WO2024204198A1 - Hardening accelerator for hydraulic materials, cement composition, and hardened substance - Google Patents
Hardening accelerator for hydraulic materials, cement composition, and hardened substance Download PDFInfo
- Publication number
- WO2024204198A1 WO2024204198A1 PCT/JP2024/011948 JP2024011948W WO2024204198A1 WO 2024204198 A1 WO2024204198 A1 WO 2024204198A1 JP 2024011948 W JP2024011948 W JP 2024011948W WO 2024204198 A1 WO2024204198 A1 WO 2024204198A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- calcium
- cement composition
- mass
- cement
- hardening accelerator
- Prior art date
Links
- 239000000463 material Substances 0.000 title claims abstract description 75
- 239000004568 cement Substances 0.000 title claims description 112
- 239000000203 mixture Substances 0.000 title claims description 74
- 239000000126 substance Substances 0.000 title description 8
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 claims abstract description 43
- 229910052920 inorganic sulfate Inorganic materials 0.000 claims abstract description 21
- 229940043430 calcium compound Drugs 0.000 claims abstract description 20
- 150000001674 calcium compounds Chemical class 0.000 claims abstract description 20
- CBOCVOKPQGJKKJ-UHFFFAOYSA-L Calcium formate Chemical compound [Ca+2].[O-]C=O.[O-]C=O CBOCVOKPQGJKKJ-UHFFFAOYSA-L 0.000 claims abstract description 12
- 229940044172 calcium formate Drugs 0.000 claims abstract description 12
- 235000019255 calcium formate Nutrition 0.000 claims abstract description 12
- 239000004281 calcium formate Substances 0.000 claims abstract description 12
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 claims description 16
- 239000011575 calcium Substances 0.000 claims description 14
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims description 13
- 229910052791 calcium Inorganic materials 0.000 claims description 13
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 claims description 12
- 239000000292 calcium oxide Substances 0.000 claims description 10
- 229910000019 calcium carbonate Inorganic materials 0.000 claims description 8
- 238000004519 manufacturing process Methods 0.000 claims description 8
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 claims description 7
- 239000000920 calcium hydroxide Substances 0.000 claims description 7
- 229910001861 calcium hydroxide Inorganic materials 0.000 claims description 7
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 claims description 7
- LSNNMFCWUKXFEE-UHFFFAOYSA-N Sulfurous acid Chemical class OS(O)=O LSNNMFCWUKXFEE-UHFFFAOYSA-N 0.000 claims description 3
- LSNNMFCWUKXFEE-UHFFFAOYSA-L sulfite Chemical class [O-]S([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-L 0.000 claims 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 claims 1
- 150000004764 thiosulfuric acid derivatives Chemical class 0.000 claims 1
- 238000001723 curing Methods 0.000 description 36
- 238000011161 development Methods 0.000 description 31
- 230000014759 maintenance of location Effects 0.000 description 26
- 238000000034 method Methods 0.000 description 25
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 20
- 238000002156 mixing Methods 0.000 description 19
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 14
- 239000002518 antifoaming agent Substances 0.000 description 10
- 238000005266 casting Methods 0.000 description 10
- 239000003153 chemical reaction reagent Substances 0.000 description 10
- 239000000843 powder Substances 0.000 description 10
- 229910021487 silica fume Inorganic materials 0.000 description 10
- 235000012255 calcium oxide Nutrition 0.000 description 9
- 239000004570 mortar (masonry) Substances 0.000 description 9
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 8
- 229910052938 sodium sulfate Inorganic materials 0.000 description 8
- 235000011152 sodium sulphate Nutrition 0.000 description 8
- 235000010216 calcium carbonate Nutrition 0.000 description 7
- 238000005056 compaction Methods 0.000 description 7
- 239000004567 concrete Substances 0.000 description 7
- 239000010881 fly ash Substances 0.000 description 7
- 239000004576 sand Substances 0.000 description 7
- 239000002893 slag Substances 0.000 description 7
- DIZPMCHEQGEION-UHFFFAOYSA-H aluminium sulfate (anhydrous) Chemical compound [Al+3].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O DIZPMCHEQGEION-UHFFFAOYSA-H 0.000 description 6
- 235000011116 calcium hydroxide Nutrition 0.000 description 6
- 238000010276 construction Methods 0.000 description 6
- 238000009415 formwork Methods 0.000 description 6
- 239000011398 Portland cement Substances 0.000 description 5
- 229910000288 alkali metal carbonate Inorganic materials 0.000 description 5
- 150000008041 alkali metal carbonates Chemical class 0.000 description 5
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 5
- 239000002956 ash Substances 0.000 description 5
- 239000003638 chemical reducing agent Substances 0.000 description 5
- 238000001816 cooling Methods 0.000 description 5
- 238000004898 kneading Methods 0.000 description 5
- 238000013031 physical testing Methods 0.000 description 5
- 239000002994 raw material Substances 0.000 description 5
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 4
- 235000011126 aluminium potassium sulphate Nutrition 0.000 description 4
- 229910052925 anhydrite Inorganic materials 0.000 description 4
- 229910052593 corundum Inorganic materials 0.000 description 4
- 230000005484 gravity Effects 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 229940050271 potassium alum Drugs 0.000 description 4
- GRLPQNLYRHEGIJ-UHFFFAOYSA-J potassium aluminium sulfate Chemical compound [Al+3].[K+].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O GRLPQNLYRHEGIJ-UHFFFAOYSA-J 0.000 description 4
- AKHNMLFCWUSKQB-UHFFFAOYSA-L sodium thiosulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=S AKHNMLFCWUSKQB-UHFFFAOYSA-L 0.000 description 4
- 235000019345 sodium thiosulphate Nutrition 0.000 description 4
- 229910001845 yogo sapphire Inorganic materials 0.000 description 4
- 230000002411 adverse Effects 0.000 description 3
- 239000011400 blast furnace cement Substances 0.000 description 3
- 235000011132 calcium sulphate Nutrition 0.000 description 3
- 239000013065 commercial product Substances 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- DHCDFWKWKRSZHF-UHFFFAOYSA-L thiosulfate(2-) Chemical compound [O-]S([S-])(=O)=O DHCDFWKWKRSZHF-UHFFFAOYSA-L 0.000 description 3
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 2
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 2
- 235000019738 Limestone Nutrition 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- 235000011941 Tilia x europaea Nutrition 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- -1 etc. Substances 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- 229910052602 gypsum Inorganic materials 0.000 description 2
- 239000010440 gypsum Substances 0.000 description 2
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 2
- 239000004571 lime Substances 0.000 description 2
- 239000006028 limestone Substances 0.000 description 2
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 238000010298 pulverizing process Methods 0.000 description 2
- 239000010801 sewage sludge Substances 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- 150000005846 sugar alcohols Polymers 0.000 description 2
- 238000004227 thermal cracking Methods 0.000 description 2
- 238000004056 waste incineration Methods 0.000 description 2
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- BDAGIHXWWSANSR-UHFFFAOYSA-M Formate Chemical compound [O-]C=O BDAGIHXWWSANSR-UHFFFAOYSA-M 0.000 description 1
- JVTAAEKCZFNVCJ-UHFFFAOYSA-M Lactate Chemical compound CC(O)C([O-])=O JVTAAEKCZFNVCJ-UHFFFAOYSA-M 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 239000004113 Sepiolite Substances 0.000 description 1
- UIIMBOGNXHQVGW-DEQYMQKBSA-M Sodium bicarbonate-14C Chemical compound [Na+].O[14C]([O-])=O UIIMBOGNXHQVGW-DEQYMQKBSA-M 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 150000005215 alkyl ethers Chemical class 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 239000007798 antifreeze agent Substances 0.000 description 1
- 229910001570 bauxite Inorganic materials 0.000 description 1
- 239000000440 bentonite Substances 0.000 description 1
- 229910000278 bentonite Inorganic materials 0.000 description 1
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 1
- 239000011083 cement mortar Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000002734 clay mineral Substances 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- GDVKFRBCXAPAQJ-UHFFFAOYSA-A dialuminum;hexamagnesium;carbonate;hexadecahydroxide Chemical compound [OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Al+3].[Al+3].[O-]C([O-])=O GDVKFRBCXAPAQJ-UHFFFAOYSA-A 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 229910001653 ettringite Inorganic materials 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 238000005187 foaming Methods 0.000 description 1
- 229940044170 formate Drugs 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000006703 hydration reaction Methods 0.000 description 1
- 229910001701 hydrotalcite Inorganic materials 0.000 description 1
- 229960001545 hydrotalcite Drugs 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 229910001853 inorganic hydroxide Inorganic materials 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 description 1
- 229910052808 lithium carbonate Inorganic materials 0.000 description 1
- HQRPHMAXFVUBJX-UHFFFAOYSA-M lithium;hydrogen carbonate Chemical compound [Li+].OC([O-])=O HQRPHMAXFVUBJX-UHFFFAOYSA-M 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000010422 painting Methods 0.000 description 1
- 239000006072 paste Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229910000028 potassium bicarbonate Inorganic materials 0.000 description 1
- 235000015497 potassium bicarbonate Nutrition 0.000 description 1
- 239000011736 potassium bicarbonate Substances 0.000 description 1
- 229910000027 potassium carbonate Inorganic materials 0.000 description 1
- 235000011181 potassium carbonates Nutrition 0.000 description 1
- TYJJADVDDVDEDZ-UHFFFAOYSA-M potassium hydrogencarbonate Chemical compound [K+].OC([O-])=O TYJJADVDDVDEDZ-UHFFFAOYSA-M 0.000 description 1
- 239000011150 reinforced concrete Substances 0.000 description 1
- 239000005871 repellent Substances 0.000 description 1
- 230000002940 repellent Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229910052624 sepiolite Inorganic materials 0.000 description 1
- 235000019355 sepiolite Nutrition 0.000 description 1
- 239000010802 sludge Substances 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 239000008399 tap water Substances 0.000 description 1
- 235000020679 tap water Nutrition 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B20/00—Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
- C04B20/02—Treatment
- C04B20/04—Heat treatment
- C04B20/06—Expanding clay, perlite, vermiculite or like granular materials
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B22/00—Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
- C04B22/08—Acids or salts thereof
- C04B22/10—Acids or salts thereof containing carbon in the anion
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B22/00—Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
- C04B22/08—Acids or salts thereof
- C04B22/14—Acids or salts thereof containing sulfur in the anion, e.g. sulfides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B24/00—Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
- C04B24/04—Carboxylic acids; Salts, anhydrides or esters thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B28/00—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
- C04B28/02—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B40/00—Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
- C04B40/02—Selection of the hardening environment
Definitions
- the present invention relates to a hardening accelerator for hydraulic materials, and a cement composition and hardened body containing the material.
- Hydraulic materials such as cement used in civil engineering and construction fields usually harden by mixing with water and leaving to stand for a certain period of time.
- the hardening speed of hydraulic materials can be affected by the ratio of the material to water, the surrounding environmental temperature, and the curing method, but the time it takes for hydraulic materials to harden can be shortened by using admixtures that accelerate hardening, i.e., hardening accelerators.
- the hardened concrete used in precast construction methods used in reinforced concrete buildings is generally obtained by pouring a cement composition into a formwork, leaving it to stand for a specified period of time, and then curing it further by steam curing or the like.
- a hardening accelerator the time it takes for the concrete to reach an initial strength that allows it to be removed from the form can be reduced, allowing the hardened concrete to be produced more efficiently.
- Patent Document 1 discloses a hardening accelerator for hydraulic materials that contains predetermined amounts of inorganic sulfate, calcium sulfoaluminate, and inorganic hydroxide
- Patent Document 2 discloses a cement admixture that contains calcium sulfoaluminate having a Blaine specific surface area value of 4000 cm2 /g or more and one or more salts selected from the group consisting of formate, acetate, and lactate.
- the present invention is as follows.
