WO2024204111A1 - Optical circuit board and mounting structure - Google Patents
Optical circuit board and mounting structure Download PDFInfo
- Publication number
- WO2024204111A1 WO2024204111A1 PCT/JP2024/011777 JP2024011777W WO2024204111A1 WO 2024204111 A1 WO2024204111 A1 WO 2024204111A1 JP 2024011777 W JP2024011777 W JP 2024011777W WO 2024204111 A1 WO2024204111 A1 WO 2024204111A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- recess
- core
- optical
- circuit board
- optical circuit
- Prior art date
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 138
- 238000005253 cladding Methods 0.000 claims abstract description 59
- 239000000758 substrate Substances 0.000 claims 1
- 239000011162 core material Substances 0.000 description 60
- 239000010410 layer Substances 0.000 description 39
- 239000000463 material Substances 0.000 description 22
- 229920005989 resin Polymers 0.000 description 18
- 239000011347 resin Substances 0.000 description 18
- 230000005540 biological transmission Effects 0.000 description 16
- 239000004020 conductor Substances 0.000 description 16
- 229910052751 metal Inorganic materials 0.000 description 10
- 239000002184 metal Substances 0.000 description 10
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 7
- 229910052710 silicon Inorganic materials 0.000 description 7
- 239000010703 silicon Substances 0.000 description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 238000007689 inspection Methods 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 239000012779 reinforcing material Substances 0.000 description 6
- 239000003822 epoxy resin Substances 0.000 description 5
- 229920000647 polyepoxide Polymers 0.000 description 5
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 4
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 4
- 239000012792 core layer Substances 0.000 description 4
- 238000011161 development Methods 0.000 description 4
- 239000000945 filler Substances 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 239000011810 insulating material Substances 0.000 description 4
- 238000009413 insulation Methods 0.000 description 4
- 239000004745 nonwoven fabric Substances 0.000 description 4
- 239000013307 optical fiber Substances 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 238000007789 sealing Methods 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- 229920002050 silicone resin Polymers 0.000 description 3
- 229910000679 solder Inorganic materials 0.000 description 3
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 239000004760 aramid Substances 0.000 description 2
- 229920006231 aramid fiber Polymers 0.000 description 2
- 229920003235 aromatic polyamide Polymers 0.000 description 2
- 229910000019 calcium carbonate Inorganic materials 0.000 description 2
- 239000004927 clay Substances 0.000 description 2
- 229910052570 clay Inorganic materials 0.000 description 2
- 239000004744 fabric Substances 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 239000003365 glass fiber Substances 0.000 description 2
- 238000005286 illumination Methods 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 239000009719 polyimide resin Substances 0.000 description 2
- 229920001955 polyphenylene ether Polymers 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000000454 talc Substances 0.000 description 2
- 229910052623 talc Inorganic materials 0.000 description 2
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/12—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/12—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
- G02B6/122—Basic optical elements, e.g. light-guiding paths
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/42—Coupling light guides with opto-electronic elements
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
Definitions
- the present invention relates to an optical circuit board and a mounting structure using the optical circuit board.
- optical fibers capable of transmitting large volumes of data at high speeds have come to be used in information communications.
- Optical signals are transmitted and received between the optical fibers and optical components.
- Such optical components are mounted on, for example, optical circuit boards.
- the optical circuit boards are provided with optical waveguides as described in Patent Document 1.
- Optical signals are transmitted and received via these optical waveguides.
- the optical circuit board includes a wiring board having a first surface and an optical waveguide located on the first surface.
- the optical waveguide includes a lower cladding, a core, and an upper cladding.
- the lower cladding is located on the first surface and has a second surface located opposite the surface in contact with the first surface.
- the core extends on the second surface and has a first end surface and a second end surface located opposite each other in the extension direction of the core.
- the mounting structure according to the present disclosure includes the optical circuit board and an optical component mounted on the optical circuit board.
- FIG. 1 is a plan view showing a mounting structure in which optical components and electronic components are mounted on an optical circuit board according to an embodiment of the present disclosure.
- 2 is an enlarged explanatory view for illustrating a cross section of a region X shown in FIG. 1 .
- FIG. 3A is a plan view of a main part of the optical waveguide as viewed from the direction of the arrow A shown in FIG. 2
- B is an enlarged explanatory view (perspective view) for explaining the region Y shown in FIG. 3A
- C is a front view of the optical waveguide as viewed from the direction of the arrow B shown in FIG. 3A.
- 1A to 1C are explanatory diagrams for explaining an embodiment of a method for forming an optical waveguide in a wiring board.
- FIG. 5A is a plan view showing another embodiment of the main part of the optical waveguide as viewed from the direction of the arrow A shown in FIG. 2
- FIG. 5B is an enlarged explanatory view showing a cross section taken along the line X-X shown in FIG. 5A
- FIG. 5C is a side view of the optical circuit board (optical waveguide) as viewed from the direction of the arrow C shown in FIG. 5B
- 6A is an explanatory diagram (oblique view) for explaining yet another embodiment of the recesses (first recess and second recess) formed in the optical waveguide
- FIG. 6B is a plan view seen from the direction of arrow D shown in FIG. 6A
- FIG. 13A is an explanatory view (perspective view) for explaining still another embodiment of the recesses (first recess and second recess) formed in the optical waveguide.
- the array illumination optical system which is the light source
- the array illumination optical system may mistakenly recognize the side end of the upper cladding of the optical waveguide as the core portion.
- manual readjustment is required, which reduces the efficiency of the inspection. Therefore, there is a demand for an optical circuit board that allows for efficient inspection of optical waveguides.
- Figure 1 is a plan view showing a mounting structure 10 in which an optical component 4 and an electronic component 6 are mounted on an optical circuit board 1 according to one embodiment of the present disclosure.
- Such a wiring board 2 includes, for example, a core layer and build-up layers laminated on both sides of the core layer, although not specifically illustrated.
- the core layer includes a core insulating layer and a core conductor layer.
- the core insulating layer is not particularly limited as long as it is made of an insulating material. Examples of insulating materials include resins such as epoxy resin, bismaleimide-triazine resin, polyimide resin, and polyphenylene ether resin. Only one type of these resins may be used, or two or more types may be used in combination.
- the core insulating layer may contain a reinforcing material.
- reinforcing materials include insulating cloth materials such as glass fiber, glass nonwoven fabric, aramid nonwoven fabric, aramid fiber, and polyester fiber. Only one type of reinforcing material may be used, or two or more types may be used in combination.
- the core insulating layer may have inorganic insulating fillers such as silica, barium sulfate, talc, clay, glass, calcium carbonate, and titanium oxide dispersed therein. Only one type of inorganic insulating filler may be used, or two or more types may be used in combination.
- the core conductor layer is located on the surface of the core insulating layer.
- the core conductor layer is not particularly limited as long as it is made of a material that is conductive. Examples of conductive materials include metals such as copper.
- a through-hole conductor is located to electrically connect the upper and lower surfaces of the core insulating layer.
- the through-hole conductor is located in a through-hole that penetrates the upper and lower surfaces of the core insulating layer.
- the through-hole conductor is formed of a metal such as copper.
- the through-hole conductor may be formed only on the inner wall surface, or may be filled in the through-hole.
- the through-hole conductor is connected to the core conductor layer on the surface of the core insulating layer.
- the build-up layer is located on one or both sides of the core layer.
- the build-up layer has a structure in which at least one build-up insulating layer and at least one build-up conductor layer are laminated.
- the build-up insulating layer is not particularly limited as long as it is made of an insulating material. Examples of insulating materials include resins such as epoxy resins, bismaleimide-triazine resins, polyimide resins, and polyphenylene ether resins. These resins may be used alone or in combination of two or more types.
- the build-up insulation layers may be made of the same resin or different resins.
- the build-up insulation layers and the core insulation layers may be made of the same resin or different resins.
- the build-up layers usually have via-hole conductors to electrically connect the layers.
- the build-up insulating layer may contain a reinforcing material.
- reinforcing materials include insulating cloth materials such as glass fiber, glass nonwoven fabric, aramid nonwoven fabric, aramid fiber, and polyester fiber. Only one type of reinforcing material may be used, or two or more types may be used in combination.
- the build-up insulating layer may have inorganic insulating fillers such as silica, barium sulfate, talc, clay, glass, calcium carbonate, and titanium oxide dispersed therein. Only one type of inorganic insulating filler may be used, or two or more types may be used in combination.
- the conductor layer for the build-up is not particularly limited as long as it is made of a material that is conductive, similar to the conductor layer for the core.
- a material that is conductive is a metal such as copper.
- the optical waveguide 3 included in the optical circuit board 1 is located on the surface of the metal layer 21a present on the surface of the wiring board 2.
- FIG. 2 is an enlarged explanatory diagram for explaining the cross section of region X shown in FIG. 1.
- the optical waveguide 3 has a structure in which a lower clad 31, a core 32, and an upper clad 33 are layered in this order from the metal layer 21a side.
- the lower cladding 31 included in the optical waveguide 3 is located on the first surface 21 of the wiring board 2, specifically on the surface of the metal layer 21a present on the surface of the optical waveguide forming region of the wiring board 2.
- the material forming the lower cladding 31 is not limited, and examples include resins such as epoxy resin and silicone resin.
- the lower cladding 31 has a second surface 312 located on the opposite side to the surface facing the first surface 21 of the wiring board 2.
- the metal layer 21a is an optional member and may or may not be used. In other words, the wiring board 2 does not need to include the metal layer 21a.
- the upper clad 33 included in the optical waveguide 3 is positioned so as to cover the upper surface of the lower clad 31 and the core 32.
- the upper clad 33 is also formed of a resin such as epoxy resin or silicone resin.
- the lower clad 31 and the upper clad 33 may be made of the same material or different materials.
- the lower clad 31 and the upper clad 33 may have the same thickness or different thicknesses.
- the lower clad 31 and the upper clad 33 each have a thickness of, for example, 5 ⁇ m or more and 150 ⁇ m or less.
- the core 32 included in the optical waveguide 3 is a portion through which light that has entered the optical waveguide 3 propagates.
- the core 32 extends to the second surface 312 of the lower cladding 31, and has a first end surface 321 and a second end surface 322 that are positioned opposite each other in the extending direction of the core 32.
- the first end surface 321 of the core 32 is the end surface on the optical component 4 side
- the second end surface 322 of the core 32 is the end surface on the optical connector 5a side.
