Adjust the concentration of DNA solution to <50 ng/well (up to 7 μL) (15 ng can be added for 10-50 copies)
2. Vortex at room temperature, centrifuge and store protected from light.
3. Prepare the mix (restriction enzyme stock solution 10 U/μL)
6. Place in the Droplet Generator to create droplets in solution. 7. Place 40 μL of droplets in a PCR 96 well and seal with aluminum foil.
4.2.検出精度の確認
バリデーション用のプラスミド(野生型、変異型)を作製し検出精度を確認した。ADGRG6 206G>Aの検出に関しては野生型と変異型の検出精度はそれぞれ99.98%、100.00%だった。ADGRG6 209C>Tの検出に関しては野生型と変異型の検出精度はそれぞれ99.99%、100.00%だった。また、野生型で変異型を希釈したDNA溶液を検出したところ有意に0.063%の変異を検出できた(206G>A: p=0.0017, 209C>T: p<0.001)。 4.2. Confirmation of detection accuracy Plasmids (wild type, mutant type) for validation were prepared and the detection accuracy was confirmed. For the detection of ADGRG6 206G>A, the detection accuracy of the wild type and mutant type was 99.98% and 100.00%, respectively. For the detection of ADGRG6 209C>T, the detection accuracy of the wild type and mutant type was 99.99% and 100.00%, respectively. In addition, when detecting a DNA solution in which the mutant type was diluted with the wild type, 0.063% of mutations could be significantly detected (206G>A: p=0.0017, 209C>T: p<0.001).
バリデーション用のプラスミド(野生型、変異型)を作製し検出精度を確認した。ADGRG6 206G>Aの検出に関しては野生型と変異型の検出精度はそれぞれ99.98%、100.00%だった。ADGRG6 209C>Tの検出に関しては野生型と変異型の検出精度はそれぞれ99.99%、100.00%だった。また、野生型で変異型を希釈したDNA溶液を検出したところ有意に0.063%の変異を検出できた(206G>A: p=0.0017, 209C>T: p<0.001)。 4.2. Confirmation of detection accuracy Plasmids (wild type, mutant type) for validation were prepared and the detection accuracy was confirmed. For the detection of ADGRG6 206G>A, the detection accuracy of the wild type and mutant type was 99.98% and 100.00%, respectively. For the detection of ADGRG6 209C>T, the detection accuracy of the wild type and mutant type was 99.99% and 100.00%, respectively. In addition, when detecting a DNA solution in which the mutant type was diluted with the wild type, 0.063% of mutations could be significantly detected (206G>A: p=0.0017, 209C>T: p<0.001).
患者の血液検体から抽出した核酸(tDNA、cfDNA)を鋳型としてdPCRを試行したところ野生型、変異型とも検出シグナルは良好でいずれのサンプルでも陽性ドロップレットと陰性ドロップレットを明確に分離できた。
When dPCR was performed using nucleic acids (tDNA, cfDNA) extracted from the patient's blood sample as a template, the detection signals were good for both the wild type and the mutant type, and positive and negative droplets could be clearly separated in both samples.
変異陽性である患者のcfDNAのMutant Allele Frequency (MAF)を経時的に解析したところ、どの患者も経時的に0.3%を超えなかった。これはどの患者も現在まで画像による再発診断に至っていないことを反映していると思われる。
When the Mutant Allele Frequency (MAF) of cfDNA from mutation-positive patients was analyzed over time, it did not exceed 0.3% over time in any patient. This is thought to reflect the fact that no patient has been diagnosed with recurrence by imaging to date.
