[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2024204162A1 - Method for manufacturing conductive pigment paste and method for manufacturing mixture paste - Google Patents

Method for manufacturing conductive pigment paste and method for manufacturing mixture paste Download PDF

Info

Publication number
WO2024204162A1
WO2024204162A1 PCT/JP2024/011891 JP2024011891W WO2024204162A1 WO 2024204162 A1 WO2024204162 A1 WO 2024204162A1 JP 2024011891 W JP2024011891 W JP 2024011891W WO 2024204162 A1 WO2024204162 A1 WO 2024204162A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive pigment
mass
pigment
paste
conductive
Prior art date
Application number
PCT/JP2024/011891
Other languages
French (fr)
Japanese (ja)
Inventor
耕吾 木下
心次郎 後藤
Original Assignee
関西ペイント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 関西ペイント株式会社 filed Critical 関西ペイント株式会社
Priority to JP2024519246A priority Critical patent/JP7565474B1/en
Publication of WO2024204162A1 publication Critical patent/WO2024204162A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • C01B32/174Derivatisation; Solubilisation; Dispersion in solvents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/205Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase
    • C08J3/21Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase the polymer being premixed with a liquid phase
    • C08J3/215Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase the polymer being premixed with a liquid phase at least one additive being also premixed with a liquid phase
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/44Carbon
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D17/00Pigment pastes, e.g. for mixing in paints
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/24Conductive material dispersed in non-conductive organic material the conductive material comprising carbon-silicon compounds, carbon or silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a method for producing a conductive pigment paste and a composite paste that have excellent conductivity, pigment dispersibility, and storage stability even at high pigment concentrations, and a method for producing a battery electrode layer that has excellent battery performance.
  • paste-like pigment dispersions in which pigments are dispersed in a mixture of pigment dispersion resins and solvents, have been widely used in fields such as paints, battery electrodes, coating materials, electromagnetic shielding, display panels, touch screen panels, colored films, colored sheets, decorative materials, protective materials, magnet modifiers, printing inks, device components, electronic equipment components, printed wiring boards, solar cells, functional rubber components, and resin molding films.
  • conductive pigments and conductive polymers are added to these materials to impart functions such as electrostatic paintability, conductivity, electromagnetic shielding, and antistatic properties.
  • pigment dispersion resins and pigment pastes are being developed that have excellent pigment dispersion capabilities and excellent pigment dispersion stability that prevents re-agglomeration of pigment particles in the formed pigment dispersion.
  • Patent Document 1 discloses a method for manufacturing an electrode for a nonaqueous electrolyte battery, which comprises a step of kneading a carbon-based conductive agent and a dispersion solvent, and then dispersing the carbon-based conductive agent using a medium-type disperser, a step of adding an active material and a binder to the paste obtained in the above step and kneading them to form an active material paste, and a step of applying the active material paste to an electrode substrate.
  • these inventions sometimes fail to achieve uniform dispersion and have poor storage stability.
  • the object of the present invention is to provide a method for producing a conductive pigment paste and a method for producing a composite paste that are excellent in pigment dispersibility and storage stability even in pastes with high pigment concentrations and/or high viscosity, and further to provide a method for producing a coating film (electrode layer for batteries) that is excellent in finish quality and conductivity, etc.
  • Step 1 A step of pulverizing a conductive pigment composition having a pigment concentration of 50 mass% or more of the conductive pigment (B) by a pulverizer; and Step 2: A step of mixing and dispersing the conductive pigment composition obtained in step 1 with components including a pigment dispersing resin (A), a solvent (C), and a fluororesin (D) which may be included as needed;
  • Step 2 A step of mixing and dispersing the conductive pigment composition obtained in step 1 with components including a pigment dispersing resin (A), a solvent (C), and a fluororesin (D) which may be included as needed;
  • the present invention provides the following method for producing a conductive pigment paste, method for producing a composite paste, and method for producing an electrode layer for a battery.
  • Item 1 A method for producing a conductive pigment paste containing a pigment dispersing resin (A), a conductive pigment (B), a solvent (C), and a fluororesin (D) which may be included as necessary, comprising the steps of: Step 1: A step of pulverizing a conductive pigment composition having a pigment concentration of 50 mass% or more of the conductive pigment (B) by a pulverizer; and Step 2: A step of mixing and dispersing the conductive pigment composition obtained in step 1 with components including a pigment dispersing resin (A), a solvent (C), and a fluororesin (D) which may be included as needed; A method for producing a conductive pigment paste, comprising the steps of: Item 2.
  • Item 3 In the carbon nanotubes (B1) before and after the pulverization in step 1, the following (1) and (2) are (1) The G/D ratio of the carbon nanotubes (B1) before pulverization is 0.1 or more and 5.0 or less, where G is the maximum peak intensity in the range of 1560 cm -1 to 1600 cm - 1 and D is the maximum peak intensity in the range of 1310 cm-1 to 1350 cm -1 .
  • the pigment dispersion resin (A) has at least one polar functional group selected from the group consisting of an amide group, an imide group, a hydroxyl group, a carboxyl group, a sulfonic acid group, a phosphate group, a silanol group, a cyano group, a pyrrolidone group, and an amino group, and the concentration of the polar functional group in the pigment dispersion resin (A) is 0.3 mmol/g to 23 mmol/g. Item 6. 6.
  • Item 7. 7 The method for producing a conductive pigment paste according to any one of items 1 to 6, wherein the solvent (C) is N-methyl-2-pyrrolidone.
  • the step 2 is Step 2-1: adding components containing a conductive pigment composition in an amount of 70 mass% or less based on 100 mass% of the total amount of the conductive pigment composition contained in the conductive pigment paste obtained after dispersion into a disperser and performing a dispersion treatment; and Step 2-2: adding the conductive pigment composition into the disperser until a desired concentration is reached, and performing a dispersion treatment.
  • Step 2-1 adding components containing a conductive pigment composition in an amount of 70 mass% or less based on 100 mass% of the total amount of the conductive pigment composition contained in the conductive pigment paste obtained after dispersion into a disperser and performing a dispersion treatment
  • Step 2-2 adding the conductive pigment composition into the disperser until a desired concentration is reached, and performing a dispersion treatment.
  • a method for producing a composite paste for a lithium ion secondary battery comprising: Item 10.
  • Item 10. A method for producing an electrode layer for a lithium ion secondary battery, comprising a step of applying the lithium ion secondary battery composite paste obtained by the production method of item 9 to a current collector.
  • Item 11. Item 11.
  • a method for producing an electrode for a lithium ion secondary battery comprising the step of applying an electrode insulating part to an end or an upper layer of the electrode layer obtained by the method for producing an electrode layer for a lithium ion secondary battery according to item 10.
  • the method for producing a conductive pigment paste and the method for producing a composite paste of the present invention are excellent in pigment dispersibility and storage stability even at high pigment concentrations and/or high viscosities, and can sufficiently reduce the viscosity of the paste with a relatively small amount of dispersion resin.
  • the coating film (battery electrode layer) is excellent in finish, conductivity, battery performance, etc.
  • a composition containing the conductive pigment (B) in a pigment concentration of 50 mass % or more and obtained by pulverizing the pigment with a pulverizer is referred to as a "conductive pigment composition”.
  • a paste prepared by further blending the conductive pigment composition with at least one pigment dispersing resin (A), a solvent (C), a fluororesin (D) which may be included as necessary, and optionally other various components is referred to as a "conductive pigment paste.”
  • the term "conductive pigment paste” refers to a paste containing a conductive pigment, but does not mean that the paste itself is conductive. It can be said that the conductive pigment paste is a paste that does not substantially contain an electrode active material.
  • the conductive pigment paste is prepared by further mixing at least one electrode active material and, optionally, other various components, and the resulting paste is called a "composite paste.”
  • the composite paste that is applied to a substrate and dried is called a “coating film” or a “composite layer.”
  • the coating film When used as an electrode for a battery, it can also be called an “electrode layer.”
  • Carbon nanotubes can also be abbreviated as "CNT.”
  • the present invention is a method for producing a conductive pigment paste containing a pigment dispersing resin (A), a conductive pigment (B), a solvent (C), and a fluororesin (D) that can be included as necessary, the method comprising: first, a step of grinding the conductive pigment (B) with a grinder at a pigment concentration of 50 mass% or more to obtain a conductive pigment composition (step 1: grinding step); and a step of mixing and dispersing components including the pigment dispersing resin (A), the solvent (C), and the fluororesin (D) that can be included as necessary into the conductive pigment composition obtained in step 1 (step 2: dispersing step).
  • This method has a conductive pigment paste having a conductive pigment (B) in a well-dispersed state.
  • the present invention may include another step between step 1 and step 2 or before or after step 2.
  • Step 1 is a step of pulverizing (including disintegration) the conductive pigment (B) with a pulverizer to obtain a conductive pigment composition
  • the pigment concentration of the conductive pigment (B) is usually 50 mass% or more, preferably 80 mass% or more, more preferably 90 mass% or more, even more preferably 95 mass% or more, particularly preferably 99 mass% or more, and even more particularly preferably 100 mass% based on 100 mass% of the conductive pigment composition.
  • the above “pigment concentration of the conductive pigment (B)” refers to the pigment concentration of the conductive pigment (B) contained in the conductive pigment composition, and does not include pigments or solids other than the conductive pigment (B).
  • the below-mentioned solvent, resin, and pigment other than the conductive pigment (B) can be suitably used as the components other than the conductive pigment (B) in the conductive pigment composition.
  • the solid content concentration of the conductive pigment composition is usually 50% by mass or more, preferably 80% by mass or more, more preferably 90% by mass or more, even more preferably 95% by mass or more, particularly preferably 99% by mass or more, and even more particularly preferably 100% by mass, based on 100% by mass of the conductive pigment composition.
  • the "solid content concentration” refers to the proportion (mass%) of solids when 1 g of a sample is dried by heating at 130°C for 3 hours.
  • the conductive pigment composition obtained in step 1 may contain components other than the conductive pigment (B) as long as they have the above-mentioned pigment concentration and solid content concentration.
  • the conductive pigment composition may contain a pigment dispersion resin (A), a pigment other than the conductive pigment (B), a solvent (C), and a fluororesin (D) that can be contained as necessary, which will be described later.
  • the conductive pigment composition it is preferable for the conductive pigment composition to contain substantially only the conductive pigment (B), and it is particularly preferable for the conductive pigment composition to contain substantially only the carbon nanotubes (B1).
  • the paste does not substantially contain an electrode active material, which will be described later, since the electrode active material is mixed in a later step (step 3).
  • the conductive pigment (B) is a conductive pigment, and any conductive pigment known per se can be used, but it is preferable that the conductive pigment (B) contains carbon nanotubes (B1).
  • the conductive pigment (B) may further contain a conductive pigment (B2) other than the carbon nanotubes (B1).
  • the content of carbon nanotubes (B1) in the conductive pigment (B) is, for example, 50% by mass or more, preferably 75% by mass or more, more preferably 95% by mass or more, particularly preferably 99% by mass or more, and even more particularly preferably 100% by mass, based on 100% by mass of the conductive pigment (B).
  • Carbon nanotubes (B1) As the carbon nanotubes (B1), single-walled carbon nanotubes or multi-walled carbon nanotubes can be used alone or in combination. In particular, in terms of viscosity, electrical conductivity, and cost, it is preferable to use multi-walled carbon nanotubes.
