[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2024204552A1 - Polyester production method, composition, and molded article - Google Patents

Polyester production method, composition, and molded article Download PDF

Info

Publication number
WO2024204552A1
WO2024204552A1 PCT/JP2024/012678 JP2024012678W WO2024204552A1 WO 2024204552 A1 WO2024204552 A1 WO 2024204552A1 JP 2024012678 W JP2024012678 W JP 2024012678W WO 2024204552 A1 WO2024204552 A1 WO 2024204552A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyester
reaction
component
contact treatment
treatment
Prior art date
Application number
PCT/JP2024/012678
Other languages
French (fr)
Japanese (ja)
Inventor
博道 奥村
正樹 松原
Original Assignee
三菱ケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱ケミカル株式会社 filed Critical 三菱ケミカル株式会社
Publication of WO2024204552A1 publication Critical patent/WO2024204552A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes

Definitions

  • the present invention relates to a method for producing polyester, a composition, and a molded article.
  • Polyesters made primarily from aliphatic diols or alicyclic diols and aliphatic dicarboxylic acids, alicyclic dicarboxylic acids, or aromatic dicarboxylic acids, and polyesters made primarily from aliphatic oxycarboxylic acids, are biodegradable resins with good physical properties and degradability, and are processed and used in products such as agricultural materials, civil engineering materials, and packaging materials.
  • Patent Documents 3 and 4 disclose, as a method of contacting polyester with an alcohol/water mixture (contact treatment liquid), a batch type treatment method in which pelletized polyester is placed in a treatment tank and contacted with the contact treatment liquid, and pellets are removed after contact treatment, and a continuous type treatment method in which pellets are continuously supplied to a pipe or treatment tank, and the contact treatment liquid is brought into contact with the flow of the pellets in a parallel or countercurrent manner, and the pellets are continuously removed.
  • Patent Document 5 discloses a manufacturing method in which oligomer components contained in aliphatic polyester pellets are separated and recovered, and then the oligomer components are used as raw materials in an amount of 5 parts by weight or less per 100 parts by weight of raw materials other than the aliphatic polyester oligomer.
  • Patent Document 5 describes a method for treating and reusing components such as oligomers that have been subjected to contact treatment.
  • the recovered oligomer components are concentrated by evaporating organic solvent components from the used contact treatment solvent, and have not been subjected to a step of purifying the oligomer components. Therefore, when the oligomer mixture obtained by the above method is reused as a raw material to polymerize polyester, there is a problem that the addition of the recovered oligomers significantly deteriorates the color tone of the polymer.
  • a first object of the present invention is to provide a method for producing a polyester that can suppress deterioration in color tone of the polyester even when the amount of recycled raw material components recovered from the used contact treatment liquid in the contact treatment process is increased.
  • a second object of the present invention is to provide a method for producing polyester that can improve the productivity of polyester and suppress deterioration in color tone.
  • the inventors discovered that the first problem could be solved by setting the content of cyclic oligomer components in the oligomer components contained in the polyester raw material to a specific range, and thus completed the present invention.
  • a method for producing a polyester comprising a reaction step including at least one reaction treatment selected from the group consisting of an esterification reaction treatment and an ester exchange reaction treatment, in which a polyester raw material is reacted,
  • the polyester raw material contains a diol component, a dicarboxylic acid component, and an oligomer component,
  • the content of a cyclic oligomer component in the oligomer component is 35% by mass or more and 100% by mass or less
  • the cyclic oligomer component comprises a constituent unit derived from the diol component and a constituent unit derived from the dicarboxylic acid component
  • the total number of repeating units of the constituent units derived from the diol component and the constituent units derived from the dicarboxylic acid component is 2 to 7.
  • [A2] The method for producing a polyester according to [A1], wherein the diol component contains at least one selected from the group consisting of 1,4-butanediol and derivatives thereof.
  • [A3] The method for producing a polyester according to [A1] or [A2], wherein the content of the oligomer component in the polyester raw material is 0.1% by mass or more and less than 100% by mass.
  • the method further comprises a purification step including a contact treatment in which the reaction product obtained in the reaction step is contacted with a solvent containing water to obtain a contact treatment liquid containing the oligomer component and a post-contact treatment reaction product, The oligomer component in the treatment liquid is reused as an oligomer component in the polyester raw material in the reaction step.
  • [A5] The method for producing a polyester according to [A4], further comprising, between the reaction step and the purification step, a pelletizing step of pelletizing the reaction product obtained in the reaction step to obtain pellets.
  • the method further includes a raw material preparation step of preparing the polyester raw material before the reaction step, The method for producing a polyester according to any one of [A1] to [A5], wherein an oligomer component in the contact treatment liquid is supplied to any one of the steps from the raw material preparation step to the reaction step.
  • the method further comprises a drying step of drying the reaction product after the contact treatment.
  • A8] The method for producing a polyester according to [A7], wherein at least one treatment selected from the group consisting of a contact treatment in the purification step and a drying treatment in the drying step is carried out continuously.
  • the polyester raw material is The dicarboxylic acid component includes at least one selected from the group consisting of dicarboxylic acids represented by the following formula (A) and derivatives thereof, and at least one selected from the group consisting of dicarboxylic acids represented by the following formula (B) and derivatives thereof:
  • the diol component includes at least one selected from the group consisting of diols represented by the following formula (C) and derivatives thereof, and at least one selected from the group consisting of diols represented by the following formula (D) and derivatives thereof: At least one kind selected from the group consisting of at least one kind selected from the group consisting of diols represented by the following formula (C) and at least one kind selected from the group consisting of diols represented by the following formula (D) is at least one kind selected from the group consisting of 1,4-butanediol and derivatives thereof: A method for producing the polyester according to [A9] or [A10].
  • R 1 to R 4 have the same meanings as R 1 to R 4 in formula (1), respectively.
  • a composition comprising a polyester containing a constitutional unit derived from a diol component and a constitutional unit derived from a dicarboxylic acid component, and a cyclic oligomer component having a structure represented by the following formula (1) and a structure represented by the following formula (2).
  • R 1 and R 2 each independently represent a divalent hydrocarbon group which may have a substituent; x is an integer of 0 to 7; In formula (2), R 3 and R 4 each independently represent a divalent hydrocarbon group which may have a substituent; y is an integer of 0 to 7; x+y is 2 to 7.
  • [A14] The composition according to [A13], wherein the polyester contains a constitutional unit derived from the cyclic oligomer component.
  • the inventors have investigated a process for purifying a contact treatment liquid containing oligomer components obtained in a contact treatment in the production of polyester, and have found that the second problem can be solved by recovering the oligomer components obtained in the process for reuse as part of the raw material, thus completing the present invention.
  • the second aspect of the present invention resides in the following [B1] to [B8].
  • [B1] a reaction step of obtaining a reaction product by a reaction treatment including at least one treatment selected from the group consisting of an esterification reaction treatment and a transesterification reaction treatment of a polyester raw material containing a diol component and a dicarboxylic acid component; a contact treatment step of contacting the reaction product with a contact treatment liquid to obtain a contact treatment liquid containing an oligomer component and a post-contact treatment reaction product; a purification step including a treatment for purifying the oligomer components in the contact treatment liquid so that a content ratio of cyclic oligomer components in the oligomer components is increased from the contact treatment liquid containing the oligomer components; and a recovery step for recovering the oligomer components obtained by the purification step as part of the raw material.
  • a method for producing polyester [B2] The method for producing a polyester according to [B1], wherein the purification step includes a distillation separation treatment for separating a low boiling liquid from a high boiling liquid containing the oligomer components. [B3] The method for producing a polyester according to [B2], further comprising a phase separation treatment for separating the oligomer component from the high-boiling liquid by performing a liquid/liquid phase separation treatment. [B4] The method for producing the polyester according to [B3], further comprising a crystallization treatment for further crystallizing the oligomer component separated by the phase separation treatment.
  • [B5] The method for producing the polyester according to [B2], further comprising a crystallization treatment for crystallizing an oligomer component contained in the high boiling liquid.
  • [B6] The method for producing a polyester according to any one of [B1] to [B5], further comprising, between the reaction step and the contact treatment step, a pelletizing step of pelletizing the reaction product obtained in the reaction step to obtain polyester pellets.
  • the method further includes a raw material preparation step of preparing the raw material before the reaction step, The method further includes a supplying step of supplying, after the recovery step, a melt obtained by melting the recovered oligomer component or a solution obtained by dissolving the oligomer component in a diol component of the polyester raw material to any one of the steps from the raw material preparation step to the reaction step.
  • [B8] The method for producing a polyester according to any one of [B1] to [B7], wherein the contact treatment liquid contains an alcohol.
  • [B9] The method for producing a polyester according to any one of [B1] to [B8], further comprising, after the contact treatment step, a drying step of carrying out a drying treatment to dry the reaction product after the contact treatment.
  • [B10] The method for producing a polyester according to any one of [B1] to [B9], wherein at least one treatment selected from the group consisting of a contact treatment in the contact treatment step and a drying treatment in the drying step is carried out continuously.
  • [B11] The method for producing a polyester according to any one of [B1] to [B10], wherein at least one treatment selected from the group consisting of a contact treatment in the contact treatment step and a drying treatment in the drying step is carried out in a batchwise or semi-batchwise manner.
  • the first aspect of the present invention provides a method for producing polyester that can suppress deterioration of the color tone of polyester even when the amount of recycled raw material components recovered from the used contact treatment liquid in the contact treatment process is increased.
  • the second aspect of the present invention can provide a method for producing polyester that can improve polyester productivity and suppress color deterioration. For example, when oligomer components in a contact treatment solution obtained in polyester production are reused as raw materials for polymerization, even if the amount of recovered oligomer components is increased, there is little decrease in polymerization reactivity and little deterioration in polymer color, so production efficiency and raw material unit consumption are improved, and a polyester of good quality can be provided.
  • FIG. 1 is a schematic diagram showing one embodiment of an esterification reaction process.
  • FIG. 1 is a schematic diagram illustrating one embodiment of a polycondensation reaction process.
  • FIG. 2 is a schematic diagram showing one embodiment of the contacting treatment and separation treatment in the first aspect, or the contacting treatment step and purification step in the second aspect.
  • FIG. 2 is a schematic diagram showing one embodiment of a drying process.
  • mass % are synonymous with “weight %”, “ppm by weight”, and “parts by weight”.
  • a first aspect of a method for producing a polyester according to one embodiment of the present invention comprises: A method for producing a polyester, comprising a reaction step including at least one reaction treatment selected from the group consisting of an esterification reaction treatment and an ester exchange reaction treatment, in which a polyester raw material is reacted,
  • the polyester raw material contains a diol component, a dicarboxylic acid component, and an oligomer component,
  • the content of a cyclic oligomer component in the oligomer component is 35% by mass or more and 100% by mass or less
  • the cyclic oligomer component contains a constituent unit derived from the diol component and a constituent unit derived from the dicarboxylic acid component, and the total number of repeating units of the constituent units derived from the diol component and the constituent units derived
  • the raw material polyester is not particularly limited as long as it contains a diol component, a dicarboxylic acid component, and an oligomer component, and may contain components other than these components.
  • the diol component may be any diol component that is usually used as a raw material for polyesters without any particular limitation.
  • the diol component may be an aliphatic diol component or an aromatic diol component.
  • aliphatic diol components include alkylene diols such as ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,7-heptanediol, 1,8-octanediol, 1,9-nonanediol, 1,10-decanediol, and neopentyl glycol; oxyalkylene diols such as diethylene glycol, polyethylene glycol, polypropylene glycol, and polytetramethylene ether glycol; and cycloalkylene diols such as 1,2-cyclohexanediol, 1,4-cyclohexanediol, 1,2-cyclohexanedimethanol, and 1,4-cyclohexanedimethanol.
  • alkylene diols such as
  • alkylene diols having 6 or less carbon atoms such as ethylene glycol or 1,3-propanediol
  • cycloalkylene diols having 6 or less carbon atoms such as 1,4-cyclohexanedimethanol
  • alkylene diols having 6 or less carbon atoms such as ethylene glycol or 1,3-propanediol
  • cycloalkylene diols having 6 or less carbon atoms such as 1,4-cyclohexanedimethanol
  • the diol component can be derived from biomass (plant raw material), it is preferable that the diol component contains at least one selected from the group consisting of 1,4-butanediol and its derivatives, that is, the diol component contains at least one selected from the group consisting of 1,4-butanediol and its derivatives.
  • the embodiment of the derivative is not particularly limited as long as it is capable of producing a polyester.
  • the polyester raw material may contain a diol component containing at least one selected from the group consisting of the above-mentioned 1,4-butanediol and its derivatives, or may contain other diol components.
  • aromatic diol components include xylylene glycol, 4,4'-dihydroxybiphenyl, 2,2-bis(4'-hydroxyphenyl)propane, 2,2-bis(4'- ⁇ -hydroxyethoxyphenyl)propane, bis(4-hydroxyphenyl)sulfone, bis(4- ⁇ -hydroxyethoxyphenyl)sulfonic acid, etc. These aromatic diol components may or may not be derivatives.
  • the above aliphatic diol compounds and/or aromatic diol compounds may be compounds having a structure in which one or more types are mutually dehydrated and condensed.
  • the above aliphatic diol component and/or aromatic diol component may be used alone or in combination of two or more types.
  • the total content of all diol components in the polyester raw material is not particularly limited, and may be, for example, 30% by mass or more, 35% by mass or more, 40% by mass or more, 45% by mass or more, and 70% by mass or less, 60% by mass or less, or 50% by mass or less.
  • the amount used is preferably 50 mol% or more, more preferably 70 mol% or more, and particularly preferably 90 mol% or more, based on 100 mol% of all diol components in the polyester raw material, from the viewpoints of the melting point (heat resistance), biodegradability, and mechanical properties of the resulting polyester.
  • ethylene glycol, 1,3-propanediol, 1,4-butanediol, etc., derived from plant materials can be used.
  • the dicarboxylic acid component may be any dicarboxylic acid normally used as a raw material for polyesters without any particular limitation.
  • the type of dicarboxylic acid component is not particularly limited, and examples thereof include the following aliphatic dicarboxylic acid components and aromatic dicarboxylic acid components.
  • aliphatic dicarboxylic acid component examples include aliphatic dicarboxylic acids such as oxalic acid, malonic acid, succinic acid, succinic anhydride, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, undecadicarboxylic acid, dodecadicarboxylic acid, maleic acid, fumaric acid, and dimer acid.
  • aliphatic dicarboxylic acids such as succinic acid, succinic anhydride, adipic acid, and sebacic acid are preferred in terms of the physical properties of the resulting polyester.
  • aliphatic dicarboxylic acids having 4 or less carbon atoms, such as succinic acid or succinic anhydride are preferred.
  • These aliphatic dicarboxylic acid components may or may not be derivatives thereof.
  • aromatic dicarboxylic acid components include phthalic acid, isophthalic acid, dibromoisophthalic acid, sulfoisophthalic acid, 1,4-phenylenedioxydicarboxylic acid, 4,4'-diphenyldicarboxylic acid, 4,4'-diphenyletherdicarboxylic acid, 4,4'-diphenylketonedicarboxylic acid, 4,4'-diphenoxyethanedicarboxylic acid, 4,4'-diphenylsulfonedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, hexahydrophthalic acid, hexahydroisophthalic acid, and hexahydroterephthalic acid.
  • aromatic dicarboxylic acid components may or may not be derivatives.
  • derivatives of the aromatic dicarboxylic acid components listed above are preferred, and among these, lower alkyl esters having 1 to 4 carbon atoms, or acid anhydrides, etc. are included.
  • Specific examples of derivatives of aromatic dicarboxylic acid compounds include lower alkyl esters such as methyl esters, ethyl esters, propyl esters, and butyl esters of the aromatic dicarboxylic acid components exemplified above; and cyclic acid anhydrides of the aromatic dicarboxylic acid components exemplified above, such as succinic anhydride.
  • aliphatic dicarboxylic acid components and/or aromatic dicarboxylic acid components may be used alone or in combination of two or more types.
  • the total content of all dicarboxylic acid components in the polyester raw material is not particularly limited, and may be, for example, 30% by mass or more, 35% by mass or more, 40% by mass or more, 45% by mass or more, and 70% by mass or less, 65% by mass or less, or 60% by mass or less.
  • the amount of succinic acid used is preferably 50 mol% or more, more preferably 70 mol% or more, and particularly preferably 90 mol% or more, based on 100 mol% of all dicarboxylic acid components in the polyester raw material, from the viewpoints of the melting point (heat resistance), biodegradability, and mechanical properties of the resulting polyester.
  • Succinic acid, succinic anhydride, or adipic acid, etc. can be derived from plant materials.
  • the contact treatment liquid usually contains an oligomer component (ester oligomer component).
  • the oligomer component may contain a constituent unit derived from a diol component constituting a polyester and a constituent unit derived from a polycarboxylic acid component constituting a dicarboxylic acid, but may be composed of only these constituent units.
  • the oligomer components in the contact treatment liquid usually contain more oligomer components having a linear structure or a branched structure without a cyclic structure. Specifically, the amount of oligomer components having a linear structure or a branched structure without a cyclic structure relative to the amount of all oligomer components in the contact treatment liquid usually exceeds 65 mass%.
  • the contact treatment liquid containing the above-mentioned oligomer components is reused as a raw material, the production amount of the polymer can be increased, but there arises a problem that the color tone of the final polymer obtained is worse than that when the contact treatment liquid is not reused.
  • the cyclic oligomer component is a cyclic ester oligomer component that includes a constituent unit derived from the above-mentioned diol component and a constituent unit derived from the above-mentioned dicarboxylic acid component, and the total number of the constituent units derived from the diol component (the number of repeating units of the constituent unit) and the number of the constituent units derived from the dicarboxylic acid component (the number of repeating units of the constituent unit) is 2 to 7.
  • the cyclic oligomer component is a compound that is produced as a by-product by cyclization of a part of a polyester obtained through a reaction process including at least one reaction process selected from the group consisting of an esterification reaction process and an ester exchange reaction process in which a diol component and a dicarboxylic acid component are reacted.
  • the cyclic oligomer component may include the constituent units derived from the above-mentioned diol component and the constituent units derived from the above-mentioned dicarboxylic acid component, but may be composed of only these constituent units. If the content of the oligomer component in the reaction product increases, the color tone of the polyester will deteriorate, the surface appearance will deteriorate, and the productivity during molding will decrease.
  • the cyclic oligomer component may be one type or two or more types, and all cyclic ester oligomer components that satisfy the above conditions are included. In other words, when the above cyclic oligomers from dimer to heptamer are included, all of these cyclic oligomers are treated as the cyclic oligomer component.
  • the cyclic oligomer component may contain a constituent unit derived from the diol component and a constituent unit derived from the dicarboxylic acid component, but may be composed of only these constituent units.
  • the cyclic oligomer component may have, for example, a structure represented by the following formula (1) and a structure represented by the following formula (2).
  • R 1 and R 2 each independently represent a divalent hydrocarbon group which may have a substituent; x is an integer of 0 to 7; In formula (2), R 3 and R 4 each independently represent a divalent hydrocarbon group which may have a substituent; y is an integer of 0 to 7; x+y is 2 to 7.
  • the embodiment of the divalent hydrocarbon in R1 and R2 is not particularly limited, and the number of carbon atoms therein is, from the viewpoint of acquisition cost and ease of availability, independently 1 or more, particularly preferably 2 or more, and usually 40 or less, preferably 36 or less, more preferably 30 or less, even more preferably 24 or less, particularly preferably 20 or less, and most particularly preferably 18 or less.
  • the embodiment of the divalent hydrocarbon in R3 and R4 is not particularly limited, and the number of carbon atoms therein is, from the viewpoint of acquisition cost and ease of availability, independently 1 or more, particularly preferably 2 or more, and usually 40 or less, preferably 36 or less, more preferably 30 or less, even more preferably 24 or less, particularly preferably 20 or less, and most particularly preferably 18 or less.
  • R 1 to R 4 may have are not particularly limited, and examples thereof include halogen, cyano group, amino group, ester group, alkylcarbonyl group, acetyl group, silyl group, boryl group, nitrile group, thio group, seleno group, etc. These substituents may be of only one type or of two or more types, and the hydrocarbon groups in R 1 to R 4 may not have any substituents.
  • the diol component and dicarboxylic acid component constituting the above formula (1) and (2) may be the diol component and dicarboxylic acid component that are the raw materials of the above polyester. Therefore, R 1 and R 3 in the above formula (1) and (2) may each independently be a structure corresponding to the dicarboxylic acid listed in the above dicarboxylic acid, and R 2 and R 4 may each independently be a structure corresponding to the diol listed in the above diol.
  • the hydrocarbon group in R 1 to R 4 may be linear, branched, or have a cyclic structure, but is preferably linear from the viewpoints of the melting point of the oligomer component, the solubility in the contact treatment liquid, and the polymerization reactivity of the recovered oligomer component. Furthermore, the hydrocarbon groups in R 1 to R 4 may be either aliphatic hydrocarbon groups or aromatic hydrocarbon groups.
  • the content of oligomer components in the polyester raw material is not particularly limited, but is usually 0.1 mass% or more, preferably 0.5 mass% or more, more preferably 1.0 mass% or more, even more preferably 2.5 mass% or more, and particularly preferably more than 5.0 mass%, and is usually less than 100 mass%, preferably 90 mass% or less, more preferably 80 mass% or less, even more preferably 70 mass% or less, and particularly preferably 60 mass% or less.
  • the total content is equal to or higher than the lower limit of the range, it is possible to perform economical production with an increased recovery rate of the oligomer components, while when the total content is equal to or lower than the upper limit of the range, it is possible to perform production without impairing reactivity while maintaining quality such as color tone.
  • the content (total content) of the cyclic oligomer components having the structure represented by the above formula (1) and the structure represented by the above formula (2) in the oligomer component is not particularly limited as long as it is 35% by mass or more and 100% by mass or less, from the viewpoint of suppressing deterioration in the color tone of the resulting polyester, but is preferably 40% by mass or more, more preferably 50% by mass or more, even more preferably 60% by mass or more, and particularly preferably 70% by mass or more.
  • the above-mentioned cyclic oligomer component is preferably generated by a reaction with a diol component and a dicarboxylic acid component contained in the polymer raw material.
  • the polyester raw material is
  • the dicarboxylic acid component includes at least one selected from the group consisting of dicarboxylic acids represented by the following formula (A) and derivatives thereof, and at least one selected from the group consisting of dicarboxylic acids represented by the following formula (B) and derivatives thereof
  • the diol component preferably contains at least one selected from the group consisting of diols represented by the following formula (C) and derivatives thereof, and at least one selected from the group consisting of diols represented by the following formula (D) and derivatives thereof:
  • the diol component contains at least one kind selected from the group consisting of 1,4-butanediol and derivatives thereof, it is preferable that the at least one kind selected from the group consisting of at least one kind selected from the group consisting of diols represented by the following formula (C) and at least one kind selected from the
  • R 1 to R 4 have the same meanings as R 1 to R 4 in formulas (1) and (2) above, respectively.
  • the oligomer components obtained by the contact treatment are recovered, and the recovered oligomer components are reused as polyester raw materials
  • the diol components and dicarboxylic acid components in the polyester raw materials are the same as the oligomer components and dicarboxylic acid components constituting the cyclic oligomer components in the polyester raw materials, and therefore the content of the cyclic oligomer components having the structure represented by the above formula (1) and the structure represented by the above formula (2) in the oligomer components in the polyester raw materials can be increased.
  • copolymerization components include oxycarboxylic acids such as lactic acid, glycolic acid, hydroxybutyric acid, hydroxycaproic acid, 2-hydroxy-3,3-dimethylbutyric acid, 2-hydroxy-3-methylbutyric acid, 2-hydroxyisocaproic acid, malic acid, and citric acid; esters, lactones, and oxycarboxylic acid polymers of these oxycarboxylic acids; trifunctional or higher polyhydric alcohols such as glycerin, trimethylolpropane, and pentaerythritol; and trifunctional or higher polyvalent carboxylic acids or their anhydrides such as propanetricarboxylic acid, pyromellitic acid, and trimellitic acid, benzophenonetetracarboxy
  • oxycarboxylic acid such as malic acid or citric acid is preferred, and malic acid is particularly preferred.
  • the amount of the trifunctional or higher polyfunctional compound is preferably 0.001 to 5 mol %, and more preferably 0.05 to 0.5 mol %, relative to 100 mol % of all dicarboxylic acid components in the polyester raw material. If the amount exceeds the upper limit of this range, gel (unmelted material) is likely to form in the resulting polyester, and if it is below the lower limit, the advantage of using a polyfunctional compound (usually the advantage of being able to increase the viscosity of the resulting polyester) is difficult to obtain.
  • the intrinsic viscosity (IV, dL/g) of the polyester to be contacted with the contact treatment liquid and the intrinsic viscosity of the polyester after contact treatment with the contact treatment liquid are preferably 1.4 dL/g or more, and particularly preferably 1.6 dL/g or more.
  • the intrinsic viscosity is preferably 2.8 dL/g or less, more preferably 2.5 or less, and particularly preferably 2.3 dL/g or less. If the intrinsic viscosity is below the lower limit of the above range, it is difficult to obtain sufficient mechanical strength when molded into a molded product. If the intrinsic viscosity exceeds the upper limit of the above range, the melt viscosity during molding is high and molding is difficult.
  • the amount of terminal carboxyl groups in the polyester to be brought into contact with the contact treatment solution is usually 80 (equivalents/ton) or less, preferably 60 (equivalents/ton) or less, more preferably 40 (equivalents/ton) or less, and particularly preferably 25 (equivalents/ton) or less.
  • the lower the lower limit the better the thermal stability and hydrolysis resistance, but it is usually 5 (equivalents/ton) or more. If the upper limit is exceeded, the viscosity reduction due to hydrolysis becomes significant, and the quality may be significantly impaired.
  • each step in the first embodiment of the method for producing a polyester will be described below using a continuous production method as an example, but this is merely an example, and the method for producing a polyester is not limited to this embodiment.
  • a diol component and a dicarboxylic acid component are continuously subjected to a reaction process including at least one treatment selected from the group consisting of an esterification reaction treatment and an ester exchange reaction treatment, and a polycondensation reaction treatment, using a plurality of continuous reaction tanks to obtain a polyester.
  • the method is not limited to the continuous method, and any step in a conventional polyester production method can be adopted, so long as it does not impede the effects of the present invention.
  • the polyester may be subjected to a contact treatment with a contact treatment liquid and then dried.
  • a contact treatment with a contact treatment liquid and then dried.
  • at least one treatment selected from the group consisting of a contact treatment in the purification step described below and a drying treatment in the drying step described below is carried out continuously.
  • at least one treatment selected from the group consisting of a contact treatment in the purification step described below and a drying treatment in the drying step described below is carried out batch or semi-batch, from the viewpoints of production efficiency and uniformity of the treatment.
  • the method for producing a polyester may further include a raw material preparation step of preparing a polyester raw material prior to the reaction step described below.
  • the method for preparing the polyester raw material is not particularly limited, and the raw material may be prepared by mixing raw materials produced by synthesis or the like, or the raw materials may be procured commercially and mixed.
  • the method for producing a polyester has a reaction step including at least one reaction treatment selected from the group consisting of an esterification reaction treatment and an ester exchange reaction treatment (also referred to herein as "esterification reaction treatment and/or ester exchange treatment") in which a polyester raw material is reacted to obtain a reaction product.
  • the reaction step may include treatments other than the esterification reaction treatment and/or the ester exchange reaction treatment.
  • the reaction process includes an esterification reaction process and/or an ester exchange reaction process in which a polyester raw material is reacted, specifically, an esterification reaction process and/or an ester exchange reaction process in which a diol component is reacted with a dicarboxylic acid component.
  • the esterification reaction is a reaction in which a carboxylic acid is converted into an ester
  • the ester exchange reaction is a reaction in which an ester is reacted with an alcohol to exchange the main chain portions of these.
  • the esterification reaction process will be described below, but this description can be applied to the ester exchange reaction as well to the extent that it is applicable.
  • esterification reaction treatment and/or ester exchange treatment and other subsequent treatments can be carried out in multiple continuous reaction tanks or in a single reaction tank. However, in order to reduce variation in the physical properties of the resulting polyester, it is preferable to carry out the treatments in multiple continuous reaction tanks.
  • reaction temperature in the esterification reaction treatment is a temperature at which the esterification reaction can be carried out, but in order to increase the reaction rate, it is preferably 200°C or higher, and more preferably 210°C or higher, and in order to prevent discoloration of the polyester, it is preferably 250°C or lower, more preferably 245°C or lower, and particularly preferably 240°C or lower.
  • the esterification temperature is a constant temperature.
  • a constant temperature stabilizes the esterification rate.
  • the constant temperature may be within ⁇ 5°C of the set temperature, and is preferably ⁇ 2°C.
  • the reaction atmosphere is not particularly limited, but is preferably an inert gas atmosphere such as nitrogen or argon, etc.
  • the reaction pressure is preferably 50 kPa to 200 kPa, more preferably 60 kPa or more, and even more preferably 70 kPa or more, and is preferably 130 kPa or less, and more preferably 110 kPa or less.
  • reaction pressure is less than the lower limit of the above range, the amount of scattered material in the reaction tank increases, the haze of the reaction product increases, and this tends to cause an increase in foreign matter, and the diol component is more likely to be distilled out of the reaction system, which tends to decrease the polycondensation reaction rate. If the reaction pressure is more than the upper limit of the above range, the dehydration decomposition of the diol component increases, which tends to decrease the polycondensation reaction rate.
  • the reaction time is not particularly limited, but is preferably 1 hour or more, and is preferably 10 hours or less, and more preferably 4 hours or less.
  • the molar ratio of the diol component to the dicarboxylic acid component undergoing the esterification reaction represents the molar ratio of the "diol component and esterified diol component present in the gas phase and reaction liquid phase of the esterification reaction vessel" to the "all dicarboxylic acid components and esterified dicarboxylic acid components present in the gas phase and reaction liquid phase of the esterification reaction vessel", and does not include the dicarboxylic acid components, diol components, and their decomposition products that are decomposed in the reaction system and do not contribute to the esterification reaction.
  • the diol component is formed by decomposing 1,4-butanediol into tetrahydrofuran, and such non-contributing components are not included in the above molar ratio.
  • the molar ratio is usually 1.10 or more, preferably 1.12 or more, more preferably 1.15 or more, and particularly preferably 1.20 or more.
  • the molar ratio is usually 2.00 or less, preferably 1.80 or less, more preferably 1.60 or less, and particularly preferably 1.55 or less. If the molar ratio is less than the lower limit of the above range, the esterification reaction is likely to be insufficient, and the polycondensation reaction, which is a reaction in a subsequent step, is unlikely to proceed, making it difficult to obtain a polyester with a high degree of polymerization. If the molar ratio is more than the upper limit of the above range, the decomposition amounts of the diol component and the dicarboxylic acid component tend to increase. In order to keep this molar ratio within the preferred range, it is a preferred method to appropriately supply the diol component to the esterification reaction system.
  • the reaction step includes a polycondensation reaction treatment described later, it is preferable to subject an esterification reaction product having an esterification rate of 80% or more to the polycondensation reaction treatment.
  • the polycondensation reaction generally refers to a high molecular weight reaction of polyester carried out at a reaction pressure of 50 kPa or less.
  • the esterification reaction is generally carried out at 50 to 200 kPa and is preferably carried out in an esterification reaction tank, and the polycondensation reaction is generally carried out at 50 kPa or less, preferably 10 kPa or less, and is preferably carried out in a polycondensation reaction tank.
  • the esterification rate of the esterification reaction product is preferably 85% or more, more preferably 88% or more, and particularly preferably 90% or more.
  • the polycondensation reactivity which is the reaction in the subsequent process, is poor.
  • the amount of flying material during the polycondensation reaction increases, adheres to the wall surfaces and solidifies, and this flying material falls into the reaction product, causing a deterioration in haze (generation of foreign matter).
  • the upper limit of the esterification rate is preferably high for the polycondensation reaction, which is the reaction in the subsequent process, but is usually 99%.
  • reaction process it is preferable to carry out a continuous reaction in the esterification reaction treatment with the molar ratio of the dicarboxylic acid component to the diol component, the reaction temperature, the reaction pressure, and the reaction rate in the above-mentioned ranges, and more preferably, to continuously subject the reaction to the polycondensation reaction described below, thereby efficiently obtaining a high-quality polyester with low haze and little foreign matter.
  • the reaction step preferably includes a polycondensation reaction treatment in which a polycondensation reaction is carried out following the esterification reaction treatment.
  • the polycondensation reaction can be carried out under reduced pressure using a plurality of continuous reaction tanks.
  • the reaction pressure in the polycondensation reaction tank is not particularly limited, but is usually 0.01 kPa or more, preferably 0.03 kPa or more, and usually 5 kPa or less, preferably 3 kPa or less. If the pressure during the polycondensation reaction is too high, the polycondensation time becomes long, which leads to a decrease in molecular weight and coloration due to thermal decomposition of the polyester, and it tends to become difficult to produce a polyester that exhibits sufficient properties for practical use.
  • a production method using an ultra-high vacuum polycondensation reaction facility with a reaction pressure of less than 0.01 kPa is a preferable embodiment from the viewpoint of improving the polycondensation reaction rate, but is economically disadvantageous because it requires an extremely expensive capital investment.
  • the reaction temperature is not particularly limited, but is usually 215°C or higher, preferably 220°C or higher, and usually 270°C or lower, preferably 260°C or lower. If the reaction temperature is below the lower limit of the above range, not only will the polycondensation reaction rate be slow, and it will take a long time to produce a polyester with a high degree of polymerization, but a high-power mixer will also be required, which is economically disadvantageous. On the other hand, if the reaction temperature exceeds the upper limit of the above range, thermal decomposition of the polyester during production is likely to occur, and it will tend to be difficult to produce a polyester with a high degree of polymerization.
  • the reaction time is not particularly limited, but is usually 1 hour or more and usually 15 hours or less, preferably 10 hours or less, and more preferably 8 hours or less. If the reaction time is too short, the reaction will be insufficient, making it difficult to obtain a polyester with a high degree of polymerization, and the mechanical properties of the molded product will tend to be poor. On the other hand, if the reaction time is too long, the molecular weight will decrease significantly due to thermal decomposition of the polyester, and not only will the mechanical properties of the molded product tend to be poor, but the amount of carboxyl group terminals, which has a negative effect on the durability of the polyester, may increase due to thermal decomposition.
  • reaction catalyst The esterification reaction and polycondensation reaction are accelerated by using a reaction catalyst.
  • a sufficient reaction rate can be obtained even without an esterification reaction catalyst.
  • an esterification reaction catalyst is present during the esterification reaction, the catalyst may produce insoluble precipitates in the reaction product due to water produced by the esterification reaction, which may impair the transparency of the polyester obtained (i.e., increase the haze) and may become a foreign substance, so it is preferable not to add a reaction catalyst during the esterification reaction.
  • a catalyst is added to the gas phase of the reaction tank, the haze of the polyester obtained may increase and the catalyst may become a foreign substance, so it is preferable to add the catalyst to the reaction liquid.
  • a catalyst a compound containing at least one of the metal elements of Groups 1 to 14 of the Periodic Table is used as a polycondensation reaction catalyst.
  • metal elements include scandium, yttrium, samarium, titanium, zirconium, vanadium, chromium, molybdenum, tungsten, tin, antimony, cerium, germanium, zinc, cobalt, manganese, iron, aluminum, magnesium, calcium, strontium, sodium, and potassium.
  • scandium, yttrium, titanium, zirconium, vanadium, molybdenum, tungsten, zinc, iron, and germanium are preferred, and titanium, zirconium, tungsten, iron, and germanium are particularly preferred.
  • metal elements in Groups 3 to 6 of the periodic table that exhibit Lewis acidity are preferred. Specifically, these are scandium, titanium, zirconium, vanadium, molybdenum, or tungsten, with titanium and zirconium being particularly preferred due to their ease of availability, and titanium being even more preferred in terms of reaction activity.
  • the catalyst preferably used is a compound containing an organic group, such as a carboxylate, an alkoxy salt, an organic sulfonate, or a ⁇ -diketonate salt, containing the above metal element; or an inorganic compound, such as an oxide or halide of the above metal element, or a mixture thereof.
  • an organic group such as a carboxylate, an alkoxy salt, an organic sulfonate, or a ⁇ -diketonate salt, containing the above metal element
  • an inorganic compound such as an oxide or halide of the above metal element, or a mixture thereof.
  • the catalyst is preferably a compound that is liquid during polymerization or dissolves in the ester oligomer or polyester, because the polymerization rate increases when the catalyst is in a molten or dissolved state during polymerization.
  • the polycondensation reaction is preferably performed without a solvent, but a small amount of solvent may be used separately to dissolve the catalyst.
  • Examples of the solvent for dissolving the catalyst include alcohols such as methanol, ethanol, isopropanol, or butanol, the above-mentioned diols such as ethylene glycol, butanediol, or pentanediol, ethers such as diethyl ether or tetrahydrofuran, nitriles such as acetonitrile, hydrocarbon compounds such as heptane or toluene, water, or mixtures thereof, and the amount used is such that the catalyst concentration in the polyester raw material is usually 0.0001% by mass or more and 99% by mass or less.
  • alcohols such as methanol, ethanol, isopropanol, or butanol
  • the above-mentioned diols such as ethylene glycol, butanediol, or pentanediol
  • ethers such as diethyl ether or tetrahydrofuran
  • nitriles such
  • the catalyst can be diluted with diols such as 1,4-butanediol or ethylene glycol, and in this case, the diols can also function as raw materials for polyester. Therefore, when diols are used as a solvent for dissolving the catalyst, the amount of the diol component in the raw material is calculated in this specification as including the amount of the diols as the solvent.
  • diols such as 1,4-butanediol or ethylene glycol
  • the amount of the diol component in the raw material is calculated in this specification as including the amount of the diols as the solvent.
  • the titanium compound is preferably a tetraalkyl titanate or a hydrolyzate thereof, and specific examples include tetra-n-propyl titanate, tetraisopropyl titanate, tetra-n-butyl titanate, tetra-t-butyl titanate, tetraphenyl titanate, tetracyclohexyl titanate, tetrabenzyl titanate, mixed titanates thereof, or hydrolyzates thereof.
  • titanium compounds examples include titanium (oxy)acetylacetonate, titanium tetraacetylacetonate, titanium (diisopropoxide)acetylacetonate, titanium bis(ammonium lactate)dihydroxide, titanium bis(ethylacetoacetate)diisopropoxide, titanium (triethanolamine)isopropoxide, polyhydroxytitanium stearate, titanium lactate, titanium triethanolamine, and butyl titanate dimer.
  • titanium compounds liquids obtained by mixing alcohol, Group 2 metal compounds in the long-form periodic table (Nomenclature of Inorganic Chemistry IUPAC Recommendations 2005) (hereinafter sometimes referred to as Group 2 metal compounds in the long-form periodic table), phosphate compounds, or titanium compounds can also be used.
  • tetra-n-propyl titanate tetraisopropyl titanate, tetra-n-butyl titanate, titanium (oxy) acetylacetonate, titanium tetraacetylacetonate, titanium bis(ammonium lactate) dihydroxide, polyhydroxytitanium stearate, titanium lactate, butyl titanate dimer, or liquids obtained by mixing alcohols, Group 2 metal compounds in the long periodic table, phosphate ester compounds, and/or titanium compounds are preferred, and ...
  • liquids obtained by mixing cetyl acetonate, polyhydroxy titanium stearate, titanium lactate, butyl titanate dimer, alcohols, a Group 2 metal compound in the long periodic table, a phosphate ester compound, and/or a titanium compound and particularly preferred are liquids obtained by mixing tetra-n-butyl titanate, polyhydroxy titanium stearate, titanium (oxy) acetylacetonate, titanium tetraacetylacetonate, alcohols, a Group 2 metal compound in the long periodic table, a phosphate ester compound, and/or a titanium compound.
  • zirconium compounds include zirconium tetraacetate, zirconium acetate hydroxide, zirconium tris(butoxy)stearate, zirconyl diacetate, zirconium oxalate, zirconyl oxalate, potassium zirconium oxalate, polyhydroxyzirconium stearate, zirconium ethoxide, zirconium tetra-n-propoxide, zirconium tetraisopropoxide, zirconium tetra-n-butoxide, zirconium tetra-t-butoxide, zirconium tributoxyacetylacetonate, or mixtures thereof.
  • zirconyl diacetate, zirconium tris(butoxy)stearate, zirconium tetraacetate, zirconium acetate hydroxide, ammonium zirconium oxalate, potassium zirconium oxalate, polyhydroxyzirconium stearate, zirconium tetra-n-propoxide, zirconium tetraisopropoxide, zirconium tetra-n-butoxide, and zirconium tetra-t-butoxide are preferred, with zirconyl diacetate, zirconium tetraacetate, zirconium acetate hydroxide, zirconium tris(butoxy)stearate, ammonium zirconium oxalate, zirconium tetra-n-propoxide, and zirconium tetra-n-butoxide being more preferred, and zirconium tris(butoxy)stearate being particularly
  • germanium compounds include inorganic germanium compounds such as germanium oxide or germanium chloride, and organic germanium compounds such as tetraalkoxygermanium.
  • germanium oxide, tetraethoxygermanium, and tetrabutoxygermanium are preferred, with germanium oxide being particularly preferred.
  • iron compounds include inorganic chlorides such as ferric chloride, inorganic oxides such as triiron tetroxide, and organic iron complexes such as ferrocene. Of these, inorganic oxides are preferred.
  • Other metal-containing compounds include scandium compounds such as scandium carbonate, scandium acetate, scandium chloride, and scandium acetylacetonate; yttrium compounds such as yttrium carbonate, yttrium chloride, yttrium acetate, and yttrium acetylacetonate; vanadium compounds such as vanadium chloride, vanadium trichloride oxide, vanadium acetylacetonate, and vanadium acetylacetonate oxide; molybdenum compounds such as molybdenum chloride and molybdenum acetate; tungsten compounds such as tungsten chloride, tungsten acetate, and tungstic acid; and lanthanide compounds such as cerium chloride, samarium chloride, and ytterbium chloride.
  • scandium compounds such as scandium carbonate, scandium acetate, scandium chloride, and scandium acetylacetonate
  • the amount of the polycondensation reaction catalyst to be added is not particularly limited, but the lower limit of the amount of metal relative to the polyester produced is usually 0.1 mass ppm or more, preferably 0.5 mass ppm or more, more preferably 1 mass ppm or more, and the upper limit is usually 3000 mass ppm or less, preferably 1000 mass ppm or less, more preferably 250 mass ppm or less, and particularly preferably 130 mass ppm or less. This range is particularly preferably applicable when a metal compound is used as a polycondensation reaction catalyst.
  • the amount of catalyst used is too large, not only is it economically disadvantageous, but the concentration of carboxyl groups in the polyester may increase, and the thermal stability and hydrolysis resistance of the polyester may decrease due to the increase in the amount of carboxyl groups and the residual catalyst concentration. Conversely, if the amount is too small, the polymerization activity will be low, which will induce thermal decomposition of the polyester during polyester production, making it difficult to obtain a polyester that exhibits practically useful physical properties.
  • the location of the catalyst added to the reaction system is not particularly limited as long as it is added before the polycondensation reaction process, and it may be added when the raw materials are charged. However, if the catalyst is present in a situation where a large amount of water is present or generated, the catalyst may be deactivated, causing the precipitation of foreign matter and impairing the quality of the product, so it is preferable to add it after the esterification reaction process.
  • the esterification reaction tank for carrying out the esterification reaction treatment a known one can be used, and it may be any of the types such as a vertical agitated complete mixing tank, a vertical thermal convection mixing tank, or a tower-type continuous reaction tank, and it may be a single tank or a multiple tank of the same or different types connected in series.
  • a reaction tank having an agitator is preferred, and as the agitator, in addition to a normal type having a power unit, bearings, shaft, and agitator blades, a high-speed rotating type such as a turbine stator type high-speed rotating agitator, a disk mill type agitator, or a rotor mill type agitator can also be used.
  • the type of stirring can also be selected from known types, and specific examples include propeller blades, screw blades, turbine blades, fan turbine blades, disk turbine blades, Pfaudle blades, full zone blades, and Max Blend blades.
  • polycondensation reaction tank There are no particular limitations on the type of polycondensation reaction tank, and examples include vertical agitation polymerization tanks, horizontal agitation polymerization tanks, and thin-film evaporation polymerization tanks.
  • the polycondensation reaction tank can be a single tank, or a multiple tank arrangement in which multiple tanks of the same or different types are connected in series.
  • the content of polyester in the reaction product obtained in the reaction step is not particularly limited, but is usually 90% by mass or more, preferably 92.5% by mass or more, more preferably 95% by mass or more, and even more preferably 97% by mass or more, and is usually 100% by mass or less, preferably 99.5% by mass or less, more preferably 99% by mass or less, and even more preferably 98.5% by mass or less.
  • the content of the oligomer component in the reaction product obtained in the reaction step is not particularly limited and may be the remainder excluding the above polyester, but is usually 0.1% by mass or more, preferably 0.2% by mass or more, more preferably 0.3% by mass or more, and even more preferably 0.5% by mass or more, and is usually 3% by mass or less, preferably 2.5% by mass or less, more preferably 2% by mass or less, and even more preferably 1.5% by mass or less.
  • the production method for polyester further includes a pelletizing step of pelletizing the reaction product obtained in the above reaction step to obtain pellets (polyester pellets) after the above reaction step, particularly between the above reaction step and the purification step described later.
  • the pelletizing method is not particularly limited and known methods can be used.
  • a strand cutting method is used in which the molten reaction product is extruded from the nozzle hole of the die head using a gear pump or extruder, and the strands are cut with a cutter while being cooled with water or the like, or the cooled and solidified strands are cut with a cutter
  • an underwater hot cutting method is used in which the product is extruded from the nozzle hole into water and immediately cut in a molten state.
  • the underwater hot cutting method is preferably used because there is little cutting waste in the pellets, the angle of repose of the resulting pellets is low, and the pellets are transported stably and the feeding stability to the molding machine during molding is good.
  • the cooling water temperature in the underwater cutting method is not particularly limited, but is usually preferably 10°C or higher, more preferably 20°C or higher, and preferably 70°C or lower, more preferably 60°C or lower, and even more preferably 50°C or lower.
  • the size of the nozzle hole is not particularly limited, but a hole diameter of 1 mm to 30 mm is usually used.
  • the shape of the opening is also not particularly limited, but shapes such as circle, ellipse, oblong, square, or star are used.
  • the discharge rate per opening is usually 5 to 100 kg/hour, preferably 10 to 70 kg/hour, and more preferably 20 to 50 kg/hour.
  • the pellets may be spherical, cylindrical, elliptical, oblong, rectangular, or cocoon-shaped, or may have a flattened shape.
  • a spherical or cocoon-shaped shape or a flattened shape is preferably used.
  • the weight of each pellet is 1 to 50 mg, preferably 3 to 40 mg, and more preferably 5 to 30 mg. Also, a larger pellet surface area per mass is preferable in terms of the contact treatment efficiency in the purification process.
  • the method for producing a polyester preferably further includes a purification step including a contact treatment in which the reaction product obtained in the above reaction step is contacted with a solvent containing water to obtain a treatment liquid containing an oligomer component and a post-contact treatment reaction product.
  • the purification step may include treatments other than the contact treatment.
  • the content of oligomer components in the reaction product can be reduced by performing contact treatment in the purification step, and furthermore, since the contact treatment liquid obtained by the contact treatment contains oligomer components, this oligomer component can be reused.
  • the oligomer components in the contact treatment liquid can be reused as oligomer components in the polyester raw material in the reaction step. More specifically, when a raw material preparation step for preparing a polyester raw material is further provided before the reaction step, the oligomer components in the contact treatment liquid can be reused by supplying them to any of the steps from the raw material preparation step to the reaction step.
  • a contact treatment is carried out in which the reaction product obtained in the reaction step (when a pelletizing step is adopted, the pelletizing step) is brought into contact with a contact treatment liquid, whereby oligomer components contained in the reaction product are brought into contact with the contact treatment liquid, thereby making it possible to reduce the content of oligomer components in the reaction product.
  • the contact treatment liquid is not particularly limited as long as it is a solvent containing water, and examples thereof include a mixture of water and an alcohol such as methanol, ethanol, isopropanol, or butanol.
  • a water/ethanol mixture a mixture of water and ethanol is particularly preferred in terms of ease of handling, cost, contact treatment efficiency, and safety.
  • the contact treatment is usually carried out immediately after pelletizing, but the contact treatment may also be carried out after temporarily storing the obtained pellets in a storage tank.
  • the proportion of water in the entire contact treatment liquid to be contacted with the reaction product is not particularly limited, and is usually 10% by mass or more, preferably 20% by mass or more, more preferably 25% by mass or more.
  • the proportion of water is usually 99% by mass or less, preferably 95% by mass or less, further preferably 90% by mass or less, and particularly preferably 85% by mass or less. If the mixing ratio of the water is less than the lower limit of the above range, the quality of the polyester tends to deteriorate due to a decrease in molecular weight caused by alcohol decomposition. In addition, if the alcohol content is increased, the liquid and the gas generated from the liquid during use may become explosive, and therefore care must be taken in handling from the viewpoint of safety. On the other hand, if the mixing ratio of the water exceeds the upper limit of the above range, the oligomer components may not be sufficiently removed, and the content of the oligomer components may not be sufficiently reduced, resulting in a polyester of desired quality.
  • the temperature of the contact treatment liquid when the reaction product is contacted with the contact treatment liquid is not particularly limited, and is preferably 25°C or higher, more preferably 30°C or higher, even more preferably 35°C or higher, and particularly preferably 40°C or higher.
  • the upper limit of the temperature is usually below the melting point of the polyester, preferably 95°C or lower, more preferably 90°C or lower, and particularly preferably 85°C or lower. If the contact temperature is below the lower limit of the above range, not only will a long treatment time be required, which is economically disadvantageous, but also a polyester of desired quality may not be obtained due to a decrease in the effect of removing oligomer components.
  • the contact temperature exceeds the upper limit of the above range, the viscosity will decrease significantly due to hydrolysis and alcoholysis, which will not only impair the quality, but will also cause difficulties in operation, such as fusion between pellets and poor pellet extraction.
  • the time for contacting the reaction product with the contact treatment liquid is not particularly limited, and is usually 0.1 hours or more, preferably 1 hour or more, and more preferably 3 hours or more.
  • the time is usually 24 hours or less, preferably 18 hours or less, and more preferably 10 hours or less. If the contact time is less than the lower limit of the above range, the oligomer components may not be sufficiently removed, and a polyester of desired quality may not be obtained. On the other hand, if the contact time exceeds the upper limit of the above range, the viscosity may decrease significantly due to hydrolysis and alcoholysis, and the quality may be impaired.
  • the ratio of the reaction product to the contact treatment liquid is usually 1.0 or more, preferably 1.5 or more, and more preferably 2.0 or more, in terms of mass ratio. Moreover, the ratio is usually 50 or less, preferably 30 or less, and more preferably 20 or less, in terms of mass ratio. If the mass ratio of the reaction product to be contacted to the liquid is less than the lower limit of the above range, the effect of removing the oligomer component may decrease due to an increase in the concentration of the oligomer component in the contact treatment liquid during treatment, and a polyester of desired quality may not be obtained.
  • the mass ratio of the pellets to be contacted to the liquid exceeds the upper limit of the above range, it is disadvantageous in terms of process and cost, such as an increase in the size of the equipment due to a large amount of contact treatment liquid used and an increase in the cost of the contact treatment liquid.
  • the reaction product may be contacted with the contact treatment liquid by a batch method or a continuous method, and either method may be employed.
  • the reaction product and the contact treatment liquid are placed in a treatment tank, and the reaction product and the contact treatment liquid are subjected to contact treatment at a predetermined temperature for a predetermined time, and then the reaction product and the contact treatment liquid are discharged.
  • the contact treatment between the reaction product and the contact treatment liquid can be performed with or without circulation of the contact treatment liquid.
  • An example of a continuous mode in this embodiment is a method in which pellets are continuously supplied to a pipe or treatment tank, and a contact treatment liquid at a predetermined temperature is brought into contact with the flow of the reaction product in a cocurrent or countercurrent manner, and the contact time is maintained for a predetermined time, while the pellets are continuously withdrawn.
  • the purification step may include a separation treatment for separating at least a part of the cyclic oligomer component in the contact treatment liquid after the contact treatment.
  • a separation treatment for separating at least a part of the cyclic oligomer component in the contact treatment liquid after the contact treatment.
  • the cyclic oligomer component containing the separated cyclic oligomer component can be reused as an oligomer component in the polyester raw material in the reaction step after being separated from the contact treatment liquid by cooling or the like, or after being concentrated.
  • the contact treatment liquid after the separation process can be recycled as is, or it can be reused by adding new contact treatment liquid in an amount equivalent to the amount of contact treatment liquid extracted along with the separated cyclic oligomer components.
  • the oligomer component (which may be a mixture of the contact treatment liquid and the oligomer component) separated by distillation concentration and/or cooling can be recovered as a polyester raw material after being melted or heated and dissolved in the diol component used as a raw material to form a solution.
  • the recovered oligomer component can be directly supplied to the esterification reaction tank, or can be supplied to the diol component recycle line (2) or the esterification reaction product withdrawal line (4) shown in Figure 1, or can be supplied to the polycondensation reaction tank (a) shown in Figure 2, or can be supplied to a slurry preparation tank for the dicarboxylic acid component and the diol component.
  • the method for producing a polyester may further include a drying step in which a drying treatment is performed to dry the reaction product after the contact treatment. Since the reaction product after the contact treatment contains the contact treatment liquid, it is preferable to dry it in the drying step in order to remove the contact treatment liquid.
  • Dryers used in the drying step include tray-type dryers, band dryers, horizontal cylindrical rotary dryers, horizontal dryers with rotary blades, vertical dryers with rotary blades (so-called hopper dryer type dryers), moving bed type vertical dryers, fluidized bed dryers, etc., which circulate an inert gas such as heated air or heated nitrogen as a drying gas. Dryers different from the above gas circulation type include double-cone type rotary vacuum dryers, tumbler type rotary vacuum dryers, microwave dryers, etc.
  • the drying temperature is not particularly limited, but the gas temperature is usually 25°C or higher, preferably 30°C or higher, more preferably 35°C or higher, and particularly preferably 40°C or higher.
  • the upper limit of the temperature is usually below the melting point of the polyester, preferably below the melting point of the polyester minus 5°C, more preferably below the melting point of the polyester minus 8°C, and particularly preferably below the melting point of the polyester minus 10°C. If the drying temperature is below the lower limit of the above range, a long drying time is required, which is economically disadvantageous. On the other hand, if the drying temperature exceeds the upper limit of the above range, it may cause operational difficulties such as fusion of pellets and poor removal when removing the pellets from the dryer.
  • the drying gas that has passed through the dryer contains contact treatment liquid components, and the contact treatment liquid components can be reduced by cooling or adsorption of the drying gas, and reused as drying gas.
  • the drying time is not particularly limited, but is usually 0.1 to 100 hours, preferably 1 to 80 hours, and more preferably 5 to 50 hours. In the case of a moving bed type, the flow rate of the drying gas is usually 0.05 to 1.0 m/s (superficial velocity).
  • the alcohol content in the reaction product after drying is usually 1000 ppm by mass or less, preferably 800 ppm by mass or less, and more preferably 500 ppm by mass or less. If the content of alcohol is large, the melt viscosity of the pellets tends to decrease significantly during melt molding, resulting in poor moldability. The lower the alcohol content, the better, but an industrially and rationally obtainable concentration is usually 50 ppm by mass or more.
  • the moisture content of the pellets after drying is usually less than the alcohol content.
  • the moisture content in the reaction product is usually 1000 ppm by mass or less, preferably 500 ppm by mass or less, and more preferably 250 ppm by mass or less. If there is a large amount of moisture in the reaction product, the IV will drop significantly due to hydrolysis when the pellets are melt molded, leading to poor moldability and reduced physical properties of the molded product.
  • Fig. 1 is an explanatory diagram of an example of an esterification reaction process employed in this embodiment
  • Fig. 2 is an explanatory diagram of an example of a polycondensation reaction process employed in this embodiment. Note that Fig. 1 can be applied not only to an esterification reaction process but also to an ester exchange reaction process, in which case, in the following description, the esterification reaction tank will be read as an ester exchange reaction tank.
  • the raw materials succinic acid and malic acid are usually mixed with BG in a raw material mixing tank (not shown) and supplied in the form of a slurry or liquid from the raw material supply line (1) to the esterification reaction tank (A). If a catalyst is added during the esterification reaction, it is made into a BG solution in a catalyst preparation tank (not shown) and the catalyst solution is supplied to the catalyst supply line (3).
  • Figure 1 shows an embodiment in which the catalyst supply line (3) is connected to the recycle line (2) for recycle 1,4-butanediol, and the two are mixed and then supplied to the liquid phase of the esterification reaction tank (A).
  • the gas distilled from the esterification reaction tank (A) passes through the distillation line (5) and is separated into high-boiling and low-boiling components in the fractionator (C).
  • the main component of the high-boiling component is 1,4-butanediol
  • the main component of the low-boiling component is water and tetrahydrofuran (hereinafter sometimes abbreviated as THF), which is a decomposition product of BG.
  • the high boiling components separated in the distillation tower (C) are extracted through the extraction line (6) and pump (D), some of which is circulated through the recirculation line (2) to the esterification reaction tank (A), and some of which is returned through the circulation line (7) to the distillation tower (C).
  • the surplus is extracted to the outside through the extraction line (8).
  • the low boiling components separated in the distillation tower (C) are extracted through the gas extraction line (9), condensed in the condenser (G), and temporarily stored in the tank (F) through the condensate line (10).
  • a portion of the low boiling components collected in the tank (F) are returned to the distillation tower (C) through the extraction line (11), pump (E), and circulation line (12), and the remainder is extracted to the outside through the extraction line (13).
  • the condenser (G) is connected to an exhaust device (not shown) through a vent line (14).
  • the esterification reaction product produced in the esterification reaction tank (A) is supplied to the first polycondensation reaction tank (a) shown in FIG. 2 via the discharge pump (B) and the discharge line (4) for the esterification reaction product.
  • the catalyst supply line (3) is connected to the recirculation line (2), but the two may be independent. Also, the raw material supply line (1) may be connected to the liquid phase of the esterification reaction tank (A).
  • a catalyst When a catalyst is added to the esterification reaction product before the polycondensation reaction tank, it is prepared to a predetermined concentration in a catalyst preparation tank (not shown), then passed through the catalyst supply line (L7) in Figure 2, connected to the raw material supply line (L8), further diluted with BG, and supplied to the esterification reaction product withdrawal line (4).
  • the esterification reaction product supplied to the first polycondensation reaction tank (a) through the esterification reaction product discharge line (4) and the filter (p) undergoes a polycondensation reaction under reduced pressure to become a polyester low polymer, which is then supplied to the second polycondensation reaction tank (d) through the discharge gear pump (c), the discharge line (L1), and the filter (q).
  • the polycondensation reaction usually proceeds further at a lower pressure than in the first polycondensation reaction tank (a).
  • the obtained polycondensation reaction product is supplied to the third polycondensation reaction tank (k) through the discharge gear pump (e), the discharge line (L3) which is the outlet flow path, and the filter (r).
  • the third polycondensation reaction tank (k) is a horizontal reaction tank composed of multiple stirring blade blocks and equipped with two-shaft self-cleaning type stirring blades.
  • the polycondensation reaction product introduced from the second polycondensation reaction tank (d) to the third polycondensation reaction tank (k) through the withdrawal line (L3) undergoes further polycondensation reaction here and is then transferred to the pelletization process.
  • the molten reaction product passes through an extraction gear pump (m), an outlet flow path filter (s), and an extraction line (L5) and is extracted from a die head (g) in the form of molten strands into the atmosphere, where it is cooled with water or the like and then cut by a rotary cutter (h) to become polyester pellets. It is also possible to extract the strands into water instead of into the atmosphere and cut them into pellets by a rotary underwater cutter.
  • symbols (L2), (L4), and (L6) are the vent lines of the first polycondensation reaction tank (a), the second polycondensation reaction tank (d), and the third polycondensation reaction tank (k), respectively.
  • Filters (p), (q), (r), and (s) do not necessarily need to be installed all at once, and can be installed as appropriate, taking into consideration the foreign matter removal effect and operational stability.
  • FIG. 3 is an explanatory diagram of an example of the contact treatment and separation treatment that can be adopted in this embodiment.
  • the contact treatment liquid is temperature-controlled from the circulation tank (I) through the heat exchanger (II) by the pump (IX) and supplied to the treatment tank (III) through the contact treatment liquid supply line (101). After being countercurrently contacted with the pellets in the treatment tank, it is withdrawn through the withdrawal line (102), passed through the fine powder remover (IV), and then recovered in the circulation tank (I) through the separator (XI).
  • the contact treatment liquid supplied to the separator (XI) is separated into cyclic oligomer components, and is supplied to the liquid phase separation tank (XIII) through the high boiling liquid withdrawal line (111).
  • the separated oligomer components are withdrawn to the outside through the withdrawal line (112).
  • the contact treatment liquid is supplied in an amount equivalent to the contact treatment liquid withdrawn from the withdrawal line (112) together with the separated cyclic oligomer components.
  • the aqueous solution containing the oligomer components in the upper layer of the liquid phase separation tank (XIII) is supplied to a solid-liquid separation tank (XIV) via a liquid phase separation tank overflow line (113).
  • the aqueous solution supplied to the solid-liquid separation tank (XIV) is cooled by adding water to crystallize the oligomer components.
  • the suspension containing the solidified oligomer components is supplied to a solid-liquid separator (XV) via a solid-liquid separation tank overflow line (114), and the oligomer components are extracted.
  • the separated water is sent to an activated sludge facility via a drainage line (116).
  • the recovered oligomer components can be reused as part of the raw material, etc.
  • FIG. 3 shows an example of the contact treatment and separation treatment in the first embodiment, and shows an example of the contact treatment step and the purification step (specifically, the distillation separation treatment in the purification step) in the second embodiment described later.
  • An example of the contact treatment and separation treatment in the first embodiment and an example of the contact treatment step and the purification step in the second embodiment can both be similarly represented by the process shown in FIG.
  • the pellets to be subjected to contact treatment are continuously supplied from a pellet supply line (103) and, after being in contact with the contact treatment liquid for a predetermined time, are continuously withdrawn from a withdrawal line (104) while adjusting the withdrawal amount with a rotary valve (V).
  • the contact treatment liquid withdrawn together with the pellets is separated in a preliminary solid-liquid separator (VI) and, after passing through a recovery tank (VII), is returned to the recovery line (106) via a supply line (105) by a pump (X).
  • the continuously withdrawn pellets are separated from the entrained contact treatment liquid in the preliminary solid-liquid separator, and then passed through a solid-liquid separator (VIII) and continuously supplied to the drying process.
  • the illustrated example has two drying towers (I) and (K).
  • the polyester pellets after the purification process are continuously supplied to the first drying tower (I) through the pellet supply line (201). Heated dry nitrogen gas is continuously introduced into the first drying tower through the supply line (208) and discharged through the dry gas recovery line (207).
  • the discharged gas is heated in the heat exchanger (N) through the condenser (L) and circulated to the first drying tower through the dry gas supply line (208).
  • the contact treatment liquid condensed in the condenser (L) and heat exchanger (M) is discharged through the condensate discharge line (210).
  • New dry nitrogen gas is supplied through the new dry gas supply line (209).
  • the pellets are continuously sent from the first drying tower to the cooling tower (J) through the rotary valve (O). Dry air is introduced into the cooling tower through the cooling gas supply line (212) and discharged through the cooling gas discharge line (211).
  • the pellets cooled to a temperature lower than the drying temperature of the first drying tower are supplied to the second drying tower (K) via a pellet discharge line (204), a rotary valve (P) and a pellet supply line (205).
  • a dry gas (usually air) is supplied to the second drying tower via a heat exchanger (S) and a dry gas supply line (214) and discharged from a dry gas discharge line (213).
  • the temperature of the air supplied to the second drying tower is usually lower than the temperature of the nitrogen gas supplied to the first drying tower, for example, the nitrogen gas temperature is 80°C and the air temperature is 50°C.
  • the polyester pellets are extracted continuously or intermittently through the rotary valve (Q) pellet extraction line (206), and become the finished product after passing through a storage tank, fine powder removal machine, packaging machine, etc.
  • the storage tank can also be used as the second drying tower. This diagram does not show the process after the storage tank.
  • the content of the cyclic oligomer component obtained by contacting the polyester pellets with the contact treatment liquid is not particularly limited, but the content of the cyclic dimer contained in the polyester pellets (100 mass%) after the contact is preferably 1 mass ppm or more, more preferably 100 mass ppm or more, even more preferably 500 mass ppm or more, and particularly preferably 1000 mass ppm or more.
  • the content of the cyclic oligomer component is usually 3800 mass ppm or less, preferably 3500 mass ppm or less, even more preferably 3000 mass ppm or less, and particularly preferably 2500 mass ppm or less.
  • the content of the cyclic dimer is less than the lower limit of the above range, the quality is good, but it is economically disadvantageous because the time required to remove the oligomer component is extended, which requires large-scale equipment. If the content exceeds the upper limit of the above range, when the polyester is left for a certain period of time after molding, the surface becomes cloudy (synonymous with bleed-out or whitening phenomenon), causing problems such as loss of surface gloss.
  • a polyester composition according to another embodiment of the present invention is a polyester composition containing a polyester obtained by the above-mentioned method for producing a polyester.
  • the polyester produced by the above-mentioned method for producing a polyester may be an aliphatic polyester or an aromatic-aliphatic copolymer polyester.
  • the polyester composition may further contain an aliphatic oxycarboxylic acid or the like.
  • the polyester composition may contain a carbodiimide compound, a filler, a plasticizer, or other biodegradable resins that are used as necessary.
  • biodegradable resins examples include polycaprolactone, polyamide, polyvinyl alcohol, or cellulose ester, or starch, cellulose, paper, wood flour, chitin/chitosan, coconut shell powder, walnut shell powder, or other animal/plant material fine powders, or mixtures thereof.
  • additives such as heat stabilizers, plasticizers, lubricants, antiblocking agents, nucleating agents, inorganic fillers, colorants, pigments, ultraviolet absorbers, or light stabilizers, modifiers, crosslinking agents, or the like may be contained.
  • the method for producing the polyester composition is not particularly limited, but examples include a method in which the polyester obtained by the above-mentioned production method is used to melt-mix the blended polyester raw material chips in the same extruder, a method in which each is melted in a separate extruder and then mixed, or a method in which the raw material chips are mixed by kneading using a normal kneading machine such as a single-screw extruder, twin-screw extruder, Banbury mixer, roll mixer, Brabender plastograph, or kneader blender. It is also possible to directly feed each raw material chip into a molding machine to prepare the composition and simultaneously obtain a molded body.
  • a normal kneading machine such as a single-screw extruder, twin-screw extruder, Banbury mixer, roll mixer, Brabender plastograph, or kneader blender. It is also possible to directly feed each raw material chip into a molding machine to prepare
  • a composition according to yet another embodiment of the present invention is a composition that includes a polyester containing a constituent unit derived from a diol component and a constituent unit derived from a dicarboxylic acid component, and a cyclic oligomer component having a structure represented by the following formula (1) and a structure represented by the following formula (2).
  • R 1 and R 2 each independently represent a divalent hydrocarbon group which may have a substituent; x is an integer of 0 to 7; In formula (2), R 3 and R 4 each independently represent a divalent hydrocarbon group which may have a substituent; y is an integer of 0 to 7; x+y is 2 to 7.
  • the conditions for the diol component and the dicarboxylic acid component in the above composition can be similarly applied to the conditions for the diol component and the dicarboxylic acid component explained in the above-mentioned method for producing polyester.
  • the composition according to this embodiment may contain the same components as those described in the polyester composition aspect A, and the same manufacturing method can be used.
  • the polyester pellets obtained by the above-mentioned polyester manufacturing method usually contain the above-mentioned cyclic oligomer component in addition to the polyester, and therefore the composition can be manufactured by mixing the polyester pellets with any other component.
  • the polyester may also contain structural units derived from the cyclic oligomer component. If the polyester is produced by the above-mentioned polyester production method, the polyester raw material used in the production contains the above-mentioned cyclic oligomer component, and therefore the polyester usually has structural units derived from the above-mentioned cyclic oligomer component.
  • Another embodiment of the present invention is a molded article, specifically, a molded article obtained by molding the polyester composition related to aspect A of the polyester composition described above, a molded article obtained by molding the polyester composition related to aspect B of the polyester composition described above, or a molded article produced by a method for producing a molded article including a step of producing a polyester by the above-mentioned method for producing a polyester.
  • the method for producing the molded body is not particularly limited, and can be a known method applied to general-purpose plastics, or a combination of known methods.
  • the molding method examples include compression molding (compression molding, lamination molding, stampable molding), injection molding, extrusion molding or co-extrusion molding (film molding by inflation method or T-die method, laminate molding, pipe molding, electric wire/cable molding, molding of profile material), heat press molding, hollow molding (various blow moldings), calendar molding, solid molding (uniaxial stretch molding, biaxial stretch molding, roll rolling molding, stretch-oriented nonwoven fabric molding, thermoforming (vacuum molding, pressure molding), plastic processing, powder molding (rotational molding)), various nonwoven fabric molding (dry method, adhesion method, entanglement method, spunbond method, etc.), etc.
  • injection molding, extrusion molding, compression molding, or heat press molding, especially extrusion molding or injection molding are preferably applied.
  • application to sheets, films, and fibers is preferable.
  • the uses of the molded body are not particularly limited, and it can be used in known applications that are applied to general-purpose plastics.
  • it is particularly suitable for use in agricultural and forestry materials, fishing materials, civil engineering materials, etc. that are used outdoors, in the soil, underwater, or in wet environments.
  • Specific examples include extrusion molded products (for example, film products such as agricultural mulch films, mushroom cultivation films, and tree protection films, sheet products such as water-retaining sheets, and textile products such as fishing lines, fishing nets, aquaculture nets, vegetation nets, and ropes), and injection molded products (stakes, seedling pots, or mushroom bed cultivation containers). It is also suitable for use in compost bags and garbage bags that are expected to be stored for a certain period of time at home or in a business.
  • a second aspect of the method for producing a polyester according to one embodiment of the present invention (hereinafter, in the section on the second aspect, also simply referred to as a "method for producing a polyester”) is A reaction step of obtaining a reaction product from a polyester raw material (also simply referred to as "raw material") containing a diol and a dicarboxylic acid by a reaction treatment including at least one treatment selected from the group consisting of an esterification reaction treatment and an ester exchange reaction treatment; a contact treatment step of contacting the reaction product with a contact treatment liquid to obtain a contact treatment liquid containing an oligomer component and a post-contact treatment reaction product; a purification step including a treatment for purifying the oligomer components in the contact treatment liquid so that a content ratio of cyclic oligomer components in the oligomer components is increased from the contact treatment liquid containing the oligomer components; and a recovery step for recovering the oligomer components
  • diol component and dicarboxylic acid used as raw materials those usually used as raw materials for polyesters can be used without any particular limitation.
  • diol component an aliphatic diol component or an aromatic diol component
  • dicarboxylic acid component an aliphatic dicarboxylic acid component or an aromatic dicarboxylic acid component may be used.
  • the conditions for these diol components and dicarboxylic acids the conditions for the diol components and dicarboxylic acids explained in the first embodiment of the above-mentioned method for producing polyester can be similarly applied.
  • the polyester production method as long as at least a diol component and a dicarboxylic acid component are used, other components may be copolymerized.
  • the conditions for the copolymerization components that can be used can be the same as those for the other components described in the first embodiment of the polyester production method described above.
  • each step in the production of polyester Each step in the second embodiment of the method for producing a polyester will be described below using a continuous production method as an example, but this is merely an example, and the method for producing a polyester is not limited to this embodiment.
  • a dicarboxylic acid component and a diol component are continuously subjected to a reaction process including at least one treatment selected from the group consisting of an esterification reaction treatment and an ester exchange reaction treatment, and a polycondensation reaction treatment, using a plurality of continuous reaction tanks to obtain a polyester.
  • the method is not limited to the continuous method, and steps in the conventional polyester production methods can be adopted.
  • the polyester may be subjected to a contact treatment with a contact treatment liquid and then dried.
  • a continuous operation from the viewpoints of production efficiency and uniformity of the treatment, it is particularly preferred that at least one treatment selected from the group consisting of the contact treatment in the contact treatment step described below and the drying treatment in the drying step described below is carried out in a continuous manner.
  • At least one treatment selected from the group consisting of the contact treatment in the contact treatment step described below and the drying treatment in the drying step described below is carried out in a batch or semi-batch manner from the viewpoints of production efficiency and uniformity of the treatment.
  • the method for producing a polyester may further include a raw material preparation step of preparing a polyester raw material prior to the reaction step described below.
  • the method for preparing the polyester raw material is not particularly limited, and the raw material may be prepared by mixing raw materials produced by synthesis or the like, or the raw materials may be procured as commercially available products and mixed to prepare the polyester raw material.
  • the method for producing a polyester includes a reaction step of subjecting a polyester raw material containing a diol and a dicarboxylic acid to a reaction treatment including at least one treatment selected from the group consisting of an esterification reaction treatment and an ester exchange reaction treatment to obtain a reaction product containing a polyester.
  • the reaction treatment is preferably carried out in the presence of a catalyst.
  • the reaction step may include treatments other than the esterification reaction treatment and the ester exchange reaction.
  • the reaction process is an esterification reaction process in which a polyester raw material is reacted, specifically, an esterification reaction process in which a raw material containing at least a dicarboxylic acid component and a diol component is reacted, and/or an ester exchange reaction is carried out to produce the polyester.
  • the esterification reaction is a reaction in which a carboxylic acid is converted into an ester
  • the ester exchange reaction is a reaction in which an ester and an alcohol are reacted to exchange the main chain portions of these.
  • the esterification reaction process will be described below, but this description can be applied to the ester exchange reaction as well to the extent that it is applicable.
  • At least one reaction process selected from the group consisting of an esterification reaction process and an ester exchange reaction and the subsequent other processes can be carried out in a plurality of continuous reaction tanks or in a single reaction tank.
  • the conditions for the esterification reaction process/ester exchange reaction process can be the same as those for the esterification reaction process/ester exchange reaction process in the first embodiment described above.
  • the reaction step preferably includes a polycondensation reaction treatment in which a polycondensation reaction is carried out following the esterification reaction treatment.
  • the polycondensation reaction can be carried out under reduced pressure using a plurality of continuous reaction tanks.
  • the polycondensation reaction conditions can be the same as those in the first embodiment described above.
  • reaction catalyst The esterification reaction and polycondensation reaction are accelerated by using a reaction catalyst.
  • a sufficient reaction rate can be obtained even without an esterification reaction catalyst.
  • an esterification reaction catalyst is present during the esterification reaction, the catalyst may produce insoluble precipitates in the reaction product due to water produced by the esterification reaction, which may impair the transparency of the polyester obtained (i.e., increase the haze) and may become a foreign substance, so it is preferable not to add a reaction catalyst during the esterification reaction.
  • a catalyst is added to the gas phase of the reaction tank, the haze of the polyester obtained may increase and the catalyst may become a foreign substance, so it is preferable to add the catalyst to the reaction liquid.
  • reaction catalyst conditions can be the same as those in the first embodiment described above.
  • esterification reaction tank for carrying out the esterification reaction treatment a known esterification reaction tank can be used, and the reaction catalyst conditions in the first embodiment described above can be similarly applied.
  • the method for producing polyester preferably further includes a pelletizing step of pelletizing the reaction product obtained in the above reaction step to obtain pellets (polyester pellets) after the above reaction step, particularly between the above reaction step and the contact treatment step described later.
  • the polyester obtained through the esterification reaction step is pelletized, and contact treatment is performed in the form of pellets with a contact treatment liquid.
  • the conditions for the pelletizing process can be the same as those for the first embodiment described above.
  • the method for producing polyester further includes a contact treatment step in which the reaction product (polyester) obtained by the above reaction step is contacted with a contact treatment liquid to obtain a contact treatment liquid containing an oligomer component and a post-contact treatment reaction product.
  • the contact treatment is a treatment for purification.
  • the contact treatment step may include treatments other than the contact treatment.
  • the contact treatment liquid is not particularly limited and may be, for example, a solvent containing water.
  • a reaction product obtained by an esterification reaction, an ester exchange reaction, a polymerization reaction, or the like usually contains an oligomer component
  • the content of the oligomer component in the reaction product can be reduced by performing a contact treatment, and further, since the contact treatment liquid obtained by the contact treatment contains an oligomer component, the oligomer component can be recovered for reuse to improve the productivity of polyester.
  • the oligomer component in the contact treatment liquid can be reused by supplying it to any step from the raw material preparation step to the reaction step.
  • a polyester obtained by reusing as a raw material the oligomer component recovered through this contact treatment step exhibits less deterioration in color tone than a polyester obtained by reusing as a raw material the oligomer component recovered without being subjected to a purification treatment, or a polyester obtained by reusing as a raw material the oligomer component obtained by a conventional purification treatment.
  • the contact treatment step is a step in which the reaction product (polyester) obtained in the reaction step (pelletization step, if a pelletization step is adopted) is brought into contact with a contact treatment liquid, thereby contacting the oligomer components contained in the reaction product with the contact treatment liquid, thereby reducing the content of oligomer components in the reaction product.
  • Contact treatment liquids include, for example, alcohols such as methanol, ethanol, isopropanol, or butanol, and mixtures of these alcohols with water.
  • alcohols such as methanol, ethanol, isopropanol, or butanol
  • water/ethanol mixtures mixtures of water and ethanol are particularly preferred in terms of ease of handling, cost, contact treatment efficiency, and safety.
  • the contact treatment is usually carried out immediately after pelletizing, but the contact treatment may also be carried out after temporarily storing the obtained pellets in a storage tank.
  • the content of polyester in the reaction product obtained in the reaction step is not particularly limited, but is usually 90% by mass or more, preferably 92.5% by mass or more, more preferably 95% by mass or more, and even more preferably 97% by mass or more, and is usually 100% by mass or less, preferably 99.5% by mass or less, more preferably 99% by mass or less, and even more preferably 98.5% by mass or less.
  • the structure of the oligomer component is not particularly limited, and may have at least one constituent unit selected from the group consisting of the constituent units derived from the diol component and the constituent units derived from the dicarboxylic acid component, or may have the constituent units derived from the diol component and the constituent units derived from the dicarboxylic acid component, and usually contains, as main constituent units, a structural unit derived from the diol component and a structural unit derived from the dicarboxylic acid component used as raw materials.
  • the oligomer component may have a linear structure, a branched structure, or a cyclic structure, but from the viewpoint of easily suppressing deterioration in the color tone of the final polymer obtained, it is preferable that the oligomer component is a cyclic oligomer component having a structure represented by the following formula (11) or a structure represented by the following formula (12).
  • the cyclic oligomer component can be easily obtained by going through this contact treatment step and the recovery step described below.
  • R 11 and R 12 each independently represent a divalent hydrocarbon group which may have a substituent; x 1 is an integer of 0 to 7; In formula (12), R 13 and R 14 each independently represent a divalent hydrocarbon group which may have a substituent; y 1 is an integer of 0 to 7; x1 + y1 is an integer from 2 to 7.
  • the content of the oligomer component in the reaction product obtained in the reaction step is not particularly limited and may be the remainder excluding the above-mentioned polyester, but is usually 0.1 mass% or more, preferably 0.2 mass% or more, more preferably 0.3 mass% or more, and even more preferably 0.5 mass% or more, and is usually 3 mass% or less, preferably 2.5 mass% or less, more preferably 2 mass% or less, and even more preferably 1.5 mass% or less.
  • the content of the above-mentioned cyclic oligomer component relative to 100% by mass of the oligomer component is not particularly limited, but is usually 0.1% by mass or more, preferably 0.2% by mass or more, more preferably 0.3% by mass or more, and even more preferably 0.5% by mass or more, and is usually 3% by mass or less, preferably 2.5% by mass or less, more preferably 2% by mass or less, and even more preferably 1.5% by mass or less.
  • the oligomer component may be contained in the raw material, and for example, as described in the recovery step and the supply step described later, the oligomer component obtained in the recovery step can be contained in the polyester raw material.
  • the content of the oligomer component in the polyester raw material is not particularly limited, but is usually 0.1% by mass or more, preferably 0.5% by mass or more, more preferably 1.0% by mass or more, even more preferably 2.5% by mass or more, and particularly preferably more than 5.0% by mass, and is usually less than 100% by mass, preferably 90% by mass or less, more preferably 80% by mass or less, even more preferably 70% by mass or less, and particularly preferably 60% by mass or less.
  • the content of the cyclic oligomer component having the structure represented by the above formula (1) and the structure represented by the above formula (2) in the oligomer component contained in the polyester raw material is preferably 35% by mass or more and 100% by mass or less, more preferably 40% by mass or more, even more preferably 50% by mass or more, particularly preferably 60% by mass or more, and most particularly preferably 70% by mass or more, from the viewpoint of being able to easily suppress deterioration in the color tone of the resulting polyester.
  • the above-mentioned cyclic oligomer component is preferably generated by a reaction with a diol component and a dicarboxylic acid component contained in the polymer raw material.
  • the dicarboxylic acid component includes at least one selected from the group consisting of dicarboxylic acids represented by the following formula (A1) and derivatives thereof, and at least one selected from the group consisting of dicarboxylic acids represented by the following formula (B1) and derivatives thereof,
  • the diol component preferably contains at least one selected from the group consisting of diols represented by the following formula (C1) and derivatives thereof, and at least one selected from the group consisting of diols represented by the following formula (D1) and derivatives thereof:
  • R 11 to R 14 have the same meanings as R 11 to R 14 in the above formulae (11) and (12), respectively.
  • the oligomer components obtained by the contact treatment are recovered, and the recovered oligomer components are reused in the polyester raw material, the diol components and dicarboxylic acid components in the polyester raw material become the same as the oligomer components and dicarboxylic acid components constituting the cyclic oligomer components in the polyester raw material, so that the content of the cyclic oligomer components having the structure represented by the above formula (11) and the structure represented by the above formula (12) in the oligomer components in the polyester raw material can be increased.
  • the intrinsic viscosity (IV, dL/g) of the polyester to be contacted with the contact treatment liquid and the intrinsic viscosity of the polyester after contact treatment with the contact treatment liquid are preferably 1.4 dL/g or more, and particularly preferably 1.6 dL/g or more.
  • the intrinsic viscosity is preferably 2.8 dL/g or less, more preferably 2.5 or less, and particularly preferably 2.3 dL/g or less. If the intrinsic viscosity is below the lower limit of the above range, it is difficult to obtain sufficient mechanical strength when molded into a molded product. If the intrinsic viscosity exceeds the upper limit of the above range, the melt viscosity during molding is high and molding is difficult.
  • the amount of terminal carboxyl groups in the polyester to be brought into contact with the contact treatment solution is usually 80 (equivalents/ton) or less, preferably 60 (equivalents/ton) or less, more preferably 40 (equivalents/ton) or less, and particularly preferably 25 (equivalents/ton) or less.
  • the lower the lower limit the better the thermal stability and hydrolysis resistance, but it is usually 5 (equivalents/ton) or more. If the upper limit is exceeded, the viscosity reduction due to hydrolysis becomes significant, and the quality may be significantly impaired.
  • the conditions for the contact treatment in the second embodiment can be the same as those described in the first embodiment above, in terms of (1-1) the composition of the contact treatment liquid, (1-2) the contact treatment temperature, (1-3) the contact treatment time, (1-4) the ratio of the reaction product to the contact treatment liquid, and (1-5) the contact treatment method.
  • the method for producing a polyester includes a purification step including a process for purifying an oligomer component from a contact treatment solution containing the oligomer component so that the content ratio of cyclic oligomer components in the oligomer component is increased.
  • the above-mentioned contact treatment step is also a process for purifying a reaction product, but this purification step is a different process from the above-mentioned contact treatment step.
  • the oligomer component obtained by the purification step or a target containing the oligomer component is also referred to as a "purified product".
  • the method of purifying the oligomer component from the contact treatment liquid containing the oligomer component so that the content ratio of cyclic oligomer components in the oligomer component is increased is not particularly limited, and examples thereof include a method having a distillation separation process for separating a low boiling liquid from a high boiling liquid containing oligomer components and water.
  • the high boiling liquid refers to a liquid that is mainly composed of water containing low volatility components such as oligomer components and is extracted from the bottom of a distillation column or the like
  • the low boiling liquid refers to a liquid that is more volatile than water and is distilled from the top of a distillation column or the like, such as ethanol, tetrahydrofuran, and acetone.
  • the low boiling liquid does not substantially contain oligomer components, and it is more preferable that it does not contain any oligomer components.
  • the method for distillation separation is not particularly limited, and can be carried out by a known method.
  • the temperature for distillation separation is not particularly limited, and is usually 80°C or higher, preferably 85°C or higher, more preferably 90°C or higher, and even more preferably 95°C or higher, and is usually 120°C or lower, preferably 115°C or lower, more preferably 110°C or lower, and even more preferably 105°C or lower.
  • Distillation separation can be carried out either batchwise or continuously, but continuous separation is more preferable in terms of production efficiency.
  • the purification step preferably further includes a crystallization step of crystallizing the oligomer components contained in the high boiling liquid after the distillation separation treatment.
  • the crystallization method is not particularly limited, and may be carried out in either a batch or continuous manner, but in terms of production efficiency, a continuous manner is more preferable. Crystallization is carried out, for example, by cooling a crystallization tank containing a high boiling liquid in a distillation separation process to a predetermined temperature and separating oligomer components such as cyclic oligomer components precipitated in particulate or paste form from the aqueous solution phase. Crystallization is preferably carried out at a temperature of 50° C. or less, more preferably at a temperature of 40° C. or less, and even more preferably at a temperature of 35° C. or less.
  • the purification step preferably further includes a phase separation treatment in which a liquid/liquid phase separation treatment is performed after the distillation separation treatment to separate the oligomer components from the high-boiling liquid.
  • the method for liquid/liquid phase separation is not particularly limited, and may be carried out in a batch or continuous manner, but in terms of production efficiency, a continuous manner is more preferable.
  • the liquid/liquid phase separation is carried out, for example, by extracting the molten oligomer phase (the lower liquid phase, which is believed to contain a small amount of linear oligomers that cause color deterioration) from the bottom while visually checking the liquid/liquid interface using a sight glass or the like provided in the tank, and separating it from the aqueous solution phase (the upper phase, purified oligomer components).
  • the liquid/liquid phase separation is preferably carried out at a temperature of 85° C. or higher, more preferably at a temperature of 90° C. or higher, and even more preferably at a temperature of 95° C. or higher.
  • a phase separation process When a phase separation process is performed, it is preferable to further include a crystallization process in which the oligomer components separated by the phase separation process are further crystallized.
  • the conditions for this crystallization process can be the same as those for the crystallization process described above.
  • the method for producing a polyester includes a recovery step of recovering the oligomer component obtained in the purification step as a part of the raw material.
  • the oligomer component can be used as a raw material for the polyester, specifically, it can be a structural unit constituting a part of the polyester together with a diol or a dicarboxylic acid, or it can be a structural unit constituting a part of the polyester by replacing a part of the diol or a dicarboxylic acid.
  • the form of the oligomer component to be recovered is not particularly limited, and may be, for example, the oligomer component alone (including crystals), a liquid containing the oligomer component, or a solid containing the oligomer component.
  • the recovery step is not particularly limited as long as it can recover a purified product (the target product after purification or a liquid or solid containing the target product), and may be, for example, a recovery step in which the above-mentioned crystallization process is performed, and then the crystallized oligomer component is taken out and recovered as part of the raw material.
  • the recovered oligomer component can be supplied as a raw material in the supply step described below, and an esterification reaction process or the like can be performed in the above-mentioned reaction step.
  • the recovery step at least a portion of the oligomer components in the purified product may be separated to adjust the content of the oligomer components in the purified product, which can then be recycled and reused as the contact treatment liquid in the above-mentioned contact treatment step.
  • the purified product after the purification process can be recycled as is, or it can be reused by adding new contact treatment liquid in an amount equivalent to the amount of contact treatment liquid extracted along with the separated oligomer components.
  • the oligomer components (which may be a mixture of the contact treatment liquid and the oligomer components) separated by distillation concentration and/or cooling can be recovered as a polyester raw material after being temporarily melted or after being heated and dissolved in the diol component used as a raw material to form a solution.
  • the recovery operation can be performed either batchwise or continuously, and there are no particular restrictions, but from the perspective of efficiency, a continuous system is more preferable.
  • the method for producing a polyester may further have, after the recovery step, a supply step of supplying at least one of a melt obtained by melting the recovered oligomer component and a solution obtained by dissolving the oligomer component in a diol component of the polyester raw material to any step from the raw material preparation step to the reaction step.
  • the manner of supplying the oligomer components is not particularly limited, but for example, the recovered oligomer components can be supplied to the polyester raw material in the reaction process and reused. Specifically, the recovered oligomer components can be supplied to the esterification reaction process, the ester exchange reaction process, and the polycondensation reaction process in the reaction process and used as a raw material for polyester. In particular, it is a preferred method to return the recovered oligomer components to the esterification reaction tank for the esterification reaction process, the ester exchange reaction tank for the ester exchange reaction process, or the slurry tank for the dicarboxylic acid component and the diol component.
  • the recovered oligomer components can be directly supplied to the esterification reaction tank, or can be supplied to the diol component recycle line (2) or the esterification reaction product withdrawal line (4) illustrated in FIG. 1, or can be supplied to the polycondensation reaction tank (a) illustrated in FIG. 2, or can be supplied to a slurry preparation tank for the dicarboxylic acid component and the diol component.
  • the supply method can be either batch or continuous, but continuous is more preferable in terms of production efficiency.
  • the method for producing a polyester may further include a drying step in which the reaction product after the contact treatment (preferably the purification step) is dried after the contact treatment step (preferably the purification step).
  • the reaction product after the contact treatment may be the contact treatment liquid before the purification step or may be the purified product after the purification step, but it is preferable that at least the purified product is dried.
  • the conditions for the drying step may be the same as those for the drying step in the first embodiment described above.
  • a polyester composition according to another embodiment of the present invention is a polyester composition containing a polyester obtained by the above-mentioned method for producing a polyester.
  • the polyester produced by the above-mentioned method for producing a polyester may be an aliphatic polyester or an aromatic-aliphatic copolymer polyester.
  • the polyester composition may further contain an aliphatic oxycarboxylic acid or the like.
  • the polyester composition may contain a carbodiimide compound, a filler, a plasticizer, or other biodegradable resins that are used as necessary.
  • biodegradable resins examples include polycaprolactone, polyamide, polyvinyl alcohol, or cellulose ester, or starch, cellulose, paper, wood flour, chitin/chitosan, coconut shell powder, walnut shell powder, or other animal/plant material fine powders, or mixtures thereof.
  • additives such as heat stabilizers, plasticizers, lubricants, antiblocking agents, nucleating agents, inorganic fillers, colorants, pigments, ultraviolet absorbers, or light stabilizers, modifiers, crosslinking agents, or the like may be contained.
  • the method for producing the polyester composition is not particularly limited, but examples include a method in which the polyester obtained by the above-mentioned production method is used to melt-mix the blended polyester raw material chips in the same extruder, a method in which each is melted in a separate extruder and then mixed, or a method in which the raw material chips are mixed by kneading using a normal kneading machine such as a single-screw extruder, twin-screw extruder, Banbury mixer, roll mixer, Brabender plastograph, or kneader blender. It is also possible to directly feed each raw material chip into a molding machine to prepare the composition and simultaneously obtain a molded body.
  • a normal kneading machine such as a single-screw extruder, twin-screw extruder, Banbury mixer, roll mixer, Brabender plastograph, or kneader blender. It is also possible to directly feed each raw material chip into a molding machine to prepare
  • a molded article specifically, a molded article obtained by molding the above-mentioned polyester composition, or a molded article produced by a method for producing a molded article including a step of producing a polyester by the above-mentioned method for producing a polyester.
  • the method for producing the molded body is not particularly limited, and can be a known method applied to general-purpose plastics, or a combination of known methods.
  • the molding method examples include compression molding (compression molding, lamination molding, stampable molding), injection molding, extrusion molding or co-extrusion molding (film molding by inflation method or T-die method, laminate molding, pipe molding, electric wire/cable molding, molding of profile material), heat press molding, hollow molding (various blow moldings), calendar molding, solid molding (uniaxial stretch molding, biaxial stretch molding, roll rolling molding, stretch-oriented nonwoven fabric molding, thermoforming (vacuum molding, pressure molding), plastic processing, powder molding (rotational molding)), various nonwoven fabric molding (dry method, adhesion method, entanglement method, spunbond method, etc.), etc.
  • injection molding, extrusion molding, compression molding, or heat press molding, especially extrusion molding or injection molding are preferably applied.
  • application to sheets, films, and fibers is preferable.
  • the uses of the molded body are not particularly limited, and it can be used in known applications that are applied to general-purpose plastics.
  • it is particularly suitable for use in agricultural and forestry materials, fishing materials, civil engineering materials, etc. that are used outdoors, in the soil, underwater, or in wet environments.
  • Specific examples include extrusion molded products (for example, film products such as agricultural mulch films, mushroom cultivation films, and tree protection films, sheet products such as water-retaining sheets, and textile products such as fishing lines, fishing nets, aquaculture nets, vegetation nets, and ropes), and injection molded products (stakes, seedling pots, or mushroom bed cultivation containers). It is also suitable for use in compost bags and garbage bags that are expected to be stored for a certain period of time at home or in a business.
  • esterification rate (%) The esterification rate in the production of polyester was calculated from the sample acid value and saponification value by the following calculation formula (2).
  • the acid value was determined by heating 0.3 g of the esterification reaction product sample in 40 mL of benzyl alcohol at 180° C. for 20 minutes, cooling for 10 minutes, and then titrating with 0.1 mol/L potassium hydroxide/methanol solution.
  • the saponification value was determined by hydrolyzing the oligomer component with 0.5 mol/L potassium hydroxide/ethanol solution, and titrating with 0.5 mol/L hydrochloric acid.
  • Esterification rate (%) (saponification value ⁇ acid value)/saponification value ⁇ 100 (2)
  • the amount of cyclic oligomer components (cyclic ester oligomer components in which the total number of repeating units of the constitutional units derived from the diol component and the number of repeating units of the constitutional units derived from the dicarboxylic acid component is 2 to 7) was quantified using "CAPCELL PAK C-18 TYPE MGII" manufactured by Osaka Soda Co., Ltd. and expressed as ppm by mass relative to the pellet.
  • a UV detector was used as the detector, and the detection wavelength for oligomers not containing an aromatic ring was 210 nm, and the detection wavelength for oligomers containing an aromatic ring was 254 nm.
  • cyclic dimer ((BS)2)
  • an absolute calibration curve method using a pure product of the cyclic dimer ((BS)2) was employed.
  • the pure product of the cyclic dimer was obtained as follows. That is, polymer pellets obtained by polymerizing succinic acid and 1,4-butanediol were stirred in acetone at 50°C for 12 hours to contact-treat the oligomer components. After the contact-treat was completed, the pellets were filtered off, and the acetone was volatilized from the acetone solution in which the oligomer components had been contact-treated to obtain a solid.
  • the amount of the cyclic dimer ((BS)2) was determined by calculation using the formula (5) based on an absolute calibration curve using HPLC area values.
  • (Quantitative value of cyclic dimer ((BS)2)) (slope of cyclic dimer ((BS)2) calibration curve) x (HPLC 210 nm UV area value of cyclic dimer ((BS)2)) + intercept of cyclic dimer ((BS)2) calibration curve ...
  • Oligomer components not containing an aromatic ring other than the cyclic dimer ((BS)2) were identified by LC-MS analysis, and then quantified using the relative area value of each oligomer component to the area value of the cyclic dimer ((BS)2) in high performance liquid chromatography and a factor, according to formula (6).
  • the amount of the aromatic ring-containing oligomer component was determined by preparing an absolute calibration curve using dimethyl terephthalate (DMT) as a standard substance, and after identifying the component by LC-MS analysis in advance, the amount of the aromatic ring-containing oligomer component was calculated using the HPLC area value as a DMT equivalent value according to the formula (7).
  • (Quantitative value of oligomer containing aromatic ring) slope of DMT calibration curve ⁇ (HPLC 254 nm UV area value) + intercept of DMT calibration curve ... (7)
  • polyester sample was dried at 140°C for 15 minutes in a hot air dryer and cooled to room temperature in a desiccator. 0.1 g was precisely weighed and collected in a test tube, and 3 cm 3 of benzyl alcohol was added and dissolved at 195°C for 3 minutes while blowing in dry nitrogen gas. Then, 5 cm 3 of chloroform was gradually added and cooled to room temperature.
  • Amount of terminal carboxyl groups (equivalents/ton) (a ⁇ b) ⁇ 0.1 ⁇ f/W (3)
  • a is the amount ( ⁇ L) of 0.1 mol/L sodium hydroxide solution in benzyl alcohol required for titration
  • b is the amount ( ⁇ L) of 0.1 mol/L sodium hydroxide solution in benzyl alcohol required for titration of a blank
  • W is the amount (g) of the polyester sample
  • f is the titer of the 0.1 mol/L sodium hydroxide solution in benzyl alcohol.
  • the potency (f) of 0.1 mol/L sodium hydroxide in benzyl alcohol was determined by the following method. 5 cm3 of methanol was collected in a test tube, 1-2 drops of phenol red in ethanol solution were added as an indicator, and titrated to the color change point with 0.4 cm3 of 0.1 mol/L sodium hydroxide in benzyl alcohol. Next, 0.2 cm3 of 0.1 mol/L hydrochloric acid solution with a known potency was collected and added as a standard solution, and titrated again to the color change point with 0.1 mol/L sodium hydroxide in benzyl alcohol (the above operations were performed under blowing in dry nitrogen gas). The potency (f) was calculated by the following formula (4).
  • Titer (f) Titer of 0.1 mol/L hydrochloric acid solution ⁇ Amount of 0.1 N hydrochloric acid solution collected ( ⁇ L) / Titer amount of 0.1 mol/L sodium hydroxide benzyl alcohol solution ( ⁇ L) ... (4)
  • the esterification reaction tank (A) had an internal temperature of 230°C and a pressure of 101 kPa, and the water, tetrahydrofuran, and excess 1,4-butanediol produced were distilled through the distillation line (5) and separated into high-boiling and low-boiling components in the distillation tower (C). After the system had stabilized, a portion of the high-boiling components at the bottom of the tower were withdrawn to the outside through the withdrawal line (8) so that the liquid level in the distillation tower (C) would be constant.
  • the low-boiling components mainly water and tetrahydrofuran, were withdrawn in gas form from the top of the tower, condensed in the condenser (G), and withdrawn to the outside through the withdrawal line (13) so that the liquid level in the tank (F) would be constant.
  • the entire amount of the bottom component (98% by mass or more of 1,4-butanediol) of the 100°C rectification column (C) was fed from the recirculation line (2), and an equal mole of 1,4-butanediol to the tetrahydrofuran generated in the esterification reaction tank was fed from the raw material feed line (1), and the molar ratio of 1,4-butanediol to succinic acid in the esterification reaction tank was adjusted to 1.30.
  • the total feed amount from the recirculation line (2) and the raw material feed line (1) was 133.1 kg/h.
  • the amount of 1,4-butanediol converted to tetrahydrofuran was 0.092 moles per 1.00 mole of succinic acid (THF conversion rate of 9.2 moles per 1 mole of succinic acid).
  • the esterification reaction product produced in the esterification reaction tank (A) was continuously withdrawn from the esterification reaction product withdrawal line (4) using a pump (B), and the liquid level was controlled so that the average residence time of the liquid in the esterification reaction tank (A) was 3 hours in terms of succinic acid units.
  • the esterification reaction product withdrawn from the withdrawal line (4) was continuously supplied to the first polycondensation reaction tank (a) in Figure 2. After the system stabilized, the esterification rate of the esterification reaction product collected at the outlet of the esterification reaction tank (A) was 92.8%.
  • the catalyst solution previously prepared by the method described above was diluted with 1,4-butanediol in a catalyst preparation tank so that the titanium atom concentration was 0.12 mass%, and the catalyst solution was then continuously supplied to the esterification reaction product withdrawal line (4) through the supply line (L8) at a rate of 125.6 kg/h (the catalyst was added to the liquid phase of the reaction liquid).
  • the supply amount was stable throughout the operation period.
  • the internal temperature of the first polycondensation reaction tank (a) was set to 240°C, the pressure to 2.7 kPa, and the liquid level was controlled so that the residence time was 120 minutes.
  • An initial polycondensation reaction was carried out while extracting water, tetrahydrofuran, and 1,4-butanediol from a vent line (L2) connected to a pressure reducer (not shown).
  • the extracted reaction liquid was continuously supplied to the second polycondensation reactor (d).
  • the internal temperature of the second polycondensation reactor (d) was set to 240°C, the pressure to 400 Pa, and the liquid level was controlled so that the residence time was 120 minutes.
  • the polycondensation reaction was further carried out while extracting water, tetrahydrofuran, and 1,4-butanediol from a vent line (L4) connected to a pressure reducer (not shown).
  • the obtained polyester was continuously supplied to the third polycondensation reactor (k) via the extraction line (L3) by the extraction gear pump (e).
  • the internal temperature of the third polycondensation reactor (k) was 240°C, the pressure was 130 Pa, and the residence time was 120 minutes, and the polycondensation reaction was further carried out.
  • the obtained polyester was continuously extracted in the form of a strand from the die head (g) and cooled with water, while being cut into pellets by a rotary cutter (h).
  • the intrinsic viscosity was 1.80 ⁇ 0.05 dL/g, and the polyester pellets were of stable quality.
  • the obtained polyester pellets were subjected to contact treatment by the contact treatment (contact treatment step) shown in Fig. 3.
  • a mixed liquid of ethanol and water used as a contact treatment liquid was controlled to 70°C from a circulation tank (I) via a heat exchanger (II) by a pump (IX) and supplied to a contact treatment tank (III) via a supply line (101).
  • the ratio of ethanol (hereinafter sometimes abbreviated as EtOH) to water in the contact treatment liquid was 60 mass% of water relative to the entire contact treatment liquid.
  • the mass ratio of the contact treatment liquid to the pellets in the treatment tank was 5 (treatment liquid/pellet ratio).
  • the dry nitrogen gas in the first drying tower had a purity of 99% or more (dew point -40°C), a gas temperature of 80°C, a gas (superficial) velocity of 0.125 m/sec, and a pellet residence time of 15 hours, while the dry air in the second drying tower (dew point -40°C) had a temperature of 80°C, a gas (superficial) velocity of 0.125 m/sec, and a pellet residence time of 24 hours.
  • a polyester was produced as follows by the esterification reaction treatment (esterification step) shown in FIG. 1 and the polycondensation reaction treatment shown in FIG. 2.
  • a 50° C. slurry containing 0.74 mol of succinic acid, 0.26 mol of adipic acid, 1.30 mol of 1,4-butanediol, and 0.0033 mol of malic acid was continuously supplied at a flow rate of 3823 kg/h from a slurry preparation tank (not shown) through a raw material supply line (1) to an esterification reaction tank (A) having a stirrer previously filled with a low molecular weight polyester (esterification reaction product) having an esterification rate of 99% by mass under a nitrogen atmosphere.
  • the other operations were the same as those in the production method of PBS.
  • the esterification rate of the esterification reaction product collected at the outlet of the esterification reaction tank (A) was 92.8%, and the intrinsic viscosity of the finally obtained polyester pellets was 1.80 ⁇ 0.05 dL/g, and the quality was stable.
  • PBSA Polybutylene Succinate Adipate
  • the contact treatment liquid was contacted with the pellets in the treatment tank in a countercurrent manner and then withdrawn from the withdrawal line (102). A part of the withdrawn treatment liquid was fed to the separator (XI) via the fine powder remover (IV), and the remainder was recovered in the circulation tank (I).
  • the pellets to be subjected to the contact treatment were continuously fed from the supply line (103), contacted with the contact treatment liquid for 4 hours, and then continuously withdrawn from the withdrawal line (104) via the rotary valve (V).
  • the contact treatment liquid withdrawn together with the pellets was separated in the preliminary solid-liquid separator (VI), passed through the recovery tank (VII), and returned to the recovery line (106) via the supply line (105) by the pump (X).
  • the contact treatment liquid supplied to the separator (XI) was separated into a low boiling liquid not containing oligomer components and a high boiling liquid containing oligomer components in the distillation column (XI).
  • the low boiling liquid was supplied to the circulation tank (I) via the heat exchanger (XII) and line (109).
  • the high boiling liquid containing cyclic oligomer components was extracted to the liquid phase separation tank (XIII) via line (111).
  • Ethanol and water in an amount equivalent to the contact treatment liquid extracted from the extraction line (111) entrained with the high boiling liquid containing cyclic oligomer components were supplied to the circulation tank (I) from the supply line (107).
  • the continuously extracted pellets were separated from the entrained contact treatment liquid in the preliminary solid-liquid separator (VI) and then continuously supplied to the drying process from the solid-liquid separator (VIII) via the extraction line (108).
  • Step for recovering oligomer components by crystallization of the upper layer aqueous solution through phase separation treatment The aqueous solution in the upper layer of the separation tank (XIII) supplied to the solid-liquid separation tank (XIV) was cooled to 30°C by adding water, and the precipitated solid oligomer component was separated from the aqueous solution in a solid-liquid separator (XV) and taken out into a container.
  • the oligomer component obtained here was an almost white powder in the case of PBS, and a paste-like substance close to white in the case of PBSA.
  • the aqueous solution remaining after the oligomer component was removed was treated with activated sludge.
  • composition of Recovered Oligomer Component The composition of the cyclic oligomer components contained in the recovered oligomer components was quantified using the above-mentioned high performance liquid chromatograph. The results of the composition analysis of the oligomer components of PBS and PBSA are shown in the following Tables 1 and 2. For comparison, Table 1 also shows oligomer components obtained by evaporating the contact treatment liquid to dryness without performing liquid-phase separation and solid-liquid separation. The cyclic oligomer components in the recovered oligomer components and the oligomer components other than the cyclic oligomer components were all only oligomer components generated from the raw materials used as the raw materials.
  • the cyclic oligomer components in the case where polybutylene succinate (PBS) pellets were used were cyclic oligomer components composed of constitutional units derived from succinic acid, constitutional units derived from 1,4-butanediol, and constitutional units derived from malic acid
  • the cyclic oligomer components in the case where polybutylene succinate adipate (PBSA) was used were cyclic oligomer components composed of constitutional units derived from succinic acid, constitutional units derived from adipic acid, constitutional units derived from 1,4-butanediol, and constitutional units derived from malic acid.
  • Example 1 ⁇ Polymerization of polybutylene succinate (PBS) containing recovered oligomer components>
  • a reaction vessel equipped with a stirrer, a nitrogen inlet, a heater, a thermometer, and a pressure reducing port was charged with 65.2 parts by weight of succinic acid, 64.5 parts by weight of 1,4-butanediol, and 0.257 parts by weight of malic acid as raw materials, and the recovered oligomer component was added so that it was 5 parts by weight per 100 parts by weight of the product polyester.
  • Nitrogen gas was introduced into the vessel while stirring the contents, and the system was placed under a nitrogen atmosphere by vacuum replacement. Next, the temperature in the system was raised from 160°C to 230°C over one hour while stirring, and the reaction was carried out at this temperature for one hour.
  • the catalyst solution was added to this ester oligomer component in an amount of 50 ppm by weight of titanium atom per polyester obtained, and the mixture was kept at 230°C for 30 minutes, then heated to 250°C over 30 minutes, and simultaneously reduced in pressure to 0.07 x 103 Pa or less over 2 hours.
  • the polycondensation reaction was continued while maintaining the heated and reduced pressure state, and polymerization was terminated when a predetermined viscosity was reached.
  • the pressure was restored with nitrogen, and the mixture was drawn out in the form of a strand into a water bath, cooled with water, and then cut into chips to obtain polyester pellets.
  • the intrinsic viscosity of the obtained polyester was 1.78 dL/g, and the color b value of the pellets was 2.8.
  • Example 2 The PBS polymerization was carried out in the same manner as in Example 1, except that the amount of the recovered oligomer component added was 10 parts by weight per 100 parts by weight of the product polyester.
  • the intrinsic viscosity of the resulting polyester was 1.71 dL/g, and the color b value of the pellets was 3.6.
  • Example 3 The PBS polymerization was carried out in the same manner as in Example 1, except that the amount of the recovered oligomer component added was 20 parts by weight per 100 parts by weight of the product polyester.
  • the intrinsic viscosity of the resulting polyester was 1.78 dL/g, and the color b value of the pellets was 5.9.
  • Example 1 The PBS polymerization was carried out in the same manner as in Example 1, except that the oligomer component recovered without purification by only distilling off the solvent was added in an amount of 5 parts by weight per 100 parts by weight of the product polyester.
  • the intrinsic viscosity of the resulting polyester was 1.72 dL/g, and the color b value of the pellets was 3.4.
  • Example 2 The PBS polymerization was carried out in the same manner as in Example 1, except that the oligomer component recovered without purification by only distilling off the solvent was added in an amount of 10 parts by weight per 100 parts by weight of the product polyester.
  • the intrinsic viscosity of the resulting polyester was 1.75 dL/g, and the color b value of the pellets was 6.3.
  • Example 3 The PBS polymerization was carried out in the same manner as in Example 1, except that the oligomer component recovered without purification by only distilling off the solvent was added in an amount of 20 parts by weight per 100 parts by weight of the product polyester.
  • the intrinsic viscosity of the resulting polyester was 1.73 dL/g, and the color b value of the pellets was 8.6.
  • Example 4 A reaction vessel equipped with a stirrer, a nitrogen inlet, a heater, a thermometer, and a pressure reducing port was charged with 48.6 parts by weight of succinic acid, 21.2 parts by weight of adipic acid, 65.1 parts by weight of 1,4-butanediol, and 0.239 parts by weight of malic acid as raw materials, and the recovered oligomer component was added so that it was 5 parts by weight per 100 parts by weight of the polyester product. Nitrogen gas was introduced into the vessel while stirring the contents, and the system was placed under a nitrogen atmosphere by vacuum replacement. Next, the temperature in the system was raised from 160°C to 230°C over one hour while stirring, and the reaction was carried out at this temperature for one hour.
  • PBSA polybutylene succinate
  • the catalyst solution was added to this ester oligomer component in an amount of 50 ppm by weight of titanium atom per polyester obtained, and the mixture was kept at 230°C for 30 minutes, then heated to 250°C over 30 minutes, and simultaneously reduced in pressure to 0.07 x 103 Pa or less over 2 hours.
  • the polycondensation reaction was continued while maintaining the heated and reduced pressure state, and polymerization was terminated when a predetermined viscosity was reached.
  • the pressure was restored with nitrogen, and the mixture was drawn out in the form of a strand into a water bath, cooled with water, and then cut into chips to obtain polyester pellets.
  • the intrinsic viscosity of the obtained polyester was 1.81 dL/g, and the color b value of the pellets was 3.0.
  • Example 5 The PBSA polymerization was carried out in the same manner as in Example 4, except that the amount of the recovered oligomer component added was 10 parts by weight per 100 parts by weight of the product polyester.
  • the intrinsic viscosity of the resulting polyester was 1.81 dL/g, and the color b value of the pellets was 6.6.
  • Example 6 The PBSA polymerization was carried out in the same manner as in Example 4, except that the amount of the recovered oligomer component added was 20 parts by weight per 100 parts by weight of the product polyester.
  • the intrinsic viscosity of the resulting polyester was 1.84 dL/g, and the color b value of the pellets was 8.5.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