4.3.デジタルPCRによる遺伝子変異解析
尿路上皮癌に罹患していると確定診断された患者104症例から解剖学的に腎盂癌及び尿管癌とされる上部尿路癌の25症例を除いた79症例のうち、経過観察中の膀胱癌のうち、43症例の筋層非浸潤性膀胱癌(NMIBC)と確定診断された43症例について更に検討を行った。試験は、治療を受けた43症例の患者から検体のサンプリングを行った日を始期とした。試験の始期は、各患者が試験に参加した時期によって異なるものの、経過観察中の検体取得は、最初の患者の試験開始から36ヶ月後にあたるタイミングで行った。その結果、観察期間は10ヶ月から36ヶ月の幅があった。検体をデジタルPCRにかけて得られた結果について、ADGRG6の142,706,206位のG(グアニン)からC(シトシン)への変異又は142,706,209位のC(シトシン)からT(チミン)への変異を検出できた症例を変異陽性症例として登録した。また、206番目G>A及び209番目C>Tの変異が同時に見つかった症例も同様に登録する。このとき、2箇所同時に変異が見つかった症例も、症例数として「1」とカウントした。 4.3. Gene Mutation Analysis by Digital PCR Among 104 patients who were definitively diagnosed as suffering from urothelial carcinoma, 25 cases of upper urinary tract cancer anatomically considered to be renal pelvis cancer and ureter cancer were excluded, leaving 79 cases of bladder cancer under follow-up, of which 43 cases were definitively diagnosed as non-muscle invasive bladder cancer (NMIBC) were further examined. The study began on the date of sampling of samples from 43 patients who had undergone treatment. Although the start of the study varied depending on when each patient joined the study, samples were obtained during follow-up 36 months after the start of the study for the first patient. As a result, the observation period ranged from 10 months to 36 months. Regarding the results obtained by subjecting the specimen to digital PCR, cases in which a mutation from G (guanine) at position 142,706,206 of ADGRG6 to C (cytosine) or a mutation from C (cytosine) at position 142,706,209 to T (thymine) could be detected were registered as mutation-positive cases. In addition, cases in which the 206th G>A and 209th C>T mutations were found simultaneously were also registered in the same way. In this case, cases in which mutations were found at two locations simultaneously were also counted as "1" in the number of cases.
尿路上皮癌に罹患していると確定診断された患者104症例から解剖学的に腎盂癌及び尿管癌とされる上部尿路癌の25症例を除いた79症例のうち、経過観察中の膀胱癌のうち、43症例の筋層非浸潤性膀胱癌(NMIBC)と確定診断された43症例について更に検討を行った。試験は、治療を受けた43症例の患者から検体のサンプリングを行った日を始期とした。試験の始期は、各患者が試験に参加した時期によって異なるものの、経過観察中の検体取得は、最初の患者の試験開始から36ヶ月後にあたるタイミングで行った。その結果、観察期間は10ヶ月から36ヶ月の幅があった。検体をデジタルPCRにかけて得られた結果について、ADGRG6の142,706,206位のG(グアニン)からC(シトシン)への変異又は142,706,209位のC(シトシン)からT(チミン)への変異を検出できた症例を変異陽性症例として登録した。また、206番目G>A及び209番目C>Tの変異が同時に見つかった症例も同様に登録する。このとき、2箇所同時に変異が見つかった症例も、症例数として「1」とカウントした。 4.3. Gene Mutation Analysis by Digital PCR Among 104 patients who were definitively diagnosed as suffering from urothelial carcinoma, 25 cases of upper urinary tract cancer anatomically considered to be renal pelvis cancer and ureter cancer were excluded, leaving 79 cases of bladder cancer under follow-up, of which 43 cases were definitively diagnosed as non-muscle invasive bladder cancer (NMIBC) were further examined. The study began on the date of sampling of samples from 43 patients who had undergone treatment. Although the start of the study varied depending on when each patient joined the study, samples were obtained during follow-up 36 months after the start of the study for the first patient. As a result, the observation period ranged from 10 months to 36 months. Regarding the results obtained by subjecting the specimen to digital PCR, cases in which a mutation from G (guanine) at position 142,706,206 of ADGRG6 to C (cytosine) or a mutation from C (cytosine) at position 142,706,209 to T (thymine) could be detected were registered as mutation-positive cases. In addition, cases in which the 206th G>A and 209th C>T mutations were found simultaneously were also registered in the same way. In this case, cases in which mutations were found at two locations simultaneously were also counted as "1" in the number of cases.