- the end face of the optical transmission path (Si waveguide) 41 included in the optical component 4 mounted in the mounting area of the wiring board 2 is positioned to face the first end face 321 of the core 32 of the optical waveguide 3.
- optical signals are transmitted and received between the core 32 and the optical transmission path 41.
- the material forming the core 32 is not limited, and is appropriately set taking into consideration, for example, the light transmittance and the wavelength characteristics of the propagating light. Examples of materials include resins such as epoxy resin and silicone resin.
- the core 32 has a thickness of, for example, 3 ⁇ m or more and 50 ⁇ m or less.
- the upper clad 33 has a first side surface 331 and a second side surface 332 located along the extension direction of the core 32, a third surface 333 located on the opposite side of the surface that contacts the second surface 312 of the lower clad 31, a first side portion 33a which is a tangent portion between the first side surface 331 and the third surface 333, and a second side portion 33b which is a tangent portion between the second side surface 332 and the third surface 333.
- Figure 3A is a plan view of the main part of the optical waveguide 3 as seen from the direction of the arrow A shown in Figure 2.
- Figure 3B is an enlarged explanatory view (perspective view) for explaining the region Y shown in Figure 3A.
- FIG. 3C is a front view of the optical waveguide 3 as seen from the direction of arrow B shown in FIG. 3A.
- At least one recess 33c is located in the upper cladding 33.
- at least one of a first recess 33c1 that contacts the first side portion 33a and opens to the third surface 333 and the first side surface 331, and a second recess 33c2 that contacts the second side portion 33b and opens to the third surface 333 and the second side surface 332 is located in the upper cladding 33.
- the first recess 33c1 and the second recess 33c2 are described separately only for convenience, and the first recess 33c1 and the second recess 33c2 may be collectively referred to as recess 33c.
- the optical circuit board 1 has at least one such recess 33c on at least one of the first side 33a and the second side 33b of the upper clad 33, which allows efficient optical waveguide inspection. Specifically, when inspecting the transmission and reception of optical signals by irradiating light to the core 32 of the optical waveguide 3 before mounting the optical components 4 on the optical circuit board 1 according to one embodiment, the presence of the recess 33c causes the light trapped by the refractive index difference between the upper clad 33 and the air to be scattered by the recess 33c.
- At least one recess 33c is located in the upper cladding 33, and multiple recesses 33c may be located.
- multiple recesses 33c may be located.
- at least one of the first recesses 33c1 and the second recesses 33c2 may be located multiple times, or multiple of each may be located.
- the irradiated light is scattered more, and the transmission of light to the edge portion of the upper cladding 33 is more efficiently reduced.
- the recesses 33c (first recess 33c1 and second recess 33c2) have a rectangular shape when viewed from above in a plan view.
- the size of the recesses 33c is not limited and is set appropriately depending on the size of the optical waveguide 3, etc., so as to scatter the irradiated light.
- the width W may be, for example, 5 ⁇ m or more and 20 ⁇ m or less.
- the length L may be, for example, 5 ⁇ m or more and 500 ⁇ m or less.
- the length L is 10 ⁇ m or more and 50 ⁇ m or less, the irradiated light is more scattered, and the transmission of light to the edge of the upper cladding 33 is more efficiently reduced. If the width W is 10 ⁇ m or more and 50 ⁇ m or less, the range in which light is trapped due to the difference in refractive index between the upper cladding 33 and air can be covered.
- the height H of the recess 33c corresponds to the thickness of the upper clad 33.
- the height H of the recess 33c may be less than the thickness of the upper clad 33. That is, in the recess 33c, the bottom farthest from the third surface 333 of the upper clad 33 may be located on the second surface 312 of the upper clad 33 or the lower clad 31. In FIG. 3B, this bottom is located on the second surface 312 of the lower clad 31.
- the arithmetic mean roughness of the inner wall surface of the recess 33c is not limited. In at least a portion of the recess 33c, the arithmetic mean roughness of the inner wall surface may be, for example, 50 nm or less. When the arithmetic mean roughness is 50 nm or less, the surface is mirror-like, and the irradiated light can be efficiently reflected in a direction different from the irradiation direction. As a result, the light transmission through the first side portion 33a and the second side portion 33b is more efficiently reduced.
- the arithmetic mean roughness can be calculated by measuring any inner wall surface of the recess 33c using a laser displacement meter, optical interference measuring device, or the like, for example, after the recess 33c is formed.
- the method for forming the recess 33c in the edge portion of the upper cladding 33 is not limited, and for example, the recess 33c is formed by the following procedure.
- One embodiment of the method for forming the recess 33c will be described with reference to FIG. 4.
- FIG. 4 is an explanatory diagram for explaining one embodiment of the method for forming the optical waveguide 3 in the wiring board 2.
- the wiring board 2 is omitted from FIG. 4B.
- a lower clad 31 is formed on the first surface 21 of the wiring board 2.
- a metal layer 21a may be located between the lower clad 31 and the first surface 21.
- upper clad material 33d which will be the material of upper clad 33, is attached to second surface 312 of lower clad 31 so that first end surface 321 and second end surface 322 of core 32 are exposed.
- the material forming upper clad 33 is as described above, and detailed description will be omitted.
- the surface of upper clad material 33d is covered with mask 35.
- the portion covered with mask 35 is the portion that will be removed by development after exposure. Specifically, when viewed in a plan view from above, both sides of upper clad material 33d and the portion that will form recess 33c should be covered with mask 35 so as to follow core 32.
- the upper cladding material 33d is hardened by exposure to light. Then, as shown in FIG. 4E, the mask 35 is removed, and the upper cladding material 33d in the portion covered by the mask 35 is removed by development. Through this procedure, as shown in FIG. 4E, a first recess 33c1 that contacts the first side portion 33a and opens to the third surface 333 and the first side surface 331, and a second recess 33c2 that contacts the second side portion 33b and opens to the third surface 333 and the second side surface 332 are formed in the upper cladding 33.
- FIG. 4E illustrates an example in which there is one each of the first recess 33c1 and the second recess 33c2, the number of recesses 33c can be adjusted according to the shape of the mask 35.
- Figure 5A is a plan view showing another embodiment of the main part of the optical waveguide 3 as viewed from the direction of the arrow A shown in Figure 2.
- Figure 5B is an enlarged explanatory view showing a cross section taken along line X-X shown in Figure 5A.
- Figure 5C is a side view of the optical circuit board 1 (optical waveguide 3) as viewed from the direction of the arrow C shown in Figure 5B.
- the bottom farthest from the third surface 333 of the upper clad 33 is located on the second surface 312 of the lower clad 31. That is, the height H of the recess 33c (33c2) corresponds to the thickness of the upper clad 33.
- the height of the recess 33c shown in FIG. 5B is greater than the thickness of the upper clad 33. In this way, in the recess 33c, the bottom farthest from the third surface 333 of the upper clad 33 may be located closer to the first surface 21 of the wiring board 2 than the second surface 312 of the lower clad 31. When multiple recesses 33c are located, it is sufficient that at least some of the recesses 33c have such a structure.
- the sealing resin 8 that connects the optical component 4 and the optical connector 5a enters the recess 33c.
- the bonding strength between these components is improved.
- the bottom is flat in FIG. 5B, it may be uneven. In this case, the contact area between the sealing resin 8 and the bottom is increased, which is advantageous in that the bonding strength is improved.
- the bottom of the recess 33c which is furthest from the third surface 333 of the upper cladding 33, is not limited as long as it is located closer to the first surface 21 than the second surface 312 of the lower cladding 31.
- the bottom may be located at a depth from the second surface 312 to 100% or more of the thickness of the lower cladding 31. In other words, the recess 33c may penetrate the lower cladding 31.
- the recess 33c whose bottom is located closer to the first surface 21 than the second surface 312 of the lower clad 31, is formed, for example, by laser processing.
- the mask 35 shown in FIG. 4D is not used to form the recess 33c, but is used so that only the first side surface 331 and the second side surface 332 of the upper clad 33 are formed.
- the upper clad material 33d in the portion not covered by the mask 35 is hardened.
- the upper clad material 33d in the portion covered by the mask 35 is removed by development.
- the recess 33c is then formed by subjecting it to laser processing.
- Fig. 6A is an explanatory diagram (perspective view) for explaining yet another embodiment of the recess 33c (first recess 33c1 and second recess 33c2) formed in the optical waveguide 3.
- Fig. 6B is a plan view seen from the direction of the arrow D shown in Fig. 6A.
- the convex portion 334 When the convex portion 334 is located in the concave portion 33c, for example, a portion of the light incident from the first end face 321 side and entering the concave portion 33c is reflected at the convex portion 334 to the outside of the optical waveguide 3, making it easier to reduce the light transmitted to the second end face 322 side.
- the angle ⁇ between the incident direction F of the light and the convex portion 334 is not limited, and may be, for example, 15° or more and 75° or less. If the angle ⁇ is in this range, it becomes easier to reflect the light incident on the first side portion 33a and the second side portion 33b of the upper cladding 33 to the outside of the optical waveguide 3. When multiple concave portions 33c are located, it is sufficient that at least some of the concave portions 33c have convex portions 334.
- the convex portion 334 when viewed from above in a plane, has a triangular shape. However, if the angle ⁇ is less than 90°, the shape of the convex portion 334 is not limited to a triangular shape. When viewed in a plane, the convex portion 334 may have, for example, a semicircular shape or a trapezoidal shape.
- the recess 33c shown in Figures 3 to 5 has a rectangular shape when viewed from above in a plan view.
- the third surface 333 and the side surface of the upper cladding 33 have a rectangular cutout shape so as to have an opening.
- the shape of the recess 33c is not limited to a rectangular shape.
- the shape of the recess 33c is not limited as long as it is in contact with the first side 33a (second side 33b) of the upper cladding 33 and opens to the third surface 333 and the first side surface 331 (second side surface 332) of the upper cladding 33.
- Figure 7 is an explanatory diagram (perspective view) for explaining yet another embodiment of the recess 33c (first recess 33c1 and second recess 33c2) formed in the optical waveguide 3.
- the third surface 333 and the side surface of the upper cladding 33 may have a triangular cutout shape so as to have an opening, or may have a semicircular, trapezoidal, or other cutout shape.
- a mounting structure 10 has a structure in which an optical component 4 and an electronic component 6 are mounted on an optical circuit board 1 according to an embodiment.
