WO2024204499A1 - Method for producing ethylene-vinyl alcohol copolymer - Google Patents
Method for producing ethylene-vinyl alcohol copolymer Download PDFInfo
- Publication number
- WO2024204499A1 WO2024204499A1 PCT/JP2024/012575 JP2024012575W WO2024204499A1 WO 2024204499 A1 WO2024204499 A1 WO 2024204499A1 JP 2024012575 W JP2024012575 W JP 2024012575W WO 2024204499 A1 WO2024204499 A1 WO 2024204499A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- alcohol
- recovered
- evoh
- ethylene
- saponification
- Prior art date
Links
- 229920000219 Ethylene vinyl alcohol Polymers 0.000 title claims abstract description 138
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 28
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims abstract description 231
- 150000001299 aldehydes Chemical class 0.000 claims abstract description 100
- 238000007127 saponification reaction Methods 0.000 claims abstract description 98
- MLUCVPSAIODCQM-NSCUHMNNSA-N crotonaldehyde Chemical compound C\C=C\C=O MLUCVPSAIODCQM-NSCUHMNNSA-N 0.000 claims abstract description 48
- MLUCVPSAIODCQM-UHFFFAOYSA-N crotonaldehyde Natural products CC=CC=O MLUCVPSAIODCQM-UHFFFAOYSA-N 0.000 claims abstract description 46
- 239000003054 catalyst Substances 0.000 claims abstract description 34
- 239000003513 alkali Substances 0.000 claims abstract description 17
- 238000007599 discharging Methods 0.000 claims abstract description 4
- IKHGUXGNUITLKF-UHFFFAOYSA-N Acetaldehyde Chemical compound CC=O IKHGUXGNUITLKF-UHFFFAOYSA-N 0.000 claims description 63
- 238000000034 method Methods 0.000 claims description 54
- 238000006359 acetalization reaction Methods 0.000 claims description 23
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical group C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 claims description 21
- 239000005977 Ethylene Substances 0.000 claims description 21
- BATOPAZDIZEVQF-MQQKCMAXSA-N (E,E)-2,4-hexadienal Chemical compound C\C=C\C=C\C=O BATOPAZDIZEVQF-MQQKCMAXSA-N 0.000 claims description 14
- ZUZGMJKUENNLQL-ICDJNDDTSA-N (2e,4e,6e)-octa-2,4,6-trienal Chemical compound C\C=C\C=C\C=C\C=O ZUZGMJKUENNLQL-ICDJNDDTSA-N 0.000 claims description 12
- 238000002156 mixing Methods 0.000 claims description 8
- BATOPAZDIZEVQF-UHFFFAOYSA-N sorbic aldehyde Natural products CC=CC=CC=O BATOPAZDIZEVQF-UHFFFAOYSA-N 0.000 claims description 8
- 239000005038 ethylene vinyl acetate Substances 0.000 claims description 5
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 claims description 5
- UFRKOOWSQGXVKV-UHFFFAOYSA-N ethene;ethenol Chemical compound C=C.OC=C UFRKOOWSQGXVKV-UHFFFAOYSA-N 0.000 abstract description 124
- 239000004715 ethylene vinyl alcohol Substances 0.000 abstract description 124
- 230000007613 environmental effect Effects 0.000 abstract description 18
- 230000006866 deterioration Effects 0.000 abstract description 5
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 174
- 239000000243 solution Substances 0.000 description 69
- 239000008188 pellet Substances 0.000 description 35
- 238000011282 treatment Methods 0.000 description 31
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 24
- 239000002904 solvent Substances 0.000 description 24
- 238000004821 distillation Methods 0.000 description 15
- 230000000052 comparative effect Effects 0.000 description 13
- 238000001179 sorption measurement Methods 0.000 description 13
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 12
- 239000003729 cation exchange resin Substances 0.000 description 11
- 238000001035 drying Methods 0.000 description 11
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 9
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 9
- -1 aldehyde compounds Chemical class 0.000 description 8
- 238000006116 polymerization reaction Methods 0.000 description 8
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 7
- IKHGUXGNUITLKF-XPULMUKRSA-N acetaldehyde Chemical compound [14CH]([14CH3])=O IKHGUXGNUITLKF-XPULMUKRSA-N 0.000 description 7
- 238000011156 evaluation Methods 0.000 description 7
- 239000007789 gas Substances 0.000 description 7
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 7
- 238000011084 recovery Methods 0.000 description 7
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 6
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 6
- 238000002845 discoloration Methods 0.000 description 6
- 239000005456 alcohol based solvent Substances 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 238000004040 coloring Methods 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 238000011946 reduction process Methods 0.000 description 5
- WQDUMFSSJAZKTM-UHFFFAOYSA-N Sodium methoxide Chemical compound [Na+].[O-]C WQDUMFSSJAZKTM-UHFFFAOYSA-N 0.000 description 4
- 229940023913 cation exchange resins Drugs 0.000 description 4
- 239000012467 final product Substances 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 3
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 3
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 230000002378 acidificating effect Effects 0.000 description 3
- 230000004888 barrier function Effects 0.000 description 3
- 238000009835 boiling Methods 0.000 description 3
- 238000011088 calibration curve Methods 0.000 description 3
- 238000003795 desorption Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 150000002148 esters Chemical group 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 238000006068 polycondensation reaction Methods 0.000 description 3
- 239000011973 solid acid Substances 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- HORQAOAYAYGIBM-UHFFFAOYSA-N 2,4-dinitrophenylhydrazine Chemical compound NNC1=CC=C([N+]([O-])=O)C=C1[N+]([O-])=O HORQAOAYAYGIBM-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- IAZDPXIOMUYVGZ-WFGJKAKNSA-N Dimethyl sulfoxide Chemical compound [2H]C([2H])([2H])S(=O)C([2H])([2H])[2H] IAZDPXIOMUYVGZ-WFGJKAKNSA-N 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 229910052783 alkali metal Inorganic materials 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 2
- 238000007664 blowing Methods 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- 239000012159 carrier gas Substances 0.000 description 2
- 229920001429 chelating resin Polymers 0.000 description 2
- 238000007334 copolymerization reaction Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 150000002168 ethanoic acid esters Chemical class 0.000 description 2
- 239000003999 initiator Substances 0.000 description 2
- 239000011259 mixed solution Substances 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- 238000005453 pelletization Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- QDRKDTQENPPHOJ-UHFFFAOYSA-N sodium ethoxide Chemical compound [Na+].CC[O-] QDRKDTQENPPHOJ-UHFFFAOYSA-N 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- DTQVDTLACAAQTR-DYCDLGHISA-N trifluoroacetic acid-d1 Chemical compound [2H]OC(=O)C(F)(F)F DTQVDTLACAAQTR-DYCDLGHISA-N 0.000 description 2
- YZUPZGFPHUVJKC-UHFFFAOYSA-N 1-bromo-2-methoxyethane Chemical compound COCCBr YZUPZGFPHUVJKC-UHFFFAOYSA-N 0.000 description 1
- 238000005160 1H NMR spectroscopy Methods 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- IMROMDMJAWUWLK-UHFFFAOYSA-N Ethenol Chemical group OC=C IMROMDMJAWUWLK-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 238000007605 air drying Methods 0.000 description 1
- 230000001476 alcoholic effect Effects 0.000 description 1
- 150000008044 alkali metal hydroxides Chemical class 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 150000001639 boron compounds Chemical class 0.000 description 1
- 210000000692 cap cell Anatomy 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 description 1
- 229910000366 copper(II) sulfate Inorganic materials 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- GUJOJGAPFQRJSV-UHFFFAOYSA-N dialuminum;dioxosilane;oxygen(2-);hydrate Chemical compound O.[O-2].[O-2].[O-2].[Al+3].[Al+3].O=[Si]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O GUJOJGAPFQRJSV-UHFFFAOYSA-N 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000010528 free radical solution polymerization reaction Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 239000003456 ion exchange resin Substances 0.000 description 1
- 229920003303 ion-exchange polymer Polymers 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- GBMDVOWEEQVZKZ-UHFFFAOYSA-N methanol;hydrate Chemical compound O.OC GBMDVOWEEQVZKZ-UHFFFAOYSA-N 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052901 montmorillonite Inorganic materials 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- LGQLOGILCSXPEA-UHFFFAOYSA-L nickel sulfate Chemical compound [Ni+2].[O-]S([O-])(=O)=O LGQLOGILCSXPEA-UHFFFAOYSA-L 0.000 description 1
- 229910000363 nickel(II) sulfate Inorganic materials 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000012934 organic peroxide initiator Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000005022 packaging material Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000005191 phase separation Methods 0.000 description 1
- 235000021317 phosphate Nutrition 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 239000002685 polymerization catalyst Substances 0.000 description 1
- LPNYRYFBWFDTMA-UHFFFAOYSA-N potassium tert-butoxide Chemical compound [K+].CC(C)(C)[O-] LPNYRYFBWFDTMA-UHFFFAOYSA-N 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000001632 sodium acetate Substances 0.000 description 1
- 235000017281 sodium acetate Nutrition 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
- 229920001567 vinyl ester resin Chemical group 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 238000004383 yellowing Methods 0.000 description 1
- 229910001845 yogo sapphire Inorganic materials 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
- 239000004711 α-olefin Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C29/00—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
- C07C29/74—Separation; Purification; Use of additives, e.g. for stabilisation
- C07C29/88—Separation; Purification; Use of additives, e.g. for stabilisation by treatment giving rise to a chemical modification of at least one compound
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C31/00—Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms
- C07C31/02—Monohydroxylic acyclic alcohols
- C07C31/04—Methanol
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F216/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical
- C08F216/02—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical by an alcohol radical
- C08F216/04—Acyclic compounds
- C08F216/06—Polyvinyl alcohol ; Vinyl alcohol
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F8/00—Chemical modification by after-treatment
- C08F8/12—Hydrolysis
Definitions
- the present invention relates to a method for producing an ethylene-vinyl alcohol copolymer.
- Ethylene-vinyl alcohol copolymer (hereinafter sometimes abbreviated as "EVOH”) is a useful polymeric material with excellent oxygen barrier properties, oil resistance, antistatic properties, mechanical strength, etc., and is widely used as a variety of packaging materials such as films, sheets, and containers.
- a common method for producing EVOH is, for example, to saponify ethylene-vinyl acetate copolymer (hereinafter sometimes abbreviated as "EVAc”) obtained by copolymerizing ethylene and vinyl acetate in an organic solvent containing alcohol in the presence of a saponification catalyst.
- Patent Document 1 As an example of reusing the methanol solvent, the working examples in Patent Document 1 state that in the copolymerization of ethylene and vinyl acetate in an alcoholic solvent, the methanol used during polymerization is recovered, and then the recovered methanol is treated with a cation exchange resin to acetalize the aldehyde contained therein, thereby reducing the concentration of aldehyde compounds, and then the methanol is used again in the polymerization process, resulting in a monolayer film formed from the resulting EVOH pellets that has a good appearance (visual evaluation of the number of fisheyes and coloring).
- Methanol recovered from the polymerization process as described in the above conventional method produces a small amount of crotonaldehyde obtained by polycondensation of acetaldehyde, so it is relatively easy to reuse the solvent in the polymerization process.
- methanol recovered from the saponification process tends to contain a relatively large amount of crotonaldehyde because the saponification process is a reaction system in which polycondensation of acetaldehyde is relatively likely to occur.
- polyenation by polycondensation of acetaldehyde is considered to be one of the factors that affect the quality of the final product when acetaldehyde is removed, and it was thought that reusing methanol containing crotonaldehyde and the like produced by polyenation would have a negative effect on the manufacturing process and reduce the quality of the final product.
- the aldehyde reduction process by acetalization described in Patent Document 1 it is possible to remove acetaldehyde, but it is difficult to remove crotonaldehyde, and it has been found that in order to remove crotonaldehyde, distillation, which has a large environmental impact, or a long-term acetalization process must be performed.
- methanol containing crotonaldehyde, etc. is used in the polymerization process as described in Patent Document 1, the quality of the EVOH pellets deteriorates.
- the inventors conducted extensive research and surprisingly discovered that even if the alcohol introduced as alcohol vapor in the saponification process contains a specific amount of crotonaldehyde, the hue of the resulting EVOH does not deteriorate. Therefore, they discovered that by recovering and reusing the alcohol used in the saponification process and using it as a raw material for the alcohol vapor in the saponification process, it is possible to effectively utilize resources (reducing the environmental burden) while suppressing deterioration in quality, which led to the present invention.
- the present invention aims to provide a method for producing EVOH that reduces the environmental impact while suppressing deterioration in the hue of the resulting EVOH.
- the above object is to provide a method for producing EVOH, comprising: a saponification step (I) of supplying an EVAc solution containing EVAc and an alcohol to an upper part of a tower reactor, supplying alcohol vapor to a lower part of the tower and discharging the alcohol vapor from the upper part of the tower, and saponifying the EVAc using an alkali catalyst, and extracting an EVOH solution containing EVOH and an alcohol having a degree of saponification of 80 mol % or more and 100 mol % or less from the bottom of the tower; and an aldehyde reduction step (II) of recovering the alcohol used in the saponification step (I) and reducing aldehyde in recovered alcohol (a) to obtain alcohol (b), wherein the aldehyde reduction step (II) includes a step of contacting the recovered alcohol (a) with an acetalization catalyst to reduce aldehyde, and in the saponification step (I), the alcohol vapor supplied to
- the manufacturing method of the present invention can provide a method for producing EVOH that reduces the environmental impact while suppressing deterioration in the hue of the resulting EVOH.
- FIG. 1 is a schematic diagram of a column reactor used in the Examples and Comparative Examples.
- the present invention is a method for producing EVOH, comprising: a saponification step (I) in which an EVAc solution containing EVAc and alcohol is supplied to the top of a tower reactor, alcohol vapor is supplied to the bottom of the tower and discharged from the top of the tower, the EVAc is saponified using an alkaline catalyst, and an EVOH solution containing EVOH and alcohol having a degree of saponification of 80 mol% or more and 100 mol% or less is extracted from the bottom of the tower; and an aldehyde reduction step (II) in which the alcohol used in the saponification step (I) is recovered and the recovered alcohol (a) is reduced in aldehyde to obtain alcohol (b), wherein the aldehyde reduction step (II) includes a step of contacting the recovered alcohol (a) with an acetalization catalyst to reduce aldehyde, and in the saponification step (I), the alcohol vapor supplied to the bottom of the tower contains alcohol (b), and the alcohol (b)
- the coloring of the obtained EVOH can be suppressed and the environmental load during production can be reduced.
- the alcohol used in the saponification step (I) contains crotonaldehyde and the like, which are generated by polyenation of acetaldehyde. Therefore, when the alcohol used in the saponification step (I) is recovered, a certain amount of crotonaldehyde is contained. Since crotonaldehyde and the like have a conjugated structure, compounds that have further progressed in polyenation are considered to be substances that cause coloring of the final product (EVOH).
- the manufacturing method of the present invention includes a saponification step (I) in which an EVAc solution containing EVAc and alcohol is supplied to the top of a tower reactor, alcohol vapor is supplied to the bottom of the tower and discharged from the top of the tower, the EVAc is saponified using an alkaline catalyst, and an EVOH solution containing EVOH and alcohol with a saponification degree of 80 mol % to 100 mol % is taken out from the bottom of the tower.
- an EVOH solution is obtained by saponifying the EVAc in the EVAc solution using an alkaline catalyst.
- FIG 1 is a schematic diagram of a tower reactor used in the examples described later.
- the saponification step (I) will be described with reference to Figure 1.
- An EVAc solution containing EVAc and alcohol is supplied to the top of the tower reactor.
- the EVAc solution is supplied to the tower reactor from an EVAc solution supply port 2 at the top of the tower.
- An alkali catalyst is supplied from a position lower than or the same as the position at the top of the tower where the EVAc solution is supplied.
- an alkali catalyst is supplied into the tower reactor from an alkali catalyst supply port 3 installed below the EVAc solution supply port 2.
- alcohol vapor is supplied to the bottom of the tower and discharged from the top of the tower.
- the position at which the alcohol vapor is supplied is preferably above the position at which the EVOH solution described later is taken out.
- the position at which the alcohol vapor is discharged is preferably above the position at which the EVAc solution is supplied, from the viewpoint of more efficiently removing impurities such as aldehyde remaining in the EVAc solution. From the same viewpoint, it is also preferable that the position at which the alcohol vapor is discharged is the top of the tower. In FIG. 1, alcohol vapor is blown in through alcohol vapor inlet 4 at the bottom of the tower and discharged through alcohol vapor outlet 1 at the top of the tower.
- the EVAc solution supplied to the top of the tower is transported from the top to the bottom of the tower reactor.
- the EVAc solution supplied to the top of the tower comes into contact with the alcohol vapor, and by-products such as aldehydes and acetate esters are discharged from the top of the tower (alcohol vapor outlet 1) together with the alcohol vapor.
- the EVAc solution transported to the position where the alkali catalyst is supplied comes into contact with the alkali catalyst, and the EVAc is saponified, and then the EVOH solution is taken out from the bottom of the tower (EVOH solution outlet 5).
- the alkali catalyst By supplying the alkali catalyst below the position where the EVAc solution is supplied at the top of the tower, impurities such as aldehydes remaining in the EVAc solution can be removed in advance by the alcohol vapor at the top of the tower, and then the EVAc solution can be saponified. This suppresses coloring of the EVAc during saponification.
- the alkali catalyst may be introduced from the same place as the EVAc solution.
- EVAc used in the saponification step (I) can be produced by copolymerizing ethylene and vinyl acetate according to a known method. There are no limitations on the polymerization method or solvent, but solution polymerization using methanol as the solvent is preferred. As the polymerization catalyst, a radical initiator, for example, various azonitrile initiators and organic peroxide initiators can be used. In addition, the EVAc may contain other monomers other than ethylene and vinyl acetate that can be copolymerized with ethylene and vinyl acetate (for example, ⁇ -olefins such as propylene, unsaturated acids such as acrylic acid, various nitriles, and various amides) within a range that does not impair the effects of the present invention. The content of units derived from the other monomers in the EVAc is usually 10 mol% or less.
- the ethylene unit content of the EVAc used in the saponification step (I) is preferably 20 mol% or more and 60 mol% or less.
- the melt moldability of the resulting EVOH tends to be improved. More preferably, it is 24 mol% or more.
- the ethylene unit content is 60 mol% or less, the gas barrier properties of the resulting EVOH are improved.
- the ethylene unit content is preferably 50 mol% or less, and more preferably 45 mol% or less.
- the EVAc used in the saponification step (I) may be partially saponified EVAc that has been saponified by a known method, or it may be EVAc that has not been partially saponified.
- the EVAc solution contains alcohol.
- the saponification reaction of EVAc proceeds through an ester exchange reaction between the acetate ester group of EVAc and alcohol, so the use of an alkaline catalyst can be reduced to a small amount by using alcohol as the solvent for the EVAc solution, which has the advantage of allowing the saponification reaction to proceed efficiently.
- the alcohol include methanol, ethanol, 1-propanol, and 2-propanol, with methanol being preferred.
- the concentration of EVAc in the EVAc solution is not particularly limited, but from the viewpoint of productivity, it is preferably 70% by mass or less, and more preferably 60% by mass or less. On the other hand, from the viewpoint of productivity, the concentration of EVAc is preferably 10% by mass or more, more preferably 20% by mass or more, even more preferably 30% by mass or more, and particularly preferably 40% by mass or more.
- the alkali catalyst in the saponification step (I) may be a compound such as an alkali metal hydroxide, such as sodium hydroxide, potassium hydroxide, or lithium hydroxide; or an alkali metal alkoxide, such as sodium methoxide, sodium ethoxide, or potassium t-butoxide; among these, sodium hydroxide, potassium hydroxide, sodium methoxide, or sodium ethoxide is preferred, and sodium hydroxide is more preferred.
- the alkali catalyst may be used as it is, or may be used as a solution. When used as a solution, the solvent may be the same as that of the EVAc solution.
- the pressure in the tower reactor is preferably 0.1 to 1.0 MPa.
- the pressure is more preferably 0.8 MPa or less, even more preferably 0.6 MPa or less, and particularly preferably 0.55 MPa or less.
- the pressure may be 0.2 MPa or more.
- the temperature of the tower reactor is preferably 60 to 180°C. From the viewpoint of increasing the reaction efficiency, the temperature is more preferably 70°C or higher, even more preferably 80°C or higher, and particularly preferably 90°C or higher. On the other hand, the temperature of the tower reactor is more preferably 150°C or lower, even more preferably 140°C or lower, and particularly preferably 130°C or lower.
- the amount of the alkali catalyst added in the saponification step (I) is preferably 0.01 to 10 parts by mass per 100 parts by mass of EVAc.
- the amount is more preferably 0.05 parts by mass or more, even more preferably 0.1 parts by mass or more, and particularly preferably 0.3 parts by mass or more.
- the amount is more preferably 5 parts by mass or less, and even more preferably 3 parts by mass or less.
- the alcohol vapor supplied to the bottom of the tower contains alcohol (b) that has been subjected to an aldehyde reduction treatment, obtained through the aldehyde reduction step (II) described below.
- the inclusion of alcohol (b) in the alcohol vapor reduces the amount of unused alcohol used, thereby reducing the environmental impact.
- the content of alcohol (b) contained in the alcohol vapor is not particularly limited, but is preferably 70% by mass or more, more preferably 80% by mass or more, and even more preferably 90% by mass or more, and the alcohol vapor may consist only of alcohol (b).
- Examples of compounds other than alcohol (b) that may be contained in the alcohol vapor include alcohol that has not been subjected to an aldehyde reduction treatment.