A polyester production method having a reaction step that includes at least one reaction treatment selected from the group consisting of an esterification reaction and a transesterification reaction that are for reacting a polyester starting material, wherein the polyester starting material contains a dicarboxylic acid component, an oligomer component, and a diol component that contains at least one substance selected from the group consisting of 1,4-butanediol and derivatives thereof, and the content ratio of a cyclic oligomer component in the oligomer component is 35-100% by mass.

Description

ポリエステルの製造方法、組成物および成形体Method for producing polyester, composition and molded article
 本発明は、ポリエステルの製造方法、組成物および成形体に関する。 The present invention relates to a method for producing polyester, a composition, and a molded article.
 脂肪族ジオール又は脂環式ジオールと、脂肪族ジカルボン酸、脂環式ジカルボン酸又は芳香族ジカルボン酸とを主原料とするポリエステルや、脂肪族オキシカルボン酸を主原料とするポリエステルは、良好な物性及び分解性を有する生分解性樹脂であり、農業資材、土木資材及び包装材等の製品に加工され利用されている。  Polyesters made primarily from aliphatic diols or alicyclic diols and aliphatic dicarboxylic acids, alicyclic dicarboxylic acids, or aromatic dicarboxylic acids, and polyesters made primarily from aliphatic oxycarboxylic acids, are biodegradable resins with good physical properties and degradability, and are processed and used in products such as agricultural materials, civil engineering materials, and packaging materials.
 しかしながら、上記ポリエステルの重合時及び溶融成形時には、ポリエステルの一部が環化する反応が不可避に生じて、環状オリゴマーが副生する。更にその結果、ポリエステルを成形体とした際に、成形体表面に環状オリゴマーがブリードアウトして表面外観の低下が起こることや、成形時に汚染された金型やロール等の清掃のために生産性が大幅に低下する等の問題が起こることが知られている。 However, during polymerization and melt molding of the polyester, a reaction in which part of the polyester is cyclized inevitably occurs, producing cyclic oligomers as a by-product. As a result, when the polyester is molded into a product, it is known that problems such as the cyclic oligomers bleeding out onto the surface of the molded product, causing a deterioration in the surface appearance, and a significant decrease in productivity due to the need to clean molds, rolls, etc. that become contaminated during molding can occur.
 上記問題を解決するために、ポリエステルの重合後、ポリエステルと、純水、又は純水及びアルコール、又は純アルコールとを特定の温度域にて接触させることにより、ポリエステルの洗浄処理を行い成形品の外観低下を防ぐことが知られている(特許文献1参照)。また、ポリエステルをケトン類、エーテル類及びエステル類からなる群より選択された水可溶性有機溶剤及び水との接触による後処理を施すことも知られている(特許文献2参照)。 To solve the above problems, it is known that after polyester polymerization, the polyester is washed by contacting it with pure water, or pure water and alcohol, or pure alcohol at a specific temperature range to prevent deterioration of the appearance of the molded product (see Patent Document 1). It is also known to perform post-treatment by contacting the polyester with a water-soluble organic solvent selected from the group consisting of ketones, ethers, and esters, and water (see Patent Document 2).
 更に、ポリエステルを特定の割合のイソプロパノール/水混合物や、エタノール/水混合物と接触させることにより、成形体の表面外観の低下や、金型洗浄のような生産性の低下を抑制できることが知られている(特許文献3、4参照)。特許文献3、4には、ポリエステルとアルコール/水混合物(接触処理液)とを接触させる方法として、処理槽にペレット化したポリエステルと接触処理液を入れて接触させ、接触処理後にペレットを抜き出す回分式の処理方法や、配管又は処理槽にペレットを連続的に供給しつつ、接触処理液をペレットの流れに対して並流又は向流で接触させ、連続的にペレットを抜き出す連続式の処理方法について開示されている。 Furthermore, it is known that contacting polyester with a specific ratio of isopropanol/water mixture or ethanol/water mixture can suppress deterioration of the surface appearance of the molded body and deterioration of productivity such as mold cleaning (see Patent Documents 3 and 4). Patent Documents 3 and 4 disclose, as a method of contacting polyester with an alcohol/water mixture (contact treatment liquid), a batch type treatment method in which pelletized polyester is placed in a treatment tank and contacted with the contact treatment liquid, and pellets are removed after contact treatment, and a continuous type treatment method in which pellets are continuously supplied to a pipe or treatment tank, and the contact treatment liquid is brought into contact with the flow of the pellets in a parallel or countercurrent manner, and the pellets are continuously removed.
 特許文献5には、脂肪族ポリエステルペレットに含まれるオリゴマー成分を分離・回収したのち、該オリゴマー成分を、脂肪族ポリエステルのオリゴマー以外の原料100重量部に対して5重量部以下となる量で原料として用いる製造方法が開示されている。 Patent Document 5 discloses a manufacturing method in which oligomer components contained in aliphatic polyester pellets are separated and recovered, and then the oligomer components are used as raw materials in an amount of 5 parts by weight or less per 100 parts by weight of raw materials other than the aliphatic polyester oligomer.
特開平7-316276号公報Japanese Unexamined Patent Publication No. 7-316276 特開2004-107457号公報JP 2004-107457 A 特開2010-195989号公報JP 2010-195989 A 特開2012-092310号公報JP 2012-092310 A 特開2005―162891号公報JP 2005-162891 A
 特許文献5には、接触処理されたオリゴマー等成分の処理方法や再利用については記載されているが、回収されるオリゴマー成分は使用済み接触処理溶剤から有機溶剤成分を蒸発させて濃縮させたものであり、オリゴマー成分を精製する工程を経たものではなく、上記方法で得たオリゴマー混合物を原料として再使用してポリエステルを重合すると、回収オリゴマーの添加によるポリマーの色調悪化の度合いが大きくなるという問題があった。
 本発明は、上記問題に鑑み、接触処理プロセスの使用済み接触処理液から回収される原料成分の再利用量を増加させてもポリエステルの色調悪化を抑制することができるポリエステルの製造方法を提供することを第1の課題とする。
Patent Document 5 describes a method for treating and reusing components such as oligomers that have been subjected to contact treatment. However, the recovered oligomer components are concentrated by evaporating organic solvent components from the used contact treatment solvent, and have not been subjected to a step of purifying the oligomer components. Therefore, when the oligomer mixture obtained by the above method is reused as a raw material to polymerize polyester, there is a problem that the addition of the recovered oligomers significantly deteriorates the color tone of the polymer.
In view of the above problems, a first object of the present invention is to provide a method for producing a polyester that can suppress deterioration in color tone of the polyester even when the amount of recycled raw material components recovered from the used contact treatment liquid in the contact treatment process is increased.
 また、上記方法で得たオリゴマー混合物を原料として再使用してポリエステルを重合すると、添加量増大に伴い重合速度が遅延し、単位時間内に到達するポリマーの分子量が低くなる問題や、回収オリゴマー成分添加量に対するポリマーの色調悪化の度合いが大きくなり、ポリマー品質が低下するため、オリゴマー成分の回収量を上げられないという問題があった。
 本発明は、上記問題を鑑み、ポリエステルの生産性を改善することができ、かつ色調悪化を抑制可能なポリエステルの製造方法を提供することを第2の課題とする。
Furthermore, when the oligomer mixture obtained by the above method is reused as a raw material to polymerize polyester, there are problems in that the polymerization rate slows down as the amount added increases, resulting in a low molecular weight polymer achieved within a unit time, and that the degree of color deterioration of the polymer increases relative to the amount of recovered oligomer component added, resulting in a decrease in polymer quality, making it difficult to increase the amount of recovered oligomer component.
In view of the above problems, a second object of the present invention is to provide a method for producing polyester that can improve the productivity of polyester and suppress deterioration in color tone.
 本発明者らは、検討を行った結果、ポリエステル原料に含まれるオリゴマー成分中の環状オリゴマー成分の含有量を特定の範囲とすることにより、上記第1の課題を解決できることを見出し、本発明を完成させた。 As a result of their investigations, the inventors discovered that the first problem could be solved by setting the content of cyclic oligomer components in the oligomer components contained in the polyester raw material to a specific range, and thus completed the present invention.
 即ち、本発明の第1の態様は下記[A1]~[A15]に存する。
[A1] ポリエステル原料を反応させるエステル化反応処理及びエステル交換反応処理からなる群から選択される少なくとも一の反応処理を含む反応工程を有するポリエステルの製造方法であって、
 前記ポリエステル原料が、ジオール成分と、ジカルボン酸成分と、オリゴマー成分とを含み、
 前記オリゴマー成分における環状オリゴマー成分の含有率が35質量%以上100質量%以下であり、
 前記環状オリゴマー成分が、前記ジオール成分に由来する構成単位及び前記ジカルボン酸成分に由来する構成単位を含み、該ジオール成分に由来する構成単位の繰り返し単位数と該ジカルボン酸成分に由来する構成単位の繰り返し単位数との合計が2~7である、ポリエステルの製造方法。
[A2] 前記ジオール成分が、1,4-ブタンジオール及びその誘導体からなる群から選択される少なくとも1種を含む、[A1]に記載のポリエステルの製造方法。
[A3] 前記ポリエステル原料中の前記オリゴマー成分の含有率が0.1質量%以上100質量%未満である、[A1]又は[A2]に記載のポリエステルの製造方法。
[A4] 前記反応工程により得られた反応生成物と、水を含む溶剤とを接触処理させることにより前記オリゴマー成分を含む接触処理液と接触処理後反応生成物とを得る接触処理を含む精製工程をさらに有し、
 前記処理液中のオリゴマー成分を、前記反応工程におけるポリエステル原料中のオリゴマー成分として再利用する、
[A1]~[A3]のいずれかに記載のポリエステルの製造方法。
[A5] 前記反応工程と前記精製工程との間に、前記反応工程により得られた反応生成物をペレット化してペレットを得るペレット化工程をさらに有する、[A4]に記載のポリエステルの製造方法。
[A6] 前記反応工程の前に、前記ポリエステル原料を調製する原料調製工程をさらに有し、
 前記接触処理液中のオリゴマー成分を、前記原料調製工程から反応工程までのいずれかの工程に供給する、[A1]~[A5]のいずれかに記載のポリエステルの製造方法。
[A7] 前記接触処理後反応生成物を乾燥する乾燥処理を行う乾燥工程をさらに有する、
[A1]~[A6]のいずれかに記載のポリエステルの製造方法。
[A8] 前記精製工程における接触処理および前記乾燥工程における乾燥処理からなる群から選択される少なくとも1つの処理が連続式で行われる、[A7]に記載のポリエステルの製造方法。
[A9] 前記環状オリゴマー成分が、下記式(1)で表される構造および下記式(2)で表される構造を有する、[A1]~[A7]のいずれかに記載のポリエステルの製造方法。
Figure JPOXMLDOC01-appb-C000004

(式(1)において、RおよびRは、それぞれ独立して、置換基を有していてもよい2価の炭化水素基であり;xは0~7であり、
式(2)において、RおよびRは、それぞれ独立して、置換基を有していてもよい2価の炭化水素基であり;yは0~7であり、
x+yは2~7である。)
[A10] 前記R~Rは、それぞれ独立して、置換基を有していてもよい炭素数が2~40の2価の炭化水素基である、[A9]に記載のポリエステルの製造方法。
[A11] 前記ポリエステル原料が、
 前記ジカルボン酸成分として、下記式(A)で表されるジカルボン酸及びその誘導体からなる群から選択される少なくとも1種、および下記式(B)で表されるジカルボン酸及びその誘導体からなる群から選択される少なくとも1種を含み、
 前記ジオール成分として、下記式(C)で表されるジオール及びその誘導体からなる群から選択される少なくとも1種、および下記式(D)で表されるジオール及びその誘導体からなる群から選択される少なくとも1種を含み、
 前記下記式(C)で表されるジオールからなる群から選択される少なくとも1種と、下記式(D)で表されるジオールからなる群から選択される少なくとも1種と、からなる群から選択される少なくとも1種が、1,4-ブタンジオール及びその誘導体からなる群から選択される少なくとも1種である、
[A9]又は[A10]に記載のポリエステルの製造方法。
Figure JPOXMLDOC01-appb-C000005

(式(A)~(D)において、R~Rは、それぞれ前記式(1)におけるR~Rと同義である。)
[A12] 前記精製工程における接触処理および前記乾燥工程における乾燥処理からなる群から選択される少なくとも1つの処理が回分式または半回分式で行われる、[A1]~[A11]のいずれかに記載のポリエステルの製造方法。
[A13] ジオール成分に由来する構成単位と、ジカルボン酸成分に由来する構成単位と、を含むポリエステル、および下記式(1)で表される構造および下記式(2)で表される構造を有する環状オリゴマー成分を含む、組成物。
Figure JPOXMLDOC01-appb-C000006

(式(1)において、RおよびRは、それぞれ独立して、置換基を有していてもよい2価の炭化水素基であり;xは0~7であり、
式(2)において、RおよびRは、それぞれ独立して、置換基を有していてもよい2価の炭化水素基であり;yは0~7であり、
x+yは2~7である。)
[A14] 前記ポリエステルが、前記環状オリゴマー成分に由来する構成単位を含む、[A13]に記載の組成物。
[A15] [A13]又は[A14]に記載の組成物を成形してなる成形体。
That is, the first aspect of the present invention resides in the following [A1] to [A15].
[A1] A method for producing a polyester, comprising a reaction step including at least one reaction treatment selected from the group consisting of an esterification reaction treatment and an ester exchange reaction treatment, in which a polyester raw material is reacted,
The polyester raw material contains a diol component, a dicarboxylic acid component, and an oligomer component,
The content of a cyclic oligomer component in the oligomer component is 35% by mass or more and 100% by mass or less,
the cyclic oligomer component comprises a constituent unit derived from the diol component and a constituent unit derived from the dicarboxylic acid component, and the total number of repeating units of the constituent units derived from the diol component and the constituent units derived from the dicarboxylic acid component is 2 to 7.
[A2] The method for producing a polyester according to [A1], wherein the diol component contains at least one selected from the group consisting of 1,4-butanediol and derivatives thereof.
[A3] The method for producing a polyester according to [A1] or [A2], wherein the content of the oligomer component in the polyester raw material is 0.1% by mass or more and less than 100% by mass.
[A4] The method further comprises a purification step including a contact treatment in which the reaction product obtained in the reaction step is contacted with a solvent containing water to obtain a contact treatment liquid containing the oligomer component and a post-contact treatment reaction product,
The oligomer component in the treatment liquid is reused as an oligomer component in the polyester raw material in the reaction step.
A method for producing the polyester according to any one of [A1] to [A3].
[A5] The method for producing a polyester according to [A4], further comprising, between the reaction step and the purification step, a pelletizing step of pelletizing the reaction product obtained in the reaction step to obtain pellets.
[A6] The method further includes a raw material preparation step of preparing the polyester raw material before the reaction step,
The method for producing a polyester according to any one of [A1] to [A5], wherein an oligomer component in the contact treatment liquid is supplied to any one of the steps from the raw material preparation step to the reaction step.
[A7] The method further comprises a drying step of drying the reaction product after the contact treatment.
A method for producing the polyester according to any one of [A1] to [A6].
[A8] The method for producing a polyester according to [A7], wherein at least one treatment selected from the group consisting of a contact treatment in the purification step and a drying treatment in the drying step is carried out continuously.
[A9] The method for producing a polyester according to any one of [A1] to [A7], wherein the cyclic oligomer component has a structure represented by the following formula (1) and a structure represented by the following formula (2):
Figure JPOXMLDOC01-appb-C000004

In formula (1), R 1 and R 2 each independently represent a divalent hydrocarbon group which may have a substituent; x is an integer of 0 to 7;
In formula (2), R 3 and R 4 each independently represent a divalent hydrocarbon group which may have a substituent; y is an integer of 0 to 7;
x+y is 2 to 7.
[A10] The method for producing a polyester according to [A9], wherein R 1 to R 4 each independently represent a divalent hydrocarbon group having 2 to 40 carbon atoms which may have a substituent.
[A11] The polyester raw material is
The dicarboxylic acid component includes at least one selected from the group consisting of dicarboxylic acids represented by the following formula (A) and derivatives thereof, and at least one selected from the group consisting of dicarboxylic acids represented by the following formula (B) and derivatives thereof:
The diol component includes at least one selected from the group consisting of diols represented by the following formula (C) and derivatives thereof, and at least one selected from the group consisting of diols represented by the following formula (D) and derivatives thereof:
At least one kind selected from the group consisting of at least one kind selected from the group consisting of diols represented by the following formula (C) and at least one kind selected from the group consisting of diols represented by the following formula (D) is at least one kind selected from the group consisting of 1,4-butanediol and derivatives thereof:
A method for producing the polyester according to [A9] or [A10].
Figure JPOXMLDOC01-appb-C000005

(In formulas (A) to (D), R 1 to R 4 have the same meanings as R 1 to R 4 in formula (1), respectively.)
[A12] The method for producing a polyester according to any one of [A1] to [A11], wherein at least one treatment selected from the group consisting of a contact treatment in the purification step and a drying treatment in the drying step is carried out in a batchwise or semi-batchwise manner.
[A13] A composition comprising a polyester containing a constitutional unit derived from a diol component and a constitutional unit derived from a dicarboxylic acid component, and a cyclic oligomer component having a structure represented by the following formula (1) and a structure represented by the following formula (2).
Figure JPOXMLDOC01-appb-C000006