- the optical component 4 mounted on the mounting structure 10 according to an embodiment includes an optical transmission path 41.
- optical components 4 including such optical transmission paths 41 include silicon photonics devices.
- electronic components 6 include ASICs (Application Specific Integrated Circuits) and driver ICs.
- the optical component 4 is electrically connected to the wiring board 2. Specifically, the optical component 4 is electrically connected to a pad 21b located in the mounting area (area for mounting the optical component 4) of the wiring board 2 via solder 7.
- the pad 21b is part of a conductor layer located on the upper surface of the wiring board 2.
- a silicon photonics device will be described as an example of the optical component 4.
- the silicon photonics device is, for example, a type of optical component having an optical transmission path 41 with a core of silicon (Si) and a clad of silicon dioxide (SiO 2 ).
- the silicon photonics device includes a Si waveguide as the optical transmission path 41, and further includes a passivation film, a light source unit, a light detection unit, and the like, although not shown.
- the optical transmission path 41 (Si waveguide 41) is located at one end of the optical waveguide 3 (first end surface 321 in FIG. 2) so as to face the core 32 included in the optical waveguide 3.
- an electrical signal from the wiring board 2 is transmitted via the solder 7 to the light source section included in the optical component 4 (silicon photonics device).
- the light source section receives the transmitted electrical signal and emits light.
- the emitted optical signal is transmitted via the optical transmission path 41 (Si waveguide 41) and the core 32 to the optical fiber 5 connected via the optical connector 5a.
- the optical circuit board includes a wiring board having a first surface and an optical waveguide located on the first surface.
- the optical waveguide includes a lower cladding, a core, and an upper cladding.
- the lower cladding is located on the first surface and has a second surface located opposite the surface in contact with the first surface.
- the core extends on the second surface and has a first end surface and a second end surface located opposite each other in the extension direction of the core.
- the upper cladding is located on the second surface and covers the core so that the first end surface and the second end surface are exposed, and has a pair of first and second side surfaces located along the extension direction, a third surface located opposite the surface in contact with the second surface, a first edge portion that is a tangent portion between the first side surface and the third surface, and a second edge portion that is a tangent portion between the second side surface and the third surface.
- the upper cladding further has at least one of a first recess that contacts the first edge portion and opens to the third surface and the first side surface, and a second recess that contacts the second edge portion and opens to the third surface and the second side surface.
- the upper clad has at least one of the first recesses and the second recesses in a plurality of portions.
- the upper clad has a plurality of first recesses and a plurality of second recesses.
- the bottom portion farthest from the third surface is located on the upper cladding or the second surface.
- the bottom furthest from the third surface is located closer to the first surface than the second surface in the lower cladding.
- the mounting structure according to the present disclosure includes an optical circuit board described in any one of (1) to (7) above, and an optical component mounted on the optical circuit board.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Optical Couplings Of Light Guides (AREA)
Abstract
An optical circuit board according to the present disclosure comprises a wiring board having a first surface, and an optical waveguide located on the first surface. The optical waveguide comprises a lower cladding, a core, and an upper cladding. The lower cladding is located on the first surface, and comprises a second surface located on the opposite side of a surface of the lower cladding bordering the first surface. The core extends to the second surface, and comprises a first end surface and second end surface that are located facing opposite one another in a direction of extension of the core. The upper cladding is located on the second surface and covers the core such that the first end surface and the second end surface are exposed, the upper cladding comprising: a pair of a first side surface and a second side surface located along the direction of extension, a third surface located on the opposite side of the surface bordering on the second surface, a first edge that is a tangent of the first side surface and the third surface, and a second edge that is a tangent of the second side surface and the third surface. The upper cladding also includes: a first recess bordering on the first edge and opening on the third surface and the first side surface; and/or a second recess bordering on the second edge and opening on the third surface and the second side surface.
Description
本発明は、光回路基板および光回路基板を用いた実装構造体に関する。
The present invention relates to an optical circuit board and a mounting structure using the optical circuit board.
近年、大容量のデータを高速で通信可能な光ファイバーが情報通信に使用されている。光信号の送受信は、この光ファイバーと光学部品との間で行われる。このような光学部品は、例えば光回路基板に実装されている。光回路基板には、特許文献1に記載のように光導波路が備えられている。光信号は、この光導波路を介して送受信が行われる。
In recent years, optical fibers capable of transmitting large volumes of data at high speeds have come to be used in information communications. Optical signals are transmitted and received between the optical fibers and optical components. Such optical components are mounted on, for example, optical circuit boards. The optical circuit boards are provided with optical waveguides as described in Patent Document 1. Optical signals are transmitted and received via these optical waveguides.
光回路基板に光学部品を実装する前に、光導波路のコア部分に光を照射して、光信号の送受信について検査が行われる。特許文献1に記載のような従来の光回路基板について検査を行う場合、光源であるアレイ照射光学系が、光導波路の上部クラッドの側端部をコア部分と誤認識することがある。このような誤認識が発生すると、手動で再調節しなければならず、検査効率を低下させることになる。
Before mounting optical components on an optical circuit board, light is irradiated onto the core portion of the optical waveguide to inspect the transmission and reception of optical signals. When inspecting a conventional optical circuit board such as that described in Patent Document 1, the array illumination optical system, which is the light source, may mistakenly recognize the side end of the upper cladding of the optical waveguide as the core portion. When such a misrecognition occurs, manual readjustment is required, which reduces inspection efficiency.
本開示に係る光回路基板は、第1面を有する配線基板と第1面に位置する光導波路とを含む。光導波路は、下部クラッド、コアおよび上部クラッドを含む。下部クラッドは、第1面に位置しており、第1面と接する面の反対側に位置する第2面を有する。コアは、第2面に延在しており、コアの延在方向に互いに対向して位置する第1端面および第2端面を有する。上部クラッドは、第2面に位置しており、第1端面および第2端面が露出するようコアを被覆するとともに、延在方向に沿って位置する一対の第1側面および第2側面と、第2面と接する面の反対側に位置する第3面と、第1側面と第3面との接線部である第1辺部と、第2側面と第3面との接線部である第2辺部とを有する。上部クラッドは、第1辺部に接し第3面および第1側面に開口する第1凹部、および第2辺部に接し第3面および第2側面に開口する第2凹部の少なくとも一方を、さらに有している。
The optical circuit board according to the present disclosure includes a wiring board having a first surface and an optical waveguide located on the first surface. The optical waveguide includes a lower cladding, a core, and an upper cladding. The lower cladding is located on the first surface and has a second surface located opposite the surface in contact with the first surface. The core extends on the second surface and has a first end surface and a second end surface located opposite each other in the extension direction of the core. The upper cladding is located on the second surface and covers the core so that the first end surface and the second end surface are exposed, and has a pair of first and second side surfaces located along the extension direction, a third surface located opposite the surface in contact with the second surface, a first edge portion that is a tangent portion between the first side surface and the third surface, and a second edge portion that is a tangent portion between the second side surface and the third surface. The upper cladding further has at least one of a first recess that contacts the first edge portion and opens to the third surface and the first side surface, and a second recess that contacts the second edge portion and opens to the third surface and the second side surface.
本開示に係る実装構造体は、上記光回路基板と上記光回路基板に実装された光学部品とを含む。
The mounting structure according to the present disclosure includes the optical circuit board and an optical component mounted on the optical circuit board.
特許文献1に記載のような従来の光回路基板について検査を行う場合、光源であるアレイ照射光学系が、光導波路の上部クラッドの側端部をコア部分と誤認識することがある。このような誤認識が発生すると、手動で再調節しなければならず、検査効率を低下させることになる。したがって、光導波路検査を効率よく行うことができる光回路基板が求められている。
When inspecting a conventional optical circuit board such as that described in Patent Document 1, the array illumination optical system, which is the light source, may mistakenly recognize the side end of the upper cladding of the optical waveguide as the core portion. When such a misrecognition occurs, manual readjustment is required, which reduces the efficiency of the inspection. Therefore, there is a demand for an optical circuit board that allows for efficient inspection of optical waveguides.
本開示に係る光回路基板は、上記の課題を解決するための手段の欄に記載のような構成を有することによって、光導波路検査を効率よく行うことができる。
The optical circuit board disclosed herein has the configuration described in the section on means for solving the above problems, making it possible to efficiently perform optical waveguide inspection.
本開示の一実施形態に係る光回路基板を、図1~3に基づいて説明する。図1は、本開示の一実施形態に係る光回路基板1に、光学部品4および電子部品6が実装された実装構造体10を示す平面図である。
An optical circuit board according to one embodiment of the present disclosure will be described with reference to Figures 1 to 3. Figure 1 is a plan view showing a mounting structure 10 in which an optical component 4 and an electronic component 6 are mounted on an optical circuit board 1 according to one embodiment of the present disclosure.
本開示の一実施形態に係る光回路基板1は、配線基板2と光導波路3とを含む。一実施形態に係る光回路基板1に含まれる配線基板2としては、一般的に光回路基板に使用される配線基板が挙げられる。
The optical circuit board 1 according to one embodiment of the present disclosure includes a wiring board 2 and an optical waveguide 3. The wiring board 2 included in the optical circuit board 1 according to one embodiment includes a wiring board that is generally used for optical circuit boards.
このような配線基板2は、具体的に図示していないものの、例えば、コア層と、コア層の両面に積層されたビルドアップ層とを含む。コア層は、コア用絶縁層およびコア用導体層を含む。コア用絶縁層は、絶縁性を有する素材であれば特に限定されない。絶縁性を有する素材としては、例えば、エポキシ樹脂、ビスマレイミド-トリアジン樹脂、ポリイミド樹脂およびポリフェニレンエーテル樹脂などの樹脂が挙げられる。これらの樹脂は1種のみを用いてもよく、2種以上を併用してもよい。
Such a wiring board 2 includes, for example, a core layer and build-up layers laminated on both sides of the core layer, although not specifically illustrated. The core layer includes a core insulating layer and a core conductor layer. The core insulating layer is not particularly limited as long as it is made of an insulating material. Examples of insulating materials include resins such as epoxy resin, bismaleimide-triazine resin, polyimide resin, and polyphenylene ether resin. Only one type of these resins may be used, or two or more types may be used in combination.