- the saponification reaction of EVAc proceeds through an ester exchange reaction between the acetate ester group of EVAc and alcohol, so by supplying alcohol vapor to the bottom of the tower, the amount of alkaline catalyst used can be reduced, allowing the saponification reaction to proceed efficiently.
- Suitable alcohol-based solvents include methanol, ethanol, 1-propanol, and 2-propanol, with methanol being particularly suitable.
- the amount of alcohol vapor supplied to the tower reactor is preferably 10 parts by mass or more and 1,000 parts by mass or less per 100 parts by mass of EVAc supplied to the tower reactor. If the amount of alcohol vapor is large, the amount of aldehyde contained in the recovered alcohol (a) can be reduced.
- the alcohol used in the saponification step (I) is recovered as recovered alcohol (a) and is subjected to aldehyde reduction treatment in the aldehyde reduction step (II) described below.
- the alcohol used in the saponification step (I) mainly means the alcohol discharged from the alcohol vapor outlet 1.
- the alcohol discharged from the alcohol vapor outlet 1 is condensed, and then acetic acid esters such as methyl acetate produced by the saponification reaction contained in the condensed alcohol are distilled off to recover recovered alcohol (a).
- the distillation operation of distilling off acetic acid esters such as methyl acetate to obtain recovered alcohol (a) is not considered to be an aldehyde reduction treatment in the aldehyde reduction step (II).
- the recovered alcohol (a) In the saponification step (I), the residual vinyl acetate contained in the EVAc solution is saponified to generate acetaldehyde, which then undergoes self-condensation under saponification conditions, so that the recovered alcohol (a) usually contains acetaldehyde and crotonaldehyde.
- the amount of acetaldehyde contained in the recovered alcohol (a) is not particularly limited, but is, for example, 50 ppm or more and 1000 ppm or less.
- the content of crotonaldehyde contained in the recovered alcohol (a) is not particularly limited, but is, for example, 5 ppm or more and 200 ppm or less.
- the content of acetaldehyde and crotonaldehyde contained in the recovered alcohol (a) can be adjusted, for example, by the content of residual vinyl acetate contained in the EVAc solution, the amount of alcohol vapor supplied, the concentration of the alkali catalyst, etc.
- the manufacturing method of the present invention has an aldehyde reduction step (II) in which recovered alcohol (a) is subjected to an aldehyde reduction treatment to obtain alcohol (b).
- the aldehyde reduction step (II) includes a step of contacting recovered alcohol (a) with an acetalization catalyst to reduce aldehyde as an aldehyde reduction treatment.
- Aldehyde reduction treatment by acetalization can reduce the environmental burden because it uses less energy than distillation, etc., but tends not to efficiently reduce crotonaldehyde.
- the aldehyde reduction treatment by acetalization can reduce the environmental burden while suppressing discoloration of the resulting EVOH.
- the amount of acetaldehyde in the alcohol (b) obtained in the aldehyde reduction step (II) is preferably reduced by 70% by mass or more, and more preferably by 80% by mass or more, of the amount of acetaldehyde in the recovered alcohol (a) supplied to the aldehyde reduction step (II).
- the acetalization catalyst can be used without any particular limitation as long as it is not dissolved in an alcohol-based solvent, has an acid site on the surface, and can act as an acetalization catalyst.
- solid acids include metal oxides (e.g., Al2O3 , V2O5 ), sulfates (e.g., NiSO4 , CuSO4 ), phosphates (e.g., AlPO4 ) , and chlorides (e.g., AlCl3 , CuCl3 ).
- Representative solid acid catalysts such as zeolite catalysts and silica-alumina catalysts may also be used. Minerals such as montmorillonite may also be used.
- cation exchange resins are particularly suitable for commercial scale implementation.
- Cation exchange resins function as insoluble solid acids, and various products suitable for treating large amounts of liquid and repeated use are commercially available. Although weakly acidic cation exchange resins may be used, strongly acidic cation exchange resins are preferred, and sulfonic acid-type strongly acidic ion exchange resins manufactured by DuPont, such as Amberlyst (registered trademark), Amberlite (registered trademark), and AmberSep (registered trademark), can be used.
- Amberlyst registered trademark
- Amberlite registered trademark
- AmberSep registered trademark
- the recovered alcohol (a) may be fed into a tower packed with bead-shaped cation exchange resin and passed through it.
- the temperature inside the tower there are no particular limitations on the temperature inside the tower as long as it is within a temperature range in which the recovered alcohol (a) is liquid, and a temperature close to room temperature may usually be used.
- the residence time of the alcohol-based solvent inside the tower is preferably 15 seconds to 30 minutes.
- the alcohol (b) may be an alcohol that has been subjected to only acetalization, or may be an alcohol that has been subjected to aldehyde reduction treatments other than acetalization and acetalization.
- Examples of other aldehyde reduction treatments other than acetalization include distillation, mixing with an alcohol solvent having a low aldehyde concentration recovered in a step other than the saponification step (I), and mixing with unused alcohol solvent.
- such treatment may be performed before or after acetalization.
- the aldehyde reduction treatment is distillation, it is preferable to perform the distillation after acetalization from the viewpoint of reducing the energy used.
- the aldehyde reduction treatment is mixing with an alcohol solvent having a low aldehyde concentration, it is preferable to perform the distillation before acetalization.
- the alcohol with a low aldehyde concentration means an alcohol in which the content of at least one of acetaldehyde and crotonaldehyde is less than that of the recovered alcohol (a).
- distillation is performed as the aldehyde reduction treatment in the aldehyde reduction step (II), the crotonaldehyde content can be reduced, but since a large amount of energy is required compared to the case where distillation is not performed, it is preferable not to include an aldehyde reduction treatment by distillation.
- the aldehyde reduction process in the aldehyde reduction step (II) may include a method of reducing the aldehyde concentration in the recovered alcohol (a) by mixing an alcohol different from the recovered alcohol (a).
- Examples of the alcohol different from the recovered alcohol (a) include alcohol recovered in a step other than the saponification step (I), unused alcohol, etc.
- the process other than the saponification process (I) can be a copolymerization process, a process for recovering unreacted vinyl acetate, a concentration process, a purification process, etc.
- a recovery method the recovery of alcohol in the concentration process is described below.
- a mixed vapor of alcohol solvent and water is supplied from the bottom of a tower-type vessel, and the EVOH solution is supplied from a position above the supply position of the mixed vapor, thereby replacing part of the solvent present in the supplied EVOH solution with water to produce a highly concentrated EVOH solution.
- the alcohol vapor and water vapor drawn out from the top of the tower are condensed in a condenser and can be recovered as an aqueous alcohol solution.
- the alcohol obtained by separating and distilling this mixed liquid containing alcohol and water in a distillation tower can be used.
- the alcohol subjected to the aldehyde reduction step (II) may contain, in addition to the recovered alcohol (a), an alcohol having a higher content of acetaldehyde and crotonaldehyde than the recovered alcohol (a).
- the content of recovered alcohol (a) in the alcohol subjected to the aldehyde reduction step (II) may be 5% by mass or more, 20% by mass or more, 50% by mass or more, 70% by mass or more, or 90% by mass or more, and the alcohol subjected to the aldehyde reduction step (II) may consist only of recovered alcohol (a).
- the content of acetaldehyde contained in the alcohol (b) obtained by the aldehyde reduction step (II) is preferably 150 ppm or less, more preferably 80 ppm or less, and even more preferably 40 ppm or less.
- the content of acetaldehyde contained in the alcohol (b) is equal to or less than the above upper limit, discoloration of the obtained EVOH tends to be suppressed.
- the alcohol (b) does not contain acetaldehyde, but it may contain some amount. In other words, it may be 0 ppm or more.
- the preferred embodiment of the content of acetaldehyde contained in the alcohol vapor supplied from the bottom of the tower in the saponification step (I) is the same as the preferred embodiment of the content of acetaldehyde contained in the alcohol (b).
- the alcohol (b) obtained by the aldehyde reduction step (II) contains crotonaldehyde.
- the content of crotonaldehyde contained in the alcohol (b) is preferably 200 ppm or less, more preferably 100 ppm or less, and may be 70 ppm or less, 47 ppm or less, 32 ppm or less, 27 ppm or less, or 23 ppm or less.
- the content of crotonaldehyde contained in the alcohol (b) may be 5 ppm or more.
- the energy required to reduce the content of crotonaldehyde i.e., the environmental load, can be reduced.
- the preferred embodiment of the crotonaldehyde content contained in the alcohol vapor supplied from the bottom of the tower is the same as the preferred embodiment of the crotonaldehyde content contained in the alcohol (b).
- the alcohol (b) obtained by the aldehyde reduction process (II) is not preferable to use the alcohol (b) obtained by the aldehyde reduction process (II) in the polymerization process. Since the alcohol (b) contains crotonaldehyde, using it in the polymerization process will reduce the quality of the EVOH pellets obtained and cause poor appearance during molding.
- the degree of saponification of the EVOH contained in the EVOH solution obtained by the saponification step (I) is preferably 80 mol% or more, more preferably 95 mol% or more, and even more preferably 99 mol% or more. By carrying out sufficient saponification, the gas barrier properties of the obtained EVOH are improved.
- the EVOH solution obtained by the saponification step (I) includes a paste-like solution that is not completely uniform throughout and has undergone phase separation.
- a mixed vapor of a solvent and water is supplied from the bottom of a tower-type vessel, and the EVOH solution is supplied from a position above the supply position of the mixed vapor, thereby replacing a part of the solvent present in the supplied EVOH solution with water to obtain a high-concentration EVOH solution.
- the concentration of EVOH in the EVOH solution supplied to the tower-type vessel is preferably 15 to 50% by mass, more preferably 25 to 40% by mass.
- the ratio of the supply amount of the EVOH solution to the supply amount of the mixed vapor is 100/400 to 100/8 by mass. It is also preferable that the water content in the mixed vapor is 20 to 70% by mass.
- the solvent used for the mixed vapor is preferably an alcohol with a boiling point of 130°C or less, and examples of such alcohol include alcohols such as methanol, ethanol, propanol, and butanol. Alcohols with a boiling point of 100°C or less are more preferable, and among them, methanol is preferred because it is easily available, inexpensive, has a low boiling point, and is easy to handle.
- the high-concentration EVOH solution thus obtained is preferably pelletized by a known method.
- pelletization methods include a method in which the EVOH solution is cooled and solidified, and then cut, and a method in which the EVOH is melt-kneaded in an extruder, then discharged, and then cut.
- methods for cutting EVOH include a method in which EVOH is extruded into strands and then cut with a pelletizer, and a method in which EVOH is discharged from a die and then cut using a center hot cut method or an underwater cut method.
- the hydrous EVOH pellets When the EVOH solution is cooled and solidified to obtain hydrous EVOH pellets, it is preferable to wash and deliquor the hydrous EVOH pellets by a known method. It is also preferable to perform a chemical treatment by immersing the pellets in a solution containing a boron compound, an alkali metal salt, an alkaline earth metal salt, or the like by a known method to incorporate the relevant compound into the hydrous EVOH. Incorporating these compounds can improve the mechanical properties and thermal stability of the EVOH molded body. When the hydrous EVOH is obtained by melt-kneading and pelletizing EVOH, the EVOH may be washed, deliquored, and chemically treated in an extruder.
- EVOH pellets can be obtained by drying the obtained hydrous EVOH pellets by a known method.
- the moisture content of the dried EVOH pellets is preferably 0.08% by mass or less.
- drying method there are no particular limitations on the drying method, and examples include stationary drying combined with air drying or nitrogen drying, fluidized drying, and vacuum drying, but multi-stage drying combining several drying methods is preferred, and multi-stage drying including preliminary drying and main drying is more preferred.
- the yellow index (YI) of the dried EVOH is preferably 13 or less, and more preferably 9.5 or less.
- the manufacturing method of the present invention makes it possible to produce such EVOH with little coloring and reduce the environmental impact.
- the EVOH obtained by the production method of the present invention contains an ethylene-vinyl alcohol copolymer (A) having an ethylene unit content of 20 mol % or more and 60 mol % or less, and acetaldehyde (B1), and further contains at least one member selected from the group consisting of 2,4-hexadienal (B2) and 2,4,6-octatrienal (B3), and satisfies the following formula (1): 10 ⁇ b1/(b2+b3) ⁇ 150...(1)
- b1 is the content (ppm) of acetaldehyde (B1) relative to the EVOH (A)
- b2 is the content (ppm) of 2,4-hexadienal (B2) relative to the EVOH (A)
- b3 is the content (ppm) of 2,4,6-octatrienal (B3) relative to the EVOH (A). That is, by producing EVOH that satisfies the above conditions, it is possible to provide
- the EVOH obtained by the method of the present invention can be molded into various molded products such as films, sheets, containers, pipes, and fibers.
- the solution was analyzed with a Shimadzu high performance liquid chromatograph (column: Shiseido CAPCELL PAK C18 MG type, solvent: acetonitrile/water (gradient system), UV detector) to quantify the content of aldehydes.
- a calibration curve created with a commercially available aldehyde-DNPH product (or a synthesized product) was used for the quantitative determination.
- the sample was heated under the following conditions to adsorb the entire amount of volatile gas from the sample once into the adsorption tube, and the gas re-emitted from the adsorption tube was separated in a column to detect the peaks of each component.
- a calibration curve was created from the peak areas of standard samples of acetaldehyde, crotonaldehyde, 2,4-hexadienal, and 2,4,6-octatrienal, and each was quantified by the absolute calibration curve method.
- the standard sample was impregnated into an adsorption tube (manufactured by Tenax (registered trademark)/Carboxen (registered trademark)), and the adsorption tube impregnated with the standard sample was used instead of the sample tube.
- the temperature at the time of release after sample adsorption was changed from the sample tube temperature of 170° C. to the adsorption tube temperature of 260° C., but the measurement was performed in the same manner as in the measurement of the sample tube.
- the yellow index (YI) value of the dried EVOH pellets obtained in the Examples and Comparative Examples was measured and calculated using a LAB Scan XE manufactured by Hunter Co., Ltd. in accordance with JIS K7373: 2006. The smaller the value, the more yellowing is suppressed and the better the hue is. A YI value of 13 or more was determined to have failed to suppress the deterioration of hue.
- the production volume ratio is calculated by the ratio of the amount of EVOH obtained in the saponification step (I) when only virgin alcohol is used to the amount of EVOH obtained when the same amount of virgin alcohol is used. The higher the ratio, the less the amount of virgin alcohol used, and therefore the smaller the environmental impact.
- Example 1 (Alcohol recovery) An EVAc solution having a concentration of 48% by mass, in which EVAc having an ethylene unit content of 32 mol% and a vinyl acetate unit content of 68 mol% was dissolved in methanol, was supplied to a tower reactor (plate tower, number of plates: 21, inner diameter of tower: 140 mm) and saponified.
- FIG. 1 is a schematic diagram of the tower reactor.
- the EVAc solution was supplied to the 20th plate of the tower reactor, whose temperature inside the tower was 115° C., from an EVAc solution supply port 2 at a rate of 10 kg/h, and a 5 wt % methanol solution of sodium hydroxide as an alkali catalyst was supplied to the 19th plate at a rate of 1.6 kg/h from an alkali catalyst supply port 3.
- unused methanol vapor was continuously supplied to the lower part of the first plate from an alcohol vapor blowing port 4 at a rate of 21.6 kg/h.
- the acetaldehyde content and the crotonaldehyde content in the methanol solvent used for the unused methanol vapor were analyzed according to the method described in the evaluation method (2) above, and acetaldehyde and crotonaldehyde were below the detection limit and were not detected.
- the by-product methyl acetate and aldehyde were distilled as a mixed vapor together with excess methanol from the top of the tower (alcohol vapor outlet 1), and an EVOH methanol solution was obtained from the bottom of the tower (EVOH solution outlet 5).
- the mixed liquid obtained by condensing the mixed vapor distilled from the top of the tower was introduced into another tower-type recovery vessel (plate tower), and distillation was performed to recover methanol (recovered alcohol (a)) from the bottom of the tower.
- the recovered methanol (recovered alcohol (a)) was measured for the acetaldehyde and crotonaldehyde contents according to the method described in the evaluation method (2) above, and contained 450 ppm of acetaldehyde and 50 ppm of crotonaldehyde. The results are shown in Table 1.
- the obtained hydrous EVOH pellets were washed by putting them into a large amount of 0.1 g/L acetic acid aqueous solution, and the remaining methanol and sodium acetate were removed, and then dried at 60°C for 5 hours and further dried at 110°C for 10 hours to obtain dried EVOH pellets.
- the obtained dried EVOH pellets were evaluated according to the methods described in the above evaluation methods (1), (3), and (4). The results are shown in Table 1.
- Example 2 Dry EVOH pellets were produced and evaluated in the same manner as in Example 1, except that the supply rate of methanol vapor to the column reactor during alcohol recovery and the supply rate of methanol vapor in the saponification step (I) were changed to 43.2 kg/h. The results are shown in Table 1.
- Example 3 In the aldehyde reduction step (II), 25 parts by mass of methanol having been subjected to aldehyde reduction treatment obtained by acetalization with a cation exchange resin and 75 parts by mass of methanol recovered from a step other than the saponification step (I) were mixed to carry out further aldehyde reduction treatment, and the aldehyde content of methanol (alcohol (b)) used in the alcohol vapor in the saponification step (I) was adjusted to be as shown in Table 1. Dry EVOH pellets were produced and evaluated in the same manner as in Example 1. The results are shown in Table 1.
- Example 4 Dry EVOH pellets were prepared and evaluated in the same manner as in Example 3, except that in the aldehyde reduction step (II), the content of methanol recovered from the steps other than the saponification step (I) was changed as shown in Table 1. The results are shown in Table 1.
- Example 6 Dry EVOH pellets were prepared and evaluated in the same manner as in Example 3, except that in the aldehyde reduction step (II), unused methanol was used in place of the methanol recovered from the steps other than the saponification step (I) so as to have the content shown in Table 1. The results are shown in Table 1.
- Example 7 Dry EVOH pellets were prepared and evaluated in the same manner as in Example 1, except that in the aldehyde reduction step (II), 10 parts by mass of recovered methanol (recovered alcohol (a)) was mixed with 90 parts by mass of methanol recovered from a step other than the saponification step (I) and then acetalized with a cation exchange resin to carry out an aldehyde reduction treatment. The results are shown in Table 1.
- Example 8 and 9 Dry EVOH pellets were prepared and evaluated in the same manner as in Example 7, except that in the aldehyde reduction step (II), the content of methanol recovered from the steps other than the saponification step (I) was changed as shown in Table 1. The results are shown in Table 1.
- Example 10 Dry EVOH pellets were prepared and evaluated in the same manner as in Example 7, except that in the aldehyde reduction step (II), unused methanol was used in place of the methanol recovered from the steps other than the saponification step (I) so as to have the content shown in Table 1. The results are shown in Table 1.
- Example 11 Dry EVOH pellets were prepared and evaluated in the same manner as in Example 1, except that ethanol was used as the solvent instead of methanol. The results are shown in Table 1.
- Example 12 and 13 Dry EVOH pellets were prepared and evaluated in the same manner as in Example 1, except that the ethylene unit content of the EVAc used in the saponification step (I) was changed so that the ethylene unit content of the resulting EVOH would be as shown in Table 1. The results are shown in Table 1. The ethylene unit contents of EVAc and EVOH are substantially the same.
- Example 14 When an attempt was made to prepare dried EVOH pellets in the same manner as in Example 1 by adjusting the concentration of sodium hydroxide in the saponification step (I) so that the degree of saponification of the resulting EVOH would be as shown in Table 1, the resin particles stuck together in the drying step, making it impossible to continue the operation. Therefore, except that the supply rate of the EVAc solution to the saponification step (I) was changed to 5 kg/h, the supply rate of the recovered methanol vapor was set to 11 kg/h, and the concentration of sodium hydroxide was adjusted so that the degree of saponification of the resulting EVOH would be as shown in Table 1, dried EVOH pellets were prepared and evaluated in the same manner as in Example 1. The results are shown in Table 1.
- Example 2 Dry EVOH pellets were prepared and evaluated in the same manner as in Example 1, except that the methanol vapor supplied to the saponification step (I) was recovered methanol (recovered alcohol (a)) that had not been subjected to an aldehyde reduction treatment. The results are shown in Table 1.
- Example 4 Dry EVOH pellets were prepared and evaluated in the same manner as in Example 1, except that the aldehyde reduction treatment method in the aldehyde reduction step (II) was changed to a method in which 25 parts by mass of recovered methanol (recovered alcohol (a)) was mixed with 75 parts by mass of methanol recovered from a step other than the saponification step (I) and that acetalization using a cation exchange resin was not performed. The results are shown in Table 1.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
Abstract
This method for producing EVOH has: a saponification step (I) for supplying an EVAc solution containing EVAc and an alcohol to the top of a column type reactor, supplying an alcohol vapor to the bottom of the reactor, discharging the alcohol vapor from the top of the reactor, saponifying the EVAc using an alkali catalyst, and discharging an EVOH solution from the bottom of the column; and an aldehyde reduction step (II) for reducing the amount of aldehyde in a recovered alcohol (a) obtained by recovering alcohol used in the saponification step (I), thereby obtaining an alcohol (b). The aldehyde reduction step (II) includes a step for reducing the amount of aldehyde by bringing the recovered alcohol (a) into contact with an acetalation catalyst. In the saponification step (I), the alcohol vapor supplied to the bottom of the reactor contains the alcohol (b), and the alcohol (b) contains crotonaldehyde. Due to this configuration, provided is a method for producing EVOH in which the obtained EVOH has a lower environmental impact while suppressing a deterioration in color hue.