In formula (1), R 1 and R 2 each independently represent a divalent hydrocarbon group which may have a substituent; x is an integer of 0 to 7;
In formula (2), R 3 and R 4 each independently represent a divalent hydrocarbon group which may have a substituent; y is an integer of 0 to 7;
x+y is 2 to 7.
[A14] The composition according to [A13], wherein the polyester contains a constitutional unit derived from the cyclic oligomer component.
[A15] A molded article obtained by molding the composition according to [A13] or [A14].
 また、本発明者らは、検討を行った結果、ポリエステルの製造における接触処理で得られるオリゴマー成分を含む接触処理液を精製するためのプロセスを検討し、当該プロセスで得られたオリゴマー成分を原料の一部として再利用するために回収することにより、上記第2の課題を解決できることを見出し、本発明を完成させた。 Furthermore, as a result of further investigations, the inventors have investigated a process for purifying a contact treatment liquid containing oligomer components obtained in a contact treatment in the production of polyester, and have found that the second problem can be solved by recovering the oligomer components obtained in the process for reuse as part of the raw material, thus completing the present invention.
 即ち、本発明の第2の態様は下記[B1]~[B8]に存する。
[B1] ジオール成分及びジカルボン酸成分を含むポリエステル原料エステル化反応処理及びエステル交換反応処理からなる群から選択される少なくとも一の処理を含む反応処理により反応生成物を得る反応工程、
 前記反応生成物と接触処理液を接触させることによりオリゴマー成分を含む接触処理液と接触処理後反応生成物とを得る接触処理工程、
 前記オリゴマー成分を含む接触処理液からオリゴマー成分中の環状オリゴマー成分の含有割合が大きくなるように前記接触処理液中のオリゴマー成分を精製する処理を含む精製工程、並びに
 前記精製工程により得られたオリゴマー成分を前記原料の一部として回収する回収工程を有する、
ポリエステルの製造方法。
[B2] 前記精製工程が、低沸液と、前記オリゴマー成分を含む高沸液とに分離する蒸留分離処理を有する、[B1]に記載のポリエステルの製造方法。
[B3] 液/液の相分離処理を行い前記高沸液から前記オリゴマー成分を分離する相分離処理をさらに有する、[B2]に記載のポリエステルの製造方法。
[B4] 前記相分離処理で分離されたオリゴマー成分を更に晶析する晶析処理をさらに有する、[B3]に記載のポリエステルの製造方法。
[B5] 前記高沸液に含まれるオリゴマー成分を晶析する晶析処理をさらに有する、[B2]に記載のポリエステルの製造方法。
[B6] 前記反応工程と前記接触処理工程との間に、前記反応工程により得られた反応生成物をペレット化してポリエステルペレットを得るペレット化工程をさらに有する、[B1]~[B5]のいずれかに記載のポリエステルの製造方法。
[B7] 前記反応工程の前に、前記原料を調製する原料調製工程をさらに有し、
 前記回収工程の後に、回収された前記オリゴマー成分を溶融した融液、又は前記オリゴマー成分を前記ポリエステル原料のジオール成分に溶解させた溶液を、前記原料調製工程から前記反応工程までのいずれかの工程に供給する供給工程をさらに有する、
[B1]~[B6]のいずれかに記載のポリエステルの製造方法。
[B8] 前記接触処理液がアルコールを含む、[B1]~[B7]のいずれかに記載のポリエステルの製造方法。
[B9] 前記接触処理工程の後に、前記接触処理後反応生成物を乾燥する乾燥処理を行う乾燥工程をさらに有する、[B1]~[B8]のいずれかに記載のポリエステルの製造方法。
[B10] 前記接触処理工程における接触処理および前記乾燥工程における乾燥処理からなる群から選択される少なくとも1つの処理が連続式で行われる、[B1]~[B9]のいずれかに記載のポリエステルの製造方法。
[B11] 前記接触処理工程における接触処理および前記乾燥工程における乾燥処理からなる群から選択される少なくとも1つの処理が回分式又は半回分式で行われる、[B1]~[B10]のいずれかに記載のポリエステルの製造方法。
That is, the second aspect of the present invention resides in the following [B1] to [B8].
[B1] a reaction step of obtaining a reaction product by a reaction treatment including at least one treatment selected from the group consisting of an esterification reaction treatment and a transesterification reaction treatment of a polyester raw material containing a diol component and a dicarboxylic acid component;
a contact treatment step of contacting the reaction product with a contact treatment liquid to obtain a contact treatment liquid containing an oligomer component and a post-contact treatment reaction product;
a purification step including a treatment for purifying the oligomer components in the contact treatment liquid so that a content ratio of cyclic oligomer components in the oligomer components is increased from the contact treatment liquid containing the oligomer components; and a recovery step for recovering the oligomer components obtained by the purification step as part of the raw material.
A method for producing polyester.
[B2] The method for producing a polyester according to [B1], wherein the purification step includes a distillation separation treatment for separating a low boiling liquid from a high boiling liquid containing the oligomer components.
[B3] The method for producing a polyester according to [B2], further comprising a phase separation treatment for separating the oligomer component from the high-boiling liquid by performing a liquid/liquid phase separation treatment.
[B4] The method for producing the polyester according to [B3], further comprising a crystallization treatment for further crystallizing the oligomer component separated by the phase separation treatment.
[B5] The method for producing the polyester according to [B2], further comprising a crystallization treatment for crystallizing an oligomer component contained in the high boiling liquid.
[B6] The method for producing a polyester according to any one of [B1] to [B5], further comprising, between the reaction step and the contact treatment step, a pelletizing step of pelletizing the reaction product obtained in the reaction step to obtain polyester pellets.
[B7] The method further includes a raw material preparation step of preparing the raw material before the reaction step,
The method further includes a supplying step of supplying, after the recovery step, a melt obtained by melting the recovered oligomer component or a solution obtained by dissolving the oligomer component in a diol component of the polyester raw material to any one of the steps from the raw material preparation step to the reaction step.
A method for producing the polyester according to any one of [B1] to [B6].
[B8] The method for producing a polyester according to any one of [B1] to [B7], wherein the contact treatment liquid contains an alcohol.
[B9] The method for producing a polyester according to any one of [B1] to [B8], further comprising, after the contact treatment step, a drying step of carrying out a drying treatment to dry the reaction product after the contact treatment.
[B10] The method for producing a polyester according to any one of [B1] to [B9], wherein at least one treatment selected from the group consisting of a contact treatment in the contact treatment step and a drying treatment in the drying step is carried out continuously.
[B11] The method for producing a polyester according to any one of [B1] to [B10], wherein at least one treatment selected from the group consisting of a contact treatment in the contact treatment step and a drying treatment in the drying step is carried out in a batchwise or semi-batchwise manner.
 本発明の第1の態様により、接触処理プロセスの使用済み接触処理液から回収される原料成分の再利用量を増加させてもポリエステルの色調悪化を抑制することができるポリエステルの製造方法を提供することができる。 The first aspect of the present invention provides a method for producing polyester that can suppress deterioration of the color tone of polyester even when the amount of recycled raw material components recovered from the used contact treatment liquid in the contact treatment process is increased.
 また、本発明の第2の態様により、ポリエステルの生産性を改善することができ、かつ色調悪化を抑制可能なポリエステルの製造方法を提供することができる。例えば、ポリエステルの製造において得られる接触処理液中のオリゴマー成分を原料として再使用して重合する際、オリゴマー成分回収量を増量させても、重合反応性の低下およびポリマー色調悪化が少ないため、生産効率と原料の原単位が向上し、品質も良好なポリエステルを提供することができる。 The second aspect of the present invention can provide a method for producing polyester that can improve polyester productivity and suppress color deterioration. For example, when oligomer components in a contact treatment solution obtained in polyester production are reused as raw materials for polymerization, even if the amount of recovered oligomer components is increased, there is little decrease in polymerization reactivity and little deterioration in polymer color, so production efficiency and raw material unit consumption are improved, and a polyester of good quality can be provided.
エステル化反応処理の一実施形態を示す概略図である。FIG. 1 is a schematic diagram showing one embodiment of an esterification reaction process. 重縮合反応処理の一実施形態を示す概略図である。FIG. 1 is a schematic diagram illustrating one embodiment of a polycondensation reaction process. 第1の態様における接触処理及び分離処理、又は第2の態様における接触処理工程及び精製工程の一実施形態を示す概略図である。FIG. 2 is a schematic diagram showing one embodiment of the contacting treatment and separation treatment in the first aspect, or the contacting treatment step and purification step in the second aspect. 乾燥工程の一実施形態を示す概略図である。FIG. 2 is a schematic diagram showing one embodiment of a drying process.
 本発明は以下の説明に限定されるものではなく、本発明の要旨を逸脱しない範囲において、任意に変形して実施することができる。なお、本明細書において、「~」を用いてその前後に数値又は物性値を挟んで表現する場合、端点である下限及び上限の値を含むものとして用いることとする。
 また、本明細書において「A又はB」の表現は、「A及びBからなる群から選択される少なくとも1つ」と読み替えることができる。
 また、本明細書では複数の実施形態を説明するが、適用できる範囲で各実施形態における種々の条件を互いに適用し得る。
The present invention is not limited to the following description, and can be modified as desired without departing from the scope of the present invention. In this specification, when "~" is used to express a numerical value or physical property value between the two, the lower limit and upper limit values, which are the endpoints, are included.
In addition, in this specification, the expression "A or B" can be read as "at least one selected from the group consisting of A and B."
In addition, although a number of embodiments are described in this specification, various conditions in each embodiment may be applied to each other to the extent that they are applicable.
 本明細書において、“質量%”、“質量ppm”及び“質量部”と、“重量%”、“重量ppm”及び“重量部”とは、それぞれ同義である。 In this specification, "mass %", "ppm by mass", and "parts by mass" are synonymous with "weight %", "ppm by weight", and "parts by weight".
<第1の態様>
<ポリエステルの製造方法>
 本発明の一実施形態に係るポリエステルの製造方法の第1の態様(以下、本第1の態様の項において単に「ポリエステルの製造方法」とも称する。)は、
 ポリエステル原料を反応させるエステル化反応処理及びエステル交換反応処理からなる群から選択される少なくとも一の反応処理を含む反応工程を有するポリエステルの製造方法であって、
 前記ポリエステル原料が、ジオール成分と、ジカルボン酸成分と、オリゴマー成分とを含み、
 前記オリゴマー成分における環状オリゴマー成分の含有率が35質量%以上100質量%以下であり、
 前記環状オリゴマー成分が、前記ジオール成分に由来する構成単位及び前記ジカルボン酸成分に由来する構成単位を含み、該ジオール成分に由来する構成単位の繰り返し単位数と該ジカルボン酸成分に由来する構成単位の繰り返し単位数との合計が2~7である、ポリエステルの製造方法である。
<First aspect>
<Production method of polyester>
A first aspect of a method for producing a polyester according to one embodiment of the present invention (hereinafter, in the section on the first aspect, also simply referred to as a "method for producing a polyester") comprises:
A method for producing a polyester, comprising a reaction step including at least one reaction treatment selected from the group consisting of an esterification reaction treatment and an ester exchange reaction treatment, in which a polyester raw material is reacted,
The polyester raw material contains a diol component, a dicarboxylic acid component, and an oligomer component,
The content of a cyclic oligomer component in the oligomer component is 35% by mass or more and 100% by mass or less,
In the method for producing a polyester, the cyclic oligomer component contains a constituent unit derived from the diol component and a constituent unit derived from the dicarboxylic acid component, and the total number of repeating units of the constituent units derived from the diol component and the constituent units derived from the dicarboxylic acid component is 2 to 7.
[原料ポリエステル]
 原料ポリエステルは、ジオール成分と、ジカルボン酸成分と、オリゴマー成分とを含んでいれば特段制限されず、これらの成分以外の成分を含んでいてもよい。
[Raw material polyester]
The raw material polyester is not particularly limited as long as it contains a diol component, a dicarboxylic acid component, and an oligomer component, and may contain components other than these components.
(ジオール成分)
 ジオール成分は、通常ポリエステルの原料に用いられるものを特に制限無く使用することができる。ジオール成分は、脂肪族ジオール成分を用いてもよく、芳香族ジオール成分を用いてもよい。
(Diol component)
The diol component may be any diol component that is usually used as a raw material for polyesters without any particular limitation. The diol component may be an aliphatic diol component or an aromatic diol component.
 脂肪族ジオール成分としては、例えば、エチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,7-ヘプタンジオール、1,8-オクタンジオール、1,9-ノナンジオール、1,10-デカンジオール、ネオペンチルグリコールなどのアルキレンジオール、ジエチレングリコール、ポリエチレングリコール、ポリプロピレングリール、もしくはポリテトラメチレンエーテルグリコールなどのオキシアルキレンジオール;1,2-シクロヘキサンジオール、1,4-シクロヘキサンジオール、1,2-シクロヘキサンジメタノール、もしくは1,4-シクロヘキサンジメタノールなどのシクロアルキレンジオールが挙げられ、これらの中でも、得られるポリエステルの物性の面から、エチレングリコール、もしくは1,3-プロパンジオールなどの炭素数6以下のアルキレンジオール、又は1,4-シクロヘキサンジメタノールなどの炭素数6以下のシクロアルキレンジオールが好ましい。これらの脂肪族ジオール成分は、その誘導体であってもよく、誘導体でなくともよい。 Examples of aliphatic diol components include alkylene diols such as ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,7-heptanediol, 1,8-octanediol, 1,9-nonanediol, 1,10-decanediol, and neopentyl glycol; oxyalkylene diols such as diethylene glycol, polyethylene glycol, polypropylene glycol, and polytetramethylene ether glycol; and cycloalkylene diols such as 1,2-cyclohexanediol, 1,4-cyclohexanediol, 1,2-cyclohexanedimethanol, and 1,4-cyclohexanedimethanol. Among these, alkylene diols having 6 or less carbon atoms, such as ethylene glycol or 1,3-propanediol, and cycloalkylene diols having 6 or less carbon atoms, such as 1,4-cyclohexanedimethanol, are preferred in terms of the physical properties of the resulting polyester. These aliphatic diol components may or may not be derivatives.
 特に、ジオール成分は、バイオマス(植物原料)由来のものを使用することが可能なことから、1,4-ブタンジオール及びその誘導体からなる群から選択される少なくとも1種を含むこと、つまり、ジオール成分として1,4-ブタンジオール及びその誘導体からなる群から選択される少なくとも1種を含むことが好ましい。該誘導体は、ポリエステルを製造することができるものであればその態様は特段制限されない。
 ポリエステル原料は、上述した1,4-ブタンジオール及びその誘導体からなる群から選択される少なくとも1種を含むジオール成分を含んでもよく、それ以外のジオール成分を有していてもよい。
In particular, since the diol component can be derived from biomass (plant raw material), it is preferable that the diol component contains at least one selected from the group consisting of 1,4-butanediol and its derivatives, that is, the diol component contains at least one selected from the group consisting of 1,4-butanediol and its derivatives. The embodiment of the derivative is not particularly limited as long as it is capable of producing a polyester.
The polyester raw material may contain a diol component containing at least one selected from the group consisting of the above-mentioned 1,4-butanediol and its derivatives, or may contain other diol components.
 芳香族ジオール成分としては、例えば、キシリレングリコール、4,4’-ジヒドロキシビフェニル、2,2-ビス(4’-ヒドロキシフェニル)プロパン、2,2-ビス(4’-β-ヒドロキシエトキシフェニル)プロパン、ビス(4-ヒドロキシフェニル)スルホン、ビス(4-β-ヒドロキシエトキシフェニル)スルホン酸等が挙げられる。これらの芳香族ジオール成分は、その誘導体であってもよく、誘導体でなくともよい。 Examples of aromatic diol components include xylylene glycol, 4,4'-dihydroxybiphenyl, 2,2-bis(4'-hydroxyphenyl)propane, 2,2-bis(4'-β-hydroxyethoxyphenyl)propane, bis(4-hydroxyphenyl)sulfone, bis(4-β-hydroxyethoxyphenyl)sulfonic acid, etc. These aromatic diol components may or may not be derivatives.
 上記の脂肪族ジオール化合物及び/又は芳香族ジオール化合物は、1種類又は2種類以上が互いに脱水縮合した構造を有する化合物であってもよい。 The above aliphatic diol compounds and/or aromatic diol compounds may be compounds having a structure in which one or more types are mutually dehydrated and condensed.
 上記の脂肪族ジオール成分及び/又は芳香族ジオール成分は、1種類のみを用いてもよく、2種類以上が併用されていてもよい。 The above aliphatic diol component and/or aromatic diol component may be used alone or in combination of two or more types.
 ポリエステル原料中の全ジオール成分の合計含有量は特段制限されず、例えば、30質量%以上であってもよく、35質量%以上であってよく、40質量%以上であってよく、45質量%以上であってよく、また、70質量%以下であってよく、60質量%以下であってよく、50質量%以下であってよい。 The total content of all diol components in the polyester raw material is not particularly limited, and may be, for example, 30% by mass or more, 35% by mass or more, 40% by mass or more, 45% by mass or more, and 70% by mass or less, 60% by mass or less, or 50% by mass or less.
 1,4-ブタンジオールを用いる場合、その使用量は、得られるポリエステルの融点(耐熱性)、生分解性、力学特性の観点から、ポリエステル原料中の全ジオール成分100モル%に対して、50モル%以上であることが好ましく、70モル%以上がより好ましく、90モル%以上であることが特に好ましい。 When 1,4-butanediol is used, the amount used is preferably 50 mol% or more, more preferably 70 mol% or more, and particularly preferably 90 mol% or more, based on 100 mol% of all diol components in the polyester raw material, from the viewpoints of the melting point (heat resistance), biodegradability, and mechanical properties of the resulting polyester.
 更に、エチレングリコール、1,3-プロパンジオール、1,4-ブタンジオールなどは植物原料由来のものを使用することができる。 Furthermore, ethylene glycol, 1,3-propanediol, 1,4-butanediol, etc., derived from plant materials can be used.
(ジカルボン酸成分)
 ジカルボン酸成分は、通常ポリエステルの原料に用いられるものを特に制限無く使用することができる。ジカルボン酸成分の種類は特段制限されず、例えば、以下に示す脂肪族ジカルボン酸成分、又は芳香族ジカルボン酸成分等が挙げられる。
(Dicarboxylic acid component)
The dicarboxylic acid component may be any dicarboxylic acid normally used as a raw material for polyesters without any particular limitation. The type of dicarboxylic acid component is not particularly limited, and examples thereof include the following aliphatic dicarboxylic acid components and aromatic dicarboxylic acid components.
 脂肪族ジカルボン酸成分としては、例えば、シュウ酸、マロン酸、コハク酸、無水コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ウンデカジカルボン酸、ドデカジカルボン酸、マレイン酸、フマル酸、又はダイマー酸などの脂肪族ジカルボン酸等が挙げられ、これらの中でも、得られるポリエステルの物性の面から、コハク酸、無水コハク酸、アジピン酸、又はセバシン酸などの脂肪族ジカルボン酸が好ましい。特にはコハク酸、又は無水コハク酸などの炭素数4以下の脂肪族ジカルボン酸が好ましい。これらの脂肪族ジカルボン酸成分は、その誘導体であってもよく、誘導体でなくともよい。 Examples of the aliphatic dicarboxylic acid component include aliphatic dicarboxylic acids such as oxalic acid, malonic acid, succinic acid, succinic anhydride, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, undecadicarboxylic acid, dodecadicarboxylic acid, maleic acid, fumaric acid, and dimer acid. Among these, aliphatic dicarboxylic acids such as succinic acid, succinic anhydride, adipic acid, and sebacic acid are preferred in terms of the physical properties of the resulting polyester. In particular, aliphatic dicarboxylic acids having 4 or less carbon atoms, such as succinic acid or succinic anhydride, are preferred. These aliphatic dicarboxylic acid components may or may not be derivatives thereof.
 芳香族ジカルボン酸成分としては、例えば、フタル酸、イソフタル酸、ジブロモイソフタル酸、スルホイソフタル酸、1,4-フェニレンジオキシジカルボン酸、4,4’-ジフェニルジカルボン酸、4,4’-ジフェニルエーテルジカルボン酸、4,4’-ジフェニルケトンジカルボン酸、4,4’-ジフェノキシエタンジカルボン酸、4,4’-ジフェニルスルホンジカルボン酸、2,6-ナフタレンジカルボン酸、ヘキサヒドロフタル酸、ヘキサヒドロイソフタル酸、又はヘキサヒドロテレフタル酸等が挙げられる。これらの芳香族ジカルボン酸成分は、その誘導体であってもよく、誘導体でなくともよい。例えば、上記例示した芳香族ジカルボン酸成分の誘導体が好ましく、これらの中でも、炭素数1以上4以下である低級アルキルエステル、又は酸無水物等が挙げられる。芳香族ジカルボン酸化合物の誘導体の具体例としては、上記例示した芳香族ジカルボン酸成分のメチルエステル、エチルエステル、プロピルエステル、もしくはブチルエステル等の低級アルキルエステル;又は無水コハク酸等の上記例示した芳香族ジカルボン酸成分の環状酸無水物;等が挙げられる。 Examples of aromatic dicarboxylic acid components include phthalic acid, isophthalic acid, dibromoisophthalic acid, sulfoisophthalic acid, 1,4-phenylenedioxydicarboxylic acid, 4,4'-diphenyldicarboxylic acid, 4,4'-diphenyletherdicarboxylic acid, 4,4'-diphenylketonedicarboxylic acid, 4,4'-diphenoxyethanedicarboxylic acid, 4,4'-diphenylsulfonedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, hexahydrophthalic acid, hexahydroisophthalic acid, and hexahydroterephthalic acid. These aromatic dicarboxylic acid components may or may not be derivatives. For example, derivatives of the aromatic dicarboxylic acid components listed above are preferred, and among these, lower alkyl esters having 1 to 4 carbon atoms, or acid anhydrides, etc. are included. Specific examples of derivatives of aromatic dicarboxylic acid compounds include lower alkyl esters such as methyl esters, ethyl esters, propyl esters, and butyl esters of the aromatic dicarboxylic acid components exemplified above; and cyclic acid anhydrides of the aromatic dicarboxylic acid components exemplified above, such as succinic anhydride.
 上記の脂肪族ジカルボン酸成分及び/又は芳香族ジカルボン酸成分は、1種類のみを用いてもよく、2種類以上が併用されていてもよい。 The above aliphatic dicarboxylic acid components and/or aromatic dicarboxylic acid components may be used alone or in combination of two or more types.
 ポリエステル原料中の全ジカルボン酸成分の合計含有量は特段制限されず、例えば、30質量%以上であってもよく、35質量%以上であってよく、40質量%以上であってよく、45質量%以上であってよく、また、70質量%以下であってよく、65質量%以下であってよく、60質量%以下であってよい。 The total content of all dicarboxylic acid components in the polyester raw material is not particularly limited, and may be, for example, 30% by mass or more, 35% by mass or more, 40% by mass or more, 45% by mass or more, and 70% by mass or less, 65% by mass or less, or 60% by mass or less.
 ジカルボン酸成分としてコハク酸を用いた場合、コハク酸の使用量は、得られるポリエステルの融点(耐熱性)、生分解性、力学特性の観点から、ポリエステル原料中の全ジカルボン酸成分100モル%に対して、50モル%以上であることが好ましく、70モル%以上がより好ましく、90モル%以上であることが特に好ましい。 When succinic acid is used as the dicarboxylic acid component, the amount of succinic acid used is preferably 50 mol% or more, more preferably 70 mol% or more, and particularly preferably 90 mol% or more, based on 100 mol% of all dicarboxylic acid components in the polyester raw material, from the viewpoints of the melting point (heat resistance), biodegradability, and mechanical properties of the resulting polyester.
 コハク酸、無水コハク酸、又はアジピン酸などは植物原料由来のものを使用することができる。 Succinic acid, succinic anhydride, or adipic acid, etc., can be derived from plant materials.
(オリゴマー成分)
 ポリエステルの製造プロセスにおいて、重合反応後の接触処理プロセスで得られる接触処理液に含まれる原料成分を再利用する技術が採用された場合、通常、接触処理液にはオリゴマー成分(エステルオリゴマー成分)が含まれる。該オリゴマー成分は、ポリエステルを構成するジオール成分に由来する構成単位及びジカルボン酸を構成するポリカルボン酸成分に由来する構成単位を含んでいればよいが、これらの構成単位のみから構成されていてもよい。特段の処理を経ずに接触処理が行われた場合又は従来の処理(例えば、単なる溶剤の留去)が行われた場合、通常、接触処理液中のオリゴマー成分は環状構造を有さない直鎖状構造、又は分岐鎖状構造を有するオリゴマー成分が多くなる。具体的には、通常、接触処理液中の全てのオリゴマー成分の量に対する環状構造を有さない直鎖状構造、又は分岐鎖状構造を有するオリゴマー成分の量が65質量%超となる。
 上記のオリゴマー成分を含む接触処理液を原料として再利用した場合、ポリマーの生産量を増加させることができるものの、再利用しない場合と比較して最終的に得られるポリマーの色調が悪化するという問題が生じる。
 本発明者らが鋭意検討した結果、接触処理プロセスの使用済み接触処理液中の原料成分の再利用を行った場合でも、再利用後のポリエステル原料中のオリゴマー成分の条件を所望の範囲(上述した範囲)に設定することで、最終的に得られるポリエステルの色調の悪化を抑制することができることを見出した。
(Oligomer Component)
In the polyester production process, when a technology for reusing raw material components contained in the contact treatment liquid obtained in the contact treatment process after the polymerization reaction is adopted, the contact treatment liquid usually contains an oligomer component (ester oligomer component). The oligomer component may contain a constituent unit derived from a diol component constituting a polyester and a constituent unit derived from a polycarboxylic acid component constituting a dicarboxylic acid, but may be composed of only these constituent units. When the contact treatment is performed without any special treatment or when a conventional treatment (for example, simple distillation of the solvent) is performed, the oligomer components in the contact treatment liquid usually contain more oligomer components having a linear structure or a branched structure without a cyclic structure. Specifically, the amount of oligomer components having a linear structure or a branched structure without a cyclic structure relative to the amount of all oligomer components in the contact treatment liquid usually exceeds 65 mass%.
When the contact treatment liquid containing the above-mentioned oligomer components is reused as a raw material, the production amount of the polymer can be increased, but there arises a problem that the color tone of the final polymer obtained is worse than that when the contact treatment liquid is not reused.
As a result of extensive research, the inventors have found that even when the raw material components in the used contact treatment liquid of the contact treatment process are reused, deterioration in the color tone of the final polyester can be suppressed by setting the conditions of the oligomer components in the recycled polyester raw material within a desired range (the range described above).
 本明細書において、環状オリゴマー成分とは、上述したジオール成分に由来する構成単位及び上述したジカルボン酸成分に由来する構成単位を含み、該ジオール成分に由来する構成単位の数(該構成単位の繰り返し単位数)と該ジカルボン酸成分に由来する構成単位の数(該構成単位の繰り返し単位数)との合計が2~7である環状エステルオリゴマー成分であって、ジオール成分と、ジカルボン酸成分とを反応させるエステル化反応処理及びエステル交換反応処理からなる群から選択される少なくとも一の反応処理を含む反応工程を経て得られるポリエステルの一部が環化して副生する化合物である。なお、環状オリゴマー成分とは、上述したジオール成分に由来する構成単位及び上述したジカルボン酸成分に由来する構成単位を含んでいればよいが、これらの構成単位のみから構成されていてもよい。反応生成物中のオリゴマー成分の含有量が増加すると、ポリエステルの色調の悪化及び表面外観の低下、並びに成形時の生産性の低下が生じてしまうが、ポリエステル原料中の環状オリゴマー成分の量を所望の範囲に設定することにより、ポリエステルの色調の悪化及び表面外観の低下、並びに成形時の生産性の低下の程度を低減することができる。環状オリゴマー成分は、1種類であってもよく、2種類以上であってもよく、上記の条件を満たす全ての環状エステルオリゴマー成分を対象とする。つまり、二量体から七量体までの上記の環状オリゴマーが含まれる場合、これら全ての環状オリゴマーが環状オリゴマー成分として扱われる。
 なお、環状オリゴマー成分は、上述したジオール成分に由来する構成単位及び上述したジカルボン酸成分に由来する構成単位を含んでいればよいが、これらの構成単位のみから構成されていてもよい。
 環状オリゴマー成分は、例えば、下記式(1)で表される構造および下記式(2)で表される構造を有するものであってよい。
In this specification, the cyclic oligomer component is a cyclic ester oligomer component that includes a constituent unit derived from the above-mentioned diol component and a constituent unit derived from the above-mentioned dicarboxylic acid component, and the total number of the constituent units derived from the diol component (the number of repeating units of the constituent unit) and the number of the constituent units derived from the dicarboxylic acid component (the number of repeating units of the constituent unit) is 2 to 7. The cyclic oligomer component is a compound that is produced as a by-product by cyclization of a part of a polyester obtained through a reaction process including at least one reaction process selected from the group consisting of an esterification reaction process and an ester exchange reaction process in which a diol component and a dicarboxylic acid component are reacted. The cyclic oligomer component may include the constituent units derived from the above-mentioned diol component and the constituent units derived from the above-mentioned dicarboxylic acid component, but may be composed of only these constituent units. If the content of the oligomer component in the reaction product increases, the color tone of the polyester will deteriorate, the surface appearance will deteriorate, and the productivity during molding will decrease. However, by setting the amount of the cyclic oligomer component in the polyester raw material to a desired range, the degree of the deterioration of the color tone of the polyester, the deterioration of the surface appearance, and the decrease in the productivity during molding can be reduced. The cyclic oligomer component may be one type or two or more types, and all cyclic ester oligomer components that satisfy the above conditions are included. In other words, when the above cyclic oligomers from dimer to heptamer are included, all of these cyclic oligomers are treated as the cyclic oligomer component.
The cyclic oligomer component may contain a constituent unit derived from the diol component and a constituent unit derived from the dicarboxylic acid component, but may be composed of only these constituent units.
The cyclic oligomer component may have, for example, a structure represented by the following formula (1) and a structure represented by the following formula (2).
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 式(1)において、RおよびRは、それぞれ独立して、置換基を有していてもよい2価の炭化水素基であり;xは0~7であり、
式(2)において、RおよびRは、それぞれ独立して、置換基を有していてもよい2価の炭化水素基であり;yは0~7であり、
x+yは2~7である。
In formula (1), R 1 and R 2 each independently represent a divalent hydrocarbon group which may have a substituent; x is an integer of 0 to 7;
In formula (2), R 3 and R 4 each independently represent a divalent hydrocarbon group which may have a substituent; y is an integer of 0 to 7;
x+y is 2 to 7.
 RおよびRにおける2価の炭化水素の態様は特段制限されず、その炭素数は、入手コストや入手容易性の観点から、それぞれ独立して、1以上であり、2以上であることが特に好ましく、また、通常40以下であり、36以下であることが好ましく、30以下であることがより好ましく、24以下であることがさらに好ましく、20以下であることが特に好ましく、18以下であることが殊更特に好ましい。 The embodiment of the divalent hydrocarbon in R1 and R2 is not particularly limited, and the number of carbon atoms therein is, from the viewpoint of acquisition cost and ease of availability, independently 1 or more, particularly preferably 2 or more, and usually 40 or less, preferably 36 or less, more preferably 30 or less, even more preferably 24 or less, particularly preferably 20 or less, and most particularly preferably 18 or less.
 RおよびRにおける2価の炭化水素の態様は特段制限されず、その炭素数は、入手コストや入手容易性の観点から、それぞれ独立して、1以上であり、2以上であることが特に好ましく、また、通常40以下であり、36以下であることが好ましく、30以下であることがより好ましく、24以下であることがさらに好ましく、20以下であることが特に好ましく、18以下であることが殊更特に好ましい。 The embodiment of the divalent hydrocarbon in R3 and R4 is not particularly limited, and the number of carbon atoms therein is, from the viewpoint of acquisition cost and ease of availability, independently 1 or more, particularly preferably 2 or more, and usually 40 or less, preferably 36 or less, more preferably 30 or less, even more preferably 24 or less, particularly preferably 20 or less, and most particularly preferably 18 or less.
 R~Rにおける有していてもよい置換基は特段制限されず、例えば、ハロゲン、シアノ基、アミノ基、エステル基、アルキルカルボニル基、アセチル基、シリル基、ボリル基、ニトリル基、チオ基、又はセレノ基等の基が挙げられる。これらの置換基は、1種類のみであっても、2種類以上であってもよい、なお、R~Rにおける炭化水素基は、置換基を有していなくともよい。 The substituents that R 1 to R 4 may have are not particularly limited, and examples thereof include halogen, cyano group, amino group, ester group, alkylcarbonyl group, acetyl group, silyl group, boryl group, nitrile group, thio group, seleno group, etc. These substituents may be of only one type or of two or more types, and the hydrocarbon groups in R 1 to R 4 may not have any substituents.
 上記式(1)及び(2)を構成するそれぞれのジオール成分及びジカルボン酸成分は、上述したポリエステルの原料となるジオール成分及びジカルボン酸成分であってよい。よって、上記式(1)及び(2)におけるR及びRは、それぞれ独立して、上述のジカルボン酸で列挙したジカルボン酸に対応する構造であってよく、R及びRは、それぞれ独立して、上述のジオールで列挙したジオールに対応する構造であってよい。 The diol component and dicarboxylic acid component constituting the above formula (1) and (2) may be the diol component and dicarboxylic acid component that are the raw materials of the above polyester. Therefore, R 1 and R 3 in the above formula (1) and (2) may each independently be a structure corresponding to the dicarboxylic acid listed in the above dicarboxylic acid, and R 2 and R 4 may each independently be a structure corresponding to the diol listed in the above diol.
 xは0~7であれば、接触処理液への溶解性が良好である為、ポリエステルペレットからのオリゴマー成分の接触処理効率と回収性が優れる。 If x is 0 to 7, the solubility in the contact treatment solution is good, and the contact treatment efficiency and recovery of the oligomer components from the polyester pellets are excellent.
 yは0~7であれば、接触処理液への溶解性が良好である為、ポリエステルペレットからのオリゴマー成分の接触処理効率と回収性が優れる。 If y is 0 to 7, the solubility in the contact treatment solution is good, and the contact treatment efficiency and recovery of the oligomer components from the polyester pellets are excellent.
 R~Rにおける炭化水素基は、直鎖状であってもよく、分岐鎖状であってもよく、環状構造を有していてもよいが、オリゴマー成分の融点と接触処理液への溶解性の観点と回収オリゴマー成分の重合反応性の観点から、直鎖状であることが好ましい。
 また、R~Rにおける炭化水素基は、脂肪族炭化水素基であってもよく、芳香族炭化水素基であってもよい。
The hydrocarbon group in R 1 to R 4 may be linear, branched, or have a cyclic structure, but is preferably linear from the viewpoints of the melting point of the oligomer component, the solubility in the contact treatment liquid, and the polymerization reactivity of the recovered oligomer component.
Furthermore, the hydrocarbon groups in R 1 to R 4 may be either aliphatic hydrocarbon groups or aromatic hydrocarbon groups.
 ポリエステル原料中のオリゴマー成分の含有率は特段制限されないが、通常0.1質量%以上であり、0.5質量%以上であることが好ましく、1.0質量%以上であることがより好ましく、2.5質量%以上であることがさらに好ましく、5.0質量%超であることが特に好ましく、また、通常100質量%未満であり、90質量%以下であることが好ましく、80質量%以下であることがより好ましく、70質量%以下であることがさらに好ましく、60質量%以下であることが特に好ましい。
 上記の合計含有率が上記範囲の下限以上であれば、オリゴマー成分の回収率を上げた経済的な製造を行うことが可能である。また、上記の合計含有率が上記範囲の上限以下であれば、色調などの品質を保ちつつ反応性を損なわずに製造を行うことが可能である。
The content of oligomer components in the polyester raw material is not particularly limited, but is usually 0.1 mass% or more, preferably 0.5 mass% or more, more preferably 1.0 mass% or more, even more preferably 2.5 mass% or more, and particularly preferably more than 5.0 mass%, and is usually less than 100 mass%, preferably 90 mass% or less, more preferably 80 mass% or less, even more preferably 70 mass% or less, and particularly preferably 60 mass% or less.
When the total content is equal to or higher than the lower limit of the range, it is possible to perform economical production with an increased recovery rate of the oligomer components, while when the total content is equal to or lower than the upper limit of the range, it is possible to perform production without impairing reactivity while maintaining quality such as color tone.
 オリゴマー成分における、上記式(1)で表される構造および上記式(2)で表される構造を有する環状オリゴマー成分の含有率(合計含有率)は、得られるポリエステルの色調悪化を抑制する観点から、35質量%以上、100質量%以下であれば特段制限されないが、40質量%以上であることが好ましく、50質量以上であることがより好ましく、60質量以上であることがさらに好ましく、70質量以上であることが特に好ましい。 The content (total content) of the cyclic oligomer components having the structure represented by the above formula (1) and the structure represented by the above formula (2) in the oligomer component is not particularly limited as long as it is 35% by mass or more and 100% by mass or less, from the viewpoint of suppressing deterioration in the color tone of the resulting polyester, but is preferably 40% by mass or more, more preferably 50% by mass or more, even more preferably 60% by mass or more, and particularly preferably 70% by mass or more.
 上記の環状オリゴマー成分は、ポリエステルの色調悪化を抑制することが容易となる観点から、ポリマー原料に含まれるジオール成分及びジカルボン酸成分との反応によって生じるものであることが好ましい。つまり、環状オリゴマー成分が、上記の式(1)で表される構造および下記式(2)で表される構造を有するものである場合、ポリエステル原料について、
 前記ジカルボン酸成分として、下記式(A)で表されるジカルボン酸及びその誘導体からなる群から選択される少なくとも1種、および下記式(B)で表されるジカルボン酸及びその誘導体からなる群から選択される少なくとも1種を含み、
 前記ジオール成分として、下記式(C)で表されるジオール及びその誘導体からなる群から選択される少なくとも1種、および下記式(D)で表されるジオール及びその誘導体からなる群から選択される少なくとも1種を含むことが好ましい。
 特に、ジオール成分として、1,4-ブタンジオール及びその誘導体からなる群から選択される少なくとも1種を含む場合、前記下記式(C)で表されるジオールからなる群から選択される少なくとも1種と、下記式(D)で表されるジオールからなる群から選択される少なくとも1種と、からなる群から選択される少なくとも1種が、1,4-ブタンジオール及びその誘導体からなる群から選択される少なくとも1種であることが好ましい。
From the viewpoint of easily suppressing the deterioration of the color tone of the polyester, the above-mentioned cyclic oligomer component is preferably generated by a reaction with a diol component and a dicarboxylic acid component contained in the polymer raw material. In other words, when the cyclic oligomer component has a structure represented by the above formula (1) and a structure represented by the following formula (2), the polyester raw material is
The dicarboxylic acid component includes at least one selected from the group consisting of dicarboxylic acids represented by the following formula (A) and derivatives thereof, and at least one selected from the group consisting of dicarboxylic acids represented by the following formula (B) and derivatives thereof,
The diol component preferably contains at least one selected from the group consisting of diols represented by the following formula (C) and derivatives thereof, and at least one selected from the group consisting of diols represented by the following formula (D) and derivatives thereof:
In particular, when the diol component contains at least one kind selected from the group consisting of 1,4-butanediol and derivatives thereof, it is preferable that the at least one kind selected from the group consisting of at least one kind selected from the group consisting of diols represented by the following formula (C) and at least one kind selected from the group consisting of diols represented by the following formula (D) is at least one kind selected from the group consisting of 1,4-butanediol and derivatives thereof.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 式(A)~(D)において、R~Rは、それぞれ上記の式(1)及び式(2)におけるR~Rと同義である。 In formulas (A) to (D), R 1 to R 4 have the same meanings as R 1 to R 4 in formulas (1) and (2) above, respectively.
 後述する精製工程を採用し、接触処理により得られたオリゴマー成分を回収し、回収したオリゴマー成分をポリエステル原料に再利用した場合、ポリエステル原料中のジオール成分とジカルボン酸成分と、ポリエステル原料中の環状オリゴマー成分を構成するオリゴマー成分とジカルボン酸成分とが同じとなるため、ポリエステル原料中のオリゴマー成分における、上記式(1)で表される構造および上記式(2)で表される構造を有する環状オリゴマー成分の含有率を増加させることができる。 When the purification process described below is employed, the oligomer components obtained by the contact treatment are recovered, and the recovered oligomer components are reused as polyester raw materials, the diol components and dicarboxylic acid components in the polyester raw materials are the same as the oligomer components and dicarboxylic acid components constituting the cyclic oligomer components in the polyester raw materials, and therefore the content of the cyclic oligomer components having the structure represented by the above formula (1) and the structure represented by the above formula (2) in the oligomer components in the polyester raw materials can be increased.
(その他の共重合成分)
 ポリエステルの製造方法では、少なくともジオール成分、及びジカルボン酸成分を用いれば、これら以外のその他の構成成分を共重合させても構わない。この場合に使用することのできる共重合成分としては、例えば、乳酸、グリコール酸、ヒドロキシ酪酸、ヒドロキシカプロン酸、2-ヒドロキシ3,3-ジメチル酪酸、2-ヒドロキシ-3-メチル酪酸、2-ヒドロキシイソカプロン酸、リンゴ酸、もしくはクエン酸等のオキシカルボン酸;これらオキシカルボン酸のエステルやラクトン、もしくはオキシカルボン酸重合体等;グリセリン、トリメチロールプロパン、もしくはペンタエリスリトール等の3官能以上の多価アルコール;又はプロパントリカルボン酸、ピロメリット酸、もしくはトリメリット酸ベンゾフェノンテトラカルボン酸もしくはこれらの無水物などの3官能以上の多価カルボン酸もしくはその無水物等が挙げられる。
(Other Copolymer Components)
In the method for producing polyester, as long as at least a diol component and a dicarboxylic acid component are used, other components may be copolymerized. Examples of copolymerization components that can be used in this case include oxycarboxylic acids such as lactic acid, glycolic acid, hydroxybutyric acid, hydroxycaproic acid, 2-hydroxy-3,3-dimethylbutyric acid, 2-hydroxy-3-methylbutyric acid, 2-hydroxyisocaproic acid, malic acid, and citric acid; esters, lactones, and oxycarboxylic acid polymers of these oxycarboxylic acids; trifunctional or higher polyhydric alcohols such as glycerin, trimethylolpropane, and pentaerythritol; and trifunctional or higher polyvalent carboxylic acids or their anhydrides such as propanetricarboxylic acid, pyromellitic acid, and trimellitic acid, benzophenonetetracarboxylic acid, and their anhydrides.
 また、3官能以上のオキシカルボン酸、3官能以上のアルコール、又は3官能以上のカルボン酸などは少量加えることにより高粘度のポリエステルを得やすい。中でも、リンゴ酸、又はクエン酸などのオキシカルボン酸が好ましく、特にはリンゴ酸が好ましく用いられる。 In addition, by adding a small amount of trifunctional or higher oxycarboxylic acid, trifunctional or higher alcohol, or trifunctional or higher carboxylic acid, it is easy to obtain a polyester with high viscosity. Among them, oxycarboxylic acid such as malic acid or citric acid is preferred, and malic acid is particularly preferred.
 3官能以上の多官能化合物は、ポリエステル原料中の全ジカルボン酸成分100モル%に対して、0.001~5モル%であることが好ましく、0.05~0.5モル%であることがより好まし。この範囲の上限超過では得られるポリエステル中にゲル(未溶融物)が生成しやすく、下限未満では多官能化合物を使用したことによる利点(通常、得られるポリエステルの粘度を上昇させることが可能となるという利点)が得られにくくなる。 The amount of the trifunctional or higher polyfunctional compound is preferably 0.001 to 5 mol %, and more preferably 0.05 to 0.5 mol %, relative to 100 mol % of all dicarboxylic acid components in the polyester raw material. If the amount exceeds the upper limit of this range, gel (unmelted material) is likely to form in the resulting polyester, and if it is below the lower limit, the advantage of using a polyfunctional compound (usually the advantage of being able to increase the viscosity of the resulting polyester) is difficult to obtain.
[ポリエステルの物性]
 接触処理液と接触処理させるポリエステルの固有粘度(IV、dL/g)、及び接触処理液と接触処理させた後のポリエステルの固有粘度は、1.4dL/g以上であることが好ましく、1.6dL/g以上であることが特に好ましい。また、該固有粘度は、2.8dL/g以下であることが好ましく、2.5以下であることがより好ましく、2.3dL/g以下であることが特に好ましい。該固有粘度が上記範囲の下限未満であると、成形品にしたとき十分な機械強度が得にくい。また、該固有粘度が上記範囲の上限超過であると、成形時に溶融粘度が高く成形しにくい。
[Physical properties of polyester]
The intrinsic viscosity (IV, dL/g) of the polyester to be contacted with the contact treatment liquid and the intrinsic viscosity of the polyester after contact treatment with the contact treatment liquid are preferably 1.4 dL/g or more, and particularly preferably 1.6 dL/g or more. The intrinsic viscosity is preferably 2.8 dL/g or less, more preferably 2.5 or less, and particularly preferably 2.3 dL/g or less. If the intrinsic viscosity is below the lower limit of the above range, it is difficult to obtain sufficient mechanical strength when molded into a molded product. If the intrinsic viscosity exceeds the upper limit of the above range, the melt viscosity during molding is high and molding is difficult.
 接触処理液と接触処理させるポリエステルの末端カルボキシル基量は通常80(当量/トン)以下であり、好ましくは60(当量/トン)以下、更に好ましくは40(当量/トン)以下、特に好ましくは25(当量/トン)以下である。下限は低いほど熱安定性、耐加水分解性がよいが、通常5(当量/トン)以上である。上限を超えると、加水分解による粘度低下が顕著となり、品質を著しく損なう場合がある。 The amount of terminal carboxyl groups in the polyester to be brought into contact with the contact treatment solution is usually 80 (equivalents/ton) or less, preferably 60 (equivalents/ton) or less, more preferably 40 (equivalents/ton) or less, and particularly preferably 25 (equivalents/ton) or less. The lower the lower limit, the better the thermal stability and hydrolysis resistance, but it is usually 5 (equivalents/ton) or more. If the upper limit is exceeded, the viscosity reduction due to hydrolysis becomes significant, and the quality may be significantly impaired.
[ポリエステル製造法における各工程]
 以下に連続製造法を例にして、ポリエステルの製造方法の第1の態様における各工程を説明するが、あくまで一例であり、ポリエステルの製造方法はこの態様に制限されない。
 ポリエステルの製造方法において、連続製造法では、例えば、ジオール成分とジカルボン酸成分とを、連続する複数の反応槽を用いて、エステル化反応処理及びエステル交換反応処理からなる群から選択される少なくとも一の処理、及び重縮合反応処理を含む反応工程を経て連続的にポリエステルを得るものである。しかし、本発明の効果を妨げない限り、連続法に限定されるものではなく、従来公知のポリエステルの製造方法における工程を採用することができる。さらに、ポリエステルは、接触処理液と接触処理され、その後乾燥されてもよい。
 連続式での操作を採用する場合、製造の効率化や処理の均質化の観点から、特に、後述する精製工程における接触処理および後述する乾燥工程における乾燥処理からなる群から選択される少なくとも1つの処理が連続式で行われることが好ましい。また、回分式又は半回分式での操作についても、製造の効率化や処理の均質化の観点から、特に、後述する精製工程における接触処理および後述する乾燥工程における乾燥処理からなる群から選択される少なくとも1つの処理が回分式又は半回分式で行われることが好ましい。
[Each step in the polyester manufacturing method]
Each step in the first embodiment of the method for producing a polyester will be described below using a continuous production method as an example, but this is merely an example, and the method for producing a polyester is not limited to this embodiment.
In the continuous polyester production method, for example, a diol component and a dicarboxylic acid component are continuously subjected to a reaction process including at least one treatment selected from the group consisting of an esterification reaction treatment and an ester exchange reaction treatment, and a polycondensation reaction treatment, using a plurality of continuous reaction tanks to obtain a polyester. However, the method is not limited to the continuous method, and any step in a conventional polyester production method can be adopted, so long as it does not impede the effects of the present invention. Furthermore, the polyester may be subjected to a contact treatment with a contact treatment liquid and then dried.
When a continuous operation is employed, from the viewpoints of production efficiency and uniformity of the treatment, it is particularly preferred that at least one treatment selected from the group consisting of a contact treatment in the purification step described below and a drying treatment in the drying step described below is carried out continuously. Also, with respect to a batch or semi-batch operation, it is particularly preferred that at least one treatment selected from the group consisting of a contact treatment in the purification step described below and a drying treatment in the drying step described below is carried out batch or semi-batch, from the viewpoints of production efficiency and uniformity of the treatment.
(原料調製工程)
 ポリエステルの製造方法は、後述する反応工程の前に、ポリエステル原料を調製する原料調製工程をさらに有していてもよい。
 ポリエステル原料を調製する方法は特段制限されず、各原料を合成等により製造したものを混合して調整してもよく、市販品で調達した各原料を混合して調製してもよい。
(Raw material preparation process)
The method for producing a polyester may further include a raw material preparation step of preparing a polyester raw material prior to the reaction step described below.
The method for preparing the polyester raw material is not particularly limited, and the raw material may be prepared by mixing raw materials produced by synthesis or the like, or the raw materials may be procured commercially and mixed.
(反応工程)
 ポリエステルの製造方法は、ポリエステル原料を反応させるエステル化反応処理及びエステル交換反応処理からなる群から選択される少なくとも一の反応処理(本明細書では、「エステル化反応処理及び/又はエステル交換処理」とも称する。)を含み、反応生成物を得る反応工程を有する。該反応工程は、エステル化反応処理及び/又はエステル交換反応処理以外の処理を含んでいてもよい。
(Reaction step)
The method for producing a polyester has a reaction step including at least one reaction treatment selected from the group consisting of an esterification reaction treatment and an ester exchange reaction treatment (also referred to herein as "esterification reaction treatment and/or ester exchange treatment") in which a polyester raw material is reacted to obtain a reaction product. The reaction step may include treatments other than the esterification reaction treatment and/or the ester exchange reaction treatment.
(1)エステル化反応処理/エステル交換反応処理
 反応工程は、ポリエステル原料を反応させるエステル化反応処理及び/又はエステル交換反応処理、具体的には、ジオール成分と、ジカルボン酸成分とを反応させるエステル化反応処理及び/又はエステル交換処理を含む。エステル化反応とは、カルボン酸をエステルに変換する反応であり、エステル交換反応とは、エステルとアルコールを反応させてこれらの主鎖部分が入れ替わる反応である。以下、エステル化反応処理について説明するが、適用できる範囲で、この説明はエステル交換反応にも同様に適用することができる。
 エステル化反応処理及び/又はエステル交換処理とそれに続くその他の処理は、連続する複数の反応槽で行うこともでき、また、単一の反応槽でも行うこともできるが、得られるポリエステルの物性の変動を小さくするために、連続する複数の反応槽で行うことが好ましい。
(1) Esterification reaction process/ester exchange reaction process The reaction process includes an esterification reaction process and/or an ester exchange reaction process in which a polyester raw material is reacted, specifically, an esterification reaction process and/or an ester exchange reaction process in which a diol component is reacted with a dicarboxylic acid component. The esterification reaction is a reaction in which a carboxylic acid is converted into an ester, and the ester exchange reaction is a reaction in which an ester is reacted with an alcohol to exchange the main chain portions of these. The esterification reaction process will be described below, but this description can be applied to the ester exchange reaction as well to the extent that it is applicable.
The esterification reaction treatment and/or ester exchange treatment and other subsequent treatments can be carried out in multiple continuous reaction tanks or in a single reaction tank. However, in order to reduce variation in the physical properties of the resulting polyester, it is preferable to carry out the treatments in multiple continuous reaction tanks.
 エステル化反応処理での反応温度は、エステル化反応を行うことのできる温度であれば特に制限は無いが、反応速度を高めることができるという点で、200℃以上であることが好ましく、210℃以上であることがより好ましく、また、ポリエステルの着色などを防止するために、250℃以下であることが好ましく、245℃以下であることがより好ましく、240℃以下であることが特に好ましい。 There are no particular limitations on the reaction temperature in the esterification reaction treatment, so long as it is a temperature at which the esterification reaction can be carried out, but in order to increase the reaction rate, it is preferably 200°C or higher, and more preferably 210°C or higher, and in order to prevent discoloration of the polyester, it is preferably 250°C or lower, more preferably 245°C or lower, and particularly preferably 240°C or lower.
 反応温度が低すぎると、エステル化反応速度が遅く反応時間を長時間必要とし、ジオール成分の脱水分解など好ましくない反応が多くなる。また、反応温度が高すぎると、ジオール成分、及びジカルボン酸成分の分解が多くなり、また反応槽内に飛散物が増加し異物発生原因となりやすく、反応生成物に濁り(ヘーズ)を生じやすくなる。また、エステル化温度は一定温度であることが好ましい。一定温度であることによりエステル化率が安定する。一定温度とは設定温度±5℃であってよく、好ましくは±2℃である。 If the reaction temperature is too low, the esterification reaction rate is slow, requiring a long reaction time, and undesirable reactions such as dehydration decomposition of the diol component occur frequently. If the reaction temperature is too high, decomposition of the diol component and dicarboxylic acid component increases, and the amount of scattered material in the reaction tank increases, which can easily cause the generation of foreign matter and can easily cause turbidity (haze) in the reaction product. It is also preferable that the esterification temperature is a constant temperature. A constant temperature stabilizes the esterification rate. The constant temperature may be within ±5°C of the set temperature, and is preferably ±2°C.
 反応雰囲気は特段制限されないが、窒素、又はアルゴン等の不活性ガス雰囲気であることが好ましい。反応圧力は、50kPa~200kPaであることが好ましく、60kPa以上であることがより好ましく、70kPa以上であることが更に好ましく、また、130kPa以下であることが好ましく、110kPa以下であることがより好ましい。
 反応圧力が上記範囲の下限未満では反応槽内に飛散物が増加し反応生成物のヘーズが高くなり異物増加の原因となりやすく、またジオール成分の反応系外への留出が多くなり重縮合反応速度の低下を招きやすい。また、反応圧力が上記範囲の上限超過ではジオール成分の脱水分解が多くなり、重縮合反応速度の低下を招きやすい。
The reaction atmosphere is not particularly limited, but is preferably an inert gas atmosphere such as nitrogen or argon, etc. The reaction pressure is preferably 50 kPa to 200 kPa, more preferably 60 kPa or more, and even more preferably 70 kPa or more, and is preferably 130 kPa or less, and more preferably 110 kPa or less.
If the reaction pressure is less than the lower limit of the above range, the amount of scattered material in the reaction tank increases, the haze of the reaction product increases, and this tends to cause an increase in foreign matter, and the diol component is more likely to be distilled out of the reaction system, which tends to decrease the polycondensation reaction rate.If the reaction pressure is more than the upper limit of the above range, the dehydration decomposition of the diol component increases, which tends to decrease the polycondensation reaction rate.
 反応時間は特段制限されないが、好ましくは1時間以上であり、また、好ましくは10時間以下であり、より好ましくは4時間以下である。 The reaction time is not particularly limited, but is preferably 1 hour or more, and is preferably 10 hours or less, and more preferably 4 hours or less.
 エステル化反応を行うジカルボン酸成分に対するジオール成分のモル比(ジオール成分/ジカルボン酸成分)は、「エステル化反応槽の気相及び反応液相に存在する全てのジカルボン酸成分及びエステル化されたジカルボン酸成分」に対する、「エステル化反応槽の気相及び反応液相に存在するジオール成分及びエステル化されたジオール成分」のモル比を表し、反応系で分解されエステル化反応に寄与しないジカルボン酸成分、ジオール成分及びそれらの分解物は含まれない。分解されてエステル化反応に寄与しない成分とは、例えば、ジオール成分として1,4-ブタンジオールを含む場合、1,4-ブタンジオールが分解してテトラヒドロフランになったジオール成分であり、このような寄与しない成分は上記のモル比には含めない。 The molar ratio of the diol component to the dicarboxylic acid component undergoing the esterification reaction (diol component/dicarboxylic acid component) represents the molar ratio of the "diol component and esterified diol component present in the gas phase and reaction liquid phase of the esterification reaction vessel" to the "all dicarboxylic acid components and esterified dicarboxylic acid components present in the gas phase and reaction liquid phase of the esterification reaction vessel", and does not include the dicarboxylic acid components, diol components, and their decomposition products that are decomposed in the reaction system and do not contribute to the esterification reaction. For example, in the case where 1,4-butanediol is included as a diol component, the diol component is formed by decomposing 1,4-butanediol into tetrahydrofuran, and such non-contributing components are not included in the above molar ratio.
 上記モル比は、通常1.10以上であり、好ましくは1.12以上であり、更に好ましくは1.15以上であり、特に好ましくは1.20以上である。また、上記モル比は、通常2.00以下であり、好ましくは1.80以下であり、更に好ましくは1.60以下であり、特に好ましくは1.55以下である。
 上記モル比が上記範囲の下限未満ではエステル化反応が不十分になりやすく後工程の反応である重縮合反応が進みにくく高重合度のポリエステルが得にくい。また、上記モル比が上記範囲の上限超過ではジオール成分、ジカルボン酸成分の分解量が多くなる傾向がある。このモル比を好ましい範囲に保つ為にエステル化反応系にジオール成分を適宜補給するのは好ましい方法である。
The molar ratio is usually 1.10 or more, preferably 1.12 or more, more preferably 1.15 or more, and particularly preferably 1.20 or more. The molar ratio is usually 2.00 or less, preferably 1.80 or less, more preferably 1.60 or less, and particularly preferably 1.55 or less.
If the molar ratio is less than the lower limit of the above range, the esterification reaction is likely to be insufficient, and the polycondensation reaction, which is a reaction in a subsequent step, is unlikely to proceed, making it difficult to obtain a polyester with a high degree of polymerization. If the molar ratio is more than the upper limit of the above range, the decomposition amounts of the diol component and the dicarboxylic acid component tend to increase. In order to keep this molar ratio within the preferred range, it is a preferred method to appropriately supply the diol component to the esterification reaction system.
 反応工程が後述する重縮合反応処理を含む場合、エステル化率80%以上のエステル化反応生成物を重縮合反応処理に供することが好ましい。重縮合反応とは、通常、反応圧力50kPa以下で行うポリエステルの高分子量化反応をいう。エステル化反応は、通常50~200kPaで行われ、エステル化反応槽で行われることが好ましく、また、重縮合反応は、通常50kPa以下、好ましくは10kPa以下で行われ、重縮合反応槽で行われることが好ましい。本明細書でエステル化率とは、ポリエステル原料中の全ジカルボン酸成分に対するエステル化されたジカルボン酸成分の割合を示すものであり次式で表される。
 エステル化率(%)=(ケン化価-酸価)/ケン化価×100
When the reaction step includes a polycondensation reaction treatment described later, it is preferable to subject an esterification reaction product having an esterification rate of 80% or more to the polycondensation reaction treatment. The polycondensation reaction generally refers to a high molecular weight reaction of polyester carried out at a reaction pressure of 50 kPa or less. The esterification reaction is generally carried out at 50 to 200 kPa and is preferably carried out in an esterification reaction tank, and the polycondensation reaction is generally carried out at 50 kPa or less, preferably 10 kPa or less, and is preferably carried out in a polycondensation reaction tank. In this specification, the esterification rate indicates the ratio of esterified dicarboxylic acid components to all dicarboxylic acid components in the polyester raw material and is represented by the following formula.
Esterification rate (%)=(saponification value−acid value)/saponification value×100
 エステル化反応生成物のエステル化率は、好ましくは85%以上、更に好ましくは88%以上、特に好ましくは90%以上である。この下限以下であると後工程の反応である重縮合反応性が悪くなる。また、この下限以下であると、重縮合反応時の飛散物が増え、壁面に付着して固化し、更にこの飛散物が反応生成物内に落下し、ヘーズの悪化(異物発生)の要因となる。該エステル化率の上限は後工程の反応である重縮合反応の為には高いほうが好ましいが、通常99%である。 The esterification rate of the esterification reaction product is preferably 85% or more, more preferably 88% or more, and particularly preferably 90% or more. Below this lower limit, the polycondensation reactivity, which is the reaction in the subsequent process, is poor. Also, below this lower limit, the amount of flying material during the polycondensation reaction increases, adheres to the wall surfaces and solidifies, and this flying material falls into the reaction product, causing a deterioration in haze (generation of foreign matter). The upper limit of the esterification rate is preferably high for the polycondensation reaction, which is the reaction in the subsequent process, but is usually 99%.
 反応工程では、エステル化反応処理におけるジカルボン酸成分とジオール成分とのモル比、反応温度、反応圧力及び反応率とを上記範囲にして連続反応を行うことが好ましく、さらに好ましくは、連続的に後述する重縮合反応に供することにより、ヘーズが低く異物が少ない高品質のポリエステルを効率的に得ることができる。 In the reaction process, it is preferable to carry out a continuous reaction in the esterification reaction treatment with the molar ratio of the dicarboxylic acid component to the diol component, the reaction temperature, the reaction pressure, and the reaction rate in the above-mentioned ranges, and more preferably, to continuously subject the reaction to the polycondensation reaction described below, thereby efficiently obtaining a high-quality polyester with low haze and little foreign matter.
(2)重縮合反応処理
 反応工程は、エステル化反応処理に続き重縮合反応を行う重縮合反応処理を含むことが好ましい。重縮合反応は、連続する複数の反応槽を用い減圧下で行うことができる。
(2) Polycondensation Reaction Treatment The reaction step preferably includes a polycondensation reaction treatment in which a polycondensation reaction is carried out following the esterification reaction treatment. The polycondensation reaction can be carried out under reduced pressure using a plurality of continuous reaction tanks.
 重縮合反応槽(特に、最終重縮合反応槽)の反応圧力は特段制限されないが、通常0.01kPa以上であり、好ましくは0.03kPa以上であり、また、通常5kPa以下であり、好ましくは3kPa以下である。
 重縮合反応時の圧力が高すぎると、重縮合時間が長くなり、それに伴いポリエステルの熱分解による分子量低下や着色が引き起こされ、実用上充分な特性を示すポリエステルの製造が難しくなる傾向がある。
 一方、反応圧力を0.01kPa未満とするような超高真空重縮合反応設備を用いて製造する手法は、重縮合反応速度を向上させる観点からは好ましい態様であるが、極めて高額な設備投資が必要となる為、経済的には不利である。
The reaction pressure in the polycondensation reaction tank (particularly the final polycondensation reaction tank) is not particularly limited, but is usually 0.01 kPa or more, preferably 0.03 kPa or more, and usually 5 kPa or less, preferably 3 kPa or less.