- a hardening accelerator for hydraulic materials comprising 20.0 to 80.0 mass% calcium formate, 15.0 to 70.0 mass% inorganic calcium compound, and 0.5 to 30.0 mass% inorganic sulfate other than calcium sulfate.
- the inorganic calcium compound is at least one selected from the group consisting of calcium sulfate, calcium hydroxide, calcium carbonate, and calcium oxide.
- a method for producing a hardened body comprising: hardening a cement composition containing the hardening accelerator for hydraulic materials according to any one of [1] to [4] above, cement, and water by steam curing at a maximum temperature of 40 to 80°C for 2 to 8 hours.
- the present invention provides a hardening accelerator for hydraulic materials that can improve the fluidity retention, setting properties, and early strength development of hydraulic materials.
- hydroaulic material refers to a material that hardens when kneaded with water
- hardened body refers to hardened cement paste, mortar, concrete, etc.
- % and “parts” in this specification are based on mass unless otherwise specified.
- the hardening accelerator for hydraulic materials contains 20.0 to 80.0 mass % calcium formate, 15.0 to 70.0 mass % inorganic calcium compound, and 10.0 mass % inorganic sulfate other than calcium sulfate.
- the hydraulic material hardening accelerator not only accelerates the hardening of the hydraulic material when the hydraulic material is kneaded with water and hardens, but also has a function of preventing the hardening. In some cases, the hydraulic material hardening accelerator itself hardens during acceleration.
- the hardening accelerator for hydraulic materials contains an inorganic calcium compound in an amount of 15.0 to 70.0% by mass, preferably 18.0 to 60.0% by mass, and more preferably 20.0 to 40.0% by mass. If the content of the inorganic calcium compound is less than 15.0% by mass, there is a risk that the fluidity retention, setting property, and early strength development of the hydraulic material may not be improved, and if it exceeds 70.0% by mass, there is a risk that the fluidity retention, setting property, and early strength development of the hydraulic material may not be improved.
- the inorganic calcium compound is preferably one or more selected from the group consisting of calcium sulfate, calcium hydroxide, calcium carbonate, and calcium oxide.
- the content of the inorganic calcium compounds is the sum of the respective content ratios.
- calcium sulfate it is more preferable that it is anhydrous.
- the hardening accelerator for hydraulic materials contains 0.5 to 30.0 mass %, preferably 1.0 to 25.0 mass %, and more preferably 3.0 to 15.0 mass % of inorganic sulfates other than calcium sulfate. If the content of inorganic sulfates other than calcium sulfate is outside the range of 0.5 to 30.0 mass %, there is a risk that the fluidity retention, setting property, and early strength development of the hydraulic material cannot be improved.
- Calcium sulfoaluminate is a general term for hydraulic substances and hydrated salts represented by the chemical formula xCaO.yAl2O3.zCaSO4.mH2O ( x , y, and z are non- zero positive real numbers, and m is 0 or a positive real number) , and examples thereof include auyne ( 3CaO.3Al2O3.CaSO4 ), AFt phase represented by ettringite ( 3CaO.Al2O3.3CaSO4.32H2O ), AFm phase represented by monosulfate ( 3CaO.Al2O3.CaSO4.12H2O ), and those in which AFt phase and AFm phase coexist.
- Calcium sulfoaluminate may be amorphous. Also, a part of Al2O3 may be replaced with a small amount of Fe2O3 or SiO2 , etc. , and a part of CaSO4 may be replaced with Ca(OH) 2 or CaCO3 , etc. In the present invention, z cannot be set to 0 in the above chemical formula xCaO.yAl2O3.zCaSO4.mH2O , since the hydraulic material would not be able to maintain its fluidity and the strength during hardening would be reduced due to phase transition.
- Calcium sulfoaluminate can be produced by blending raw materials such as lime or other calcia raw materials, gypsum or other sulfate raw materials, and bauxite (aluminum hydroxide) or other alumina raw materials in a predetermined ratio, for example, a molar ratio of CaO: CaSO4 : Al2O3 of 3:3:1, firing the mixture at about 1,500° C in a kiln or the like, and pulverizing it.
- the mixture may be heat-treated by adding silicon dioxide or the like to the fired mixture, and then pulverized.
- the Blaine specific surface area value (hereinafter simply referred to as "Blaine value”) of calcium sulfoaluminate is preferably 1,000 to 6,000 cm 2 /g, more preferably 2,000 to 4,000 cm 2 /g, and even more preferably 2,200 to 3,800 cm 2 /g.
- the Blaine specific surface area value is measured in accordance with the specific surface area test described in JIS R 5201:2015 "Physical testing methods for cement".
- cement composition contains a hardening accelerator for hydraulic materials and cement.
- the cement used in the present invention preferably has a Blaine specific surface area value of 2,500 cm 2 /g to 7,000 cm 2 /g, more preferably 2,750 cm 2 /g to 6,000 cm 2 /g, and even more preferably 3,000 cm 2 /g to 4,500 cm 2 /g.
- the flow value of the cement composition before pouring is preferably 160 to 230, more preferably 170 to 220, and even more preferably 190 to 200.
- the rate of change in the flow value (flow change rate) one hour after kneading the cement composition is preferably less than 20%, more preferably less than 15%, and even more preferably less than 10%.
- pouring and compaction are easily performed, and workability is improved, even if pouring is performed one hour after kneading the cement composition.
- the cement composition preferably contains aggregate.
- the aggregate to be used may be the same fine or coarse aggregate as that used in ordinary cement mortar or concrete. That is, river sand, river gravel, mountain sand, mountain gravel, crushed stone, crushed sand, limestone aggregate, lime sand, silica sand, colored sand, artificial aggregate, blast furnace slag aggregate, sea sand, sea gravel, artificial lightweight aggregate, heavy weight aggregate, etc. may be used, and combinations of these are also possible.
- the aggregate content is preferably 40 parts by mass or more and 250 parts by mass or less, more preferably 50 parts by mass or more and 230 parts by mass or less, and even more preferably 60 parts by mass or more and 200 parts by mass or less, per 100 parts by mass of cement in the cement composition.
- the hydraulic material can have better fluidity retention and initial strength development.
- the content of the alkali metal carbonate is preferably 1 to 6 parts by mass, and more preferably 2 to 5 parts by mass, in terms of solid content per 100 parts by mass of cement in the cement composition.
- the fineness of the siliceous powder is not particularly limited, but typically, the Blaine value of ground granulated blast furnace slag and fly ash is in the range of 3,000 cm2 /g to 9,000 cm2 /g, and the BET specific surface area of silica fume is in the range of 20,000 cm2 /g to 300,000 cm2 /g.
- the content of the siliceous fine powder is preferably 1 to 20 parts by mass, more preferably 2 to 15 parts by mass, and even more preferably 3 to 12 parts by mass, per 100 parts by mass of cement in the cement composition.
- the content of the siliceous fine powder is equal to or greater than the above lower limit, it is easier to improve the fluidity retention and early strength development. Furthermore, when the content of the siliceous fine powder is equal to or less than the above upper limit, it is easier to improve the fluidity retention.
- the cement composition may contain an antifoaming agent to the extent that it does not adversely affect performance.
- Antifoaming agents are used to reduce the amount of air entrained during mixing. There are no particular limitations on the type of antifoaming agent, as long as it does not significantly adversely affect the strength properties of the hardened mortar, and either liquid or powdered form may be used. Examples include polyether-based antifoaming agents, polyhydric alcohol-based antifoaming agents such as esters of polyhydric alcohols and alkyl ethers, alkyl phosphate-based antifoaming agents, and silicone-based antifoaming agents.
- the content of the defoaming agent is preferably 0.002 to 0.5 parts by mass, more preferably 0.005 to 0.45 parts by mass, and even more preferably 0.01 to 0.4 parts by mass, per 100 parts by mass of cement in the cement composition.
- the content of the defoaming agent is equal to or greater than the lower limit, the defoaming effect can be fully exerted, and when the content of the defoaming agent is equal to or less than the upper limit, the fluidity retention can be easily improved.
- the hardened body according to the present embodiment is obtained by hardening a cement composition.
- the hardened body is usually formed by kneading the cement composition with water, which causes a hydration reaction of the hydraulic material cement and hardens it.
- the amount of water used for mixing is not particularly limited, but is preferably 10 to 70 parts by mass, more preferably 14 to 65 parts by mass, and even more preferably 16 to 60 parts by mass, relative to 100 parts by mass of the cement composition. When the amount of water used for mixing is within the above range, it is easy to improve the initial strength development of the hydraulic material.
- the hardened body is obtained by mixing the cement composition with water and then leaving it to harden, but it can also be obtained more efficiently by filling (casting) the mixture into a formwork and curing it, or by pouring it directly into the construction area, or by spraying or painting it.
- the compressive strength of the hardened body depends on the type of cement used, but 6 hours after casting, it is preferably 10.5 to 15.0 N/ mm2 , more preferably 11.0 to 14.0 N/ mm2 , and even more preferably 12.0 to 13.0 N/ mm2 . Also, at 7 days, it is preferably 40.0 to 50.0 N/ mm2 , more preferably 41.0 to 48.0 N/ mm2 , and even more preferably 42.0 to 46.0 N/ mm2 . In the present invention, the compressive strength can be measured in accordance with the method specified in JIS R 5201:2015 "Physical testing methods for cement".
- the method for producing a hardened body is a method for hardening a cement composition containing a hardening accelerator for hydraulic materials, cement, and water by steam curing for 2 to 8 hours at a maximum temperature of 40 to 80° C.
- the method for producing a hardened body preferably includes, in this order, a kneading step of kneading the hardening accelerator for hydraulic materials, cement, and water, a casting step of filling a formwork with the mixed cement composition, and a curing step of curing the cement composition filled in the formwork.
- the mixing method in the mixing process is not particularly limited, and each material may be mixed at the time of construction, or some or all of the materials may be mixed in advance.
- Any existing equipment can be used as a mixer, such as a tilting mixer, omni mixer, Henschel mixer, V-type mixer, Plosser mixer, and Nauta mixer.
- the casting method in the casting step can be performed by a known method.
- the temperature of the cement composition during casting is preferably 0 to 50°C, and more preferably 10 to 40°C. If the temperature of the cement composition during casting is within the above range, it becomes easier to quickly remove the hardened body from the mold.
- the method for producing the hardened body preferably further includes a compaction step after the casting step. Any known method can be used for compaction, but from the viewpoint of workability, it is preferable to use a vibrator.
- the cement composition containing the hardening accelerator for hydraulic materials of the present invention maintains good fluidity immediately before casting, so compaction can be easily performed, the cement composition can be distributed uniformly within the formwork, and air bubbles that are mixed in during casting can be removed.
- steam curing is usually performed by raising the temperature of the atmosphere around the target and maintaining a constant temperature while maintaining an appropriate humidity.
- the conditions for steam curing are preferably a maximum temperature of 40 to 80°C and a curing time of 2 to 8 hours, more preferably a maximum temperature of 40 to 75°C and a curing time of 2.5 to 7.5 hours, and even more preferably a maximum temperature of 45 to 60°C and a curing time of 3 to 7 hours. If the maximum temperature of the atmosphere around the cement composition during steam curing is within the above range and the curing time is within the above range, it becomes easier to enable the hardened body to be demolded early.
- the relative humidity around the cement composition during steam curing is preferably 50% RH or higher, more preferably 75% RH or higher, and even more preferably 90% RH or higher. There is no upper limit, but it may be 100% RH. When the relative humidity around the cement composition during steam curing is within the above range, it becomes easier to quickly demold the hardened body.
- the curing process preferably includes a pre-curing process.
- Pre-curing conditions are preferably a temperature of 10 to 50°C, maintained constant for about 1 to 3 hours.
- the curing step preferably includes a heating step. Any known method can be used as the heating method, and it is preferable to heat at a temperature rise rate of 10 to 30°C/hour, more preferably at a temperature rise rate of 12 to 28°C/hour, and even more preferably at a temperature rise rate of 15 to 25°C. If the temperature rise rate in the heating step is within the above range, hardening can be further promoted while preventing thermal cracking due to a sudden increase in temperature of the cement composition.