Description
本発明は、エチレン-ビニルアルコール共重合体の製造方法に関する。
The present invention relates to a method for producing an ethylene-vinyl alcohol copolymer.
エチレン-ビニルアルコール共重合体(以下、「EVOH」と略記することがある)は、酸素遮蔽性、耐油性、非帯電性、機械強度等に優れた有用な高分子材料であり、フィルム、シート、容器など各種包装材料等として広く用いられている。EVOHの製造方法としては、例えば、エチレンと酢酸ビニルを共重合して得られるエチレン-酢酸ビニル共重合体(以下「EVAc」と略記する場合がある)を、けん化触媒の存在下にアルコールを含む有機溶媒中でけん化する方法が一般的である。
Ethylene-vinyl alcohol copolymer (hereinafter sometimes abbreviated as "EVOH") is a useful polymeric material with excellent oxygen barrier properties, oil resistance, antistatic properties, mechanical strength, etc., and is widely used as a variety of packaging materials such as films, sheets, and containers. A common method for producing EVOH is, for example, to saponify ethylene-vinyl acetate copolymer (hereinafter sometimes abbreviated as "EVAc") obtained by copolymerizing ethylene and vinyl acetate in an organic solvent containing alcohol in the presence of a saponification catalyst.
環境負荷低減の観点から、EVOHの製造工程においては、未反応の原料および使用後の溶媒を回収して再利用することが望ましく、特に、メタノールなどのアルコール系溶媒を再利用することは極めて重要である。
From the perspective of reducing the environmental impact, it is desirable to recover and reuse unreacted raw materials and used solvents in the EVOH manufacturing process, and it is particularly important to reuse alcohol-based solvents such as methanol.
メタノール溶媒を再利用する例として、特許文献1の実施例には、エチレンと酢酸ビニルとのアルコール系溶媒中での共重合において、重合時に使用したメタノールを回収した後、回収したメタノールを、陽イオン交換樹脂で処理して、その中に含まれるアルデヒドをアセタール化することによってアルデヒド化合物濃度を低減し、その後再度重合工程で使用することで、得られるEVOHペレットから製膜される単層フィルムの外観(フィッシュアイの数及び着色の目視評価)が良好であることが記載されている。
As an example of reusing the methanol solvent, the working examples in Patent Document 1 state that in the copolymerization of ethylene and vinyl acetate in an alcoholic solvent, the methanol used during polymerization is recovered, and then the recovered methanol is treated with a cation exchange resin to acetalize the aldehyde contained therein, thereby reducing the concentration of aldehyde compounds, and then the methanol is used again in the polymerization process, resulting in a monolayer film formed from the resulting EVOH pellets that has a good appearance (visual evaluation of the number of fisheyes and coloring).
上記従来の方法で記載されているような重合工程から回収されたメタノールは、アセトアルデヒドが重縮合されて得られるクロトンアルデヒドの生成量が少ないため、重合工程での溶媒の再利用が比較的容易である。しかしながら、けん化工程から回収されたメタノールは、けん化工程が比較的アセトアルデヒドの重縮合が起こりやすい反応系であるために、クロトンアルデヒドが比較的多く含まれる傾向にあった。ここで、アセトアルデヒドの除去が最終製品の品質に影響を及ぼす要因の一つとしてアセトアルデヒドの重縮合によるポリエン化が考えられており、ポリエン化により生じるクロトンアルデヒド等を含むメタノールを再利用することは、製造工程に悪影響を及ぼし、最終製品の品質を低下させると考えられていた。特許文献1に記載されたアセタール化によるアルデヒド低減処理では、アセトアルデヒドの除去はできるもののクロトンアルデヒドの除去が難しく、クロトンアルデヒドを除去するためには、環境負荷が大きい蒸留を行うか、または、長時間にわたるアセタール化処理を行わなければならないことが判明した。特に、クロトンアルデヒド等を含むメタノールを特許文献1に記載のように重合工程で用いた場合には、EVOHペレットの品質が低下することがわかった。
Methanol recovered from the polymerization process as described in the above conventional method produces a small amount of crotonaldehyde obtained by polycondensation of acetaldehyde, so it is relatively easy to reuse the solvent in the polymerization process. However, methanol recovered from the saponification process tends to contain a relatively large amount of crotonaldehyde because the saponification process is a reaction system in which polycondensation of acetaldehyde is relatively likely to occur. Here, polyenation by polycondensation of acetaldehyde is considered to be one of the factors that affect the quality of the final product when acetaldehyde is removed, and it was thought that reusing methanol containing crotonaldehyde and the like produced by polyenation would have a negative effect on the manufacturing process and reduce the quality of the final product. In the aldehyde reduction process by acetalization described in Patent Document 1, it is possible to remove acetaldehyde, but it is difficult to remove crotonaldehyde, and it has been found that in order to remove crotonaldehyde, distillation, which has a large environmental impact, or a long-term acetalization process must be performed. In particular, it was found that when methanol containing crotonaldehyde, etc. is used in the polymerization process as described in Patent Document 1, the quality of the EVOH pellets deteriorates.
上記状況を鑑み本発明者らが鋭意検討した結果、驚くべきことにけん化工程にてアルコール蒸気として導入されるアルコールが特定量クロトンアルデヒドを含んでいたとしても、得られるEVOHの色相が悪化しないことを見出した。したがって、けん化工程で用いたアルコールを回収再利用して、けん化工程におけるアルコール蒸気の原料として用いることで、品質低下を抑制しつつ、資源を有効活用(環境負荷の低減)することが可能であることを見出し、本発明に至った。
In light of the above situation, the inventors conducted extensive research and surprisingly discovered that even if the alcohol introduced as alcohol vapor in the saponification process contains a specific amount of crotonaldehyde, the hue of the resulting EVOH does not deteriorate. Therefore, they discovered that by recovering and reusing the alcohol used in the saponification process and using it as a raw material for the alcohol vapor in the saponification process, it is possible to effectively utilize resources (reducing the environmental burden) while suppressing deterioration in quality, which led to the present invention.
すなわち、本発明は得られるEVOHの色相悪化を抑制しつつ、環境負荷を低減したEVOHの製造方法の提供を目的とする。
In other words, the present invention aims to provide a method for producing EVOH that reduces the environmental impact while suppressing deterioration in the hue of the resulting EVOH.
本発明によれば上記目的は
[1]EVAc及びアルコールを含むEVAc溶液を、塔式反応器の塔上部に供給し、アルコール蒸気を塔下部に供給して、塔上部から排出するとともに、アルカリ触媒を用いて前記EVAcをけん化し、塔底部からけん化度が80モル%以上100モル%以下のEVOH及びアルコールを含むEVOH溶液を取り出すけん化工程(I)、及びけん化工程(I)で使用されたアルコールを回収して得られた回収アルコール(a)中のアルデヒドを低減してアルコール(b)を得るアルデヒド低減工程(II)を有し、アルデヒド低減工程(II)が、回収アルコール(a)をアセタール化触媒に接触させてアルデヒドを低減する工程を含み、けん化工程(I)において、塔下部に供給されるアルコール蒸気がアルコール(b)を含み、アルコール(b)がクロトンアルデヒドを含む、EVOHの製造方法;
[2]アルデヒド低減工程(II)において、回収アルコール(a)と、回収アルコール(a)とは異なるアルコールを混合することで、回収アルコール(a)中のアルデヒド濃度を低減してアルコール(b)を得る工程をさらに含む、[1]の製造方法;
[3]回収アルコール(a)とは異なるアルコールが、けん化工程(I)以外の工程で回収された回収アルコールを含む、[2]の製造方法;
[4]回収アルコール(a)とは異なるアルコールが、未使用のアルコールを含む、[2]または[3]の製造方法;
[5]けん化工程(I)において、前記塔式反応器に供給されるアルコール蒸気中のアセトアルデヒド濃度が0~150ppmである、[1]~[4]のいずれかの製造方法;
[6]けん化工程(I)において、前記塔式反応器に供給されるアルコール蒸気中のクロトンアルデヒド濃度が5~200ppmである、[1]~[5]のいずれかの製造方法;
[7]けん化工程(I)において、前記塔式反応器に供給されるEVAcのエチレン単位含有量が20モル%以上60モル%未満である、[1]~[6]のいずれかの製造方法;
[8][1]~[7]のいずれかの製造方法により得られたEVOHであって、エチレン単位含有量が20モル%以上60モル%以下であるエチレン-ビニルアルコール共重合体(A)(以下「EVOH(A)」と略記する場合がある)及びアセトアルデヒド(B1)を含み、2,4-ヘキサジエナール(B2)及び2,4,6-オクタトリエナール(B3)からなる群より選ばれる少なくとも1種をさらに含み、下記式(1)を満たす、EVOH。
10≦b1/(b2+b3)<150 ・・・(1)
上記式(1)中、b1は、EVOH(A)に対するアセトアルデヒド(B1)の含有量(ppm)であり、b2は、EVOH(A)に対する2,4-ヘキサジエナール(B2)の含有量(ppm)であり、b3は、EVOH(A)に対する2,4,6-オクタトリエナール(B3)の含有量(ppm)である。
により達成される。 According to the present invention, the above object is to provide a method for producing EVOH, comprising: a saponification step (I) of supplying an EVAc solution containing EVAc and an alcohol to an upper part of a tower reactor, supplying alcohol vapor to a lower part of the tower and discharging the alcohol vapor from the upper part of the tower, and saponifying the EVAc using an alkali catalyst, and extracting an EVOH solution containing EVOH and an alcohol having a degree of saponification of 80 mol % or more and 100 mol % or less from the bottom of the tower; and an aldehyde reduction step (II) of recovering the alcohol used in the saponification step (I) and reducing aldehyde in recovered alcohol (a) to obtain alcohol (b), wherein the aldehyde reduction step (II) includes a step of contacting the recovered alcohol (a) with an acetalization catalyst to reduce aldehyde, and in the saponification step (I), the alcohol vapor supplied to the lower part of the tower contains alcohol (b), and the alcohol (b) contains crotonaldehyde;
[2] The production method according to [1], further comprising a step of mixing the recovered alcohol (a) with an alcohol different from the recovered alcohol (a) in the aldehyde reduction step (II) to reduce the aldehyde concentration in the recovered alcohol (a) to obtain an alcohol (b);
[3] The production method according to [2], wherein the alcohol different from the recovered alcohol (a) includes a recovered alcohol recovered in a step other than the saponification step (I);
[4] The method according to [2] or [3], wherein the alcohol different from the recovered alcohol (a) contains unused alcohol;
[5] The method according to any one of [1] to [4], wherein in the saponification step (I), the acetaldehyde concentration in the alcohol vapor supplied to the column reactor is 0 to 150 ppm;
[6] The method according to any one of [1] to [5], wherein in the saponification step (I), the crotonaldehyde concentration in the alcohol vapor supplied to the column reactor is 5 to 200 ppm;
[7] The method according to any one of [1] to [6], wherein in the saponification step (I), the ethylene unit content of the EVAc supplied to the column reactor is 20 mol% or more and less than 60 mol%;
[8] An EVOH obtained by any one of the production methods [1] to [7], comprising an ethylene-vinyl alcohol copolymer (A) (hereinafter sometimes abbreviated as "EVOH (A)") having an ethylene unit content of 20 mol% or more and 60 mol% or less, and acetaldehyde (B1), and further comprising at least one selected from the group consisting of 2,4-hexadienal (B2) and 2,4,6-octatrienal (B3), and satisfying the following formula (1):
10≦b1/(b2+b3)<150...(1)
In the above formula (1), b1 is the content (ppm) of acetaldehyde (B1) relative to the EVOH (A), b2 is the content (ppm) of 2,4-hexadienal (B2) relative to the EVOH (A), and b3 is the content (ppm) of 2,4,6-octatrienal (B3) relative to the EVOH (A).
This is achieved by:
[1]EVAc及びアルコールを含むEVAc溶液を、塔式反応器の塔上部に供給し、アルコール蒸気を塔下部に供給して、塔上部から排出するとともに、アルカリ触媒を用いて前記EVAcをけん化し、塔底部からけん化度が80モル%以上100モル%以下のEVOH及びアルコールを含むEVOH溶液を取り出すけん化工程(I)、及びけん化工程(I)で使用されたアルコールを回収して得られた回収アルコール(a)中のアルデヒドを低減してアルコール(b)を得るアルデヒド低減工程(II)を有し、アルデヒド低減工程(II)が、回収アルコール(a)をアセタール化触媒に接触させてアルデヒドを低減する工程を含み、けん化工程(I)において、塔下部に供給されるアルコール蒸気がアルコール(b)を含み、アルコール(b)がクロトンアルデヒドを含む、EVOHの製造方法;
[2]アルデヒド低減工程(II)において、回収アルコール(a)と、回収アルコール(a)とは異なるアルコールを混合することで、回収アルコール(a)中のアルデヒド濃度を低減してアルコール(b)を得る工程をさらに含む、[1]の製造方法;
[3]回収アルコール(a)とは異なるアルコールが、けん化工程(I)以外の工程で回収された回収アルコールを含む、[2]の製造方法;
[4]回収アルコール(a)とは異なるアルコールが、未使用のアルコールを含む、[2]または[3]の製造方法;
[5]けん化工程(I)において、前記塔式反応器に供給されるアルコール蒸気中のアセトアルデヒド濃度が0~150ppmである、[1]~[4]のいずれかの製造方法;
[6]けん化工程(I)において、前記塔式反応器に供給されるアルコール蒸気中のクロトンアルデヒド濃度が5~200ppmである、[1]~[5]のいずれかの製造方法;
[7]けん化工程(I)において、前記塔式反応器に供給されるEVAcのエチレン単位含有量が20モル%以上60モル%未満である、[1]~[6]のいずれかの製造方法;
[8][1]~[7]のいずれかの製造方法により得られたEVOHであって、エチレン単位含有量が20モル%以上60モル%以下であるエチレン-ビニルアルコール共重合体(A)(以下「EVOH(A)」と略記する場合がある)及びアセトアルデヒド(B1)を含み、2,4-ヘキサジエナール(B2)及び2,4,6-オクタトリエナール(B3)からなる群より選ばれる少なくとも1種をさらに含み、下記式(1)を満たす、EVOH。
10≦b1/(b2+b3)<150 ・・・(1)
上記式(1)中、b1は、EVOH(A)に対するアセトアルデヒド(B1)の含有量(ppm)であり、b2は、EVOH(A)に対する2,4-ヘキサジエナール(B2)の含有量(ppm)であり、b3は、EVOH(A)に対する2,4,6-オクタトリエナール(B3)の含有量(ppm)である。
により達成される。 According to the present invention, the above object is to provide a method for producing EVOH, comprising: a saponification step (I) of supplying an EVAc solution containing EVAc and an alcohol to an upper part of a tower reactor, supplying alcohol vapor to a lower part of the tower and discharging the alcohol vapor from the upper part of the tower, and saponifying the EVAc using an alkali catalyst, and extracting an EVOH solution containing EVOH and an alcohol having a degree of saponification of 80 mol % or more and 100 mol % or less from the bottom of the tower; and an aldehyde reduction step (II) of recovering the alcohol used in the saponification step (I) and reducing aldehyde in recovered alcohol (a) to obtain alcohol (b), wherein the aldehyde reduction step (II) includes a step of contacting the recovered alcohol (a) with an acetalization catalyst to reduce aldehyde, and in the saponification step (I), the alcohol vapor supplied to the lower part of the tower contains alcohol (b), and the alcohol (b) contains crotonaldehyde;
[2] The production method according to [1], further comprising a step of mixing the recovered alcohol (a) with an alcohol different from the recovered alcohol (a) in the aldehyde reduction step (II) to reduce the aldehyde concentration in the recovered alcohol (a) to obtain an alcohol (b);
[3] The production method according to [2], wherein the alcohol different from the recovered alcohol (a) includes a recovered alcohol recovered in a step other than the saponification step (I);
[4] The method according to [2] or [3], wherein the alcohol different from the recovered alcohol (a) contains unused alcohol;
[5] The method according to any one of [1] to [4], wherein in the saponification step (I), the acetaldehyde concentration in the alcohol vapor supplied to the column reactor is 0 to 150 ppm;
[6] The method according to any one of [1] to [5], wherein in the saponification step (I), the crotonaldehyde concentration in the alcohol vapor supplied to the column reactor is 5 to 200 ppm;
[7] The method according to any one of [1] to [6], wherein in the saponification step (I), the ethylene unit content of the EVAc supplied to the column reactor is 20 mol% or more and less than 60 mol%;
[8] An EVOH obtained by any one of the production methods [1] to [7], comprising an ethylene-vinyl alcohol copolymer (A) (hereinafter sometimes abbreviated as "EVOH (A)") having an ethylene unit content of 20 mol% or more and 60 mol% or less, and acetaldehyde (B1), and further comprising at least one selected from the group consisting of 2,4-hexadienal (B2) and 2,4,6-octatrienal (B3), and satisfying the following formula (1):
10≦b1/(b2+b3)<150...(1)
In the above formula (1), b1 is the content (ppm) of acetaldehyde (B1) relative to the EVOH (A), b2 is the content (ppm) of 2,4-hexadienal (B2) relative to the EVOH (A), and b3 is the content (ppm) of 2,4,6-octatrienal (B3) relative to the EVOH (A).
This is achieved by:
本発明の製造方法によれば、得られるEVOHの色相悪化を抑制しつつ、環境負荷を低減したEVOHの製造方法を提供できる。
The manufacturing method of the present invention can provide a method for producing EVOH that reduces the environmental impact while suppressing deterioration in the hue of the resulting EVOH.
本発明は、EVAc及びアルコールを含むEVAc溶液を、塔式反応器の塔上部に供給し、アルコール蒸気を塔下部に供給して、塔上部から排出するとともに、アルカリ触媒を用いて前記EVAcをけん化し、塔底部からけん化度が80モル%以上100モル%以下のEVOH及びアルコールを含むEVOH溶液を取り出すけん化工程(I)、及びけん化工程(I)で使用されたアルコールを回収して得られた回収アルコール(a)中のアルデヒドを低減してアルコール(b)を得るアルデヒド低減工程(II)を有し、アルデヒド低減工程(II)が、回収アルコール(a)をアセタール化触媒に接触させてアルデヒドを低減する工程を含み、けん化工程(I)において、塔下部に供給されるアルコール蒸気がアルコール(b)を含み、アルコール(b)がクロトンアルデヒドを含む、EVOHの製造方法である。このような製造方法によれば、回収したアルコール系溶媒をけん化工程(I)のアルコール蒸気として用いても、得られるEVOHの着色を抑制しつつ、製造時の環境負荷を低減することができる。通常、けん化工程(I)で使用されたアルコールにはアセトアルデヒドがポリエン化して生じるクロトンアルデヒド等が混在している。そのため、けん化工程(I)で使用されたアルコールを回収する場合クロトンアルデヒドが一定量含まれてしまう。クロトンアルデヒド等は共役構造を有しているため、さらにポリエン化が進行した化合物は最終製品(EVOH)の着色の原因物質として考えられているが、クロトンアルデヒドはアセタール化による除去が難しいため、クロトンアルデヒドを含むアルコールの回収は蒸留等のエネルギー使用量(環境負荷)が大きい手段に頼らざるを得ない状況であった。しかしながら、驚くべきことに、けん化工程(I)におけるアルコール蒸気として使用するに際しては、クロトンアルデヒドが一定量含まれていても最終製品(EVOH)の着色を抑制できることを見出し、環境負荷の低い製造方法にて品質が高い(着色が抑制された)EVOHを提供できることを見出した。以下、本発明について詳細に説明する。
The present invention is a method for producing EVOH, comprising: a saponification step (I) in which an EVAc solution containing EVAc and alcohol is supplied to the top of a tower reactor, alcohol vapor is supplied to the bottom of the tower and discharged from the top of the tower, the EVAc is saponified using an alkaline catalyst, and an EVOH solution containing EVOH and alcohol having a degree of saponification of 80 mol% or more and 100 mol% or less is extracted from the bottom of the tower; and an aldehyde reduction step (II) in which the alcohol used in the saponification step (I) is recovered and the recovered alcohol (a) is reduced in aldehyde to obtain alcohol (b), wherein the aldehyde reduction step (II) includes a step of contacting the recovered alcohol (a) with an acetalization catalyst to reduce aldehyde, and in the saponification step (I), the alcohol vapor supplied to the bottom of the tower contains alcohol (b), and the alcohol (b) contains crotonaldehyde. According to this production method, even if the recovered alcohol solvent is used as the alcohol vapor in the saponification step (I), the coloring of the obtained EVOH can be suppressed and the environmental load during production can be reduced. Usually, the alcohol used in the saponification step (I) contains crotonaldehyde and the like, which are generated by polyenation of acetaldehyde. Therefore, when the alcohol used in the saponification step (I) is recovered, a certain amount of crotonaldehyde is contained. Since crotonaldehyde and the like have a conjugated structure, compounds that have further progressed in polyenation are considered to be substances that cause coloring of the final product (EVOH). However, since it is difficult to remove crotonaldehyde by acetalization, the recovery of alcohol containing crotonaldehyde has been forced to rely on a method that uses a large amount of energy (environmental load), such as distillation. However, it was surprisingly discovered that when used as alcohol vapor in the saponification step (I), discoloration of the final product (EVOH) can be suppressed even if a certain amount of crotonaldehyde is contained, and that high-quality EVOH (with suppressed discoloration) can be provided using a manufacturing method with low environmental impact. The present invention will be described in detail below.