If the pressure during the polycondensation reaction is too high, the polycondensation time becomes long, which leads to a decrease in molecular weight and coloration due to thermal decomposition of the polyester, and it tends to become difficult to produce a polyester that exhibits sufficient properties for practical use.
On the other hand, a production method using an ultra-high vacuum polycondensation reaction facility with a reaction pressure of less than 0.01 kPa is a preferable embodiment from the viewpoint of improving the polycondensation reaction rate, but is economically disadvantageous because it requires an extremely expensive capital investment.
 反応温度は特段制限されないが、通常215℃以上であり、好ましくは220℃以上であり、また、通常270℃以下であり、好ましくは260℃以下である。反応温度が上記範囲の下限未満であると、重縮合反応速度が遅く、高重合度のポリエステル製造に長時間を要するばかりでなく、高動力の撹拌機も必要となる為、経済的に不利である。一方、反応温度が上記範囲の上限超過であると製造時のポリエステルの熱分解が引き起こされやすく、高重合度のポリエステルの製造が難しくなる傾向がある。 The reaction temperature is not particularly limited, but is usually 215°C or higher, preferably 220°C or higher, and usually 270°C or lower, preferably 260°C or lower. If the reaction temperature is below the lower limit of the above range, not only will the polycondensation reaction rate be slow, and it will take a long time to produce a polyester with a high degree of polymerization, but a high-power mixer will also be required, which is economically disadvantageous. On the other hand, if the reaction temperature exceeds the upper limit of the above range, thermal decomposition of the polyester during production is likely to occur, and it will tend to be difficult to produce a polyester with a high degree of polymerization.
 反応時間は特段制限されないが、通常1時間以上であり、また、通常15時間以下であり、好ましくは10時間以下であり、より好ましくは8時間以下である。反応時間が短すぎると反応が不充分で高重合度のポリエステルが得にくく、その成形品の機械物性が劣る傾向となる。一方、反応時間が長すぎると、ポリエステルの熱分解による分子量低下が顕著となり、その成形品の機械物性が劣る傾向となるばかりでなく、ポリエステルの耐久性に悪影響を与えるカルボキシル基末端量が熱分解により増加する場合がある。 The reaction time is not particularly limited, but is usually 1 hour or more and usually 15 hours or less, preferably 10 hours or less, and more preferably 8 hours or less. If the reaction time is too short, the reaction will be insufficient, making it difficult to obtain a polyester with a high degree of polymerization, and the mechanical properties of the molded product will tend to be poor. On the other hand, if the reaction time is too long, the molecular weight will decrease significantly due to thermal decomposition of the polyester, and not only will the mechanical properties of the molded product tend to be poor, but the amount of carboxyl group terminals, which has a negative effect on the durability of the polyester, may increase due to thermal decomposition.
 重縮合反応の温度、時間、及び反応圧力を上記の範囲にコントロールすることにより、所望の固有粘度を有するポリエステルを得ることができる。 By controlling the temperature, time, and reaction pressure of the polycondensation reaction within the above ranges, a polyester with the desired intrinsic viscosity can be obtained.
(3)反応触媒
 エステル化反応及び重縮合反応は反応触媒を使用することにより、反応が促進される。エステル化反応においてはエステル化反応触媒が無くても十分な反応速度を得ることができる。またエステル化反応時にエステル化反応触媒が存在するとエステル化反応によって生じる水により触媒が反応生成物に不溶の析出物を生じ、得られるポリエステルの透明性を損なう(即ちヘーズが高くなる)ことがあり、また異物化することがあるので、反応触媒はエステル化反応中には添加使用しないことが好ましい。また、触媒を反応槽の気相部に添加すると、得られるポリエステルのヘーズが高くなることがあり、また触媒が異物化することがあるので反応液中に添加することが好ましい。
(3) Reaction catalyst The esterification reaction and polycondensation reaction are accelerated by using a reaction catalyst. In the esterification reaction, a sufficient reaction rate can be obtained even without an esterification reaction catalyst. In addition, if an esterification reaction catalyst is present during the esterification reaction, the catalyst may produce insoluble precipitates in the reaction product due to water produced by the esterification reaction, which may impair the transparency of the polyester obtained (i.e., increase the haze) and may become a foreign substance, so it is preferable not to add a reaction catalyst during the esterification reaction. In addition, if a catalyst is added to the gas phase of the reaction tank, the haze of the polyester obtained may increase and the catalyst may become a foreign substance, so it is preferable to add the catalyst to the reaction liquid.
 重縮合反応においては無触媒では反応が進みにくく、触媒を用いることが好ましい。重縮合反応触媒としては、一般には、周期表1~14族の金属元素のうち少なくとも1種を含む化合物が用いられる。金属元素としては、具体的には、スカンジウム、イットリウム、サマリウム、チタン、ジルコニウム、バナジウム、クロム、モリブデン、タングステン、錫、アンチモン、セリウム、ゲルマニウム、亜鉛、コバルト、マンガン、鉄、アルミニウム、マグネシウム、カルシウム、ストロンチウム、ナトリウム、又はカリウム等が挙げられる。これらの中では、スカンジウム、イットリウム、チタン、ジルコニウム、バナジウム、モリブデン、タングステン、亜鉛、鉄、又はゲルマニウムが好ましく、特に、チタン、ジルコニウム、タングステン、鉄、又はゲルマニウムが好ましい。  Polycondensation reactions do not proceed easily without a catalyst, so it is preferable to use a catalyst. Generally, a compound containing at least one of the metal elements of Groups 1 to 14 of the Periodic Table is used as a polycondensation reaction catalyst. Specific examples of metal elements include scandium, yttrium, samarium, titanium, zirconium, vanadium, chromium, molybdenum, tungsten, tin, antimony, cerium, germanium, zinc, cobalt, manganese, iron, aluminum, magnesium, calcium, strontium, sodium, and potassium. Among these, scandium, yttrium, titanium, zirconium, vanadium, molybdenum, tungsten, zinc, iron, and germanium are preferred, and titanium, zirconium, tungsten, iron, and germanium are particularly preferred.
 更に、ポリエステルの熱安定性に影響を与えるポリエステル末端濃度を低減させる為には、上記金属の中では、ルイス酸性を示す周期表3~6族の金属元素が好ましい。具体的には、スカンジウム、チタン、ジルコニウム、バナジウム、モリブデン、又はタングステンであり、特に、入手のし易さからチタン、ジルコニウムが好ましく、更には反応活性の点からチタンが好ましい。 Furthermore, in order to reduce the polyester end concentration that affects the thermal stability of the polyester, among the above metals, metal elements in Groups 3 to 6 of the periodic table that exhibit Lewis acidity are preferred. Specifically, these are scandium, titanium, zirconium, vanadium, molybdenum, or tungsten, with titanium and zirconium being particularly preferred due to their ease of availability, and titanium being even more preferred in terms of reaction activity.
 本実施形態においては、触媒として、上記の金属元素を含むカルボン酸塩、アルコキシ塩有機スルホン酸塩、もしくはβ-ジケトナート塩等の有機基を含む化合物;又は上記の金属元素の酸化物もしくはハロゲン化物等の無機化合物及びそれらの混合物が好ましく用いられる。 In this embodiment, the catalyst preferably used is a compound containing an organic group, such as a carboxylate, an alkoxy salt, an organic sulfonate, or a β-diketonate salt, containing the above metal element; or an inorganic compound, such as an oxide or halide of the above metal element, or a mixture thereof.
 本実施形態においては、触媒は、重合時に溶融又は溶解した状態であると重合速度が高くなる理由から、重合時に液状であるか、エステル低重合体又はポリエステルに溶解する化合物が好ましい。また、重縮合反応は無溶媒で行うことが好ましいが、これとは別に、触媒を溶解させる為に少量の溶媒を使用してもよい。この触媒溶解用の溶媒としては、メタノール、エタノール、イソプロパノール、もしくはブタノールなどのアルコール類、エチレングリコール、ブタンジオール、もしくはペンタンジオールなどの前述のジオール類、ジエチルエーテル、もしくはテトラヒドロフラン等のエーテル類、アセトニトリル等のニトリル類、ヘプタン、もしくはトルエン等の炭化水素化合物、水、又はこれらの混合物等が挙げられ、その使用量は、ポリエステル原料中の触媒濃度が、通常0.0001質量%以上、99質量%以下となるように使用する。なお、触媒を溶解させるために、触媒を1,4-ブタンジオールやエチレングリコール等のジオール類で希釈したものを用いることができるが、この場合、該ジオール類はポリエステルの原料としても機能し得る。よって、触媒溶解用の溶媒としてジオール類を用いる場合、本明細書における原料中のジオール成分の量の計算においては、該ジオール類の量に該溶媒としてのジオール類も含まれるものとして扱う。 In this embodiment, the catalyst is preferably a compound that is liquid during polymerization or dissolves in the ester oligomer or polyester, because the polymerization rate increases when the catalyst is in a molten or dissolved state during polymerization. In addition, the polycondensation reaction is preferably performed without a solvent, but a small amount of solvent may be used separately to dissolve the catalyst. Examples of the solvent for dissolving the catalyst include alcohols such as methanol, ethanol, isopropanol, or butanol, the above-mentioned diols such as ethylene glycol, butanediol, or pentanediol, ethers such as diethyl ether or tetrahydrofuran, nitriles such as acetonitrile, hydrocarbon compounds such as heptane or toluene, water, or mixtures thereof, and the amount used is such that the catalyst concentration in the polyester raw material is usually 0.0001% by mass or more and 99% by mass or less. In order to dissolve the catalyst, the catalyst can be diluted with diols such as 1,4-butanediol or ethylene glycol, and in this case, the diols can also function as raw materials for polyester. Therefore, when diols are used as a solvent for dissolving the catalyst, the amount of the diol component in the raw material is calculated in this specification as including the amount of the diols as the solvent.
 チタン化合物としては、テトラアルキルチタネート又はその加水分解物が好ましく、具体的には、テトラ-n-プロピルチタネート、テトライソプロピルチタネート、テトラ-n-ブチルチタネート、テトラ-t-ブチルチタネート、テトラフェニルチタネート、テトラシクロヘキシルチタネート、もしくはテトラベンジルチタネート、もしくはこれらの混合チタネート、又はこれらの加水分解物が挙げられる。 The titanium compound is preferably a tetraalkyl titanate or a hydrolyzate thereof, and specific examples include tetra-n-propyl titanate, tetraisopropyl titanate, tetra-n-butyl titanate, tetra-t-butyl titanate, tetraphenyl titanate, tetracyclohexyl titanate, tetrabenzyl titanate, mixed titanates thereof, or hydrolyzates thereof.
 また、チタン化合物としては、チタン(オキシ)アセチルアセトネート、チタンテトラアセチルアセトネート、チタン(ジイソプロキシド)アセチルアセトネート、チタンビス(アンモニウムラクテイト)ジヒドロキシド、チタンビス(エチルアセトアセテート)ジイソプロポキシド、チタン(トリエタノールアミネート)イソプロポキシド、ポリヒドロキシチタンステアレート、チタンラクテート、チタントリエタノールアミネート、又はブチルチタネートダイマー等も好んで用いられる。 Furthermore, examples of titanium compounds that are preferably used include titanium (oxy)acetylacetonate, titanium tetraacetylacetonate, titanium (diisopropoxide)acetylacetonate, titanium bis(ammonium lactate)dihydroxide, titanium bis(ethylacetoacetate)diisopropoxide, titanium (triethanolamine)isopropoxide, polyhydroxytitanium stearate, titanium lactate, titanium triethanolamine, and butyl titanate dimer.
 また、チタン化合物としては、アルコール、長周期型周期表(Nomenclature of Inorganic Chemistry IUPAC Recommendations 2005)における第2族金属化合物(以下、長周期型周期表における第2族金属化合物ということがある)、リン酸エステル化合物、又はチタン化合物を混合することにより得られる液状物も用いられる。 Also, as titanium compounds, liquids obtained by mixing alcohol, Group 2 metal compounds in the long-form periodic table (Nomenclature of Inorganic Chemistry IUPAC Recommendations 2005) (hereinafter sometimes referred to as Group 2 metal compounds in the long-form periodic table), phosphate compounds, or titanium compounds can also be used.
 これらの中では、テトラ-n-プロピルチタネート、テトライソプロピルチタネート、テトラ-n-ブチルチタネート、チタン(オキシ)アセチルアセトネート、チタンテトラアセチルアセトネート、チタンビス(アンモニウムラクテイト)ジヒドロキシド、ポリヒドロキシチタンステアレート、チタンラクテート、ブチルチタネートダイマー、もしくは、アルコール類、長周期型周期表における第2族金属化合物、リン酸エステル化合物、及び/又はチタン化合物を混合することにより得られる液状物が好ましく、テトラ-n-ブチルチタネート、チタン(オキシ)アセチルアセトネート、チタンテトラアセチルアセトネート、ポリヒドロキシチタンステアレート、チタンラクテート、ブチルチタネートダイマー、もしくは、アルコール類、長周期型周期表における第2族金属化合物、リン酸エステル化合物、及び/又はチタン化合物を混合することにより得られる液状物がより好ましく、特に、テトラ-n-ブチルチタネート、ポリヒドロキシチタンステアレート、チタン(オキシ)アセチルアセトネート、チタンテトラアセチルアセトネート、もしくは、アルコール、長周期型周期表における第2族金属化合物、リン酸エステル化合物、及び/又はチタン化合物を混合することにより得られる液状物が好ましい。 Among these, tetra-n-propyl titanate, tetraisopropyl titanate, tetra-n-butyl titanate, titanium (oxy) acetylacetonate, titanium tetraacetylacetonate, titanium bis(ammonium lactate) dihydroxide, polyhydroxytitanium stearate, titanium lactate, butyl titanate dimer, or liquids obtained by mixing alcohols, Group 2 metal compounds in the long periodic table, phosphate ester compounds, and/or titanium compounds are preferred, and ... More preferred are liquids obtained by mixing cetyl acetonate, polyhydroxy titanium stearate, titanium lactate, butyl titanate dimer, alcohols, a Group 2 metal compound in the long periodic table, a phosphate ester compound, and/or a titanium compound, and particularly preferred are liquids obtained by mixing tetra-n-butyl titanate, polyhydroxy titanium stearate, titanium (oxy) acetylacetonate, titanium tetraacetylacetonate, alcohols, a Group 2 metal compound in the long periodic table, a phosphate ester compound, and/or a titanium compound.
 ジルコニウム化合物としては、具体的には、ジルコニウムテトラアセテイト、ジルコニウムアセテイトヒドロキシド、ジルコニウムトリス(ブトキシ)ステアレート、ジルコニルジアセテイト、シュウ酸ジルコニウム、シュウ酸ジルコニル、シュウ酸ジルコニウムカリウム、ポリヒドロキシジルコニウムステアレート、ジルコニウムエトキシド、ジルコニウムテトラ-n-プロポキシド、ジルコニウムテトライソプロポキシド、ジルコニウムテトラ-n-ブトキシド、ジルコニウムテトラ-t-ブトキシド、もしくはジルコニウムトリブトキシアセチルアセトネート、又はこれらの混合物が例示される。 Specific examples of zirconium compounds include zirconium tetraacetate, zirconium acetate hydroxide, zirconium tris(butoxy)stearate, zirconyl diacetate, zirconium oxalate, zirconyl oxalate, potassium zirconium oxalate, polyhydroxyzirconium stearate, zirconium ethoxide, zirconium tetra-n-propoxide, zirconium tetraisopropoxide, zirconium tetra-n-butoxide, zirconium tetra-t-butoxide, zirconium tributoxyacetylacetonate, or mixtures thereof.
 これらの中では、ジルコニルジアセテイト、ジルコニウムトリス(ブトキシ)ステアレート、ジルコニウムテトラアセテイト、ジルコニウムアセテイトヒドロキシド、シュウ酸ジルコニウムアンモニウム、シュウ酸ジルコニウムカリウム、ポリヒドロキシジルコニウムステアレート、ジルコニウムテトラ-n-プロポキシド、ジルコニウムテトライソプロポキシド、ジルコニウムテトラ-n-ブトキシド、ジルコニウムテトラ-t-ブトキシドが好ましく、ジルコニルジアセテイト、ジルコニウムテトラアセテイト、ジルコニウムアセテイトヒドロキシド、ジルコニウムトリス(ブトキシ)ステアレート、シュウ酸ジルコニウムアンモニウム、ジルコニウムテトラ-n-プロポキシド、又はジルコニウムテトラ-n-ブトキシドがより好ましく、特にジルコニウムトリス(ブトキシ)ステアレートが着色の少ない高重合度のポリエステルが容易に得られる理由から好ましい。 Among these, zirconyl diacetate, zirconium tris(butoxy)stearate, zirconium tetraacetate, zirconium acetate hydroxide, ammonium zirconium oxalate, potassium zirconium oxalate, polyhydroxyzirconium stearate, zirconium tetra-n-propoxide, zirconium tetraisopropoxide, zirconium tetra-n-butoxide, and zirconium tetra-t-butoxide are preferred, with zirconyl diacetate, zirconium tetraacetate, zirconium acetate hydroxide, zirconium tris(butoxy)stearate, ammonium zirconium oxalate, zirconium tetra-n-propoxide, and zirconium tetra-n-butoxide being more preferred, and zirconium tris(butoxy)stearate being particularly preferred because it allows for easy production of polyesters with a high degree of polymerization and little coloration.
 ゲルマニウム化合物としては、具体的には、酸化ゲルマニウムもしくは塩化ゲルマニウム等の無機ゲルマニウム化合物、又はテトラアルコキシゲルマニウムなどの有機ゲルマニウム化合物挙げられる。価格や入手の容易さなどから、酸化ゲルマニウム、テトラエトキシゲルマニウム、又はテトラブトキシゲルマニウムなどが好ましく、特に、酸化ゲルマニウムが好ましい。 Specific examples of germanium compounds include inorganic germanium compounds such as germanium oxide or germanium chloride, and organic germanium compounds such as tetraalkoxygermanium. In view of cost and availability, germanium oxide, tetraethoxygermanium, and tetrabutoxygermanium are preferred, with germanium oxide being particularly preferred.
 鉄の化合物としては、塩化第二鉄などの無機塩化物、四酸化三鉄などの無機酸化物、又はフェロセンなどの有機鉄錯体などがあげられる。これらのなかでも無機酸化物が好ましい。 Examples of iron compounds include inorganic chlorides such as ferric chloride, inorganic oxides such as triiron tetroxide, and organic iron complexes such as ferrocene. Of these, inorganic oxides are preferred.
 その他の金属含有化合物としては、炭酸スカンジウム、スカンジウムアセテート、スカンジウムクロリド、もしくはスカンジウムアセチルアセトネート等のスカンジウム化合物、炭酸イットリウム、イットリウムクロリド、イットリウムアセテート、イットリウムアセチルアセトネート等のイットリウム化合物、バナジウムクロリド、三塩化バナジウムオキシド、バナジウムアセチルアセトネート、もしくはバナジウムアセチルアセトネートオキシド等のバナジウム化合物、モリブデンクロリド、もしくはモリブデンアセテート等のモリブデン化合物、タングステンクロリド、タングステンアセテート、もしくはタングステン酸等のタングステン化合物、又はセリウムクロリド、サマリウムクロリド、もしくはイッテルビウムクロリド等のランタノイド化合物等が挙げられる。 Other metal-containing compounds include scandium compounds such as scandium carbonate, scandium acetate, scandium chloride, and scandium acetylacetonate; yttrium compounds such as yttrium carbonate, yttrium chloride, yttrium acetate, and yttrium acetylacetonate; vanadium compounds such as vanadium chloride, vanadium trichloride oxide, vanadium acetylacetonate, and vanadium acetylacetonate oxide; molybdenum compounds such as molybdenum chloride and molybdenum acetate; tungsten compounds such as tungsten chloride, tungsten acetate, and tungstic acid; and lanthanide compounds such as cerium chloride, samarium chloride, and ytterbium chloride.
 重縮合反応触媒の触媒添加量は特段制限されないが、生成するポリエステルに対する金属量として、下限値が通常、0.1質量ppm以上、好ましくは0.5質量ppm以上、より好ましくは1質量ppm以上であり、上限値が通常、3000質量ppm以下、好ましくは1000質量ppm以下、より好ましくは250質量ppm以下、特に好ましくは130質量ppm以下である。この範囲は、重縮合反応触媒として金属化合物を用いる場合に特に好ましく適用することができる。使用する触媒量が多すぎると、経済的に不利であるばかりでなく、ポリエステル中のカルボキシル基末端濃度が多くなる場合がある為、カルボキシル基末端量及び残留触媒濃度の増大によりポリエステルの熱安定性や耐加水分解性が低下する場合がある。逆に少なすぎると重合活性が低くなり、それに伴いポリエステル製造中にポリエステルの熱分解が誘発され、実用上有用な物性を示すポリエステルが得られにくくなる。 The amount of the polycondensation reaction catalyst to be added is not particularly limited, but the lower limit of the amount of metal relative to the polyester produced is usually 0.1 mass ppm or more, preferably 0.5 mass ppm or more, more preferably 1 mass ppm or more, and the upper limit is usually 3000 mass ppm or less, preferably 1000 mass ppm or less, more preferably 250 mass ppm or less, and particularly preferably 130 mass ppm or less. This range is particularly preferably applicable when a metal compound is used as a polycondensation reaction catalyst. If the amount of catalyst used is too large, not only is it economically disadvantageous, but the concentration of carboxyl groups in the polyester may increase, and the thermal stability and hydrolysis resistance of the polyester may decrease due to the increase in the amount of carboxyl groups and the residual catalyst concentration. Conversely, if the amount is too small, the polymerization activity will be low, which will induce thermal decomposition of the polyester during polyester production, making it difficult to obtain a polyester that exhibits practically useful physical properties.
 触媒の反応系への添加位置は、重縮合反応処理以前であれば特に限定されず、原料仕込み時に添加しておいてもよいが、水が多く存在又は発生している状況下で触媒が共存すると触媒が失活し、異物が析出する原因となり製品の品質を損なう場合がある為、エステル化反応処理以後に添加するのが好ましい。 The location of the catalyst added to the reaction system is not particularly limited as long as it is added before the polycondensation reaction process, and it may be added when the raw materials are charged. However, if the catalyst is present in a situation where a large amount of water is present or generated, the catalyst may be deactivated, causing the precipitation of foreign matter and impairing the quality of the product, so it is preferable to add it after the esterification reaction process.
(4)反応槽
 エステル化反応処理を行うエステル化反応槽としては、公知のものが使用でき、縦型攪拌完全混合槽、縦型熱対流式混合槽、又は塔型連続反応槽等の型式のいずれであってもよく、また、単数槽としてもよく、同種又は異種の槽を直列させた複数槽としてもよい。中でも攪拌装置を有する反応槽が好ましく、攪拌装置としては、動力部、軸受、軸、及び攪拌翼を有する通常のタイプの他、タービンステーター型高速回転式攪拌機、ディスクミル型攪拌機、又はローターミル型攪拌機等の高速回転するタイプも用いることができる。
(4) Reactor As the esterification reaction tank for carrying out the esterification reaction treatment, a known one can be used, and it may be any of the types such as a vertical agitated complete mixing tank, a vertical thermal convection mixing tank, or a tower-type continuous reaction tank, and it may be a single tank or a multiple tank of the same or different types connected in series. Among them, a reaction tank having an agitator is preferred, and as the agitator, in addition to a normal type having a power unit, bearings, shaft, and agitator blades, a high-speed rotating type such as a turbine stator type high-speed rotating agitator, a disk mill type agitator, or a rotor mill type agitator can also be used.
 攪拌の態様にも制限はなく、反応槽中の反応液を反応槽の上部、下部、又は横部等から直接攪拌する通常の攪拌方法の他、反応液の一部を反応槽の外部に配管等で持ち出してラインミキサ-等で攪拌し、反応液を循環させる方法もとることができる。攪拌翼の種類も公知のものが選択でき、具体的にはプロペラ翼、スクリュー翼、タービン翼、ファンタービン翼、デイスクタービン翼、ファウドラー翼、フルゾーン翼、又はマックスブレンド翼等が挙げられる。 There are no limitations on the type of stirring, and in addition to the usual stirring method of directly stirring the reaction liquid in the reaction tank from the top, bottom, or side of the reaction tank, a method of taking part of the reaction liquid outside the reaction tank via piping or the like and stirring it with a line mixer or the like to circulate the reaction liquid can also be used. The type of stirring blade can also be selected from known types, and specific examples include propeller blades, screw blades, turbine blades, fan turbine blades, disk turbine blades, Pfaudle blades, full zone blades, and Max Blend blades.
 重縮合反応槽の型式に特に制限はなく、例えば、縦型攪拌重合槽、横型攪拌重合槽、又は薄膜蒸発式重合槽などを挙げることができる。重縮合反応槽は、1基とすることができ、あるいは、同種又は異種の複数基の槽を直列させた複数槽とすることもできるが、反応液の粘度が上昇する重縮合反応の後期は界面更新性、プラグフロー性、又はセルフクリーニング性に優れた薄膜蒸発機能を有した横型攪拌重合機を選定することが好ましい。 There are no particular limitations on the type of polycondensation reaction tank, and examples include vertical agitation polymerization tanks, horizontal agitation polymerization tanks, and thin-film evaporation polymerization tanks. The polycondensation reaction tank can be a single tank, or a multiple tank arrangement in which multiple tanks of the same or different types are connected in series. However, in the later stages of the polycondensation reaction when the viscosity of the reaction liquid increases, it is preferable to select a horizontal agitation polymerization machine with a thin-film evaporation function that has excellent interface renewal properties, plug flow properties, or self-cleaning properties.
 反応工程で得られる反応生成物中のポリエステルの含有率は特段制限されないが、通常90質量%以上であり、92.5質量%以上であることが好ましく、95質量%以上であることがより好ましく、97質量%以上であることがさらに好ましく、また、通常100質量%以下であり、99.5質量%以下であることが好ましく、99質量%以下であることがより好ましく、98.5質量%以下であることがさらに好ましい。 The content of polyester in the reaction product obtained in the reaction step is not particularly limited, but is usually 90% by mass or more, preferably 92.5% by mass or more, more preferably 95% by mass or more, and even more preferably 97% by mass or more, and is usually 100% by mass or less, preferably 99.5% by mass or less, more preferably 99% by mass or less, and even more preferably 98.5% by mass or less.
 反応工程で得られる反応生成物中のオリゴマー成分の含有率は特段制限されず、上記のポリエステルを除く残部であってよいが、通常0.1質量%以上であり、0.2質量%以上であることが好ましく、0.3質量%以上であることがより好ましく、0.5質量%以上であることがさらに好ましく、また、通常3質量%以下であり、2.5質量%以下であることが好ましく、2質量%以下であることがより好ましく、1.5質量%以下であることがさらに好ましい。 The content of the oligomer component in the reaction product obtained in the reaction step is not particularly limited and may be the remainder excluding the above polyester, but is usually 0.1% by mass or more, preferably 0.2% by mass or more, more preferably 0.3% by mass or more, and even more preferably 0.5% by mass or more, and is usually 3% by mass or less, preferably 2.5% by mass or less, more preferably 2% by mass or less, and even more preferably 1.5% by mass or less.
(ペレット化工程)
 ポリエステルの製造方法は、成形加工の利便性向上および後述する精製工程における接触処理において、表面積拡大によるオリゴマー成分の接触処理効率を向上させることができる観点から、上記の反応工程の後に、特には、上記の反応工程と後述する精製工程との間に、上記の反応工程により得られた反応生成物をペレット化してペレット(ポリエステルペレット)を得るペレット化工程をさらに有することが好ましい。
(Pelletizing process)
From the viewpoint of improving the convenience of molding and improving the efficiency of contact treatment of oligomer components by increasing the surface area in the contact treatment in the purification step described later, it is preferable that the production method for polyester further includes a pelletizing step of pelletizing the reaction product obtained in the above reaction step to obtain pellets (polyester pellets) after the above reaction step, particularly between the above reaction step and the purification step described later.
 ペレット化の方法は特段制限されず公知の方法を採用することができ、例えば、溶融した反応生成物をギヤポンプ又は押出機を用いてダイスヘッドのノズル孔より押出し、水などで冷却しつつ又は冷却固化したストランドをカッターで切断するストランドカット法、又はノズル孔より水中に押出し溶融状態で直ちに切断する水中ホットカット法などが広く用いられる。特に、ペレット中に切り屑が少ないこと、得られるペレットの安息角が低いこと、並びにペレットの移送安定性及び成形時の成形機へのフィードの安定性が良好なことから水中ホットカット方式が好ましく採用される。水中カット方式における冷却水温は特段制限されないが、通常10℃以上であることが好ましく、20℃以上であることがより好ましく、また、70℃以下であることが好ましく、60℃以下であることがより好ましく、50℃以下であることが更に好ましい。 The pelletizing method is not particularly limited and known methods can be used. For example, a strand cutting method is used in which the molten reaction product is extruded from the nozzle hole of the die head using a gear pump or extruder, and the strands are cut with a cutter while being cooled with water or the like, or the cooled and solidified strands are cut with a cutter, or an underwater hot cutting method is used in which the product is extruded from the nozzle hole into water and immediately cut in a molten state. In particular, the underwater hot cutting method is preferably used because there is little cutting waste in the pellets, the angle of repose of the resulting pellets is low, and the pellets are transported stably and the feeding stability to the molding machine during molding is good. The cooling water temperature in the underwater cutting method is not particularly limited, but is usually preferably 10°C or higher, more preferably 20°C or higher, and preferably 70°C or lower, more preferably 60°C or lower, and even more preferably 50°C or lower.
 ノズル孔の大きさは特段制限されないが、通常、1mmから30mmの孔径を有するものが使用される。開口部の形状も特に制限はないが、円形、楕円形、長円形、角形又は星形等の形状が用いられる。また、1開口部当たりの吐出量は通常5~100kg/時間であり、好ましくは10から70kg/時間であり、より好ましくは20から50kg/時間である。 The size of the nozzle hole is not particularly limited, but a hole diameter of 1 mm to 30 mm is usually used. The shape of the opening is also not particularly limited, but shapes such as circle, ellipse, oblong, square, or star are used. The discharge rate per opening is usually 5 to 100 kg/hour, preferably 10 to 70 kg/hour, and more preferably 20 to 50 kg/hour.
 ペレットの形状は球状、円柱状、楕円柱状、長円柱状、角柱状、もしくは繭玉状、又はこれらが扁平になった形状等がある。水中ホットカット方式では球状、もしくは繭玉状、又はこれらが扁平状になった形状等が好ましく採用される。その大きさは特に制限されないが、後述する精製工程におけるオリゴマー成分の接触処理効率、乾燥工程の乾燥効率、及びペレット移送操作性等の観点からペレット一粒当たりの重量は1~50mgであり、好ましくは3~40mgであり、更に好ましくは5~30mgである。また質量当たりのペレット表面積が大きいほうが精製工程における接触処理効率の点から好ましい。 The pellets may be spherical, cylindrical, elliptical, oblong, rectangular, or cocoon-shaped, or may have a flattened shape. In the underwater hot-cut method, a spherical or cocoon-shaped shape or a flattened shape is preferably used. There are no particular restrictions on the size, but from the viewpoints of the contact treatment efficiency of the oligomer components in the purification process described below, the drying efficiency in the drying process, and the ease of pellet transport, the weight of each pellet is 1 to 50 mg, preferably 3 to 40 mg, and more preferably 5 to 30 mg. Also, a larger pellet surface area per mass is preferable in terms of the contact treatment efficiency in the purification process.
(精製工程)
 ポリエステルの製造方法は、上記の反応工程により得られた反応生成物と、水を含む溶剤とを接触処理させることによりオリゴマー成分を含む処理液と接触処理後反応生成物とを得る接触処理を含む精製工程をさらに有することが好ましい。精製工程は、接触処理以外の処理を含んでいてもよい。
 後述するように、精製工程で接触処理を行うことにより、反応生成物中のオリゴマー成分の含有量を低減させることができるが、さらに、接触処理により得られた接触処理液にはオリゴマー成分が含まれるため、このオリゴマー成分を再利用することができる。具体的には、例えば、接触処理液中のオリゴマー成分を反応工程におけるポリエステル原料中のオリゴマー成分として再利用することができる。より具体的には、反応工程の前に、ポリエステル原料を調製する原料調製工程をさらに有する場合、接触処理液中のオリゴマー成分を、原料調製工程から反応工程までのいずれかの工程に供給することにより再利用することができる。
(Refining process)
The method for producing a polyester preferably further includes a purification step including a contact treatment in which the reaction product obtained in the above reaction step is contacted with a solvent containing water to obtain a treatment liquid containing an oligomer component and a post-contact treatment reaction product. The purification step may include treatments other than the contact treatment.
As described later, the content of oligomer components in the reaction product can be reduced by performing contact treatment in the purification step, and furthermore, since the contact treatment liquid obtained by the contact treatment contains oligomer components, this oligomer component can be reused. Specifically, for example, the oligomer components in the contact treatment liquid can be reused as oligomer components in the polyester raw material in the reaction step. More specifically, when a raw material preparation step for preparing a polyester raw material is further provided before the reaction step, the oligomer components in the contact treatment liquid can be reused by supplying them to any of the steps from the raw material preparation step to the reaction step.
(1)接触処理
 精製工程は、反応工程(ペレット化工程を採用した場合には、ペレット化工程)で得られた反応生成物を接触処理液に接触させる接触処理を行うことにより、反応生成物中に含有されるオリゴマー成分を接触処理液に接触処理して反応生成物中のオリゴマー成分の含有量を低減することができる。
(1) Contact Treatment In the purification step, a contact treatment is carried out in which the reaction product obtained in the reaction step (when a pelletizing step is adopted, the pelletizing step) is brought into contact with a contact treatment liquid, whereby oligomer components contained in the reaction product are brought into contact with the contact treatment liquid, thereby making it possible to reduce the content of oligomer components in the reaction product.
 接触処理液は水を含む溶剤であれば特段制限されず、例えば、メタノール、エタノール、イソプロパノール、又はブタノールなどのアルコール類と水との混合液が挙げられる。この中でも特に、取扱い易さ、価格、接触処理効率、及び安全性などの面から水/エタノール混合液(水とエタノールの混合液)が好ましい。 The contact treatment liquid is not particularly limited as long as it is a solvent containing water, and examples thereof include a mixture of water and an alcohol such as methanol, ethanol, isopropanol, or butanol. Among these, a water/ethanol mixture (a mixture of water and ethanol) is particularly preferred in terms of ease of handling, cost, contact treatment efficiency, and safety.
 ポリエステルの製造方法が上述したペレット化工程を含む場合、接触処理は、通常ペレット化後連続して行われるが、得られたペレットを一時的に貯槽に保管した後に接触処理を行っても構わない。 If the polyester manufacturing method includes the above-mentioned pelletizing step, the contact treatment is usually carried out immediately after pelletizing, but the contact treatment may also be carried out after temporarily storing the obtained pellets in a storage tank.
(1-1)接触処理液の組成
 反応生成物と接触させる接触処理液全体に対する水の割合は特段制限されず、通常10質量%以上であり、好ましくは20質量%以上であり、より好ましくは25質量%以上である。また、該水の割合は、通常99質量%以下であり、好ましくは95質量%以下であり、更に好ましくは90質量%以下であり、特に好ましくは85質量%以下である。
 上記の水の混合割合が上記範囲の下限未満であると、アルコール分解による分子量低下により、ポリエステルの品質が低下する傾向がある。また、アルコール使用割合を多くすると、使用時の液及び当該液から発生するガスの爆発危険性が高くなるなど、安全性の観点から取り扱いに注意を要する。一方、上記の水の割合が上記範囲の上限を超えると、オリゴマー成分の除去が十分でなく、オリゴマー成分の含有量を充分に低減できず、望ましい品質のポリエステルが得られない場合がある。
(1-1) Composition of the contact treatment liquid The proportion of water in the entire contact treatment liquid to be contacted with the reaction product is not particularly limited, and is usually 10% by mass or more, preferably 20% by mass or more, more preferably 25% by mass or more. The proportion of water is usually 99% by mass or less, preferably 95% by mass or less, further preferably 90% by mass or less, and particularly preferably 85% by mass or less.
If the mixing ratio of the water is less than the lower limit of the above range, the quality of the polyester tends to deteriorate due to a decrease in molecular weight caused by alcohol decomposition. In addition, if the alcohol content is increased, the liquid and the gas generated from the liquid during use may become explosive, and therefore care must be taken in handling from the viewpoint of safety. On the other hand, if the mixing ratio of the water exceeds the upper limit of the above range, the oligomer components may not be sufficiently removed, and the content of the oligomer components may not be sufficiently reduced, resulting in a polyester of desired quality.
(1-2)接触処理温度
 反応生成物と接触処理液とを接触させる際の接触処理液の温度は特段制限されず、好ましくは25℃以上であり、より好ましくは30℃以上であり、更に好ましくは35℃以上であり、特に好ましくは40℃以上である。また、該温度の上限は通常ポリエステルの融点以下であり、好ましくは95℃以下であり、更に好ましくは90℃以下であり、特に好ましくは85℃以下である。接触させる温度を上記範囲の下限未満にすると、処理時間に長時間を必要とし、経済的に不利となるばかりでなく、オリゴマー成分の除去効果の低下により、望ましい品質のポリエステルが得られない場合がある。一方、接触させる温度が上記範囲の上限を超えると、加水分解、アルコール分解により粘度低下が大きくなり、品質を損なうばかりでなく、ペレット間の融着やペレット抜き出し不良を引き起こすなど運転面にも困難を伴う。
(1-2) Contact Treatment Temperature The temperature of the contact treatment liquid when the reaction product is contacted with the contact treatment liquid is not particularly limited, and is preferably 25°C or higher, more preferably 30°C or higher, even more preferably 35°C or higher, and particularly preferably 40°C or higher. The upper limit of the temperature is usually below the melting point of the polyester, preferably 95°C or lower, more preferably 90°C or lower, and particularly preferably 85°C or lower. If the contact temperature is below the lower limit of the above range, not only will a long treatment time be required, which is economically disadvantageous, but also a polyester of desired quality may not be obtained due to a decrease in the effect of removing oligomer components. On the other hand, if the contact temperature exceeds the upper limit of the above range, the viscosity will decrease significantly due to hydrolysis and alcoholysis, which will not only impair the quality, but will also cause difficulties in operation, such as fusion between pellets and poor pellet extraction.
(1-3)接触処理時間
 反応生成物と接触処理液を接触させる時間は特段制限されず、通常0.1時間以上であり、好ましくは1時間以上であり、更に好ましくは3時間以上である。また、該時間は、通常24時間以下であり、好ましくは18時間以下であり、更に好ましくは10時間以下である。接触させる時間が上記範囲の下限未満であると、オリゴマー成分の除去が十分でなく、望ましい品質のポリエステルが得られない場合がある。一方、接触させる時間が上記範囲の上限を超えると、加水分解、アルコール分解により粘度低下が大きくなり、品質を損なう場合がある。
(1-3) Contact Treatment Time The time for contacting the reaction product with the contact treatment liquid is not particularly limited, and is usually 0.1 hours or more, preferably 1 hour or more, and more preferably 3 hours or more. The time is usually 24 hours or less, preferably 18 hours or less, and more preferably 10 hours or less. If the contact time is less than the lower limit of the above range, the oligomer components may not be sufficiently removed, and a polyester of desired quality may not be obtained. On the other hand, if the contact time exceeds the upper limit of the above range, the viscosity may decrease significantly due to hydrolysis and alcoholysis, and the quality may be impaired.
(1-4)反応生成物と接触処理液との比
 接触させる反応生成物と接触処理液との比(処理液/反応生成物の比)は、質量比にして、通常1.0以上であり、好ましくは1.5以上であり、更に好ましくは2.0以上である。また、該比は、質量比にして、通常50以下であり、好ましくは30以下であり、更に好ましくは20以下である。接触させる反応生成物と液の質量比が上記範囲の下限未満であると、処理中の接触処理液中のオリゴマー成分の濃度増加によりオリゴマー成分の除去効果が低下し、望ましい品質のポリエステルが得られない場合がある。一方、接触させるペレットと液の質量比が上記範囲の上限を超えると、使用する接触処理液量が多いことによる設備の大型化、接触処理液のコスト増加などプロセス面、及びコスト面で不利である。
(1-4) Ratio of reaction product to contact treatment liquid The ratio of the reaction product to the contact treatment liquid (treatment liquid/reaction product ratio) is usually 1.0 or more, preferably 1.5 or more, and more preferably 2.0 or more, in terms of mass ratio. Moreover, the ratio is usually 50 or less, preferably 30 or less, and more preferably 20 or less, in terms of mass ratio. If the mass ratio of the reaction product to be contacted to the liquid is less than the lower limit of the above range, the effect of removing the oligomer component may decrease due to an increase in the concentration of the oligomer component in the contact treatment liquid during treatment, and a polyester of desired quality may not be obtained. On the other hand, if the mass ratio of the pellets to be contacted to the liquid exceeds the upper limit of the above range, it is disadvantageous in terms of process and cost, such as an increase in the size of the equipment due to a large amount of contact treatment liquid used and an increase in the cost of the contact treatment liquid.
(1-5)接触処理方法
 反応生成物と接触処理液とを接触させる態様としては、回分式と連続式があり、いずれの態様も採用することができる。
 本実施形態における回分式の態様としては、処理槽に反応生成物と接触処理液を入れて所定温度で、所定時間接触処理させた後、抜き出す方法が挙げられる。反応生成物と接触処理液との接触処理は、接触処理液の循環下で行うこともできるし、非循環下で行うこともできる。
 本実施形態における連続式の態様としては、配管、又は処理槽にペレットを連続的に供給しつつ、所定温度の接触処理液を反応生成物の流れに対して並流、又は向流で接触させて所定の接触時間で保持しつつ連続的にペレットを抜き出す方法などがある。
(1-5) Contact Treatment Method The reaction product may be contacted with the contact treatment liquid by a batch method or a continuous method, and either method may be employed.
In the embodiment of the batch system, the reaction product and the contact treatment liquid are placed in a treatment tank, and the reaction product and the contact treatment liquid are subjected to contact treatment at a predetermined temperature for a predetermined time, and then the reaction product and the contact treatment liquid are discharged. The contact treatment between the reaction product and the contact treatment liquid can be performed with or without circulation of the contact treatment liquid.
An example of a continuous mode in this embodiment is a method in which pellets are continuously supplied to a pipe or treatment tank, and a contact treatment liquid at a predetermined temperature is brought into contact with the flow of the reaction product in a cocurrent or countercurrent manner, and the contact time is maintained for a predetermined time, while the pellets are continuously withdrawn.
(2)分離処理
 精製工程は、接触処理液のリサイクル率向上と環状オリゴマー成分の回収効率向上によるコスト削減の観点から、接触処理後に、接触処理液中の環状オリゴマー成分のうち少なくとも一部を分離する分離処理を含んでいてもよい。また、環状オリゴマー成分のうち少なくとも一部を分離して接触処理液中の環状オリゴマー成分の含有量を調整した後、前記接触処理における接触処理液として循環再利用できる。更に、分離された環状オリゴマー成分を含む環状オリゴマー成分は、冷却などにより接触処理液から分離された後、又は濃縮された後に、反応工程におけるポリエステル原料中のオリゴマー成分として再利用することができる。特に、反応工程におけるエステル化反応処理を行うエステル化反応槽や、ジカルボン酸成分とジオール成分とのスラリー調製槽に、分離された環状オリゴマー成分を戻すのは好ましい方法である。
(2) Separation treatment From the viewpoint of cost reduction by improving the recycling rate of the contact treatment liquid and improving the recovery efficiency of the cyclic oligomer component, the purification step may include a separation treatment for separating at least a part of the cyclic oligomer component in the contact treatment liquid after the contact treatment. In addition, after separating at least a part of the cyclic oligomer component to adjust the content of the cyclic oligomer component in the contact treatment liquid, it can be recycled and reused as the contact treatment liquid in the contact treatment. Furthermore, the cyclic oligomer component containing the separated cyclic oligomer component can be reused as an oligomer component in the polyester raw material in the reaction step after being separated from the contact treatment liquid by cooling or the like, or after being concentrated. In particular, it is a preferred method to return the separated cyclic oligomer component to the esterification reaction tank in which the esterification reaction is performed in the reaction step, or to the slurry preparation tank for the dicarboxylic acid component and the diol component.
 分離処理後の接触処理液は、そのまま循環再利用することもできるし、分離した環状オリゴマー成分に同伴して抜き出された接触処理液量に相当する量の新たな接触処理液を追加して再利用することもできる。 The contact treatment liquid after the separation process can be recycled as is, or it can be reused by adding new contact treatment liquid in an amount equivalent to the amount of contact treatment liquid extracted along with the separated cyclic oligomer components.
 分離処理後、蒸留濃縮及び/又は冷却などにより分離された、オリゴマー成分(接触処理液とオリゴマー成分の混合物であってもよい。)は、一旦溶融状態とした後、又は原料として用いるジオール成分に加熱溶解させた溶液とした後、ポリエステルの原料として回収することができる。回収したオリゴマー成分は、エステル化反応槽に直接供給することもできるし、図1に例示するジオール成分の再循環ライン(2)、エステル化反応生成物の抜き出しライン(4)に供給することもでき、また、図2に例示する重縮合反応槽(a)に供給することもでき、また、ジカルボン酸成分とジオール成分とのスラリー調製槽に供給することもできる。 After the separation process, the oligomer component (which may be a mixture of the contact treatment liquid and the oligomer component) separated by distillation concentration and/or cooling can be recovered as a polyester raw material after being melted or heated and dissolved in the diol component used as a raw material to form a solution. The recovered oligomer component can be directly supplied to the esterification reaction tank, or can be supplied to the diol component recycle line (2) or the esterification reaction product withdrawal line (4) shown in Figure 1, or can be supplied to the polycondensation reaction tank (a) shown in Figure 2, or can be supplied to a slurry preparation tank for the dicarboxylic acid component and the diol component.
(乾燥工程)
 ポリエステルの製造方法は、上記の接触処理後反応生成物を乾燥する乾燥処理を行う乾燥工程をさらに有していてもよい。接触処理された反応生成物は接触処理液を含んでいるので、これらを除くために乾燥工程において乾燥することが好ましい。
 乾燥工程で用いる乾燥機には、乾燥ガスとして加熱空気又は加熱窒素等の不活性ガスを流通させる、棚段式の乾燥機、バンド乾燥機、横型円筒回転乾燥機、回転翼付き横型乾燥機、回転翼付き縦型乾燥機(いわゆるホッパードライヤー型乾燥機)、移動床式縦型乾燥機、又は流動床式乾燥機などがある。また、上記のガス流通方式と異なる乾燥機としては、ダブルコーン型回転真空乾燥機、タンブラー型回転真空乾燥機、又はマイクロ波乾燥機などがある。
(Drying process)
The method for producing a polyester may further include a drying step in which a drying treatment is performed to dry the reaction product after the contact treatment. Since the reaction product after the contact treatment contains the contact treatment liquid, it is preferable to dry it in the drying step in order to remove the contact treatment liquid.
Dryers used in the drying step include tray-type dryers, band dryers, horizontal cylindrical rotary dryers, horizontal dryers with rotary blades, vertical dryers with rotary blades (so-called hopper dryer type dryers), moving bed type vertical dryers, fluidized bed dryers, etc., which circulate an inert gas such as heated air or heated nitrogen as a drying gas. Dryers different from the above gas circulation type include double-cone type rotary vacuum dryers, tumbler type rotary vacuum dryers, microwave dryers, etc.
 これらは回分式、半回分式、又は連続式で行うことができるが、大量生産には生産効率の観点から連続式で行うことが好ましい。また、設備が複雑にならない観点から、移動床式縦型乾燥機、又はこれを複数段連続したものを用いることが好ましい。 These processes can be carried out in a batch, semi-batch, or continuous manner, but for mass production, a continuous method is preferable from the viewpoint of production efficiency. Also, from the viewpoint of keeping the equipment complex, it is preferable to use a moving bed vertical dryer or a multiple-stage continuous dryer.
 乾燥温度は特段制限されないが、ガス温度として、通常25℃以上であり、好ましくは30℃以上であり、更に好ましくは35℃以上であり、特に好ましくは40℃以上である。また、該温度の上限は通常ポリエステルの融点以下であり、好ましくはポリエステルの融点マイナス5℃以下であり、更に好ましくはポリエステルの融点マイナス8℃以下であり、特に好ましくはポリエステルの融点マイナス10℃以下である。乾燥温度を上記範囲の下限未満にすると、乾燥長時間を必要とし、経済的に不利となる。一方、乾燥温度が上記範囲の上限を超えると、ペレット同士の融着やペレットを乾燥機から抜き出す際の抜出し不良を引き起こすなど運転面に困難を伴うことがある。乾燥機を通過した乾燥ガスは接触処理液成分を含んでおり、乾燥ガスの冷却、吸着などにより接触処理液成分を減少させ、乾燥ガスとして再利用することができる。 The drying temperature is not particularly limited, but the gas temperature is usually 25°C or higher, preferably 30°C or higher, more preferably 35°C or higher, and particularly preferably 40°C or higher. The upper limit of the temperature is usually below the melting point of the polyester, preferably below the melting point of the polyester minus 5°C, more preferably below the melting point of the polyester minus 8°C, and particularly preferably below the melting point of the polyester minus 10°C. If the drying temperature is below the lower limit of the above range, a long drying time is required, which is economically disadvantageous. On the other hand, if the drying temperature exceeds the upper limit of the above range, it may cause operational difficulties such as fusion of pellets and poor removal when removing the pellets from the dryer. The drying gas that has passed through the dryer contains contact treatment liquid components, and the contact treatment liquid components can be reduced by cooling or adsorption of the drying gas, and reused as drying gas.
 乾燥時間は特段制限されないが、通常0.1~100時間であり、好ましくは1~80時間であり、より好ましくは5~50時間である。乾燥ガスの流速は移動床式の場合、通常0.05~1.0m/秒(空塔速度)である。乾燥後の反応生成物におけるアルコール含有量は、通常1000質量ppm以下であり、好ましくは800質量ppm以下であり、より好ましくは500質量ppm以下である。含有アルコールが多いと本ペレットを溶融成形時に溶融粘度の低下が著しく成形性不良となる傾向がある。アルコールの含有量は少ないほど良好であるが、工業的に、かつ合理的に得られる濃度としては、通常50質量ppm以上である。通常乾燥後のペレットの水分含有量は、アルコール含有量より少なくなる。反応生成物中の水分含有量は、通常1000質量ppm以下であり、好ましくは500質量ppm以下であり、より好ましくは250質量ppm以下である。反応生成物中の水分が多いと本ペレットを溶融成形時に加水分解によるIVの低下が著しく、成形性不良となり成形品物性が低下する傾向がある。 The drying time is not particularly limited, but is usually 0.1 to 100 hours, preferably 1 to 80 hours, and more preferably 5 to 50 hours. In the case of a moving bed type, the flow rate of the drying gas is usually 0.05 to 1.0 m/s (superficial velocity). The alcohol content in the reaction product after drying is usually 1000 ppm by mass or less, preferably 800 ppm by mass or less, and more preferably 500 ppm by mass or less. If the content of alcohol is large, the melt viscosity of the pellets tends to decrease significantly during melt molding, resulting in poor moldability. The lower the alcohol content, the better, but an industrially and rationally obtainable concentration is usually 50 ppm by mass or more. The moisture content of the pellets after drying is usually less than the alcohol content. The moisture content in the reaction product is usually 1000 ppm by mass or less, preferably 500 ppm by mass or less, and more preferably 250 ppm by mass or less. If there is a large amount of moisture in the reaction product, the IV will drop significantly due to hydrolysis when the pellets are melt molded, leading to poor moldability and reduced physical properties of the molded product.
[製造プロセス例]
 以下に例として、ジカルボン酸成分としてコハク酸、ジオール成分として1,4-ブタンジオール(以下、BGと略記することがある)、その他の共重合成分(多官能化合物)としてリンゴ酸を原料とするポリエステルの製造方法の好ましい実施態様を説明するが、本発明はこれに限定されるものではない。
[Manufacturing process example]
A preferred embodiment of a method for producing a polyester using succinic acid as a dicarboxylic acid component, 1,4-butanediol (hereinafter sometimes abbreviated as BG) as a diol component, and malic acid as another copolymerization component (polyfunctional compound) as raw materials will be described below as an example, but the present invention is not limited thereto.
 以下、添付図面に基づき、ポリエステルの製造方法の好ましい実施態様を説明する。図1は、本実施形態で採用するエステル化反応処理の一例の説明図、図2は、本実施形態で採用する重縮合反応処理の一例の説明図である。なお、図1は、エステル化反応処理だけでなくエステル交換反応処理にも適用することができ、その場合、以下の説明においては、エステル化反応槽をエステル交換反応槽と読み替える。 Below, a preferred embodiment of the polyester manufacturing method will be described with reference to the attached drawings. Fig. 1 is an explanatory diagram of an example of an esterification reaction process employed in this embodiment, and Fig. 2 is an explanatory diagram of an example of a polycondensation reaction process employed in this embodiment. Note that Fig. 1 can be applied not only to an esterification reaction process but also to an ester exchange reaction process, in which case, in the following description, the esterification reaction tank will be read as an ester exchange reaction tank.
 図1において、原料のコハク酸及びリンゴ酸は、通常、原料混合槽(図示せず)でBGと混合され、原料供給ライン(1)からスラリー又は液体の形態でエステル化反応槽(A)に供給される。また、エステル化反応時に触媒を添加する場合は、触媒調製槽(図示せず)でBGの溶液とした後、触媒供給ライン(3)に触媒溶液が供給される。図1では再循環1,4-ブタンジオールの再循環ライン(2)に触媒供給ライン(3)を連結し、両者を混合した後、エステル化反応槽(A)の液相部に供給する態様を示した。 In Figure 1, the raw materials succinic acid and malic acid are usually mixed with BG in a raw material mixing tank (not shown) and supplied in the form of a slurry or liquid from the raw material supply line (1) to the esterification reaction tank (A). If a catalyst is added during the esterification reaction, it is made into a BG solution in a catalyst preparation tank (not shown) and the catalyst solution is supplied to the catalyst supply line (3). Figure 1 shows an embodiment in which the catalyst supply line (3) is connected to the recycle line (2) for recycle 1,4-butanediol, and the two are mixed and then supplied to the liquid phase of the esterification reaction tank (A).
 エステル化反応槽(A)から留出するガスは、留出ライン(5)を経て精留塔(C)で高沸成分と低沸成分とに分離される。通常、高沸成分の主成分は1,4-ブタンジオールであり、低沸成分の主成分は、水及びBGの分解物であるテトラヒドロフラン(以下、THFと略記することがある)である。 The gas distilled from the esterification reaction tank (A) passes through the distillation line (5) and is separated into high-boiling and low-boiling components in the fractionator (C). Usually, the main component of the high-boiling component is 1,4-butanediol, and the main component of the low-boiling component is water and tetrahydrofuran (hereinafter sometimes abbreviated as THF), which is a decomposition product of BG.
 精留塔(C)で分離された高沸成分は抜出ライン(6)から抜き出され、ポンプ(D)を経て、一部は再循環ライン(2)からエステル化反応槽(A)に循環され、一部は循環ライン(7)から精留塔(C)に戻される。また、余剰分は抜出ライン(8)から外部に抜き出される。一方、精留塔(C)で分離された低沸成分はガス抜出ライン(9)から抜き出され、コンデンサ(G)で凝縮され、凝縮液ライン(10)を経てタンク(F)に一時溜められる。タンク(F)に集められた低沸成分の一部は、抜出ライン(11)、ポンプ(E)及び循環ライン(12)を経て精留塔(C)に戻され、残部は、抜出ライン(13)を経て外部に抜き出される。コンデンサ(G)はベントライン(14)を経て排気装置(図示せず)に接続されている。エステル化反応槽(A)内で生成したエステル化反応生成物は、抜出ポンプ(B)及びエステル化反応生成物の抜出ライン(4)を経て図2に示す第1重縮合反応槽(a)に供される。 The high boiling components separated in the distillation tower (C) are extracted through the extraction line (6) and pump (D), some of which is circulated through the recirculation line (2) to the esterification reaction tank (A), and some of which is returned through the circulation line (7) to the distillation tower (C). The surplus is extracted to the outside through the extraction line (8). On the other hand, the low boiling components separated in the distillation tower (C) are extracted through the gas extraction line (9), condensed in the condenser (G), and temporarily stored in the tank (F) through the condensate line (10). A portion of the low boiling components collected in the tank (F) are returned to the distillation tower (C) through the extraction line (11), pump (E), and circulation line (12), and the remainder is extracted to the outside through the extraction line (13). The condenser (G) is connected to an exhaust device (not shown) through a vent line (14). The esterification reaction product produced in the esterification reaction tank (A) is supplied to the first polycondensation reaction tank (a) shown in FIG. 2 via the discharge pump (B) and the discharge line (4) for the esterification reaction product.
 図1に示す工程においては、再循環ライン(2)に触媒供給ライン(3)が連結されているが、両者は独立していてもよい。また、原料供給ライン(1)はエステル化反応槽(A)の液相部に接続されていてもよい。 In the process shown in FIG. 1, the catalyst supply line (3) is connected to the recirculation line (2), but the two may be independent. Also, the raw material supply line (1) may be connected to the liquid phase of the esterification reaction tank (A).
 重縮合反応槽前のエステル化反応生成物に触媒を添加する場合は、触媒調製槽(図示せず)で所定濃度に調製した後、図2における触媒供給ライン(L7)を経て、原料供給ライン(L8)に連結され、BGで更に希釈された後、エステル化反応生成物の抜出ライン(4)に供給される。 When a catalyst is added to the esterification reaction product before the polycondensation reaction tank, it is prepared to a predetermined concentration in a catalyst preparation tank (not shown), then passed through the catalyst supply line (L7) in Figure 2, connected to the raw material supply line (L8), further diluted with BG, and supplied to the esterification reaction product withdrawal line (4).
 次に、エステル化反応生成物の抜出ライン(4)からフィルター(p)を経て第1重縮合反応槽(a)に供給されたエステル化反応生成物は、減圧下に重縮合反応されてポリエステル低重合体となり、その後、抜出用ギヤポンプ(c)及び抜出ライン(L1)、フィルター(q)を経て第2重縮合反応槽(d)に供給される。第2重縮合反応槽(d)では、通常、第1重縮合反応槽(a)よりも低い圧力で更に重縮合反応が進む。得られた重縮合反応生成物は、抜出用ギヤポンプ(e)及び出口流路である抜出ライン(L3)、フィルター(r)を経て、第3重縮合反応槽(k)に供給される。第3重縮合反応槽(k)は、複数個の攪拌翼ブロックで構成され、2軸のセルフクリーニングタイプの攪拌翼を具備した横型の反応槽である。抜出ライン(L3)を通じて第2重縮合反応槽(d)から第3重縮合反応槽(k)に導入された重縮合反応生成物は、ここで更に重縮合反応が進められた後、ペレット化の工程に移送される。 Next, the esterification reaction product supplied to the first polycondensation reaction tank (a) through the esterification reaction product discharge line (4) and the filter (p) undergoes a polycondensation reaction under reduced pressure to become a polyester low polymer, which is then supplied to the second polycondensation reaction tank (d) through the discharge gear pump (c), the discharge line (L1), and the filter (q). In the second polycondensation reaction tank (d), the polycondensation reaction usually proceeds further at a lower pressure than in the first polycondensation reaction tank (a). The obtained polycondensation reaction product is supplied to the third polycondensation reaction tank (k) through the discharge gear pump (e), the discharge line (L3) which is the outlet flow path, and the filter (r). The third polycondensation reaction tank (k) is a horizontal reaction tank composed of multiple stirring blade blocks and equipped with two-shaft self-cleaning type stirring blades. The polycondensation reaction product introduced from the second polycondensation reaction tank (d) to the third polycondensation reaction tank (k) through the withdrawal line (L3) undergoes further polycondensation reaction here and is then transferred to the pelletization process.
 ペレット化の工程では、溶融状態の反応生成物を抜出用ギヤポンプ(m)、出口流路であるフィルター(s)及び抜出ライン(L5)を経てダイスヘッド(g)から溶融したストランドの形態で大気中に抜き出され、水などで冷却された後、回転式カッター(h)で切断されてポリエステルペレットとなる。また、大気中に抜き出さずに水中にストランドの形態で抜きだし、回転式水中カッターで切断してペレットとすることもできる。 In the pelletizing process, the molten reaction product passes through an extraction gear pump (m), an outlet flow path filter (s), and an extraction line (L5) and is extracted from a die head (g) in the form of molten strands into the atmosphere, where it is cooled with water or the like and then cut by a rotary cutter (h) to become polyester pellets. It is also possible to extract the strands into water instead of into the atmosphere and cut them into pellets by a rotary underwater cutter.
 図2における符号(L2)、(L4)、(L6)は、それぞれ、第1重縮合反応槽(a)、第2重縮合反応槽(d)、第3重縮合反応槽(k)のベントラインである。フィルター(p)、(q)、(r)、及び(s)は必ずしも全部設置する必要はなく、異物除去効果と運転安定性とを考慮して適宜設置することができる。 In Figure 2, symbols (L2), (L4), and (L6) are the vent lines of the first polycondensation reaction tank (a), the second polycondensation reaction tank (d), and the third polycondensation reaction tank (k), respectively. Filters (p), (q), (r), and (s) do not necessarily need to be installed all at once, and can be installed as appropriate, taking into consideration the foreign matter removal effect and operational stability.
 図3は、本実施形態で採用し得る接触処理及び分離処理の一例の説明図である。接触処理液は循環タンク(I)からポンプ(IX)により熱交換器(II)を経由し温度コントロールされ、接触処理液供給ライン(101)より処理槽(III)へ供給される。処理槽内でペレットと向流接触させた後、抜出ライン(102)より抜き出し、微粉除去機(IV)を経由後、分離機(XI)を経由して循環タンク(I)へ回収される。分離機(XI)に供給された接触処理液は、環状オリゴマー成分が分離され、高沸液抜出ライン(111)を通じて、液相分離槽(XIII)に供給される。分離されたオリゴマー成分は抜出ライン(112)を通じて外部に抜き出される。供給ライン(107)からは、分離された環状オリゴマー成分に同伴して抜出ライン(112)から抜き出された接触処理液相当量の接触処理液を供給する。液相分離槽(XIII)の上層部のオリゴマー成分を含む水溶液は液相分離槽オーバーフローライン(113)を介して固液分離槽(XIV)へ供給される。固液分離槽(XIV)に供給された水溶液は水を添加して冷却し、オリゴマー成分を晶析させる。固体となったオリゴマー成分を含む懸濁液は固液分離槽オーバーフローライン(114)を介して固液分離機(XV)に供給され、オリゴマー成分が取り出される。分離された水は排水ライン(116)より活性汚泥設備へ送られる。回収されたオリゴマー成分は、上述したように、原料の一部等として再利用することができる。
 なお、図3は、第1の態様においては接触処理及び分離処理の一例を示すものであり、後述する第2の態様においては、接触処理工程及び精製工程(具体的には、精製工程における蒸留分離処理)の一例を示すものである。第1の態様における接触処理及び分離処理の一例と、第2の態様における接触処理工程及び精製工程の一例は、いずれも図3に示すプロセスで同様に表すことができる。
FIG. 3 is an explanatory diagram of an example of the contact treatment and separation treatment that can be adopted in this embodiment. The contact treatment liquid is temperature-controlled from the circulation tank (I) through the heat exchanger (II) by the pump (IX) and supplied to the treatment tank (III) through the contact treatment liquid supply line (101). After being countercurrently contacted with the pellets in the treatment tank, it is withdrawn through the withdrawal line (102), passed through the fine powder remover (IV), and then recovered in the circulation tank (I) through the separator (XI). The contact treatment liquid supplied to the separator (XI) is separated into cyclic oligomer components, and is supplied to the liquid phase separation tank (XIII) through the high boiling liquid withdrawal line (111). The separated oligomer components are withdrawn to the outside through the withdrawal line (112). From the supply line (107), the contact treatment liquid is supplied in an amount equivalent to the contact treatment liquid withdrawn from the withdrawal line (112) together with the separated cyclic oligomer components. The aqueous solution containing the oligomer components in the upper layer of the liquid phase separation tank (XIII) is supplied to a solid-liquid separation tank (XIV) via a liquid phase separation tank overflow line (113). The aqueous solution supplied to the solid-liquid separation tank (XIV) is cooled by adding water to crystallize the oligomer components. The suspension containing the solidified oligomer components is supplied to a solid-liquid separator (XV) via a solid-liquid separation tank overflow line (114), and the oligomer components are extracted. The separated water is sent to an activated sludge facility via a drainage line (116). As described above, the recovered oligomer components can be reused as part of the raw material, etc.