コア用絶縁層には、補強材が含まれていてもよい。補強材としては、例えば、ガラス繊維、ガラス不織布、アラミド不織布、アラミド繊維およびポリエステル繊維などの絶縁性布材が挙げられる。補強材は1種のみを用いてもよく、2種以上を併用してもよい。さらに、コア用絶縁層には、シリカ、硫酸バリウム、タルク、クレー、ガラス、炭酸カルシウムおよび酸化チタンなどの無機絶縁性フィラーが分散されていてもよい。無機絶縁性フィラーは1種のみを用いてもよく、2種以上を併用してもよい。
The core insulating layer may contain a reinforcing material. Examples of reinforcing materials include insulating cloth materials such as glass fiber, glass nonwoven fabric, aramid nonwoven fabric, aramid fiber, and polyester fiber. Only one type of reinforcing material may be used, or two or more types may be used in combination. Furthermore, the core insulating layer may have inorganic insulating fillers such as silica, barium sulfate, talc, clay, glass, calcium carbonate, and titanium oxide dispersed therein. Only one type of inorganic insulating filler may be used, or two or more types may be used in combination.
コア用導体層は、コア用絶縁層の表面に位置している。コア用導体層は、導電性を有する素材であれば、特に限定されない。導電性を有する素材としては、例えば、銅などの金属が挙げられる。
The core conductor layer is located on the surface of the core insulating layer. The core conductor layer is not particularly limited as long as it is made of a material that is conductive. Examples of conductive materials include metals such as copper.
コア用絶縁層には、コア用絶縁層の上下面を電気的に接続するために、スルーホール導体が位置している。スルーホール導体は、コア用絶縁層の上下面を貫通するスルーホール内に位置している。スルーホール導体は、コア用導体層と同様、例えば、銅などの金属で形成されている。スルーホール導体は、内壁面のみに形成されていてもよく、スルーホール内に充填されていてもよい。スルーホール導体は、コア用絶縁層の表面において、コア用導体層と接続されている。
In the core insulating layer, a through-hole conductor is located to electrically connect the upper and lower surfaces of the core insulating layer. The through-hole conductor is located in a through-hole that penetrates the upper and lower surfaces of the core insulating layer. Like the core conductor layer, the through-hole conductor is formed of a metal such as copper. The through-hole conductor may be formed only on the inner wall surface, or may be filled in the through-hole. The through-hole conductor is connected to the core conductor layer on the surface of the core insulating layer.
ビルドアップ層は、コア層の片面または両面に位置している。ビルドアップ層は、少なくとも1層のビルドアップ用絶縁層と少なくとも1層のビルドアップ用導体層とが積層された構造を有する。ビルドアップ用絶縁層は、コア用絶縁層と同様、絶縁性を有する素材であれば特に限定されない。絶縁性を有する素材としては、例えば、エポキシ樹脂、ビスマレイミド-トリアジン樹脂、ポリイミド樹脂およびポリフェニレンエーテル樹脂などの樹脂が挙げられる。これらの樹脂は1種のみを用いてもよく、2種以上を併用してもよい。
The build-up layer is located on one or both sides of the core layer. The build-up layer has a structure in which at least one build-up insulating layer and at least one build-up conductor layer are laminated. Like the core insulating layer, the build-up insulating layer is not particularly limited as long as it is made of an insulating material. Examples of insulating materials include resins such as epoxy resins, bismaleimide-triazine resins, polyimide resins, and polyphenylene ether resins. These resins may be used alone or in combination of two or more types.
ビルドアップ用絶縁層が2層以上存在する場合、ビルドアップ用絶縁層は、それぞれ同じ樹脂でもよく、異なる樹脂でもよい。ビルドアップ用絶縁層とコア用絶縁層とは、同じ樹脂でもよく、異なる樹脂でもよい。ビルドアップ層は、通常、層間を電気的に接続するためのビアホール導体を有している。
When there are two or more build-up insulation layers, the build-up insulation layers may be made of the same resin or different resins. The build-up insulation layers and the core insulation layers may be made of the same resin or different resins. The build-up layers usually have via-hole conductors to electrically connect the layers.
ビルドアップ用絶縁層には、補強材が含まれていてもよい。補強材としては、例えば、ガラス繊維、ガラス不織布、アラミド不織布、アラミド繊維およびポリエステル繊維などの絶縁性布材が挙げられる。補強材は1種のみを用いてもよく、2種以上を併用してもよい。さらに、ビルドアップ用絶縁層には、シリカ、硫酸バリウム、タルク、クレー、ガラス、炭酸カルシウムおよび酸化チタンなどの無機絶縁性フィラーが分散されていてもよい。無機絶縁性フィラーは1種のみを用いてもよく、2種以上を併用してもよい。
The build-up insulating layer may contain a reinforcing material. Examples of reinforcing materials include insulating cloth materials such as glass fiber, glass nonwoven fabric, aramid nonwoven fabric, aramid fiber, and polyester fiber. Only one type of reinforcing material may be used, or two or more types may be used in combination. Furthermore, the build-up insulating layer may have inorganic insulating fillers such as silica, barium sulfate, talc, clay, glass, calcium carbonate, and titanium oxide dispersed therein. Only one type of inorganic insulating filler may be used, or two or more types may be used in combination.
ビルドアップ用導体層は、コア用導体層と同様、導電性を有する素材であれば、特に限定されない。導電性を有する素材としては、例えば、銅などの金属が挙げられる。
The conductor layer for the build-up is not particularly limited as long as it is made of a material that is conductive, similar to the conductor layer for the core. An example of a material that is conductive is a metal such as copper.
図2に示すように、一実施形態に係る光回路基板1に含まれる光導波路3は、配線基板2の表面に存在している金属層21aの表面に位置している。図2は、図1に示す領域Xの断面を説明するための拡大説明図である。光導波路3は、金属層21a側から下部クラッド31、コア32および上部クラッド33の順に積層された構造を有している。
As shown in FIG. 2, the optical waveguide 3 included in the optical circuit board 1 according to one embodiment is located on the surface of the metal layer 21a present on the surface of the wiring board 2. FIG. 2 is an enlarged explanatory diagram for explaining the cross section of region X shown in FIG. 1. The optical waveguide 3 has a structure in which a lower clad 31, a core 32, and an upper clad 33 are layered in this order from the metal layer 21a side.
光導波路3に含まれる下部クラッド31は、配線基板2の第1面21、具体的には配線基板2の光導波路形成領域の表面に存在している金属層21aの表面に位置している。下部クラッド31を形成している材料は限定されず、例えば、エポキシ樹脂およびシリコン樹脂などの樹脂が挙げられる。下部クラッド31は、図3に示すように、配線基板2の第1面21と対向する面の反対側に位置する第2面312を有する。金属層21aは任意の部材であり、使用してもよく使用しなくてもよい。すなわち、配線基板2は金属層21aを含んでいなくてもよい。
The lower cladding 31 included in the optical waveguide 3 is located on the first surface 21 of the wiring board 2, specifically on the surface of the metal layer 21a present on the surface of the optical waveguide forming region of the wiring board 2. The material forming the lower cladding 31 is not limited, and examples include resins such as epoxy resin and silicone resin. As shown in FIG. 3, the lower cladding 31 has a second surface 312 located on the opposite side to the surface facing the first surface 21 of the wiring board 2. The metal layer 21a is an optional member and may or may not be used. In other words, the wiring board 2 does not need to include the metal layer 21a.
光導波路3に含まれる上部クラッド33は、下部クラッド31の上面およびコア32を被覆するように位置している。上部クラッド33についても、下部クラッド31と同様、エポキシ樹脂およびシリコン樹脂などの樹脂で形成されている。下部クラッド31と上部クラッド33とは同じ材料であってもよく、異なる材料であってもよい。さらに、下部クラッド31および上部クラッド33は、同じ厚みを有していてもよく、異なる厚みを有していてもよい。下部クラッド31および上部クラッド33は、例えば、それぞれ5μm以上150μm以下の厚みを有する。
The upper clad 33 included in the optical waveguide 3 is positioned so as to cover the upper surface of the lower clad 31 and the core 32. Like the lower clad 31, the upper clad 33 is also formed of a resin such as epoxy resin or silicone resin. The lower clad 31 and the upper clad 33 may be made of the same material or different materials. Furthermore, the lower clad 31 and the upper clad 33 may have the same thickness or different thicknesses. The lower clad 31 and the upper clad 33 each have a thickness of, for example, 5 μm or more and 150 μm or less.
光導波路3に含まれるコア32は、光導波路3に侵入した光が伝搬する部分である。コア32は、下部クラッド31の第2面312に延在しており、コア32の延在方向に互いに対向して位置する第1端面321および第2端面322を有する。一実施形態に係る光回路基板1において、便宜上、コア32の第1端面321は光学部品4側の端面とし、コア32の第2端面322は光コネクター5a側の端面とする。
The core 32 included in the optical waveguide 3 is a portion through which light that has entered the optical waveguide 3 propagates. The core 32 extends to the second surface 312 of the lower cladding 31, and has a first end surface 321 and a second end surface 322 that are positioned opposite each other in the extending direction of the core 32. In the optical circuit board 1 according to one embodiment, for the sake of convenience, the first end surface 321 of the core 32 is the end surface on the optical component 4 side, and the second end surface 322 of the core 32 is the end surface on the optical connector 5a side.
具体的には、配線基板2の実装領域に実装された光学部品4に含まれる光伝送路(Si導波路)41の端面と、光導波路3のコア32の第1端面321とが対向するように位置している。このような構成を有することによって、コア32と光伝送路41との間で光信号の送受信が行われる。コア32を形成している材料は限定されず、例えば、光の透過性や伝搬する光の波長特性などを考慮して、適宜設定される。材料としては、例えば、エポキシ樹脂およびシリコン樹脂などの樹脂が挙げられる。コア32は、例えば、3μm以上50μm以下の厚みを有する。
Specifically, the end face of the optical transmission path (Si waveguide) 41 included in the optical component 4 mounted in the mounting area of the wiring board 2 is positioned to face the first end face 321 of the core 32 of the optical waveguide 3. With this configuration, optical signals are transmitted and received between the core 32 and the optical transmission path 41. The material forming the core 32 is not limited, and is appropriately set taking into consideration, for example, the light transmittance and the wavelength characteristics of the propagating light. Examples of materials include resins such as epoxy resin and silicone resin. The core 32 has a thickness of, for example, 3 μm or more and 50 μm or less.