本発明の製造方法は、EVAc及びアルコールを含むEVAc溶液を塔式反応器の塔上部に供給し、アルコール蒸気を塔下部に供給して、塔上部から排出するとともに、アルカリ触媒を用いて前記EVAcをけん化し、塔底部からけん化度が80モル%以上100モル%以下のEVOH及びアルコールを含むEVOH溶液を取り出すけん化工程(I)を有する。けん化工程(I)において、EVAc溶液中のEVAcをアルカリ触媒を用いてけん化させることにより、EVOH溶液を得る。
The manufacturing method of the present invention includes a saponification step (I) in which an EVAc solution containing EVAc and alcohol is supplied to the top of a tower reactor, alcohol vapor is supplied to the bottom of the tower and discharged from the top of the tower, the EVAc is saponified using an alkaline catalyst, and an EVOH solution containing EVOH and alcohol with a saponification degree of 80 mol % to 100 mol % is taken out from the bottom of the tower. In the saponification step (I), an EVOH solution is obtained by saponifying the EVAc in the EVAc solution using an alkaline catalyst.
図1は、後述する実施例で使用された塔式反応器の模式図である。図1を参照してけん化工程(I)を説明する。EVAc及びアルコールを含むEVAc溶液を塔式反応器の塔上部に供給する。図1では、塔上部のEVAc溶液供給口2から塔式反応器に前記EVAc溶液を供給している。そして、塔上部の前記EVAc溶液を供給する位置より下部又は同じ位置よりアルカリ触媒を供給する。図1では、EVAc溶液供給口2より下部に設置されたアルカリ触媒供給口3から塔式反応器内にアルカリ触媒を供給している。また、アルコール蒸気を塔下部に供給して、塔上部から排出する。アルコール蒸気を供給する位置は、後述するEVOHの溶液を取り出す位置より上部が好ましい。アルコール蒸気を排出する位置は、EVAc溶液に残存するアルデヒド等の不純物をさらに効率的に除去できる観点から、EVAc溶液を供給する位置よりも上部が好ましい。同様の観点から、アルコール蒸気を排出する位置が塔頂部であることも好ましい。図1では、塔下部のアルコール蒸気吹込み口4からアルコール蒸気を吹き込み、塔頂部のアルコール蒸気排出口1からアルコール蒸気が排出される。
Figure 1 is a schematic diagram of a tower reactor used in the examples described later. The saponification step (I) will be described with reference to Figure 1. An EVAc solution containing EVAc and alcohol is supplied to the top of the tower reactor. In Figure 1, the EVAc solution is supplied to the tower reactor from an EVAc solution supply port 2 at the top of the tower. An alkali catalyst is supplied from a position lower than or the same as the position at the top of the tower where the EVAc solution is supplied. In Figure 1, an alkali catalyst is supplied into the tower reactor from an alkali catalyst supply port 3 installed below the EVAc solution supply port 2. Also, alcohol vapor is supplied to the bottom of the tower and discharged from the top of the tower. The position at which the alcohol vapor is supplied is preferably above the position at which the EVOH solution described later is taken out. The position at which the alcohol vapor is discharged is preferably above the position at which the EVAc solution is supplied, from the viewpoint of more efficiently removing impurities such as aldehyde remaining in the EVAc solution. From the same viewpoint, it is also preferable that the position at which the alcohol vapor is discharged is the top of the tower. In FIG. 1, alcohol vapor is blown in through alcohol vapor inlet 4 at the bottom of the tower and discharged through alcohol vapor outlet 1 at the top of the tower.
塔上部に供給された前記EVAc溶液は塔式反応器の上部から底部に搬送される。塔上部に供給された前記EVAc溶液は、前記アルコール蒸気と接触して、副生するアルデヒドや酢酸エステル等が塔上部(アルコール蒸気排出口1)から前記アルコール蒸気とともに排出される。そして、前記アルカリ触媒が供給される位置(アルカリ触媒供給口3)まで搬送された前記EVAc溶液は前記アルカリ触媒と接触して、前記EVAcのけん化が行われた後、塔底部(EVOH溶液出口5)からEVOHの溶液が取り出される。塔上部の前記EVAc溶液を供給する位置より下部にアルカリ触媒を供給することにより、塔上部で予め前記EVAc溶液に残存するアルデヒド等の不純物を前記アルコール蒸気により除去した後、けん化することができる。これにより、けん化時における、前記EVAcの着色が抑制される。なお、アルカリ触媒はEVAc溶液と同じ場所から導入してもよい。
The EVAc solution supplied to the top of the tower is transported from the top to the bottom of the tower reactor. The EVAc solution supplied to the top of the tower comes into contact with the alcohol vapor, and by-products such as aldehydes and acetate esters are discharged from the top of the tower (alcohol vapor outlet 1) together with the alcohol vapor. The EVAc solution transported to the position where the alkali catalyst is supplied (alkali catalyst supply port 3) comes into contact with the alkali catalyst, and the EVAc is saponified, and then the EVOH solution is taken out from the bottom of the tower (EVOH solution outlet 5). By supplying the alkali catalyst below the position where the EVAc solution is supplied at the top of the tower, impurities such as aldehydes remaining in the EVAc solution can be removed in advance by the alcohol vapor at the top of the tower, and then the EVAc solution can be saponified. This suppresses coloring of the EVAc during saponification. The alkali catalyst may be introduced from the same place as the EVAc solution.
けん化工程(I)で用いられるEVAcは、公知の方法に従い、エチレンと酢酸ビニルとを共重合させることにより製造することができる。重合法、溶媒などに制限はないが、メタノールを溶媒とする溶液重合が好適である。重合触媒としては、ラジカル開始剤、例えば、各種のアゾニトリル系開始剤、有機過酸化物系開始剤を使用できる。また、本発明の効果を阻害しない範囲であれば、前記EVAcには、エチレン、酢酸ビニルと共重合し得る、エチレン及び酢酸ビニル以外の他の単量体(例えば、プロピレンなどのα-オレフィン、アクリル酸などの不飽和酸、各種ニトリル、各種アミド)を含有していてもよい。前記EVAc中の前記他の単量体由来の単位の含有量は、通常、10モル%以下である。
EVAc used in the saponification step (I) can be produced by copolymerizing ethylene and vinyl acetate according to a known method. There are no limitations on the polymerization method or solvent, but solution polymerization using methanol as the solvent is preferred. As the polymerization catalyst, a radical initiator, for example, various azonitrile initiators and organic peroxide initiators can be used. In addition, the EVAc may contain other monomers other than ethylene and vinyl acetate that can be copolymerized with ethylene and vinyl acetate (for example, α-olefins such as propylene, unsaturated acids such as acrylic acid, various nitriles, and various amides) within a range that does not impair the effects of the present invention. The content of units derived from the other monomers in the EVAc is usually 10 mol% or less.
けん化工程(I)で用いられるEVAcのエチレン単位含有量は20モル%以上60モル%以下であることが好ましい。エチレン単位含有量が20モル%以上であると得られるEVOHの溶融成形性が高まる傾向となる。より好適には24モル%以上である。一方、エチレン単位含有量が60モル%以下であることによって、得られるEVOHのガスバリア性が良好になる。エチレン単位含有量は50モル%以下であることが好ましく、45モル%以下であることがさらに好ましい。けん化工程(I)で用いられるEVAcは公知の方法によりけん化された、部分けん化EVAcであってもよく、部分けん化されていないEVAcであってもよい。
The ethylene unit content of the EVAc used in the saponification step (I) is preferably 20 mol% or more and 60 mol% or less. When the ethylene unit content is 20 mol% or more, the melt moldability of the resulting EVOH tends to be improved. More preferably, it is 24 mol% or more. On the other hand, when the ethylene unit content is 60 mol% or less, the gas barrier properties of the resulting EVOH are improved. The ethylene unit content is preferably 50 mol% or less, and more preferably 45 mol% or less. The EVAc used in the saponification step (I) may be partially saponified EVAc that has been saponified by a known method, or it may be EVAc that has not been partially saponified.
前記EVAc溶液にはアルコールが含まれる。EVAcのけん化反応はEVAcの酢酸エステル基とアルコールとのエステル交換反応によって進行するので、EVAc溶液の溶媒がアルコールであることで、アルカリ触媒の使用を少量に抑えることができ、効率よくけん化反応を進めることができるという利点を有する。当該アルコールとしては、メタノール、エタノール、1-プロパノール、2-プロパノールなどが挙げられ、メタノールが好ましい。
The EVAc solution contains alcohol. The saponification reaction of EVAc proceeds through an ester exchange reaction between the acetate ester group of EVAc and alcohol, so the use of an alkaline catalyst can be reduced to a small amount by using alcohol as the solvent for the EVAc solution, which has the advantage of allowing the saponification reaction to proceed efficiently. Examples of the alcohol include methanol, ethanol, 1-propanol, and 2-propanol, with methanol being preferred.
前記EVAc溶液における、EVAcの濃度は特に限定されないが、生産性の観点から70質量%以下が好ましく、60質量%以下がより好ましい。一方、生産性の点から、EVAcの濃度は、10質量%以上が好ましく、20質量%以上がより好ましく、30質量%以上がさらに好ましく、40質量%以上が特に好ましい。
The concentration of EVAc in the EVAc solution is not particularly limited, but from the viewpoint of productivity, it is preferably 70% by mass or less, and more preferably 60% by mass or less. On the other hand, from the viewpoint of productivity, the concentration of EVAc is preferably 10% by mass or more, more preferably 20% by mass or more, even more preferably 30% by mass or more, and particularly preferably 40% by mass or more.
けん化工程(I)におけるアルカリ触媒としては、水酸化ナトリウム、水酸化カリウム、水酸化リチウムなどのアルカリ金属水酸化物;ナトリウムメトキシド、ナトリウムエトキシド、カリウムt-ブトキシドなどのアルカリ金属アルコキシドなどの化合物が挙げられ、中でも、水酸化ナトリウム、水酸化カリウム、ナトリウムメトキシド、ナトリウムエトキシドが好ましく、水酸化ナトリウムがより好ましい。前記アルカリ触媒はそのまま用いてもよいし、溶液として用いてもよい。溶液として用いる場合の溶媒は、前記EVAcの溶液と同様のものを用いることができる。
The alkali catalyst in the saponification step (I) may be a compound such as an alkali metal hydroxide, such as sodium hydroxide, potassium hydroxide, or lithium hydroxide; or an alkali metal alkoxide, such as sodium methoxide, sodium ethoxide, or potassium t-butoxide; among these, sodium hydroxide, potassium hydroxide, sodium methoxide, or sodium ethoxide is preferred, and sodium hydroxide is more preferred. The alkali catalyst may be used as it is, or may be used as a solution. When used as a solution, the solvent may be the same as that of the EVAc solution.
一般に、けん化反応が進行すると溶媒への溶解性が低下するため、けん化工程(I)における塔式反応器を加圧して高温で反応を行うことが好ましい。塔式反応器の圧力は、0.1~1.0MPaが好ましい。前記圧力は0.8MPa以下がより好ましく、0.6MPa以下がさらに好ましく、0.55MPa以下が特に好ましい。前記圧力は0.2MPa以上であってもよい。
Generally, as the saponification reaction progresses, the solubility in the solvent decreases, so it is preferable to pressurize the tower reactor in the saponification step (I) and carry out the reaction at a high temperature. The pressure in the tower reactor is preferably 0.1 to 1.0 MPa. The pressure is more preferably 0.8 MPa or less, even more preferably 0.6 MPa or less, and particularly preferably 0.55 MPa or less. The pressure may be 0.2 MPa or more.
塔式反応器の温度は、60~180℃が好ましい。反応効率を高める点から、当該温度は、70℃以上がより好ましく、80℃以上がさらに好ましく、90℃以上が特に好ましい。一方、塔式反応器の温度は、150℃以下がより好ましく、140℃以下がさらに好ましく、130℃以下が特に好ましい。
The temperature of the tower reactor is preferably 60 to 180°C. From the viewpoint of increasing the reaction efficiency, the temperature is more preferably 70°C or higher, even more preferably 80°C or higher, and particularly preferably 90°C or higher. On the other hand, the temperature of the tower reactor is more preferably 150°C or lower, even more preferably 140°C or lower, and particularly preferably 130°C or lower.
けん化工程(I)におけるアルカリ触媒の添加量は、EVAc100質量部に対して、0.01~10質量部が好ましい。当該添加量は、0.05質量部以上がより好ましく、0.1質量部以上がさらに好ましく、0.3質量部以上が特に好ましい。一方、前記添加量は、5質量部以下がより好ましく、3質量部以下がさらに好ましい。
The amount of the alkali catalyst added in the saponification step (I) is preferably 0.01 to 10 parts by mass per 100 parts by mass of EVAc. The amount is more preferably 0.05 parts by mass or more, even more preferably 0.1 parts by mass or more, and particularly preferably 0.3 parts by mass or more. On the other hand, the amount is more preferably 5 parts by mass or less, and even more preferably 3 parts by mass or less.
けん化工程(I)において、塔下部に供給されるアルコール蒸気は、後述するアルデヒド低減工程(II)を経て得られた、アルデヒド低減処理を施したアルコール(b)を含む。前記アルコール蒸気がアルコール(b)を含むことで未使用アルコールの使用量を抑えられるため、環境負荷が低減される。アルコール蒸気に含まれるアルコール(b)の含有量は特に限定されないが、70質量%以上が好ましく、80質量%以上がより好ましく、90質量%以上がさらに好ましく、アルコール蒸気がアルコール(b)のみからなっていてもよい。アルコール蒸気に含まれ得るアルコール(b)以外の他の化合物としては、例えば、アルデヒド低減処理が施されていないアルコール等が挙げられる。
In the saponification step (I), the alcohol vapor supplied to the bottom of the tower contains alcohol (b) that has been subjected to an aldehyde reduction treatment, obtained through the aldehyde reduction step (II) described below. The inclusion of alcohol (b) in the alcohol vapor reduces the amount of unused alcohol used, thereby reducing the environmental impact. The content of alcohol (b) contained in the alcohol vapor is not particularly limited, but is preferably 70% by mass or more, more preferably 80% by mass or more, and even more preferably 90% by mass or more, and the alcohol vapor may consist only of alcohol (b). Examples of compounds other than alcohol (b) that may be contained in the alcohol vapor include alcohol that has not been subjected to an aldehyde reduction treatment.
アルコール系溶媒下では、EVAcのけん化反応はEVAcの酢酸エステル基とアルコールとのエステル交換反応によって進行するので、アルコール蒸気を塔下部に供給することでアルカリ触媒の使用を少量に抑えることができ、効率よくけん化反応を進めることができる。アルコール系溶媒として、メタノール、エタノール、1-プロパノール、2-プロパノールなどが好適であり、特にメタノールがより好適である。
In an alcohol-based solvent, the saponification reaction of EVAc proceeds through an ester exchange reaction between the acetate ester group of EVAc and alcohol, so by supplying alcohol vapor to the bottom of the tower, the amount of alkaline catalyst used can be reduced, allowing the saponification reaction to proceed efficiently. Suitable alcohol-based solvents include methanol, ethanol, 1-propanol, and 2-propanol, with methanol being particularly suitable.
けん化工程(I)における、塔式反応器に供給されるアルコール蒸気の量が、塔式反応器に供給されるEVAc100質量部に対して、10質量部以上1000質量部以下が好ましい。かかるアルコール蒸気量が多い場合、回収アルコール(a)に含まれるアルデヒド量を低減することができる。
In the saponification step (I), the amount of alcohol vapor supplied to the tower reactor is preferably 10 parts by mass or more and 1,000 parts by mass or less per 100 parts by mass of EVAc supplied to the tower reactor. If the amount of alcohol vapor is large, the amount of aldehyde contained in the recovered alcohol (a) can be reduced.
けん化工程(I)で使用されたアルコールは、回収アルコール(a)として回収されて後述するアルデヒド低減工程(II)にてアルデヒド低減処理に供される。ここで、けん化工程(I)で使用されたアルコールとは、主に、アルコール蒸気排出口1から排出されるアルコールのことを意味する。回収アルコール(a)として回収する手法は特に限定されないが、一態様としては、アルコール蒸気排出口1から排出されるアルコールを凝縮した後、凝集後のアルコールに含まれる、けん化反応により生じた酢酸メチル等の酢酸エステルを留去して、回収アルコール(a)を回収する。本明細書において、酢酸メチル等の酢酸エステルを留去して回収アルコール(a)を得る蒸留操作は、アルデヒド低減工程(II)のアルデヒド低減処理とはみなさないものとする。
The alcohol used in the saponification step (I) is recovered as recovered alcohol (a) and is subjected to aldehyde reduction treatment in the aldehyde reduction step (II) described below. Here, the alcohol used in the saponification step (I) mainly means the alcohol discharged from the alcohol vapor outlet 1. There are no particular limitations on the method of recovering it as recovered alcohol (a), but in one embodiment, the alcohol discharged from the alcohol vapor outlet 1 is condensed, and then acetic acid esters such as methyl acetate produced by the saponification reaction contained in the condensed alcohol are distilled off to recover recovered alcohol (a). In this specification, the distillation operation of distilling off acetic acid esters such as methyl acetate to obtain recovered alcohol (a) is not considered to be an aldehyde reduction treatment in the aldehyde reduction step (II).
けん化工程(I)において、EVAc溶液中に含まれる残存酢酸ビニルがけん化されることによりアセトアルデヒドが生じ、かかるアセトアルデヒドがけん化条件下にて自己縮合するため、回収アルコール(a)には、通常、アセトアルデヒド及びクロトンアルデヒドが含まれる。回収アルコール(a)に含まれるアセトアルデヒドの量は特に限定されないが、例えば、50ppm以上1000ppm以下である。また、回収アルコール(a)に含まれるクロトンアルデヒドの含有量は特に限定されないが、例えば5ppm以上200ppm以下である。回収アルコール(a)に含まれるアセトアルデヒド及びクロトンアルデヒドの含有量を調整する手段としては、例えば、EVAc溶液に含まれる残存酢酸ビニル含有量、アルコール蒸気の供給量、アルカリ触媒濃度等により調整できる。
In the saponification step (I), the residual vinyl acetate contained in the EVAc solution is saponified to generate acetaldehyde, which then undergoes self-condensation under saponification conditions, so that the recovered alcohol (a) usually contains acetaldehyde and crotonaldehyde. The amount of acetaldehyde contained in the recovered alcohol (a) is not particularly limited, but is, for example, 50 ppm or more and 1000 ppm or less. The content of crotonaldehyde contained in the recovered alcohol (a) is not particularly limited, but is, for example, 5 ppm or more and 200 ppm or less. The content of acetaldehyde and crotonaldehyde contained in the recovered alcohol (a) can be adjusted, for example, by the content of residual vinyl acetate contained in the EVAc solution, the amount of alcohol vapor supplied, the concentration of the alkali catalyst, etc.
本発明の製造方法は、回収アルコール(a)にアルデヒド低減処理を施し、アルコール(b)を得るアルデヒド低減工程(II)を有する。本発明の製造方法がアルデヒド低減工程(II)を有することで、未使用アルコールの使用量を抑制できるため、環境負荷を低減できる。アルデヒド低減工程(II)は、アルデヒド低減処理として、回収アルコール(a)をアセタール化触媒に接触させてアルデヒドを低減する工程を含む。アセタール化によるアルデヒド低減処理は、蒸留などに比べて使用するエネルギーが低いため環境負荷を低減できる一方、クロトンアルデヒドを効率的に低減することができないという傾向があるが、アルコール蒸気に含まれるアルコール(b)がクロトンアルデヒドを一定量含んでいたとしても、得られるEVOHの着色を抑制できるため、かかるアセタール化によるアルデヒド低減処理により、得られるEVOHの着色を抑制しつつ、環境負荷を低減することができる。アルデヒド低減工程(II)のアルデヒド低減処理では、アルデヒド低減工程(II)により得られたアルコール(b)中のアセトアルデヒド量が、アルデヒド低減工程(II)に供される回収アルコール(a)中のアセトアルデヒド量の70質量%以上低減されていることが好ましく、80質量%以上低減されていることがより好ましい。
The manufacturing method of the present invention has an aldehyde reduction step (II) in which recovered alcohol (a) is subjected to an aldehyde reduction treatment to obtain alcohol (b). By having the aldehyde reduction step (II) in the manufacturing method of the present invention, the amount of unused alcohol used can be reduced, thereby reducing the environmental burden. The aldehyde reduction step (II) includes a step of contacting recovered alcohol (a) with an acetalization catalyst to reduce aldehyde as an aldehyde reduction treatment. Aldehyde reduction treatment by acetalization can reduce the environmental burden because it uses less energy than distillation, etc., but tends not to efficiently reduce crotonaldehyde. However, even if alcohol (b) contained in the alcohol vapor contains a certain amount of crotonaldehyde, it can suppress discoloration of the resulting EVOH, so the aldehyde reduction treatment by acetalization can reduce the environmental burden while suppressing discoloration of the resulting EVOH. In the aldehyde reduction process in the aldehyde reduction step (II), the amount of acetaldehyde in the alcohol (b) obtained in the aldehyde reduction step (II) is preferably reduced by 70% by mass or more, and more preferably by 80% by mass or more, of the amount of acetaldehyde in the recovered alcohol (a) supplied to the aldehyde reduction step (II).