3 shows an example of the contact treatment and separation treatment in the first embodiment, and shows an example of the contact treatment step and the purification step (specifically, the distillation separation treatment in the purification step) in the second embodiment described later. An example of the contact treatment and separation treatment in the first embodiment and an example of the contact treatment step and the purification step in the second embodiment can both be similarly represented by the process shown in FIG.
 接触処理に供するペレットはペレット供給ライン(103)より連続的に供給され、所定時間接触処理液と接触処理された後、ロータリーバルブ(V)で抜き出し量を調整しながら抜出ライン(104)より連続的に抜き出す。ペレットに同伴して抜き出された接触処理液は、予備固液分離機(VI)で分離され、回収タンク(VII)を経由後、ポンプ(X)により供給ライン(105)を通じて、回収ライン(106)へ戻す。連続的に抜き出されたペレットは予備固液分離機で同伴された接触処理液と分離された後、固液分離機(VIII)を経由し、乾燥工程へ連続的に供給される。 The pellets to be subjected to contact treatment are continuously supplied from a pellet supply line (103) and, after being in contact with the contact treatment liquid for a predetermined time, are continuously withdrawn from a withdrawal line (104) while adjusting the withdrawal amount with a rotary valve (V). The contact treatment liquid withdrawn together with the pellets is separated in a preliminary solid-liquid separator (VI) and, after passing through a recovery tank (VII), is returned to the recovery line (106) via a supply line (105) by a pump (X). The continuously withdrawn pellets are separated from the entrained contact treatment liquid in the preliminary solid-liquid separator, and then passed through a solid-liquid separator (VIII) and continuously supplied to the drying process.
 図4は、本実施形態で採用し得る乾燥工程の一例の説明図である。図示したのは乾燥塔を二基(I)、(K)備えた例である。
 精製工程を終えたポリエステルペレットはペレット供給ライン(201)を経て第一乾燥塔(I)に連続的に供給される。第一乾燥塔には加熱乾燥窒素ガスを供給ライン(208)から連続的に導入し、乾燥ガス回収ライン(207)より排出する。排出されたガスはコンデンサー(L)を経て熱交換器(N)で加熱され乾燥ガス供給ライン(208)を経て第一乾燥塔へ循環使用される。コンデンサー(L)、熱交換器(M)で凝縮された接触処理液は凝縮液抜出ライン(210)から抜出す。新乾燥ガス供給ライン(209)からは新たな乾燥窒素ガスを供給する。ペレットは第一乾燥塔からロータリーバルブ(O)を経て冷却塔(J)へ連続的に送られる。冷却塔へは冷却ガス供給ライン(212)から乾燥空気が導入され冷却ガス抜出ライン(211)から放出される。
4 is an explanatory diagram of an example of a drying process that can be adopted in this embodiment. The illustrated example has two drying towers (I) and (K).
The polyester pellets after the purification process are continuously supplied to the first drying tower (I) through the pellet supply line (201). Heated dry nitrogen gas is continuously introduced into the first drying tower through the supply line (208) and discharged through the dry gas recovery line (207). The discharged gas is heated in the heat exchanger (N) through the condenser (L) and circulated to the first drying tower through the dry gas supply line (208). The contact treatment liquid condensed in the condenser (L) and heat exchanger (M) is discharged through the condensate discharge line (210). New dry nitrogen gas is supplied through the new dry gas supply line (209). The pellets are continuously sent from the first drying tower to the cooling tower (J) through the rotary valve (O). Dry air is introduced into the cooling tower through the cooling gas supply line (212) and discharged through the cooling gas discharge line (211).
 第一乾燥塔の乾燥温度より低温側に冷却されたペレットはペレット抜出ライン(204)、ロータリーバルブ(P)、ペレット供給ライン(205)を経て、第二乾燥塔(K)へ供給される。第二乾燥塔へは乾燥ガス(通常空気)を熱交換器(S)、乾燥ガス供給ライン(214)を経て供給し、乾燥ガス抜出ライン(213)より排出する。
 第二乾燥塔へ供給する空気温度は通常第一乾燥塔へ供給する窒素ガス温度より低く例えば窒素ガス温度80℃、空気温度50℃である。
The pellets cooled to a temperature lower than the drying temperature of the first drying tower are supplied to the second drying tower (K) via a pellet discharge line (204), a rotary valve (P) and a pellet supply line (205). A dry gas (usually air) is supplied to the second drying tower via a heat exchanger (S) and a dry gas supply line (214) and discharged from a dry gas discharge line (213).
The temperature of the air supplied to the second drying tower is usually lower than the temperature of the nitrogen gas supplied to the first drying tower, for example, the nitrogen gas temperature is 80°C and the air temperature is 50°C.
 乾燥後のポリエステルペレットはロータリーバルブ(Q)ペレット抜き出しライン(206)を経て連続的に又は間歇的に抜き出され、貯蔵タンク、微粉除去機、包装機などを経て、製品となる。貯蔵タンクは第二乾燥塔と兼用させることもできる。本図では貯蔵タンク以降は図示していない。 After drying, the polyester pellets are extracted continuously or intermittently through the rotary valve (Q) pellet extraction line (206), and become the finished product after passing through a storage tank, fine powder removal machine, packaging machine, etc. The storage tank can also be used as the second drying tower. This diagram does not show the process after the storage tank.
 ポリエステルペレットと接触処理液との接触で得られる環状オリゴマー成分の含有量は特段制限されないが、該接触後のポリエステルペレット(100質量%)に含まれる環状二量体の含有量は、好ましくは1質量ppm以上であり、より好ましくは100質量ppm以上、更に好ましくは500質量ppm以上、特に好ましくは1000質量ppm以上である。また、該環状オリゴマー成分の含有量は、通常3800質量ppm以下であり、好ましくは3500質量ppm以下、更に好ましくは3000質量ppm以下、特に好ましくは2500質量ppm以下である。環状二量体の含有量が上記範囲の下限未満であると、品質的に良好であるが、オリゴマー成分の除去に要する時間の長期化による設備大型化のため経済的に不利である。また、該含有量が上記範囲の上限を超えると、ポリエステル成形後一定期間放置すると、その表面に曇り(ブリードアウト、白化現象と同義。)が生じて表面光沢が消失するなどの不具合を生ずる。 The content of the cyclic oligomer component obtained by contacting the polyester pellets with the contact treatment liquid is not particularly limited, but the content of the cyclic dimer contained in the polyester pellets (100 mass%) after the contact is preferably 1 mass ppm or more, more preferably 100 mass ppm or more, even more preferably 500 mass ppm or more, and particularly preferably 1000 mass ppm or more. The content of the cyclic oligomer component is usually 3800 mass ppm or less, preferably 3500 mass ppm or less, even more preferably 3000 mass ppm or less, and particularly preferably 2500 mass ppm or less. If the content of the cyclic dimer is less than the lower limit of the above range, the quality is good, but it is economically disadvantageous because the time required to remove the oligomer component is extended, which requires large-scale equipment. If the content exceeds the upper limit of the above range, when the polyester is left for a certain period of time after molding, the surface becomes cloudy (synonymous with bleed-out or whitening phenomenon), causing problems such as loss of surface gloss.
<ポリエステル組成物>
 本発明の別の実施形態に係るポリエステル組成物(「ポリエステル組成物の態様A」とも称する。)は、上述したポリエステルの製造方法により得られたポリエステルを含むポリエステル組成物である。なお、上述したポリエステルの製造方法により製造されたポリエステルは、脂肪族ポリエステルであってもよく、芳香族-脂肪族共重合ポリエステルであってもよい。
 ポリエステル組成物は、更に、脂肪族オキシカルボン酸等を配合させてもよい。更に、ポリエステル組成物は、必要に応じて用いられるカルボジイミド化合物、充填材、可塑剤、他の生分解性樹脂を含んでいてもよい。他の生分解性樹脂としては、例えば、ポリカプロラクトン、ポリアミド、ポリビニルアルコール、もしくはセルロースエステル等や、澱粉、セルロース、紙、木粉、キチン・キトサン質、椰子殻粉末、クルミ殻粉末等の動物/植物物質微粉末、又はこれらの混合物を配合することができる。更に、成形体の物性や加工性を調整する目的で、熱安定剤、可塑剤、滑剤、ブロッキング防止剤、核剤、無機フィラー、着色剤、顔料、紫外線吸収剤、もしくは光安定剤等の添加剤、改質剤、又は架橋剤等を含有させてもよい。
<Polyester Composition>
A polyester composition according to another embodiment of the present invention (also referred to as "aspect A of the polyester composition") is a polyester composition containing a polyester obtained by the above-mentioned method for producing a polyester. The polyester produced by the above-mentioned method for producing a polyester may be an aliphatic polyester or an aromatic-aliphatic copolymer polyester.
The polyester composition may further contain an aliphatic oxycarboxylic acid or the like. Furthermore, the polyester composition may contain a carbodiimide compound, a filler, a plasticizer, or other biodegradable resins that are used as necessary. Examples of other biodegradable resins include polycaprolactone, polyamide, polyvinyl alcohol, or cellulose ester, or starch, cellulose, paper, wood flour, chitin/chitosan, coconut shell powder, walnut shell powder, or other animal/plant material fine powders, or mixtures thereof. Furthermore, in order to adjust the physical properties and processability of the molded body, additives such as heat stabilizers, plasticizers, lubricants, antiblocking agents, nucleating agents, inorganic fillers, colorants, pigments, ultraviolet absorbers, or light stabilizers, modifiers, crosslinking agents, or the like may be contained.
 ポリエステル組成物の製造方法は、特に限定されないが、上述した製造方法により得られたポリエステルを用いて、ブレンドしたポリエステルの原料チップを同一の押出機で溶融混合する方法、各々別々の押出機で溶融させた後に混合する方法、又は一軸押出機、二軸押出機、バンバリーミキサー、ロールミキサー、ブラベンダープラストグラフ、もしくはニーダーブレンダー等の通常の混練機を用いて混練することによって混合する方法等が挙げられる。また、各々の原料チップを直接成形機に供給して組成物を調製すると同時に、その成形体を得ることも可能である。 The method for producing the polyester composition is not particularly limited, but examples include a method in which the polyester obtained by the above-mentioned production method is used to melt-mix the blended polyester raw material chips in the same extruder, a method in which each is melted in a separate extruder and then mixed, or a method in which the raw material chips are mixed by kneading using a normal kneading machine such as a single-screw extruder, twin-screw extruder, Banbury mixer, roll mixer, Brabender plastograph, or kneader blender. It is also possible to directly feed each raw material chip into a molding machine to prepare the composition and simultaneously obtain a molded body.
 本発明のさらに別の実施形態に係る組成物(ポリエステル組成物であり、「ポリエステル組成物の態様B」とも称する。)は、ジオール成分に由来する構成単位と、ジカルボン酸成分に由来する構成単位と、を含むポリエステル、および下記式(1)で表される構造および下記式(2)で表される構造を有する環状オリゴマー成分を含む、組成物である。 A composition according to yet another embodiment of the present invention (a polyester composition, also referred to as "polyester composition aspect B") is a composition that includes a polyester containing a constituent unit derived from a diol component and a constituent unit derived from a dicarboxylic acid component, and a cyclic oligomer component having a structure represented by the following formula (1) and a structure represented by the following formula (2).
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 式(1)において、RおよびRは、それぞれ独立して、置換基を有していてもよい2価の炭化水素基であり;xは0~7であり、
式(2)において、RおよびRは、それぞれ独立して、置換基を有していてもよい2価の炭化水素基であり;yは0~7であり、
x+yは2~7である。
In formula (1), R 1 and R 2 each independently represent a divalent hydrocarbon group which may have a substituent; x is an integer of 0 to 7;
In formula (2), R 3 and R 4 each independently represent a divalent hydrocarbon group which may have a substituent; y is an integer of 0 to 7;
x+y is 2 to 7.
 上記式(1)及び(2)は、上述したポリエステルの製造方法で説明した式(1)及び(2)と同様の対応であり、好ましい条件を含め、上述したポリエステルの製造方法で説明した式(1)及び(2)の条件を適用することができる。 The above formulas (1) and (2) correspond similarly to the formulas (1) and (2) described in the above-mentioned method for producing polyester, and the conditions of the formulas (1) and (2) described in the above-mentioned method for producing polyester, including the preferred conditions, can be applied.
 上記の組成物に係るジオール成分及びジカルボン酸成分の条件は、上述したポリエステルの製造方法で説明したジオール成分及びジカルボン酸成分の条件を同様に適用することができる。
 本実施形態に係る組成物は、上述したポリエステル組成物の態様Aで説明した配合し得る成分を同様に配合してもよく、同様の製造方法を採用することができる。例えば、上述したポリエステルの製造方法で得られるポリエステルペレットには、通常ポリエステルとは別に上記の環状オリゴマー成分が含まれているため、このポリエステルペレットを任意の他の成分と混合することにより製造することができる。
The conditions for the diol component and the dicarboxylic acid component in the above composition can be similarly applied to the conditions for the diol component and the dicarboxylic acid component explained in the above-mentioned method for producing polyester.
The composition according to this embodiment may contain the same components as those described in the polyester composition aspect A, and the same manufacturing method can be used. For example, the polyester pellets obtained by the above-mentioned polyester manufacturing method usually contain the above-mentioned cyclic oligomer component in addition to the polyester, and therefore the composition can be manufactured by mixing the polyester pellets with any other component.
 また、上記のポリエステルは、上記の環状オリゴマー成分に由来する構成単位を含んでいてもよい。上述したポリエステルの製造方法で製造されたポリエステルであれば、その製造に用いるポリエステル原料に上記の環状オリゴマー成分が含まれているため、通常、上記の環状オリゴマー成分に由来する構成単位を有する。 The polyester may also contain structural units derived from the cyclic oligomer component. If the polyester is produced by the above-mentioned polyester production method, the polyester raw material used in the production contains the above-mentioned cyclic oligomer component, and therefore the polyester usually has structural units derived from the above-mentioned cyclic oligomer component.
<成形体>
 本発明の別の実施形態は、成形体であり、具体的には、上述したポリエステル組成物の態様Aに係るポリエステル組成物を成形してなる成形体、上述したポリエステル組成物の態様Bに係るポリエステル組成物を成形してなる成形体、又は上述したポリエステルの製造方法によりポリエステルを製造する工程を含む成形体の製造方法により製造された成形体である。
 成形体を製造する方法は特段制限されず、汎用プラスチックに適用される公知の方法により、又は公知の方法を組み合わせた方法とすることができる。その成形法としては例えば、圧縮成形(圧縮成形、積層成形、スタンパブル成形)、射出成形、押出成形もしくは共押出成形(インフレ法やTダイ法によるフィルム成形、ラミネート成形、パイプ成形、電線/ケーブル成形、異形材の成形)、熱プレス成形、中空成形(各種ブロー成形)、カレンダー成形、固体成形(一軸延伸成形、二軸延伸成形、ロール圧延成形、延伸配向不織布成形、熱成形(真空成形、圧空成形)、塑性加工、粉末成形(回転成形))、各種不織布成形(乾式法、接着法、絡合法、スパンボンド法等)等が挙げられる。中でも、射出成形、押出成形、圧縮成形、又は熱プレス成形、特に押出成形又は射出成形が好適に適用される。具体的な形状としては、シート、フィルム、繊維への適用が好ましい。
<Molded body>
Another embodiment of the present invention is a molded article, specifically, a molded article obtained by molding the polyester composition related to aspect A of the polyester composition described above, a molded article obtained by molding the polyester composition related to aspect B of the polyester composition described above, or a molded article produced by a method for producing a molded article including a step of producing a polyester by the above-mentioned method for producing a polyester.
The method for producing the molded body is not particularly limited, and can be a known method applied to general-purpose plastics, or a combination of known methods. Examples of the molding method include compression molding (compression molding, lamination molding, stampable molding), injection molding, extrusion molding or co-extrusion molding (film molding by inflation method or T-die method, laminate molding, pipe molding, electric wire/cable molding, molding of profile material), heat press molding, hollow molding (various blow moldings), calendar molding, solid molding (uniaxial stretch molding, biaxial stretch molding, roll rolling molding, stretch-oriented nonwoven fabric molding, thermoforming (vacuum molding, pressure molding), plastic processing, powder molding (rotational molding)), various nonwoven fabric molding (dry method, adhesion method, entanglement method, spunbond method, etc.), etc. Among them, injection molding, extrusion molding, compression molding, or heat press molding, especially extrusion molding or injection molding, are preferably applied. As specific shapes, application to sheets, films, and fibers is preferable.
 成形体の用途は特段制限されず、汎用プラスチックに適用される公知の用途で用いることができる。特に、生分解性を有する場合、例えば、屋外や土中、水中、又は湿潤環境下で使用する、農林業用資材、漁業用資材、又は土木用資材等に特に好適に用いられる。具体的には、押出成形品(例えば、農業用マルチフィルム、きのこ栽培用フィルム、樹木の保護フィルムなどのフィルム製品、保水シートなどのシート製品、釣り糸、漁網、養殖ネット、植生ネット、もしくはロープなどの繊維製品)、又は射出成形品(杭、育苗ポット、もしくは菌床栽培容器)などが挙げられる。そのほか、家庭や事業所などで一定期間保管することが想定される、コンポスト袋やごみ袋にも好適に用いられる。 The uses of the molded body are not particularly limited, and it can be used in known applications that are applied to general-purpose plastics. In particular, when it is biodegradable, it is particularly suitable for use in agricultural and forestry materials, fishing materials, civil engineering materials, etc. that are used outdoors, in the soil, underwater, or in wet environments. Specific examples include extrusion molded products (for example, film products such as agricultural mulch films, mushroom cultivation films, and tree protection films, sheet products such as water-retaining sheets, and textile products such as fishing lines, fishing nets, aquaculture nets, vegetation nets, and ropes), and injection molded products (stakes, seedling pots, or mushroom bed cultivation containers). It is also suitable for use in compost bags and garbage bags that are expected to be stored for a certain period of time at home or in a business.
<第2の態様>
<ポリエステルの製造方法>
 本発明の一実施形態に係るポリエステルの製造方法の第2の態様(以下、本第2の態様の項において単に「ポリエステルの製造方法」とも称する。)は、
 ジオール及びジカルボン酸を含むポリエステル原料(単に「原料」とも称する。)をエステル化反応処理及びエステル交換反応処理からなる群から選択される少なくとも一の処理を含む反応処理により反応生成物を得る反応工程、
 前記反応生成物と接触処理液を接触させることによりオリゴマー成分を含む接触処理液と接触処理後反応生成物とを得る接触処理工程、
 前記オリゴマー成分を含む接触処理液からオリゴマー成分中の環状オリゴマー成分の含有割合が大きくなるように前記接触処理液中のオリゴマー成分を精製する処理を含む精製工程、並びに
 前記精製工程により得られたオリゴマー成分を前記原料の一部として回収する回収工程を有する、
ポリエステルの製造方法である。
<Second aspect>
<Production method of polyester>
A second aspect of the method for producing a polyester according to one embodiment of the present invention (hereinafter, in the section on the second aspect, also simply referred to as a "method for producing a polyester") is
A reaction step of obtaining a reaction product from a polyester raw material (also simply referred to as "raw material") containing a diol and a dicarboxylic acid by a reaction treatment including at least one treatment selected from the group consisting of an esterification reaction treatment and an ester exchange reaction treatment;
a contact treatment step of contacting the reaction product with a contact treatment liquid to obtain a contact treatment liquid containing an oligomer component and a post-contact treatment reaction product;
a purification step including a treatment for purifying the oligomer components in the contact treatment liquid so that a content ratio of cyclic oligomer components in the oligomer components is increased from the contact treatment liquid containing the oligomer components; and a recovery step for recovering the oligomer components obtained by the purification step as part of the raw material.
A method for producing polyester.
 原料として用いるジオール成分及びジカルボン酸としては、通常ポリエステルの原料に用いられるものを特に制限無く使用することができ、ジオール成分としては脂肪族ジオール成分又は芳香族ジオール成分を用いてもよく、また、ジカルボン酸成分としては、脂肪族ジカルボン酸成分又は芳香族ジカルボン酸成分を用いてもよい。
 これらのジオール成分及びジカルボン酸の条件としては、上述したポリエステルの製造方法の第1の態様で説明したジオール成分及びジカルボン酸の条件を同様に適用することができる。
As the diol component and dicarboxylic acid used as raw materials, those usually used as raw materials for polyesters can be used without any particular limitation. As the diol component, an aliphatic diol component or an aromatic diol component may be used, and as the dicarboxylic acid component, an aliphatic dicarboxylic acid component or an aromatic dicarboxylic acid component may be used.
As the conditions for these diol components and dicarboxylic acids, the conditions for the diol components and dicarboxylic acids explained in the first embodiment of the above-mentioned method for producing polyester can be similarly applied.
 また、ポリエステルの製造方法では、少なくともジオール成分、及びジカルボン酸成分を用いれば、これら以外のその他の構成成分を共重合させても構わない。この場合に使用することのできる共重合成分の条件としては、上述したポリエステルの製造方法の第1の態様で説明したその他の構成成分の条件を同様に適用することができる。 In addition, in the polyester production method, as long as at least a diol component and a dicarboxylic acid component are used, other components may be copolymerized. In this case, the conditions for the copolymerization components that can be used can be the same as those for the other components described in the first embodiment of the polyester production method described above.
[ポリエステルの製造方法における各工程]
 以下に連続製造法を例にして、ポリエステルの製造方法の第2の態様における各工程を説明するが、あくまで一例であり、ポリエステルの製造方法はこの態様に制限されない。
 ポリエステルの製造方法において、連続製造法では、上述した第1の態様と同様に、例えば、ジカルボン酸成分とジオール成分とを、連続する複数の反応槽を用いて、エステル化反応処理及びエステル交換反応処理からなる群から選択される少なくとも一の処理、及び重縮合反応処理を含む反応工程を経て連続的にポリエステルを得るものである。しかし、本発明の効果を妨げない限り、連続法に限定されるものではなく、従来公知のポリエステルの製造方法における工程を採用することができる。さらにポリエステルは、接触処理液と接触処理され、その後乾燥されてもよい。
 連続式での操作を採用する場合、製造の効率化や処理の均質化の観点から、特に、後述する接触処理工程における接触処理および後述する乾燥工程における乾燥処理からなる群から選択される少なくとも1つの処理が連続式で行われることが好ましい。また、回分式又は半回分式での操作についても、製造の効率化や処理の均質化の観点から、特に、後述する接触処理工程における接触処理および後述する乾燥工程における乾燥処理からなる群から選択される少なくとも1つの処理が回分式又は半回分式で行われることが好ましい。
[Each step in the production of polyester]
Each step in the second embodiment of the method for producing a polyester will be described below using a continuous production method as an example, but this is merely an example, and the method for producing a polyester is not limited to this embodiment.
In the continuous polyester production method, as in the first embodiment described above, for example, a dicarboxylic acid component and a diol component are continuously subjected to a reaction process including at least one treatment selected from the group consisting of an esterification reaction treatment and an ester exchange reaction treatment, and a polycondensation reaction treatment, using a plurality of continuous reaction tanks to obtain a polyester. However, as long as the effects of the present invention are not hindered, the method is not limited to the continuous method, and steps in the conventional polyester production methods can be adopted. Furthermore, the polyester may be subjected to a contact treatment with a contact treatment liquid and then dried.
When a continuous operation is employed, from the viewpoints of production efficiency and uniformity of the treatment, it is particularly preferred that at least one treatment selected from the group consisting of the contact treatment in the contact treatment step described below and the drying treatment in the drying step described below is carried out in a continuous manner. Also, when a batch or semi-batch operation is employed, it is particularly preferred that at least one treatment selected from the group consisting of the contact treatment in the contact treatment step described below and the drying treatment in the drying step described below is carried out in a batch or semi-batch manner from the viewpoints of production efficiency and uniformity of the treatment.
(原料調製工程)
 ポリエステルの製造方法は、後述する反応工程の前に、ポリエステル原料を調製する原料調製工程をさらに有していてもよい。
 ポリエステル原料を調製する方法は特段制限されず、各原料を合成等により製造したものを混合して調整してもよく、市販品で調達した各原料を混合して調製してもよい。
(Raw material preparation process)
The method for producing a polyester may further include a raw material preparation step of preparing a polyester raw material prior to the reaction step described below.
The method for preparing the polyester raw material is not particularly limited, and the raw material may be prepared by mixing raw materials produced by synthesis or the like, or the raw materials may be procured as commercially available products and mixed to prepare the polyester raw material.
(反応工程)
 ポリエステルの製造方法は、ジオール及びジカルボン酸を含むポリエステル原料をエステル化反応処理及びエステル交換反応処理からなる群から選択される少なくとも一の処理を含む反応処理によりポリエステルを含む反応生成物を得る反応工程を有する。該反応処理は、触媒の存在下に行われることが好ましい。該反応工程は、エステル化反応処理及びエステル交換反応以外の処理を含んでいてもよい。
(Reaction step)
The method for producing a polyester includes a reaction step of subjecting a polyester raw material containing a diol and a dicarboxylic acid to a reaction treatment including at least one treatment selected from the group consisting of an esterification reaction treatment and an ester exchange reaction treatment to obtain a reaction product containing a polyester. The reaction treatment is preferably carried out in the presence of a catalyst. The reaction step may include treatments other than the esterification reaction treatment and the ester exchange reaction.
(1)エステル化反応処理/エステル交換反応処理
 反応工程は、ポリエステル原料を反応させるエステル化反応処理、具体的には、少なくともジカルボン酸成分とジオール成分とを含む原料を反応させるエステル化反応処理及び/又はエステル交換反応を経て製造する。エステル化反応とは、カルボン酸をエステルに変換する反応であり、エステル交換反応とは、エステルとアルコールを反応させてこれらの主鎖部分が入れ替わる反応である。以下、エステル化反応処理について説明するが、適用できる範囲で、この説明はエステル交換反応にも同様に適用することができる。
 また、エステル化反応処理及びエステル交換反応からなる群から選択される少なくとも一の反応処理とそれに続くその他の処理は、連続する複数の反応槽で行うこともでき、また、単一の反応槽でも行うこともできるが、得られるポリエステルの物性の変動を小さくするために、連続する複数の反応槽で行うことが好ましい。
(1) Esterification reaction process/ester exchange reaction process The reaction process is an esterification reaction process in which a polyester raw material is reacted, specifically, an esterification reaction process in which a raw material containing at least a dicarboxylic acid component and a diol component is reacted, and/or an ester exchange reaction is carried out to produce the polyester. The esterification reaction is a reaction in which a carboxylic acid is converted into an ester, and the ester exchange reaction is a reaction in which an ester and an alcohol are reacted to exchange the main chain portions of these. The esterification reaction process will be described below, but this description can be applied to the ester exchange reaction as well to the extent that it is applicable.
In addition, at least one reaction process selected from the group consisting of an esterification reaction process and an ester exchange reaction and the subsequent other processes can be carried out in a plurality of continuous reaction tanks or in a single reaction tank. However, in order to reduce variation in the physical properties of the resulting polyester, it is preferable to carry out the processes in a plurality of continuous reaction tanks.
 エステル化反応処理/エステル交換反応処理の条件は、上述した第1の態様におけるエステル化反応処理/エステル交換反応処理の条件を同様に適用することができる。 The conditions for the esterification reaction process/ester exchange reaction process can be the same as those for the esterification reaction process/ester exchange reaction process in the first embodiment described above.
(2)重縮合反応処理
 反応工程は、エステル化反応処理に続き重縮合反応を行う重縮合反応処理を含むことが好ましい。重縮合反応は、連続する複数の反応槽を用い減圧下で行うことができる。
(2) Polycondensation Reaction Treatment The reaction step preferably includes a polycondensation reaction treatment in which a polycondensation reaction is carried out following the esterification reaction treatment. The polycondensation reaction can be carried out under reduced pressure using a plurality of continuous reaction tanks.
 重縮合反応処理の条件は、上述した第1の態様における重縮合反応処理の条件を同様に適用することができる。 The polycondensation reaction conditions can be the same as those in the first embodiment described above.
(3)反応触媒
 エステル化反応及び重縮合反応は反応触媒を使用することにより、反応が促進される。エステル化反応においてはエステル化反応触媒が無くても十分な反応速度を得ることができる。またエステル化反応時にエステル化反応触媒が存在するとエステル化反応によって生じる水により触媒が反応生成物に不溶の析出物を生じ、得られるポリエステルの透明性を損なう(即ちヘーズが高くなる)ことがあり、また異物化することがあるので、反応触媒はエステル化反応中には添加使用しないことが好ましい。また、触媒を反応槽の気相部に添加すると、得られるポリエステルのヘーズが高くなることがあり、また触媒が異物化することがあるので反応液中に添加することが好ましい。
(3) Reaction catalyst The esterification reaction and polycondensation reaction are accelerated by using a reaction catalyst. In the esterification reaction, a sufficient reaction rate can be obtained even without an esterification reaction catalyst. In addition, if an esterification reaction catalyst is present during the esterification reaction, the catalyst may produce insoluble precipitates in the reaction product due to water produced by the esterification reaction, which may impair the transparency of the polyester obtained (i.e., increase the haze) and may become a foreign substance, so it is preferable not to add a reaction catalyst during the esterification reaction. In addition, if a catalyst is added to the gas phase of the reaction tank, the haze of the polyester obtained may increase and the catalyst may become a foreign substance, so it is preferable to add the catalyst to the reaction liquid.
 反応触媒の条件は、上述した第1の態様における反応触媒の条件を同様に適用することができる。 The reaction catalyst conditions can be the same as those in the first embodiment described above.
(4)反応槽
 エステル化反応処理を行うエステル化反応槽としては、公知のものが使用でき、上述した第1の態様における反応触媒の条件を同様に適用することができる。
(4) Reactor As the esterification reaction tank for carrying out the esterification reaction treatment, a known esterification reaction tank can be used, and the reaction catalyst conditions in the first embodiment described above can be similarly applied.
(ペレット化工程)
 ポリエステルの製造方法は、成形加工の利便性向上および後述する接触処理工程における表面積拡大によるオリゴマー成分の接触処理効率向上の観点から、上記の反応工程の後に、特には、上記の反応工程と後述する接触処理工程との間に、上記の反応工程により得られた反応生成物をペレット化してペレット(ポリエステルペレット)を得るペレット化工程をさらに有することが好ましい。エステル化反応工程を経て得られたポリエステルはペレット化され、ペレットの状態で接触処理液により接触処理を行う。
(Pelletizing process)
From the viewpoint of improving the convenience of molding and improving the efficiency of the contact treatment of the oligomer component by expanding the surface area in the contact treatment step described later, the method for producing polyester preferably further includes a pelletizing step of pelletizing the reaction product obtained in the above reaction step to obtain pellets (polyester pellets) after the above reaction step, particularly between the above reaction step and the contact treatment step described later. The polyester obtained through the esterification reaction step is pelletized, and contact treatment is performed in the form of pellets with a contact treatment liquid.
 ペレット化工程の条件は、上述した第1の態様におけるペレット化工程の条件を同様に適用することができる。 The conditions for the pelletizing process can be the same as those for the first embodiment described above.
(接触処理工程)
 ポリエステルの製造方法は、上記の反応工程により得られた反応生成物(ポリエステル)と接触処理液とを接触させることによりオリゴマー成分を含む接触処理液と接触処理後反応生成物とを得る接触処理工程をさらに有する。該接触処理は、精製するための処理である。接触処理工程は、接触処理以外の処理を含んでいてもよい。接触処理液は特段制限されず、例えば、水を含む溶剤であってよい。
 エステル化反応、エステル交換反応、又は重合反応等により得られる反応生成物には、通常、オリゴマー成分が含まれるため、接触処理を行うことにより、反応生成物中のオリゴマー成分の含有量を低減させることができるが、さらに、接触処理により得られた接触処理液にはオリゴマー成分が含まれるため、このオリゴマー成分を再利用するために回収してポリエステルの生産性を改善することができる。具体的には、例えば、反応工程の前に、ポリエステル原料を調製する原料調製工程をさらに有する場合、接触処理液中のオリゴマー成分を、原料調製工程から反応工程までのいずれかの工程に供給することにより再利用することができる。
 さらに、本接触処理工程を経て回収されたオリゴマー成分を原料として再利用して得られたポリエステルは、精製処理を行わないで回収されたオリゴマー成分を原料として再利用して得られたポリエステルや、従来の精製処理により得られたオリゴマー成分を原料として再利用して得られたポリエステルと比較して色調悪化が抑制されることを本発明者らは見出した。
(Contact treatment step)
The method for producing polyester further includes a contact treatment step in which the reaction product (polyester) obtained by the above reaction step is contacted with a contact treatment liquid to obtain a contact treatment liquid containing an oligomer component and a post-contact treatment reaction product. The contact treatment is a treatment for purification. The contact treatment step may include treatments other than the contact treatment. The contact treatment liquid is not particularly limited and may be, for example, a solvent containing water.
Since a reaction product obtained by an esterification reaction, an ester exchange reaction, a polymerization reaction, or the like usually contains an oligomer component, the content of the oligomer component in the reaction product can be reduced by performing a contact treatment, and further, since the contact treatment liquid obtained by the contact treatment contains an oligomer component, the oligomer component can be recovered for reuse to improve the productivity of polyester. Specifically, for example, when a raw material preparation step for preparing a polyester raw material is further provided before the reaction step, the oligomer component in the contact treatment liquid can be reused by supplying it to any step from the raw material preparation step to the reaction step.
Furthermore, the present inventors have found that a polyester obtained by reusing as a raw material the oligomer component recovered through this contact treatment step exhibits less deterioration in color tone than a polyester obtained by reusing as a raw material the oligomer component recovered without being subjected to a purification treatment, or a polyester obtained by reusing as a raw material the oligomer component obtained by a conventional purification treatment.
 接触処理工程は、反応工程(ペレット化工程を採用した場合には、ペレット化工程)で得られた反応生成物(ポリエステル)を接触処理液に接触させる接触処理を行うことにより、反応生成物中に含有されるオリゴマー成分を接触処理液に接触処理して反応生成物中のオリゴマー成分の含有量を低減することができる。 The contact treatment step is a step in which the reaction product (polyester) obtained in the reaction step (pelletization step, if a pelletization step is adopted) is brought into contact with a contact treatment liquid, thereby contacting the oligomer components contained in the reaction product with the contact treatment liquid, thereby reducing the content of oligomer components in the reaction product.
 接触処理液としては、例えば、メタノール、エタノール、イソプロパノール、又はブタノールなどのアルコール等を含む態様が挙げられ、また、これらのアルコールと水との混合液が挙げられる。この中でも特に、取扱い易さ、価格、接触処理効率、及び安全性などの面から水/エタノール混合液(水とエタノールの混合液)が好ましい。 Contact treatment liquids include, for example, alcohols such as methanol, ethanol, isopropanol, or butanol, and mixtures of these alcohols with water. Among these, water/ethanol mixtures (mixtures of water and ethanol) are particularly preferred in terms of ease of handling, cost, contact treatment efficiency, and safety.
 ポリエステルの製造方法が上述したペレット化工程を含む場合、接触処理は、通常ペレット化後連続して行われるが、得られたペレットを一時的に貯槽に保管した後に接触処理を行っても構わない。 If the polyester manufacturing method includes the above-mentioned pelletizing step, the contact treatment is usually carried out immediately after pelletizing, but the contact treatment may also be carried out after temporarily storing the obtained pellets in a storage tank.
 反応工程で得られる反応生成物中のポリエステルの含有率は特段制限されないが、通常90質量%以上であり、92.5質量%以上であることが好ましく、95質量%以上であることがより好ましく、97質量%以上であることがさらに好ましく、また、通常100質量%以下であり、99.5質量%以下であることが好ましく、99質量%以下であることがより好ましく、98.5質量%以下であることがさらに好ましい。 The content of polyester in the reaction product obtained in the reaction step is not particularly limited, but is usually 90% by mass or more, preferably 92.5% by mass or more, more preferably 95% by mass or more, and even more preferably 97% by mass or more, and is usually 100% by mass or less, preferably 99.5% by mass or less, more preferably 99% by mass or less, and even more preferably 98.5% by mass or less.
(オリゴマー成分)
 オリゴマー成分の構造は特段制限されず、上記のジオール成分に由来する構成単位、及び上記のジカルボン酸成分に由来する構成単位からなる群から選択される少なくとも1つの構成単位を有していてもよく、上記のジオール成分に由来する構成単位、及び上記のジカルボン酸成分に由来する構成単位を有していてもよく、通常は、原料として用いられるジオール成分に由来する構造単位、及びジカルボン酸成分に由来する構造単位を主構成単位に含む。
(Oligomer Component)
The structure of the oligomer component is not particularly limited, and may have at least one constituent unit selected from the group consisting of the constituent units derived from the diol component and the constituent units derived from the dicarboxylic acid component, or may have the constituent units derived from the diol component and the constituent units derived from the dicarboxylic acid component, and usually contains, as main constituent units, a structural unit derived from the diol component and a structural unit derived from the dicarboxylic acid component used as raw materials.
 オリゴマー成分は、直鎖状構造であってもよく、分岐鎖状構造であってもよく、環状構造を有するものであってもよいが、最終的に得られるポリマーの色調悪化を抑制しやすい観点から、下記式(11)で表される構造および下記式(12)で表される構造を有する環状オリゴマー成分であることが好ましい。該環状オリゴマー成分は、本接触処理工程及び後述する回収工程を経ることにより容易に得ることができる。 The oligomer component may have a linear structure, a branched structure, or a cyclic structure, but from the viewpoint of easily suppressing deterioration in the color tone of the final polymer obtained, it is preferable that the oligomer component is a cyclic oligomer component having a structure represented by the following formula (11) or a structure represented by the following formula (12). The cyclic oligomer component can be easily obtained by going through this contact treatment step and the recovery step described below.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 式(11)において、R11およびR12は、それぞれ独立して、置換基を有していてもよい2価の炭化水素基であり;xは0~7であり、
式(12)において、R13およびR14は、それぞれ独立して、置換基を有していてもよい2価の炭化水素基であり;yは0~7であり、
+yは2~7である。
In formula (11), R 11 and R 12 each independently represent a divalent hydrocarbon group which may have a substituent; x 1 is an integer of 0 to 7;
In formula (12), R 13 and R 14 each independently represent a divalent hydrocarbon group which may have a substituent; y 1 is an integer of 0 to 7;
x1 + y1 is an integer from 2 to 7.
 式(11)及び式(12)におけるR11、R12、x、yの条件は、上述した第1の態様における式(1)及び式(2)におけるR、R、x、yの条件を同様に適用することができる。 The conditions for R 11 , R 12 , x 1 , and y 1 in formulas (11) and (12) can be similarly applied to the conditions for R 1 , R 2 , x, and y in formulas (1) and (2) in the first aspect described above.
 反応工程で得られる反応生成物中のオリゴマー成分の含有率は特段制限されず、上記のポリエステルを除く残部であってよいが、通常0.1質量%以上であり、0.2質量%以上であることが好ましく、0.3質量%以上であることがより好ましく、0.5質量%以上であることがさらに好ましく、また、通常3質量%以下であり、2.5質量%以下であることが好ましく、2質量%以下であることがより好ましく、1.5質量%以下であることがさらに好ましい。
 反応工程で得られる反応生成物において、オリゴマー成分の量を100質量%に対する上述した環状オリゴマー成分の含有率は特段制限されないが、通常0.1質量%以上であり、0.2質量%以上であることが好ましく、0.3質量%以上であることがより好ましく、0.5質量%以上であることがさらに好ましく、また、通常3質量%以下であり、2.5質量%以下であることが好ましく、2質量%以下であることがより好ましく、1.5質量%以下であることがさらに好ましい。
The content of the oligomer component in the reaction product obtained in the reaction step is not particularly limited and may be the remainder excluding the above-mentioned polyester, but is usually 0.1 mass% or more, preferably 0.2 mass% or more, more preferably 0.3 mass% or more, and even more preferably 0.5 mass% or more, and is usually 3 mass% or less, preferably 2.5 mass% or less, more preferably 2 mass% or less, and even more preferably 1.5 mass% or less.
In the reaction product obtained in the reaction step, the content of the above-mentioned cyclic oligomer component relative to 100% by mass of the oligomer component is not particularly limited, but is usually 0.1% by mass or more, preferably 0.2% by mass or more, more preferably 0.3% by mass or more, and even more preferably 0.5% by mass or more, and is usually 3% by mass or less, preferably 2.5% by mass or less, more preferably 2% by mass or less, and even more preferably 1.5% by mass or less.
 また、オリゴマー成分は原料中に含まれていてもよく、例えば、後述する回収工程や供給工程で説明するように、回収工程で得られたオリゴマー成分をポリエステル原料中に含有させることができる。ポリエステル原料がオリゴマー成分を含む場合、ポリエステル原料中のオリゴマー成分の含有率は特段制限されないが、通常0.1質量%以上であり、0.5質量%以上であることが好ましく、1.0質量%以上であることがより好ましく、2.5質量%以上であることがさらに好ましく、5.0質量%超であることが特に好ましく、また、通常100質量%未満であり、90質量%以下であることが好ましく、80質量%以下であることがより好ましく、70質量%以下であることがさらに好ましく、60質量%以下であることが特に好ましい。
 上記の合計含有率が上記範囲の下限以上であれば、オリゴマー成分の回収率を上げた経済的な製造を行うことが可能である。また、上記の合計含有率が上記範囲の上限以下であれば、色調などの品質を保ちつつ反応性を損なわずに製造を行うことが可能である。
The oligomer component may be contained in the raw material, and for example, as described in the recovery step and the supply step described later, the oligomer component obtained in the recovery step can be contained in the polyester raw material. When the polyester raw material contains the oligomer component, the content of the oligomer component in the polyester raw material is not particularly limited, but is usually 0.1% by mass or more, preferably 0.5% by mass or more, more preferably 1.0% by mass or more, even more preferably 2.5% by mass or more, and particularly preferably more than 5.0% by mass, and is usually less than 100% by mass, preferably 90% by mass or less, more preferably 80% by mass or less, even more preferably 70% by mass or less, and particularly preferably 60% by mass or less.
When the total content is equal to or higher than the lower limit of the above range, it is possible to perform economical production with an increased recovery rate of the oligomer components, while when the total content is equal to or lower than the upper limit of the above range, it is possible to perform production without impairing reactivity while maintaining quality such as color tone.
 ポリエステル原料がオリゴマー成分を含む場合、ポリエステル原料に含まれるオリゴマー成分における、上記式(1)で表される構造および上記式(2)で表される構造を有する環状オリゴマー成分の含有率は、得られるポリエステルの色調悪化を抑制しやすくすることができる観点から、35質量%以上、100質量%以下であることが好ましく、40質量%以上であることがより好ましく、50質量以上であることがさらに好ましく、60質量以上であることが特に好ましく、70質量以上であることが殊更特に好ましい。 When the polyester raw material contains an oligomer component, the content of the cyclic oligomer component having the structure represented by the above formula (1) and the structure represented by the above formula (2) in the oligomer component contained in the polyester raw material is preferably 35% by mass or more and 100% by mass or less, more preferably 40% by mass or more, even more preferably 50% by mass or more, particularly preferably 60% by mass or more, and most particularly preferably 70% by mass or more, from the viewpoint of being able to easily suppress deterioration in the color tone of the resulting polyester.
 上記の環状オリゴマー成分は、ポリエステルの色調悪化を抑制することが容易となる観点から、ポリマー原料に含まれるジオール成分及びジカルボン酸成分との反応によって生じるものであることが好ましい。つまり、ポリエステル原料について、
 前記ジカルボン酸成分として、下記式(A1)で表されるジカルボン酸及びその誘導体からなる群から選択される少なくとも1種、および下記式(B1)で表されるジカルボン酸及びその誘導体からなる群から選択される少なくとも1種を含み、
 前記ジオール成分として、下記式(C1)で表されるジオール及びその誘導体からなる群から選択される少なくとも1種、および下記式(D1)で表されるジオール及びその誘導体からなる群から選択される少なくとも1種を含むことが好ましい。
From the viewpoint of easily suppressing deterioration in color tone of the polyester, the above-mentioned cyclic oligomer component is preferably generated by a reaction with a diol component and a dicarboxylic acid component contained in the polymer raw material.
The dicarboxylic acid component includes at least one selected from the group consisting of dicarboxylic acids represented by the following formula (A1) and derivatives thereof, and at least one selected from the group consisting of dicarboxylic acids represented by the following formula (B1) and derivatives thereof,
The diol component preferably contains at least one selected from the group consisting of diols represented by the following formula (C1) and derivatives thereof, and at least one selected from the group consisting of diols represented by the following formula (D1) and derivatives thereof:
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 式(A1)~(D1)において、R11~R14は、それぞれ上記の式(11)及び式(12)におけるR11~R14と同義である。 In the formulae (A1) to (D1), R 11 to R 14 have the same meanings as R 11 to R 14 in the above formulae (11) and (12), respectively.
 後述する接触処理工程を採用し、接触処理により得られたオリゴマー成分を回収し、回収したオリゴマー成分をポリエステル原料に再利用した場合、ポリエステル原料中のジオール成分及びジカルボン酸成分と、ポリエステル原料中の環状オリゴマー成分を構成するオリゴマー成分及びジカルボン酸成分とが同じとなるため、ポリエステル原料中のオリゴマー成分における、上記式(11)で表される構造および上記式(12)で表される構造を有する環状オリゴマー成分の含有率を増加させることができる。 When the contact treatment process described below is employed, the oligomer components obtained by the contact treatment are recovered, and the recovered oligomer components are reused in the polyester raw material, the diol components and dicarboxylic acid components in the polyester raw material become the same as the oligomer components and dicarboxylic acid components constituting the cyclic oligomer components in the polyester raw material, so that the content of the cyclic oligomer components having the structure represented by the above formula (11) and the structure represented by the above formula (12) in the oligomer components in the polyester raw material can be increased.
[ポリエステルの物性]
 接触処理液と接触処理させるポリエステルの固有粘度(IV、dL/g)、及び接触処理液と接触処理させた後のポリエステルの固有粘度は、1.4dL/g以上であることが好ましく、1.6dL/g以上であることが特に好ましい。また、該固有粘度は、2.8dL/g以下であることが好ましく、2.5以下であることがより好ましく、2.3dL/g以下であることが特に好ましい。該固有粘度が上記範囲の下限未満であると、成形品にしたとき十分な機械強度が得にくい。また、該固有粘度が上記範囲の上限超過であると、成形時に溶融粘度が高く成形しにくい。
[Physical properties of polyester]
The intrinsic viscosity (IV, dL/g) of the polyester to be contacted with the contact treatment liquid and the intrinsic viscosity of the polyester after contact treatment with the contact treatment liquid are preferably 1.4 dL/g or more, and particularly preferably 1.6 dL/g or more. The intrinsic viscosity is preferably 2.8 dL/g or less, more preferably 2.5 or less, and particularly preferably 2.3 dL/g or less. If the intrinsic viscosity is below the lower limit of the above range, it is difficult to obtain sufficient mechanical strength when molded into a molded product. If the intrinsic viscosity exceeds the upper limit of the above range, the melt viscosity during molding is high and molding is difficult.
 接触処理液と接触処理させるポリエステルの末端カルボキシル基量は通常80(当量/トン)以下であり、好ましくは60(当量/トン)以下、更に好ましくは40(当量/トン)以下、特に好ましくは25(当量/トン)以下である。下限は低いほど熱安定性、耐加水分解性がよいが、通常5(当量/トン)以上である。上限を超えると、加水分解による粘度低下が顕著となり、品質を著しく損なう場合がある。 The amount of terminal carboxyl groups in the polyester to be brought into contact with the contact treatment solution is usually 80 (equivalents/ton) or less, preferably 60 (equivalents/ton) or less, more preferably 40 (equivalents/ton) or less, and particularly preferably 25 (equivalents/ton) or less. The lower the lower limit, the better the thermal stability and hydrolysis resistance, but it is usually 5 (equivalents/ton) or more. If the upper limit is exceeded, the viscosity reduction due to hydrolysis becomes significant, and the quality may be significantly impaired.
 第2の態様における接触処理の条件について、上述した第1の態様における(1-1)接触処理液の組成、(1-2)接触処理温度、(1-3)接触処理時間、(1-4)反応生成物と接触処理液との比、(1-5)接触処理方法の項で説明した条件を同様に適用することができる。 The conditions for the contact treatment in the second embodiment can be the same as those described in the first embodiment above, in terms of (1-1) the composition of the contact treatment liquid, (1-2) the contact treatment temperature, (1-3) the contact treatment time, (1-4) the ratio of the reaction product to the contact treatment liquid, and (1-5) the contact treatment method.
(精製工程)
 ポリエステルの製造方法は、オリゴマー成分を含む接触処理液からオリゴマー成分中の環状オリゴマー成分の含有割合が大きくなるようにオリゴマー成分を精製する処理を含む精製工程を有する。なお、上述した通り、上述した接触処理工程も反応生成物を精製する処理に係る工程であるが、本精製工程と上述した接触処理工程とは別の工程である。また、精製工程により得られたオリゴマー成分又はオリゴマー成分を含む対象を「精製物」とも称する。
(Refining process)
The method for producing a polyester includes a purification step including a process for purifying an oligomer component from a contact treatment solution containing the oligomer component so that the content ratio of cyclic oligomer components in the oligomer component is increased. As described above, the above-mentioned contact treatment step is also a process for purifying a reaction product, but this purification step is a different process from the above-mentioned contact treatment step. The oligomer component obtained by the purification step or a target containing the oligomer component is also referred to as a "purified product".
 オリゴマー成分を含む接触処理液からオリゴマー成分中の環状オリゴマー成分の含有割合が大きくなるようにオリゴマー成分を精製する方法は特段制限されず、例えば、低沸液と、オリゴマー成分及び水を含む高沸液とに分離する蒸留分離処理等を有する方法が挙げられる。本明細書において、高沸液とは、オリゴマー成分などの低揮発性成分を含む水を主成分とし、蒸留塔等において缶底から抜き出される液を表し、低沸液とは、エタノール、テトラヒドロフラン、アセトンなど水よりも高揮発性で蒸留塔等の上部から留出する液を表す。また、低沸液はオリゴマー成分を実質的に含まないことが好ましく、含まないことがより好ましい。
 蒸留分離する方法は特段制限されず、公知の方法により行うことができる。
The method of purifying the oligomer component from the contact treatment liquid containing the oligomer component so that the content ratio of cyclic oligomer components in the oligomer component is increased is not particularly limited, and examples thereof include a method having a distillation separation process for separating a low boiling liquid from a high boiling liquid containing oligomer components and water. In this specification, the high boiling liquid refers to a liquid that is mainly composed of water containing low volatility components such as oligomer components and is extracted from the bottom of a distillation column or the like, and the low boiling liquid refers to a liquid that is more volatile than water and is distilled from the top of a distillation column or the like, such as ethanol, tetrahydrofuran, and acetone. In addition, it is preferable that the low boiling liquid does not substantially contain oligomer components, and it is more preferable that it does not contain any oligomer components.
The method for distillation separation is not particularly limited, and can be carried out by a known method.
 蒸留分離する温度は特段制限されず、通常80℃以上であり、85℃以上であることが好ましく、90℃以上であることがより好ましく、95℃以上であることが更に好ましく、また、通常120℃以下であり、115℃以下であることが好ましく、110℃以下であることがより好ましく、105℃以下であることが更に好ましい。 The temperature for distillation separation is not particularly limited, and is usually 80°C or higher, preferably 85°C or higher, more preferably 90°C or higher, and even more preferably 95°C or higher, and is usually 120°C or lower, preferably 115°C or lower, more preferably 110°C or lower, and even more preferably 105°C or lower.
 蒸留分離は回分式でも連続式でも実施することが可能であるが、生産効率を考えると連続式がより好ましい。 Distillation separation can be carried out either batchwise or continuously, but continuous separation is more preferable in terms of production efficiency.
 精製工程は、蒸留分離処理における高沸液から収率よく環状オリゴマー成分を回収するため、蒸留分離処理の後に、高沸液に含まれるオリゴマー成分を晶析する晶析工程をさらに有することが好ましい。
 晶析する方法は特段制限されず、回分式でも連続式でも実施可能であるが、生産効率を考えると連続式がより好ましい。
 晶析は、例えば、蒸留分離処理における高沸液を入れた晶析槽を所定の温度となるまで冷却し、水溶液相から粒子状又はペースト状に析出した環状オリゴマー成分等のオリゴマー成分を分離することにより行う。晶析は50℃以下の温度で行うことが好ましく、40℃以下の温度で行うことがより好ましく、35℃以下の温度で行うことがさらに好ましい。
In order to efficiently recover cyclic oligomer components from the high boiling liquid in the distillation separation treatment, the purification step preferably further includes a crystallization step of crystallizing the oligomer components contained in the high boiling liquid after the distillation separation treatment.
The crystallization method is not particularly limited, and may be carried out in either a batch or continuous manner, but in terms of production efficiency, a continuous manner is more preferable.
Crystallization is carried out, for example, by cooling a crystallization tank containing a high boiling liquid in a distillation separation process to a predetermined temperature and separating oligomer components such as cyclic oligomer components precipitated in particulate or paste form from the aqueous solution phase. Crystallization is preferably carried out at a temperature of 50° C. or less, more preferably at a temperature of 40° C. or less, and even more preferably at a temperature of 35° C. or less.
 また、精製工程は、蒸留分離処理後の高温の高沸液から多くの環状オリゴマー成分を水溶液側の相へ効率よく分取するため、蒸留分離処理の後に、液/液の相分離処理を行い高沸液からオリゴマー成分を分離する相分離処理をさらに有することが好ましい。
 液/液相分離する方法は特段制限されず、回分式でも連続式でも実施可能であるが、生産効率を考えると連続式がより好ましい。
 液/液相分離は、例えば、槽に設けられたサイトグラス等により液/液界面を目視で確認しながら、溶融オリゴマーの相(下側の液相、色調悪化の原因となる直鎖状オリゴマー等少量含むと考えている)を下部から抜き出し、水溶液の相(上側の相、精製されたオリゴマー成分)とを分離する。また、液/液相分離は、85℃以上の温度で行うことが好ましく、90℃以上の温度で行うことがより好ましく、95℃以上の温度で行うことがさらに好ましい。
In addition, in order to efficiently separate many cyclic oligomer components from the high-temperature high-boiling liquid after the distillation separation treatment into the aqueous solution phase, the purification step preferably further includes a phase separation treatment in which a liquid/liquid phase separation treatment is performed after the distillation separation treatment to separate the oligomer components from the high-boiling liquid.
The method for liquid/liquid phase separation is not particularly limited, and may be carried out in a batch or continuous manner, but in terms of production efficiency, a continuous manner is more preferable.
The liquid/liquid phase separation is carried out, for example, by extracting the molten oligomer phase (the lower liquid phase, which is believed to contain a small amount of linear oligomers that cause color deterioration) from the bottom while visually checking the liquid/liquid interface using a sight glass or the like provided in the tank, and separating it from the aqueous solution phase (the upper phase, purified oligomer components). The liquid/liquid phase separation is preferably carried out at a temperature of 85° C. or higher, more preferably at a temperature of 90° C. or higher, and even more preferably at a temperature of 95° C. or higher.
 相分離処理を行った場合、相分離処理で分離されたオリゴマー成分を更に晶析する晶析処理をさらに有することが好ましい。該晶析処理の条件は、上述した晶析処理の条件と同様に適用することができる。 When a phase separation process is performed, it is preferable to further include a crystallization process in which the oligomer components separated by the phase separation process are further crystallized. The conditions for this crystallization process can be the same as those for the crystallization process described above.
(回収工程)
 ポリエステルの製造方法は、精製工程により得られたオリゴマー成分を前記原料の一部として回収する回収工程を有する。オリゴマー成分は、ポリエステルの原料として利用することができ、具体的には、ジオールやジカルボン酸とともにポリエステルの一部を構成する構成単位とすることができ、また、ジオールやジカルボン酸の一部に代替してポリエステルの一部を構成する構成単位とすることができる。
 回収されるオリゴマー成分の態様は特段制限されず、例えば、オリゴマー成分単体(結晶を含む。)であってもよく、オリゴマー成分を含む液体であってもよく、オリゴマー成分を含む固体であってもよい。
(Recovery process)
The method for producing a polyester includes a recovery step of recovering the oligomer component obtained in the purification step as a part of the raw material. The oligomer component can be used as a raw material for the polyester, specifically, it can be a structural unit constituting a part of the polyester together with a diol or a dicarboxylic acid, or it can be a structural unit constituting a part of the polyester by replacing a part of the diol or a dicarboxylic acid.
The form of the oligomer component to be recovered is not particularly limited, and may be, for example, the oligomer component alone (including crystals), a liquid containing the oligomer component, or a solid containing the oligomer component.
 回収工程は、精製物(精製後における目的物又は目的物を含む液体もしくは固体)を回収することができれば特段制限されず、例えば、上記の晶析処理を行った後、晶析したオリゴマー成分を取り出して原料の一部として回収する回収工程であってもよい。この場合、後述する供給工程において、原料として回収したオリゴマー成分を原料として供給し、上述した反応工程でエステル化反応処理等を行うことができる。 The recovery step is not particularly limited as long as it can recover a purified product (the target product after purification or a liquid or solid containing the target product), and may be, for example, a recovery step in which the above-mentioned crystallization process is performed, and then the crystallized oligomer component is taken out and recovered as part of the raw material. In this case, the recovered oligomer component can be supplied as a raw material in the supply step described below, and an esterification reaction process or the like can be performed in the above-mentioned reaction step.
 また、該回収工程においては、精製物中のオリゴマー成分のうち少なくとも一部を分離して精製物中のオリゴマー成分の含有量を調整してもよく、その後、上記の接触処理工程における接触処理液として循環再利用できる。 In addition, in the recovery step, at least a portion of the oligomer components in the purified product may be separated to adjust the content of the oligomer components in the purified product, which can then be recycled and reused as the contact treatment liquid in the above-mentioned contact treatment step.
 精製工程後の精製物は、そのまま循環再利用することもできるし、分離したオリゴマー成分に同伴して抜き出された接触処理液量に相当する量の新たな接触処理液を追加して再利用することもできる。 The purified product after the purification process can be recycled as is, or it can be reused by adding new contact treatment liquid in an amount equivalent to the amount of contact treatment liquid extracted along with the separated oligomer components.
 分離工程後、蒸留濃縮及び/又は冷却などにより分離された、オリゴマー成分(接触処理液とオリゴマー成分の混合物であってもよい。)は、一旦溶融状態とした後、又は原料として用いるジオール成分に加熱溶解させた溶液とした後、ポリエステルの原料として回収することができる。 After the separation step, the oligomer components (which may be a mixture of the contact treatment liquid and the oligomer components) separated by distillation concentration and/or cooling can be recovered as a polyester raw material after being temporarily melted or after being heated and dissolved in the diol component used as a raw material to form a solution.
 回収操作は回分式でも、連続的にも行う事ができ、特に制限はされないが、効率を考えると連続式がより好ましい。 The recovery operation can be performed either batchwise or continuously, and there are no particular restrictions, but from the perspective of efficiency, a continuous system is more preferable.
(供給工程)
 ポリエステルの製造方法は、上述した原料調製工程を有する場合、回収工程の後に、回収されたオリゴマー成分を溶融した融液、又はオリゴマー成分をポリエステル原料のジオール成分に溶解させた溶液の少なくともいずれかを、原料調製工程から反応工程までのいずれかの工程に供給する供給工程をさらに有していてもよい。
(Supply process)