上部クラッド33は、上記のように下部クラッド31の上面、すなわち下部クラッド31の第2面312に位置しており、コア32の第1端面321および第2端面322が露出するようコア32を被覆している。上部クラッド33は、図3A~Cに示すように、コア32の延在方向に沿って位置する第1側面331および第2側面332、下部クラッド31の第2面312と接する面の反対側に位置する第3面333、第1側面331と第3面333との接線部である第1辺部33a、および第2側面332と第3面333との接線部である第2辺部33bを有する。図3Aは、図2に示す矢印A方向から見た光導波路3の要部の平面図である。図3Bは、図3Aに示す領域Yを説明するための拡大説明図(斜視図)である。図3Cは、図3Aに示す矢印B方向から見た光導波路3の正面図である。
As described above, the upper clad 33 is located on the upper surface of the lower clad 31, i.e., the second surface 312 of the lower clad 31, and covers the core 32 so that the first end surface 321 and the second end surface 322 of the core 32 are exposed. As shown in Figures 3A to 3C, the upper clad 33 has a first side surface 331 and a second side surface 332 located along the extension direction of the core 32, a third surface 333 located on the opposite side of the surface that contacts the second surface 312 of the lower clad 31, a first side portion 33a which is a tangent portion between the first side surface 331 and the third surface 333, and a second side portion 33b which is a tangent portion between the second side surface 332 and the third surface 333. Figure 3A is a plan view of the main part of the optical waveguide 3 as seen from the direction of the arrow A shown in Figure 2. Figure 3B is an enlarged explanatory view (perspective view) for explaining the region Y shown in Figure 3A. FIG. 3C is a front view of the optical waveguide 3 as seen from the direction of arrow B shown in FIG. 3A.
上部クラッド33には、図3Aに示すように、少なくとも1つの凹部33cが位置している。具体的には、図3A~Cに示すように、第1辺部33aに接し第3面333および第1側面331に開口する第1凹部33c1、および第2辺部33bに接し第3面333および第2側面332に開口する第2凹部33c2の少なくとも一方が、上部クラッド33に位置している。第1凹部33c1および第2凹部33c2は、便宜上、分けて説明しているにすぎず、第1凹部33c1および第2凹部33c2をまとめて凹部33cと記載する場合がある。
As shown in Figure 3A, at least one recess 33c is located in the upper cladding 33. Specifically, as shown in Figures 3A to 3C, at least one of a first recess 33c1 that contacts the first side portion 33a and opens to the third surface 333 and the first side surface 331, and a second recess 33c2 that contacts the second side portion 33b and opens to the third surface 333 and the second side surface 332 is located in the upper cladding 33. The first recess 33c1 and the second recess 33c2 are described separately only for convenience, and the first recess 33c1 and the second recess 33c2 may be collectively referred to as recess 33c.
一実施形態に係る光回路基板1は、上部クラッド33の第1辺部33aおよび第2辺部33bの少なくともいずれかに、このような凹部33cを少なくとも1つ有することによって、光導波路検査を効率よく行うことができる。具体的には、一実施形態に係る光回路基板1に光学部品4を実装する前に、光導波路3のコア32に光を照射して光信号の送受信について検査を行う場合、凹部33cが存在することによって、上部クラッド33と空気との屈折率差によって閉じ込められた光が凹部33cで散乱する。そのため、凹部33cを有する上部クラッド33の第1辺部33aおよび第2辺部33bにおける光の透過が低減され、第1辺部33aおよび第2辺部33bをコア32と誤認識しにくくなる。その結果、手動で再調節する必要がなくなり、光導波路検査を効率よく行うことができる。
The optical circuit board 1 according to one embodiment has at least one such recess 33c on at least one of the first side 33a and the second side 33b of the upper clad 33, which allows efficient optical waveguide inspection. Specifically, when inspecting the transmission and reception of optical signals by irradiating light to the core 32 of the optical waveguide 3 before mounting the optical components 4 on the optical circuit board 1 according to one embodiment, the presence of the recess 33c causes the light trapped by the refractive index difference between the upper clad 33 and the air to be scattered by the recess 33c. Therefore, the transmission of light through the first side 33a and the second side 33b of the upper clad 33 having the recess 33c is reduced, making it difficult to mistakenly recognize the first side 33a and the second side 33b as the core 32. As a result, manual readjustment is no longer necessary, and optical waveguide inspection can be performed efficiently.
凹部33cは、上部クラッド33に少なくとも1つ位置していればよく、複数の凹部33cが位置していてもよい。複数の凹部33cが位置している場合、第1凹部33c1および第2凹部33c2の少なくとも一方が、複数位置していてもよく、各々複数位置していてもよい。複数の凹部33cが位置していると、照射された光がより散乱され、上部クラッド33のエッジ部への光の透過がより効率よく低減される。
It is sufficient that at least one recess 33c is located in the upper cladding 33, and multiple recesses 33c may be located. When multiple recesses 33c are located, at least one of the first recesses 33c1 and the second recesses 33c2 may be located multiple times, or multiple of each may be located. When multiple recesses 33c are located, the irradiated light is scattered more, and the transmission of light to the edge portion of the upper cladding 33 is more efficiently reduced.
凹部33c(第1凹部33c1および第2凹部33c2)は、図3Cに示すように、上部から平面視した場合に、四角形状を有している。凹部33cの大きさは限定されず、光導波路3の大きさなどに応じて、照射された光を散乱し得るように適宜設定される。幅Wは、例えば5μm以上20μm以下であってもよい。長さLは、例えば5μm以上500μm以下であってもよい。
As shown in FIG. 3C, the recesses 33c (first recess 33c1 and second recess 33c2) have a rectangular shape when viewed from above in a plan view. The size of the recesses 33c is not limited and is set appropriately depending on the size of the optical waveguide 3, etc., so as to scatter the irradiated light. The width W may be, for example, 5 μm or more and 20 μm or less. The length L may be, for example, 5 μm or more and 500 μm or less.
長さLが10μm以上50μm以下であれば、照射された光がより散乱され、上部クラッド33のエッジ部への光の透過がより効率よく低減される。幅Wが10μm以上50μm以下であれば、上部クラッド33と空気の屈折率差によって、光が閉じ込められてしまう範囲をカバーすることができる。
If the length L is 10 μm or more and 50 μm or less, the irradiated light is more scattered, and the transmission of light to the edge of the upper cladding 33 is more efficiently reduced. If the width W is 10 μm or more and 50 μm or less, the range in which light is trapped due to the difference in refractive index between the upper cladding 33 and air can be covered.
図3Bでは、凹部33c(第2凹部33c2を例示)の高さHは、上部クラッド33の厚みに相当する。凹部33cの高さHは、上部クラッド33の厚みより低くてもよい。すなわち、凹部33cにおいて、上部クラッド33の第3面333から最も離れた底部は、上部クラッド33または下部クラッド31の第2面312に位置していてもよい。図3Bでは、この底部が、下部クラッド31の第2面312に位置している。高さHがこのような範囲であると、光導波路3の強度を損なうことなく第1辺部33aおよび第2辺部33bにおける光の透過を低減できる。
In FIG. 3B, the height H of the recess 33c (second recess 33c2 is exemplified) corresponds to the thickness of the upper clad 33. The height H of the recess 33c may be less than the thickness of the upper clad 33. That is, in the recess 33c, the bottom farthest from the third surface 333 of the upper clad 33 may be located on the second surface 312 of the upper clad 33 or the lower clad 31. In FIG. 3B, this bottom is located on the second surface 312 of the lower clad 31. When the height H is in this range, the transmission of light through the first side 33a and the second side 33b can be reduced without compromising the strength of the optical waveguide 3.
複数の凹部33cが位置している場合、全ての凹部33cが同じ形状や同じ大きさである必要はない。凹部33cを形成する効率を考慮すると、全ての凹部33cを同じ形状や大きさに形成するのがよい。
When multiple recesses 33c are located, it is not necessary for all of the recesses 33c to have the same shape or size. Considering the efficiency of forming the recesses 33c, it is preferable to form all of the recesses 33c to have the same shape and size.
凹部33cの内壁面の算術平均粗さは限定されない。凹部33cの少なくとも一部において、内壁面の算術平均粗さは、例えば50nm以下であってもよい。算術平均粗さが50nm以下であると鏡面状のため、照射された光を照射方向と異なる方向に、効率よく反射させることができる。その結果、第1辺部33aおよび第2辺部33bにおける光の透過がより効率よく低減される。算術平均粗さは、例えば凹部33cを形成した後、凹部33cの任意の内壁面について、レーザー変位計、光干渉測定器などで測定して算出することができる。
The arithmetic mean roughness of the inner wall surface of the recess 33c is not limited. In at least a portion of the recess 33c, the arithmetic mean roughness of the inner wall surface may be, for example, 50 nm or less. When the arithmetic mean roughness is 50 nm or less, the surface is mirror-like, and the irradiated light can be efficiently reflected in a direction different from the irradiation direction. As a result, the light transmission through the first side portion 33a and the second side portion 33b is more efficiently reduced. The arithmetic mean roughness can be calculated by measuring any inner wall surface of the recess 33c using a laser displacement meter, optical interference measuring device, or the like, for example, after the recess 33c is formed.
上部クラッド33のエッジ部に凹部33cを形成する方法は限定されず、例えば、下記の手順で形成される。凹部33cを形成する方法の一実施形態を、図4に基づいて説明する。図4は、配線基板2に、光導波路3を形成する方法の一実施形態を説明するための説明図である。図4Bからは便宜上配線基板2を省略して示す。
The method for forming the recess 33c in the edge portion of the upper cladding 33 is not limited, and for example, the recess 33c is formed by the following procedure. One embodiment of the method for forming the recess 33c will be described with reference to FIG. 4. FIG. 4 is an explanatory diagram for explaining one embodiment of the method for forming the optical waveguide 3 in the wiring board 2. For convenience, the wiring board 2 is omitted from FIG. 4B.
まず、図4Aに示すように、配線基板2の第1面21に、下部クラッド31が形成される。下部クラッド31と第1面21との間には、金属層21aが位置していてもよい。
First, as shown in FIG. 4A, a lower clad 31 is formed on the first surface 21 of the wiring board 2. A metal layer 21a may be located between the lower clad 31 and the first surface 21.