試験開始後36ヶ月時点で43症例の筋層非浸潤性癌(NMIBC)における再発・無再発症例数をカウントし、続いてTERT遺伝子及びADGRG6遺伝子変異有無の評価を行った。経過観察中に胸部から骨盤部にかけての画像検査(CT)で局所再発・他臓器転移を認めた時点で再発症例とした。また、組織学的異型度の低異型度(low grade)と高異型度(high grade)それぞれにおいてTERT遺伝子及びADGRG6遺伝子の変異の有無をカウントした。
36 months after the start of the study, the number of recurrent and non-recurrent cases in 43 cases of non-muscle invasive carcinoma (NMIBC) was counted, and then the presence or absence of TERT and ADGRG6 gene mutations was evaluated. Cases were considered to have recurred when local recurrence or metastasis to other organs was found in imaging tests (CT) of the chest to pelvis during follow-up. In addition, the presence or absence of mutations in the TERT and ADGRG6 genes was counted for both low grade and high grade histological atypia.
筋層非浸潤性癌(NMIBC)における再発・無再発群において、1)TERTのみと、2)TERT及びADGRG6の両方の2つを同時に確認し、変異陽性症例数をカウントした際の割合を算出した。NMIBCにおける低異型度(low grade)と高異型度(high grade)において、1)TERTのみと、2)TERT及びADGRG6の両方の2つを同時に確認し、変異陽性症例数をカウントした際の割合を算出した。結果を図1に示す。
In the recurrent and non-recurrent groups of non-muscle invasive cancer (NMIBC), 1) TERT only and 2) both TERT and ADGRG6 were confirmed simultaneously, and the proportion of mutation-positive cases was calculated. In low-grade and high-grade NMIBC, 1) TERT only and 2) both TERT and ADGRG6 were confirmed simultaneously, and the proportion of mutation-positive cases was calculated. The results are shown in Figure 1.
筋層非浸潤性膀胱癌(NMIBC)症例のうち、異型度が低異型度の群では、TERTプロモーター変異のような従来の予後マーカーに加え、ADGRG6エンハンサーの変異を評価してもカバー率が大きく増大しなかったのに対し、異型度が高異型度の群では両者の変異の組み合わせによりカバー率が顕著に向上した。膀胱癌の中でも症例数の多い筋層非浸潤性膀胱癌における予後不良な症例は、再発や転移の早期発見、そしてさらなる悪性化の抑制が必要とされるため、ADGRG6エンハンサーの変化は、筋層非浸潤性膀胱癌(NMIBC)、特に、悪性度が高い高異型度筋層非浸潤性膀胱癌の予後不良マーカーとなり得る。
In low-grade non-muscle invasive bladder cancer (NMIBC) cases, the coverage rate did not increase significantly when ADGRG6 enhancer mutations were evaluated in addition to conventional prognostic markers such as TERT promoter mutations, whereas in high-grade cases, the coverage rate increased significantly by combining both mutations. Non-muscle invasive bladder cancer, which accounts for the majority of bladder cancer cases, requires early detection of recurrence and metastasis and prevention of further malignant progression, so changes in the ADGRG6 enhancer can be a poor prognostic marker for non-muscle invasive bladder cancer (NMIBC), especially high-grade non-muscle invasive bladder cancer, which is highly malignant.
Claims (16)
- 筋層非浸潤性膀胱癌のバイオマーカーであって、
ADGRG6エンハンサーがコードするタンパク質の1又は複数の変異である、バイオマーカー。 A biomarker for non-muscle invasive bladder cancer, comprising:
A biomarker that is one or more mutations in the protein encoded by the ADGRG6 enhancer. - 変異が一塩基多型である、請求項1に記載のバイオマーカー。 The biomarker of claim 1, wherein the mutation is a single nucleotide polymorphism.
- 一塩基多型が、6番染色体の142,706,206位のグアニン及び/又は142,706,209位のシトシンの変異である、請求項2に記載のバイオマーカー。 The biomarker according to claim 2, wherein the single nucleotide polymorphism is a mutation of guanine at position 142,706,206 and/or cytosine at position 142,706,209 on chromosome 6.