When the method for producing a polyester has the above-mentioned raw material preparation step, it may further have, after the recovery step, a supply step of supplying at least one of a melt obtained by melting the recovered oligomer component and a solution obtained by dissolving the oligomer component in a diol component of the polyester raw material to any step from the raw material preparation step to the reaction step.
 上記の供給を行う態様は特段制限されないが、例えば、回収されたオリゴマー成分を反応工程におけるポリエステル原料中に供給して再利用することができる。具体的には、回収されたオリゴマー成分は、反応工程におけるエステル化反応処理や、エステル交換反応処理、重縮合反応処理に供給されて、ポリエステルの原料として使用することができる。特に、エステル化反応処理のエステル化反応槽や、エステル交換反応処理のエステル交換反応槽、ジカルボン酸成分とジオール成分とのスラリー槽に、回収されたオリゴマー成分を戻すのは好ましい方法である。より具体的には、回収したオリゴマー成分をエステル化反応槽に直接供給することもできるし、図1に例示するジオール成分の再循環ライン(2)、エステル化反応生成物の抜き出しライン(4)に供給することもでき、また、図2に例示する重縮合反応槽(a)に供給することもでき、また、ジカルボン酸成分とジオール成分とのスラリー調製槽に供給することもできる。 The manner of supplying the oligomer components is not particularly limited, but for example, the recovered oligomer components can be supplied to the polyester raw material in the reaction process and reused. Specifically, the recovered oligomer components can be supplied to the esterification reaction process, the ester exchange reaction process, and the polycondensation reaction process in the reaction process and used as a raw material for polyester. In particular, it is a preferred method to return the recovered oligomer components to the esterification reaction tank for the esterification reaction process, the ester exchange reaction tank for the ester exchange reaction process, or the slurry tank for the dicarboxylic acid component and the diol component. More specifically, the recovered oligomer components can be directly supplied to the esterification reaction tank, or can be supplied to the diol component recycle line (2) or the esterification reaction product withdrawal line (4) illustrated in FIG. 1, or can be supplied to the polycondensation reaction tank (a) illustrated in FIG. 2, or can be supplied to a slurry preparation tank for the dicarboxylic acid component and the diol component.
 供給方法は回分式で行っても、連続式でも実施可能であるが、生産効率を考えると連続式がより好ましい。 The supply method can be either batch or continuous, but continuous is more preferable in terms of production efficiency.
(乾燥工程)
 ポリエステルの製造方法は、前記接触処理工程(好ましくは、前記精製工程)の後に、上記の接触処理後反応生成物(好ましくは、精製物)を乾燥する乾燥処理を行う乾燥工程をさらに有していてもよい。接触処理後反応生成物は、上記の精製工程前の接触処理液であってもよく、該精製工程後の精製物であってもよいが、少なくとも精製物に対する乾燥処理が行われることが好ましい。乾燥工程の条件は、上述した第1の態様における乾燥工程の条件を同様に適用することができる。
(Drying process)
The method for producing a polyester may further include a drying step in which the reaction product after the contact treatment (preferably the purification step) is dried after the contact treatment step (preferably the purification step). The reaction product after the contact treatment may be the contact treatment liquid before the purification step or may be the purified product after the purification step, but it is preferable that at least the purified product is dried. The conditions for the drying step may be the same as those for the drying step in the first embodiment described above.
[製造プロセス例]
 上述した第1の態様における「製造プロセス例」の項に記載の製造プロセスの例は、第2の態様における製造プロセスの例としても同様に適用することができる。
[Manufacturing process example]
The example of the manufacturing process described in the section "Example of Manufacturing Process" in the above-mentioned first embodiment can be similarly applied as an example of the manufacturing process in the second embodiment.
<ポリエステル組成物>
 本発明の別の実施形態に係るポリエステル組成物は、上述したポリエステルの製造方法により得られたポリエステルを含むポリエステル組成物である。なお、上述したポリエステルの製造方法により製造されたポリエステルは、脂肪族ポリエステルであってもよく、芳香族-脂肪族共重合ポリエステルであってもよい。
 ポリエステル組成物は、更に、脂肪族オキシカルボン酸等を配合させてもよい。更に、ポリエステル組成物は、必要に応じて用いられるカルボジイミド化合物、充填材、可塑剤、他の生分解性樹脂を含んでいてもよい。他の生分解性樹脂としては、例えば、ポリカプロラクトン、ポリアミド、ポリビニルアルコール、もしくはセルロースエステル等や、澱粉、セルロース、紙、木粉、キチン・キトサン質、椰子殻粉末、クルミ殻粉末等の動物/植物物質微粉末、又はこれらの混合物を配合することができる。更に、成形体の物性や加工性を調整する目的で、熱安定剤、可塑剤、滑剤、ブロッキング防止剤、核剤、無機フィラー、着色剤、顔料、紫外線吸収剤、もしくは光安定剤等の添加剤、改質剤、又は架橋剤等を含有させてもよい。
<Polyester Composition>
A polyester composition according to another embodiment of the present invention is a polyester composition containing a polyester obtained by the above-mentioned method for producing a polyester. The polyester produced by the above-mentioned method for producing a polyester may be an aliphatic polyester or an aromatic-aliphatic copolymer polyester.
The polyester composition may further contain an aliphatic oxycarboxylic acid or the like. Furthermore, the polyester composition may contain a carbodiimide compound, a filler, a plasticizer, or other biodegradable resins that are used as necessary. Examples of other biodegradable resins include polycaprolactone, polyamide, polyvinyl alcohol, or cellulose ester, or starch, cellulose, paper, wood flour, chitin/chitosan, coconut shell powder, walnut shell powder, or other animal/plant material fine powders, or mixtures thereof. Furthermore, in order to adjust the physical properties and processability of the molded body, additives such as heat stabilizers, plasticizers, lubricants, antiblocking agents, nucleating agents, inorganic fillers, colorants, pigments, ultraviolet absorbers, or light stabilizers, modifiers, crosslinking agents, or the like may be contained.
 ポリエステル組成物の製造方法は、特に限定されないが、上述した製造方法により得られたポリエステルを用いて、ブレンドしたポリエステルの原料チップを同一の押出機で溶融混合する方法、各々別々の押出機で溶融させた後に混合する方法、又は一軸押出機、二軸押出機、バンバリーミキサー、ロールミキサー、ブラベンダープラストグラフ、もしくはニーダーブレンダー等の通常の混練機を用いて混練することによって混合する方法等が挙げられる。また、各々の原料チップを直接成形機に供給して組成物を調製すると同時に、その成形体を得ることも可能である。 The method for producing the polyester composition is not particularly limited, but examples include a method in which the polyester obtained by the above-mentioned production method is used to melt-mix the blended polyester raw material chips in the same extruder, a method in which each is melted in a separate extruder and then mixed, or a method in which the raw material chips are mixed by kneading using a normal kneading machine such as a single-screw extruder, twin-screw extruder, Banbury mixer, roll mixer, Brabender plastograph, or kneader blender. It is also possible to directly feed each raw material chip into a molding machine to prepare the composition and simultaneously obtain a molded body.
<成形体>
 本発明の別の実施形態は、成形体であり、具体的には、上述したポリエステル組成物を成形してなる成形体、又は上述したポリエステルの製造方法によりポリエステルを製造する工程を含む成形体の製造方法により製造された成形体である。
 成形体を製造する方法は特段制限されず、汎用プラスチックに適用される公知の方法により、又は公知の方法を組み合わせた方法とすることができる。その成形法としては例えば、圧縮成形(圧縮成形、積層成形、スタンパブル成形)、射出成形、押出成形もしくは共押出成形(インフレ法やTダイ法によるフィルム成形、ラミネート成形、パイプ成形、電線/ケーブル成形、異形材の成形)、熱プレス成形、中空成形(各種ブロー成形)、カレンダー成形、固体成形(一軸延伸成形、二軸延伸成形、ロール圧延成形、延伸配向不織布成形、熱成形(真空成形、圧空成形)、塑性加工、粉末成形(回転成形))、各種不織布成形(乾式法、接着法、絡合法、スパンボンド法等)等が挙げられる。中でも、射出成形、押出成形、圧縮成形、又は熱プレス成形、特に押出成形又は射出成形が好適に適用される。具体的な形状としては、シート、フィルム、繊維への適用が好ましい。
<Molded body>
Another embodiment of the present invention is a molded article, specifically, a molded article obtained by molding the above-mentioned polyester composition, or a molded article produced by a method for producing a molded article including a step of producing a polyester by the above-mentioned method for producing a polyester.
The method for producing the molded body is not particularly limited, and can be a known method applied to general-purpose plastics, or a combination of known methods. Examples of the molding method include compression molding (compression molding, lamination molding, stampable molding), injection molding, extrusion molding or co-extrusion molding (film molding by inflation method or T-die method, laminate molding, pipe molding, electric wire/cable molding, molding of profile material), heat press molding, hollow molding (various blow moldings), calendar molding, solid molding (uniaxial stretch molding, biaxial stretch molding, roll rolling molding, stretch-oriented nonwoven fabric molding, thermoforming (vacuum molding, pressure molding), plastic processing, powder molding (rotational molding)), various nonwoven fabric molding (dry method, adhesion method, entanglement method, spunbond method, etc.), etc. Among them, injection molding, extrusion molding, compression molding, or heat press molding, especially extrusion molding or injection molding, are preferably applied. As specific shapes, application to sheets, films, and fibers is preferable.
 成形体の用途は特段制限されず、汎用プラスチックに適用される公知の用途で用いることができる。特に、生分解性を有する場合、例えば、屋外や土中、水中、又は湿潤環境下で使用する、農林業用資材、漁業用資材、又は土木用資材等に特に好適に用いられる。具体的には、押出成形品(例えば、農業用マルチフィルム、きのこ栽培用フィルム、樹木の保護フィルムなどのフィルム製品、保水シートなどのシート製品、釣り糸、漁網、養殖ネット、植生ネット、もしくはロープなどの繊維製品)、又は射出成形品(杭、育苗ポット、もしくは菌床栽培容器)などが挙げられる。そのほか、家庭や事業所などで一定期間保管することが想定される、コンポスト袋やごみ袋にも好適に用いられる。 The uses of the molded body are not particularly limited, and it can be used in known applications that are applied to general-purpose plastics. In particular, when it is biodegradable, it is particularly suitable for use in agricultural and forestry materials, fishing materials, civil engineering materials, etc. that are used outdoors, in the soil, underwater, or in wet environments. Specific examples include extrusion molded products (for example, film products such as agricultural mulch films, mushroom cultivation films, and tree protection films, sheet products such as water-retaining sheets, and textile products such as fishing lines, fishing nets, aquaculture nets, vegetation nets, and ropes), and injection molded products (stakes, seedling pots, or mushroom bed cultivation containers). It is also suitable for use in compost bags and garbage bags that are expected to be stored for a certain period of time at home or in a business.
 以下、実施例により本発明を更に詳細に説明するが、本発明は、その要旨を超えない限り、以下の実施例に何ら限定されるものではない。なお、以下の諸例で採用した物性及び評価項目の測定方法は次の通りである。 The present invention will be explained in more detail below with reference to examples, but the present invention is not limited to the following examples as long as the gist of the invention is not exceeded. The methods for measuring the physical properties and evaluation items used in the following examples are as follows.
<特性評価>
[固有粘度(IV)dL/g]
 ウベローデ型粘度計を使用し次の要領でポリエステルの固有粘度を求めた。すなわち、ポリエステルペレットをフェノール/テトラクロロエタン(質量比1/1)の混合溶媒に溶解させて濃度0.5g/dLのポリマー溶液を製造し、30℃において、ポリマー溶液及び溶媒のみの落下秒数を測定し、以下の式(1)より求めた。
 IV=((1+4Kηsp0.5-1)/(2KC)・・・(1)
ただし、式(1)において、ηSP=η/η-1であり、ηは試料溶液落下秒数、ηは溶媒の落下秒数、Cは試料溶液濃度(g/dL)、Kはハギンズの定数である。Kは0.33を採用した。
<Characteristics evaluation>
[Intrinsic viscosity (IV) dL/g]
The intrinsic viscosity of the polyester was determined using an Ubbelohde viscometer in the following manner: Polyester pellets were dissolved in a mixed solvent of phenol/tetrachloroethane (mass ratio 1/1) to prepare a polymer solution with a concentration of 0.5 g/dL, and the number of seconds it took for the polymer solution and the solvent alone to fall at 30° C. was measured, and the intrinsic viscosity was determined from the following formula (1).
IV=((1+4K H η sp ) 0.5 -1)/(2K H C)...(1)
In formula (1), η SP =η/η 0 -1, η is the number of seconds it takes for the sample solution to drop, η 0 is the number of seconds it takes for the solvent to drop, C is the concentration of the sample solution (g/dL), and K H is Huggins' constant. K H was set to 0.33.
[エステル化率(%)]
 以下の計算式(2)によって、試料酸価及びケン化価からポリエステルの製造におけるエステル化率を算出した。酸価はエステル化反応生成物試料0.3gをベンジルアルコール40mLに180℃で20分間加熱させ、10分間冷却した後、0.1mol/Lの水酸化カリウム/メタノール溶液により滴定して求めた。ケン化価は0.5mol/Lの水酸化カリウム/エタノール溶液でオリゴマー成分を加水分解し、0.5mol/Lの塩酸で滴定し求めた。
エステル化率(%)=(ケン化価-酸価)/ケン化価×100・・・(2)
[Esterification rate (%)]
The esterification rate in the production of polyester was calculated from the sample acid value and saponification value by the following calculation formula (2). The acid value was determined by heating 0.3 g of the esterification reaction product sample in 40 mL of benzyl alcohol at 180° C. for 20 minutes, cooling for 10 minutes, and then titrating with 0.1 mol/L potassium hydroxide/methanol solution. The saponification value was determined by hydrolyzing the oligomer component with 0.5 mol/L potassium hydroxide/ethanol solution, and titrating with 0.5 mol/L hydrochloric acid.
Esterification rate (%)=(saponification value−acid value)/saponification value×100 (2)
[ポリエステルペレット中の環状オリゴマー成分の含有率の定量 質量ppm]
 ポリエステルペレット0.5gを精秤量し、クロロホルム10mLを加え、室温で溶解後、エタノール/水混合液(容量比4/1)30mLを攪拌下ゆっくりと滴下し、ポリマー成分を沈殿させた。15分後、攪拌を止め、90分間静置分離を行った。次いで、上澄み液を2mL採取し、蒸発乾固させた後、アセトニトリルを2mL加え溶解させた。口径0.45μmのフィルターで濾過した後、島津製作所製高速液体クロマトグラフィー「Prominence」を用い、移動相をアセトニトリル/水(容量比=4/6)でスタートし、高圧グラジエント法でアセトニトリル/水(容量比=9/1)まで連続的に組成を変更させて溶出させた。大阪ソーダ社製「CAPCELL PAK C-18 TYPE MGII」を用いて環状オリゴマー成分(上記のジオール成分に由来する構成単位の繰り返し単位数と上記のジカルボン酸成分に由来する構成単位の繰り返し単位数との合計が2~7である環状エステルオリゴマー成分)を定量しペレットに対する質量ppmで表した。検出器はUV検出器を用い、芳香環を含まないオリゴマーの検出波長は210nmを使用し、芳香環を含有するオリゴマーの検出波長には254nmを使用した。
[Quantitative determination of cyclic oligomer content in polyester pellets (ppm by mass)]
0.5 g of polyester pellets were weighed out, 10 mL of chloroform was added, and the mixture was dissolved at room temperature. 30 mL of ethanol/water mixture (volume ratio 4/1) was slowly dropped under stirring to precipitate the polymer component. After 15 minutes, stirring was stopped and the mixture was allowed to stand for 90 minutes for separation. Next, 2 mL of the supernatant was collected, evaporated to dryness, and then 2 mL of acetonitrile was added to dissolve the mixture. After filtration with a filter having a diameter of 0.45 μm, a high-performance liquid chromatography system "Prominence" manufactured by Shimadzu Corporation was used, and the mobile phase was started with acetonitrile/water (volume ratio = 4/6) and eluted by continuously changing the composition to acetonitrile/water (volume ratio = 9/1) by a high-pressure gradient method. The amount of cyclic oligomer components (cyclic ester oligomer components in which the total number of repeating units of the constitutional units derived from the diol component and the number of repeating units of the constitutional units derived from the dicarboxylic acid component is 2 to 7) was quantified using "CAPCELL PAK C-18 TYPE MGII" manufactured by Osaka Soda Co., Ltd. and expressed as ppm by mass relative to the pellet. A UV detector was used as the detector, and the detection wavelength for oligomers not containing an aromatic ring was 210 nm, and the detection wavelength for oligomers containing an aromatic ring was 254 nm.
 環状二量体((BS)2)の定量には、環状二量体((BS)2)純粋品を用いた絶対検量線法を採用した。環状二量体純粋品は下記のようにして得られた。すなわち、コハク酸と1,4-ブタンジオールを重合して得られたポリマーペレットをアセトン中50℃で12時間撹拌して、オリゴマー成分を接触処理した。接触処理終了後、ペレットを濾別し、オリゴマー成分を接触処理したアセトン溶液から、アセトンを揮発させて固形物を得た。この固形物をアセトン中50℃で飽和溶液となるように溶解した後、徐冷し、上澄みを捨て、針状の析出物を取り出し、更に数回この再結晶操作を繰り返して精製した。この針状析出物は、H-NMR分析及び高速液体クロマトグラフ分析にて環状二量体であることが確認された。環状二量体以外のオリゴマー成分はLC-MS分析で同定を行った後、高速液体クロマトグラフィーにおける各オリゴマー成分の環状二量体面積値に対する相対面積値とファクターを用いて定量計算した。 For the quantitative determination of the cyclic dimer ((BS)2), an absolute calibration curve method using a pure product of the cyclic dimer ((BS)2) was employed. The pure product of the cyclic dimer was obtained as follows. That is, polymer pellets obtained by polymerizing succinic acid and 1,4-butanediol were stirred in acetone at 50°C for 12 hours to contact-treat the oligomer components. After the contact-treat was completed, the pellets were filtered off, and the acetone was volatilized from the acetone solution in which the oligomer components had been contact-treated to obtain a solid. This solid was dissolved in acetone at 50°C to obtain a saturated solution, and then slowly cooled, the supernatant was discarded, and the needle-shaped precipitate was taken out. This recrystallization procedure was repeated several times for purification. This needle-shaped precipitate was confirmed to be the cyclic dimer by 1H -NMR analysis and high-performance liquid chromatography analysis. Oligomer components other than the cyclic dimer were identified by LC-MS analysis, and then quantitatively calculated using the relative area value and factor of each oligomer component to the area value of the cyclic dimer in high performance liquid chromatography.
 環状二量体((BS)2)の定量は、HPLC面積値を用いた絶対検量線から計算式(5)を用いて算出した。
 (環状二量体((BS)2)定量値)=(環状二量体((BS)2)検量線の傾き)×(環状二量体((BS)2)HPLC210nmUV面積値)+環状二量体((BS)2)検量線の切片・・・(5)
 環状二量体((BS)2)以外で芳香環を含まないオリゴマー成分はLC-MS分析で同定を行った後、高速液体クロマトグラフィーにおける各オリゴマー成分の環状二量体((BS)2)面積値に対する相対面積値とファクターを用いて計算式(6)を用いて定量計算した。
 (環状二量体((BS)2)以外のオリゴマーの定量値)=(環状二量体((BS)2)以外のオリゴマーのファクター)×環状二量体((BS)2)定量値×(環状二量体((BS)2)以外のオリゴマーHPLC210nmUV面積値)/(環状二量体((BS)2)HPLC210nmUV面積値)・・・(6)
The amount of the cyclic dimer ((BS)2) was determined by calculation using the formula (5) based on an absolute calibration curve using HPLC area values.
(Quantitative value of cyclic dimer ((BS)2)) = (slope of cyclic dimer ((BS)2) calibration curve) x (HPLC 210 nm UV area value of cyclic dimer ((BS)2)) + intercept of cyclic dimer ((BS)2) calibration curve ... (5)
Oligomer components not containing an aromatic ring other than the cyclic dimer ((BS)2) were identified by LC-MS analysis, and then quantified using the relative area value of each oligomer component to the area value of the cyclic dimer ((BS)2) in high performance liquid chromatography and a factor, according to formula (6).
(Quantitative value of oligomers other than cyclic dimer ((BS)2))=(Factor of oligomers other than cyclic dimer ((BS)2))×Quantitative value of cyclic dimer ((BS)2)×(HPLC 210 nm UV area value of oligomers other than cyclic dimer ((BS)2))/(HPLC 210 nm UV area value of cyclic dimer ((BS)2))...(6)
 芳香環を含むオリゴマー成分の定量は、ジメチルテレフタレート(DMT)を基準物質とした絶対検量線を作成し、あらかじめLC-MS分析で同定を行った後、HPLC面積値を用いてDMT換算値として計算式(7)を用いて算出した。
 (芳香環を含むオリゴマーの定量値)=DMT検量線の傾き×(HPLC254nmUV面積値)+DMT検量線の切片・・・(7)
The amount of the aromatic ring-containing oligomer component was determined by preparing an absolute calibration curve using dimethyl terephthalate (DMT) as a standard substance, and after identifying the component by LC-MS analysis in advance, the amount of the aromatic ring-containing oligomer component was calculated using the HPLC area value as a DMT equivalent value according to the formula (7).
(Quantitative value of oligomer containing aromatic ring) = slope of DMT calibration curve × (HPLC 254 nm UV area value) + intercept of DMT calibration curve ... (7)
[末端カルボキシル基量(酸価)の定量 当量/トン]
 ポリエステルペレットを粉砕した後、熱風乾燥機にて140℃で15分間乾燥し、デシケーター内で室温まで冷却したポリエステル試料から、0.1gを精秤して試験管に採取し、ベンジルアルコール3cmを加えて、乾燥窒素ガスを吹き込みながら195℃、3分間で溶解させた。次いで、クロロホルム5cmを徐々に加えて室温まで冷却した。この溶液にフェノールレッド指示薬を1~2滴加え、乾燥窒素ガスを吹き込みながら撹拌下で、0.1mol/Lの水酸化ナトリウムのベンジルアルコール溶液で滴定し、黄色から赤色に変じた時点で終了とした。また、ブランクとして、ポリエステル試料を加えずに同様の操作を実施し、以下の式(3)によって末端カルボキシル基量(酸価)を算出した。
  末端カルボキシル基量(当量/トン)=(a-b)×0.1×f/W・・・(3)
 ここで、aは、滴定に要した0.1mol/Lの水酸化ナトリウムのベンジルアルコール溶液の量(μL)、bは、ブランクでの滴定に要した0.1mol/Lの水酸化ナトリウムのベンジルアルコール溶液の量(μL)、Wはポリエステル試料の量(g)、fは、0.1mol/Lの水酸化ナトリウムのベンジルアルコール溶液の力価である。
[Terminal carboxyl group amount (acid value) equivalent/ton]
After crushing the polyester pellets, the polyester sample was dried at 140°C for 15 minutes in a hot air dryer and cooled to room temperature in a desiccator. 0.1 g was precisely weighed and collected in a test tube, and 3 cm 3 of benzyl alcohol was added and dissolved at 195°C for 3 minutes while blowing in dry nitrogen gas. Then, 5 cm 3 of chloroform was gradually added and cooled to room temperature. 1 to 2 drops of phenol red indicator were added to this solution, and titration was performed with a 0.1 mol/L benzyl alcohol solution of sodium hydroxide while stirring while blowing in dry nitrogen gas, and the titration was completed when the color changed from yellow to red. In addition, the same operation was performed without adding the polyester sample as a blank, and the amount of terminal carboxyl groups (acid value) was calculated by the following formula (3).
Amount of terminal carboxyl groups (equivalents/ton)=(a−b)×0.1×f/W (3)
Here, a is the amount (μL) of 0.1 mol/L sodium hydroxide solution in benzyl alcohol required for titration, b is the amount (μL) of 0.1 mol/L sodium hydroxide solution in benzyl alcohol required for titration of a blank, W is the amount (g) of the polyester sample, and f is the titer of the 0.1 mol/L sodium hydroxide solution in benzyl alcohol.
 なお、0.1mol/Lの水酸化ナトリウムのベンジルアルコール溶液の力価(f)は、以下の方法で求めた。試験管にメタノール5cmを採取し、フェノールレッドのエタノール溶液の指示薬として1~2滴加え、0.1mol/Lの水酸化ナトリウムのベンジルアルコール溶液0.4cmで変色点まで滴定し、次いで力価既知の0.1mol/Lの塩酸水溶液を標準液として0.2cm採取して加え、再度、0.1mol/Lの水酸化ナトリウムのベンジルアルコール溶液で変色点まで滴定した(以上の操作は、乾燥窒素ガス吹き込み下で行った。)。そして、以下の式(4)によって力価(f)を算出した。
  力価(f)=0.1mol/Lの塩酸水溶液の力価×0.1Nの塩酸水溶液の採取量(μL)/0.1mol/Lの水酸化ナトリウムのベンジルアルコール溶液の滴定量(μL)・・・(4)
The potency (f) of 0.1 mol/L sodium hydroxide in benzyl alcohol was determined by the following method. 5 cm3 of methanol was collected in a test tube, 1-2 drops of phenol red in ethanol solution were added as an indicator, and titrated to the color change point with 0.4 cm3 of 0.1 mol/L sodium hydroxide in benzyl alcohol. Next, 0.2 cm3 of 0.1 mol/L hydrochloric acid solution with a known potency was collected and added as a standard solution, and titrated again to the color change point with 0.1 mol/L sodium hydroxide in benzyl alcohol (the above operations were performed under blowing in dry nitrogen gas). The potency (f) was calculated by the following formula (4).
Titer (f) = Titer of 0.1 mol/L hydrochloric acid solution × Amount of 0.1 N hydrochloric acid solution collected (μL) / Titer amount of 0.1 mol/L sodium hydroxide benzyl alcohol solution (μL) ... (4)
<重縮合反応用触媒の調製>
 撹拌装置付き反応器に、酢酸マグネシウム・4水和物を343.5重量部入れ、更に1434重量部の無水エタノール(純度99重量%以上)を加えた。更にエチルアシッドホスフェート(モノエステル体とジエステル体の混合重量比は45:55)を218.3重量部加え、23℃で撹拌を行った。酢酸マグネシウムが完全に溶解したことを確認後、テトラ-n-ブチルチタネートを410.0重量部添加した。更に10分間撹拌を継続し、均一混合溶液を得た。この混合溶液を、60℃以下の温度でコントロールし減圧下で濃縮を行った。添加したエタノールに対し、およそ半分量のエタノールが留去され、半透明の粘稠な液体が残った。ここへ1,4-ブタンジオール1108重量部を添加し、温度80℃以下の温度でコントロールし減圧下で更に濃縮を行い、チタン原子含有量3.5重量%の触媒溶液を得た。
<Preparation of catalyst for polycondensation reaction>
In a reactor equipped with a stirrer, 343.5 parts by weight of magnesium acetate tetrahydrate was placed, and 1434 parts by weight of anhydrous ethanol (purity 99% by weight or more) was added. 218.3 parts by weight of ethyl acid phosphate (mixture weight ratio of monoester and diester is 45:55) was added, and stirring was performed at 23°C. After confirming that magnesium acetate was completely dissolved, 410.0 parts by weight of tetra-n-butyl titanate was added. Stirring was continued for another 10 minutes to obtain a homogeneous mixed solution. This mixed solution was concentrated under reduced pressure while controlling the temperature at 60°C or less. Approximately half of the amount of ethanol added was distilled off, leaving a translucent viscous liquid. 1108 parts by weight of 1,4-butanediol was added thereto, and further concentration was performed under reduced pressure while controlling the temperature at 80°C or less to obtain a catalyst solution with a titanium atom content of 3.5% by weight.
<ポリエステルの製造方法>
[ポリブチレンサクシネート(PBS)の製造方法]
 図1に示すエステル化処理と図2に示す重縮合反応処理により、以下のようにしてポリエステルを製造した。コハク酸1.00モルに対して、1,4-ブタンジオールを1.30モル及びリンゴ酸を0.0033モルの割合となるように混合した50℃のスラリーを、スラリー調製槽(図示せず)から原料供給ライン(1)を通じ、予め、窒素雰囲気下エステル化率99質量%のポリエステル低分子量体(エステル化反応生成物)を充填した攪拌機を有するエステル化反応槽(A)に連続的に3721kg/hの流量で供給した。
<Production method of polyester>
[Production method of polybutylene succinate (PBS)]
A polyester was produced as follows by the esterification process shown in Fig. 1 and the polycondensation reaction process shown in Fig. 2. A slurry at 50°C, in which 1.30 mol of 1,4-butanediol and 0.0033 mol of malic acid were mixed relative to 1.00 mol of succinic acid, was continuously supplied at a flow rate of 3721 kg/h from a slurry preparation tank (not shown) through a raw material supply line (1) to an esterification reaction tank (A) equipped with a stirrer which had been previously packed with a low molecular weight polyester (esterification reaction product) having an esterification rate of 99% by mass under a nitrogen atmosphere.
 エステル化反応槽(A)を内温230℃、圧力101kPaとし、生成する水、テトラヒドロフラン及び余剰の1,4-ブタンジオールを、留出ライン(5)から留出させ、精留塔(C)で高沸成分と低沸成分とに分離した。系が安定した後の塔底の高沸成分は精留塔(C)の液面が一定になるように、抜出ライン(8)を通じて、その一部を外部に抜き出した。一方、水とテトラヒドロフランを主体とする低沸成分は、塔頂よりガスの形態で抜き出し、コンデンサ(G)で凝縮させ、タンク(F)の液面が一定になるように、抜出ライン(13)より外部に抜き出した。同時に、再循環ライン(2)より100℃の精留塔(C)の塔底成分(98質量%以上が1,4-ブタンジオール)全量を、また、原料供給ライン(1)より、エステル化反応槽で発生したテトラヒドロフランと等モルの1,4-ブタンジオールを併せて供給し、エステル化反応槽内のコハク酸に対する1,4-ブタンジオールモル比が1.30となるように調整した。供給量は、再循環ライン(2)と原料供給ライン(1)合わせて133.1kg/hであった。また、1,4-ブタンジオールがテトラヒドロフランに転化した量はコハク酸1.00モルに対し、0.092モル(THF化率9.2モル%対コハク酸)であった。 The esterification reaction tank (A) had an internal temperature of 230°C and a pressure of 101 kPa, and the water, tetrahydrofuran, and excess 1,4-butanediol produced were distilled through the distillation line (5) and separated into high-boiling and low-boiling components in the distillation tower (C). After the system had stabilized, a portion of the high-boiling components at the bottom of the tower were withdrawn to the outside through the withdrawal line (8) so that the liquid level in the distillation tower (C) would be constant. Meanwhile, the low-boiling components, mainly water and tetrahydrofuran, were withdrawn in gas form from the top of the tower, condensed in the condenser (G), and withdrawn to the outside through the withdrawal line (13) so that the liquid level in the tank (F) would be constant. At the same time, the entire amount of the bottom component (98% by mass or more of 1,4-butanediol) of the 100°C rectification column (C) was fed from the recirculation line (2), and an equal mole of 1,4-butanediol to the tetrahydrofuran generated in the esterification reaction tank was fed from the raw material feed line (1), and the molar ratio of 1,4-butanediol to succinic acid in the esterification reaction tank was adjusted to 1.30. The total feed amount from the recirculation line (2) and the raw material feed line (1) was 133.1 kg/h. The amount of 1,4-butanediol converted to tetrahydrofuran was 0.092 moles per 1.00 mole of succinic acid (THF conversion rate of 9.2 moles per 1 mole of succinic acid).
 エステル化反応槽(A)で生成したエステル化反応生成物は、ポンプ(B)を使用し、エステル化反応生成物の抜出ライン(4)から連続的に抜き出し、エステル化反応槽(A)内液のコハク酸ユニット換算での平均滞留時間が3時間になるように液面を制御した。抜出ライン(4)から抜き出したエステル化反応生成物は、図2の第1重縮合反応槽(a)に連続的に供給した。系が安定した後、エステル化反応槽(A)の出口で採取したエステル化反応生成物のエステル化率は92.8%であった。 The esterification reaction product produced in the esterification reaction tank (A) was continuously withdrawn from the esterification reaction product withdrawal line (4) using a pump (B), and the liquid level was controlled so that the average residence time of the liquid in the esterification reaction tank (A) was 3 hours in terms of succinic acid units. The esterification reaction product withdrawn from the withdrawal line (4) was continuously supplied to the first polycondensation reaction tank (a) in Figure 2. After the system stabilized, the esterification rate of the esterification reaction product collected at the outlet of the esterification reaction tank (A) was 92.8%.
 予め前述手法で調製した触媒溶液を、触媒調製槽において、チタン原子としての濃度が0.12質量%となるように、1,4-ブタンジオールで希釈した触媒溶液を調製した後、供給ライン(L8)を通じて、125.6kg/hで連続的にエステル化反応生成物の抜出ライン(4)に供給した(触媒は反応液の液相に添加された)。供給量は運転期間中安定していた。 The catalyst solution previously prepared by the method described above was diluted with 1,4-butanediol in a catalyst preparation tank so that the titanium atom concentration was 0.12 mass%, and the catalyst solution was then continuously supplied to the esterification reaction product withdrawal line (4) through the supply line (L8) at a rate of 125.6 kg/h (the catalyst was added to the liquid phase of the reaction liquid). The supply amount was stable throughout the operation period.
 第1重縮合反応槽(a)の内温は240℃、圧力2.7kPaとし、滞留時間が120分間になるように、液面制御を行った。減圧機(図示せず)に接続されたベントライン(L2)から、水、テトラヒドロフラン、1,4-ブタンジオールを抜き出しながら、初期重縮合反応を行った。抜き出した反応液は第2重縮合反応器(d)に連続的に供給した。第2重縮合反応器(d)の内温は240℃、圧力400Paとし、滞留時間が120分間になるように、液面制御を行い、減圧機(図示せず)に接続されたベントライン(L4)から、水、テトラヒドロフラン、1,4-ブタンジオールを抜き出しながら、更に重縮合反応を進めた。得られたポリエステルは、抜出用ギヤポンプ(e)により抜出ライン(L3)を経由し、第3重縮合反応器(k)に連続的に供給した。第3重縮合反応器(k)の内温は240℃、圧力は130Pa、滞留時間は120分間とし、更に、重縮合反応を進めた。得られたポリエステルは、ダイスヘッド(g)からストランド状に連続的に抜き出し水冷しつつ、回転式カッター(h)でカッティングしペレットとした。固有粘度は1.80±0.05dL/gであり、品質の安定したポリエステルペレットであった。 The internal temperature of the first polycondensation reaction tank (a) was set to 240°C, the pressure to 2.7 kPa, and the liquid level was controlled so that the residence time was 120 minutes. An initial polycondensation reaction was carried out while extracting water, tetrahydrofuran, and 1,4-butanediol from a vent line (L2) connected to a pressure reducer (not shown). The extracted reaction liquid was continuously supplied to the second polycondensation reactor (d). The internal temperature of the second polycondensation reactor (d) was set to 240°C, the pressure to 400 Pa, and the liquid level was controlled so that the residence time was 120 minutes. The polycondensation reaction was further carried out while extracting water, tetrahydrofuran, and 1,4-butanediol from a vent line (L4) connected to a pressure reducer (not shown). The obtained polyester was continuously supplied to the third polycondensation reactor (k) via the extraction line (L3) by the extraction gear pump (e). The internal temperature of the third polycondensation reactor (k) was 240°C, the pressure was 130 Pa, and the residence time was 120 minutes, and the polycondensation reaction was further carried out. The obtained polyester was continuously extracted in the form of a strand from the die head (g) and cooled with water, while being cut into pellets by a rotary cutter (h). The intrinsic viscosity was 1.80±0.05 dL/g, and the polyester pellets were of stable quality.
(ポリブチレンサクシネート(PBS)ペレットの接触処理液による接触処理)
 得られたポリエステルペレットを、図3に示す接触処理(接触処理工程)により、接触処理を行った。接触処理液として用いるエタノールと水との混合液は、循環タンク(I)からポンプ(IX)により熱交換器(II)を経由して70℃に制御され、供給ライン(101)より接触処理槽(III)へ供給した。接触処理液のエタノール(以下、EtOHと略記することがある)と水の割合は、接触処理液全体に対して水を60質量%とした。処理槽内における接触処理液とペレットの質量比は5とした(処理液/ペレット比)。
(Contact treatment of polybutylene succinate (PBS) pellets with contact treatment solution)
The obtained polyester pellets were subjected to contact treatment by the contact treatment (contact treatment step) shown in Fig. 3. A mixed liquid of ethanol and water used as a contact treatment liquid was controlled to 70°C from a circulation tank (I) via a heat exchanger (II) by a pump (IX) and supplied to a contact treatment tank (III) via a supply line (101). The ratio of ethanol (hereinafter sometimes abbreviated as EtOH) to water in the contact treatment liquid was 60 mass% of water relative to the entire contact treatment liquid. The mass ratio of the contact treatment liquid to the pellets in the treatment tank was 5 (treatment liquid/pellet ratio).
(ポリブチレンサクシネート(PBS)ペレットの乾燥)
 乾燥は図4に示す乾燥工程により行った。第一乾燥塔の乾燥窒素ガスは純度99%以上(露点マイナス40℃)、ガス温度80℃、ガス(空塔)速度0.125m/秒、ペレット滞留時間15時間、第二乾燥塔の乾燥空気(露点マイナス40℃)温度80℃、ガス(空塔速度)0.125m/秒、ペレット滞留時間24時間で行った。
Drying of Polybutylene Succinate (PBS) Pellets
Drying was performed according to the drying process shown in Fig. 4. The dry nitrogen gas in the first drying tower had a purity of 99% or more (dew point -40°C), a gas temperature of 80°C, a gas (superficial) velocity of 0.125 m/sec, and a pellet residence time of 15 hours, while the dry air in the second drying tower (dew point -40°C) had a temperature of 80°C, a gas (superficial) velocity of 0.125 m/sec, and a pellet residence time of 24 hours.
[ポリブチレンサクシネートアジペート(PBSA)の製造方法]
 図1に示すエステル化反応処理(エステル化工程)と図2に示す重縮合反応処理により、以下のようにしてポリエステルを製造した。コハク酸0.74モル、アジピン酸0.26モルに対して、1,4-ブタンジオールを1.30モル及びリンゴ酸を0.0033モルの割合となるように混合した50℃のスラリーを、スラリー調製槽(図示せず)から原料供給ライン(1)を通じ、予め、窒素雰囲気下エステル化率99質量%のポリエステル低分子量体(エステル化反応生成物)を充填した攪拌機を有するエステル化反応槽(A)に連続的に3823kg/hの流量で供給し、その他はPBSの製造方法と同様の操作を行った。エステル化反応槽(A)の出口で採取したエステル化反応生成物のエステル化率は92.8%であり、最終的に得られたポリエステルペレットの固有粘度は1.80±0.05dL/gであり、品質は安定していた。
[Production method of polybutylene succinate adipate (PBSA)]
A polyester was produced as follows by the esterification reaction treatment (esterification step) shown in FIG. 1 and the polycondensation reaction treatment shown in FIG. 2. A 50° C. slurry containing 0.74 mol of succinic acid, 0.26 mol of adipic acid, 1.30 mol of 1,4-butanediol, and 0.0033 mol of malic acid was continuously supplied at a flow rate of 3823 kg/h from a slurry preparation tank (not shown) through a raw material supply line (1) to an esterification reaction tank (A) having a stirrer previously filled with a low molecular weight polyester (esterification reaction product) having an esterification rate of 99% by mass under a nitrogen atmosphere. The other operations were the same as those in the production method of PBS. The esterification rate of the esterification reaction product collected at the outlet of the esterification reaction tank (A) was 92.8%, and the intrinsic viscosity of the finally obtained polyester pellets was 1.80±0.05 dL/g, and the quality was stable.
(ポリブチレンサクシネートアジペート(PBSA)ペレットの接触処理液による接触処理)
 得られたポリエステルペレットを、図3に示す接触処理(接触処理工程)により、接触処理を行った。接触処理液として用いるエタノールと水との混合液の温度45℃に制御し、その他の条件および操作はPBSの接触処理と同等にして行った。
(Contact treatment of polybutylene succinate adipate (PBSA) pellets with contact treatment solution)
The obtained polyester pellets were subjected to a contact treatment by the contact treatment (contact treatment step) shown in Fig. 3. The temperature of the mixture of ethanol and water used as the contact treatment liquid was controlled to 45°C, and other conditions and operations were the same as those of the contact treatment with PBS.
(ポリブチレンサクシネートアジペート(PBSA)ペレットの乾燥)
 乾燥は図4に示す乾燥工程により行った。第一乾燥塔および第二乾燥塔のガス温度は65℃とした以外はPBSペレットの乾燥操作と同様にして実施した。
Drying of Polybutylene Succinate Adipate (PBSA) Pellets
Drying was carried out according to the drying process shown in Fig. 4. The drying process was carried out in the same manner as for the PBS pellets, except that the gas temperatures in the first drying tower and the second drying tower were set to 65°C.
[接触処理液の回収]
 接触処理液は、処理槽内でペレットと向流接触させた後、抜出ライン(102)より抜き出した。抜き出した処理液は、微粉除去機(IV)を経由して一部は分離機(XI)へ供給し、残りは循環タンク(I)へ回収した。接触処理に供するペレットは供給ライン(103)より連続的に供給され、4時間接触処理液と接触させた後、ロータリーバルブ(V)で抜出ライン(104)より連続的に抜き出した。ペレットに同伴して抜き出された接触処理液は、予備固液分離機(VI)で分離され、回収タンク(VII)を経由後、ポンプ(X)により供給ライン(105)を通じて、回収ライン(106)へ戻した。
[Recovery of contact treatment liquid]
The contact treatment liquid was contacted with the pellets in the treatment tank in a countercurrent manner and then withdrawn from the withdrawal line (102). A part of the withdrawn treatment liquid was fed to the separator (XI) via the fine powder remover (IV), and the remainder was recovered in the circulation tank (I). The pellets to be subjected to the contact treatment were continuously fed from the supply line (103), contacted with the contact treatment liquid for 4 hours, and then continuously withdrawn from the withdrawal line (104) via the rotary valve (V). The contact treatment liquid withdrawn together with the pellets was separated in the preliminary solid-liquid separator (VI), passed through the recovery tank (VII), and returned to the recovery line (106) via the supply line (105) by the pump (X).
 分離機(XI)に供給された接触処理液は、蒸留塔(XI)でオリゴマー成分を含まない低沸液と、オリゴマー成分を含む高沸液に分離した。低沸液は熱交換器(XII)およびライン(109)を経由し、循環タンク(I)へ供給した。環状オリゴマー成分を含む高沸液はライン(111)を経由して液相分離槽(XIII)に抜き出した。環状オリゴマー成分を含む高沸液に同伴して抜出ライン(111)から抜き出された接触処理液に相当する量のエタノールと水を、供給ライン(107)から循環タンク(I)へ供給した。連続的に抜き出されたペレットは予備固液分離機(VI)で同伴された接触処理液と分離された後、固液分離機(VIII)より抜出ライン(108)を経由し、乾燥工程へ連続的に供給された。 The contact treatment liquid supplied to the separator (XI) was separated into a low boiling liquid not containing oligomer components and a high boiling liquid containing oligomer components in the distillation column (XI). The low boiling liquid was supplied to the circulation tank (I) via the heat exchanger (XII) and line (109). The high boiling liquid containing cyclic oligomer components was extracted to the liquid phase separation tank (XIII) via line (111). Ethanol and water in an amount equivalent to the contact treatment liquid extracted from the extraction line (111) entrained with the high boiling liquid containing cyclic oligomer components were supplied to the circulation tank (I) from the supply line (107). The continuously extracted pellets were separated from the entrained contact treatment liquid in the preliminary solid-liquid separator (VI) and then continuously supplied to the drying process from the solid-liquid separator (VIII) via the extraction line (108).
[高沸液からの相分離処理によるオリゴマー成分の回収工程]
 液相分離槽(XIII)に供給されたオリゴマー成分を含む水が主成分の高沸液は、オリゴマー成分が溶融した状態の100℃で、水に溶解する上層と、水に不溶で油滴となった下層に分離し、下層の溶融状態のオリゴマー成分をライン(112)より容器に取り出した。このオリゴマー成分は容器で空冷後、PBSの場合はほぼ白色の塊状となり、PBSAの場合には白色に近いペースト状であった。上層は液相分離槽(XIII)からオーバーフローさせ、ライン(113)を介して固液分離槽(XIV)に供給した。
[Recovery process of oligomer components from high boiling liquid by phase separation treatment]
The high boiling liquid containing oligomer components and mainly composed of water, which was supplied to the liquid phase separation tank (XIII), was separated into an upper layer that dissolved in water and a lower layer that was insoluble in water and formed oil droplets at 100°C, in which the oligomer components were in a molten state, and the molten oligomer components in the lower layer were taken out of the container through the line (112). After air cooling in the container, the oligomer components became almost white lumps in the case of PBS, and in the case of PBSA, they were in a paste state close to white. The upper layer was allowed to overflow from the liquid phase separation tank (XIII) and was supplied to the solid-liquid separation tank (XIV) through the line (113).
[相分離処理による上層の水溶液の晶析によるオリゴマー成分の回収工程]
 固液分離槽(XIV)に供給された分離槽(XIII)上層の水溶液は、水を加えて30℃まで冷却され、析出したオリゴマー成分の固形物を固液分離機(XV)で水溶液と分離して容器に取り出した。ここで得られたオリゴマー成分は、PBSの場合はほぼ白色の粉体であり、PBSAの場合には白色に近いペースト状であった。オリゴマー成分を取り出した残りの水溶液は活性汚泥で処理した。
[Step for recovering oligomer components by crystallization of the upper layer aqueous solution through phase separation treatment]
The aqueous solution in the upper layer of the separation tank (XIII) supplied to the solid-liquid separation tank (XIV) was cooled to 30°C by adding water, and the precipitated solid oligomer component was separated from the aqueous solution in a solid-liquid separator (XV) and taken out into a container. The oligomer component obtained here was an almost white powder in the case of PBS, and a paste-like substance close to white in the case of PBSA. The aqueous solution remaining after the oligomer component was removed was treated with activated sludge.
[回収オリゴマー成分の組成]
 回収されたオリゴマー成分に含まれる環状オリゴマー成分の組成について、前述の高速液体クロマトグラフを用いて定量した。以下の表1、表2にPBSおよびPBSAのオリゴマー成分の組成分析の結果を示した。表1においては、液相分離と固液分離を行わず、接触処理液を蒸発乾固させて得られたオリゴマー成分も比較のため記した。
 なお、回収オリゴマー成分中の環状オリゴマー成分、及び該環状オリゴマー成分以外のオリゴマー成分は、いずれも原料として用いた原料から生成されるオリゴマー成分のみであった。つまり、ポリブチレンサクシネート(PBS)ペレットを用いた場合における環状オリゴマー成分は、コハク酸由来の構成単位、1,4-ブタンジオール由来の構成単位、及びリンゴ酸由来の構成単位から構成される環状オリゴマー成分であり、ポリブチレンサクシネートアジペート(PBSA)を用いた場合における環状オリゴマー成分は、コハク酸由来の構成単位、アジピン酸由来の構成単位、1,4-ブタンジオール由来の構成単位、及びリンゴ酸由来の構成単位から構成される環状オリゴマー成分であった。
[Composition of Recovered Oligomer Component]
The composition of the cyclic oligomer components contained in the recovered oligomer components was quantified using the above-mentioned high performance liquid chromatograph. The results of the composition analysis of the oligomer components of PBS and PBSA are shown in the following Tables 1 and 2. For comparison, Table 1 also shows oligomer components obtained by evaporating the contact treatment liquid to dryness without performing liquid-phase separation and solid-liquid separation.
The cyclic oligomer components in the recovered oligomer components and the oligomer components other than the cyclic oligomer components were all only oligomer components generated from the raw materials used as the raw materials. That is, the cyclic oligomer components in the case where polybutylene succinate (PBS) pellets were used were cyclic oligomer components composed of constitutional units derived from succinic acid, constitutional units derived from 1,4-butanediol, and constitutional units derived from malic acid, and the cyclic oligomer components in the case where polybutylene succinate adipate (PBSA) was used were cyclic oligomer components composed of constitutional units derived from succinic acid, constitutional units derived from adipic acid, constitutional units derived from 1,4-butanediol, and constitutional units derived from malic acid.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 表1について、環状2~7量体は、具体的には、液/液分離+固/液分離の組成で、環状2量体(式1のx=2、式2のy=0、x+y=2) 22.3wt%、環状3量体(式1のx=3、式2のy=0、x+y=3) 26.3wt%、環状4量体(式1のx=4、式2のy=0、x+y=4) 20.3wt%、環状5量体(式1のx=5、式2のy=0、x+y=5) 7.7wt%、環状6量体(式1のx=6、式2のy=0、x+y=6) 2.2wt%、環状7量体(式1のx=7、式2のy=0、x+y=7) 0.3wt%であり、溶剤留去のみ、精製無しの組成で、環状2量体(式1のx=2、式2のy=0、x+y=2) 26wt%、環状3量体(式1のx=3、式2のy=0、x+y=3) 3.6wt%、環状4量体(式1のx=4、式2のy=0、x+y=4) 2wt%、環状5量体(式1のx=5、式2のy=0、x+y=5) 1.8wt%、環状6量体(式1のx=6、式2のy=0、x+y=6) 0.7wt%、環状7量体(式1のx=7、式2のy=0、x+y=7) 0wt%であった。  In Table 1, the composition of the cyclic dimer to heptamer after liquid/liquid separation and solid/liquid separation is as follows: cyclic dimer (x=2 in formula 1, y=0 in formula 2, x+y=2) 22.3 wt%, cyclic trimer (x=3 in formula 1, y=0 in formula 2, x+y=3) 26.3 wt%, cyclic tetramer (x=4 in formula 1, y=0 in formula 2, x+y=4) 20.3 wt%, cyclic pentamer (x=5 in formula 1, y=0 in formula 2, x+y=5) 7.7 wt%, cyclic hexamer (x=6 in formula 1, y=0 in formula 2, x+y=6) 2.2 wt%, cyclic heptamer (x=7 in formula 1, y=0 in formula 2, x+y=6) 2.2 wt%, The composition after only solvent distillation and no purification was as follows: cyclic dimer (x=2 in formula 1, y=0 in formula 2, x+y=2) 26 wt%, cyclic trimer (x=3 in formula 1, y=0 in formula 2, x+y=3) 3.6 wt%, cyclic tetramer (x=4 in formula 1, y=0 in formula 2, x+y=4) 2 wt%, cyclic pentamers (x=5 in formula 1, y=0 in formula 2, x+y=5) 1.8 wt%, cyclic hexamers (x=6 in formula 1, y=0 in formula 2, x+y=6) 0.7 wt%, and cyclic heptamers (x=7 in formula 1, y=0 in formula 2, x+y=7) 0 wt%.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
 表2について、環状2~7量体は、具体的には、ホモ環状2量体(式1のx=2、式2のy=0、x+y=2) 10.1wt%、ホモ環状3量体(式1のx=3、式2のy=0、x+y=3) 11.6wt%、ホモ環状4量体(式1のx=4、式2のy=0、x+y=4) 5.4wt%、ホモ環状5量体(式1のx=5、式2のy=0、x+y=5) 7.0wt%、ホモ環状6量体(式1のx=6、式2のy=0、x+y=6) 2.0wt%、ホモ環状7量体(式1のx=7、式2のy=0、x+y=7) 3.0wt%、BA単位含有環状2量体(式1のx=1、式2のy=1、x+y=2) 15.1wt%、BA単位含有環状3量体(式1のx=2、式2のy=1、x+y=3) 14.4wt%、BA単位含有環状4量体(式1のx=3、式2のy=1、x+y=4) 5.7wt%、BA単位含有環状2量体(式1のx=0、式2のy=2、x+y=2) 6.9wt%であった。 In Table 2, the cyclic dimer to heptamer are specifically: homocyclic dimer (x=2 in formula 1, y=0 in formula 2, x+y=2) 10.1 wt%, homocyclic trimer (x=3 in formula 1, y=0 in formula 2, x+y=3) 11.6 wt%, homocyclic tetramer (x=4 in formula 1, y=0 in formula 2, x+y=4) 5.4 wt%, homocyclic pentamer (x=5 in formula 1, y=0 in formula 2, x+y=5) 7.0 wt%, homocyclic hexamer (x=6 in formula 1, y=0 in formula 2, x+y=6) 2.0 wt% %, homocyclic heptamer (x=7 in formula 1, y=0 in formula 2, x+y=7) 3.0 wt%, BA unit-containing cyclic dimer (x=1 in formula 1, y=1 in formula 2, x+y=2) 15.1 wt%, BA unit-containing cyclic trimer (x=2 in formula 1, y=1 in formula 2, x+y=3) 14.4 wt%, BA unit-containing cyclic tetramer (x=3 in formula 1, y=1 in formula 2, x+y=4) 5.7 wt%, BA unit-containing cyclic dimer (x=0 in formula 1, y=2 in formula 2, x+y=2) 6.9 wt%.
<回収オリゴマー成分を添加したポリブチレンサクシネート(PBS)の重合>
[実施例1]
 撹拌装置、窒素導入口、加熱装置、温度計および減圧口を備えた反応容器に、原料としてコハク酸65.2重量部、1,4-ブタンジオール64.5重量部、リンゴ酸0.257重量部を仕込み、回収オリゴマー成分を生成物のポリエステル100重量部に対して5重量部となるように添加し、内容物を攪拌下、容器内に窒素ガスを導入し、減圧置換によって系内を窒素雰囲気下にした。次に、系内を攪拌しながら160℃から230℃へ1時間かけて昇温し、この温度で1時間反応させた。
<Polymerization of polybutylene succinate (PBS) containing recovered oligomer components>
[Example 1]
A reaction vessel equipped with a stirrer, a nitrogen inlet, a heater, a thermometer, and a pressure reducing port was charged with 65.2 parts by weight of succinic acid, 64.5 parts by weight of 1,4-butanediol, and 0.257 parts by weight of malic acid as raw materials, and the recovered oligomer component was added so that it was 5 parts by weight per 100 parts by weight of the product polyester. Nitrogen gas was introduced into the vessel while stirring the contents, and the system was placed under a nitrogen atmosphere by vacuum replacement. Next, the temperature in the system was raised from 160°C to 230°C over one hour while stirring, and the reaction was carried out at this temperature for one hour.
 このエステルオリゴマー成分に、前記の触媒溶液を、得られるポリエステルあたりチタン原子として50重量ppmとなる量を添加し、230℃で30分間保持後、30分かけて250℃まで昇温すると同時に、2時間かけて0.07×10Pa以下になるように減圧し、加熱減圧状態を保持したまま重縮合反応を継続し、所定の粘度になったところで重合を終了し、窒素で復圧後、水浴中にストランド状に抜き出して水冷後にチップカットしてポリエステルペレットを得た。得られたポリエステルの固有粘度は1.78dL/g、ペレットのカラーb値2.8であった。 The catalyst solution was added to this ester oligomer component in an amount of 50 ppm by weight of titanium atom per polyester obtained, and the mixture was kept at 230°C for 30 minutes, then heated to 250°C over 30 minutes, and simultaneously reduced in pressure to 0.07 x 103 Pa or less over 2 hours. The polycondensation reaction was continued while maintaining the heated and reduced pressure state, and polymerization was terminated when a predetermined viscosity was reached. The pressure was restored with nitrogen, and the mixture was drawn out in the form of a strand into a water bath, cooled with water, and then cut into chips to obtain polyester pellets. The intrinsic viscosity of the obtained polyester was 1.78 dL/g, and the color b value of the pellets was 2.8.
[実施例2]
 実施例1に記載のPBS重合操作において、回収オリゴマー成分の添加量を生成物のポリエステル100重量部に対して10重量部となるように添加した以外は同様にして実施した。得られたポリエステルの固有粘度は1.71dL/g、ペレットのカラーb値は3.6であった。
[Example 2]
The PBS polymerization was carried out in the same manner as in Example 1, except that the amount of the recovered oligomer component added was 10 parts by weight per 100 parts by weight of the product polyester. The intrinsic viscosity of the resulting polyester was 1.71 dL/g, and the color b value of the pellets was 3.6.
[実施例3]
 実施例1に記載のPBS重合操作において、回収オリゴマー成分の添加量を生成物のポリエステル100重量部に対して20重量部となるように添加した以外は同様にして実施した。得られたポリエステルの固有粘度は1.78dL/g、ペレットのカラーb値は5.9であった。
[Example 3]
The PBS polymerization was carried out in the same manner as in Example 1, except that the amount of the recovered oligomer component added was 20 parts by weight per 100 parts by weight of the product polyester. The intrinsic viscosity of the resulting polyester was 1.78 dL/g, and the color b value of the pellets was 5.9.
[比較例1]
 実施例1に記載のPBS重合操作において、溶剤留去のみの精製無し回収オリゴマー成分を生成物のポリエステル100重量部に対して5重量部となるように添加した以外は同様にして実施した。得られたポリエステルの固有粘度は1.72dL/g、ペレットのカラーb値は3.4であった。
[Comparative Example 1]
The PBS polymerization was carried out in the same manner as in Example 1, except that the oligomer component recovered without purification by only distilling off the solvent was added in an amount of 5 parts by weight per 100 parts by weight of the product polyester. The intrinsic viscosity of the resulting polyester was 1.72 dL/g, and the color b value of the pellets was 3.4.
[比較例2]
 実施例1に記載のPBS重合操作において、溶剤留去のみの精製無し回収オリゴマー成分を生成物のポリエステル100重量部に対して10重量部となるように添加した以外は同様にして実施した。得られたポリエステルの固有粘度は1.75dL/g、ペレットのカラーb値は6.3であった。
[Comparative Example 2]
The PBS polymerization was carried out in the same manner as in Example 1, except that the oligomer component recovered without purification by only distilling off the solvent was added in an amount of 10 parts by weight per 100 parts by weight of the product polyester. The intrinsic viscosity of the resulting polyester was 1.75 dL/g, and the color b value of the pellets was 6.3.
[比較例3]
 実施例1に記載のPBS重合操作において、溶剤留去のみの精製無し回収オリゴマー成分を生成物のポリエステル100重量部に対して20重量部となるように添加した以外は同様にして実施した。得られたポリエステルの固有粘度は1.73dL/g、ペレットのカラーb値は8.6であった。
[Comparative Example 3]
The PBS polymerization was carried out in the same manner as in Example 1, except that the oligomer component recovered without purification by only distilling off the solvent was added in an amount of 20 parts by weight per 100 parts by weight of the product polyester. The intrinsic viscosity of the resulting polyester was 1.73 dL/g, and the color b value of the pellets was 8.6.
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
<回収オリゴマー成分を添加したポリブチレンサクシネート(PBSA)の重合>
[実施例4]
 撹拌装置、窒素導入口、加熱装置、温度計および減圧口を備えた反応容器に、原料としてコハク酸48.6重量部、アジピン酸21.2重量部、1,4-ブタンジオール65.1重量部、リンゴ酸0.239重量部を仕込み、回収オリゴマー成分を生成物のポリエステル100重量部に対して5重量部となるように添加し、内容物を攪拌下、容器内に窒素ガスを導入し、減圧置換によって系内を窒素雰囲気下にした。次に、系内を攪拌しながら160℃から230℃へ1時間かけて昇温し、この温度で1時間反応させた。
<Polymerization of polybutylene succinate (PBSA) containing recovered oligomer components>
[Example 4]
A reaction vessel equipped with a stirrer, a nitrogen inlet, a heater, a thermometer, and a pressure reducing port was charged with 48.6 parts by weight of succinic acid, 21.2 parts by weight of adipic acid, 65.1 parts by weight of 1,4-butanediol, and 0.239 parts by weight of malic acid as raw materials, and the recovered oligomer component was added so that it was 5 parts by weight per 100 parts by weight of the polyester product. Nitrogen gas was introduced into the vessel while stirring the contents, and the system was placed under a nitrogen atmosphere by vacuum replacement. Next, the temperature in the system was raised from 160°C to 230°C over one hour while stirring, and the reaction was carried out at this temperature for one hour.
 このエステルオリゴマー成分に、前記の触媒溶液を、得られるポリエステルあたりチタン原子として50重量ppmとなる量を添加し、230℃で30分間保持後、30分かけて250℃まで昇温すると同時に、2時間かけて0.07×10Pa以下になるように減圧し、加熱減圧状態を保持したまま重縮合反応を継続し、所定の粘度になったところで重合を終了し、窒素で復圧後、水浴中にストランド状に抜き出して水冷後にチップカットしてポリエステルペレットを得た。得られたポリエステルの固有粘度は1.81dL/g、ペレットのカラーb値3.0であった。 The catalyst solution was added to this ester oligomer component in an amount of 50 ppm by weight of titanium atom per polyester obtained, and the mixture was kept at 230°C for 30 minutes, then heated to 250°C over 30 minutes, and simultaneously reduced in pressure to 0.07 x 103 Pa or less over 2 hours. The polycondensation reaction was continued while maintaining the heated and reduced pressure state, and polymerization was terminated when a predetermined viscosity was reached. The pressure was restored with nitrogen, and the mixture was drawn out in the form of a strand into a water bath, cooled with water, and then cut into chips to obtain polyester pellets. The intrinsic viscosity of the obtained polyester was 1.81 dL/g, and the color b value of the pellets was 3.0.
[実施例5]
 実施例4に記載のPBSA重合操作において、回収オリゴマー成分の添加量を生成物のポリエステル100重量部に対して10重量部となるように添加した以外は同様にして実施した。得られたポリエステルの固有粘度は1.81dL/g、ペレットのカラーb値は6.6であった。
[Example 5]
The PBSA polymerization was carried out in the same manner as in Example 4, except that the amount of the recovered oligomer component added was 10 parts by weight per 100 parts by weight of the product polyester. The intrinsic viscosity of the resulting polyester was 1.81 dL/g, and the color b value of the pellets was 6.6.
[実施例6]
 実施例4に記載のPBSA重合操作において、回収オリゴマー成分の添加量を生成物のポリエステル100重量部に対して20重量部となるように添加した以外は同様にして実施した。得られたポリエステルの固有粘度は1.84dL/g、ペレットのカラーb値は8.5であった。
[Example 6]
The PBSA polymerization was carried out in the same manner as in Example 4, except that the amount of the recovered oligomer component added was 20 parts by weight per 100 parts by weight of the product polyester. The intrinsic viscosity of the resulting polyester was 1.84 dL/g, and the color b value of the pellets was 8.5.
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
1:原料供給ライン
2:再循環ライン
3:触媒供給ライン
4:エステル化反応生成物の抜出ライン
5:留出ライン
6:抜出ライン
7:循環ライン
8:抜出ライン
9:ガス抜出ライン
10:凝縮液ライン
11:抜出ライン
12:循環ライン
13:抜出ライン
14:ベントライン
15:供給ライン
A:エステル化反応槽
B:抜出ポンプ
C:精留塔
D:ポンプ
E:ポンプ
F:タンク
G:コンデンサー
L1、L3、L5:重縮合反応生成物抜出ライン
L2、L4、L6:ベントライン
L7:触媒供給ライン
L8:原料供給ライン
a:第1重縮合反応槽
d:第2重縮合反応槽
k:第3重縮合反応槽
c、e、m:抜出用ギヤポンプ
g:ダイスヘッド
h:回転式カッター
p、q、r、s:フィルター
I:循環タンク
II:熱交換器
III:接触処理槽
IV:微粉除去機
V:ロータリーバルブ
VI:予備固液分離機
VII:回収タンク
VIII:固液分離機
IX:ポンプ
X:ポンプ
XI:蒸留塔
XII:熱交換器
XIII:液相分離槽
XIV:固液分離槽
XV:固液分離機
101:接触処理液供給ライン
102:抜出ライン
103:ペレット供給ライン
104:抜出ライン
105:供給ライン
106:回収ライン
107:供給ライン
108:抜出ライン
109:低沸液抜出ライン
110:接触処理液供給ライン
111:高沸液抜出ライン
112:オリゴマー成分回収ライン
113:液相分離槽オーバーフローライン
114:固液分離槽オーバーフローライン
115:排水ライン
116:排水ライン
117:オリゴマー成分回収ライン
I:第一乾燥塔
J:冷却塔
K:第二乾燥塔
L:コンデンサー
M:熱交換器
N:熱交換器
O:ロータリーバルブ
P:ロータリーバルブ
Q:ロータリーバルブ
R:ブロア
S:熱交換器
201:ペレット供給ライン
202:ペレット抜出ライン
203:ペレット供給ライン
204:ペレット抜出ライン
205:ペレット供給ライン
206:ペレット抜出ライン
207:乾燥ガス回収ライン
208:乾燥ガス供給ライン
209:新乾燥ガス供給ライン
210:凝縮液抜出ライン
211:冷却ガス抜出ライン
212:冷却ガス供給ライン
213:乾燥ガス抜出ライン
214:乾燥ガス供給ライン
1: Raw material supply line 2: Recirculation line 3: Catalyst supply line 4: Esterification reaction product withdrawal line 5: Distillation line 6: Withdrawal line 7: Circulation line 8: Withdrawal line 9: Gas withdrawal line 10: Condensate line 11: Withdrawal line 12: Circulation line 13: Withdrawal line 14: Vent line 15: Supply line A: Esterification reaction tank B: Withdrawal pump C: Distillation column D: Pump E: Pump F: Tank G: Condenser L1, L3, L5: Polycondensation reaction product withdrawal lines L2, L4, L6: Vent line L7: Catalyst supply line L 8: Raw material supply line a: First polycondensation reaction tank d: Second polycondensation reaction tank k: Third polycondensation reaction tank c, e, m: Discharge gear pump g: Die head h: Rotary cutter p, q, r, s: Filter I: Circulation tank II: Heat exchanger III: Contact treatment tank IV: Fine powder remover V: Rotary valve VI: Spare solid-liquid separator VII: Recovery tank VIII: Solid-liquid separator IX: Pump X: Pump XI: Distillation column XII: Heat exchanger XIII: Liquid phase separation tank XIV: Solid-liquid separation tank XV: Solid-liquid separator 101: Contact treatment liquid supply line 102: Discharge Line 103: Pellet supply line 104: Withdrawal line 105: Supply line 106: Recovery line 107: Supply line 108: Withdrawal line 109: Low boiling liquid withdrawal line 110: Contact treatment liquid supply line 111: High boiling liquid withdrawal line 112: Oligomer component recovery line 113: Liquid phase separation tank overflow line 114: Solid-liquid separation tank overflow line 115: Drainage line 116: Drainage line 117: Oligomer component recovery line I: First drying tower J: Cooling tower K: Second drying tower L: Condenser M: Heat exchanger N: Heat exchanger Heat exchanger O: rotary valve P: rotary valve Q: rotary valve R: blower S: heat exchanger 201: pellet supply line 202: pellet withdrawal line 203: pellet supply line 204: pellet withdrawal line 205: pellet supply line 206: pellet withdrawal line 207: dry gas recovery line 208: dry gas supply line 209: new dry gas supply line 210: condensate withdrawal line 211: cooling gas withdrawal line 212: cooling gas supply line 213: dry gas withdrawal line 214: dry gas supply line