アセタール化触媒は、アルコール系溶媒に溶解することがなく、表面に酸点を有する、アセタール化触媒として作用しうるものであれば特に制限なく使用できる。固体酸としては、例えば、金属酸化物(例えばAl2O3、V2O5)、硫酸塩(例えばNiSO4、CuSO4)、リン酸塩(例えばAlPO4)、塩化物(例えばAlCl3、CuCl3)などが挙げられる。代表的な固体酸触媒であるゼオライト触媒、シリカアルミナ触媒などを用いてもよい。また、モンモリロナイトなどの鉱物を用いることもできる。しかし、商業規模での実施には、陽イオン交換樹脂が特に適している。
The acetalization catalyst can be used without any particular limitation as long as it is not dissolved in an alcohol-based solvent, has an acid site on the surface, and can act as an acetalization catalyst. Examples of solid acids include metal oxides (e.g., Al2O3 , V2O5 ), sulfates (e.g., NiSO4 , CuSO4 ), phosphates (e.g., AlPO4 ) , and chlorides (e.g., AlCl3 , CuCl3 ). Representative solid acid catalysts such as zeolite catalysts and silica-alumina catalysts may also be used. Minerals such as montmorillonite may also be used. However, cation exchange resins are particularly suitable for commercial scale implementation.
陽イオン交換樹脂は、不溶性の固体酸として機能し、大量の液処理と繰り返し使用に適した各種製品も市販されている。陽イオン交換樹脂としては、弱酸性陽イオン交換樹脂を用いてもよいが、強酸性陽イオン交換樹脂が好ましく、アンバーリスト(登録商標)、アンバーライト(登録商標)、アンバーセップ(登録商標)などのデュポン社製のスルホン酸型強酸性イオン交換樹脂が使用できる。
Cation exchange resins function as insoluble solid acids, and various products suitable for treating large amounts of liquid and repeated use are commercially available. Although weakly acidic cation exchange resins may be used, strongly acidic cation exchange resins are preferred, and sulfonic acid-type strongly acidic ion exchange resins manufactured by DuPont, such as Amberlyst (registered trademark), Amberlite (registered trademark), and AmberSep (registered trademark), can be used.
陽イオン交換樹脂を用いてアセタール化を行う場合には、例えば、ビーズ状の陽イオン交換樹脂を充填した塔に、回収アルコール(a)を投入して通過させればよい。この場合、塔内の温度は、回収アルコール(a)が液体である温度範囲であれば特に制限はなく、通常は室温付近の温度を採用すればよい。また、アルコール系溶媒の塔内滞留時間は、溶媒処理の効率の観点から、15秒~30分であることが好ましい。
When acetalization is performed using a cation exchange resin, for example, the recovered alcohol (a) may be fed into a tower packed with bead-shaped cation exchange resin and passed through it. In this case, there are no particular limitations on the temperature inside the tower as long as it is within a temperature range in which the recovered alcohol (a) is liquid, and a temperature close to room temperature may usually be used. In addition, from the viewpoint of the efficiency of the solvent treatment, the residence time of the alcohol-based solvent inside the tower is preferably 15 seconds to 30 minutes.
アルデヒド低減工程(II)におけるアルデヒド低減処理として、アセタール化以外の他のアルデヒド低減処理を行っていてもよい。すなわち、アルコール(b)は、アセタール化のみを行ったアルコールである場合もあり、アセタール化及びアセタール化以外のアルデヒド低減処理を行ったアルコールであってもよい。アセタール化以外の他のアルデヒド低減処理としては、蒸留、けん化工程(I)以外の工程で回収された低アルデヒド濃度のアルコール溶媒との混合、未使用アルコール溶媒との混合などが挙げられる。前記他のアルデヒド低減処理を行う場合、かかる処理は、アセタール化の前であっても後であってもよい。アルデヒド低減処理が蒸留である場合、使用するエネルギーを低減する観点からは、アセタール化の後に蒸留されることが好ましい。アルデヒド低減処理が低アルデヒド濃度のアルコール溶媒との混合である場合は、アセタール化の前であることが好ましい。ここで低アルデヒド濃度のアルコールとは、アセトアルデヒド及びクロトンアルデヒドの少なくとも一方の含有量が回収アルコール(a)よりも少ないアルコールのことを意味する。
As the aldehyde reduction treatment in the aldehyde reduction step (II), other aldehyde reduction treatments other than acetalization may be performed. That is, the alcohol (b) may be an alcohol that has been subjected to only acetalization, or may be an alcohol that has been subjected to aldehyde reduction treatments other than acetalization and acetalization. Examples of other aldehyde reduction treatments other than acetalization include distillation, mixing with an alcohol solvent having a low aldehyde concentration recovered in a step other than the saponification step (I), and mixing with unused alcohol solvent. When the other aldehyde reduction treatment is performed, such treatment may be performed before or after acetalization. When the aldehyde reduction treatment is distillation, it is preferable to perform the distillation after acetalization from the viewpoint of reducing the energy used. When the aldehyde reduction treatment is mixing with an alcohol solvent having a low aldehyde concentration, it is preferable to perform the distillation before acetalization. Here, the alcohol with a low aldehyde concentration means an alcohol in which the content of at least one of acetaldehyde and crotonaldehyde is less than that of the recovered alcohol (a).
アルデヒド低減工程(II)のアルデヒド低減処理として蒸留を行う場合、クロトンアルデヒドの含有量を低減させることはできるが、蒸留しない場合と比べて多量のエネルギーを必要とするため、蒸留によるアルデヒド低減処理を含まないことが好ましい。
If distillation is performed as the aldehyde reduction treatment in the aldehyde reduction step (II), the crotonaldehyde content can be reduced, but since a large amount of energy is required compared to the case where distillation is not performed, it is preferable not to include an aldehyde reduction treatment by distillation.
アルデヒド低減工程(II)のアルデヒド低減処理が、回収アルコール(a)とは異なるアルコールを混合することで、回収アルコール(a)中のアルデヒド濃度を低減する方法を含んでいてもよい。回収アルコール(a)とは異なるアルコールとしては、けん化工程(I)以外の工程で回収されたアルコール、未使用のアルコール等が挙げられる。
The aldehyde reduction process in the aldehyde reduction step (II) may include a method of reducing the aldehyde concentration in the recovered alcohol (a) by mixing an alcohol different from the recovered alcohol (a). Examples of the alcohol different from the recovered alcohol (a) include alcohol recovered in a step other than the saponification step (I), unused alcohol, etc.
アルデヒド低減工程(II)のアルデヒド低減処理としてけん化工程(I)以外の工程で回収された低アルデヒド濃度のアルコール溶媒との混合を行う場合、けん化工程(I)以外の工程は、共重合工程、未反応の酢酸ビニル回収工程、濃縮工程、精製工程などが挙げられる。
When the aldehyde reduction process (II) involves mixing with an alcohol solvent with a low aldehyde concentration recovered in a process other than the saponification process (I), the process other than the saponification process (I) can be a copolymerization process, a process for recovering unreacted vinyl acetate, a concentration process, a purification process, etc.
回収方法の一例として、濃縮工程のアルコール回収について、以下に説明する。けん化反応後のEVOH溶液の後処理方法として、塔式容器中で、アルコール溶媒と水の混合蒸気を容器の下部から供給し、EVOH溶液を、前記混合蒸気の供給位置より上方の位置から供給することにより、供給されたEVOH溶液中に存在する溶媒の一部を水と置換し、高濃度のEVOH溶液とすることができる。塔上部から導出されたアルコール蒸気と水蒸気は凝縮器で凝縮し、アルコール水溶液として回収できる。このアルコール及び水を含む混合液を蒸留塔にて蒸留して分離して得られたアルコールを使用することが可能である。
As an example of a recovery method, the recovery of alcohol in the concentration process is described below. As a post-treatment method for the EVOH solution after the saponification reaction, a mixed vapor of alcohol solvent and water is supplied from the bottom of a tower-type vessel, and the EVOH solution is supplied from a position above the supply position of the mixed vapor, thereby replacing part of the solvent present in the supplied EVOH solution with water to produce a highly concentrated EVOH solution. The alcohol vapor and water vapor drawn out from the top of the tower are condensed in a condenser and can be recovered as an aqueous alcohol solution. The alcohol obtained by separating and distilling this mixed liquid containing alcohol and water in a distillation tower can be used.
アルデヒド低減工程(II)のアルデヒド低減処理として未使用のアルコールとの混合を行う場合、未使用のアルコール中にはアルデヒド等の不純物が含有されていないため、回収アルコール(a)中のアルデヒド濃度を容易に低減することが可能である。ただし、未使用のアルコールを多量に使用することは環境負荷への影響は大きくなるため、少量の使用が好ましい。
When mixing with unused alcohol as an aldehyde reduction treatment in the aldehyde reduction step (II), it is possible to easily reduce the aldehyde concentration in the recovered alcohol (a) since the unused alcohol does not contain impurities such as aldehydes. However, using a large amount of unused alcohol has a large impact on the environment, so it is preferable to use a small amount.
アルデヒド低減工程(II)に供されるアルコールとしては、回収アルコール(a)の他に回収アルコール(a)よりもアセトアルデヒド及びクロトンアルデヒドの含有量が高いアルコールを同時に含んでいてもよい。アルデヒド低減工程(II)に供されるアルコールにおける回収アルコール(a)の含有量は、5質量%以上であってもよく、20質量%以上であってもよく、50質量%以上であってもよく、70質量%以上であってもよく、90質量%以上であってもよく、アルデヒド低減工程(II)に供されるアルコールは回収アルコール(a)のみからなってもよい。
The alcohol subjected to the aldehyde reduction step (II) may contain, in addition to the recovered alcohol (a), an alcohol having a higher content of acetaldehyde and crotonaldehyde than the recovered alcohol (a). The content of recovered alcohol (a) in the alcohol subjected to the aldehyde reduction step (II) may be 5% by mass or more, 20% by mass or more, 50% by mass or more, 70% by mass or more, or 90% by mass or more, and the alcohol subjected to the aldehyde reduction step (II) may consist only of recovered alcohol (a).
アルデヒド低減工程(II)により得られたアルコール(b)に含まれるアセトアルデヒドの含有量は150ppm以下が好ましく、80ppm以下がより好ましく40ppm以下がさらに好ましい。アルコール(b)に含まれるアセトアルデヒドの含有量が上記上限以下であると、得られるEVOHの着色を抑制できる傾向となる。アルコール(b)はアセトアルデヒドを含まないことが好ましいが、多少含んでいてもよい。すなわち、0ppm以上であってもよい。けん化工程(I)にて、塔下部より供給されるアルコール蒸気に含まれるアセトアルデヒドの含有量の好適な態様も、アルコール(b)に含まれるアセトアルデヒドの含有量の好適な態様と同様である。
The content of acetaldehyde contained in the alcohol (b) obtained by the aldehyde reduction step (II) is preferably 150 ppm or less, more preferably 80 ppm or less, and even more preferably 40 ppm or less. When the content of acetaldehyde contained in the alcohol (b) is equal to or less than the above upper limit, discoloration of the obtained EVOH tends to be suppressed. It is preferable that the alcohol (b) does not contain acetaldehyde, but it may contain some amount. In other words, it may be 0 ppm or more. The preferred embodiment of the content of acetaldehyde contained in the alcohol vapor supplied from the bottom of the tower in the saponification step (I) is the same as the preferred embodiment of the content of acetaldehyde contained in the alcohol (b).
アルデヒド低減工程(II)により得られたアルコール(b)は、クロトンアルデヒドを含む。アルコール(b)に含まれるクロトンアルデヒドの含有量は200ppm以下が好ましく、100ppm以下がより好ましく、70ppm以下であっても、47ppm以下であっても、32ppm以下であっても、27ppm以下であっても、23ppm以下であってもよい。アルコール(b)に含まれるクロトンアルデヒドの含有量は5ppm以上であってもよい。クロトンアルデヒドの含有量が上記上限以下であると、得られるEVOHの着色を抑制できる傾向となる。一方、クロトンアルデヒドの含有量を低減する際に蒸留などが必要になることを考慮すると、クロトンアルデヒドの含有量が上記下限以上であることで、クロトンアルデヒドの含有量低減に必要なエネルギーの低減、すなわち、環境負荷を低減できる。けん化工程(I)にて、塔下部より供給されるアルコール蒸気に含まれるクロトンアルデヒドの含有量の好適な態様も、アルコール(b)に含まれるクロトンアルデヒドの含有量の好適な態様と同様である。
The alcohol (b) obtained by the aldehyde reduction step (II) contains crotonaldehyde. The content of crotonaldehyde contained in the alcohol (b) is preferably 200 ppm or less, more preferably 100 ppm or less, and may be 70 ppm or less, 47 ppm or less, 32 ppm or less, 27 ppm or less, or 23 ppm or less. The content of crotonaldehyde contained in the alcohol (b) may be 5 ppm or more. When the content of crotonaldehyde is equal to or less than the upper limit, discoloration of the obtained EVOH tends to be suppressed. On the other hand, considering that distillation or the like is required to reduce the content of crotonaldehyde, when the content of crotonaldehyde is equal to or more than the lower limit, the energy required to reduce the content of crotonaldehyde, i.e., the environmental load, can be reduced. In the saponification step (I), the preferred embodiment of the crotonaldehyde content contained in the alcohol vapor supplied from the bottom of the tower is the same as the preferred embodiment of the crotonaldehyde content contained in the alcohol (b).
アルデヒド低減工程(II)により得られたアルコール(b)を重合工程で使用することは好ましくない。アルコール(b)にはクロトンアルデヒドが含まれるため、重合工程で使用すると得られるEVOHペレットの品質を低下させ、成形時の外観不良を発生させる。
It is not preferable to use the alcohol (b) obtained by the aldehyde reduction process (II) in the polymerization process. Since the alcohol (b) contains crotonaldehyde, using it in the polymerization process will reduce the quality of the EVOH pellets obtained and cause poor appearance during molding.
けん化工程(I)により得られるEVOH溶液に含まれるEVOHのけん化度は、80モル%以上が好ましく、95モル%以上が好ましく、99モル%以上がさらに好ましい。けん化を十分に行うことで、得られるEVOHのガスバリア性が向上する。
The degree of saponification of the EVOH contained in the EVOH solution obtained by the saponification step (I) is preferably 80 mol% or more, more preferably 95 mol% or more, and even more preferably 99 mol% or more. By carrying out sufficient saponification, the gas barrier properties of the obtained EVOH are improved.
けん化工程(I)により得られるEVOH溶液について、本願明細書では、全体が完全に均一ではなく相分離したペースト状のようなものもEVOH溶液に含まれるものとする。けん化反応後のEVOH溶液の後処理方法として、塔式容器中で、溶媒と水の混合蒸気を容器の下部から供給し、EVOH溶液を、前記混合蒸気の供給位置より上方の位置から供給することにより、供給されたEVOH溶液中に存在する溶媒の一部を水と置換し、高濃度のEVOH溶液とすることができる。前記塔式容器に供給するEVOH溶液中のEVOHの濃度は15~50質量%が好適であり、25~40質量%がより好適である。また前記EVOH溶液の供給量と、前記混合蒸気の供給量の比(溶液供給量/蒸気供給量)が質量比で100/400~100/8であることも好適である。さらに前記混合蒸気中の水の含有量が20~70質量%であることが好適である。前記混合蒸気に使用する溶媒は沸点130℃以下のアルコールが好ましく、このようなアルコールとしては、メタノール、エタノール、プロパノール、ブタノールなどのアルコール類を例示することができる。沸点100℃以下のアルコールがより好ましく、なかでも、入手が容易で廉価であり、沸点が低く、取り扱い易い点でメタノールが好ましい。
In the present specification, the EVOH solution obtained by the saponification step (I) includes a paste-like solution that is not completely uniform throughout and has undergone phase separation. As a post-treatment method for the EVOH solution after the saponification reaction, a mixed vapor of a solvent and water is supplied from the bottom of a tower-type vessel, and the EVOH solution is supplied from a position above the supply position of the mixed vapor, thereby replacing a part of the solvent present in the supplied EVOH solution with water to obtain a high-concentration EVOH solution. The concentration of EVOH in the EVOH solution supplied to the tower-type vessel is preferably 15 to 50% by mass, more preferably 25 to 40% by mass. It is also preferable that the ratio of the supply amount of the EVOH solution to the supply amount of the mixed vapor (solution supply amount/vapor supply amount) is 100/400 to 100/8 by mass. It is also preferable that the water content in the mixed vapor is 20 to 70% by mass. The solvent used for the mixed vapor is preferably an alcohol with a boiling point of 130°C or less, and examples of such alcohol include alcohols such as methanol, ethanol, propanol, and butanol. Alcohols with a boiling point of 100°C or less are more preferable, and among them, methanol is preferred because it is easily available, inexpensive, has a low boiling point, and is easy to handle.
こうして得られた高濃度のEVOH溶液は、公知の方法でペレット化することが好ましい。ペレット化する方法としては、EVOH溶液を冷却凝固させて切断する方法、EVOHを押出機で溶融混練してから吐出して切断する方法などが挙げられる。EVOHの切断方法としては、EVOHをストランド状に押し出してからペレタイザーで切断する方法、ダイスから吐出したEVOHをセンターホットカット方式やアンダーウォーターカット方式などで切断する方法などが具体例として挙げられる。EVOH溶液がペレット化されると、含水EVOHペレットとなる。
The high-concentration EVOH solution thus obtained is preferably pelletized by a known method. Examples of pelletization methods include a method in which the EVOH solution is cooled and solidified, and then cut, and a method in which the EVOH is melt-kneaded in an extruder, then discharged, and then cut. Specific examples of methods for cutting EVOH include a method in which EVOH is extruded into strands and then cut with a pelletizer, and a method in which EVOH is discharged from a die and then cut using a center hot cut method or an underwater cut method. When the EVOH solution is pelletized, it becomes hydrous EVOH pellets.
EVOH溶液を冷却凝固させて含水EVOHペレットを得た場合、かかる含水EVOHペレットは、公知の方法で洗浄、脱液することが好ましい。また、公知の方法でホウ素化合物、アルカリ金属塩、アルカリ土類金属塩などを含む溶液に浸漬させて、含水EVOH中に係る化合物を含有させる化学処理を行うことが好ましい。これらの化合物を含有させると、EVOH成形体の機械的特性、熱安定性などを改善することができる。また、EVOHを溶融混練してペレタイズして含水EVOHを得た場合は、EVOHの洗浄、脱液、化学処理を押出機中で行ってもよい。
When the EVOH solution is cooled and solidified to obtain hydrous EVOH pellets, it is preferable to wash and deliquor the hydrous EVOH pellets by a known method. It is also preferable to perform a chemical treatment by immersing the pellets in a solution containing a boron compound, an alkali metal salt, an alkaline earth metal salt, or the like by a known method to incorporate the relevant compound into the hydrous EVOH. Incorporating these compounds can improve the mechanical properties and thermal stability of the EVOH molded body. When the hydrous EVOH is obtained by melt-kneading and pelletizing EVOH, the EVOH may be washed, deliquored, and chemically treated in an extruder.
得られた含水EVOHペレットを、公知の方法で乾燥することで、EVOHペレットを得ることができる。乾燥後のEVOHペレットの含水率は、0.08質量%以下とすることが好ましい。乾燥方法は特に限定されず、空気乾燥もしくは窒素乾燥と組合せた静置乾燥法、流動乾燥法、または真空乾燥法などが挙げられるが、幾つかの乾燥方法を組み合わせた多段階の乾燥が好ましく、予備乾燥と本乾燥を備える多段乾燥であることがより好ましい。
EVOH pellets can be obtained by drying the obtained hydrous EVOH pellets by a known method. The moisture content of the dried EVOH pellets is preferably 0.08% by mass or less. There are no particular limitations on the drying method, and examples include stationary drying combined with air drying or nitrogen drying, fluidized drying, and vacuum drying, but multi-stage drying combining several drying methods is preferred, and multi-stage drying including preliminary drying and main drying is more preferred.
乾燥後のEVOHのイエローインデックス(YI)は、13以下が好ましく、9.5以下がより好ましい。本発明の製造方法によれば、このような着色の少ないEVOHを製造し、かつ環境負荷を低減できる。
The yellow index (YI) of the dried EVOH is preferably 13 or less, and more preferably 9.5 or less. The manufacturing method of the present invention makes it possible to produce such EVOH with little coloring and reduce the environmental impact.
本発明の製造方法により得られたEVOHは、エチレン単位含有量が20モル%以上60モル%以下であるエチレン-ビニルアルコール共重合体(A)及びアセトアルデヒド(B1)を含み、2,4-ヘキサジエナール(B2)及び2,4,6-オクタトリエナール(B3)からなる群より選ばれる少なくとも1種をさらに含み、下記式(1)を満たす。
10≦b1/(b2+b3)<150 ・・・(1)
上記式(1)中、b1は、EVOH(A)に対するアセトアルデヒド(B1)の含有量(ppm)であり、b2は、EVOH(A)に対する2,4-ヘキサジエナール(B2)の含有量(ppm)であり、b3は、EVOH(A)に対する2,4,6-オクタトリエナール(B3)の含有量(ppm)である。
すなわち、上記条件を満たすEVOHを製造することで、着色抑制と環境負荷軽減とを両立したEVOHを提供することが可能となる。 The EVOH obtained by the production method of the present invention contains an ethylene-vinyl alcohol copolymer (A) having an ethylene unit content of 20 mol % or more and 60 mol % or less, and acetaldehyde (B1), and further contains at least one member selected from the group consisting of 2,4-hexadienal (B2) and 2,4,6-octatrienal (B3), and satisfies the following formula (1):
10≦b1/(b2+b3)<150...(1)
In the above formula (1), b1 is the content (ppm) of acetaldehyde (B1) relative to the EVOH (A), b2 is the content (ppm) of 2,4-hexadienal (B2) relative to the EVOH (A), and b3 is the content (ppm) of 2,4,6-octatrienal (B3) relative to the EVOH (A).
That is, by producing EVOH that satisfies the above conditions, it is possible to provide EVOH that achieves both suppression of coloration and reduction of the environmental load.