- the curing step preferably includes a temperature holding step.
- a temperature holding method can be used as the temperature holding method, and a constant temperature is preferably held in the range of 40 to 80°C for 1 to 8 hours, more preferably in the range of 40 to 75°C for 1 to 6 hours, and even more preferably in the range of 45 to 65°C for 2.5 to 5 hours.
- the poured cement composition can be hardened uniformly, making it easier to remove from the mold quickly.
- the method for producing a hardened body preferably includes a natural cooling step after the curing step.
- the natural cooling step the hardened body obtained in the curing step is naturally cooled in a room temperature atmosphere.
- the cooling time is not particularly limited, but it is sufficient that the hardened body is cooled to a temperature at which it can be easily demolded, and may be about 0.5 to 2 hours.
- Example 1 Using the following materials, a mortar with a water/cement ratio of 45% and a cement to aggregate ratio of 1:2.5 (mass ratio) was prepared. A water reducing agent was added to the obtained mortar in the ratio shown in Table 1, and the hydraulic material hardening accelerator with the composition shown in Table 1 was mixed in the amount shown in Table 1 to obtain a cement composition. The flow value of the obtained cement composition was measured, and the flow rate of change was calculated. The initial time was also measured. Both are shown in Table 1. The prepared cement composition was filled into a form measuring 4 x 4 x 16 cm, and then steam cured to obtain a hardened body.
- Cement Ordinary Portland cement (commercial product), Blaine specific surface area 3,200 cm 2 /g, specific gravity 3.15 g/cm 3
- Water Tap water Aggregate: River sand from the Himekawa River system in Niigata Prefecture
- Water reducing agent Polycarboxylic acid-based high-performance water reducing agent (commercially available)
- Calcium formate Reagent Calcium sulfate (inorganic calcium compound): Reagent Sodium sulfate (inorganic sulfate): Anhydrous, Reagent
- Initial setting time In accordance with the method specified in JIS A 1147:2019 "Test method for setting time of concrete", the initial setting time was the time at which the penetration resistance value reached 3.5 N/ mm2 .
- Compressive strength In accordance with the method specified in JIS R 5201:2015 "Physical testing methods for cement,” the compressive strength of the hardened body 6 hours after the end of steam curing (immediately after demolding) and 7 days after the end of steam curing was measured.
- Example 2 Mortar, cement composition, and hardened body were prepared and the flow rate, initial time, and compressive strength were measured in the same manner as in Experimental Example 1, except that calcium hydroxide, calcium carbonate, and calcium oxide were used as inorganic calcium compounds in the hardening accelerator for hydraulic materials in the ratios shown in Table 2 in addition to calcium sulfate. The results are shown in Table 2.
- Example 3 Mortar, cement composition, and hardened body were prepared and the flow rate, initial time, and compressive strength were measured in the same manner as in Experimental Example 1, except that aluminum sulfate, potassium alum, and sodium thiosulfate were used as inorganic sulfates in the hardening accelerator for hydraulic materials in the ratios shown in Table 3. The results are shown in Table 3.
- Aluminum sulfate Reagent Potassium alum: Reagent Sodium thiosulfate: Reagent
- Example 4 Mortar, cement composition, and hardened body were prepared and the flow rate, initial time, and compressive strength were measured in the same manner as in Experimental Example 1, except that calcium sulfoaluminate was further added to the hardening accelerator for hydraulic materials in the proportions shown in Table 4. The results are shown in Table 4.
- Example 5 Mortar, cement composition, and hardened body were prepared and the flow rate, initial time, and compressive strength were measured in the same manner as in Experimental Example 1, except that the mixing amount of the hardening accelerator for hydraulic materials was set to the ratio shown in Table 5. The results are also shown in Table 5.
- Example 6 The mortar, cement composition, and hardened body were prepared in the same manner as in Experimental Example 1, except that blast furnace cement and fly ash cement were used as the cement for the cement composition, and the flow rate, initial time, and compressive strength were measured. The results are shown in Table 6.
- Blast furnace type B cement Commercial product, Blaine specific surface area 3,200 cm 2 /g, specific gravity 3.15 g/cm 3
- Blast furnace type C cement Commercial product, Blaine specific surface area 3,500 cm 2 /g, specific gravity 3.15 g/cm 3
- Fly ash cement type B Commercially available product, Blaine specific surface area 3,200 cm 2 /g, specific gravity 3.15 g/cm 3
- the hardening accelerator for hydraulic materials of the present invention which contains calcium formate, inorganic calcium compounds, and inorganic sulfates in specified ratios, can improve the fluidity retention, setting properties, and early strength development of the cement composition.
- the hardening accelerator for hydraulic materials of the present invention contains calcium formate, inorganic calcium compounds, and inorganic sulfates other than calcium sulfate in a specified ratio, which makes it possible to improve the fluidity retention, setting properties, and early strength development of hydraulic materials. Therefore, it can be widely applied in the fields of civil engineering and construction, such as hardened concrete bodies used in precast construction methods.
Landscapes
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Inorganic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
Abstract
Description
本発明は、水硬性材料用硬化促進材及び該材料を含むセメント組成物、硬化体に関する。 The present invention relates to a hardening accelerator for hydraulic materials, and a cement composition and hardened body containing the material.
土木、建築分野で用いられるセメント等の水硬性材料は、通常、水と混合し、所定時間静置することにより硬化する。水硬性材料の硬化速度は、材料と水との比率や周囲の環境温度、養生方法にも影響され得るが、硬化を促進する混和材、すなわち硬化促進材を用いることによって、水硬性材料が硬化するまでの時間を短縮することができる。 Hydraulic materials such as cement used in civil engineering and construction fields usually harden by mixing with water and leaving to stand for a certain period of time. The hardening speed of hydraulic materials can be affected by the ratio of the material to water, the surrounding environmental temperature, and the curing method, but the time it takes for hydraulic materials to harden can be shortened by using admixtures that accelerate hardening, i.e., hardening accelerators.
水硬性材料が硬化するまでの時間を短縮することは、作業現場の生産性の向上につながる。例えば、鉄筋コンクリート建築物等に用いるプレキャスト工法で用いるコンクリート硬化体は、一般的に、セメント組成物を型枠に打設後、所定時間静置した後、さらに蒸気養生等により養生することにより硬化体を得ることができるが、硬化促進材を用いることで、脱型可能な初期強度となるまでの時間を短縮できるため、効率的に硬化体を生産することができる。 Reducing the time it takes for hydraulic materials to harden leads to improved productivity at work sites. For example, the hardened concrete used in precast construction methods used in reinforced concrete buildings is generally obtained by pouring a cement composition into a formwork, leaving it to stand for a specified period of time, and then curing it further by steam curing or the like. However, by using a hardening accelerator, the time it takes for the concrete to reach an initial strength that allows it to be removed from the form can be reduced, allowing the hardened concrete to be produced more efficiently.
また、通常、セメント組成物を打設後、セメント組成物を型枠内に均一に行き渡らせるため、振動機(バイブレータ)等を用いて「締固め」を行うが、打設直後のセメント組成物の流動性が低下していると、締固めを行う労力及び時間がかかり、生産性が低下する。 In addition, after pouring the cement composition, it is usually "compacted" using a vibrator or the like to distribute the cement composition evenly within the formwork. However, if the fluidity of the cement composition has decreased immediately after pouring, the compaction process requires time and effort, resulting in reduced productivity.
硬化促進材に関して、例えば、特許文献1には、無機硫酸塩、カルシウムサルフォアルミネート、及び無機水酸化物を所定量含む水硬性材料用硬化促進材が示されている。特許文献2には、ブレーン比表面積値が4000cm2/g以上のカルシウムサルホアルミネートと蟻酸塩、酢酸塩及び乳酸塩からなる群より選ばれた一種又は二種以上とを含有してなるセメント混和材が示されている。 Regarding hardening accelerators, for example, Patent Document 1 discloses a hardening accelerator for hydraulic materials that contains predetermined amounts of inorganic sulfate, calcium sulfoaluminate, and inorganic hydroxide, while Patent Document 2 discloses a cement admixture that contains calcium sulfoaluminate having a Blaine specific surface area value of 4000 cm2 /g or more and one or more salts selected from the group consisting of formate, acetate, and lactate.
しかしながら、上記のような硬化促進材を用いた水硬性材料は、水との混練直後からすぐに流動性が失われてしまい、打設後に行う締固めに労力と時間を要するため、生産性が低下してしまう懸念がある。 However, hydraulic materials that use hardening accelerators such as those mentioned above lose their fluidity immediately after mixing with water, and compaction after pouring requires time and effort, which raises concerns about reduced productivity.
以上より、本発明は、水硬性材料の流動性保持性、凝結性及び初期強度発現性を良好にすることができる水硬性材料用硬化促進材を提供することを目的とする。 In light of the above, the present invention aims to provide a hardening accelerator for hydraulic materials that can improve the fluidity retention, setting properties, and early strength development of hydraulic materials.
本発明者らは、上記のような課題を解決するために鋭意研究を行った結果、ギ酸カルシウム、無機カルシウム化合物、及び硫酸カルシウムを除く無機硫酸塩を所定の割合で含有する水硬性材料用硬化促進材により、当該課題を解決できることを見出し、本発明に至った。すなわち、本発明は以下の通りである。 The inventors conducted extensive research to solve the above problems, and discovered that the problems could be solved by a hardening accelerator for hydraulic materials that contains calcium formate, an inorganic calcium compound, and an inorganic sulfate other than calcium sulfate in a specified ratio, leading to the invention. That is, the present invention is as follows.
[1] ギ酸カルシウムを20.0~80.0質量%、無機カルシウム化合物を15.0~70.0質量%、及び硫酸カルシウムを除く無機硫酸塩を0.5~30.0質量%含有する、水硬性材料用硬化促進材。
[2] 前記無機カルシウム化合物は、硫酸カルシウム、水酸化カルシウム、炭酸カルシウム、及び酸化カルシウムからなる群から選択される1種以上である、上記[1]に記載の水硬性材料用硬化促進材。
[3] 前記無機硫酸塩は、硫酸塩、チオ硫酸塩、亜硫酸塩、重亜硫酸塩、ピロ硫酸塩、ピロ重亜硫酸塩からなる群から選択される1種以上である、上記[1]または[2]に記載の水硬性材料用硬化促進材。
[4] さらに、カルシウムサルフォアルミネートを4.5~65.0質量%含有する、上記[1]~[3]のいずれか1つに記載の水硬性材料用硬化促進材。
[5] 上記[1]~[4]のいずれか1つに記載の水硬性材料用硬化促進材と、セメントとを含有する、セメント組成物。
[6] 前記水硬性材料用硬化促進材の含有量が、0.5~10質量%である、上記[5]に記載のセメント組成物。
[7] 上記[5]または[6]に記載のセメント組成物を硬化してなる、硬化体。
[8] 上記[1]~[4]のいずれか1つに記載の水硬性材料用硬化促進材と、セメントと、水とを含有するセメント組成物を、最高温度40~80℃、2~8時間の蒸気養生により硬化させる、硬化体の製造方法。
[1] A hardening accelerator for hydraulic materials, comprising 20.0 to 80.0 mass% calcium formate, 15.0 to 70.0 mass% inorganic calcium compound, and 0.5 to 30.0 mass% inorganic sulfate other than calcium sulfate.
[2] The hardening accelerator for hydraulic materials according to the above [1], wherein the inorganic calcium compound is at least one selected from the group consisting of calcium sulfate, calcium hydroxide, calcium carbonate, and calcium oxide.
[3] The hardening accelerator for hydraulic materials according to the above [1] or [2], wherein the inorganic sulfate is at least one selected from the group consisting of sulfate, thiosulfate, sulfite, bisulfite, pyrosulfate, and pyrobisulfite.