Claims (26)

  1.  ポリエステル原料を反応させるエステル化反応処理及びエステル交換反応処理からなる群から選択される少なくとも一の反応処理を含む反応工程を有するポリエステルの製造方法であって、
     前記ポリエステル原料が、ジオール成分と、ジカルボン酸成分と、オリゴマー成分とを含み、
     前記オリゴマー成分における環状オリゴマー成分の含有率が35質量%以上100質量%以下であり、
     前記環状オリゴマー成分が、前記ジオール成分に由来する構成単位及び前記ジカルボン酸成分に由来する構成単位を含み、該ジオール成分に由来する構成単位の繰り返し単位数と該ジカルボン酸成分に由来する構成単位の繰り返し単位数との合計が2~7である、ポリエステルの製造方法。
    A method for producing a polyester, comprising a reaction step including at least one reaction treatment selected from the group consisting of an esterification reaction treatment and an ester exchange reaction treatment, in which a polyester raw material is reacted,
    The polyester raw material contains a diol component, a dicarboxylic acid component, and an oligomer component,
    The content of a cyclic oligomer component in the oligomer component is 35% by mass or more and 100% by mass or less,
    the cyclic oligomer component comprises a constituent unit derived from the diol component and a constituent unit derived from the dicarboxylic acid component, and the total number of repeating units of the constituent units derived from the diol component and the constituent units derived from the dicarboxylic acid component is 2 to 7.
  2.  前記ジオール成分が、1,4-ブタンジオール及びその誘導体からなる群から選択される少なくとも1種を含む、請求項1に記載のポリエステルの製造方法。 The method for producing polyester according to claim 1, wherein the diol component includes at least one selected from the group consisting of 1,4-butanediol and its derivatives.
  3.  前記ポリエステル原料中の前記オリゴマー成分の含有率が0.1質量%以上100質量%未満である、請求項1又は2に記載のポリエステルの製造方法。 The method for producing polyester according to claim 1 or 2, wherein the content of the oligomer component in the polyester raw material is 0.1% by mass or more and less than 100% by mass.
  4.  前記反応工程により得られた反応生成物と、水を含む溶剤とを接触処理させることにより前記オリゴマー成分を含む接触処理液と接触処理後反応生成物とを得る接触処理を含む精製工程をさらに有し、
     前記処理液中のオリゴマー成分を、前記反応工程におけるポリエステル原料中のオリゴマー成分として再利用する、
    請求項1又は2に記載のポリエステルの製造方法。
    The method further comprises a purification step including a contact treatment in which the reaction product obtained in the reaction step is contacted with a solvent containing water to obtain a contact treatment liquid containing the oligomer component and a post-contact treatment reaction product,
    The oligomer component in the treatment liquid is reused as an oligomer component in the polyester raw material in the reaction step.
    A method for producing the polyester according to claim 1 or 2.
  5.  前記反応工程と前記精製工程との間に、前記反応工程により得られた反応生成物をペレット化してペレットを得るペレット化工程をさらに有する、請求項4に記載のポリエステルの製造方法。 The method for producing polyester according to claim 4, further comprising a pelletizing step between the reaction step and the purification step, in which the reaction product obtained in the reaction step is pelletized to obtain pellets.
  6.  前記反応工程の前に、前記ポリエステル原料を調製する原料調製工程をさらに有し、
     前記接触処理液中のオリゴマー成分を、前記原料調製工程から反応工程までのいずれかの工程に供給する、請求項4に記載のポリエステルの製造方法。
    The method further includes a raw material preparation step of preparing the polyester raw material before the reaction step,
    The method for producing a polyester according to claim 4 , wherein the oligomer component in the contact treatment liquid is supplied to any one of the steps from the raw material preparation step to the reaction step.
  7.  前記接触処理後反応生成物を乾燥する乾燥処理を行う乾燥工程をさらに有する、請求項4に記載のポリエステルの製造方法。 The method for producing polyester according to claim 4 further comprises a drying step in which the reaction product is dried after the contact treatment.
  8.  前記精製工程における接触処理および前記乾燥工程における乾燥処理からなる群から選択される少なくとも1つの処理が連続式で行われる、請求項7に記載のポリエステルの製造方法。 The method for producing polyester according to claim 7, wherein at least one treatment selected from the group consisting of a contact treatment in the purification step and a drying treatment in the drying step is carried out continuously.
  9.  前記環状オリゴマー成分が、下記式(1)で表される構造および下記式(2)で表される構造を有する、請求項1又は2に記載のポリエステルの製造方法。
    Figure JPOXMLDOC01-appb-C000001