次いで、下部クラッド31の第2面312に、コア32の材料となるコア材料32aを付着させる。コア32を形成している材料については上述の通りであり、詳細な説明は省略する。そして図4Bに示すように、コア材料32aの表面が、マスク34で被覆される。具体的には、コア32を形成する部分に開口部を有するマスク34でコア材料32aの表面が被覆され、露光することによって、開口部に位置するコア材料32aが硬化する。その後、マスク34を外した後、マスク34で被覆されていた部分のコア材料32aを現像により除去することによって、図4Cに示すように、下部クラッド31の第2面312にコア32が形成される。
Next, core material 32a, which will be the material for core 32, is attached to the second surface 312 of lower cladding 31. The material forming core 32 is as described above, and detailed description will be omitted. Then, as shown in FIG. 4B, the surface of core material 32a is covered with mask 34. Specifically, the surface of core material 32a is covered with mask 34 having an opening in the portion where core 32 is to be formed, and the core material 32a located in the opening is hardened by exposure to light. After that, mask 34 is removed, and the core material 32a in the portion covered by mask 34 is removed by development, thereby forming core 32 on second surface 312 of lower cladding 31, as shown in FIG. 4C.
次いで、下部クラッド31の第2面312に、コア32の第1端面321および第2端面322が露出するように、上部クラッド33の材料となる上部クラッド材料33dを付着させる。上部クラッド33を形成している材料については上述の通りであり、詳細な説明は省略する。そして図4Dに示すように、上部クラッド材料33dの表面が、マスク35で被覆される。マスク35で被覆された部分が、露光後に現像で除去される部分である。具体的には、上側から平面視した場合に、コア32に沿うように、上部クラッド材料33dの両側部および凹部33cを形成する部分が、マスク35で被覆されればよい。
Next, upper clad material 33d, which will be the material of upper clad 33, is attached to second surface 312 of lower clad 31 so that first end surface 321 and second end surface 322 of core 32 are exposed. The material forming upper clad 33 is as described above, and detailed description will be omitted. Then, as shown in FIG. 4D, the surface of upper clad material 33d is covered with mask 35. The portion covered with mask 35 is the portion that will be removed by development after exposure. Specifically, when viewed in a plan view from above, both sides of upper clad material 33d and the portion that will form recess 33c should be covered with mask 35 so as to follow core 32.
マスク35で被覆した後、露光することによって、上部クラッド材料33dが硬化する。その後、図4Eに示すように、マスク35を外した後、マスク35で被覆されていた部分の上部クラッド材料33dが現像により除去される。このような手順によって、図4Eに示すように、第1辺部33aに接し第3面333および第1側面331に開口する第1凹部33c1、および第2辺部33bに接し第3面333および第2側面332に開口する第2凹部33c2が、上部クラッド33に形成される。図4Eでは、第1凹部33c1および第2凹部33c2が、それぞれ1つの場合が例示されているものの、マスク35の形状によって凹部33cの数を調節すればよい。
After being covered with the mask 35, the upper cladding material 33d is hardened by exposure to light. Then, as shown in FIG. 4E, the mask 35 is removed, and the upper cladding material 33d in the portion covered by the mask 35 is removed by development. Through this procedure, as shown in FIG. 4E, a first recess 33c1 that contacts the first side portion 33a and opens to the third surface 333 and the first side surface 331, and a second recess 33c2 that contacts the second side portion 33b and opens to the third surface 333 and the second side surface 332 are formed in the upper cladding 33. Although FIG. 4E illustrates an example in which there is one each of the first recess 33c1 and the second recess 33c2, the number of recesses 33c can be adjusted according to the shape of the mask 35.
次に、凹部33cの他の形状を、図5に基づいて説明する。図5Aは、図2に示す矢印A方向から見た光導波路3の要部の他の実施形態を示す平面図である。図5Bは、図5Aに示すX-X線で切断した際の断面を示す拡大説明図である。図5Cは、図5Bに示す矢印C方向から見た光回路基板1(光導波路3)の側面図である。
Next, other shapes of the recess 33c will be described with reference to Figure 5. Figure 5A is a plan view showing another embodiment of the main part of the optical waveguide 3 as viewed from the direction of the arrow A shown in Figure 2. Figure 5B is an enlarged explanatory view showing a cross section taken along line X-X shown in Figure 5A. Figure 5C is a side view of the optical circuit board 1 (optical waveguide 3) as viewed from the direction of the arrow C shown in Figure 5B.
上述のように、図3Bに示す凹部33c(33c2)において、上部クラッド33の第3面333から最も離れた底部は、下部クラッド31の第2面312に位置している。すなわち、凹部33c(33c2)の高さHは、上部クラッド33の厚みに相当する。一方、図5Bに示す凹部33cの高さは、上部クラッド33の厚みよりも大きい。このように、凹部33cにおいて、上部クラッド33の第3面333から最も離れた底部は、下部クラッド31における第2面312よりも配線基板2の第1面21側に位置していてもよい。複数の凹部33cが位置している場合、少なくとも一部の凹部33cがこのような構造を有していればよい。
As described above, in the recess 33c (33c2) shown in FIG. 3B, the bottom farthest from the third surface 333 of the upper clad 33 is located on the second surface 312 of the lower clad 31. That is, the height H of the recess 33c (33c2) corresponds to the thickness of the upper clad 33. On the other hand, the height of the recess 33c shown in FIG. 5B is greater than the thickness of the upper clad 33. In this way, in the recess 33c, the bottom farthest from the third surface 333 of the upper clad 33 may be located closer to the first surface 21 of the wiring board 2 than the second surface 312 of the lower clad 31. When multiple recesses 33c are located, it is sufficient that at least some of the recesses 33c have such a structure.
凹部33cの高さが上部クラッド33の厚みよりも大きい場合、図5Cに示すように、光学部品4および光コネクター5aを接続する封止樹脂8が、凹部33cに入り込む。その結果、これらの部材の接合強度が向上する。底部は図5Bにおいて平坦状であるが、凹凸状であっても構わない。この場合、封止樹脂8と底部との接触面積が大きくなり接合強度が向上する点で有利である。
When the height of the recess 33c is greater than the thickness of the upper cladding 33, as shown in FIG. 5C, the sealing resin 8 that connects the optical component 4 and the optical connector 5a enters the recess 33c. As a result, the bonding strength between these components is improved. Although the bottom is flat in FIG. 5B, it may be uneven. In this case, the contact area between the sealing resin 8 and the bottom is increased, which is advantageous in that the bonding strength is improved.
凹部33cにおいて、上部クラッド33の第3面333から最も離れた底部は、下部クラッド31における第2面312よりも第1面21側に位置していれば、限定されない。底部は、第2面312から下部クラッド31の厚みの100%以上の深さに位置していてもよい。すなわち、凹部33cが下部クラッド31を貫通していてもよい。
The bottom of the recess 33c, which is furthest from the third surface 333 of the upper cladding 33, is not limited as long as it is located closer to the first surface 21 than the second surface 312 of the lower cladding 31. The bottom may be located at a depth from the second surface 312 to 100% or more of the thickness of the lower cladding 31. In other words, the recess 33c may penetrate the lower cladding 31.
底部が下部クラッド31における第2面312よりも第1面21側に位置する凹部33cは、例えばレーザー加工によって形成される。具体的には、図4Dに示すマスク35は、凹部33cを形成するために使用せずに、上部クラッド33の第1側面331および第2側面332のみが形成されるように使用する。露光することによって、マスク35で被覆されていなかった部分の上部クラッド材料33dが硬化する。マスク35を外した後、マスク35で被覆されていた部分の上部クラッド材料33dが現像により除去される。その後、レーザー加工に供することによって、凹部33cが形成される。
The recess 33c, whose bottom is located closer to the first surface 21 than the second surface 312 of the lower clad 31, is formed, for example, by laser processing. Specifically, the mask 35 shown in FIG. 4D is not used to form the recess 33c, but is used so that only the first side surface 331 and the second side surface 332 of the upper clad 33 are formed. By exposing to light, the upper clad material 33d in the portion not covered by the mask 35 is hardened. After removing the mask 35, the upper clad material 33d in the portion covered by the mask 35 is removed by development. The recess 33c is then formed by subjecting it to laser processing.
さらに、凹部33cは、図6に示すように、開口する方向(第1側面331から第2側面332に向かう方向)に向けて突出する凸部334を有していてもよい。図6Aは、光導波路3に形成された凹部33c(第1凹部33c1および第2凹部33c2)のさらに他の実施形態を説明するための説明図(斜視図)である。図6Bは、図6Aに示す矢印D方向から見た平面図である。
Furthermore, the recess 33c may have a protrusion 334 protruding in the opening direction (direction from the first side surface 331 toward the second side surface 332) as shown in Fig. 6. Fig. 6A is an explanatory diagram (perspective view) for explaining yet another embodiment of the recess 33c (first recess 33c1 and second recess 33c2) formed in the optical waveguide 3. Fig. 6B is a plan view seen from the direction of the arrow D shown in Fig. 6A.
凹部33cに凸部334が位置していると、例えば第1端面321側から入射され凹部33cに侵入した光の一部が凸部334において光導波路3の外部に反射するため、第2端面322側に透過する光を低減し易い。図6Bに示すように、光の入射方向Fと凸部334とのなす角度θは限定されず、例えば15°以上75°以下であってもよい。角度θがこのような範囲であれば、上部クラッド33の第1辺部33aおよび第2辺部33bに入射した光を、光導波路3の外部に反射させやすくなる。複数の凹部33cが位置している場合、少なくとも一部の凹部33cが凸部334を有していればよい。
When the convex portion 334 is located in the concave portion 33c, for example, a portion of the light incident from the first end face 321 side and entering the concave portion 33c is reflected at the convex portion 334 to the outside of the optical waveguide 3, making it easier to reduce the light transmitted to the second end face 322 side. As shown in FIG. 6B, the angle θ between the incident direction F of the light and the convex portion 334 is not limited, and may be, for example, 15° or more and 75° or less. If the angle θ is in this range, it becomes easier to reflect the light incident on the first side portion 33a and the second side portion 33b of the upper cladding 33 to the outside of the optical waveguide 3. When multiple concave portions 33c are located, it is sufficient that at least some of the concave portions 33c have convex portions 334.
図6Bでは、上部から平面視した場合、凸部334は三角形状を有している。しかし、角度θが90°未満であれば、凸部334の形状は三角形状に限定されない。平面視した場合、凸部334は、例えば半円形状、台形状などを有していてもよい。
In FIG. 6B, when viewed from above in a plane, the convex portion 334 has a triangular shape. However, if the angle θ is less than 90°, the shape of the convex portion 334 is not limited to a triangular shape. When viewed in a plane, the convex portion 334 may have, for example, a semicircular shape or a trapezoidal shape.