[4] The hardening accelerator for hydraulic materials according to any one of the above [1] to [3], further comprising 4.5 to 65.0 mass% calcium sulfoaluminate.
[5] A cement composition comprising the hardening accelerator for hydraulic materials according to any one of [1] to [4] above and cement.
[6] The content of the hydraulic material hardening accelerator is 0.5 to 10 mass %. The cement composition according to [5].
[7] A hardened body obtained by hardening the cement composition according to [5] or [6] above.
[8] A method for producing a hardened body, comprising: hardening a cement composition containing the hardening accelerator for hydraulic materials according to any one of [1] to [4] above, cement, and water by steam curing at a maximum temperature of 40 to 80°C for 2 to 8 hours.
本発明によれば、水硬性材料の流動性保持性、凝結性及び初期強度発現性を良好にすることができる水硬性材料用硬化促進材を提供することができる。 The present invention provides a hardening accelerator for hydraulic materials that can improve the fluidity retention, setting properties, and early strength development of hydraulic materials.
以下、本発明の一実施形態(本実施形態)を詳細に説明するが、本発明は当該実施形態に限定されるものではない。本発明において、「水硬性材料」とは、水と混練して硬化する材料を指し、「硬化体」とは、セメントペースト、モルタル、及びコンクリート等が硬化したものを指す。なお、本明細書における「%」及び「部」は特に規定しない限り質量基準とする。 Below, one embodiment of the present invention (the present embodiment) will be described in detail, but the present invention is not limited to this embodiment. In this invention, "hydraulic material" refers to a material that hardens when kneaded with water, and "hardened body" refers to hardened cement paste, mortar, concrete, etc. In addition, "%" and "parts" in this specification are based on mass unless otherwise specified.
[水硬性材料用硬化促進材]
本実施形態に係る水硬性材料用硬化促進材は、ギ酸カルシウムを20.0~80.0質量%、無機カルシウム化合物を15.0~70.0質量%、及び硫酸カルシウムを除く無機硫酸塩を0.5~30.0質量%含有する。当該水硬性材料用硬化促進材は、水硬性材料が水と混練されて硬化する際の水硬性材料の硬化を促進するだけでなく、当該硬化の促進をしながら水硬性材料用硬化促進材自体も硬化する場合もある。
[Curing accelerator for hydraulic materials]
The hardening accelerator for hydraulic materials according to the present embodiment contains 20.0 to 80.0 mass % calcium formate, 15.0 to 70.0 mass % inorganic calcium compound, and 10.0 mass % inorganic sulfate other than calcium sulfate. The hydraulic material hardening accelerator not only accelerates the hardening of the hydraulic material when the hydraulic material is kneaded with water and hardens, but also has a function of preventing the hardening. In some cases, the hydraulic material hardening accelerator itself hardens during acceleration.
(ギ酸カルシウム)
水硬性材料用硬化促進材は、ギ酸カルシウムを20.0~80.0質量%含有し、好ましくは30.0~70.0質量%、より好ましくは40.0~65.0量%含有する。ギ酸カルシウムの含有割合が、20.0質量%未満であると、水硬性材料の流動性保持性、凝結性及び初期強度発現性を良好にすることができないおそれがあり、80.0質量%を超えると、流動性保持性、凝結性及び初期強度発現性を良好にすることができないおそれがある。
(Calcium Formate)
The hardening accelerator for hydraulic materials contains calcium formate at 20.0 to 80.0 mass%, preferably 30.0 to 70.0 mass%, and more preferably 40.0 to 65.0 mass%. If the calcium formate content is less than 20.0 mass%, there is a risk that the fluidity retention, setting property, and early strength development of the hydraulic material cannot be improved, and if it exceeds 80.0 mass%, there is a risk that the fluidity retention, setting property, and early strength development cannot be improved.
(無機カルシウム化合物)
水硬性材料用硬化促進材は、無機カルシウム化合物を15.0~70.0質量%含有し、好ましくは18.0~60.0質量%、より好ましくは20.0~40.0質量%含有する。無機カルシウム化合物の含有割合が、15.0質量%未満であると、水硬性材料の流動性保持性、凝結性及び初期強度発現性を良好にすることができないおそれがあり、70.0質量%を超えると、水硬性材料の流動性保持性、凝結性及び初期強度発現性を良好にすることができないおそれがある。
(Inorganic calcium compounds)
The hardening accelerator for hydraulic materials contains an inorganic calcium compound in an amount of 15.0 to 70.0% by mass, preferably 18.0 to 60.0% by mass, and more preferably 20.0 to 40.0% by mass. If the content of the inorganic calcium compound is less than 15.0% by mass, there is a risk that the fluidity retention, setting property, and early strength development of the hydraulic material may not be improved, and if it exceeds 70.0% by mass, there is a risk that the fluidity retention, setting property, and early strength development of the hydraulic material may not be improved.
本実施形態において、無機カルシウム化合物は、硫酸カルシウム、水酸化カルシウム、炭酸カルシウム、及び酸化カルシウムからなる群から選択される1種以上であることが好ましい。無機カルシウム化合物を2種以上用いる場合、それぞれの含有割合の合計を無機カルシウム化合物の含有割合とする。本実施形態においては、初期強度発現性の観点から、硫酸カルシウム、水酸化カルシウム及び/または酸化カルシウムを用いることが好ましく、硫酸カルシウムがより好ましい。硫酸カルシウムを用いる場合、無水物であることがより好ましい。 In this embodiment, the inorganic calcium compound is preferably one or more selected from the group consisting of calcium sulfate, calcium hydroxide, calcium carbonate, and calcium oxide. When two or more inorganic calcium compounds are used, the content of the inorganic calcium compounds is the sum of the respective content ratios. In this embodiment, from the viewpoint of early strength development, it is preferable to use calcium sulfate, calcium hydroxide, and/or calcium oxide, and calcium sulfate is more preferable. When calcium sulfate is used, it is more preferable that it is anhydrous.
(無機硫酸塩)
水硬性材料用硬化促進材は、硫酸カルシウムを除く無機硫酸塩を0.5~30.0質量%含有し、好ましくは1.0~25.0質量%、より好ましくは3.0~15.0質量%含有する。硫酸カルシウムを除く無機硫酸塩の含有割合が、0.5~30.0質量%の範囲外であると、水硬性材料の流動性保持性、凝結性及び初期強度発現性を良好にすることができないおそれがある。
(Inorganic sulfates)
The hardening accelerator for hydraulic materials contains 0.5 to 30.0 mass %, preferably 1.0 to 25.0 mass %, and more preferably 3.0 to 15.0 mass % of inorganic sulfates other than calcium sulfate. If the content of inorganic sulfates other than calcium sulfate is outside the range of 0.5 to 30.0 mass %, there is a risk that the fluidity retention, setting property, and early strength development of the hydraulic material cannot be improved.
本実施形態において、無機硫酸塩は、硫酸塩、チオ硫酸塩、亜硫酸塩、重亜硫酸塩、ピロ硫酸塩、及びピロ重亜硫酸塩からなる群から選択される1種以上であることが好ましい。無機硫酸塩を2種以上用いる場合、それぞれの含有割合の合計を、無機硫酸塩の含有割合とする。塩を形成する無機物としては、アルカリ金属及びアルカリ土類金属が好ましい。本実施形態においては、初期強度発現性の観点から、硫酸塩及び/またはチオ硫酸塩を用いることが好ましく、硫酸ナトリウム、硫酸アルミニウム、チオ硫酸ナトリウム、及びカリウムミョウバンがより好ましく、初期強度発現性の観点から硫酸ナトリウム及び硫酸アルミニウムがさらに好ましく、中でも、流動性保持性を良好にする観点から、硫酸ナトリウムがよりさらに好ましい。硫酸ナトリウムを用いる場合、無水物であることがより好ましい。 In this embodiment, the inorganic sulfate is preferably one or more selected from the group consisting of sulfate, thiosulfate, sulfite, bisulfite, pyrosulfate, and pyrosulfite. When two or more inorganic sulfates are used, the total of the respective contents is the content of the inorganic sulfate. As inorganic substances that form salts, alkali metals and alkaline earth metals are preferred. In this embodiment, from the viewpoint of early strength development, it is preferable to use sulfate and/or thiosulfate, and sodium sulfate, aluminum sulfate, sodium thiosulfate, and potassium alum are more preferred, and sodium sulfate and aluminum sulfate are even more preferred from the viewpoint of early strength development, and among them, sodium sulfate is even more preferred from the viewpoint of improving fluidity retention. When sodium sulfate is used, it is more preferred that it is anhydrous.
本実施形態に係る水硬性材料用硬化促進材は、さらに、カルシウムサルフォアルミネートを4.5~65.0質量%含有することが好ましく、15.0~60.0質量%含有することがより好ましく、30.0~50.0質量%含有することがさらに好ましい。カルシウムサルフォアルミネートの含有割合が上記範囲内であると、水硬性材料の流動性保持性及び初期強度発現性をより良好にすることができる。
カルシウムサルフォアルミネートは、化学式xCaO・yAl2O3・zCaSO4・mH2O(x、y、zは0でない正の実数、mは0または正の実数)で表される水硬性物質及び含水塩の総称であり、例えば、アウイン(3CaO・3Al2O3・CaSO4)のほか、エトリンガイト(3CaO・Al2O3・3CaSO4・32H2O)を代表とするAFt相、モノサルフェート(3CaO・Al2O3・CaSO4・12H2O)を代表とするAFm相、及びAFt相とAFm相とが共存するもの等が挙げられる。カルシウムサルフォアルミネートは非晶質であってもよい。また、Al2O3の一部が微量のFe2O3またはSiO2等に置換してもよく、CaSO4の一部がCa(OH)2またはCaCO3等に置換してもよい。なお、本発明では、上記化学式xCaO・yAl2O3・zCaSO4・mH2Oにおいて、水硬性材料の流動性を保持することができなくなり、また、相転移により硬化時の強度が低下するおそれがあるため、zを0とすることはできない。
The hardening accelerator for hydraulic materials according to the present embodiment further contains calcium sulfoaluminate in an amount of preferably 4.5 to 65.0 mass%, more preferably 15.0 to 60.0 mass%, and even more preferably 30.0 to 50.0 mass%. When the content of calcium sulfoaluminate is within the above range, the hydraulic material can have better fluidity retention and early strength development.
Calcium sulfoaluminate is a general term for hydraulic substances and hydrated salts represented by the chemical formula xCaO.yAl2O3.zCaSO4.mH2O ( x , y, and z are non- zero positive real numbers, and m is 0 or a positive real number) , and examples thereof include auyne ( 3CaO.3Al2O3.CaSO4 ), AFt phase represented by ettringite ( 3CaO.Al2O3.3CaSO4.32H2O ), AFm phase represented by monosulfate ( 3CaO.Al2O3.CaSO4.12H2O ), and those in which AFt phase and AFm phase coexist. Calcium sulfoaluminate may be amorphous. Also, a part of Al2O3 may be replaced with a small amount of Fe2O3 or SiO2 , etc. , and a part of CaSO4 may be replaced with Ca(OH) 2 or CaCO3 , etc. In the present invention, z cannot be set to 0 in the above chemical formula xCaO.yAl2O3.zCaSO4.mH2O , since the hydraulic material would not be able to maintain its fluidity and the strength during hardening would be reduced due to phase transition.
カルシウムサルフォアルミネートは、石灰等のカルシア原料、石膏等の硫酸塩原料、及びボーキサイト(水酸化アルミニウム)等のアルミナ原料等を原料として、例えば、CaO:CaSO4:Al2O3のモル比で3:3:1の割合等の所定の割合で原料配合し、キルンなどを用いて、1,500℃程度で焼成し、粉砕して製造することができる。また、一度焼成したものに二酸化珪素等を加えて熱処理し、粉砕してもよい。 Calcium sulfoaluminate can be produced by blending raw materials such as lime or other calcia raw materials, gypsum or other sulfate raw materials, and bauxite (aluminum hydroxide) or other alumina raw materials in a predetermined ratio, for example, a molar ratio of CaO: CaSO4 : Al2O3 of 3:3:1, firing the mixture at about 1,500° C in a kiln or the like, and pulverizing it. Alternatively, the mixture may be heat-treated by adding silicon dioxide or the like to the fired mixture, and then pulverized.