  • the content thereof is, for example, 0.5 mass% or more, preferably 1 mass% or more, and more preferably 2 mass% or more, based on 100 mass% of the total amount of the conductive pigment paste, and is, for example, 10 mass% or less, preferably 7 mass% or less, and more preferably 6 mass% or less. Furthermore, based on 100 mass% of the total solid content of the conductive pigment paste, the content is, for example, 5 mass% or more, preferably 10 mass% or more, and more preferably 20 mass% or more, and for example, 90 mass% or less, preferably 70 mass% or less, and more preferably 50 mass% or less.
  • the average outer diameter of the carbon nanotubes (B1) is, for example, 1 nm or more, preferably 3 nm or more, more preferably 5 nm or more, and is, for example, 30 nm or less, preferably 28 nm or less, more preferably 25 nm or less.
  • the average length of the carbon nanotubes (B1) is, for example, 0.1 ⁇ m or more, preferably 1 ⁇ m or more, more preferably 5 ⁇ m or more, and is, for example, 100 ⁇ m or less, preferably 80 ⁇ m or less, more preferably 60 ⁇ m or less.
  • the BET specific surface area of the carbon nanotubes (B1) is, in consideration of the relationship between viscosity and electrical conductivity, usually 100 m 2 /g or more, preferably 130 m 2 /g or more, more preferably 160 m 2 /g or more, and usually 800 m 2 /g or less, preferably 600 m 2 /g or less, more preferably 400 m 2 /g or less.
  • the BET specific surface area of the present invention can be calculated by the BET method using nitrogen adsorption measurement.
  • the BET specific surface area (m 2 /g) can be measured using a specific surface area measuring device (BERSORP-MAX (Microtrac-Bell Co., Ltd.)) in accordance with JIS Z8830:2013.
  • BERSORP-MAX Microtrac-Bell Co., Ltd.
  • the amount of acidic groups in the carbon nanotubes (B1) is usually 0.01 mmol/g or more, preferably 0.01 mmol/g or more, and usually 1.0 mmol/g or less, preferably 0.5 mmol/g or less, more preferably 0.2 mmol/g or less, and even more preferably 0.1 mmol/g or less, from the viewpoints of dispersibility and storage property. If the amount of acidic groups is 0.01 mmol/g or more, the dispersibility will be good, and if it is 1.0 mmol/g or less, the storage property will be good.
  • the above acidic groups can be imparted to carbon nanotubes by acid treatment as described below.
  • the acid treatment method is not particularly limited as long as it can bring the carbon nanotubes into contact with the acid, but a method of immersing the carbon nanotubes in an acid treatment solution (aqueous solution of acid) is preferred.
  • the acid contained in the acid treatment solution is not particularly limited, but examples thereof include nitric acid, sulfuric acid, and hydrochloric acid. These can be used alone or in combination of two or more. Among these, nitric acid and sulfuric acid are preferred.
  • the amount of acidic groups in the carbon nanotubes can be adjusted by the concentration of the acid treatment solution, the temperature, the treatment time, and the like.
  • the excess acid component adhering to the surface is removed by a washing method described below, thereby obtaining acid-treated carbon nanotubes.
  • the method for washing the acid-treated carbon nanotubes is not particularly limited, but washing with water is preferred.
  • the carbon nanotubes are collected from the acid-treated carbon nanotubes by a known method such as filtration, and then washed with water. After the above washing, the water adhering to the surface can be removed by drying, etc., as necessary, to obtain the acid-treated carbon nanotubes.
  • the volume-equivalent median diameter (D50) of the carbon nanotubes (B1) is usually 10 ⁇ m or more, preferably 15 ⁇ m or more, more preferably 20 ⁇ m or more, and usually 250 ⁇ m or less, preferably 200 ⁇ m or less, more preferably 150 ⁇ m or less, when measured by the method described in the examples below.
  • the median diameter (D50) can be obtained by irradiating a carbon nanotube particle with a laser beam and converting the diameter of the carbon nanotube into a sphere from the scattered light. The larger the median diameter (D50), the more carbon nanotube agglomerates there are, which means that the dispersibility is poor.
  • the median diameter (D50) is larger than 250 ⁇ m, there is a high possibility that carbon nanotube agglomerates exist in the electrode, and the conductivity of the entire electrode becomes non-uniform.
  • the median diameter (D50) is smaller than 10 ⁇ m, the fiber length is short, so the conductive path is insufficient, and the conductivity decreases.
  • the median diameter (D50) is within the range of 10 ⁇ m or more and 250 ⁇ m or less, the carbon nanotubes can be uniformly dispersed within the electrode while maintaining their electrical conductivity.
  • the G/D ratio In the Raman spectrum of the carbon nanotube (B1), the G/D ratio, where G is the maximum peak intensity in the range of 1560 cm -1 to 1600 cm -1 and D is the maximum peak intensity in the range of 1310 cm -1 to 1350 cm -1 , is usually 0.1 or more, preferably 0.4 or more, more preferably 0.6 or more, and is usually 5.0 or less, preferably 3.0 or less, more preferably 1.0 or less.
  • a G/D ratio in the range of 0.1 to 5.0 is preferable because it tends to have high conductivity due to fewer defects and crystal interfaces on the carbon surface.
  • the carbon nanotubes (B1) before and after the pulverization in the step 1 satisfy the following (1) and (2).
  • the G/D ratio of the carbon nanotubes (B1) before pulverization is 0.1 or more and 5.0 or less , where G is the maximum peak intensity in the range of 1560 cm ⁇ 1 to 1600 cm ⁇ 1 and D is the maximum peak intensity in the range of 1310 cm ⁇ 1 to 1350 cm ⁇ 1.
  • the G/D ratio of the carbon nanotubes (B1) before pulverization is ⁇ and the G/D ratio of the carbon nanotubes (B1) after pulverization is ⁇ , ⁇ / ⁇ 1.00.
  • the value of the above ⁇ / ⁇ decreases as the pulverization progresses, and is usually ⁇ / ⁇ 1.00, preferably 0.50 ⁇ / ⁇ 1.00, more preferably 0.70 ⁇ / ⁇ 0.98, and even more preferably 0.90 ⁇ / ⁇ 0.96.
  • ⁇ / ⁇ is within the above range, the ground surface is suitably activated in a relatively short grinding time, and good dispersibility and storage stability can be obtained in the dispersion step of step 2 described below, and the coating film can have excellent conductivity and finish.
  • conductive pigments (B2) examples include at least one conductive carbon selected from the group consisting of acetylene black, ketjen black, furnace black, thermal black, graphene, and graphite. Preferably, it is at least one selected from the group consisting of acetylene black, ketjen black, furnace black, and thermal black, more preferably at least one selected from the group consisting of acetylene black and ketjen black, and even more preferably it is acetylene black.
  • the BET specific surface area of the other conductive pigment (B2) is not particularly limited and is, for example, 1 m 2 /g or more, preferably 10 m 2 /g or more, more preferably 20 m 2 /g or more, and is, for example, 500 m 2 /g or less, preferably 250 m 2 /g or less, more preferably 200 m 2 /g or less, depending on the relationship between viscosity and conductivity.
  • the dibutyl phthalate (DBP) oil absorption of the other conductive pigment (B2) is not particularly limited. In relation to pigment dispersibility and conductivity, it is, for example, 60 ml/100 g or more, preferably 150 ml/100 g or more, and, for example, 1,000 ml/100 g or less, preferably 800 ml/100 g or less.
  • the conductive pigment (B) is ground (including disintegration) by a grinding machine.
  • the conductive pigment (B) contains carbon nanotubes.
  • pulverization is performed using a pulverizer incorporating pulverization media such as glass beads, zirconia beads, steel balls, etc.
  • the pulverization is performed by utilizing the pulverizing or destructive force caused by the collision of the pulverization media with each other and/or the collision of the pulverizer with the pulverization media.
  • Known pulverization devices such as a high-speed rotation impact mill, jet mill, roll mill, attritor, ball mill, vibration mill, and bead mill can be used as the pulverization device.
  • various types of steam or gas can be blown into the grinder during grinding to further activate the surface of the conductive pigment (B) or adjust the activity.
  • steam acidic or basic compounds are suitable, and as the gas, oxygen, nitrogen, etc. are suitable.
  • dry dispersion means pulverizing the pigment without substantially containing any liquid components, and since energy can be applied directly to the pigment, highly efficient and powerful pulverization (disintegration) is possible.
  • pulverized surface is activated and interacts with the surrounding substances, good dispersibility and storage stability can be obtained in the dispersion step of step 2 described below, and the coating film can have excellent conductivity and finish.
  • the outer diameter of the grinding media is preferably 0.1 to 5 mm, and more preferably 0.5 to 3 mm. Within the above range, the desired grinding force can be obtained, and when the conductive pigment (B) is carbon nanotubes, the pigment can be efficiently ground and disintegrated without excessively destroying the fiber shape.
  • Step 2 is a step of mixing and dispersing a component containing a pigment dispersing resin (A), a solvent (C), and a fluororesin (D) which may be included as necessary, into the conductive pigment composition obtained in step 1, and a liquid conductive pigment paste can be obtained by step 2.
  • A pigment dispersing resin
  • C solvent
  • D fluororesin
  • the upper limit of the solids concentration of the conductive pigment paste is usually less than 80% by mass, preferably less than 50% by mass, more preferably less than 20% by mass, and even more preferably less than 10% by mass.
  • the lower limit is usually 0.1% by mass or more, preferably 0.5% by mass or more, more preferably 1% by mass or more, and even more preferably 2% by mass or more.
  • the conductive pigment paste is a conductive pigment paste containing a pigment dispersion resin (A), a conductive pigment (B), a solvent (C), and a fluororesin (D) which may be included as necessary, and it is preferable that the pigment dispersion resin (A) has at least one polar functional group selected from the group consisting of an amide group, an imide group, a hydroxyl group, a carboxyl group, a sulfonic acid group, a phosphate group, a silanol group, a cyano group, a pyrrolidone group, and an amino group, and that the concentration of the polar functional group in the pigment dispersion resin (A) is 0.3 mmol/g or more and 23 mmol/g or less. It is also preferred that the composition further contains a highly polar, low molecular weight component (E) as required.
  • E highly polar, low molecular weight component
  • the above-mentioned components can be uniformly mixed and dispersed using a conventionally known dispersing machine such as a paint shaker, a sand mill, a ball mill, a pebble mill, an LMZ mill, a DCP pearl mill, a planetary ball mill, a homogenizer, a twin-screw kneader, or a thin film swirling high-speed mixer (manufactured by Filmix, product name "Clearmix", etc.).
  • a conventionally known dispersing machine such as a paint shaker, a sand mill, a ball mill, a pebble mill, an LMZ mill, a DCP pearl mill, a planetary ball mill, a homogenizer, a twin-screw kneader, or a thin film swirling high-speed mixer (manufactured by Filmix, product name "Clearmix", etc.).
  • the order in which the components are mixed is not particularly limited.
  • the pigment dispersion resin (A) preferably has at least one alkyl group having 12 or more carbon atoms.
  • the alkyl group having 12 or more carbon atoms any known alkyl group (hydrocarbon group) can be used without any particular limitation, and a linear or branched alkyl group is preferable, and a linear alkyl group is more preferable.
  • the alkyl group having 12 or more carbon atoms is preferably an alkyl group having 12 or more and less than 30 carbon atoms, more preferably an alkyl group having 15 or more and less than 26 carbon atoms, and even more preferably an alkyl group having 19 or more and less than 24 carbon atoms.