図3~5に示される凹部33cは、上記のように、上部から平面視した場合に、四角形状を有している。すなわち、上部クラッド33の第3面333および側面が開口を有するように、四角形状に切り欠かれた形状を有している。しかし、凹部33cの形状は、四角形状に限定されない。
As described above, the recess 33c shown in Figures 3 to 5 has a rectangular shape when viewed from above in a plan view. In other words, the third surface 333 and the side surface of the upper cladding 33 have a rectangular cutout shape so as to have an opening. However, the shape of the recess 33c is not limited to a rectangular shape.
例えば、図7に示すように、上部クラッド33の第1辺部33a(第2辺部33b)に接し、上部クラッド33の第3面333および第1側面331(第2側面332)に開口する形状であれば、凹部33cの形状は限定されない。図7は、光導波路3に形成された凹部33c(第1凹部33c1および第2凹部33c2)のさらに他の実施形態を説明するための説明図(斜視図)である。
For example, as shown in Figure 7, the shape of the recess 33c is not limited as long as it is in contact with the first side 33a (second side 33b) of the upper cladding 33 and opens to the third surface 333 and the first side surface 331 (second side surface 332) of the upper cladding 33. Figure 7 is an explanatory diagram (perspective view) for explaining yet another embodiment of the recess 33c (first recess 33c1 and second recess 33c2) formed in the optical waveguide 3.
具体的には、上部から斜視した場合に、図7に示すように、上部クラッド33の第3面333および側面が開口を有するように、三角形状に切り欠かれた形状を有していてもよく、半円形状、台形状などに切り欠かれた形状を有していてもよい。
Specifically, when viewed obliquely from above, as shown in FIG. 7, the third surface 333 and the side surface of the upper cladding 33 may have a triangular cutout shape so as to have an opening, or may have a semicircular, trapezoidal, or other cutout shape.
次に、本開示の実装構造体について説明する。本開示の一実施形態に係る実装構造体10は、図1に示すように、一実施形態に係る光回路基板1に光学部品4および電子部品6が実装された構造を有している。一実施形態に係る実装構造体10に実装される光学部品4には、光伝送路41が含まれる。このような光伝送路41を含む光学部品4としては、例えば、シリコンフォトニクスデバイスなどが挙げられる。電子部品6としては、例えば、ASIC(Application Specific Integrated Circuit)、ドライバICなどが挙げられる。
Next, the mounting structure of the present disclosure will be described. As shown in FIG. 1, a mounting structure 10 according to an embodiment of the present disclosure has a structure in which an optical component 4 and an electronic component 6 are mounted on an optical circuit board 1 according to an embodiment. The optical component 4 mounted on the mounting structure 10 according to an embodiment includes an optical transmission path 41. Examples of optical components 4 including such optical transmission paths 41 include silicon photonics devices. Examples of electronic components 6 include ASICs (Application Specific Integrated Circuits) and driver ICs.
図2に示すように、光学部品4は、配線基板2と電気的に接続されている。具体的には、光学部品4は、配線基板2の実装領域(光学部品4を実装するための領域)に位置するパッド21bとはんだ7を介して電気的に接続されている。パッド21bは、配線基板2の上面に位置する導体層の一部である。
As shown in FIG. 2, the optical component 4 is electrically connected to the wiring board 2. Specifically, the optical component 4 is electrically connected to a pad 21b located in the mounting area (area for mounting the optical component 4) of the wiring board 2 via solder 7. The pad 21b is part of a conductor layer located on the upper surface of the wiring board 2.
光学部品4の一例として、シリコンフォトニクスデバイスについて説明する。シリコンフォトニクスデバイスは、例えば、ケイ素(Si)をコアとし、二酸化ケイ素(SiO2)をクラッドとする光伝送路41を有する光学部品の1種である。シリコンフォトニクスデバイスは、光伝送路41としてSi導波路を含み、図示していないが、パッシベーション膜、光源部、光検出部などをさらに含んでいる。上述のように、光伝送路41(Si導波路41)は、光導波路3の一方の端部(図2では第1端面321)において、光導波路3に含まれるコア32と対向するように位置している。
A silicon photonics device will be described as an example of the optical component 4. The silicon photonics device is, for example, a type of optical component having an optical transmission path 41 with a core of silicon (Si) and a clad of silicon dioxide (SiO 2 ). The silicon photonics device includes a Si waveguide as the optical transmission path 41, and further includes a passivation film, a light source unit, a light detection unit, and the like, although not shown. As described above, the optical transmission path 41 (Si waveguide 41) is located at one end of the optical waveguide 3 (first end surface 321 in FIG. 2) so as to face the core 32 included in the optical waveguide 3.
例えば、配線基板2からの電気信号が、はんだ7を介して光学部品4(シリコンフォトニクスデバイス)に含まれる光源部に伝搬される。伝搬された電気信号を受信した光源部は発光する。発光した光信号が光伝送路41(Si導波路41)およびコア32を経由して、光コネクター5aを介して接続されている光ファイバー5に伝播される。
For example, an electrical signal from the wiring board 2 is transmitted via the solder 7 to the light source section included in the optical component 4 (silicon photonics device). The light source section receives the transmitted electrical signal and emits light. The emitted optical signal is transmitted via the optical transmission path 41 (Si waveguide 41) and the core 32 to the optical fiber 5 connected via the optical connector 5a.
以上、本開示の実施形態について説明した。しかし、本開示に係る発明は上述の実施形態に限定されるものではなく、下記の(1)および(8)に示す本開示の範囲内で種々の変更および改良が可能である。
The above describes the embodiments of the present disclosure. However, the invention of the present disclosure is not limited to the above-described embodiments, and various modifications and improvements are possible within the scope of the present disclosure as shown in (1) and (8) below.
(1)本開示に係る光回路基板は、第1面を有する配線基板と第1面に位置する光導波路とを含む。光導波路は、下部クラッド、コアおよび上部クラッドを含む。下部クラッドは、第1面に位置しており、第1面と接する面の反対側に位置する第2面を有する。コアは、第2面に延在しており、コアの延在方向に互いに対向して位置する第1端面および第2端面を有する。上部クラッドは、第2面に位置しており、第1端面および第2端面が露出するようコアを被覆するとともに、延在方向に沿って位置する一対の第1側面および第2側面と、第2面と接する面の反対側に位置する第3面と、第1側面と第3面との接線部である第1辺部と、第2側面と第3面との接線部である第2辺部とを有する。上部クラッドは、第1辺部に接し第3面および第1側面に開口する第1凹部、および第2辺部に接し第3面および第2側面に開口する第2凹部の少なくとも一方を、さらに有している。
(1) The optical circuit board according to the present disclosure includes a wiring board having a first surface and an optical waveguide located on the first surface. The optical waveguide includes a lower cladding, a core, and an upper cladding. The lower cladding is located on the first surface and has a second surface located opposite the surface in contact with the first surface. The core extends on the second surface and has a first end surface and a second end surface located opposite each other in the extension direction of the core. The upper cladding is located on the second surface and covers the core so that the first end surface and the second end surface are exposed, and has a pair of first and second side surfaces located along the extension direction, a third surface located opposite the surface in contact with the second surface, a first edge portion that is a tangent portion between the first side surface and the third surface, and a second edge portion that is a tangent portion between the second side surface and the third surface. The upper cladding further has at least one of a first recess that contacts the first edge portion and opens to the third surface and the first side surface, and a second recess that contacts the second edge portion and opens to the third surface and the second side surface.
本開示の実施形態に関し、以下の(2)~(7)に示す実施形態をさらに開示する。
With regard to the embodiments of the present disclosure, the following embodiments (2) to (7) are further disclosed.
(2)上記(1)に記載の光回路基板において、第1凹部および第2凹部の少なくとも一部は、開口する方向に向けて突出する凸部を有している。
(3)上記(1)または(2)に記載の光回路基板において、第1凹部および第2凹部の少なくとも一部において、内壁面の算術平均粗さは、50nm以下である。
(4)上記(1)~(3)のいずれかに記載の光回路基板において、上部クラッドは、第1凹部および第2凹部の少なくとも一方を、複数有している。
(5)上記(4)に記載の光回路基板において、上部クラッドは、第1凹部および第2凹部を、各々複数有している。
(6)上記(1)~(5)のいずれかに記載の光回路基板において、第1凹部および第2凹部の少なくとも一部において、第3面から最も離れた底部は、上部クラッドまたは第2面に位置している。
(7)上記(1)~(6)のいずれかに記載の光回路基板において、第1凹部および第2凹部の少なくとも一部において、第3面から最も離れた底部は、下部クラッドにおける第2面よりも第1面側に位置している。 (2) In the optical circuit board described in (1) above, at least a portion of the first recess and the second recess has a protrusion protruding in the direction of the opening.
(3) In the optical circuit board according to (1) or (2) above, the arithmetic mean roughness of the inner wall surface of at least a part of the first recess and the second recess is 50 nm or less.
(4) In the optical circuit board according to any one of (1) to (3) above, the upper clad has at least one of the first recesses and the second recesses in a plurality of portions.
(5) In the optical circuit board described in (4) above, the upper clad has a plurality of first recesses and a plurality of second recesses.
(6) In the optical circuit board according to any one of (1) to (5) above, in at least a portion of the first recess and the second recess, the bottom portion farthest from the third surface is located on the upper cladding or the second surface.
(7) In the optical circuit board described in any one of (1) to (6) above, in at least a portion of the first recess and the second recess, the bottom furthest from the third surface is located closer to the first surface than the second surface in the lower cladding.
(3)上記(1)または(2)に記載の光回路基板において、第1凹部および第2凹部の少なくとも一部において、内壁面の算術平均粗さは、50nm以下である。
(4)上記(1)~(3)のいずれかに記載の光回路基板において、上部クラッドは、第1凹部および第2凹部の少なくとも一方を、複数有している。
(5)上記(4)に記載の光回路基板において、上部クラッドは、第1凹部および第2凹部を、各々複数有している。
(6)上記(1)~(5)のいずれかに記載の光回路基板において、第1凹部および第2凹部の少なくとも一部において、第3面から最も離れた底部は、上部クラッドまたは第2面に位置している。
(7)上記(1)~(6)のいずれかに記載の光回路基板において、第1凹部および第2凹部の少なくとも一部において、第3面から最も離れた底部は、下部クラッドにおける第2面よりも第1面側に位置している。 (2) In the optical circuit board described in (1) above, at least a portion of the first recess and the second recess has a protrusion protruding in the direction of the opening.