カルシウムサルフォアルミネートのブレーン比表面積値(以下、単に「ブレーン値」ともいう)は、1,000~6,000cm2/gであることが好ましく、2,000~4,000cm2/gであることがより好ましく、2,200~3,800cm2/gであることがさらに好ましい。
なお、本発明においてブレーン比表面積値は、JIS R 5201:2015「セメントの物理試験方法」に記載された比表面積試験に準拠して測定される。
The Blaine specific surface area value (hereinafter simply referred to as "Blaine value") of calcium sulfoaluminate is preferably 1,000 to 6,000 cm 2 /g, more preferably 2,000 to 4,000 cm 2 /g, and even more preferably 2,200 to 3,800 cm 2 /g.
In the present invention, the Blaine specific surface area value is measured in accordance with the specific surface area test described in JIS R 5201:2015 "Physical testing methods for cement".
[セメント組成物]
本実施形態に係るセメント組成物は、水硬性材料用硬化促進材と、セメントとを含有する。
[Cement composition]
The cement composition according to the present embodiment contains a hardening accelerator for hydraulic materials and cement.
セメントとしては、特に限定されるものではなく、普通、早強、超早強、低熱及び中庸熱等の各種ポルトランドセメント、これらのポルトランドセメントに、高炉スラグやフライアッシュ、シリカフュームなどを混合した各種混合セメント、都市ゴミ焼却灰や下水汚泥焼却灰を原料として製造された環境調和型セメント(エコセメント)、市販されている微粒子セメント、白色セメントなどが挙げられ、各種セメントを微粉末化して使用することも可能である。また、通常セメントに使用されている成分(例えば石膏等)量を増減して調整されたものも使用可能である。さらに、これらを2種以上組み合わせたものも使用可能である。初期強度発現性を高める観点から、普通ポルトランドセメントや早強ポルトランドセメントを選定することが好ましいが、初期強度発現性の低い高炉セメントやフライアッシュセメントを用いても早期脱型が可能となる。 Cement is not particularly limited, and examples include various Portland cements such as ordinary, early strength, super early strength, low heat and medium heat, various mixed cements in which Portland cement is mixed with blast furnace slag, fly ash, silica fume, etc., environmentally friendly cement (eco-cement) manufactured using municipal waste incineration ash and sewage sludge incineration ash as raw materials, commercially available fine particle cement, white cement, etc., and various cements can be finely powdered and used. Also, cements adjusted by increasing or decreasing the amount of components (e.g. gypsum, etc.) normally used in cement can be used. Furthermore, combinations of two or more of these can be used. From the viewpoint of increasing the early strength development, it is preferable to select ordinary Portland cement or early strength Portland cement, but early demolding is possible even if blast furnace cement or fly ash cement, which has low early strength development, is used.
本発明で使用するセメントは、製造コストや強度発現性の観点から、セメントのブレーン比表面積値が、2,500cm2/g~7,000cm2/gであることが好ましく、2,750cm2/g~6,000cm2/gであることがより好ましく、3,000cm2/g~4,500cm2/gであることがさらに好ましい。 From the viewpoints of production costs and strength development, the cement used in the present invention preferably has a Blaine specific surface area value of 2,500 cm 2 /g to 7,000 cm 2 /g, more preferably 2,750 cm 2 /g to 6,000 cm 2 /g, and even more preferably 3,000 cm 2 /g to 4,500 cm 2 /g.
セメント組成物における、水硬性材料用硬化促進材の含有量は、0.5~10質量%が好ましく、1.0~9.0質量%がより好ましく、2.5~8.0質量%がさらに好ましい。セメント組成物中の水硬性材料用硬化促進材の含有量が、上記範囲内であると、水硬性材料の流動性保持性、凝結性及び初期強度発現性をより良好にすることができる。 The content of the hydraulic material hardening accelerator in the cement composition is preferably 0.5 to 10 mass%, more preferably 1.0 to 9.0 mass%, and even more preferably 2.5 to 8.0 mass%. When the content of the hydraulic material hardening accelerator in the cement composition is within the above range, the hydraulic material can have better fluidity retention, setting properties, and early strength development.
セメント組成物の打設前のフロー値は、160~230であることが好ましく、170~220であることがより好ましく、190~200であることがさらに好ましい。セメント組成物のフロー値が、上記範囲内であると、打設及び締固めが行いやすく作業性が向上する。また、セメント組成物混練1時間後のフロー値の変化率(フロー変化率)は、20%未満であることが好ましく、15%未満であることがより好ましく、10%未満であることがさらに好ましい。セメント組成物のフロー変化率が、上記範囲内であると、セメント組成物混練後1時間後に打設を行っても、打設及び締固めが行いやすく作業性が向上する。
なお、本発明において、フロー値は、JIS R 5201:2015「セメントの物理試験方法」に規定の方法に準拠し測定することができる。フロー変化率は、(混練1時間後のフロー値)/(混練直後のフロー値)×100(%)で計算した値を、100%から減じて求めることができる。
The flow value of the cement composition before pouring is preferably 160 to 230, more preferably 170 to 220, and even more preferably 190 to 200. When the flow value of the cement composition is within the above range, pouring and compaction are easily performed, and workability is improved. Furthermore, the rate of change in the flow value (flow change rate) one hour after kneading the cement composition is preferably less than 20%, more preferably less than 15%, and even more preferably less than 10%. When the flow change rate of the cement composition is within the above range, pouring and compaction are easily performed, and workability is improved, even if pouring is performed one hour after kneading the cement composition.
In the present invention, the flow value can be measured in accordance with the method specified in JIS R 5201:2015 "Physical Testing Methods for Cement". The flow rate can be calculated by subtracting the value calculated by (flow value after 1 hour of mixing)/(flow value immediately after mixing)×100(%) from 100%.
セメント組成物は、骨材を含むことが好ましい。使用する骨材としては、通常のセメントモルタルやコンクリートに使用するものと同様の細骨材や粗骨材が使用可能である。即ち、川砂、川砂利、山砂、山砂利、砕石、砕砂、石灰石骨材、石灰砂、けい砂、色砂、人口骨材、高炉スラグ骨材、海砂、海砂利、人工軽量骨材、及び重量骨材等が使用可能であり、これらを組み合わせることも可能である。 The cement composition preferably contains aggregate. The aggregate to be used may be the same fine or coarse aggregate as that used in ordinary cement mortar or concrete. That is, river sand, river gravel, mountain sand, mountain gravel, crushed stone, crushed sand, limestone aggregate, lime sand, silica sand, colored sand, artificial aggregate, blast furnace slag aggregate, sea sand, sea gravel, artificial lightweight aggregate, heavy weight aggregate, etc. may be used, and combinations of these are also possible.
骨材の含有割合は、セメント組成物中のセメント100質量部に対して、40質量部以上250質量部以下であることが好ましく、50質量部以上230質量部以下であることがより好ましく、60質量部以上200質量部以下であることがさらに好ましい。骨材の含有割合が上記範囲内であることで、水硬性材料の流動性保持性及び初期強度発現性をより良好にすることができる。 The aggregate content is preferably 40 parts by mass or more and 250 parts by mass or less, more preferably 50 parts by mass or more and 230 parts by mass or less, and even more preferably 60 parts by mass or more and 200 parts by mass or less, per 100 parts by mass of cement in the cement composition. By having the aggregate content within the above range, the hydraulic material can have better fluidity retention and initial strength development.
セメント組成物は、アルカリ金属炭酸塩を含有することができる。セメント組成物がアルカリ金属炭酸塩を含有することで、流動性保持性及び初期強度発現性を良好にしやすい。アルカリ金属炭酸塩としては、炭酸ナトリウム、炭酸カリウム、炭酸リチウム、炭酸水素ナトリウム、炭酸水素カリウム、炭酸水素リチウム等が挙げられ、これらを組み合わせることも可能である。 The cement composition may contain an alkali metal carbonate. When the cement composition contains an alkali metal carbonate, it is easier to improve fluidity retention and early strength development. Examples of alkali metal carbonates include sodium carbonate, potassium carbonate, lithium carbonate, sodium bicarbonate, potassium bicarbonate, lithium bicarbonate, etc., and these can also be combined.
アルカリ金属炭酸塩の含有割合は、セメント組成物中のセメント100質量部に対して、固形分量で1~6質量部であることが好ましく、2~5質量部であることがより好ましい。アルカリ金属炭酸塩の含有割合が上記範囲内であることで、流動性保持性及び初期強度発現性を良好にしやすい。 The content of the alkali metal carbonate is preferably 1 to 6 parts by mass, and more preferably 2 to 5 parts by mass, in terms of solid content per 100 parts by mass of cement in the cement composition. By having the content of the alkali metal carbonate within the above range, it is easy to improve fluidity retention and early strength development.
セメント組成物は、シリカ質微粉末を含有することができる。セメント組成物がシリカ質微粉末を含有することで流動性保持性及び初期強度発現性を良好にしやすい。シリカ質微粉末としては、高炉水砕スラグ微粉末等の潜在水硬性物質、フライアッシュや、シリカフュームなどのポゾラン物質を挙げることができ、中でも、シリカフュームが好ましい。シリカフュームの種類は限定されるものではないが、流動性の観点から、不純物としてZrO2を10%以下含有するシリカフュームや、酸性シリカフュームの使用がより好ましい。酸性シリカフュームとは、シリカフューム1gを純水100ccに入れて攪拌した時の上澄み液のpHが5.0以下の酸性を示すものをいう。 The cement composition may contain a siliceous fine powder. The siliceous fine powder contained in the cement composition makes it easier to improve fluidity retention and early strength development. Examples of the siliceous fine powder include latent hydraulic substances such as granulated blast furnace slag powder, fly ash, and pozzolanic substances such as silica fume, among which silica fume is preferred. The type of silica fume is not limited, but from the viewpoint of fluidity, it is more preferred to use silica fume containing 10% or less of ZrO2 as an impurity or acidic silica fume. The acidic silica fume refers to a silica fume that exhibits an acidity of pH 5.0 or less when 1 g of silica fume is added to 100 cc of pure water and stirred.
シリカ質微粉末の粉末度は特に限定されるものではないが、通常、高炉水砕スラグ微粉末とフライアッシュは、ブレーン値で3,000cm2/g以上9,000cm2/g以下の範囲にあり、シリカフュームは、BET比表面積で20,000cm2/g以上300,000cm2/g以下の範囲にある。 The fineness of the siliceous powder is not particularly limited, but typically, the Blaine value of ground granulated blast furnace slag and fly ash is in the range of 3,000 cm2 /g to 9,000 cm2 /g, and the BET specific surface area of silica fume is in the range of 20,000 cm2 /g to 300,000 cm2 /g.
シリカ質微粉末の含有割合は、セメント組成物中のセメント100質量部に対して、1~20質量部が好ましく、2~15質量部がより好ましく、3~12質量部がさらに好ましい。シリカ質微粉末の含有割合が上記下限値以上であることで、流動性保持性及び初期強度発現性を良好にしやすい。さらに、シリカ質微粉末の含有割合が上記上限値以下であることで、流動性保持性をより良好にしやすい。 The content of the siliceous fine powder is preferably 1 to 20 parts by mass, more preferably 2 to 15 parts by mass, and even more preferably 3 to 12 parts by mass, per 100 parts by mass of cement in the cement composition. When the content of the siliceous fine powder is equal to or greater than the above lower limit, it is easier to improve the fluidity retention and early strength development. Furthermore, when the content of the siliceous fine powder is equal to or less than the above upper limit, it is easier to improve the fluidity retention.