  • the alkyl group having 12 or more carbon atoms can be introduced into the resin, for example, by (co)polymerizing a polymerizable monomer containing an alkyl group having 12 or more carbon atoms.
  • polymerizable monomers containing an alkyl group having 12 or more carbon atoms include lauryl (meth)acrylate, stearyl (meth)acrylate, isostearyl (meth)acrylate, behenyl (meth)acrylate, lauryl (meth)acrylamide, stearyl (meth)acrylamide, behenyl (meth)acrylamide, etc. These may be used alone or in combination of two or more. It is believed that when the pigment dispersing resin (A) has a relatively bulky side chain of an alkyl group having 12 or more carbon atoms, the pigment dispersibility and storage stability are improved due to steric repulsion.
  • the pigment dispersion resin (A) preferably has at least one polar functional group selected from the group consisting of an amide group, an imide group, a hydroxyl group, a carboxyl group, a sulfonic acid group, a phosphoric acid group, a silanol group, a cyano group, a pyrrolidone group, and an amino group.
  • the polar functional group concentration is preferably 0.3 mmol/g or more and 23 mmol/g or less.
  • the acid group may be in the form of a salt.
  • the polar functional group it is preferable to use at least an amide group, a hydroxyl group, a carboxyl group, a sulfonic acid group, a phosphoric acid group, and an amino group, and it is more preferable to use at least a hydroxyl group, a carboxyl group, and an amino group.
  • the type of resin is not particularly limited as long as it is a resin other than the fluororesin (D) described below.
  • examples include acrylic resin, polyester resin, epoxy resin, polyether resin, alkyd resin, urethane resin, polyvinyl alcohol, polyvinyl acetal, polyvinylpyrrolidone, polyvinyl acetate, silicone resin, polycarbonate resin, chlorine-based resin, and composite resins thereof. These resins can be used alone or in combination of two or more.
  • the pigment dispersing resin (A) preferably contains a vinyl (co)polymer (A1) obtained by polymerizing or copolymerizing a monomer containing a polymerizable unsaturated group-containing monomer of the following formula (1), and in particular, an acrylic resin obtained by (co)polymerizing at least one polymerizable unsaturated group-containing monomer that contains a (meth)acryloyl group is preferred.
  • the "(co)polymer" of the present invention includes both a polymer obtained by polymerizing one type of monomer and a copolymer obtained by copolymerizing two or more types of monomers.
  • R may be the same or different and is a hydrogen atom or an organic group.
  • the vinyl (co)polymer (A1) include hydroxyl group-containing vinyl (co)polymers, carboxyl group-containing vinyl (co)polymers, amide group-containing vinyl (co)polymers, sulfonic acid group-containing vinyl (co)polymers, and the like.
  • examples of such (co)polymers include vinyl (co)polymers containing phosphoric acid groups, vinyl (co)polymers containing pyrrolidone groups, and vinyl (co)polymers containing amino groups. They can be used alone or in combination of two or more.
  • hydroxyl group-containing vinyl (co)polymers examples include polyhydroxyethyl (meth)acrylate, polyvinyl alcohol, vinyl alcohol-fatty acid vinyl copolymer, vinyl alcohol-ethylene copolymer, vinyl alcohol-(N-vinylformamide) copolymer, and copolymers of hydroxyethyl (meth)acrylate and other polymerizable unsaturated monomers.
  • the vinyl alcohol units in the (co)polymer may be obtained by (co)polymerizing fatty acid vinyl units and then hydrolyzing them.
  • carboxyl group-containing vinyl (co)polymers examples include polymers of (meth)acrylic acid, and copolymers of poly(meth)acrylic acid and other polymerizable unsaturated monomers.
  • amide group-containing vinyl (co)polymers examples include (meth)acrylamide polymers and copolymers of (meth)acrylamide and other polymerizable unsaturated monomers.
  • sulfonic acid group-containing vinyl (co)polymers examples include polymers of allylsulfonic acid or styrenesulfonic acid, copolymers of allylsulfonic acid and/or styrenesulfonic acid with other polymerizable unsaturated monomers, etc.
  • phosphate group-containing vinyl (co)polymers examples include polymers of (meth)acryloyloxyalkyl acid phosphate, and copolymers of (meth)acryloyloxyalkyl acid phosphate with other polymerizable unsaturated monomers.
  • amino group-containing vinyl (co)polymers examples include N,N-dimethylaminoethyl (meth)acrylate and copolymers of N,N-diethylaminoethyl (meth)acrylate with other polymerizable unsaturated monomers.
  • copolymerizable unsaturated monomers include, for example, vinyl formate, vinyl acetate, vinyl propionate, isopropenyl acetate, vinyl valerate, vinyl caprylate, vinyl caprate, vinyl laurate, vinyl stearate, vinyl benzoate, vinyl versatate, and vinyl pivalate; olefins such as ethylene, propylene, and butylene; aromatic vinyls such as styrene and ⁇ -methylstyrene; methyl (meth)acrylate, ethyl (meth)acrylate, n-butyl (meth)acrylate, and 2-ethylhexyl (meth)acrylate.
  • ethylenically unsaturated carboxylic acid alkyl ester monomers such as dimethyl fumarate, dimethyl maleate, diethyl maleate, and diisopropyl itaconate
  • vinyl ether monomers such as methyl vinyl ether, n-propyl vinyl ether, isobutyl vinyl ether, and dodecyl vinyl ether
  • halogenated vinyl monomers or vinylidene monomers such as vinyl chloride, vinylidene chloride, vinyl fluoride, and vinylidene fluoride
  • allyl compounds such as allyl acetate and allyl chloride
  • quaternary ammonium group-containing monomers such as 3-(meth)acrylamidopropyltrimethylammonium chloride.
  • the polar functional group concentration of the pigment dispersing resin (A) is usually 0.3 mmol/g to 23 mmol/g, preferably 0.3 mmol/g to 12 mmol/g, more preferably 0.4 mmol/g to 8.0 mmol/g, even more preferably 0.4 mmol/g to 6.0 mmol/g, and even more preferably 0.4 mmol/g to 2.0 mmol/g.
  • the vinyl (co)polymer (A1) can be produced by a polymerization method known per se.
  • a polymerization method known per se.
  • solution polymerization it is preferable to use solution polymerization, but this is not limiting, and bulk polymerization, emulsion polymerization, suspension polymerization, etc. may also be used.
  • solution polymerization continuous polymerization or batch polymerization may be used, and the monomers may be charged all at once or in portions, or may be added continuously or intermittently.
  • the polymerization initiator used in the solution polymerization is not particularly limited, but specific examples include azo compounds such as azobisisobutyronitrile, 2,2'-azobis(2-methylbutyronitrile), azobis-2,4-dimethylparabennitrile, and azobis(4-methoxy-2,4-dimethylparabennitrile); acetyl peroxide, benzoyl peroxide, lauroyl peroxide, acetylcyclohexylsulfonyl peroxide, and 2,4,4-trimethylpentyl-2,4-dimethylparabennitrile.
  • azo compounds such as azobisisobutyronitrile, 2,2'-azobis(2-methylbutyronitrile), azobis-2,4-dimethylparabennitrile, and azobis(4-methoxy-2,4-dimethylparabennitrile)
  • acetyl peroxide benzoyl per
  • -Peroxides such as peroxyphenoxyacetate; percarbonate compounds such as diisopropyl peroxydicarbonate, di-2-ethylhexyl peroxydicarbonate, and diethoxyethyl peroxydicarbonate; perester compounds such as t-butyl peroxyneodecanate, ⁇ -cumyl peroxyneodecanate, and t-butyl peroxyneodecanate; and known radical polymerization initiators such as azobisdimethylvaleronitrile and azobismethoxyvaleronitrile can be used.
  • percarbonate compounds such as diisopropyl peroxydicarbonate, di-2-ethylhexyl peroxydicarbonate, and diethoxyethyl peroxydicarbonate
  • perester compounds such as t-butyl peroxyneodecanate, ⁇ -cumyl peroxyneodecanate, and t-butyl
  • the polymerization reaction temperature is not particularly limited, but can usually be set in the range of 30°C or higher and 200°C or lower.
  • the vinyl (co)polymer (A1) obtainable as described above has a degree of polymerization of, for example, 100 or more, preferably 150 or more, and, for example, 4,000 or less, preferably 3,000 or less, more preferably 700 or less.
  • the weight average molecular weight is, for example, 1,000 or more, preferably 2,000 or more, more preferably 7,000 or more, and, for example, 2,000,000 or less, preferably 1,000,000 or less, more preferably 500,000 or less.
  • the weight average molecular weight is a value obtained by converting the retention time (retention volume) measured using a gel permeation chromatograph (GPC) into the molecular weight of polystyrene using the retention time (retention volume) of a standard polystyrene of known molecular weight measured under the same conditions.
  • GPC gel permeation chromatograph
  • the gel permeation chromatograph is "HLC8120GPC” (product name, manufactured by Tosoh Corporation), and the four columns are “TSKgel G-4000HXL”, “TSKgel G-3000HXL”, “TSKgel G-2500HXL” and “TSKgel G-2000HXL” (all product names, manufactured by Tosoh Corporation), and the measurements can be performed under the following conditions: mobile phase tetrahydrofuran, measurement temperature 40°C, flow rate 1mL/min, and detector RI.
  • the vinyl (co)polymer (A1) can be converted into a solid or into a resin solution in which any solvent has been replaced by removing the solvent and/or replacing the solvent.
  • the method of desolvation may be by heating at normal pressure or under reduced pressure.
  • the method of solvent replacement may be to add a replacement solvent at any stage before, during, or after desolvation.
  • the content of the alkyl group having 12 or more carbon atoms in the dispersion resin (A), in the case of the vinyl (co)polymer (A1) is preferably 1 to 100 mass%, more preferably 10 to 90 mass%, even more preferably 20 to 80 mass%, and particularly preferably 30 to 60 mass%, expressed as the mass ratio of the monomer when all monomers are taken as 100 mass%.
  • the content of the alkyl group having 12 or more carbon atoms is calculated based on the mass proportion of a compound having a reactive alkyl group having 12 or more carbon atoms added to the resin later.
  • the pigment dispersion resin (A) When the pigment dispersion resin (A) is converted from a solid state into a resin solution, it is preferable that the pigment dispersion resin (A) is first mixed and dissolved in a solvent having a liquid temperature of 60° C. or higher (preferably 80° C. or higher) (the upper limit is 200° C. or lower, preferably 100° C. or lower) to convert it into a resin solution, and then mixed with other components [components (B), (C), (D), etc.], from the viewpoint of solubility in the solvent.
  • the "liquid temperature” refers to the temperature of the solvent or resin solution at the time of dissolution.
  • the solid pigment dispersion resin (A) may be mixed and dissolved in a solvent at 60° C.
  • the solid pigment dispersion resin (A) may be mixed with a solvent and then heated to a temperature of 60° C. or higher.
  • the ink may contain components other than the pigment dispersing resin (A) and the solvent.
  • the solvent to be used may be one type alone or two or more types in combination. As the type, those exemplified as the solvent (C) described later can be suitably used.
  • the solid content of the pigment dispersion resin (A) is, based on 100% by mass of the total solid content of the conductive pigment paste, for example, 0.1% by mass or more, preferably 1% by mass or more, and more preferably 3% by mass or more, and for example, 40% by mass or less, preferably 30% by mass or less, and more preferably 20% by mass or less.