- 筋層非浸潤性膀胱癌の予後を予測するための、請求項1又は2に記載のバイオマーカー。 The biomarker described in claim 1 or 2 for predicting the prognosis of non-muscle invasive bladder cancer.
- 筋層非浸潤性膀胱癌が高異型度筋層非浸潤性膀胱癌である、請求項4に記載のバイオマーカー。 The biomarker according to claim 4, wherein the non-muscle invasive bladder cancer is high-grade non-muscle invasive bladder cancer.
- 予後が無再発生存期間の長さ又は再発のリスクの高低である、請求項4に記載のバイオマーカー。 The biomarker according to claim 4, wherein the prognosis is the length of recurrence-free survival or the risk of recurrence.
- 予後不良マーカーである、請求項4に記載のバイオマーカー。 The biomarker according to claim 4, which is a poor prognosis marker.
- 変異が、循環腫瘍DNA(ctDNA)、セルフリーDNA(cfDNA)、ゲノムDNA又は相補的DNA(cDNA)に存在する、請求項1又は2に記載のバイオマーカー。 The biomarker of claim 1 or 2, wherein the mutation is present in circulating tumor DNA (ctDNA), cell-free DNA (cfDNA), genomic DNA or complementary DNA (cDNA).
- 筋層非浸潤性膀胱癌に罹患しているか、罹患している可能性がある対象由来の検体におけるADGRG6エンハンサーの1又は複数の変異を検出する方法であって、
野生型ADGRG6エンハンサーとの比較で、前記対象から得られた検体における、ADGRG6エンハンサーの1又は複数の変異の存在を検出する工程を含む、方法。 1. A method for detecting one or more mutations in the ADGRG6 enhancer in a sample from a subject having or suspected of having non-muscle invasive bladder cancer, comprising:
A method comprising detecting the presence of one or more mutations in the ADGRG6 enhancer in a sample obtained from the subject, in comparison to a wild-type ADGRG6 enhancer. - 変異が検出された場合には、対象の予後が不良である、請求項9に記載の方法。 The method according to claim 9, wherein if a mutation is detected, the subject has a poor prognosis.
- 検出工程で使用される核酸増幅法がデジタルPCRである、請求項9又は10に記載の方法。 The method according to claim 9 or 10, wherein the nucleic acid amplification method used in the detection step is digital PCR.
- 検体が液性検体である、請求項9又は10に記載の方法。 The method according to claim 9 or 10, wherein the sample is a liquid sample.
- 検体が血中循環DNA(cfDNA)を含む、請求項9又は10に記載の方法。 The method of claim 9 or 10, wherein the sample comprises circulating DNA (cfDNA).
- 検体における筋層非浸潤性膀胱癌の存在を検出するためのプライマーであって、
ADGRG6エンハンサーの1又は複数の変異を標的とする、16塩基長以上で且つ21塩基長以下のオリゴヌクレオチドであるプライマー。 1. A primer for detecting the presence of non-muscle invasive bladder cancer in a specimen, comprising:
A primer that is an oligonucleotide of at least 16 bases and no more than 21 bases in length that targets one or more mutations in the ADGRG6 enhancer. - 検体における筋層非浸潤性膀胱癌の存在を検出するためのプローブであって、ADGRG6エンハンサーの1又は複数の変異を標的とする、プローブ。 A probe for detecting the presence of non-muscle invasive bladder cancer in a specimen, the probe targeting one or more mutations in the ADGRG6 enhancer.