セメント組成物は、性能に悪影響を与えない範囲で消泡剤を含有することも可能である。消泡剤は、練り混ぜで巻き込む空気量を抑制する目的で使用するものである。消泡剤の種類としては、硬化モルタルの強度特性に著しく悪影響を与えるものでない限り特に限定されるものではなく、液体状及び粉末状いずれも使用できる。例えば、ポリエーテル系消泡剤、多価アルコールのエステル化物やアルキルエーテル等の多価アルコール系消泡剤、アルキルホスフェート系消泡剤、シリコーン系消泡剤等が挙げられる。 The cement composition may contain an antifoaming agent to the extent that it does not adversely affect performance. Antifoaming agents are used to reduce the amount of air entrained during mixing. There are no particular limitations on the type of antifoaming agent, as long as it does not significantly adversely affect the strength properties of the hardened mortar, and either liquid or powdered form may be used. Examples include polyether-based antifoaming agents, polyhydric alcohol-based antifoaming agents such as esters of polyhydric alcohols and alkyl ethers, alkyl phosphate-based antifoaming agents, and silicone-based antifoaming agents.
消泡剤の含有割合は、セメント組成物中のセメント100質量部に対して、0.002~0.5質量部であることが好ましく、0.005~0.45質量部であることがより好ましく、0.01~0.4質量部であることがさらに好ましい。消泡剤の含有割合が上記下限値以上であることで、消泡効果を十分に発現することができ、消泡剤の含有割合が上記上限値以下であることで、流動性保持性を良好にしやすい。 The content of the defoaming agent is preferably 0.002 to 0.5 parts by mass, more preferably 0.005 to 0.45 parts by mass, and even more preferably 0.01 to 0.4 parts by mass, per 100 parts by mass of cement in the cement composition. When the content of the defoaming agent is equal to or greater than the lower limit, the defoaming effect can be fully exerted, and when the content of the defoaming agent is equal to or less than the upper limit, the fluidity retention can be easily improved.
また、セメント組成物は、性能に悪影響を与えない範囲で、ガス発泡物質、減水剤、AE剤、防錆剤、撥水剤、抗菌剤、着色剤、防凍剤、石灰石微粉末、高炉徐冷スラグ微粉末、下水汚泥焼却灰やその溶融スラグ、都市ゴミ焼却灰やその溶融スラグ、及びパルプスラッジ焼却灰等の混和材料、増粘剤、及び収縮低減剤、ポリマー、ベントナイト、セピオライトなどの粘土鉱物、並びに、ハイドロタルサイトなどのアニオン交換体等のうちの一種又は二種以上を、本発明の目的を実質的に阻害しない範囲で使用することが可能である。 In addition, the cement composition may contain one or more of the following additives, provided that they do not adversely affect performance: gas foaming substances, water reducing agents, air entraining agents, rust inhibitors, water repellents, antibacterial agents, colorants, antifreeze agents, limestone fine powder, slowly cooled blast furnace slag fine powder, sewage sludge incineration ash and its molten slag, municipal waste incineration ash and its molten slag, and pulp sludge incineration ash; thickeners; shrinkage reducing agents; polymers; clay minerals such as bentonite and sepiolite; and anion exchangers such as hydrotalcite.
[硬化体]
本実施形態に係る硬化体は、セメント組成物を硬化してなる。硬化体は、通常、セメント組成物と水とが混練されることにより、水硬性材料であるセメントが水和反応を起こし硬化する。練り混ぜ水量は、特に限定されないが、セメント組成物100質量部に対して、10~70質量部であることが好ましく、14~65質量部であることがより好ましく、16質量部~60質量部であることがさらに好ましい。練り混ぜ水量が上記範囲内であると、水硬性材料の初期強度発現性を良好にしやすい。
[Hardened body]
The hardened body according to the present embodiment is obtained by hardening a cement composition. The hardened body is usually formed by kneading the cement composition with water, which causes a hydration reaction of the hydraulic material cement and hardens it. The amount of water used for mixing is not particularly limited, but is preferably 10 to 70 parts by mass, more preferably 14 to 65 parts by mass, and even more preferably 16 to 60 parts by mass, relative to 100 parts by mass of the cement composition. When the amount of water used for mixing is within the above range, it is easy to improve the initial strength development of the hydraulic material.
硬化体は、セメント組成物と水とを混練後、静置することにより硬化して得られるものであるが、混練後、型枠に充填(打設)し養生したり、また、施工箇所に直接流し込む、あるいは吹付けるまたは塗り付けたりすることによって、より効率的に得ることができる。 The hardened body is obtained by mixing the cement composition with water and then leaving it to harden, but it can also be obtained more efficiently by filling (casting) the mixture into a formwork and curing it, or by pouring it directly into the construction area, or by spraying or painting it.
硬化体の圧縮強さは、使用するセメントの種類によるが、打設後6時間で、10.5~15.0N/mm2であることが好ましく、11.0~14.0N/mm2であることがより好ましく、12.0~13.0N/mm2であることがさらに好ましい。また、材齢7日で、40.0~50.0N/mm2であることが好ましく、41.0~48.0N/mm2であることがより好ましく、42.0~46.0N/mm2であることがさらに好ましい。
なお、本発明において、圧縮強さは、JIS R 5201:2015「セメントの物理試験方法」に規定の方法に準拠し測定することができる。
The compressive strength of the hardened body depends on the type of cement used, but 6 hours after casting, it is preferably 10.5 to 15.0 N/ mm2 , more preferably 11.0 to 14.0 N/ mm2 , and even more preferably 12.0 to 13.0 N/ mm2 . Also, at 7 days, it is preferably 40.0 to 50.0 N/ mm2 , more preferably 41.0 to 48.0 N/ mm2 , and even more preferably 42.0 to 46.0 N/ mm2 .
In the present invention, the compressive strength can be measured in accordance with the method specified in JIS R 5201:2015 "Physical testing methods for cement".
[硬化体の製造方法]
本実施形態に係る硬化体の製造方法は、水硬性材料用硬化促進材と、セメントと、水とを含有するセメント組成物を、最高温度40~80℃、2~8時間の蒸気養生により硬化させる方法である。硬化体の製造方法は、水硬性材料用硬化促進材、セメント、及び水を混練する混練工程、混練されたセメント組成物を型枠に充填する打設工程、及び型枠に充填されたセメント組成物を養生する養生工程を、この順で含むことが好ましい。
[Method of manufacturing the cured product]
The method for producing a hardened body according to this embodiment is a method for hardening a cement composition containing a hardening accelerator for hydraulic materials, cement, and water by steam curing for 2 to 8 hours at a maximum temperature of 40 to 80° C. The method for producing a hardened body preferably includes, in this order, a kneading step of kneading the hardening accelerator for hydraulic materials, cement, and water, a casting step of filling a formwork with the mixed cement composition, and a curing step of curing the cement composition filled in the formwork.
混練工程における混練方法は特に限定されるものではなく、それぞれの材料を施工時に混合しても良いし、あらかじめ一部を、あるいは全部を混合しておいても差し支えない。混合装置としては、既存のいかなる装置、例えば、傾胴ミキサ、オムニミキサ、ヘンシェルミキサ、V型ミキサ、プロシェアミキサ及びナウタミキサなどの使用が可能である。 The mixing method in the mixing process is not particularly limited, and each material may be mixed at the time of construction, or some or all of the materials may be mixed in advance. Any existing equipment can be used as a mixer, such as a tilting mixer, omni mixer, Henschel mixer, V-type mixer, Plosser mixer, and Nauta mixer.
打設工程における打設方法は、公知の手法で行うことができる。打設時におけるセメント組成物の温度は、0~50℃であることが好ましく、10~40℃であることがより好ましい。打設時におけるセメント組成物の温度が上記範囲内であると、硬化体の早期脱型を可能にしやすくなる。 The casting method in the casting step can be performed by a known method. The temperature of the cement composition during casting is preferably 0 to 50°C, and more preferably 10 to 40°C. If the temperature of the cement composition during casting is within the above range, it becomes easier to quickly remove the hardened body from the mold.
硬化体の製造方法は、打設工程の後にさらに締固め工程を含むことが好ましい。締固め方法は、公知の手法を用いることができるが、作業性の観点から、振動機(バイブレータ)を用いることが好ましい。本発明の水硬性材料用硬化促進材を含有するセメント組成物は、打設直前の流動性が良好に保持されているため、締固めを容易に行うことができ、型枠内に均一にセメント組成物を行き渡らせることができ、また、打設時等に混入した気泡を取り除くことができる。 The method for producing the hardened body preferably further includes a compaction step after the casting step. Any known method can be used for compaction, but from the viewpoint of workability, it is preferable to use a vibrator. The cement composition containing the hardening accelerator for hydraulic materials of the present invention maintains good fluidity immediately before casting, so compaction can be easily performed, the cement composition can be distributed uniformly within the formwork, and air bubbles that are mixed in during casting can be removed.
養生工程に用いる養生方法としては、生産性向上の観点から、養生室や加熱シート等を用いた蒸気養生を用いることが好ましい。蒸気養生は、通常、対象周辺の雰囲気を昇温し、適度な湿度を保ちながら一定の温度を保持して養生を行う。蒸気養生の条件としては、最高温度40~80℃、養生時間2~8時間であることが好ましく、最高温度40~75℃、養生時間2.5~7.5時間であることがより好ましく、最高温度45~60℃、養生時間3~7時間であることがさらに好ましい。蒸気養生中のセメント組成物周辺の雰囲気の最高温度を上記範囲内とし、養生時間を上記範囲内として蒸気養生を行うと、硬化体の早期脱型を可能にしやすくなる。 From the viewpoint of improving productivity, it is preferable to use steam curing using a curing chamber or a heating sheet as the curing method used in the curing step. Steam curing is usually performed by raising the temperature of the atmosphere around the target and maintaining a constant temperature while maintaining an appropriate humidity. The conditions for steam curing are preferably a maximum temperature of 40 to 80°C and a curing time of 2 to 8 hours, more preferably a maximum temperature of 40 to 75°C and a curing time of 2.5 to 7.5 hours, and even more preferably a maximum temperature of 45 to 60°C and a curing time of 3 to 7 hours. If the maximum temperature of the atmosphere around the cement composition during steam curing is within the above range and the curing time is within the above range, it becomes easier to enable the hardened body to be demolded early.
蒸気養生中のセメント組成物周辺の相対湿度は、50%RH以上であることが好ましく、75%RH以上であることがより好ましく、90%RH以上であることがさらに好ましい。上限は限定されないが、100%RHであってもよい。蒸気養生中のセメント組成物周辺の相対湿度が、上記範囲内であると、硬化体の早期脱型を可能にしやすくなる。 The relative humidity around the cement composition during steam curing is preferably 50% RH or higher, more preferably 75% RH or higher, and even more preferably 90% RH or higher. There is no upper limit, but it may be 100% RH. When the relative humidity around the cement composition during steam curing is within the above range, it becomes easier to quickly demold the hardened body.
養生工程は、前養生工程を含むことが好ましい。前養生の条件としては、温度10~50℃で、1~3時間程度温度を一定に保持することが好ましい。養生工程が前養生工程を含むことにより、打設されたセメント組成物内部の温度を均一にすることができ、内部と外部の温度差による温度ひび割れを防止しやすい。 The curing process preferably includes a pre-curing process. Pre-curing conditions are preferably a temperature of 10 to 50°C, maintained constant for about 1 to 3 hours. By including a pre-curing process in the curing process, the temperature inside the poured cement composition can be made uniform, making it easier to prevent thermal cracks caused by temperature differences between the inside and outside.