  • the solid content of the pigment dispersion resin (A) is, based on 100% by mass of the total amount of the conductive pigment paste, for example, 0.1% by mass or more, preferably 0.4% by mass or more, and more preferably 0.7% by mass or more, and for example, 10% by mass or less, preferably 5% by mass or less, and more preferably 2% by mass or less.
  • the solid content of the pigment dispersion resin (A) is, based on the content of the conductive pigment (B) of 100% by mass, for example, 0.1% by mass or more, preferably 1% by mass or more, more preferably 5% by mass or more, and for example, 150% by mass or less, preferably 120% by mass or less, more preferably 80% by mass or less.
  • Solvent (C) As the solvent (C), water or various organic solvents can be suitably used.
  • the solvent include hydrocarbon solvents such as n-butane, n-hexane, n-heptane, n-octane, cyclopentane, cyclohexane, and cyclobutane; aromatic solvents such as toluene and xylene; ketone solvents such as methyl isobutyl ketone; ether solvents such as n-butyl ether, dioxane, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, and diethylene glycol; ethyl acetate, n-butyl acetate, isobutyl acetate, and ethylene glycol monomethyl ether.
  • the solvent examples include ester-based solvents such as ethyl ether acetate and butyl carbitol acetate; ketone-based solvents such as methyl ethyl ketone, methyl isobutyl ketone and diisobutyl ketone; alcohol-based solvents such as ethanol, isopropanol, n-butanol, sec-butanol and isobutanol; and amide-based solvents such as Equamide (an amide-based solvent, product name, manufactured by Idemitsu Kosan Co., Ltd.), N,N-dimethylformamide, N,N-dimethylacetamide, N-methylformamide, N-methylacetamide, N-methylpropioamide and N-methyl-2-pyrrolidone.
  • ester-based solvents such as ethyl ether acetate and butyl carbitol acetate
  • ketone-based solvents such as methyl ethyl
  • amide-based solvents are preferred, and N-methyl-2-pyrrolidone is more preferred. These solvents can be used alone or in combination of two or more.
  • the conductive pigment paste is substantially free of water.
  • substantially free of water means that the water content is usually 1 mass % or less, preferably 0.5 mass % or less, and particularly preferably 0.1 mass % or less, based on 100 mass % of the total amount of the conductive pigment paste.
  • the water content of the conductive pigment paste can be measured by Karl Fischer coulometric titration.
  • the water content can be measured using a Karl Fischer moisture meter (manufactured by Kyoto Electronics Manufacturing Co., Ltd., product name "MKC-610”) with the moisture vaporizer (manufactured by Kyoto Electronics Co., Ltd., product name "ADP-611") attached to the device set at a temperature of 130°C.
  • MKC-610 Karl Fischer moisture meter
  • ADP-611 moisture vaporizer
  • amine components may be included as impurities, and in the conductive pigment paste of the present invention, the viscosity or tendency to thicken may vary from lot to lot depending on the amine components that are impurities.
  • the solvent and the like volatilize and do not remain, but it is preferable to recover and reuse the volatilized solvent in order to reduce waste, be environmentally friendly, and/or reduce raw material costs.
  • a recycled product as the solvent (C).
  • This recycled solvent (recycled product) will also contain the amine compound (E1) that is originally contained in the conductive pigment paste of the present invention, and similarly the viscosity or thickening tendency of the conductive pigment paste will differ from lot to lot. Furthermore, amine compounds often have a strong odor.
  • the amine compound content in the recycled solvent (C) is usually 1 mass% or less, preferably 0.5 mass% or less, and particularly preferably 0.1 mass% or less.
  • the amount of amine compounds contained can be quantified using common analyses such as ion chromatography-mass spectrometry (IC-MS).
  • IC-MS ion chromatography-mass spectrometry
  • the amount can be quantified by creating a calibration curve for the peaks of amine species that are expected to be present.
  • the above phrase "using recycled products as the solvent (C)" means that the solvent (C) used in the conductive pigment paste of the present invention contains 10% by mass or more (preferably 20% by mass or more) of recycled products.
  • the content of the solvent (C) in the conductive pigment paste is, based on 100 mass% of the total amount of the conductive pigment paste, for example, 40 mass% or more, preferably 60 mass% or more, and more preferably 80 mass% or more, and for example, 99 mass% or less, preferably 98 mass% or less, and more preferably 97 mass% or less.
  • the solid content of the conductive pigment paste is, for example, 1 mass % or more, preferably 2 mass % or more, and more preferably 3 mass % or more, based on 100 mass % of the total amount of the conductive pigment paste, and is, for example, 60 mass % or less, preferably 40 mass % or less, and more preferably 20 mass % or less.
  • Fluorine resin (D) is a resin intended for forming a film of an electrode layer, and may be contained in the conductive pigment paste as necessary, and is preferably contained therein. It is also an essential component of the composite paste described below.
  • PVDF polyvinylidene fluoride
  • one type may be used alone or two or more types may be used in combination.
  • polyvinylidene fluoride may be modified in various ways, and from the viewpoint of adhesion to the substrate, it is preferable that it has a polar functional group.
  • the fluororesin (D) may be contained when the pigment is dispersed, or may be added after the pigment is dispersed, or may be contained during the production of a composite paste, which will be described later.
  • the weight average molecular weight of the fluororesin (D) is, from the viewpoints of adhesion to the substrate, reinforcement of the film properties, and solvent resistance, for example, 100,000 or more, preferably 500,000 or more, more preferably 650,000 or more, and for example, 3,000,000 or less, preferably 2,000,000 or less.
  • the content is, based on 100% by mass of the solid content of the conductive pigment paste, for example, 10.0% by mass or more, preferably 30.0% by mass or more, more preferably 40.0% by mass or more, and for example, 99.0% by mass or less, preferably 80.0% by mass or less, more preferably 60.0% by mass or less. Also, based on 100% by mass of the total amount of the conductive pigment paste, the content is, for example, 0.1% by mass or more, preferably 0.5% by mass or more, more preferably 1% by mass or more, and for example, 10% by mass or less, preferably 7% by mass or less, more preferably 5% by mass or less.
  • the fluororesin (D) is made into a resin solution from a solid state, from the viewpoint of solubility in the solvent, it is preferred that the fluororesin (D) is first mixed and dissolved in a solvent at a liquid temperature of 40° C. or higher (preferably 60° C. or higher, more preferably 80° C. or higher) (the upper limit is 200° C. or lower, preferably 100° C. or lower) to make a resin solution, and then the fluororesin (D) is further mixed and dispersed with the conductive pigment composition.
  • the "liquid temperature” refers to the temperature of the solvent or resin solution at the time of dissolution.
  • the solid fluororesin (D) may be mixed and dissolved in a solvent at 40° C.
  • the solid fluororesin (D) may be mixed with a solvent and then heated to a temperature of 40° C. or higher.
  • the composition may contain components other than the fluororesin (D) and the solvent.
  • the fluororesin (D) is preferably polyvinylidene fluoride (or a modified product thereof).
  • the solvent to be used may be one type alone or two or more types in combination, and as the type, those exemplified as the solvent (C) above can be suitably used.
  • the cooling step is carried out by reacting the resin solution with ... by the following reaction:
  • the highly polar, low-molecular-weight component (E) is a component that increases the wettability and/or storage stability of the conductive pigment.
  • Examples of the highly polar, low-molecular-weight component (E) include basic components and acidic components known per se. Among these, amine compounds ( It is preferred that the compound contains a cyclic alkyl group.
  • the content of the amine compound (E1) in the highly polar, low molecular weight component (E) is, for example, 50% by mass or more, preferably 75% by mass or more, and more preferably 95% by mass or more, based on 100% by mass of the highly polar, low molecular weight component (E).
  • Examples of the amine compound (E1) include ammonia, primary amines, secondary amines, and tertiary amines.
  • Primary amines include, for example, ethylamine, n-propylamine, sec-propylamine, n-butylamine, sec-butylamine, i-butylamine, tert-butylamine, pentylamine, hexylamine, heptylamine, octylamine, decylamine, laurylamine, myristyrylamine, 1,2-dimethylhexylamine, 3-pentylamine, 2-ethylhexylamine, allylamine, aminoethanol, 1-aminopropanol, 2-aminopropanol, aminobutanol, aminopentanol, aminohexanol, 3-ethoxypropylamine, 3-propoxypropylamine, 3-isopropoxypropylamine, 3-butoxypropylamine, 3-isopropoxypropylamine, 3-butoxypropylamine, 3-isobutoxypropylamine, 3-(2-ethyl
  • Secondary amines include, for example, diethylamine, dipropylamine, di-n-butylamine, di-sec-butylamine, diisobutylamine, di-n-pentylamine, di-3-pentylamine, dihexylamine, dioctylamine, di(2-ethylhexyl)amine, methylhexylamine, diallylamine, pyrrolidine, piperidine, 2,4-leupetidine, 2,6-leupetidine, 3,5-leupetidine, diphenylamine, secondary monoamines such as N,N'-dimethylethylenediamine, N,N'-dimethyl-1,2-diaminopropane, N,N'-dimethyl-1,3-diaminopropane, N,N'-dimethyl-1,2-diaminobutane, N,N'-dimethyl-1,3 ...
  • tertiary amines include trimethylamine, triethylamine, tri-n-propylamine, tri-iso-propylamine, tri-1,2-dimethylpropylamine, tri-3-methoxypropylamine, tri-n-butylamine, tri-iso-butylamine, tri-sec-butylamine, tri-pentylamine, tri-3-pentylamine, tri-n-hexylamine, tri-n-octylamine, tri-2-ethylhexylamine, tri-dodecylamine, tri-laurylamine, dicyclohexylethylamine, cyclohexyldiethylamine, tri-cyclohexylamine, N,N-dimethylhexylamine, N-methyldihexylamine, N,N-dimethylcyclohexylamine, N-methyldicyclohexylamine, N,N-diethylethanol
  • primary amine compounds are preferred, and monovalent amine compounds (monoamines) are more preferred.
  • the above amine compound (E1) may be an alkanolamine, an aliphatic amine, an alicyclic amine, an aromatic amine, etc., any of which may be suitably used, but aromatic amines are preferred.
  • the weight average molecular weight of the amine compound (E1) is preferably less than 1,000, more preferably 800 or less, even more preferably 500 or less, particularly preferably 350 or less, and even more particularly preferably 250 or less.
  • the boiling point of the amine compound is preferably 400° C. or lower, more preferably 300° C. or lower, and even more preferably 200° C. or lower.
  • the lower limit is preferably 50° C. or higher, and more preferably 100° C. or higher.
  • the amine value of the amine compound (E1) is usually 5 mgKOH/g or more, preferably 50 mgKOH/g or more, more preferably 105 mgKOH/g or more, and is usually within the range of 1,000 mgKOH/g or less.
  • an acidic highly polar, low molecular weight component selected from organic acids and inorganic acids can be used alone or in combination with two or more of them in combination with the amine compound (E1).
  • a basic highly polar, low molecular weight component selected from organic bases and inorganic bases can be used alone or in combination with two or more of them in combination.
  • organic acid examples include organic carboxylic acids (formic acid, acetic acid, propionic acid, benzoic acid, phthalic acid, etc.), organic sulfonic acids (benzenesulfonic acid, etc.), and examples of the inorganic acid include hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, and the like. Acid anhydrides of these acids can also be used.
  • organic bases include base components other than amine compounds
  • inorganic bases include metal hydroxides (sodium hydroxide, potassium hydroxide, etc.).