10≦b1/(b2+b3)<150 ・・・(1)
上記式(1)中、b1は、EVOH(A)に対するアセトアルデヒド(B1)の含有量(ppm)であり、b2は、EVOH(A)に対する2,4-ヘキサジエナール(B2)の含有量(ppm)であり、b3は、EVOH(A)に対する2,4,6-オクタトリエナール(B3)の含有量(ppm)である。
すなわち、上記条件を満たすEVOHを製造することで、着色抑制と環境負荷軽減とを両立したEVOHを提供することが可能となる。 The EVOH obtained by the production method of the present invention contains an ethylene-vinyl alcohol copolymer (A) having an ethylene unit content of 20 mol % or more and 60 mol % or less, and acetaldehyde (B1), and further contains at least one member selected from the group consisting of 2,4-hexadienal (B2) and 2,4,6-octatrienal (B3), and satisfies the following formula (1):
10≦b1/(b2+b3)<150...(1)
In the above formula (1), b1 is the content (ppm) of acetaldehyde (B1) relative to the EVOH (A), b2 is the content (ppm) of 2,4-hexadienal (B2) relative to the EVOH (A), and b3 is the content (ppm) of 2,4,6-octatrienal (B3) relative to the EVOH (A).
That is, by producing EVOH that satisfies the above conditions, it is possible to provide EVOH that achieves both suppression of coloration and reduction of the environmental load.
本発明の方法により得られたEVOHはフィルム、シート、容器、パイプ、繊維等、各種の成形物に成形することができる。
The EVOH obtained by the method of the present invention can be molded into various molded products such as films, sheets, containers, pipes, and fibers.
以下、実施例を用いて本発明を具体的に説明するが、本発明は以下の実施例に限定されない。
The present invention will be specifically explained below using examples, but the present invention is not limited to the following examples.
[評価方法]
(1)EVOHのエチレン単位含有量、けん化度の測定
実施例及び比較例において得られた乾燥EVOHペレットを粉砕して、得られた粉末20mgを重ジメチルスルホキシド/重トリフルオロ酢酸の混合溶液(質量比:重ジメチルスルホキシド/重トリフルオロ酢酸=95:5)6mLに溶解した後、500MHzの1H-NMR(日本電子株式会社製「GX-500」)を用いて80℃で測定し、エチレン単位、ビニルアルコール単位、ビニルエステル単位のピーク強度比よりエチレン単位含有量及びけん化度を求めた。 [Evaluation method]
(1) Measurement of Ethylene Unit Content and Saponification Degree of EVOH The dried EVOH pellets obtained in the Examples and Comparative Examples were pulverized, and 20 mg of the obtained powder was dissolved in 6 mL of a mixed solution of deuterated dimethyl sulfoxide/deuterated trifluoroacetic acid (mass ratio: deuterated dimethyl sulfoxide/deuterated trifluoroacetic acid=95:5), and then measured at 80° C. using a 500 MHz 1 H-NMR ("GX-500" manufactured by JEOL Ltd.) to determine the ethylene unit content and the degree of saponification from the peak intensity ratios of ethylene units, vinyl alcohol units, and vinyl ester units.
(1)EVOHのエチレン単位含有量、けん化度の測定
実施例及び比較例において得られた乾燥EVOHペレットを粉砕して、得られた粉末20mgを重ジメチルスルホキシド/重トリフルオロ酢酸の混合溶液(質量比:重ジメチルスルホキシド/重トリフルオロ酢酸=95:5)6mLに溶解した後、500MHzの1H-NMR(日本電子株式会社製「GX-500」)を用いて80℃で測定し、エチレン単位、ビニルアルコール単位、ビニルエステル単位のピーク強度比よりエチレン単位含有量及びけん化度を求めた。 [Evaluation method]
(1) Measurement of Ethylene Unit Content and Saponification Degree of EVOH The dried EVOH pellets obtained in the Examples and Comparative Examples were pulverized, and 20 mg of the obtained powder was dissolved in 6 mL of a mixed solution of deuterated dimethyl sulfoxide/deuterated trifluoroacetic acid (mass ratio: deuterated dimethyl sulfoxide/deuterated trifluoroacetic acid=95:5), and then measured at 80° C. using a 500 MHz 1 H-NMR ("GX-500" manufactured by JEOL Ltd.) to determine the ethylene unit content and the degree of saponification from the peak intensity ratios of ethylene units, vinyl alcohol units, and vinyl ester units.
(2)アルコール溶媒中のアセトアルデヒド及びクロトンアルデヒドの定量
実施例及び比較例において、アルデヒド低減工程(II)に供給した回収アルコール(a)、及びけん化工程(I)に供給したアルコール蒸気(アルコール(b))0.5mLに1000mg/Lの2,4-ジニトロフェニルヒドラジンを含有するアセトニトリル/酢酸混合溶液(重量比:アセトニトリル/酢酸=9:1)(以下、DNPH溶液と記載する)を10mL加えて、60℃で1時間加熱攪拌した。当該溶液を、島津製作所製高速液体クロマトグラフ(カラム:資生堂CAPCELL PAK C18 MGタイプ、溶媒:アセトニトリル/水(グラジェント系)、UV検出器)で分析し、アルデヒド類の含有量を定量した。なお、定量に際しては、市販のアルデヒド-DNPH化物(あるいは合成したもの)で作成した検量線を用いた。 (2) Quantitative determination of acetaldehyde and crotonaldehyde in alcohol solvent In the examples and comparative examples, 10 mL of an acetonitrile/acetic acid mixed solution (weight ratio: acetonitrile/acetic acid = 9:1) (hereinafter referred to as DNPH solution) containing 1000 mg/L of 2,4-dinitrophenylhydrazine was added to 0.5 mL of the recovered alcohol (a) supplied to the aldehyde reduction step (II) and the alcohol vapor (alcohol (b)) supplied to the saponification step (I), and the mixture was heated and stirred at 60 ° C. for 1 hour. The solution was analyzed with a Shimadzu high performance liquid chromatograph (column: Shiseido CAPCELL PAK C18 MG type, solvent: acetonitrile/water (gradient system), UV detector) to quantify the content of aldehydes. In addition, a calibration curve created with a commercially available aldehyde-DNPH product (or a synthesized product) was used for the quantitative determination.
実施例及び比較例において、アルデヒド低減工程(II)に供給した回収アルコール(a)、及びけん化工程(I)に供給したアルコール蒸気(アルコール(b))0.5mLに1000mg/Lの2,4-ジニトロフェニルヒドラジンを含有するアセトニトリル/酢酸混合溶液(重量比:アセトニトリル/酢酸=9:1)(以下、DNPH溶液と記載する)を10mL加えて、60℃で1時間加熱攪拌した。当該溶液を、島津製作所製高速液体クロマトグラフ(カラム:資生堂CAPCELL PAK C18 MGタイプ、溶媒:アセトニトリル/水(グラジェント系)、UV検出器)で分析し、アルデヒド類の含有量を定量した。なお、定量に際しては、市販のアルデヒド-DNPH化物(あるいは合成したもの)で作成した検量線を用いた。 (2) Quantitative determination of acetaldehyde and crotonaldehyde in alcohol solvent In the examples and comparative examples, 10 mL of an acetonitrile/acetic acid mixed solution (weight ratio: acetonitrile/acetic acid = 9:1) (hereinafter referred to as DNPH solution) containing 1000 mg/L of 2,4-dinitrophenylhydrazine was added to 0.5 mL of the recovered alcohol (a) supplied to the aldehyde reduction step (II) and the alcohol vapor (alcohol (b)) supplied to the saponification step (I), and the mixture was heated and stirred at 60 ° C. for 1 hour. The solution was analyzed with a Shimadzu high performance liquid chromatograph (column: Shiseido CAPCELL PAK C18 MG type, solvent: acetonitrile/water (gradient system), UV detector) to quantify the content of aldehydes. In addition, a calibration curve created with a commercially available aldehyde-DNPH product (or a synthesized product) was used for the quantitative determination.
(3)アセトアルデヒド、クロトンアルデヒド、2,4-ヘキサジエナール、2,4,6-オクタトリエナールの定量
実施例及び比較例で得られた乾燥EVOHペレット0.50gを凍結粉砕して得られたサンプルを、加熱脱着ガスクロマトグラフ質量分析装置用ガラスチューブに50.0mg秤量し、サンプルチューブを作成した。下記の加熱脱着ガスクロマトグラフ質量分析装置を用い、下記条件にてサンプルを加熱して揮発性ガスをサンプルから吸着管に一度全量吸着させた後、吸着管から再放出されるガスをカラムで分離し、成分毎のピークを検出した。アセトアルデヒド、クロトンアルデヒド、2,4-ヘキサジエナール及び2,4,6-オクタトリエナールの標準サンプルのピーク面積から検量線を作成し、絶対検量線法により、それぞれ定量した。なお、標準サンプルを測定する際は、吸着管(Tenax(登録商標)/Carboxen(登録商標)製)に標準サンプルを染み込ませ、サンプルチューブの代わりに標準サンプルを染み込ませた吸着管を用い、サンプル吸着後の放出時の温度について、サンプルチューブの温度170℃から吸着管の温度260℃に変更した以外は、サンプルチューブの測定の場合と同様の方法で測定した。
(加熱脱着部)
装置:TurboMatrix-ATD (パーキンエルマージャパン社製)
吸着管へサンプルを吸着する時の温度:170℃(サンプルチューブ)、-30℃(吸着管)、250℃(バルブ)、260℃(トランスファーライン)
吸着管への吸着時間:10分
サンプル吸着後の放出時の温度:170℃(サンプルチューブ)、260℃(吸着管)、250℃(バルブ)、260℃(トランスファーライン)
吸着管放出時間:35分
キャリアガス:ヘリウムカラムへのキャリアガスの流速:1.0ml/min
圧力:120kPa
(ガスクロマトグラフ質量分析部)
装置:7890B GC System, 7977B MSD (アジレント・テクノロジー社製)
カラム:DB-WAX UI (長さ:30m、内径:0.25mm、膜厚:0.50μm)
カラムオーブン温度:40℃で5分保持後10℃/minの昇温速度で240℃まで温調後10分保持(合計測定温度35分)
トランスファーライン(接続部)温度:240℃
イオン化条件:EI+
検出イオン質量範囲:m/z=29-600
検出方法:SCAN (3) Quantitative determination of acetaldehyde, crotonaldehyde, 2,4-hexadienal, and 2,4,6-octatrienal 0.50 g of the dried EVOH pellets obtained in the Examples and Comparative Examples was freeze-pulverized to obtain a sample, which was weighed out in an amount of 50.0 mg and placed in a glass tube for a thermal desorption gas chromatograph mass spectrometer to prepare a sample tube. Using the thermal desorption gas chromatograph mass spectrometer described below, the sample was heated under the following conditions to adsorb the entire amount of volatile gas from the sample once into the adsorption tube, and the gas re-emitted from the adsorption tube was separated in a column to detect the peaks of each component. A calibration curve was created from the peak areas of standard samples of acetaldehyde, crotonaldehyde, 2,4-hexadienal, and 2,4,6-octatrienal, and each was quantified by the absolute calibration curve method. When measuring the standard sample, the standard sample was impregnated into an adsorption tube (manufactured by Tenax (registered trademark)/Carboxen (registered trademark)), and the adsorption tube impregnated with the standard sample was used instead of the sample tube. The temperature at the time of release after sample adsorption was changed from the sample tube temperature of 170° C. to the adsorption tube temperature of 260° C., but the measurement was performed in the same manner as in the measurement of the sample tube.
(Thermal desorption section)
Apparatus: TurboMatrix-ATD (PerkinElmer Japan)
Temperature when adsorbing the sample to the adsorption tube: 170°C (sample tube), -30°C (adsorption tube), 250°C (valve), 260°C (transfer line)
Adsorption time in the adsorption tube: 10 minutes Temperature at the time of release after sample adsorption: 170°C (sample tube), 260°C (adsorption tube), 250°C (valve), 260°C (transfer line)
Adsorption tube discharge time: 35 minutes Carrier gas: Helium Carrier gas flow rate to column: 1.0 ml/min
Pressure: 120 kPa
(Gas chromatograph mass spectrometry section)
Apparatus: 7890B GC System, 7977B MSD (Agilent Technologies)
Column: DB-WAX UI (length: 30 m, inner diameter: 0.25 mm, film thickness: 0.50 μm)
Column oven temperature: 40° C. for 5 minutes, then heated to 240° C. at a rate of 10° C./min and held for 10 minutes (total measurement temperature: 35 minutes)
Transfer line (connection) temperature: 240°C
Ionization conditions: EI+
Detectable ion mass range: m/z=29-600
Detection method: SCAN
実施例及び比較例で得られた乾燥EVOHペレット0.50gを凍結粉砕して得られたサンプルを、加熱脱着ガスクロマトグラフ質量分析装置用ガラスチューブに50.0mg秤量し、サンプルチューブを作成した。下記の加熱脱着ガスクロマトグラフ質量分析装置を用い、下記条件にてサンプルを加熱して揮発性ガスをサンプルから吸着管に一度全量吸着させた後、吸着管から再放出されるガスをカラムで分離し、成分毎のピークを検出した。アセトアルデヒド、クロトンアルデヒド、2,4-ヘキサジエナール及び2,4,6-オクタトリエナールの標準サンプルのピーク面積から検量線を作成し、絶対検量線法により、それぞれ定量した。なお、標準サンプルを測定する際は、吸着管(Tenax(登録商標)/Carboxen(登録商標)製)に標準サンプルを染み込ませ、サンプルチューブの代わりに標準サンプルを染み込ませた吸着管を用い、サンプル吸着後の放出時の温度について、サンプルチューブの温度170℃から吸着管の温度260℃に変更した以外は、サンプルチューブの測定の場合と同様の方法で測定した。
(加熱脱着部)
装置:TurboMatrix-ATD (パーキンエルマージャパン社製)
吸着管へサンプルを吸着する時の温度:170℃(サンプルチューブ)、-30℃(吸着管)、250℃(バルブ)、260℃(トランスファーライン)
吸着管への吸着時間:10分
サンプル吸着後の放出時の温度:170℃(サンプルチューブ)、260℃(吸着管)、250℃(バルブ)、260℃(トランスファーライン)
吸着管放出時間:35分
キャリアガス:ヘリウムカラムへのキャリアガスの流速:1.0ml/min
圧力:120kPa
(ガスクロマトグラフ質量分析部)
装置:7890B GC System, 7977B MSD (アジレント・テクノロジー社製)
カラム:DB-WAX UI (長さ:30m、内径:0.25mm、膜厚:0.50μm)
カラムオーブン温度:40℃で5分保持後10℃/minの昇温速度で240℃まで温調後10分保持(合計測定温度35分)
トランスファーライン(接続部)温度:240℃
イオン化条件:EI+
検出イオン質量範囲:m/z=29-600
検出方法:SCAN (3) Quantitative determination of acetaldehyde, crotonaldehyde, 2,4-hexadienal, and 2,4,6-octatrienal 0.50 g of the dried EVOH pellets obtained in the Examples and Comparative Examples was freeze-pulverized to obtain a sample, which was weighed out in an amount of 50.0 mg and placed in a glass tube for a thermal desorption gas chromatograph mass spectrometer to prepare a sample tube. Using the thermal desorption gas chromatograph mass spectrometer described below, the sample was heated under the following conditions to adsorb the entire amount of volatile gas from the sample once into the adsorption tube, and the gas re-emitted from the adsorption tube was separated in a column to detect the peaks of each component. A calibration curve was created from the peak areas of standard samples of acetaldehyde, crotonaldehyde, 2,4-hexadienal, and 2,4,6-octatrienal, and each was quantified by the absolute calibration curve method. When measuring the standard sample, the standard sample was impregnated into an adsorption tube (manufactured by Tenax (registered trademark)/Carboxen (registered trademark)), and the adsorption tube impregnated with the standard sample was used instead of the sample tube. The temperature at the time of release after sample adsorption was changed from the sample tube temperature of 170° C. to the adsorption tube temperature of 260° C., but the measurement was performed in the same manner as in the measurement of the sample tube.
(Thermal desorption section)
Apparatus: TurboMatrix-ATD (PerkinElmer Japan)
Temperature when adsorbing the sample to the adsorption tube: 170°C (sample tube), -30°C (adsorption tube), 250°C (valve), 260°C (transfer line)
Adsorption time in the adsorption tube: 10 minutes Temperature at the time of release after sample adsorption: 170°C (sample tube), 260°C (adsorption tube), 250°C (valve), 260°C (transfer line)
Adsorption tube discharge time: 35 minutes Carrier gas: Helium Carrier gas flow rate to column: 1.0 ml/min
Pressure: 120 kPa
(Gas chromatograph mass spectrometry section)
Apparatus: 7890B GC System, 7977B MSD (Agilent Technologies)
Column: DB-WAX UI (length: 30 m, inner diameter: 0.25 mm, film thickness: 0.50 μm)
Column oven temperature: 40° C. for 5 minutes, then heated to 240° C. at a rate of 10° C./min and held for 10 minutes (total measurement temperature: 35 minutes)
Transfer line (connection) temperature: 240°C
Ionization conditions: EI+
Detectable ion mass range: m/z=29-600
Detection method: SCAN
(4)色相評価
実施例及び比較例で得られた乾燥EVOHペレットのイエローインデックス(YI)値をHunter社製LAB Scan XEを用いて、JIS K7373:2006に従って測定、算出した。数値が小さいほど黄変が抑制されており、色相に優れていると判断することができ、YI値が13以上であると色相悪化を抑制できていないと判断した。 (4) Hue Evaluation The yellow index (YI) value of the dried EVOH pellets obtained in the Examples and Comparative Examples was measured and calculated using a LAB Scan XE manufactured by Hunter Co., Ltd. in accordance with JIS K7373: 2006. The smaller the value, the more yellowing is suppressed and the better the hue is. A YI value of 13 or more was determined to have failed to suppress the deterioration of hue.
実施例及び比較例で得られた乾燥EVOHペレットのイエローインデックス(YI)値をHunter社製LAB Scan XEを用いて、JIS K7373:2006に従って測定、算出した。数値が小さいほど黄変が抑制されており、色相に優れていると判断することができ、YI値が13以上であると色相悪化を抑制できていないと判断した。 (4) Hue Evaluation The yellow index (YI) value of the dried EVOH pellets obtained in the Examples and Comparative Examples was measured and calculated using a LAB Scan XE manufactured by Hunter Co., Ltd. in accordance with JIS K7373: 2006. The smaller the value, the more yellowing is suppressed and the better the hue is. A YI value of 13 or more was determined to have failed to suppress the deterioration of hue.
(5)製造量比
回収アルコールと未使用アルコールの両方を使用してけん化工程(I)でのけん化反応を行う場合において、未使用アルコールのみを用いた際にけん化工程(I)で得られるEVOH量に対し、同量の未使用アルコール量を用いた際に得られるEVOH量の比を算出した数値を製造量比とした。数値が高いほど未使用アルコールの使用量が減るので環境負荷が小さい。 (5) Production volume ratio When both recovered alcohol and virgin alcohol are used in the saponification step (I) to carry out the saponification reaction, the production volume ratio is calculated by the ratio of the amount of EVOH obtained in the saponification step (I) when only virgin alcohol is used to the amount of EVOH obtained when the same amount of virgin alcohol is used. The higher the ratio, the less the amount of virgin alcohol used, and therefore the smaller the environmental impact.
回収アルコールと未使用アルコールの両方を使用してけん化工程(I)でのけん化反応を行う場合において、未使用アルコールのみを用いた際にけん化工程(I)で得られるEVOH量に対し、同量の未使用アルコール量を用いた際に得られるEVOH量の比を算出した数値を製造量比とした。数値が高いほど未使用アルコールの使用量が減るので環境負荷が小さい。 (5) Production volume ratio When both recovered alcohol and virgin alcohol are used in the saponification step (I) to carry out the saponification reaction, the production volume ratio is calculated by the ratio of the amount of EVOH obtained in the saponification step (I) when only virgin alcohol is used to the amount of EVOH obtained when the same amount of virgin alcohol is used. The higher the ratio, the less the amount of virgin alcohol used, and therefore the smaller the environmental impact.