- 請求項14に記載のプライマー及び/又は請求項15に記載のプローブを含む、キット。 A kit comprising the primer according to claim 14 and/or the probe according to claim 15.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023053126 | 2023-03-29 | ||
JP2023-053126 | 2023-03-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024204599A1 true WO2024204599A1 (en) | 2024-10-03 |
Family
ID=92906777
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2024/012784 WO2024204599A1 (en) | 2023-03-29 | 2024-03-28 | Biomarker for bladder cancer |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2024204599A1 (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021066038A1 (en) * | 2019-10-02 | 2021-04-08 | 国立大学法人九州大学 | Biomarker, method, kit and array for predicting therapeutic effects of bcg intravesical infusion therapy in treating bladder cancer |
-
2024
- 2024-03-28 WO PCT/JP2024/012784 patent/WO2024204599A1/en unknown
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021066038A1 (en) * | 2019-10-02 | 2021-04-08 | 国立大学法人九州大学 | Biomarker, method, kit and array for predicting therapeutic effects of bcg intravesical infusion therapy in treating bladder cancer |
Non-Patent Citations (2)
Title |
---|
BAXTER L., GORDON N. S., OTT S., WANG J., PATEL P., GOEL A., PIECHOCKI K., SILCOCK L., SALE C., ZEEGERS M. P., CHENG K. K., JAMES : "Properties of non-coding mutation hotspots as urinary biomarkers for bladder cancer detection", SCIENTIFIC REPORTS, vol. 13, no. 1, XP093080486, DOI: 10.1038/s41598-023-27675-4 * |
WU SONG, OU TONG, XING NIANZENG, LU JIANG, WAN SHENGQING, WANG CHANGXI, ZHANG XI, YANG FEIYA, HUANG YI, CAI ZHIMING: "Whole-genome sequencing identifies ADGRG6 enhancer mutations and FRS2 duplications as angiogenesis-related drivers in bladder cancer", NATURE COMMUNICATIONS, vol. 10, no. 1, XP093080485, DOI: 10.1038/s41467-019-08576-5 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2018196379A (en) | Method for detecting single nucleotide polymorphism (snp) in codon 600 of human braf | |
JP2012005500A (en) | Identification of marker in esophageal cancer, colon cancer, head and neck cancer, and melanoma | |
JP2024020392A (en) | Composition for diagnosing liver cancer by using cpg methylation changes in specific genes, and use thereof | |
CA3026809A1 (en) | Compositions and methods for diagnosing lung cancers using gene expression profiles | |
US11111546B2 (en) | 3.4 KB mitochondrial DNA deletion for use in the detection of cancer | |
EP4098755A1 (en) | Composition using cpg methylation changes in specific genes to diagnose bladder cancer, and use thereof | |
KR102472257B1 (en) | Composition for diagnosing colorectal cancer or adenoma using CpG methylation status of LINC01798 gene and uses thereof | |
WO2024204599A1 (en) | Biomarker for bladder cancer | |
CN115094139B (en) | Application of reagent for detecting methylation level in preparation of bladder cancer diagnosis product and bladder cancer diagnosis kit | |
EP2634267B1 (en) | 3.4 kb mitochondrial DNA deletion for use in the detection of cancer | |
CN117821585A (en) | Colorectal cancer early diagnosis marker and application | |
WO2024204603A1 (en) | Biomarker for bladder cancer | |
CN117344010A (en) | DNA methylation biomarker for diagnosing gastric cancer, kit and application | |
WO2023145754A1 (en) | Primers and probe for detecting presence of bladder cancer | |
US7592137B2 (en) | Genetic testing kits and a method of bladder cancer | |
EP4134453A1 (en) | Composition for diagnosing colorectal cancer, rectal cancer, or colorectal adenoma using cpg methylation change of glrb gene, and use thereof | |
CN116004812B (en) | Application of reagent for detecting methylation level in preparation of esophageal cancer diagnosis product and esophageal cancer diagnosis kit | |
JP2024093463A (en) | Methods for analyzing bladder cancer-associated mutant dna, and primers and probes for digital pcr therefor | |
CN117363729A (en) | Kit for in vitro detection of liver cancer and application thereof | |
WO2023135600A1 (en) | Personalized cancer management and monitoring based on dna methylation changes in cell-free dna | |
US20120220487A1 (en) | Determination of 17q Gain in Neuroblastoma Patients by Analysis of Circulating DNA | |
CN117587121A (en) | Use of markers for diagnosing breast cancer or predicting breast cancer risk | |
CN115961048A (en) | Gene methylation detection primer combination, reagent and application thereof | |
CN115838799A (en) | Application of reagent for detecting gene methylation in preparation of product for diagnosing colorectal cancer | |
CN117587125A (en) | Application of reagent for detecting methylation in preparation of pancreatic cancer diagnosis product |