  • the content of the highly polar, low molecular weight component (E) is, for example, 1% by mass or more, preferably 1.5% by mass or more, and more preferably 2% by mass or more, based on 100% by mass of the solid content of the conductive pigment paste, and is, for example, 600% by mass or less, preferably 300% by mass or less, and more preferably 50% by mass or less.
  • the lower limit is, for example, 1% by mass or more, preferably 2% by mass or more, and more preferably 5% by mass or more
  • the upper limit is, for example, 1,000% by mass or less, preferably 500% by mass or less, and more preferably 50% by mass or less.
  • the lower limit is, for example, 0.01% by mass or more, preferably 0.05% by mass or more, and more preferably 0.1% by mass or more
  • the upper limit is, for example, 10% by mass or less, preferably 5% by mass or less, and more preferably 1% by mass or less.
  • the content ratio of the solvent (C) to the highly polar, low molecular weight component (E) is usually within the range of 100/0.01 to 100/10, preferably within the range of 100/0.02 to 100/7, more preferably within the range of 100/0.05 to 100/5, and more preferably within the range of 100/0.1 to 100/4, in terms of the mass ratio of the solvent (C) to the highly polar, low molecular weight component (E).
  • the conductive pigment paste may further contain other components in addition to the above-mentioned components (A), (B), and (C), and the components (D) and (E) which may be included as necessary.
  • Other components include, for example, resins other than the pigment dispersion resin (A) and the fluororesin (D), neutralizing agents, defoamers, preservatives, rust inhibitors, plasticizers, pigments other than the conductive pigment (B), etc.
  • Pigments other than the conductive pigment (B) include, for example, white pigments such as titanium white and zinc oxide; blue pigments such as cyanine blue and indanthrene blue; green pigments such as cyanine green and verdigris; organic red pigments such as azo and quinacridone, red pigments such as red iron oxide; organic yellow pigments such as benzimidazolone, isoindolinone, isoindoline and quinophthalone, and yellow pigments such as titanium yellow and yellow lead. These pigments can be used alone or in combination of two or more.
  • These pigments other than the conductive pigment (B) can be used for purposes such as color adjustment and reinforcement of the physical properties of the film within a range that does not significantly impair the conductivity, and may be dispersed simultaneously with the pigment dispersion resin (A) and the conductive pigment (B), or may be mixed as a pigment or pigment paste after dispersing the pigment dispersion resin (A) and the conductive pigment (B) to prepare a paste.
  • the content of pigments other than the conductive pigment (B) is preferably 10% by mass or less, more preferably 5% by mass or less, and even more preferably 1% by mass or less, based on 100% by mass of all pigments in the conductive pigment paste, and it is particularly preferable that they are substantially not contained.
  • the viscosity of the conductive pigment paste at a shear rate of 2 s ⁇ 1 is, for example, less than 5,000 mPa ⁇ s, preferably less than 2,500 mPa ⁇ s, and more preferably less than 1,000 mPa ⁇ s, and is, for example, 10 mPa ⁇ s or more, preferably 50 mPa ⁇ s or more, and more preferably 100 mPa ⁇ s or more.
  • the viscosity can be measured, for example, using a cone and plate viscometer (manufactured by HAAKE, product name "Mars2", diameter 35 mm, cone and plate inclined at 2°).
  • Step 3 electrode active material mixing step
  • a conductive pigment paste containing a conductive pigment is prepared by the above-mentioned steps 1 and 2. Furthermore, in step 3 (electrode active material mixing step), the conductive pigment paste and at least one kind of electrode active material (F) are mixed to produce a composite paste for a lithium ion secondary battery.
  • the solid content of the electrode active material (F) is usually 10% by mass or more, preferably 20% by mass or more, based on 100% by mass of the total amount of the composite paste, and is usually 99% by mass or less, preferably 95% by mass or less, which is suitable in terms of battery performance.
  • the fluororesin (D) which was an optional component in the conductive pigment paste, is an essential component in the composite paste and is always contained therein.
  • the solid content of the fluororesin (D) is usually 0.05 mass % or more, preferably 0.1 mass % or more, based on 100 mass % of the total amount of the composite paste, and is usually 10 mass % or less, preferably 2 mass % or less, which is suitable in terms of battery performance, paste viscosity, etc.
  • the composite paste can be mixed uniformly using a conventional mixer and disperser.
  • the solid content of the pigment dispersion resin (A) in the solid content of the composite paste is usually 0.01% by mass or more, preferably 0.05% by mass or more, based on 100% by mass of the total amount of the composite paste, and is usually 10% by mass or less, preferably 1% by mass or less, which is suitable in terms of battery performance, paste viscosity, etc.
  • the composite paste of the present invention contains a highly polar, low molecular weight component (E), and it is preferable that the highly polar, low molecular weight component (E) contains at least one type of amine compound (E1).
  • the highly polar, low molecular weight component (E) contains at least one type of amine compound (E1).
  • the solid content of the conductive pigment (B) in the composite paste solids of the present invention is typically 0.01% by mass or more, preferably 0.05% by mass or more, more preferably 0.1% by mass or more, based on 100% by mass of the total composite paste, and is typically 30% by mass or less, preferably 10% by mass or less, more preferably 5% by mass or less, which is preferred in terms of battery performance.
  • the content of the solvent (C) in the composite paste of the present invention is typically 1% by mass or more, preferably 4% by mass or more, more preferably 7% by mass or more, based on 100% by mass of the total composite paste, and is typically 90% by mass or less, preferably 70% by mass or less, more preferably 50% by mass or less, which is preferred in terms of electrode drying efficiency and paste viscosity.
  • the above composite paste is suitable for use as a positive or negative electrode for lithium ion secondary batteries, and is preferably used as a positive electrode.
  • Electrode active material (F) examples include lithium composite oxides such as lithium nickel oxide (LiNiO 2 ), lithium manganate (LiMn 2 O 4 ), lithium cobalt oxide (LiCoO 2 ), and LiNi 1/3 Co 1/3 Mn 1/3 O 2 ; lithium iron phosphate (LiFePO 4 ); sodium composite oxide; and potassium composite oxide. These electrode active materials (F) can be used alone or in combination of two or more.
  • the electrode active material containing lithium iron phosphate is inexpensive and has relatively good cycle characteristics and energy density, and can therefore be used preferably.
  • the particle size of the electrode active material is usually 0.5 ⁇ m or more, preferably 10.5 ⁇ m or more, and usually 30 ⁇ m or less, preferably 20 ⁇ m or less.
  • the solid content of the electrode active material (F) in the 100% by mass solids of the composite paste for lithium ion secondary battery electrodes of the present invention is usually 50% by mass or more, preferably 60% by mass or more, and is preferably less than 100% by mass in terms of battery capacity, battery resistance, etc.
  • the composite paste contains the electrode active material (F), it may thicken during storage.
  • the electrode active material (F) has alkali metal hydroxides (e.g., LiOH, KOH, NaOH, etc.) derived from the raw materials on the particle surface, and is thought to aggregate (thicken) due to the conductive pigment (B) having an acidic surface. Therefore, by containing a certain amount or more of the highly polar low molecular weight component (E) [particularly the amine compound (E1)], it is possible to suppress the thickening of the composite paste during storage.
  • the highly polar low molecular weight component (E) particularly the amine compound (E1)
  • an electrode active material composite (F-1) having at least a part of its surface covered with carbon nanotubes can be suitably used.
  • the composite (F-1) can be obtained in advance by mixing the electrode active material (F), the carbon nanotubes, and, if necessary, other components (e.g., a solvent or a dispersion resin). If necessary, a drying step can be added after mixing, so that the carbon nanotubes can be more uniformly adsorbed and/or fixed to the electrode active material (F).
  • the electrode active material composite (F-1) produced as described above can form a uniform conductive network around the electrode active material by adsorbing and/or fixing the carbon nanotubes to the surface of the electrode active material.
  • any known carbon nanotubes can be used without any particular limitation, but the carbon nanotubes exemplified as the carbon nanotubes (B1) can be preferably used.
  • an electrode layer for a lithium ion secondary battery (also referred to as an electrode mixture layer or a mixture layer) can be produced by applying a mixture paste for a lithium ion secondary battery to a core surface (current collector) of a positive electrode or a negative electrode and drying the applied paste, and is particularly preferably used for a positive electrode.
  • the conductive pigment paste obtained by the production method of the present invention can be used not only as a paste for a composite layer (electrode layer) but also as a primer layer (also called a functional layer or adhesive layer) between an electrode core material and a composite layer (electrode layer).
  • the method of applying the composite paste for lithium ion secondary batteries can be carried out by a method known per se using a die coater or the like.
  • the amount of application of the composite paste for lithium ion secondary batteries is not particularly limited, but can be set so that the thickness of the composite layer after drying is, for example, 0.04 mm or more, preferably 0.06 mm or more, and, for example, 0.30 mm or less, preferably 0.24 mm or less.
  • the temperature of the drying step can be appropriately set, for example, 80° C. or more, preferably 100° C. or more, and, for example, 250° C. or less, preferably 200° C. or less.
  • the time of the drying step can be appropriately set, for example, 5 seconds or more, and, for example, 120 minutes or less, preferably 60 minutes or less.
  • N-methyl-2-pyrrolidone water content 500 ppm (Note 2), amine content 500 ppm (Note 2), recycled product (Note 2)
  • the water content and amine content were measured using a Karl Fischer moisture meter (Kyoto Electronics Manufacturing Co., Ltd., product name "MKC-610") and ion chromatography (Shimadzu Corporation, product name "prominence HIC-NS”).
  • Production Example 2 An acrylic resin (A2) having a solids content of 50% was obtained in the same manner as in Production Example 1, except that the monomer types shown in Table 1 below were used. The weight average molecular weights of the resins obtained are shown in Table 1. In the table, “resin A1” means acrylic resin (A1), and “resin A2” means acrylic resin (A2).
  • SLMA Lauryl methacrylate (having a hydrocarbon group with 12 carbon atoms)
  • BEMA Behenyl methacrylate (having a hydrocarbon group with 22 carbon atoms)
  • St styrene
  • DMAEMA N,N-dimethylaminoethyl methacrylate.
  • the above carbon nanotubes are all multi-walled carbon nanotubes.
  • the median diameter (D50), G/D ratio, specific surface area (BET specific surface area), and amount of acidic groups in Table 2 were measured by the methods described below.
  • Example 1A In a container, 5,000 parts of N-methyl-2-pyrrolidone (Note 1), 200 parts of crushed carbon nanotubes (C1-2), 80 parts of polyvinylpyrrolidone (40 parts solids) (Note 3) as a dispersion resin, 1,800 parts of KF Polymer W#7300 (manufactured by Kureha Corporation, trade name, polyvinylidene fluoride, weight average molecular weight 1,000,000) resin solution (180 parts solids) (Note 4), and 25 parts of benzylamine as an amine were mixed while stirring, and finally N-methyl-2-pyrrolidone (Note 1) was used to adjust the total mass to 10,000 parts.
  • the polyvinylidene fluoride resin solution was prepared by mixing and dissolving polyvinylidene fluoride and N-methyl-2-pyrrolidone (Note 1) at a temperature of 80°C, and then cooling the mixture to 30°C over 40 minutes to obtain a resin solution.
  • Examples 2A to 10A, Comparative Examples 1A to 2A Conductive pigment pastes (A-2) to (A-12) were obtained in the same manner as in Example 1A, except that the dispersion resin, carbon nanotubes (CNT), and amine were mixed as shown in Table 3 below.