(実施例1)
(アルコール回収)
エチレン単位含有量32モル%であり、酢酸ビニル単位含有量が68モル%であるEVAcをメタノールに溶解させた濃度48質量%のEVAc溶液を、塔式反応器(棚段塔、段数21段、塔内径140mm)に供給し、けん化した。図1は、前記塔式反応器の模式図である。塔内温度115℃である当該塔式反応器のEVAc溶液供給口2から20段目の棚板に前記EVAc溶液を10kg/hの速度で供給し、アルカリ触媒として水酸化ナトリウムの5重量%メタノール溶液をアルカリ触媒供給口3から19段目の棚板に1.6kg/hの速度で供給した。アルコール蒸気は、アルコール蒸気吹込み口4から1段目下部に、21.6kg/hの速度で未使用メタノール蒸気を連続的に供給した。未使用メタノール蒸気に使用されるメタノール溶媒中のアセトアルデヒドの含有量およびクロトンアルデヒドの含有量を上記評価方法(2)に記載の方法に従い分析したところ、アセトアルデヒドおよびクロトンアルデヒドは検出限界以下であり検出されなかった。副生する酢酸メチルやアルデヒドを過剰なメタノールとともに混合蒸気として塔頂部(アルコール蒸気排出口1)から留出させ、塔底部(EVOH溶液出口5)よりEVOHメタノール溶液を得た。塔頂部から留出させた混合蒸気を凝縮して取り出した混合液を別の塔型回収器(棚段塔)に導入し、蒸留を行うことによって、塔下部からメタノール(回収アルコール(a))を取り出し回収した。回収メタノール(回収アルコール(a))について、上記評価方法(2)に記載の方法に従いアセトアルデヒド及びクロトンアルデヒドの含有量を測定したところ、アセトアルデヒドを450ppm、クロトンアルデヒドを50ppm含んでいた。結果を表1に示す。 Example 1
(Alcohol recovery)
An EVAc solution having a concentration of 48% by mass, in which EVAc having an ethylene unit content of 32 mol% and a vinyl acetate unit content of 68 mol% was dissolved in methanol, was supplied to a tower reactor (plate tower, number of plates: 21, inner diameter of tower: 140 mm) and saponified. FIG. 1 is a schematic diagram of the tower reactor. The EVAc solution was supplied to the 20th plate of the tower reactor, whose temperature inside the tower was 115° C., from an EVAcsolution supply port 2 at a rate of 10 kg/h, and a 5 wt % methanol solution of sodium hydroxide as an alkali catalyst was supplied to the 19th plate at a rate of 1.6 kg/h from an alkali catalyst supply port 3. As alcohol vapor, unused methanol vapor was continuously supplied to the lower part of the first plate from an alcohol vapor blowing port 4 at a rate of 21.6 kg/h. The acetaldehyde content and the crotonaldehyde content in the methanol solvent used for the unused methanol vapor were analyzed according to the method described in the evaluation method (2) above, and acetaldehyde and crotonaldehyde were below the detection limit and were not detected. The by-product methyl acetate and aldehyde were distilled as a mixed vapor together with excess methanol from the top of the tower (alcohol vapor outlet 1), and an EVOH methanol solution was obtained from the bottom of the tower (EVOH solution outlet 5). The mixed liquid obtained by condensing the mixed vapor distilled from the top of the tower was introduced into another tower-type recovery vessel (plate tower), and distillation was performed to recover methanol (recovered alcohol (a)) from the bottom of the tower. The recovered methanol (recovered alcohol (a)) was measured for the acetaldehyde and crotonaldehyde contents according to the method described in the evaluation method (2) above, and contained 450 ppm of acetaldehyde and 50 ppm of crotonaldehyde. The results are shown in Table 1.
(アルコール回収)
エチレン単位含有量32モル%であり、酢酸ビニル単位含有量が68モル%であるEVAcをメタノールに溶解させた濃度48質量%のEVAc溶液を、塔式反応器(棚段塔、段数21段、塔内径140mm)に供給し、けん化した。図1は、前記塔式反応器の模式図である。塔内温度115℃である当該塔式反応器のEVAc溶液供給口2から20段目の棚板に前記EVAc溶液を10kg/hの速度で供給し、アルカリ触媒として水酸化ナトリウムの5重量%メタノール溶液をアルカリ触媒供給口3から19段目の棚板に1.6kg/hの速度で供給した。アルコール蒸気は、アルコール蒸気吹込み口4から1段目下部に、21.6kg/hの速度で未使用メタノール蒸気を連続的に供給した。未使用メタノール蒸気に使用されるメタノール溶媒中のアセトアルデヒドの含有量およびクロトンアルデヒドの含有量を上記評価方法(2)に記載の方法に従い分析したところ、アセトアルデヒドおよびクロトンアルデヒドは検出限界以下であり検出されなかった。副生する酢酸メチルやアルデヒドを過剰なメタノールとともに混合蒸気として塔頂部(アルコール蒸気排出口1)から留出させ、塔底部(EVOH溶液出口5)よりEVOHメタノール溶液を得た。塔頂部から留出させた混合蒸気を凝縮して取り出した混合液を別の塔型回収器(棚段塔)に導入し、蒸留を行うことによって、塔下部からメタノール(回収アルコール(a))を取り出し回収した。回収メタノール(回収アルコール(a))について、上記評価方法(2)に記載の方法に従いアセトアルデヒド及びクロトンアルデヒドの含有量を測定したところ、アセトアルデヒドを450ppm、クロトンアルデヒドを50ppm含んでいた。結果を表1に示す。 Example 1
(Alcohol recovery)
An EVAc solution having a concentration of 48% by mass, in which EVAc having an ethylene unit content of 32 mol% and a vinyl acetate unit content of 68 mol% was dissolved in methanol, was supplied to a tower reactor (plate tower, number of plates: 21, inner diameter of tower: 140 mm) and saponified. FIG. 1 is a schematic diagram of the tower reactor. The EVAc solution was supplied to the 20th plate of the tower reactor, whose temperature inside the tower was 115° C., from an EVAc
(アルデヒド低減工程(II))
続いて、回収メタノール(回収アルコール(a))のアルデヒド低減処理を陽イオン交換樹脂により行った。具体的には、回収メタノール(回収アルコール(a))を、H+型の強酸性カチオン交換体(デュポン社製:「アンバーリスト15」)の充填槽(10L)に連続して投入して、アセトアルデヒドのアセタール化を行うことでアルデヒド低減処理を行い、けん化工程(I)のアルコール蒸気として用いるためのアルデヒド低減処理済みのメタノール(アルコール(b))を得た。得られたメタノール(アルコール(b))について、上記評価方法(2)に記載の方法に従って、アセトアルデヒド及びクロトンアルデヒドの含有量を測定したところ、アセトアルデヒドを0ppm、クロトンアルデヒドを50ppm含んでいた。結果を表1に示す。 (Aldehyde Reduction Step (II))
Subsequently, the recovered methanol (recovered alcohol (a)) was subjected to an aldehyde reduction treatment using a cation exchange resin. Specifically, the recovered methanol (recovered alcohol (a)) was continuously charged into a tank (10 L) filled with a strong acid cation exchanger of H+ type (manufactured by DuPont: "Amberlyst 15") to perform acetalization of acetaldehyde, thereby performing an aldehyde reduction treatment, and an aldehyde-reduced methanol (alcohol (b)) for use as alcohol vapor in the saponification step (I) was obtained. The contents of acetaldehyde and crotonaldehyde in the obtained methanol (alcohol (b)) were measured according to the method described in the above evaluation method (2), and it contained 0 ppm of acetaldehyde and 50 ppm of crotonaldehyde. The results are shown in Table 1.
続いて、回収メタノール(回収アルコール(a))のアルデヒド低減処理を陽イオン交換樹脂により行った。具体的には、回収メタノール(回収アルコール(a))を、H+型の強酸性カチオン交換体(デュポン社製:「アンバーリスト15」)の充填槽(10L)に連続して投入して、アセトアルデヒドのアセタール化を行うことでアルデヒド低減処理を行い、けん化工程(I)のアルコール蒸気として用いるためのアルデヒド低減処理済みのメタノール(アルコール(b))を得た。得られたメタノール(アルコール(b))について、上記評価方法(2)に記載の方法に従って、アセトアルデヒド及びクロトンアルデヒドの含有量を測定したところ、アセトアルデヒドを0ppm、クロトンアルデヒドを50ppm含んでいた。結果を表1に示す。 (Aldehyde Reduction Step (II))
Subsequently, the recovered methanol (recovered alcohol (a)) was subjected to an aldehyde reduction treatment using a cation exchange resin. Specifically, the recovered methanol (recovered alcohol (a)) was continuously charged into a tank (10 L) filled with a strong acid cation exchanger of H+ type (manufactured by DuPont: "Amberlyst 15") to perform acetalization of acetaldehyde, thereby performing an aldehyde reduction treatment, and an aldehyde-reduced methanol (alcohol (b)) for use as alcohol vapor in the saponification step (I) was obtained. The contents of acetaldehyde and crotonaldehyde in the obtained methanol (alcohol (b)) were measured according to the method described in the above evaluation method (2), and it contained 0 ppm of acetaldehyde and 50 ppm of crotonaldehyde. The results are shown in Table 1.
(けん化工程(I))
アルコール蒸気としてアルデヒド低減工程(II)で得たアルデヒド低減処理済みメタノール(アルコール(b))を用いた以外は、上記アルコール回収と同様の方法でけん化して、塔底部(EVOH溶液出口5)よりEVOHメタノール溶液(EVOH濃度:25質量%)を得た(けん化工程(I))。このけん化工程(I)では、未使用アルコールを使用しておらず、環境負荷が小さい。結果を表1に示す。 (Saponification step (I))
Saponification was carried out in the same manner as in the alcohol recovery described above, except that the aldehyde-reduced methanol (alcohol (b)) obtained in the aldehyde reduction step (II) was used as the alcohol vapor, and an EVOH methanol solution (EVOH concentration: 25% by mass) was obtained from the bottom of the tower (EVOH solution outlet 5) (saponification step (I)). In this saponification step (I), no unused alcohol was used, and the environmental load is small. The results are shown in Table 1.
アルコール蒸気としてアルデヒド低減工程(II)で得たアルデヒド低減処理済みメタノール(アルコール(b))を用いた以外は、上記アルコール回収と同様の方法でけん化して、塔底部(EVOH溶液出口5)よりEVOHメタノール溶液(EVOH濃度:25質量%)を得た(けん化工程(I))。このけん化工程(I)では、未使用アルコールを使用しておらず、環境負荷が小さい。結果を表1に示す。 (Saponification step (I))
Saponification was carried out in the same manner as in the alcohol recovery described above, except that the aldehyde-reduced methanol (alcohol (b)) obtained in the aldehyde reduction step (II) was used as the alcohol vapor, and an EVOH methanol solution (EVOH concentration: 25% by mass) was obtained from the bottom of the tower (EVOH solution outlet 5) (saponification step (I)). In this saponification step (I), no unused alcohol was used, and the environmental load is small. The results are shown in Table 1.
(EVOHペレットの製造)
けん化工程(I)で得られたEVOHメタノール溶液に、塔式反応器に供給した水酸化ナトリウムと等モル量の酢酸を加え、残存していた水酸化ナトリウムを中和し、共重合体濃度が40質量%となるまで溶液を濃縮した。濃縮後の溶液を口径3.5mmのノズルから5℃に保持したメタノール-水混合溶媒(メタノール/水=10/90質量比)中に押し出してストランド状に凝固させ、カッターで切断することで含水EVOHペレットを得た。得られた含水EVOHペレットを大量の0.1g/Lの酢酸水溶液に投入して洗浄し、残存していたメタノールと酢酸ナトリウムを除いた後60℃で5時間乾燥し、さらに110℃で10時間乾燥することにより、乾燥EVOHペレットを得た。得られた乾燥EVOHペレットについて、上記評価方法(1)及び(3)、(4)に記載の方法に従い評価した。結果を表1に示す。 (Production of EVOH pellets)
Acetic acid in an amount equivalent to the molar amount of sodium hydroxide fed to the tower reactor was added to the EVOH methanol solution obtained in the saponification step (I), the remaining sodium hydroxide was neutralized, and the solution was concentrated until the copolymer concentration reached 40% by mass. The concentrated solution was extruded from a nozzle with a diameter of 3.5 mm into a methanol-water mixed solvent (methanol/water = 10/90 mass ratio) kept at 5°C, solidified into a strand shape, and cut with a cutter to obtain hydrous EVOH pellets. The obtained hydrous EVOH pellets were washed by putting them into a large amount of 0.1 g/L acetic acid aqueous solution, and the remaining methanol and sodium acetate were removed, and then dried at 60°C for 5 hours and further dried at 110°C for 10 hours to obtain dried EVOH pellets. The obtained dried EVOH pellets were evaluated according to the methods described in the above evaluation methods (1), (3), and (4). The results are shown in Table 1.
けん化工程(I)で得られたEVOHメタノール溶液に、塔式反応器に供給した水酸化ナトリウムと等モル量の酢酸を加え、残存していた水酸化ナトリウムを中和し、共重合体濃度が40質量%となるまで溶液を濃縮した。濃縮後の溶液を口径3.5mmのノズルから5℃に保持したメタノール-水混合溶媒(メタノール/水=10/90質量比)中に押し出してストランド状に凝固させ、カッターで切断することで含水EVOHペレットを得た。得られた含水EVOHペレットを大量の0.1g/Lの酢酸水溶液に投入して洗浄し、残存していたメタノールと酢酸ナトリウムを除いた後60℃で5時間乾燥し、さらに110℃で10時間乾燥することにより、乾燥EVOHペレットを得た。得られた乾燥EVOHペレットについて、上記評価方法(1)及び(3)、(4)に記載の方法に従い評価した。結果を表1に示す。 (Production of EVOH pellets)
Acetic acid in an amount equivalent to the molar amount of sodium hydroxide fed to the tower reactor was added to the EVOH methanol solution obtained in the saponification step (I), the remaining sodium hydroxide was neutralized, and the solution was concentrated until the copolymer concentration reached 40% by mass. The concentrated solution was extruded from a nozzle with a diameter of 3.5 mm into a methanol-water mixed solvent (methanol/water = 10/90 mass ratio) kept at 5°C, solidified into a strand shape, and cut with a cutter to obtain hydrous EVOH pellets. The obtained hydrous EVOH pellets were washed by putting them into a large amount of 0.1 g/L acetic acid aqueous solution, and the remaining methanol and sodium acetate were removed, and then dried at 60°C for 5 hours and further dried at 110°C for 10 hours to obtain dried EVOH pellets. The obtained dried EVOH pellets were evaluated according to the methods described in the above evaluation methods (1), (3), and (4). The results are shown in Table 1.
(実施例2)
アルコール回収時の塔式反応器へのメタノール蒸気の供給速度、およびけん化工程(I)におけるメタノール蒸気の供給速度を43.2kg/hに変更した以外は、実施例1と同様の方法で乾燥EVOHペレットを作製し評価した。結果を表1に示す。 Example 2
Dry EVOH pellets were produced and evaluated in the same manner as in Example 1, except that the supply rate of methanol vapor to the column reactor during alcohol recovery and the supply rate of methanol vapor in the saponification step (I) were changed to 43.2 kg/h. The results are shown in Table 1.
アルコール回収時の塔式反応器へのメタノール蒸気の供給速度、およびけん化工程(I)におけるメタノール蒸気の供給速度を43.2kg/hに変更した以外は、実施例1と同様の方法で乾燥EVOHペレットを作製し評価した。結果を表1に示す。 Example 2
Dry EVOH pellets were produced and evaluated in the same manner as in Example 1, except that the supply rate of methanol vapor to the column reactor during alcohol recovery and the supply rate of methanol vapor in the saponification step (I) were changed to 43.2 kg/h. The results are shown in Table 1.
(実施例3)
アルデヒド低減工程(II)において、陽イオン交換樹脂によるアセタール化を行って得られたアルデヒド低減処理済みのメタノール25質量部と、けん化工程(I)以外の工程から回収されたメタノール75質量部とを混合することでさらなるアルデヒド低減処理を行い、けん化工程(I)のアルコール蒸気に用いられるメタノール(アルコール(b))のアルデヒド含有量を表1に記載の通りとなるように調整した以外は、実施例1と同様の方法で乾燥EVOHペレットを作製し評価した。結果を表1に示す。 Example 3
In the aldehyde reduction step (II), 25 parts by mass of methanol having been subjected to aldehyde reduction treatment obtained by acetalization with a cation exchange resin and 75 parts by mass of methanol recovered from a step other than the saponification step (I) were mixed to carry out further aldehyde reduction treatment, and the aldehyde content of methanol (alcohol (b)) used in the alcohol vapor in the saponification step (I) was adjusted to be as shown in Table 1. Dry EVOH pellets were produced and evaluated in the same manner as in Example 1. The results are shown in Table 1.
アルデヒド低減工程(II)において、陽イオン交換樹脂によるアセタール化を行って得られたアルデヒド低減処理済みのメタノール25質量部と、けん化工程(I)以外の工程から回収されたメタノール75質量部とを混合することでさらなるアルデヒド低減処理を行い、けん化工程(I)のアルコール蒸気に用いられるメタノール(アルコール(b))のアルデヒド含有量を表1に記載の通りとなるように調整した以外は、実施例1と同様の方法で乾燥EVOHペレットを作製し評価した。結果を表1に示す。 Example 3
In the aldehyde reduction step (II), 25 parts by mass of methanol having been subjected to aldehyde reduction treatment obtained by acetalization with a cation exchange resin and 75 parts by mass of methanol recovered from a step other than the saponification step (I) were mixed to carry out further aldehyde reduction treatment, and the aldehyde content of methanol (alcohol (b)) used in the alcohol vapor in the saponification step (I) was adjusted to be as shown in Table 1. Dry EVOH pellets were produced and evaluated in the same manner as in Example 1. The results are shown in Table 1.
(実施例4、5)
アルデヒド低減工程(II)において、けん化工程(I)以外の工程から回収されたメタノールの含有量を表1に記載の通り変更した以外は、実施例3と同様の方法で乾燥EVOHペレットを作製し評価した。結果を表1に示す。 (Examples 4 and 5)
Dry EVOH pellets were prepared and evaluated in the same manner as in Example 3, except that in the aldehyde reduction step (II), the content of methanol recovered from the steps other than the saponification step (I) was changed as shown in Table 1. The results are shown in Table 1.
アルデヒド低減工程(II)において、けん化工程(I)以外の工程から回収されたメタノールの含有量を表1に記載の通り変更した以外は、実施例3と同様の方法で乾燥EVOHペレットを作製し評価した。結果を表1に示す。 (Examples 4 and 5)
Dry EVOH pellets were prepared and evaluated in the same manner as in Example 3, except that in the aldehyde reduction step (II), the content of methanol recovered from the steps other than the saponification step (I) was changed as shown in Table 1. The results are shown in Table 1.
(実施例6)
アルデヒド低減工程(II)において、けん化工程(I)以外の工程から回収されたメタノールの代わりに未使用のメタノールを表1に記載の通りの含有量となるように変更した以外は、実施例3と同様の方法で乾燥EVOHペレットを作製し評価した。結果を表1に示す。 (Example 6)
Dry EVOH pellets were prepared and evaluated in the same manner as in Example 3, except that in the aldehyde reduction step (II), unused methanol was used in place of the methanol recovered from the steps other than the saponification step (I) so as to have the content shown in Table 1. The results are shown in Table 1.
アルデヒド低減工程(II)において、けん化工程(I)以外の工程から回収されたメタノールの代わりに未使用のメタノールを表1に記載の通りの含有量となるように変更した以外は、実施例3と同様の方法で乾燥EVOHペレットを作製し評価した。結果を表1に示す。 (Example 6)
Dry EVOH pellets were prepared and evaluated in the same manner as in Example 3, except that in the aldehyde reduction step (II), unused methanol was used in place of the methanol recovered from the steps other than the saponification step (I) so as to have the content shown in Table 1. The results are shown in Table 1.
(実施例7)
アルデヒド低減工程(II)において、回収メタノール(回収アルコール(a))10質量部とけん化工程(I)以外の工程から回収されたメタノール90質量部とを混合した上で、陽イオン交換樹脂によるアセタール化を行ってアルデヒド低減処理を行った以外は、実施例1と同様の方法で乾燥EVOHペレットを作製し評価した。結果を表1に示す。 (Example 7)
Dry EVOH pellets were prepared and evaluated in the same manner as in Example 1, except that in the aldehyde reduction step (II), 10 parts by mass of recovered methanol (recovered alcohol (a)) was mixed with 90 parts by mass of methanol recovered from a step other than the saponification step (I) and then acetalized with a cation exchange resin to carry out an aldehyde reduction treatment. The results are shown in Table 1.
アルデヒド低減工程(II)において、回収メタノール(回収アルコール(a))10質量部とけん化工程(I)以外の工程から回収されたメタノール90質量部とを混合した上で、陽イオン交換樹脂によるアセタール化を行ってアルデヒド低減処理を行った以外は、実施例1と同様の方法で乾燥EVOHペレットを作製し評価した。結果を表1に示す。 (Example 7)
Dry EVOH pellets were prepared and evaluated in the same manner as in Example 1, except that in the aldehyde reduction step (II), 10 parts by mass of recovered methanol (recovered alcohol (a)) was mixed with 90 parts by mass of methanol recovered from a step other than the saponification step (I) and then acetalized with a cation exchange resin to carry out an aldehyde reduction treatment. The results are shown in Table 1.
(実施例8、9)
アルデヒド低減工程(II)において、けん化工程(I)以外の工程から回収されたメタノールの含有量を表1に記載の通り変更した以外は、実施例7と同様の方法で乾燥EVOHペレットを作製し評価した。結果を表1に示す。 (Examples 8 and 9)
Dry EVOH pellets were prepared and evaluated in the same manner as in Example 7, except that in the aldehyde reduction step (II), the content of methanol recovered from the steps other than the saponification step (I) was changed as shown in Table 1. The results are shown in Table 1.
アルデヒド低減工程(II)において、けん化工程(I)以外の工程から回収されたメタノールの含有量を表1に記載の通り変更した以外は、実施例7と同様の方法で乾燥EVOHペレットを作製し評価した。結果を表1に示す。 (Examples 8 and 9)
Dry EVOH pellets were prepared and evaluated in the same manner as in Example 7, except that in the aldehyde reduction step (II), the content of methanol recovered from the steps other than the saponification step (I) was changed as shown in Table 1. The results are shown in Table 1.
(実施例10)
アルデヒド低減工程(II)において、けん化工程(I)以外の工程から回収されたメタノールの代わりに未使用のメタノールを表1に記載の通りの含有量となるように変更した以外は、実施例7と同様の方法で乾燥EVOHペレットを作製し評価した。結果を表1に示す。 Example 10
Dry EVOH pellets were prepared and evaluated in the same manner as in Example 7, except that in the aldehyde reduction step (II), unused methanol was used in place of the methanol recovered from the steps other than the saponification step (I) so as to have the content shown in Table 1. The results are shown in Table 1.