(3) In the optical circuit board according to (1) or (2) above, the arithmetic mean roughness of the inner wall surface of at least a part of the first recess and the second recess is 50 nm or less.
(4) In the optical circuit board according to any one of (1) to (3) above, the upper clad has at least one of the first recesses and the second recesses in a plurality of portions.
(5) In the optical circuit board described in (4) above, the upper clad has a plurality of first recesses and a plurality of second recesses.
(6) In the optical circuit board according to any one of (1) to (5) above, in at least a portion of the first recess and the second recess, the bottom portion farthest from the third surface is located on the upper cladding or the second surface.
(7) In the optical circuit board described in any one of (1) to (6) above, in at least a portion of the first recess and the second recess, the bottom furthest from the third surface is located closer to the first surface than the second surface in the lower cladding.
(8)本開示に係る実装構造体は、上記(1)~(7)のいずれかに記載の光回路基板と、この光回路基板に実装された光学部品とを含む。
(8) The mounting structure according to the present disclosure includes an optical circuit board described in any one of (1) to (7) above, and an optical component mounted on the optical circuit board.
1 光回路基板
2 配線基板
21 第1面
21a 金属層
21b パッド
3 光導波路
31 下部クラッド
312 第2面
32 コア
321 第1端面
322 第2端面
32a コア材料
33 上部クラッド
331 第1側面
332 第2側面
333 第3面
33a 第1辺部
33b 第2辺部
33c 凹部
33d 上部クラッド材料
33c1 第1凹部
33c2 第2凹部
334 凸部
34 マスク
35 マスク
4 光学部品
41 光伝送路(シリコン導波路(Si導波路))
5 光ファイバー
5a 光コネクター
6 電子部品
7 はんだ
8 封止樹脂
10 実装構造体 REFERENCE SIGNSLIST 1 Optical circuit board 2 Wiring board 21 First surface 21a Metal layer 21b Pad 3 Optical waveguide 31 Lower cladding 312 Second surface 32 Core 321 First end surface 322 Second end surface 32a Core material 33 Upper cladding 331 First side surface 332 Second side surface 333 Third surface 33a First side portion 33b Second side portion 33c Convex portion 33d Upper cladding material 33c1 First concave portion 33c2 Second concave portion 334 Convex portion 34 Mask 35 Mask 4 Optical component 41 Optical transmission path (silicon waveguide (Si waveguide))
5Optical fiber 5a Optical connector 6 Electronic component 7 Solder 8 Sealing resin 10 Mounting structure
2 配線基板
21 第1面
21a 金属層
21b パッド
3 光導波路
31 下部クラッド
312 第2面
32 コア
321 第1端面
322 第2端面
32a コア材料
33 上部クラッド
331 第1側面
332 第2側面
333 第3面
33a 第1辺部
33b 第2辺部
33c 凹部
33d 上部クラッド材料
33c1 第1凹部
33c2 第2凹部
334 凸部
34 マスク
35 マスク
4 光学部品
41 光伝送路(シリコン導波路(Si導波路))
5 光ファイバー
5a 光コネクター
6 電子部品
7 はんだ
8 封止樹脂
10 実装構造体 REFERENCE SIGNS
5
Claims (8)
- 第1面を有する配線基板と、
前記第1面に位置する光導波路と、
を含み、
該光導波路は、下部クラッド、コアおよび上部クラッドを含み、
前記下部クラッドは、前記第1面に位置しており、該第1面と接する面の反対側に位置する第2面を有し、
前記コアは、前記第2面に延在しており、前記コアの延在方向に互いに対向して位置する第1端面および第2端面を有し、
前記上部クラッドは、前記第2面に位置しており、前記第1端面および前記第2端面が露出するよう前記コアを被覆するとともに、前記延在方向に沿って位置する一対の第1側面および第2側面と、前記第2面と接する面の反対側に位置する第3面と、前記第1側面と前記第3面との接線部である第1辺部と、前記第2側面と前記第3面との接線部である第2辺部と、を有し、
前記上部クラッドは、前記第1辺部に接し前記第3面および前記第1側面に開口する第1凹部、および前記第2辺部に接し前記第3面および前記第2側面に開口する第2凹部の少なくとも一方を、さらに有している、
光回路基板。 A wiring substrate having a first surface;
an optical waveguide located on the first surface;
Including,
the optical waveguide includes a lower cladding, a core, and an upper cladding;
the lower cladding is located on the first surface and has a second surface located opposite to a surface in contact with the first surface;
the core extends on the second surface and has a first end surface and a second end surface positioned opposite each other in an extension direction of the core,
the upper cladding is located on the second surface, covers the core so that the first end surface and the second end surface are exposed, and has a pair of first and second side surfaces located along the extending direction, a third surface located on the opposite side to a surface in contact with the second surface, a first side portion which is a tangent portion between the first side surface and the third surface, and a second side portion which is a tangent portion between the second side surface and the third surface,
the upper cladding further has at least one of a first recess in contact with the first side portion and opening to the third surface and the first side surface, and a second recess in contact with the second side portion and opening to the third surface and the second side surface.
Optical circuit board. - 前記第1凹部および前記第2凹部の少なくとも一部は、開口する方向に向けて突出する凸部を有している、請求項1に記載の光回路基板。 The optical circuit board according to claim 1, wherein at least a portion of the first recess and the second recess has a protrusion protruding in the direction of the opening.
- 前記第1凹部および前記第2凹部の少なくとも一部において、内壁面の算術平均粗さは、50nm以下である、請求項1または2に記載の光回路基板。 The optical circuit board according to claim 1 or 2, wherein the arithmetic mean roughness of the inner wall surface of at least a portion of the first recess and the second recess is 50 nm or less.
- 前記上部クラッドは、前記第1凹部および前記第2凹部の少なくとも一方を、複数有している、請求項1~3のいずれかに記載の光回路基板。 The optical circuit board according to any one of claims 1 to 3, wherein the upper cladding has a plurality of at least one of the first recesses and the second recesses.
- 前記上部クラッドは、前記第1凹部および前記第2凹部を、各々複数有している、請求項4に記載の光回路基板。 The optical circuit board according to claim 4, wherein the upper cladding has a plurality of the first recesses and a plurality of the second recesses.
- 前記第1凹部および前記第2凹部の少なくとも一部において、前記第3面から最も離れた底部は、前記上部クラッドまたは前記第2面に位置している、請求項1~5のいずれかに記載の光回路基板。 An optical circuit board according to any one of claims 1 to 5, wherein the bottoms of at least a portion of the first recess and the second recess that are furthest from the third surface are located on the upper cladding or the second surface.
- 前記第1凹部および前記第2凹部の少なくとも一部において、前記第3面から最も離れた底部は、前記下部クラッドにおける前記第2面よりも前記第1面側に位置している、請求項1~6のいずれかに記載の光回路基板。 An optical circuit board according to any one of claims 1 to 6, wherein in at least a portion of the first recess and the second recess, the bottom furthest from the third surface is located closer to the first surface than the second surface of the lower cladding.
- 請求項1~7のいずれかに記載の光回路基板と、
該光回路基板に実装された光学部品と、
を含む、実装構造体。 An optical circuit board according to any one of claims 1 to 7,
an optical component mounted on the optical circuit board;
An implementation struct, including:
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023-055554 | 2023-03-30 | ||
JP2023055554 | 2023-03-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024204111A1 true WO2024204111A1 (en) | 2024-10-03 |
Family
ID=92906631
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2024/011777 WO2024204111A1 (en) | 2023-03-30 | 2024-03-25 | Optical circuit board and mounting structure |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2024204111A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005266254A (en) * | 2004-03-18 | 2005-09-29 | Sanyo Electric Co Ltd | Optical waveguide |
US20090304324A1 (en) * | 2008-06-09 | 2009-12-10 | Samsung Electro-Mechanics Co., Ltd. | Optical waveguide and optical printed circuit board having the same |
JP2014211510A (en) * | 2013-04-18 | 2014-11-13 | 日東電工株式会社 | Photo-electric hybrid module |
JP2015087657A (en) * | 2013-10-31 | 2015-05-07 | 住友ベークライト株式会社 | Optical waveguide, opto-electric hybrid substrate, and electronic apparatus |
-
2024
- 2024-03-25 WO PCT/JP2024/011777 patent/WO2024204111A1/en unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005266254A (en) * | 2004-03-18 | 2005-09-29 | Sanyo Electric Co Ltd | Optical waveguide |
US20090304324A1 (en) * | 2008-06-09 | 2009-12-10 | Samsung Electro-Mechanics Co., Ltd. | Optical waveguide and optical printed circuit board having the same |
JP2014211510A (en) * | 2013-04-18 | 2014-11-13 | 日東電工株式会社 | Photo-electric hybrid module |
JP2015087657A (en) * | 2013-10-31 | 2015-05-07 | 住友ベークライト株式会社 | Optical waveguide, opto-electric hybrid substrate, and electronic apparatus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI693437B (en) | Optical waveguide and optical circuit substrate | |
WO2024204111A1 (en) | Optical circuit board and mounting structure | |
WO2022210230A1 (en) | Optical circuit board and optical component mounting structure using same | |
CN114127601B (en) | Optical circuit board and electronic component mounting structure using same | |
WO2023210672A1 (en) | Optical circuit board and optical component mounting structure | |
WO2023190186A1 (en) | Optical circuit board | |
JP7515609B2 (en) | Optical circuit board and electronic component mounting structure using the same | |
KR20240157769A (en) | Optical circuit board and optical component mounting structure | |
WO2024143134A1 (en) | Optical circuit board, optical component mounting structure, and method for producing optical circuit board | |
TWI828314B (en) | Optical circuit board and optical component mounting structure using the same | |
CN118946836A (en) | Optical circuit board | |
WO2023145593A1 (en) | Optical circuit board | |
WO2024117023A1 (en) | Optical circuit board, optical component mounting structure, and method for manufacturing optical circuit board | |
WO2023162964A1 (en) | Optical circuit board | |
WO2022163481A1 (en) | Optical circuit board and electronic component mounting structure using same | |
JP2001091773A (en) | Optical circuit module |