  • carbon nanotubes [CNT1 (C1-0)] that were not pulverized (dry dispersed) were used.
  • the results of the evaluation test of the conductive pigment paste described below are shown in Table 3 below.
  • the blending amounts of the dispersing resin in Table 3 above are values based on solid content.
  • the compositions of the dispersing resins in Table 3 above are as follows: Polyvinyl butyral: average degree of polymerization 600, amount of hydroxyl groups 12 mol%, amount of butyral groups 87 mol%, amount of acetyl groups 1 mol%, concentration of polar functional groups 1.0 (mmol/g)
  • Polymethyl methacrylate weight average molecular weight 20,000, homopolymer of methyl methacrylate, polar functional group concentration 0 (mmol/g).
  • the boiling points and molecular weights of the amines in Table 3 above are as follows: Benzylamine: boiling point 185°C, molecular weight 107 Aminomethylpropanol: boiling point 166°C, molecular weight 89.
  • Example 1B 100 parts of the conductive pigment paste (A-1) was mixed with 900 parts of electrode active material particles ( lithium nickel manganese oxide particles having a spinel structure represented by the composition formula LiNi0.5Mn1.5O4 , average particle diameter 6 ⁇ m, BET specific surface area 0.7 m2 /g) using a disper to produce a composite paste (B-1).
  • electrode active material particles lithium nickel manganese oxide particles having a spinel structure represented by the composition formula LiNi0.5Mn1.5O4 , average particle diameter 6 ⁇ m, BET specific surface area 0.7 m2 /g
  • the median diameter (D50) was measured using a laser diffraction/scattering type particle size distribution measuring device "LA-960" (trade name, manufactured by HORIBA Co., Ltd.) according to the following procedure.
  • aqueous dispersion medium 0.10 g of F10MC (trade name, carboxymethylcellulose sodium (hereinafter also referred to as CMCNa), manufactured by Nippon Paper Industries Co., Ltd.) was added to 100 mL of distilled water and dissolved by stirring at room temperature for 24 hours or more to prepare an aqueous dispersion medium containing 0.1% by mass of CMCNa.
  • F10MC carboxymethylcellulose sodium
  • CMCNa aqueous solution 2.0 g of F10MC (trade name, sodium carboxymethylcellulose, manufactured by Nippon Paper Industries Co., Ltd.) was added to 100 mL of distilled water and dissolved by stirring at room temperature for 24 hours or more to prepare an aqueous solution of 2.0 mass % CMCNa.
  • F10MC trade name, sodium carboxymethylcellulose, manufactured by Nippon Paper Industries Co., Ltd.
  • Pre-measurement processing 6.0 mg of carbon nanotubes were weighed into a vial, and 6.0 g of the aqueous dispersion medium was added.
  • An ultrasonic homogenizer (Microtec Nithion, "SmurtNR-50") was used for pre-measurement treatment.
  • the tip was confirmed to be free of deterioration, and was adjusted so that the tip was immersed 10 mm or more below the surface of the sample to be treated.
  • the time set (irradiation time) was 40 seconds, the power set was 50%, the start power was 50% (output 50%), and the carbon nanotube aqueous dispersion was homogenized by ultrasonic irradiation using auto power operation with a constant output power.
  • the proportion of dispersed carbon nanotube particles having a size of 1 ⁇ m or less and the median diameter (D50) were measured according to the following methods.
  • the optical model of the LS 13 320 universal liquid module is set to a refractive index of 1.520 for carbon nanotubes and 1.333 for water, and after the module has been washed, it is filled with approximately 1.0 mL of a CMCNa aqueous solution.
  • the prepared carbon nanotube aqueous dispersion was added to the particle size distribution meter so that the relative concentration, which indicates the percentage of light scattered outside the beam by the particles, was 8-12%, or the PIDS was 40-55%, and ultrasonic irradiation was performed for 2 minutes at 78 W using the particle size distribution meter attachment (measurement pretreatment), and after circulating for 30 seconds to remove air bubbles, the particle size distribution was measured.
  • a graph of particle size (particle diameter) versus volume % was obtained, and the presence ratio and median diameter (D50) of dispersed particles of 1 ⁇ m or less were determined.
  • D50 median diameter
  • ⁇ G/D ratio of carbon nanotubes The Raman spectrum of the carbon nanotube was measured by placing the carbon nanotube in a Raman microscope (manufactured by Horiba, Ltd., product name "XploRA") and using a laser wavelength of 532 nm.
  • the G/D ratio of the carbon nanotube was determined by taking the maximum peak intensity G within the range of 1560 cm -1 to 1600 cm -1 in the spectrum and the maximum peak intensity D within the range of 1310 cm -1 to 1350 cm -1 .
  • BET specific surface area The BET specific surface area of the carbon nanotubes was measured as a BET specific surface area (m 2 /g) in accordance with JIS Z8830:2013 using a specific surface area measuring device (BERSORP-MAX (Microtrac-Bell Corporation)).
  • Evaluation tests were carried out on the conductive pigment pastes and composite pastes obtained in the above Examples and Comparative Examples. If there was even one unacceptable evaluation result, the evaluation was deemed to be unacceptable.
  • the conductive pigment paste thus obtained was subjected to the dispersion test of JIS K-5600-2-5, and the dispersibility was evaluated using a grain gauge according to the following criteria.
  • C and D are failures.
  • B The pigment is dispersed at a size of 10 ⁇ m or more and less than 20 ⁇ m. The dispersibility is somewhat good.
  • C The pigment is dispersed at a particle size of 20 ⁇ m or more, but no aggregates are visible. Dispersibility is somewhat poor.
  • D Aggregates are visually observed. Dispersibility is very poor.
  • volume resistivity (conductivity)> The volume resistivity of the obtained conductive pigment paste was further measured.
  • a 5 mass % solution of polyvinylidene fluoride manufactured by Kureha Corporation, product name "KF Polymer W#7300", solvent: N-methyl-2-pyrrolidone was used as a binder.
  • the conductive pigment paste and the KF Polymer W#7300 solution were weighed out so that the ratio of the mass of the conductive pigment (B) in the obtained conductive pigment paste to the total mass of the solid content of the pigment dispersion resin (A) and the solid content of the KF Polymer W#7300 in the conductive pigment paste was 5:100, and mixed for 2 minutes with an ultrasonic homogenizer to obtain a measurement sample.
  • a sample for measurement was applied to a glass plate (2 mm x 100 mm x 150 mm) by the doctor blade method, and the plate was dried by heating at 80 ° C. for 60 minutes to form a coating film on the glass plate.
  • the volume resistivity was evaluated according to the following criteria. D is a failure. A: The volume resistivity is less than 7 ⁇ cm and the electrical conductivity is good. B: The volume resistivity is 7 ⁇ cm or more and less than 15 ⁇ cm, and the electrical conductivity is normal. D: The volume resistivity is 15 ⁇ cm or more, and the electrical conductivity is poor.
  • ⁇ Initial viscosity> The viscosity of the obtained composite paste was measured at a shear rate of 2.0 sec -1 using a cone and plate viscometer (manufactured by HAAKE, product name "Mars2", diameter 35 mm, cone and plate inclined at 2°) and evaluated according to the following criteria. D is failure.
  • C Viscosity is 20 Pa ⁇ s or more and less than 50 Pa ⁇ s.
  • D Viscosity is 50 Pa ⁇ s or more.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Nanotechnology (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Paints Or Removers (AREA)

Abstract

The present invention addresses the problem of providing: a conductive pigment paste and a mixture paste having excellent pigment dispersibility and storage stability even in a high pigment concentration; and an electrode layer for a lithium ion secondary battery, the electrode layer having excellent performance in various aspects (such as conductivity and battery performance). Provided as a solution for the problem is a method for manufacturing a conductive pigment paste containing a pigment dispersion resin (A), a conductive pigment (B), a solvent (C), and an optional fluorine resin (D), the method being characterized by sequentially carrying out step 1 for pulverizing a conductive pigment composition having a pigment concentration of 50% by mass or more of the conductive pigment (B) in a pulverizer and step 2 for mixing and dispersing a component containing the pigment dispersion resin (A), the solvent (C) and the optional fluorine resin (D) in the conductive pigment composition obtained in the step 1.

Description

導電性顔料ペーストの製造方法及び合材ペーストの製造方法Method for producing conductive pigment paste and method for producing composite paste
 本発明は、高顔料濃度においても、導電性、顔料分散性、及び貯蔵安定性に優れる導電性顔料ペーストの製造方法及び合材ペーストの製造方法、並びに優れた電池性能を有する電池用電極層の製造方法に関する。 The present invention relates to a method for producing a conductive pigment paste and a composite paste that have excellent conductivity, pigment dispersibility, and storage stability even at high pigment concentrations, and a method for producing a battery electrode layer that has excellent battery performance.
 従来、顔料を顔料分散樹脂及び溶媒等の混合物中に分散させたペースト状の顔料分散体が、塗料、電池用電極、塗工材、コーティング材、電磁波シールド、ディスプレイパネル、タッチスクリーンパネル、着色フィルム、着色シート、化粧材、保護材、磁石改質材、印刷用インキ、デバイス部材、電子機器部材、プリント配線板、太陽電池、機能性ゴム部材、樹脂成形膜等の分野で広く用いられている。さらに、これらの材料に静電塗装性、導電性、電磁波シールド性、帯電防止性等の機能を付与するために導電性顔料や導電性高分子等を含有させている。  Traditionally, paste-like pigment dispersions, in which pigments are dispersed in a mixture of pigment dispersion resins and solvents, have been widely used in fields such as paints, battery electrodes, coating materials, electromagnetic shielding, display panels, touch screen panels, colored films, colored sheets, decorative materials, protective materials, magnet modifiers, printing inks, device components, electronic equipment components, printed wiring boards, solar cells, functional rubber components, and resin molding films. Furthermore, conductive pigments and conductive polymers are added to these materials to impart functions such as electrostatic paintability, conductivity, electromagnetic shielding, and antistatic properties.
 これらの分野では、顔料の分散性、貯蔵安定性、導電性、塗工性、仕上がり性等の性能向上がますます要求されており、そのため、優れた顔料分散能力と、形成された顔料分散体中の顔料粒子を再凝集させないだけの優れた顔料分散安定性を有する顔料分散樹脂及び顔料ペーストの開発がなされつつある。 In these fields, there is an increasing demand for improved pigment dispersibility, storage stability, electrical conductivity, coatability, finish, and other performance features. As a result, pigment dispersion resins and pigment pastes are being developed that have excellent pigment dispersion capabilities and excellent pigment dispersion stability that prevents re-agglomeration of pigment particles in the formed pigment dispersion.
 顔料ペーストの設計にあたっては、顔料分散樹脂が塗工膜等の最終製品そのものの導電性能等に悪い影響を及ぼさないように、あるいは溶媒及び顔料分散樹脂の使用量を低減することや乾燥時の使用エネルギーを低減する観点から、少量の顔料分散樹脂で高濃度かつ均一に分散された顔料ペーストを作製することが重要となっている。 When designing a pigment paste, it is important to create a highly concentrated, uniformly dispersed pigment paste using a small amount of pigment dispersion resin so that the pigment dispersion resin does not adversely affect the conductive properties of the final product itself, such as the coating film, and from the perspective of reducing the amount of solvent and pigment dispersion resin used and reducing the energy used during drying.