    (式(1)において、RおよびRは、それぞれ独立して、置換基を有していてもよい2価の炭化水素基であり;xは0~7であり、
    式(2)において、RおよびRは、それぞれ独立して、置換基を有していてもよい2価の炭化水素基であり;yは0~7であり、
    x+yは2~7である。)
    The method for producing a polyester according to claim 1 or 2, wherein the cyclic oligomer component has a structure represented by the following formula (1) and a structure represented by the following formula (2):
    Figure JPOXMLDOC01-appb-C000001

    In formula (1), R 1 and R 2 each independently represent a divalent hydrocarbon group which may have a substituent; x is an integer of 0 to 7;
    In formula (2), R 3 and R 4 each independently represent a divalent hydrocarbon group which may have a substituent; y is an integer of 0 to 7;
    x+y is 2 to 7.
  10.  前記R~Rは、それぞれ独立して、置換基を有していてもよい炭素数が2~40の2価の炭化水素基である、請求項9に記載のポリエステルの製造方法。 10. The method for producing a polyester according to claim 9, wherein R 1 to R 4 are each independently a divalent hydrocarbon group having 2 to 40 carbon atoms which may have a substituent.
  11.  前記ポリエステル原料が、
     前記ジカルボン酸成分として、下記式(A)で表されるジカルボン酸及びその誘導体からなる群から選択される少なくとも1種、および下記式(B)で表されるジカルボン酸及びその誘導体からなる群から選択される少なくとも1種を含み、
     前記ジオール成分として、下記式(C)で表されるジオール及びその誘導体からなる群から選択される少なくとも1種、および下記式(D)で表されるジオール及びその誘導体からなる群から選択される少なくとも1種を含み、
     前記下記式(C)で表されるジオールからなる群から選択される少なくとも1種と、下記式(D)で表されるジオールからなる群から選択される少なくとも1種と、からなる群から選択される少なくとも1種が、1,4-ブタンジオール及びその誘導体からなる群から選択される少なくとも1種である、
    請求項9に記載のポリエステルの製造方法。
    Figure JPOXMLDOC01-appb-C000002

    (式(A)~(D)において、R~Rは、それぞれ前記式(1)におけるR~Rと同義である。)
    The polyester raw material is
    The dicarboxylic acid component includes at least one selected from the group consisting of dicarboxylic acids represented by the following formula (A) and derivatives thereof, and at least one selected from the group consisting of dicarboxylic acids represented by the following formula (B) and derivatives thereof:
    The diol component includes at least one selected from the group consisting of diols represented by the following formula (C) and derivatives thereof, and at least one selected from the group consisting of diols represented by the following formula (D) and derivatives thereof:
    At least one kind selected from the group consisting of at least one kind selected from the group consisting of diols represented by the following formula (C) and at least one kind selected from the group consisting of diols represented by the following formula (D) is at least one kind selected from the group consisting of 1,4-butanediol and derivatives thereof:
    A method for producing the polyester according to claim 9.
    Figure JPOXMLDOC01-appb-C000002

    (In formulas (A) to (D), R 1 to R 4 have the same meanings as R 1 to R 4 in formula (1), respectively.)
  12.  前記精製工程における接触処理および前記乾燥工程における乾燥処理からなる群から選択される少なくとも1つの処理が回分式または半回分式で行われる、請求項1又は2に記載のポリエステルの製造方法。 The method for producing polyester according to claim 1 or 2, wherein at least one treatment selected from the group consisting of the contact treatment in the purification step and the drying treatment in the drying step is carried out in a batch or semi-batch manner.
  13.  ジオール成分に由来する構成単位と、ジカルボン酸成分に由来する構成単位と、を含むポリエステル、および下記式(1)で表される構造および下記式(2)で表される構造を有する環状オリゴマー成分を含む、組成物。
    Figure JPOXMLDOC01-appb-C000003

    (式(1)において、RおよびRは、それぞれ独立して、置換基を有していてもよい2価の炭化水素基であり;xは0~7であり、
    式(2)において、RおよびRは、それぞれ独立して、置換基を有していてもよい2価の炭化水素基であり;yは0~7であり、
    x+yは2~7である。)
    A composition comprising a polyester including a constitutional unit derived from a diol component and a constitutional unit derived from a dicarboxylic acid component, and a cyclic oligomer component having a structure represented by the following formula (1) and a structure represented by the following formula (2):
    Figure JPOXMLDOC01-appb-C000003

    In formula (1), R 1 and R 2 each independently represent a divalent hydrocarbon group which may have a substituent; x is an integer of 0 to 7;
    In formula (2), R 3 and R 4 each independently represent a divalent hydrocarbon group which may have a substituent; y is an integer of 0 to 7;
    x+y is 2 to 7.
  14.  前記ポリエステルが、前記環状オリゴマー成分に由来する構成単位を含む、請求項13に記載の組成物。 The composition of claim 13, wherein the polyester comprises constitutional units derived from the cyclic oligomer component.
  15.  請求項13又は14に記載の組成物を成形してなる成形体。 A molded article obtained by molding the composition according to claim 13 or 14.
  16.  ジオール成分及びジカルボン酸成分を含むポリエステル原料をエステル化反応処理及びエステル交換反応処理からなる群から選択される少なくとも一の処理を含む反応処理により反応生成物を得る反応工程、
     前記反応生成物と接触処理液を接触させることによりオリゴマー成分を含む接触処理液と接触処理後反応生成物とを得る接触処理工程、
     前記オリゴマー成分を含む接触処理液からオリゴマー成分中の環状オリゴマー成分の含有割合が大きくなるように前記接触処理液中のオリゴマー成分を精製する処理を含む精製工程、並びに
     前記精製工程により得られたオリゴマー成分を前記原料の一部として回収する回収工程を有する、
    ポリエステルの製造方法。
    a reaction step of obtaining a reaction product by subjecting a polyester raw material containing a diol component and a dicarboxylic acid component to a reaction treatment including at least one treatment selected from the group consisting of an esterification reaction treatment and an ester exchange reaction treatment;
    a contact treatment step of contacting the reaction product with a contact treatment liquid to obtain a contact treatment liquid containing an oligomer component and a post-contact treatment reaction product;
    a purification step including a treatment for purifying the oligomer components in the contact treatment liquid so that a content ratio of cyclic oligomer components in the oligomer components is increased from the contact treatment liquid containing the oligomer components; and a recovery step for recovering the oligomer components obtained by the purification step as part of the raw material.
    A method for producing polyester.
  17.  前記精製工程が、前記オリゴマー成分を含む高沸液と、低沸液とに分離する蒸留分離処理を有する、請求項16に記載のポリエステルの製造方法。 The method for producing polyester according to claim 16, wherein the purification step includes a distillation separation process for separating the oligomer component into a high boiling liquid and a low boiling liquid.
  18.  液/液の相分離処理を行い前記高沸液から前記オリゴマー成分を分離する相分離処理をさらに有する、請求項17に記載のポリエステルの製造方法。 The method for producing polyester according to claim 17 further comprises a phase separation process for performing a liquid/liquid phase separation process to separate the oligomer component from the high boiling liquid.
  19.  前記相分離処理で分離されたオリゴマー成分を更に晶析する晶析処理をさらに有する、請求項18に記載のポリエステルの製造方法。 The method for producing polyester according to claim 18, further comprising a crystallization process for further crystallizing the oligomer components separated in the phase separation process.
  20.  前記高沸液に含まれるオリゴマー成分を晶析する晶析処理をさらに有する、請求項17に記載のポリエステルの製造方法。 The method for producing polyester according to claim 17, further comprising a crystallization process for crystallizing oligomer components contained in the high boiling liquid.
  21.  前記反応工程と前記接触処理工程との間に、前記反応工程により得られた反応生成物をペレット化してポリエステルペレットを得るペレット化工程をさらに有する、請求項16又は17に記載のポリエステルの製造方法。 The method for producing polyester according to claim 16 or 17 further comprises a pelletizing step between the reaction step and the contact treatment step, in which the reaction product obtained in the reaction step is pelletized to obtain polyester pellets.
  22.  前記反応工程の前に、前記原料を調製する原料調製工程をさらに有し、
     前記回収工程の後に、回収された前記オリゴマー成分を溶融した融液、又は前記オリゴマー成分を前記ポリエステル原料のジオール成分に溶解させた溶液を、前記原料調製工程から前記反応工程までのいずれかの工程に供給する供給工程をさらに有する、
    請求項16又は17に記載のポリエステルの製造方法。
    The method further includes a raw material preparation step of preparing the raw material before the reaction step,
    The method further includes a supplying step of supplying, after the recovery step, a melt obtained by melting the recovered oligomer component or a solution obtained by dissolving the oligomer component in a diol component of the polyester raw material to any one of the steps from the raw material preparation step to the reaction step.
    A method for producing the polyester according to claim 16 or 17.
  23.  前記接触処理液がアルコールを含む、請求項16又は17に記載のポリエステルの製造方法。 The method for producing polyester according to claim 16 or 17, wherein the contact treatment liquid contains alcohol.
  24.  前記接触処理工程の後に、前記接触処理後反応生成物を乾燥する乾燥処理を行う乾燥工程をさらに有する、請求項16又は17に記載のポリエステルの製造方法。 The method for producing polyester according to claim 16 or 17 further comprises a drying step of drying the reaction product after the contact treatment step.
  25.  前記接触処理工程における接触処理および前記乾燥工程における乾燥処理からなる群から選択される少なくとも1つの処理が連続式で行われる、請求項24に記載のポリエステルの製造方法。 The method for producing polyester according to claim 24, wherein at least one treatment selected from the group consisting of the contact treatment in the contact treatment step and the drying treatment in the drying step is carried out continuously.
  26.  前記接触処理工程における接触処理および前記乾燥工程における乾燥処理からなる群から選択される少なくとも1つの処理が回分式又は半回分式で行われる、請求項24に記載のポリエステルの製造方法。 The method for producing polyester according to claim 24, wherein at least one treatment selected from the group consisting of the contact treatment in the contact treatment step and the drying treatment in the drying step is carried out in a batch or semi-batch manner.
PCT/JP2024/012678 2023-03-29 2024-03-28 Polyester production method, composition, and molded article WO2024204552A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2023054146 2023-03-29
JP2023-054147 2023-03-29
JP2023054147 2023-03-29
JP2023-054146 2023-03-29

Publications (1)

Publication Number Publication Date
WO2024204552A1 true WO2024204552A1 (en) 2024-10-03

Family

ID=92906756

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2024/012678 WO2024204552A1 (en) 2023-03-29 2024-03-28 Polyester production method, composition, and molded article

Country Status (1)

Country Link
WO (1) WO2024204552A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004346166A (en) * 2003-05-21 2004-12-09 Mitsubishi Gas Chem Co Inc Method for producing aliphatic polyester resin
JP2006016544A (en) * 2004-07-02 2006-01-19 Mitsubishi Chemicals Corp Method for ring opening of cyclic monomer or cyclic oligomer
JP2010195989A (en) * 2009-02-26 2010-09-09 Mitsubishi Chemicals Corp Manufacturing method of aliphatic polyester
JP2014156517A (en) * 2013-02-14 2014-08-28 Kumamoto Univ Polyester production method and polyester compact production method
JP2015030828A (en) * 2013-08-06 2015-02-16 帝人デュポンフィルム株式会社 Polyester film

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004346166A (en) * 2003-05-21 2004-12-09 Mitsubishi Gas Chem Co Inc Method for producing aliphatic polyester resin
JP2006016544A (en) * 2004-07-02 2006-01-19 Mitsubishi Chemicals Corp Method for ring opening of cyclic monomer or cyclic oligomer
JP2010195989A (en) * 2009-02-26 2010-09-09 Mitsubishi Chemicals Corp Manufacturing method of aliphatic polyester
JP2014156517A (en) * 2013-02-14 2014-08-28 Kumamoto Univ Polyester production method and polyester compact production method
JP2015030828A (en) * 2013-08-06 2015-02-16 帝人デュポンフィルム株式会社 Polyester film

Similar Documents

Publication Publication Date Title
JP5834696B2 (en) Polyester manufacturing method
US9714320B2 (en) Process for preparing a high molecular weight heteroaromatic polyester or copolyester
WO2009119511A1 (en) Process for production of aliphatic polyester
WO2009084443A1 (en) Method for producing aliphatic polyester
JP2018145221A (en) Production method of polyester
JP2022136023A (en) Aliphatic-aromatic polyester composition and method for producing the same
US20220356301A1 (en) Method for producing aliphatic-aromatic polyester
JP2010195989A (en) Manufacturing method of aliphatic polyester
JP5200531B2 (en) Method for producing aliphatic polyester
JP2012144744A (en) Method for producing aliphatic polyester
JP5176649B2 (en) Polyester manufacturing method
JP2009067897A (en) Manufacturing method for aliphatic polyester
WO2024204552A1 (en) Polyester production method, composition, and molded article
WO2024071363A1 (en) Method for producing polyester
JP5045216B2 (en) Method for producing polyester polycondensation catalyst, and method for producing polyester using the catalyst
JP5729217B2 (en) Method for producing aliphatic polyester
JP2022149744A (en) Aliphatic aromatic polyester resin
JP5678667B2 (en) Method for producing aliphatic polyester
JP5121141B2 (en) Polytrimethylene terephthalate composition and method for producing the same
JP2005325259A (en) Method of cleansing aliphatic or cycloaliphatic polyester
JP2018145220A (en) Method of producing aliphatic polyester
JP7468006B2 (en) Method for producing polyester resin
WO2024204351A1 (en) Biodegradable resin composition and molded body
JP4419668B2 (en) Method for drying aliphatic or alicyclic polyester
JP2014141633A (en) Method of producing aliphatic polyester