アルデヒド低減工程(II)において、けん化工程(I)以外の工程から回収されたメタノールの代わりに未使用のメタノールを表1に記載の通りの含有量となるように変更した以外は、実施例7と同様の方法で乾燥EVOHペレットを作製し評価した。結果を表1に示す。 Example 10
Dry EVOH pellets were prepared and evaluated in the same manner as in Example 7, except that in the aldehyde reduction step (II), unused methanol was used in place of the methanol recovered from the steps other than the saponification step (I) so as to have the content shown in Table 1. The results are shown in Table 1.
(実施例11)
メタノールの代わりにエタノールを溶媒として用いた以外は、実施例1と同様の方法で乾燥EVOHペレットを作製し評価した。結果を表1に示す。 (Example 11)
Dry EVOH pellets were prepared and evaluated in the same manner as in Example 1, except that ethanol was used as the solvent instead of methanol. The results are shown in Table 1.
メタノールの代わりにエタノールを溶媒として用いた以外は、実施例1と同様の方法で乾燥EVOHペレットを作製し評価した。結果を表1に示す。 (Example 11)
Dry EVOH pellets were prepared and evaluated in the same manner as in Example 1, except that ethanol was used as the solvent instead of methanol. The results are shown in Table 1.
(実施例12、13)
得られるEVOHのエチレン単位含有量が表1の通りとなるように、けん化工程(I)で用いるEVAcのエチレン単位含有量を変更した以外は、実施例1と同様の方法で乾燥EVOHペレットを作製し評価した。結果を表1に示す。なお、EVAcとEVOHのエチレン単位含有量は、実質的に同じである。 (Examples 12 and 13)
Dry EVOH pellets were prepared and evaluated in the same manner as in Example 1, except that the ethylene unit content of the EVAc used in the saponification step (I) was changed so that the ethylene unit content of the resulting EVOH would be as shown in Table 1. The results are shown in Table 1. The ethylene unit contents of EVAc and EVOH are substantially the same.
得られるEVOHのエチレン単位含有量が表1の通りとなるように、けん化工程(I)で用いるEVAcのエチレン単位含有量を変更した以外は、実施例1と同様の方法で乾燥EVOHペレットを作製し評価した。結果を表1に示す。なお、EVAcとEVOHのエチレン単位含有量は、実質的に同じである。 (Examples 12 and 13)
Dry EVOH pellets were prepared and evaluated in the same manner as in Example 1, except that the ethylene unit content of the EVAc used in the saponification step (I) was changed so that the ethylene unit content of the resulting EVOH would be as shown in Table 1. The results are shown in Table 1. The ethylene unit contents of EVAc and EVOH are substantially the same.
(実施例14)
けん化工程(I)における水酸化ナトリウムの濃度を調整し、得られるEVOHのけん化度が表1に記載の通りとなるように調整し、実施例1と同様の方法で乾燥EVOHペレットを作製しようとしたところ、乾燥工程にて樹脂同士が膠着してしまい運転を継続することができなかった。そのため、けん化工程(I)へのEVAc溶液の供給速度を5kg/hに変更し、回収メタノール蒸気の供給速度を11kg/hとし、水酸化ナトリウムの濃度の調整により得られるEVOHのけん化度が表1に記載の通りとなるようにした以外は、実施例1と同様の方法で乾燥EVOHペレットを作製し評価した。結果を表1に示す。 (Example 14)
When an attempt was made to prepare dried EVOH pellets in the same manner as in Example 1 by adjusting the concentration of sodium hydroxide in the saponification step (I) so that the degree of saponification of the resulting EVOH would be as shown in Table 1, the resin particles stuck together in the drying step, making it impossible to continue the operation. Therefore, except that the supply rate of the EVAc solution to the saponification step (I) was changed to 5 kg/h, the supply rate of the recovered methanol vapor was set to 11 kg/h, and the concentration of sodium hydroxide was adjusted so that the degree of saponification of the resulting EVOH would be as shown in Table 1, dried EVOH pellets were prepared and evaluated in the same manner as in Example 1. The results are shown in Table 1.
けん化工程(I)における水酸化ナトリウムの濃度を調整し、得られるEVOHのけん化度が表1に記載の通りとなるように調整し、実施例1と同様の方法で乾燥EVOHペレットを作製しようとしたところ、乾燥工程にて樹脂同士が膠着してしまい運転を継続することができなかった。そのため、けん化工程(I)へのEVAc溶液の供給速度を5kg/hに変更し、回収メタノール蒸気の供給速度を11kg/hとし、水酸化ナトリウムの濃度の調整により得られるEVOHのけん化度が表1に記載の通りとなるようにした以外は、実施例1と同様の方法で乾燥EVOHペレットを作製し評価した。結果を表1に示す。 (Example 14)
When an attempt was made to prepare dried EVOH pellets in the same manner as in Example 1 by adjusting the concentration of sodium hydroxide in the saponification step (I) so that the degree of saponification of the resulting EVOH would be as shown in Table 1, the resin particles stuck together in the drying step, making it impossible to continue the operation. Therefore, except that the supply rate of the EVAc solution to the saponification step (I) was changed to 5 kg/h, the supply rate of the recovered methanol vapor was set to 11 kg/h, and the concentration of sodium hydroxide was adjusted so that the degree of saponification of the resulting EVOH would be as shown in Table 1, dried EVOH pellets were prepared and evaluated in the same manner as in Example 1. The results are shown in Table 1.
(比較例1)
けん化工程(I)に供給するメタノール蒸気を、未使用メタノールに変更した以外は、実施例1と同様の方法で乾燥EVOHペレットを作製し評価した。結果を表1に示す。 (Comparative Example 1)
Dry EVOH pellets were prepared and evaluated in the same manner as in Example 1, except that the methanol vapor supplied to the saponification step (I) was changed to virgin methanol. The results are shown in Table 1.
けん化工程(I)に供給するメタノール蒸気を、未使用メタノールに変更した以外は、実施例1と同様の方法で乾燥EVOHペレットを作製し評価した。結果を表1に示す。 (Comparative Example 1)
Dry EVOH pellets were prepared and evaluated in the same manner as in Example 1, except that the methanol vapor supplied to the saponification step (I) was changed to virgin methanol. The results are shown in Table 1.
(比較例2)
けん化工程(I)に供給するメタノール蒸気を、アルデヒド低減処理を施していない回収メタノール(回収アルコール(a))とした以外は、実施例1と同様の方法で乾燥EVOHペレットを作製し評価した。結果を表1に示す。 (Comparative Example 2)
Dry EVOH pellets were prepared and evaluated in the same manner as in Example 1, except that the methanol vapor supplied to the saponification step (I) was recovered methanol (recovered alcohol (a)) that had not been subjected to an aldehyde reduction treatment. The results are shown in Table 1.
けん化工程(I)に供給するメタノール蒸気を、アルデヒド低減処理を施していない回収メタノール(回収アルコール(a))とした以外は、実施例1と同様の方法で乾燥EVOHペレットを作製し評価した。結果を表1に示す。 (Comparative Example 2)
Dry EVOH pellets were prepared and evaluated in the same manner as in Example 1, except that the methanol vapor supplied to the saponification step (I) was recovered methanol (recovered alcohol (a)) that had not been subjected to an aldehyde reduction treatment. The results are shown in Table 1.
(比較例3)
アルデヒド低減工程(II)のアルデヒド低減処理方法を蒸留とした以外は、実施例1と同様の方法で乾燥EVOHペレットを作製し評価した。結果を表1に示す。 (Comparative Example 3)
Dry EVOH pellets were prepared and evaluated in the same manner as in Example 1, except that the aldehyde reduction treatment method in the aldehyde reduction step (II) was changed to distillation. The results are shown in Table 1.
アルデヒド低減工程(II)のアルデヒド低減処理方法を蒸留とした以外は、実施例1と同様の方法で乾燥EVOHペレットを作製し評価した。結果を表1に示す。 (Comparative Example 3)
Dry EVOH pellets were prepared and evaluated in the same manner as in Example 1, except that the aldehyde reduction treatment method in the aldehyde reduction step (II) was changed to distillation. The results are shown in Table 1.
(比較例4)
アルデヒド低減工程(II)のアルデヒド低減処理方法を、回収メタノール(回収アルコール(a))25質量部とけん化工程(I)以外の工程から回収されたメタノール75質量部とを混合する方法に変更し、陽イオン交換樹脂によるアセタール化を行わなかった以外は、実施例1と同様の方法で乾燥EVOHペレットを作製し評価した。結果を表1に示す。 (Comparative Example 4)
Dry EVOH pellets were prepared and evaluated in the same manner as in Example 1, except that the aldehyde reduction treatment method in the aldehyde reduction step (II) was changed to a method in which 25 parts by mass of recovered methanol (recovered alcohol (a)) was mixed with 75 parts by mass of methanol recovered from a step other than the saponification step (I) and that acetalization using a cation exchange resin was not performed. The results are shown in Table 1.
アルデヒド低減工程(II)のアルデヒド低減処理方法を、回収メタノール(回収アルコール(a))25質量部とけん化工程(I)以外の工程から回収されたメタノール75質量部とを混合する方法に変更し、陽イオン交換樹脂によるアセタール化を行わなかった以外は、実施例1と同様の方法で乾燥EVOHペレットを作製し評価した。結果を表1に示す。 (Comparative Example 4)
Dry EVOH pellets were prepared and evaluated in the same manner as in Example 1, except that the aldehyde reduction treatment method in the aldehyde reduction step (II) was changed to a method in which 25 parts by mass of recovered methanol (recovered alcohol (a)) was mixed with 75 parts by mass of methanol recovered from a step other than the saponification step (I) and that acetalization using a cation exchange resin was not performed. The results are shown in Table 1.
(比較例5)
アルデヒド低減工程(II)において、けん化工程(I)以外の工程から回収されたメタノールの含有量を表1に記載の通り変更した以外は、比較例4と同様の方法で乾燥EVOHペレットを作製し評価した。結果を表1に示す。 (Comparative Example 5)
Dry EVOH pellets were prepared and evaluated in the same manner as in Comparative Example 4, except that in the aldehyde reduction step (II), the content of methanol recovered from the steps other than the saponification step (I) was changed as shown in Table 1. The results are shown in Table 1.
アルデヒド低減工程(II)において、けん化工程(I)以外の工程から回収されたメタノールの含有量を表1に記載の通り変更した以外は、比較例4と同様の方法で乾燥EVOHペレットを作製し評価した。結果を表1に示す。 (Comparative Example 5)
Dry EVOH pellets were prepared and evaluated in the same manner as in Comparative Example 4, except that in the aldehyde reduction step (II), the content of methanol recovered from the steps other than the saponification step (I) was changed as shown in Table 1. The results are shown in Table 1.
(比較例6、7)
アルデヒド低減工程(II)において、けん化工程(I)以外の工程から回収されたメタノールの代わりに未使用のメタノールを表1に記載の通りの含有量となるように変更した以外は、比較例4と同様の方法で乾燥EVOHペレットを作製し評価した。結果を表1に示す。 (Comparative Examples 6 and 7)
Dry EVOH pellets were prepared and evaluated in the same manner as in Comparative Example 4, except that in the aldehyde reduction step (II), unused methanol was used in place of the methanol recovered from the steps other than the saponification step (I) so as to have the content shown in Table 1. The results are shown in Table 1.
アルデヒド低減工程(II)において、けん化工程(I)以外の工程から回収されたメタノールの代わりに未使用のメタノールを表1に記載の通りの含有量となるように変更した以外は、比較例4と同様の方法で乾燥EVOHペレットを作製し評価した。結果を表1に示す。 (Comparative Examples 6 and 7)
Dry EVOH pellets were prepared and evaluated in the same manner as in Comparative Example 4, except that in the aldehyde reduction step (II), unused methanol was used in place of the methanol recovered from the steps other than the saponification step (I) so as to have the content shown in Table 1. The results are shown in Table 1.
1 アルコール蒸気排出口
2 EVAc溶液供給口
3 アルカリ触媒供給口
4 アルコール蒸気吹込み口
5 EVOH溶液出口
1 Alcoholvapor exhaust port 2 EVAc solution supply port 3 Alkaline catalyst supply port 4 Alcohol vapor blowing port 5 EVOH solution outlet
2 EVAc溶液供給口
3 アルカリ触媒供給口
4 アルコール蒸気吹込み口
5 EVOH溶液出口
1 Alcohol
Claims (8)
- エチレン-酢酸ビニル共重合体及びアルコールを含むエチレン-酢酸ビニル共重合体溶液を、塔式反応器の塔上部に供給し、アルコール蒸気を塔下部に供給して塔上部から排出するとともに、アルカリ触媒を用いて前記エチレン-酢酸ビニル共重合体をけん化し、塔底部からけん化度が80モル%以上100モル%以下のエチレン-ビニルアルコール共重合体及びアルコールを含むエチレン-ビニルアルコール共重合体溶液を取り出すけん化工程(I)、及び
けん化工程(I)で使用されたアルコールを回収して得られた回収アルコール(a)中のアルデヒドを低減してアルコール(b)を得るアルデヒド低減工程(II)を有し、
アルデヒド低減工程(II)が、回収アルコール(a)をアセタール化触媒に接触させてアルデヒドを低減する工程を含み、
けん化工程(I)において、塔下部に供給されるアルコール蒸気がアルコール(b)を含み、アルコール(b)がクロトンアルデヒドを含む、エチレン-ビニルアルコール共重合体の製造方法。 a saponification step (I) of supplying an ethylene-vinyl acetate copolymer solution containing an ethylene-vinyl acetate copolymer and an alcohol to an upper part of a tower reactor, supplying alcohol vapor to a lower part of the tower and discharging it from the upper part of the tower, and saponifying the ethylene-vinyl acetate copolymer using an alkali catalyst to extract an ethylene-vinyl alcohol copolymer solution containing an ethylene-vinyl alcohol copolymer having a saponification degree of 80 mol % or more and 100 mol % or less and an alcohol from the bottom of the tower; and an aldehyde reduction step (II) of reducing aldehyde in recovered alcohol (a) obtained by recovering the alcohol used in the saponification step (I) to obtain alcohol (b),
The aldehyde reduction step (II) comprises a step of contacting the recovered alcohol (a) with an acetalization catalyst to reduce aldehyde;
A method for producing an ethylene-vinyl alcohol copolymer, wherein in the saponification step (I), the alcohol vapor supplied to the lower part of the column contains an alcohol (b), and the alcohol (b) contains crotonaldehyde. - アルデヒド低減工程(II)において、回収アルコール(a)と、回収アルコール(a)とは異なるアルコールを混合することで、回収アルコール(a)中のアルデヒド濃度を低減してアルコール(b)を得る工程をさらに含む、請求項1に記載の製造方法。 The method according to claim 1, further comprising a step of mixing the recovered alcohol (a) with an alcohol different from the recovered alcohol (a) in the aldehyde reduction step (II) to reduce the aldehyde concentration in the recovered alcohol (a) and obtain the alcohol (b).
- 回収アルコール(a)とは異なるアルコールが、けん化工程(I)以外の工程で回収された回収アルコールを含む、請求項2に記載の製造方法。 The method according to claim 2, wherein the alcohol different from the recovered alcohol (a) includes a recovered alcohol recovered in a step other than the saponification step (I).
- 回収アルコール(a)とは異なるアルコールが、未使用のアルコールを含む、請求項2または3に記載の製造方法。 The method according to claim 2 or 3, wherein the alcohol different from the recovered alcohol (a) includes unused alcohol.
- けん化工程(I)において、前記塔式反応器に供給されるアルコール蒸気中のアセトアルデヒド濃度が0~150ppmである、請求項1~4のいずれか1項に記載の製造方法。 The method according to any one of claims 1 to 4, wherein in the saponification step (I), the acetaldehyde concentration in the alcohol vapor supplied to the tower reactor is 0 to 150 ppm.
- けん化工程(I)において、前記塔式反応器に供給されるアルコール蒸気中のクロトンアルデヒド濃度が5~200ppmである、請求項1~5のいずれか1項に記載の製造方法。 The method according to any one of claims 1 to 5, wherein in the saponification step (I), the crotonaldehyde concentration in the alcohol vapor supplied to the tower reactor is 5 to 200 ppm.
- けん化工程(I)において、前記塔式反応器に供給されるエチレン-酢酸ビニル共重合体のエチレン単位含有量が20モル%以上60モル%未満である、請求項1~6のいずれか1項に記載の製造方法。 The method according to any one of claims 1 to 6, wherein in the saponification step (I), the ethylene unit content of the ethylene-vinyl acetate copolymer supplied to the tower reactor is 20 mol% or more and less than 60 mol%.
- 請求項1~7のいずれか1項に記載の製造方法により得られたエチレン-ビニルアルコール共重合体であって、
エチレン単位含有量が20モル%以上60モル%以下であるエチレン-ビニルアルコール共重合体(A)及びアセトアルデヒド(B1)を含み、
2,4-ヘキサジエナール(B2)及び2,4,6-オクタトリエナール(B3)からなる群より選ばれる少なくとも1種をさらに含み、
下記式(1)を満たす、エチレン-ビニルアルコール共重合体。
10≦b1/(b2+b3)<150 ・・・(1)
上記式(1)中、b1は、エチレン-ビニルアルコール共重合体(A)に対するアセトアルデヒド(B1)の含有量(ppm)であり、b2は、エチレン-ビニルアルコール共重合体(A)に対する2,4-ヘキサジエナール(B2)の含有量(ppm)であり、b3は、エチレン-ビニルアルコール共重合体(A)に対する2,4,6-オクタトリエナール(B3)の含有量(ppm)である。
An ethylene-vinyl alcohol copolymer obtained by the production method according to any one of claims 1 to 7,
The present invention comprises an ethylene-vinyl alcohol copolymer (A) having an ethylene unit content of 20 mol% or more and 60 mol% or less, and acetaldehyde (B1),
Further comprising at least one selected from the group consisting of 2,4-hexadienal (B2) and 2,4,6-octatrienal (B3);
An ethylene-vinyl alcohol copolymer satisfying the following formula (1):
10≦b1/(b2+b3)<150...(1)
In the above formula (1), b1 is the content (ppm) of acetaldehyde (B1) relative to the ethylene-vinyl alcohol copolymer (A), b2 is the content (ppm) of 2,4-hexadienal (B2) relative to the ethylene-vinyl alcohol copolymer (A), and b3 is the content (ppm) of 2,4,6-octatrienal (B3) relative to the ethylene-vinyl alcohol copolymer (A).
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023-053863 | 2023-03-29 | ||
JP2023053863 | 2023-03-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024204499A1 true WO2024204499A1 (en) | 2024-10-03 |
Family
ID=92906784
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2024/012575 WO2024204499A1 (en) | 2023-03-29 | 2024-03-28 | Method for producing ethylene-vinyl alcohol copolymer |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2024204499A1 (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002060403A (en) * | 2000-06-06 | 2002-02-26 | Kuraray Co Ltd | Preparation process of ethylene/vinyl acetate copolymer and its saponified material |
JP2009242645A (en) * | 2008-03-31 | 2009-10-22 | Kuraray Co Ltd | Method for producing ethylene-vinyl acetate copolymer saponified product |
-
2024
- 2024-03-28 WO PCT/JP2024/012575 patent/WO2024204499A1/en unknown
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002060403A (en) * | 2000-06-06 | 2002-02-26 | Kuraray Co Ltd | Preparation process of ethylene/vinyl acetate copolymer and its saponified material |
JP2009242645A (en) * | 2008-03-31 | 2009-10-22 | Kuraray Co Ltd | Method for producing ethylene-vinyl acetate copolymer saponified product |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7674854B2 (en) | Process for producing polyvinyl acetal resin, polyvinyl butyral resin, and process for producing esterified polyvinyl alcohol resin | |
JP5179309B2 (en) | Process for producing saponified ethylene-vinyl acetate copolymer | |
CN1041625C (en) | Catalyzed esterification process | |
US20090036636A1 (en) | Method for producing polyvinyl acetal resin | |
JP5001207B2 (en) | Process for producing saponified ethylene-vinyl acetate copolymer | |
EP1979380B1 (en) | Method to purify poly (vinyl alcohol) | |
WO2024204499A1 (en) | Method for producing ethylene-vinyl alcohol copolymer | |
EP4389785A1 (en) | Method for preparing ethylene-vinyl alcohol copolymer | |
JP4674004B2 (en) | Process for producing ethylene-vinyl acetate copolymer and saponified product thereof | |
WO2005003197A1 (en) | The process for continuously producing ethylene-vinyl acetate copolymer and reaction system | |
JP5349766B2 (en) | Modified polyvinyl acetal resin | |
EP3680291B1 (en) | Resin composition | |
US20220195159A1 (en) | Ethylene-(Vinyl Alcohol) Copolymer and Method for Producing Same | |
CN114426721B (en) | High-temperature-resistant ethylene-vinyl alcohol copolymer composition and preparation method thereof | |
JP2011219670A (en) | Method for producing vinyl acetal resin | |
WO2024228377A1 (en) | Method for producing ethylene-vinyl alcohol copolymer | |
JP3066167B2 (en) | Method for producing ethylene-vinyl alcohol copolymer | |
CN111100323A (en) | Ethylene recovery method in EVOH production process | |
JP6203038B2 (en) | Molded product and manufacturing method thereof | |
US20240101739A1 (en) | Preparation Method for Ethylene-Vinyl Alcohol Copolymer | |
CN108623435A (en) | A kind of method of acetaldehyde, para-acetaldehyde and butylene aldehyde in reduction methanol | |
TW583203B (en) | Process and reactive system for continuously preparing ethylene-vinyl acetate copolymer | |
JP6161531B2 (en) | Molded product and manufacturing method thereof | |
JP2916440B2 (en) | Method for producing molded article of ethylene-vinyl alcohol copolymer | |
RU2561734C1 (en) | Method of producing butadiene |