 例えば、特許文献1には、炭素系導電剤と分散溶媒とが混練されたのち、媒体型分散機を用いて炭素系導電剤が分散される工程と、前記工程で得られたペーストに活物質及びバインダーが添加され、これらを混練して活物質ペーストとする工程と、前記活物質ペーストが電極基体に塗布される工程とを備えたことを特徴とする非水電解質電池用電極の製造方法が開示されている。
しかしながら、これらの発明は高顔料濃度及び/又は高粘度のペーストの場合、均一な分散ができず、貯蔵安定性が悪いことがあった。
For example, Patent Document 1 discloses a method for manufacturing an electrode for a nonaqueous electrolyte battery, which comprises a step of kneading a carbon-based conductive agent and a dispersion solvent, and then dispersing the carbon-based conductive agent using a medium-type disperser, a step of adding an active material and a binder to the paste obtained in the above step and kneading them to form an active material paste, and a step of applying the active material paste to an electrode substrate.
However, in the case of pastes having high pigment concentrations and/or high viscosities, these inventions sometimes fail to achieve uniform dispersion and have poor storage stability.
特開平10-144302号公報Japanese Patent Application Publication No. 10-144302
 本発明の目的は、高顔料濃度及び/又は高粘度のペーストにおいても顔料分散性と貯蔵安定性に優れる導電性顔料ペーストの製造方法及び合材ペーストの製造方法を提供することであって、さらに、仕上がり性、及び導電性等に優れる塗工膜(電池用電極層)の製造方法を提供することである。 The object of the present invention is to provide a method for producing a conductive pigment paste and a method for producing a composite paste that are excellent in pigment dispersibility and storage stability even in pastes with high pigment concentrations and/or high viscosity, and further to provide a method for producing a coating film (electrode layer for batteries) that is excellent in finish quality and conductivity, etc.
 本発明者等は、上記課題を解決するために鋭意検討した結果、顔料分散樹脂(A)、導電性顔料(B)、溶媒(C)、及び必要に応じて含むことができるフッ素樹脂(D)を含有する導電性顔料ペーストの製造方法であって、
工程1:導電性顔料(B)の顔料濃度が50質量%以上の導電性顔料組成物を粉砕機により粉砕する工程、並びに、
工程2:前記工程1で得られた導電性顔料組成物に、顔料分散樹脂(A)、溶媒(C)、及び必要に応じて含むことができるフッ素樹脂(D)を含む成分を混合して分散する工程、
を順次行う工程を含む導電性顔料ペーストの製造方法によって、上記課題の解決が達成できることを見出し、本発明を完成するに至った。
As a result of intensive research into solving the above problems, the present inventors have discovered a method for producing a conductive pigment paste containing a pigment dispersing resin (A), a conductive pigment (B), a solvent (C), and a fluororesin (D) which may be included as necessary, comprising the steps of:
Step 1: A step of pulverizing a conductive pigment composition having a pigment concentration of 50 mass% or more of the conductive pigment (B) by a pulverizer; and
Step 2: A step of mixing and dispersing the conductive pigment composition obtained in step 1 with components including a pigment dispersing resin (A), a solvent (C), and a fluororesin (D) which may be included as needed;
The present inventors have found that the above-mentioned problems can be solved by a method for producing a conductive pigment paste, the method including the steps of:
 即ち、本発明は、以下の導電性顔料ペーストの製造方法、合材ペーストの製造方法、及び電池用電極層の製造方法を提供するものである。
項1.
 顔料分散樹脂(A)、導電性顔料(B)、溶媒(C)、及び必要に応じて含むことができるフッ素樹脂(D)を含有する導電性顔料ペーストの製造方法であって、
工程1:導電性顔料(B)の顔料濃度が50質量%以上の導電性顔料組成物を粉砕機により粉砕する工程、並びに、
工程2:前記工程1で得られた導電性顔料組成物に、顔料分散樹脂(A)、溶媒(C)、及び必要に応じて含むことができるフッ素樹脂(D)を含む成分を混合して分散する工程、
を順次行う工程を含むことを特徴とする導電性顔料ペーストの製造方法。
項2.
 導電性顔料(B)が、カーボンナノチューブ(B1)を含有することを特徴とする項1に記載の導電性顔料ペーストの製造方法。
項3.
 工程1の粉砕前後のカーボンナノチューブ(B1)において、下記(1)及び(2);
(1)1560cm-1以上1600cm-1以下の範囲内での最大ピーク強度をG、1310cm-1以上1350cm-1以下の範囲内での最大ピーク強度をDとした際の粉砕前のカーボンナノチューブ(B1)のG/D比が、0.1以上5.0以下である、
(2)粉砕前のカーボンナノチューブ(B1)のG/D比をα、粉砕後のカーボンナノチューブ(B1)のG/D比をβとした場合に、β/α<1.00である、
を満たす、項2に記載の導電性顔料ペーストの製造方法。
項4.
 顔料分散樹脂(A)が、少なくとも一種の、炭素数12以上のアルキル基を有することを特徴とする項1~3のいずれか1項に記載の導電性顔料ペーストの製造方法。
項5.
 顔料分散樹脂(A)が、アミド基、イミド基、水酸基、カルボキシル基、スルホン酸基、リン酸基、シラノール基、シアノ基、ピロリドン基、及びアミノ基からなる群より選ばれる少なくとも一種の極性官能基を有し、かつ顔料分散樹脂(A)の極性官能基濃度が0.3mmol/g~23mmol/gであることを特徴とする項1~4のいずれか1項に記載の導電性顔料ペーストの製造方法。
項6.
 導電性顔料ペーストがフッ素樹脂(D)を含み、該フッ素樹脂(D)を混合する工程が、予め40℃以上の液温の溶媒と混合及び溶解する工程を含むか、若しくはフッ素樹脂(D)と溶媒とを混合してから40℃以上の温度に加温する工程を含むことを特徴とする項1~5のいずれか1項に記載の導電性顔料ペーストの製造方法。
項7.
 溶媒(C)が、N-メチル-2-ピロリドンであることを特徴とする項1~6のいずれか1項に記載の導電性顔料ペーストの製造方法。
項8.
 前記工程2が、
工程2-1:分散後に得られる導電性顔料ペーストに含まれる導電性顔料組成物の総量100質量%を基準として、70質量%以下の量となる導電性顔料組成物を含む成分を分散機内に添加し、分散処理を行う工程、及び
工程2-2:所望の濃度になるまで導電性顔料組成物を分散機内に添加して分散処理を行う工程、
を順次行う工程を含むことを特徴とする項1~7のいずれか1項に記載の製造方法。
項9.
 項1~8のいずれか1項に記載された導電性顔料ペーストの製造方法で得られる導電性顔料ペーストに、さらに
工程3:少なくとも一種の電極活物質(F)を混合する工程、
を含むことを特徴とするリチウムイオン二次電池用合材ペーストの製造方法。
項10.
 項9の製造方法で得られるリチウムイオン二次電池用合材ペーストを集電体に塗工する工程を含むリチウムイオン二次電池用電極層の製造方法。
項11.
 項10のリチウムイオン二次電池用電極層の製造方法で得られた電極層の端部又は上層に電極絶縁部を塗工する工程を含むリチウムイオン二次電池用電極の製造方法。
That is, the present invention provides the following method for producing a conductive pigment paste, method for producing a composite paste, and method for producing an electrode layer for a battery.
Item 1.
A method for producing a conductive pigment paste containing a pigment dispersing resin (A), a conductive pigment (B), a solvent (C), and a fluororesin (D) which may be included as necessary, comprising the steps of:
Step 1: A step of pulverizing a conductive pigment composition having a pigment concentration of 50 mass% or more of the conductive pigment (B) by a pulverizer; and
Step 2: A step of mixing and dispersing the conductive pigment composition obtained in step 1 with components including a pigment dispersing resin (A), a solvent (C), and a fluororesin (D) which may be included as needed;
A method for producing a conductive pigment paste, comprising the steps of:
Item 2.
2. The method for producing a conductive pigment paste according to item 1, wherein the conductive pigment (B) contains carbon nanotubes (B1).
Item 3.
In the carbon nanotubes (B1) before and after the pulverization in step 1, the following (1) and (2) are
(1) The G/D ratio of the carbon nanotubes (B1) before pulverization is 0.1 or more and 5.0 or less, where G is the maximum peak intensity in the range of 1560 cm -1 to 1600 cm - 1 and D is the maximum peak intensity in the range of 1310 cm-1 to 1350 cm -1 .
(2) When the G/D ratio of the carbon nanotubes (B1) before pulverization is α and the G/D ratio of the carbon nanotubes (B1) after pulverization is β, β/α<1.00;
Item 3. The method for producing a conductive pigment paste according to Item 2, which satisfies the above.
Item 4.
4. The method for producing a conductive pigment paste according to any one of items 1 to 3, wherein the pigment dispersing resin (A) has at least one alkyl group having 12 or more carbon atoms.
Item 5.
5. The method for producing a conductive pigment paste according to any one of items 1 to 4, wherein the pigment dispersion resin (A) has at least one polar functional group selected from the group consisting of an amide group, an imide group, a hydroxyl group, a carboxyl group, a sulfonic acid group, a phosphate group, a silanol group, a cyano group, a pyrrolidone group, and an amino group, and the concentration of the polar functional group in the pigment dispersion resin (A) is 0.3 mmol/g to 23 mmol/g.
Item 6.
6. The method for producing a conductive pigment paste according to any one of Items 1 to 5, wherein the conductive pigment paste contains a fluororesin (D), and the step of mixing the fluororesin (D) includes a step of mixing and dissolving the fluororesin (D) in a solvent having a liquid temperature of 40° C. or higher in advance, or a step of mixing the fluororesin (D) with a solvent and then heating the resulting mixture to a temperature of 40° C. or higher.
Item 7.
7. The method for producing a conductive pigment paste according to any one of items 1 to 6, wherein the solvent (C) is N-methyl-2-pyrrolidone.
Item 8.
The step 2 is
Step 2-1: adding components containing a conductive pigment composition in an amount of 70 mass% or less based on 100 mass% of the total amount of the conductive pigment composition contained in the conductive pigment paste obtained after dispersion into a disperser and performing a dispersion treatment; and Step 2-2: adding the conductive pigment composition into the disperser until a desired concentration is reached, and performing a dispersion treatment.
8. The method according to any one of items 1 to 7, comprising the steps of:
Item 9.
Item 10. The conductive pigment paste obtained by the method for producing a conductive pigment paste according to any one of Items 1 to 8, further comprising step 3: mixing at least one electrode active material (F);
A method for producing a composite paste for a lithium ion secondary battery, comprising:
Item 10.
Item 10. A method for producing an electrode layer for a lithium ion secondary battery, comprising a step of applying the lithium ion secondary battery composite paste obtained by the production method of item 9 to a current collector.
Item 11.
Item 11. A method for producing an electrode for a lithium ion secondary battery, comprising the step of applying an electrode insulating part to an end or an upper layer of the electrode layer obtained by the method for producing an electrode layer for a lithium ion secondary battery according to item 10.
 本発明の導電性顔料ペーストの製造方法及び合材ペーストの製造方法は、高顔料濃度及び/又は高粘度においても、顔料の分散性、貯蔵安定性に優れ、比較的少ない分散樹脂の配合量で充分にペーストの粘度を低下させることができる。また、その塗工膜(電池用電極層)は、仕上がり性、導電性、及び電池性能等に優れる。 The method for producing a conductive pigment paste and the method for producing a composite paste of the present invention are excellent in pigment dispersibility and storage stability even at high pigment concentrations and/or high viscosities, and can sufficiently reduce the viscosity of the paste with a relatively small amount of dispersion resin. In addition, the coating film (battery electrode layer) is excellent in finish, conductivity, battery performance, etc.