養生工程は、加熱工程を含むことが好ましい。加熱方法としては、公知の方法を用いることができ、10~30℃/時間の昇温速度で加熱することが好ましく、12~28℃/時間の昇温速度で加熱することがより好ましく、15~25℃の昇温速度で加熱することがさらに好ましい。加熱工程における昇温速度が上記範囲内であると、セメント組成物の急激な温度上昇による温度ひび割れを防止しつつ硬化をより促進させることができる。 The curing step preferably includes a heating step. Any known method can be used as the heating method, and it is preferable to heat at a temperature rise rate of 10 to 30°C/hour, more preferably at a temperature rise rate of 12 to 28°C/hour, and even more preferably at a temperature rise rate of 15 to 25°C. If the temperature rise rate in the heating step is within the above range, hardening can be further promoted while preventing thermal cracking due to a sudden increase in temperature of the cement composition.
養生工程は、温度保持工程を含むことが好ましい。温度保持方法としては、公知の方法を用いることができ、好ましくは温度40~80℃の範囲で、1~8時間、より好ましくは、40~75℃の範囲で1~6時間、さらに好ましくは、45~65℃の範囲で2.5~5時間、一定の温度を保持する。温度保持工程において、上記数値範囲内で一定の温度を保持することにより、打設されたセメント組成物を均一に硬化させることができ、早期脱型を可能にしやすい。 The curing step preferably includes a temperature holding step. Known methods can be used as the temperature holding method, and a constant temperature is preferably held in the range of 40 to 80°C for 1 to 8 hours, more preferably in the range of 40 to 75°C for 1 to 6 hours, and even more preferably in the range of 45 to 65°C for 2.5 to 5 hours. By holding a constant temperature within the above numerical range in the temperature holding step, the poured cement composition can be hardened uniformly, making it easier to remove from the mold quickly.
硬化体の製造方法は、養生工程の後に、自然冷却工程を含むことが好ましい。自然冷却工程では、養生工程により得られた硬化体を、常温雰囲気下で自然冷却する。冷却時間は、特に限定されないが、硬化体を容易に脱型することのできる温度まで冷却できればよく、0.5~2時間程度あればよい。養生工程の後に、自然冷却工程を含むことにより、硬化体の温度ひび割れを防ぐことができる。 The method for producing a hardened body preferably includes a natural cooling step after the curing step. In the natural cooling step, the hardened body obtained in the curing step is naturally cooled in a room temperature atmosphere. The cooling time is not particularly limited, but it is sufficient that the hardened body is cooled to a temperature at which it can be easily demolded, and may be about 0.5 to 2 hours. By including a natural cooling step after the curing step, it is possible to prevent thermal cracking of the hardened body.
以下、本発明を実験例に基づいてさらに説明するが、本発明はこれらに限定されるものではない。 The present invention will be further explained below based on experimental examples, but the present invention is not limited to these.
<実験例1>
下記材料を用い、水/セメント比が45%、セメントと骨材の比率が1:2.5(質量比)のモルタルを調製した。得られたモルタルに対して、表1に記載の割合で減水剤を添加し、表1に示す組成の水硬性材料用硬化促進材の混合量を、表1に示す割合となるように混練し、セメント組成物を調製した。得られたセメント組成物のフロー値を測定し、フロー変化率を算出した。また、始発時間も測定した。いずれも表1に併記する。
また、調製したセメント組成物を、寸法4×4×16cmの型枠に充填した後、蒸気養生を行い、硬化体を得た。蒸気養生条件は、20℃で1時間の前養生、20℃/時間の速度で1.5時間の昇温、50℃で3時間の温度保持、自然冷却0.5時間とした。得られた硬化体の圧縮強さを測定した。結果を表1に併記する。
<Experimental Example 1>
Using the following materials, a mortar with a water/cement ratio of 45% and a cement to aggregate ratio of 1:2.5 (mass ratio) was prepared. A water reducing agent was added to the obtained mortar in the ratio shown in Table 1, and the hydraulic material hardening accelerator with the composition shown in Table 1 was mixed in the amount shown in Table 1 to obtain a cement composition. The flow value of the obtained cement composition was measured, and the flow rate of change was calculated. The initial time was also measured. Both are shown in Table 1.
The prepared cement composition was filled into a form measuring 4 x 4 x 16 cm, and then steam cured to obtain a hardened body. The steam curing conditions were 1 hour pre-curing at 20°C, 1.5 hours of temperature increase at a rate of 20°C/hour, 3 hours of temperature retention at 50°C, and 0.5 hours of natural cooling. The compressive strength of the hardened body was measured. The results are shown in Table 1.
(使用材料)
セメント:普通ポルトランドセメント(市販品)、ブレーン比表面積3,200cm2/g、比重3.15g/cm3
水:水道水
骨材:新潟県姫川水系産川砂
減水剤:ポリカルボン酸系高性能減水剤(市販品)
ギ酸カルシウム:試薬
硫酸カルシウム(無機カルシウム化合物):試薬
硫酸ナトリウム(無機硫酸塩):無水物、試薬
(Materials used)
Cement: Ordinary Portland cement (commercial product), Blaine specific surface area 3,200 cm 2 /g, specific gravity 3.15 g/cm 3
Water: Tap water Aggregate: River sand from the Himekawa River system in Niigata Prefecture Water reducing agent: Polycarboxylic acid-based high-performance water reducing agent (commercially available)
Calcium formate: Reagent Calcium sulfate (inorganic calcium compound): Reagent Sodium sulfate (inorganic sulfate): Anhydrous, Reagent
(測定項目)
フロー変化率:JIS R 5201:2015「セメントの物理試験方法」に規定の方法に準拠し、混練直後及び混練から1時間後のセメント組成物のフロー値をそれぞれ測定した。混練直後のフロー値は、すべて200程度であった。測定した各フロー値を用いて、(フロー変化率)=1-(混練から1時間後のフロー値)/(混練直後)×100として、フロー変化率を算出した。
始発時間:JIS A 1147:2019「コンクリートの凝結時間試験方法」に規定の方法に準拠し、貫入抵抗値が3.5N/mm2となる時間を始発時間とした。
圧縮強さ:JIS R 5201:2015「セメントの物理試験方法」に規定の方法に準拠し、蒸気養生終了後の材齢6時間(脱型直後)と、材齢7日の硬化体の圧縮強さをそれぞれ測定した。
(Measurement items)
Flow change rate: The flow values of the cement composition were measured immediately after mixing and 1 hour after mixing according to the method specified in JIS R 5201:2015 "Physical Testing Methods for Cement". All flow values immediately after mixing were about 200. Using each measured flow value, the flow change rate was calculated as (flow change rate) = 1 - (flow value 1 hour after mixing) / (immediately after mixing) x 100.
Initial setting time: In accordance with the method specified in JIS A 1147:2019 "Test method for setting time of concrete", the initial setting time was the time at which the penetration resistance value reached 3.5 N/ mm2 .
Compressive strength: In accordance with the method specified in JIS R 5201:2015 "Physical testing methods for cement," the compressive strength of the hardened body 6 hours after the end of steam curing (immediately after demolding) and 7 days after the end of steam curing was measured.
表1に示す結果より、ギ酸カルシウム、無機カルシウム化合物、及び硫酸カルシウムを除く無機硫酸塩を所定の割合で含有する水硬性材料用硬化促進材を用いることにより、セメント組成物の流動性保持性、凝結性及び初期強度発現性を良好にすることができることを確認した。 The results shown in Table 1 confirm that the use of a hydraulic material hardening accelerator containing calcium formate, inorganic calcium compounds, and inorganic sulfates other than calcium sulfate in a specified ratio can improve the fluidity retention, setting properties, and early strength development of the cement composition.
<実験例2>
水硬性材料用硬化促進材が含有する無機カルシウム化合物として、硫酸カルシウムのほかに、表2に示す割合で水酸化カルシウム、炭酸カルシウム、及び酸化カルシウムを用いたこと以外は、実験例1と同様にして、モルタル、セメント組成物、及び硬化体を調製し、フロー変化率、始発時間及び圧縮強さを測定した。結果を表2に併記する。
<Experimental Example 2>
Mortar, cement composition, and hardened body were prepared and the flow rate, initial time, and compressive strength were measured in the same manner as in Experimental Example 1, except that calcium hydroxide, calcium carbonate, and calcium oxide were used as inorganic calcium compounds in the hardening accelerator for hydraulic materials in the ratios shown in Table 2 in addition to calcium sulfate. The results are shown in Table 2.
(無機カルシウム化合物)
水酸化カルシウム:試薬
炭酸カルシウム:試薬
酸化カルシウム:試薬
(Inorganic calcium compounds)
Calcium hydroxide: Reagent Calcium carbonate: Reagent Calcium oxide: Reagent
表2に示す結果より、水硬性材料用硬化促進材が含有する無機カルシウム化合物として、硫酸カルシウム、水酸化カルシウム、炭酸カルシウム、及び酸化カルシウムを用いることで、セメント組成物の流動性保持性、凝結性及び初期強度発現性を良好にすることができることを確認した。中でも、硫酸カルシウムを含有する場合、特にセメント組成物の初期強度発現性を良好にすることができることを確認した。 The results shown in Table 2 confirm that the use of calcium sulfate, calcium hydroxide, calcium carbonate, and calcium oxide as inorganic calcium compounds contained in the hardening accelerator for hydraulic materials can improve the fluidity retention, setting properties, and early strength development of the cement composition. In particular, it was confirmed that the initial strength development of the cement composition can be improved when calcium sulfate is contained.
<実験例3>
水硬性材料用硬化促進材が含有する無機硫酸塩として、硫酸ナトリウムのほかに、表3に示す割合で硫酸アルミニウム、カリウムミョウバン、及びチオ硫酸ナトリウムを用いたこと以外は、実験例1と同様にして、モルタル、セメント組成物、及び硬化体を調製し、フロー変化率、始発時間及び圧縮強さを測定した。結果を表3に併記する。
<Experimental Example 3>
Mortar, cement composition, and hardened body were prepared and the flow rate, initial time, and compressive strength were measured in the same manner as in Experimental Example 1, except that aluminum sulfate, potassium alum, and sodium thiosulfate were used as inorganic sulfates in the hardening accelerator for hydraulic materials in the ratios shown in Table 3. The results are shown in Table 3.
(無機硫酸塩)
硫酸アルミニウム:試薬
カリウムミョウバン:試薬
チオ硫酸ナトリウム:試薬
(Inorganic sulfates)
Aluminum sulfate: Reagent Potassium alum: Reagent Sodium thiosulfate: Reagent
表3に示す結果より、水硬性材料用硬化促進材が含有する無機硫酸塩として、硫酸ナトリウム、硫酸アルミニウム、カリウムミョウバン、及びチオ硫酸ナトリウムを用いることで、セメント組成物の流動性保持性、凝結性及び初期強度発現性を良好にすることができることを確認した。中でも、硫酸ナトリウム及び硫酸アルミニウムを含有する場合、初期強度発現性をより良好にすることができ、特に、硫酸ナトリウムを含有する場合、流動性保持性もさらに良好にすることができることを確認した。 The results shown in Table 3 confirm that the use of sodium sulfate, aluminum sulfate, potassium alum, and sodium thiosulfate as inorganic sulfates contained in the hardening accelerator for hydraulic materials can improve the fluidity retention, setting properties, and early strength development of the cement composition. In particular, it was confirmed that when sodium sulfate and aluminum sulfate are contained, the early strength development can be improved, and in particular, when sodium sulfate is contained, the fluidity retention can be further improved.
<実験例4>
水硬性材料用硬化促進材に、表4に示す割合でさらにカルシウムサルフォアルミネートを添加したこと以外は、実験例1と同様にして、モルタル、セメント組成物、及び硬化体を調製し、フロー変化率、始発時間及び圧縮強さを測定した。結果を表4に併記する。
<Experimental Example 4>
Mortar, cement composition, and hardened body were prepared and the flow rate, initial time, and compressive strength were measured in the same manner as in Experimental Example 1, except that calcium sulfoaluminate was further added to the hardening accelerator for hydraulic materials in the proportions shown in Table 4. The results are shown in Table 4.
(カルシウムサルフォアルミネート)
試薬1級の炭酸カルシウム、硫酸カルシウム二水和物、及び水酸化アルミニウムを用いて、CaO:CaSO4:Al2O3のモル比が4:3:1の割合となるように混合し、1,400℃で2時間焼成し、室温まで放置して、ブレーン比表面積が3,500cm2/gとなるまで粉砕した試製品。
(Calcium Sulfoaluminate)
A prototype was prepared by mixing first-grade reagent calcium carbonate, calcium sulfate dihydrate, and aluminum hydroxide in a molar ratio of CaO : CaSO4 : Al2O3 of 4:3:1, firing at 1,400°C for 2 hours, leaving to cool to room temperature, and pulverizing until the Blaine specific surface area reached 3,500 cm2 /g.
表4に示す結果より、水硬性材料用硬化促進材がさらにカルシウムサルフォアルミネートを含有する場合、初期強度発現性をより良好にすることができることを確認した。 The results shown in Table 4 confirm that when the hardening accelerator for hydraulic materials further contains calcium sulfoaluminate, the initial strength development can be improved.
<実験例5>
水硬性材料用硬化促進材の混合量を、表5に示す割合としたこと以外は、実験例1と同様にして、モルタル、セメント組成物、及び硬化体を調製し、フロー変化率、始発時間及び圧縮強さを測定した。結果を表5に併記する。
<Experimental Example 5>
Mortar, cement composition, and hardened body were prepared and the flow rate, initial time, and compressive strength were measured in the same manner as in Experimental Example 1, except that the mixing amount of the hardening accelerator for hydraulic materials was set to the ratio shown in Table 5. The results are also shown in Table 5.
表5に示す結果より、水硬性材料用硬化促進材の混合量を所定の範囲にすることにより、セメント組成物の流動性保持性、凝結性及び初期強度発現性を良好にすることができることを確認した。 The results shown in Table 5 confirm that by mixing the amount of hydraulic material hardening accelerator within a specified range, the fluidity retention, setting properties, and early strength development of the cement composition can be improved.
<実験例6>
セメント組成物に用いるセメントとして、高炉セメント及びフライアッシュセメントを用いたこと以外は、実験例1と同様にして、モルタル、セメント組成物、及び硬化体を調製し、フロー変化率、始発時間及び圧縮強さを測定した。結果を表6に併記する。
<Experimental Example 6>
The mortar, cement composition, and hardened body were prepared in the same manner as in Experimental Example 1, except that blast furnace cement and fly ash cement were used as the cement for the cement composition, and the flow rate, initial time, and compressive strength were measured. The results are shown in Table 6.
(セメント)
高炉B種セメント:市販品、ブレーン比表面積3,200cm2/g、比重3.15g/cm3
高炉C種セメント:市販品、ブレーン比表面積3,500cm2/g、比重3.15g/cm3
フライアッシュセメントB種:市販品、ブレーン比表面積3,200cm2/g、比重3.15g/cm3
(cement)
Blast furnace type B cement: Commercial product, Blaine specific surface area 3,200 cm 2 /g, specific gravity 3.15 g/cm 3
Blast furnace type C cement: Commercial product, Blaine specific surface area 3,500 cm 2 /g, specific gravity 3.15 g/cm 3
Fly ash cement type B: Commercially available product, Blaine specific surface area 3,200 cm 2 /g, specific gravity 3.15 g/cm 3
表6に示す結果より、セメント組成物に用いるセメントとして、高炉セメントやフライアッシュセメントを用いた場合でも、セメント組成物の流動性保持性、凝結性及び初期強度発現性を良好にすることができることを確認した。 The results shown in Table 6 confirm that even when blast-furnace cement or fly ash cement is used as the cement in the cement composition, the fluidity retention, setting properties, and early strength development of the cement composition can be improved.
以上の結果より、本発明の水硬性材料用硬化促進材は、ギ酸カルシウム、無機カルシウム化合物、及び無機硫酸塩を所定の割合で含有することで、セメント組成物の流動性保持性、凝結性及び初期強度発現性を良好にすることができることを確認した。 The above results confirm that the hardening accelerator for hydraulic materials of the present invention, which contains calcium formate, inorganic calcium compounds, and inorganic sulfates in specified ratios, can improve the fluidity retention, setting properties, and early strength development of the cement composition.
本発明の水硬性材料用硬化促進材は、ギ酸カルシウム、無機カルシウム化合物、及び硫酸カルシウムを除く無機硫酸塩を所定の割合で含有することで、水硬性材料の流動性保持性、凝結性及び初期強度発現性を良好にすることが可能となる。そのため、プレキャスト工法で用いられるコンクリート硬化体等、土木、建築分野に幅広く適用できる。 The hardening accelerator for hydraulic materials of the present invention contains calcium formate, inorganic calcium compounds, and inorganic sulfates other than calcium sulfate in a specified ratio, which makes it possible to improve the fluidity retention, setting properties, and early strength development of hydraulic materials. Therefore, it can be widely applied in the fields of civil engineering and construction, such as hardened concrete bodies used in precast construction methods.
Claims (8)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023-052210 | 2023-03-28 | ||
JP2023052210A JP7628149B2 (en) | 2023-03-28 | 2023-03-28 | Hardening accelerators for hydraulic materials, cement compositions, and hardened products |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024204198A1 true WO2024204198A1 (en) | 2024-10-03 |
Family
ID=92906658
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2024/011948 WO2024204198A1 (en) | 2023-03-28 | 2024-03-26 | Hardening accelerator for hydraulic materials, cement composition, and hardened substance |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7628149B2 (en) |
WO (1) | WO2024204198A1 (en) |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001213646A (en) * | 2000-01-27 | 2001-08-07 | Nichiha Corp | Cement hardening accelerator and cement hardening acceleratig method |
JP2003277111A (en) * | 2002-03-22 | 2003-10-02 | Denki Kagaku Kogyo Kk | Hardening accelerator and cement composition |
CN101830679A (en) * | 2009-03-13 | 2010-09-15 | 上海晋马建材有限公司 | Roasting-free desulfurized gypsum, phosphorous gypsum, preparation of high-intensity, waterproof composite cementitious material |
JP2010275124A (en) * | 2009-05-26 | 2010-12-09 | Sumitomo Osaka Cement Co Ltd | Ultrahigh early strength cement composition and method for producing the same |
JP2012201533A (en) * | 2011-03-24 | 2012-10-22 | Ube Industries Ltd | Construction method of structure for residential foundation and structure for residential foundation constructed by using the same |
CN105417988A (en) * | 2015-12-30 | 2016-03-23 | 卓达新材料科技集团威海股份有限公司 | Early strength agent for ordinary portland cement fiber board |
CN106116217A (en) * | 2016-06-24 | 2016-11-16 | 桂林华越环保科技有限公司 | A kind of concrete light wall panel early strength water-reducing agent |
JP2017065963A (en) * | 2015-09-30 | 2017-04-06 | 宇部興産株式会社 | High fluidity mortar composition |
CN108503309A (en) * | 2018-04-27 | 2018-09-07 | 江苏金海宁新型建材科技有限公司 | A kind of fabricated construction grouting material |
WO2022196633A1 (en) * | 2021-03-18 | 2022-09-22 | デンカ株式会社 | Cement admixture, cement composition, and method for producing concrete product |
JP7260705B1 (en) * | 2022-08-30 | 2023-04-18 | デンカ株式会社 | Curing accelerator for hydraulic material, cement composition, and hardened body |
-
2023
- 2023-03-28 JP JP2023052210A patent/JP7628149B2/en active Active
-
2024
- 2024-03-26 WO PCT/JP2024/011948 patent/WO2024204198A1/en unknown
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001213646A (en) * | 2000-01-27 | 2001-08-07 | Nichiha Corp | Cement hardening accelerator and cement hardening acceleratig method |
JP2003277111A (en) * | 2002-03-22 | 2003-10-02 | Denki Kagaku Kogyo Kk | Hardening accelerator and cement composition |
CN101830679A (en) * | 2009-03-13 | 2010-09-15 | 上海晋马建材有限公司 | Roasting-free desulfurized gypsum, phosphorous gypsum, preparation of high-intensity, waterproof composite cementitious material |
JP2010275124A (en) * | 2009-05-26 | 2010-12-09 | Sumitomo Osaka Cement Co Ltd | Ultrahigh early strength cement composition and method for producing the same |
JP2012201533A (en) * | 2011-03-24 | 2012-10-22 | Ube Industries Ltd | Construction method of structure for residential foundation and structure for residential foundation constructed by using the same |
JP2017065963A (en) * | 2015-09-30 | 2017-04-06 | 宇部興産株式会社 | High fluidity mortar composition |
CN105417988A (en) * | 2015-12-30 | 2016-03-23 | 卓达新材料科技集团威海股份有限公司 | Early strength agent for ordinary portland cement fiber board |
CN106116217A (en) * | 2016-06-24 | 2016-11-16 | 桂林华越环保科技有限公司 | A kind of concrete light wall panel early strength water-reducing agent |
CN108503309A (en) * | 2018-04-27 | 2018-09-07 | 江苏金海宁新型建材科技有限公司 | A kind of fabricated construction grouting material |
WO2022196633A1 (en) * | 2021-03-18 | 2022-09-22 | デンカ株式会社 | Cement admixture, cement composition, and method for producing concrete product |
JP7260705B1 (en) * | 2022-08-30 | 2023-04-18 | デンカ株式会社 | Curing accelerator for hydraulic material, cement composition, and hardened body |
Also Published As
Publication number | Publication date |
---|---|
JP2024142328A (en) | 2024-10-11 |
JP7628149B2 (en) | 2025-02-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2018202064B2 (en) | Composition for use as a two component back filled grout comprising extracted silicate | |
US20170362123A1 (en) | Binder based on a solid mineral compound rich in alkaline-earth metal oxide with phosphate-containing activators | |
US20180230053A1 (en) | Castable material based on cementitious material with shrinkage resistance | |
JP7037879B2 (en) | Early-strength admixture for secondary products and early-strength concrete for secondary products | |
JP7085050B1 (en) | Cement admixture, hard mortar concrete material, hard mortar concrete composition, and hardened material | |
JP7260705B1 (en) | Curing accelerator for hydraulic material, cement composition, and hardened body | |
JP3672518B2 (en) | Cement admixture, cement composition and concrete using the same | |
JPH059049A (en) | Cement admixture and cement composition | |
JP7628149B2 (en) | Hardening accelerators for hydraulic materials, cement compositions, and hardened products | |
JP6985177B2 (en) | Hydraulic composition and concrete | |
JP5721212B2 (en) | Initial expansive cement composition | |
JP2017031037A (en) | Anti-washout underwater concrete composition and cured body thereof | |
JP4606632B2 (en) | Cement admixture and cement composition | |
US11845695B2 (en) | Accelerator for mineral binder compositions | |
US20220204405A1 (en) | Hydraulic binder composition | |
JP4606631B2 (en) | Cement admixture and cement composition | |
TW202502692A (en) | Hardening accelerator for hydraulic material, cement composition, and hardening body | |
JP7384230B2 (en) | Method for producing cured geopolymer and method for producing geopolymer composition | |
JP7074527B2 (en) | Cement composite | |
JP7195962B2 (en) | Construction method of tunnel lining concrete | |
JP2018171833A (en) | Method for manufacturing high durability rapid hardening mortar or concrete | |
WO2024204035A1 (en) | Setting accelerator for trowelled finishing, concrete composition, and hardened body | |
JP2024093298A (en) | Cement composition for carbonated buried formwork, binder for carbonated buried formwork, hydraulic composition for carbonated buried formwork, and carbonated buried formwork | |
US20230192565A1 (en) | Activation system, including at least one alkaline metal salt and calcium and/or magnesium carbonate for activating ground granulated blast furnace slag and binder comprising the same for the preparation of mortar or concrete composition | |
JP2025017887A (en) | Manufacturing method of precast concrete, quick hardening material for precast concrete, quick hardening material for precast concrete, precast concrete |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 24780308 Country of ref document: EP Kind code of ref document: A1 |