 以下、本発明を実施するための形態について詳細に説明する。 The following provides a detailed explanation of how to implement the present invention.
 なお、本発明は、以下の実施形態に限定されるものではなく、本発明の要旨を変更しない範囲において実施される各種の変形例も含むものとして理解されるべきである。
また、本発明においては、導電性顔料(B)を顔料濃度で50質量%以上含有し、粉砕機により粉砕して得られた組成物を「導電性顔料組成物」という。
前記導電性顔料組成物に少なくとも一種の顔料分散樹脂(A)、溶媒(C)、必要に応じて含むことができるフッ素樹脂(D)、及び任意選択でその他の各種成分をさらに配合して調製したペーストを「導電性顔料ペースト」という。
「導電性顔料ペースト」とは、導電性顔料を含有するペーストであって、ペースト自体が導電性を有するという意味ではない。
前記導電性顔料ペーストは実質的に電極活物質を含有していないペーストであるといえる。
前記導電性顔料ペーストを塗工するために少なくとも一種の電極活物質及び任意選択でその他の各種成分をさらに配合して調製したペーストを「合材ペースト」という。前記合材ペーストを被塗物に塗工して乾燥したものを「塗工膜」、又は「合材層」という。
塗工膜が電池用電極に用いられる場合は「電極層」とも言い換えることができる。
カーボンナノチューブを「CNT」と略すこともできる。
It should be understood that the present invention is not limited to the following embodiments, but includes various modified examples that are implemented within the scope that does not deviate from the gist of the present invention.
In the present invention, a composition containing the conductive pigment (B) in a pigment concentration of 50 mass % or more and obtained by pulverizing the pigment with a pulverizer is referred to as a "conductive pigment composition".
A paste prepared by further blending the conductive pigment composition with at least one pigment dispersing resin (A), a solvent (C), a fluororesin (D) which may be included as necessary, and optionally other various components is referred to as a "conductive pigment paste."
The term "conductive pigment paste" refers to a paste containing a conductive pigment, but does not mean that the paste itself is conductive.
It can be said that the conductive pigment paste is a paste that does not substantially contain an electrode active material.
The conductive pigment paste is prepared by further mixing at least one electrode active material and, optionally, other various components, and the resulting paste is called a "composite paste." The composite paste that is applied to a substrate and dried is called a "coating film" or a "composite layer."
When the coating film is used as an electrode for a battery, it can also be called an "electrode layer."
Carbon nanotubes can also be abbreviated as "CNT."
 [導電性顔料ペーストの製造方法]
 本発明は、顔料分散樹脂(A)、導電性顔料(B)、溶媒(C)、及び必要に応じて含むことができるフッ素樹脂(D)を含有する導電性顔料ペーストの製造方法であって、まず導電性顔料(B)を50質量%以上の顔料濃度で粉砕機により粉砕し、導電性顔料組成物を得る工程(工程1:粉砕工程)、並びに前記工程1で得られた導電性顔料組成物に、顔料分散樹脂(A)、溶媒(C)、及び必要に応じて含むことができるフッ素樹脂(D)を含む成分を混合して分散する工程(工程2:分散工程)によって良好な分散状態の導電性顔料(B)を有する導電性顔料ペーストの製造方法である。
なお、本発明は工程1と工程2の間や前後に別の工程を含んでもよい。
[Method of manufacturing conductive pigment paste]
The present invention is a method for producing a conductive pigment paste containing a pigment dispersing resin (A), a conductive pigment (B), a solvent (C), and a fluororesin (D) that can be included as necessary, the method comprising: first, a step of grinding the conductive pigment (B) with a grinder at a pigment concentration of 50 mass% or more to obtain a conductive pigment composition (step 1: grinding step); and a step of mixing and dispersing components including the pigment dispersing resin (A), the solvent (C), and the fluororesin (D) that can be included as necessary into the conductive pigment composition obtained in step 1 (step 2: dispersing step). This method has a conductive pigment paste having a conductive pigment (B) in a well-dispersed state.
The present invention may include another step between step 1 and step 2 or before or after step 2.
 工程1(粉砕工程)
 工程1は、導電性顔料(B)を粉砕機により粉砕(解砕含む)し、導電性顔料組成物を得る工程であって、導電性顔料(B)の顔料濃度としては、導電性顔料組成物100質量%を基準として、通常50質量%以上であり、好ましくは80質量%以上であり、より好ましくは90質量%以上であり、さらに好ましくは95質量%以上であり、特に好ましくは99質量%以上であり、さらに特に好ましくは100質量%である。なお、上記「導電性顔料(B)の顔料濃度」とは、導電性顔料組成物に含まれる導電性顔料(B)の顔料濃度であって、導電性顔料(B)以外の顔料や固形物は含まれない。
導電性顔料組成物中の導電性顔料(B)以外の成分としては、後述する溶媒、樹脂、及び導電性顔料(B)以外の顔料等を好適に使用できる。
また、導電性顔料組成物の固形分濃度としては、導電性顔料組成物100質量%を基準として、通常50質量%以上であり、好ましくは80質量%以上であり、より好ましくは90質量%以上であり、さらに好ましくは95質量%以上であり、特に好ましくは99質量%以上であり、さらに特に好ましくは100質量%である。なお、上記「固形分濃度」とは、試料1gを130℃3時間で加熱乾燥させた場合の固形分の割合(質量%)である。
Step 1 (Crushing step)
Step 1 is a step of pulverizing (including disintegration) the conductive pigment (B) with a pulverizer to obtain a conductive pigment composition, and the pigment concentration of the conductive pigment (B) is usually 50 mass% or more, preferably 80 mass% or more, more preferably 90 mass% or more, even more preferably 95 mass% or more, particularly preferably 99 mass% or more, and even more particularly preferably 100 mass% based on 100 mass% of the conductive pigment composition. Note that the above "pigment concentration of the conductive pigment (B)" refers to the pigment concentration of the conductive pigment (B) contained in the conductive pigment composition, and does not include pigments or solids other than the conductive pigment (B).
As the components other than the conductive pigment (B) in the conductive pigment composition, the below-mentioned solvent, resin, and pigment other than the conductive pigment (B) can be suitably used.
The solid content concentration of the conductive pigment composition is usually 50% by mass or more, preferably 80% by mass or more, more preferably 90% by mass or more, even more preferably 95% by mass or more, particularly preferably 99% by mass or more, and even more particularly preferably 100% by mass, based on 100% by mass of the conductive pigment composition. The "solid content concentration" refers to the proportion (mass%) of solids when 1 g of a sample is dried by heating at 130°C for 3 hours.
 また、工程1で得られる導電性顔料組成物は上記顔料濃度及び固形分濃度であれば導電性顔料(B)以外の他の成分を含んでも良く、例えば、後述する顔料分散樹脂(A)、導電性顔料(B)以外の顔料、溶媒(C)、及び必要に応じて含むことができるフッ素樹脂(D)等を含むことができるが、導電性顔料組成物は実質的に導電性顔料(B)のみを含む事が好ましく、実質的にカーボンナノチューブ(B1)のみを含む事が特に好ましい。
また、導電性顔料ペーストを電極層用途として使用する場合、後述する電極活物質は後の工程(工程3)で混ぜるため実質的に含まないことが好ましい。
Furthermore, the conductive pigment composition obtained in step 1 may contain components other than the conductive pigment (B) as long as they have the above-mentioned pigment concentration and solid content concentration. For example, the conductive pigment composition may contain a pigment dispersion resin (A), a pigment other than the conductive pigment (B), a solvent (C), and a fluororesin (D) that can be contained as necessary, which will be described later. However, it is preferable for the conductive pigment composition to contain substantially only the conductive pigment (B), and it is particularly preferable for the conductive pigment composition to contain substantially only the carbon nanotubes (B1).
Furthermore, when the conductive pigment paste is used for an electrode layer, it is preferable that the paste does not substantially contain an electrode active material, which will be described later, since the electrode active material is mixed in a later step (step 3).
 導電性顔料(B)
 導電性顔料(B)としては、導電性の顔料であり、それ自体既知の導電性顔料を用いることができるが、カーボンナノチューブ(B1)を含有することが好ましい。導電性顔料(B)は、さらに、カーボンナノチューブ(B1)以外のその他の導電性顔料(B2)を含有していてもよい。
Conductive pigment (B)
The conductive pigment (B) is a conductive pigment, and any conductive pigment known per se can be used, but it is preferable that the conductive pigment (B) contains carbon nanotubes (B1). The conductive pigment (B) may further contain a conductive pigment (B2) other than the carbon nanotubes (B1).
 上記導電性顔料(B)中のカーボンナノチューブ(B1)の含有量としては、導電性顔料(B)100質量%を基準として、例えば50質量%以上、好ましくは75質量%以上、より好ましくは95質量%以上であり、特に好ましくは99質量%以上であり、さらに特に好ましくは100質量%である。 The content of carbon nanotubes (B1) in the conductive pigment (B) is, for example, 50% by mass or more, preferably 75% by mass or more, more preferably 95% by mass or more, particularly preferably 99% by mass or more, and even more particularly preferably 100% by mass, based on 100% by mass of the conductive pigment (B).
 カーボンナノチューブ(B1)
 カーボンナノチューブ(B1)としては、単層カーボンナノチューブ、又は多層カーボンナノチューブをそれぞれ単独で、又は組合せて使用できる。特に粘度、導電性及びコストの関係から、多層カーボンナノチューブを用いることが好ましい。
Carbon nanotubes (B1)
As the carbon nanotubes (B1), single-walled carbon nanotubes or multi-walled carbon nanotubes can be used alone or in combination. In particular, in terms of viscosity, electrical conductivity, and cost, it is preferable to use multi-walled carbon nanotubes.
 カーボンナノチューブ(B1)を用いる場合の含有量は、導電性顔料ペーストの総量100質量%を基準として、例えば0.5質量%以上、好ましくは1質量%以上、より好ましくは2質量%以上であり、例えば10質量%以下、好ましくは7質量%以下、より好ましくは6質量%以下である。
また、導電性顔料ペーストの固形分総量100質量%を基準として、例えば5質量%以上、好ましくは10質量%以上、より好ましくは20質量%以上であり、例えば90質量%以下、好ましくは70質量%以下、より好ましくは50質量%以下である。
When carbon nanotubes (B1) are used, the content thereof is, for example, 0.5 mass% or more, preferably 1 mass% or more, and more preferably 2 mass% or more, based on 100 mass% of the total amount of the conductive pigment paste, and is, for example, 10 mass% or less, preferably 7 mass% or less, and more preferably 6 mass% or less.
Furthermore, based on 100 mass% of the total solid content of the conductive pigment paste, the content is, for example, 5 mass% or more, preferably 10 mass% or more, and more preferably 20 mass% or more, and for example, 90 mass% or less, preferably 70 mass% or less, and more preferably 50 mass% or less.
 カーボンナノチューブ(B1)の平均外径としては、例えば1nm以上、好ましくは3nm以上、より好ましくは5nm以上であり、例えば30nm以下、好ましくは28nm以下、より好ましくは25nm以下である。 The average outer diameter of the carbon nanotubes (B1) is, for example, 1 nm or more, preferably 3 nm or more, more preferably 5 nm or more, and is, for example, 30 nm or less, preferably 28 nm or less, more preferably 25 nm or less.
 カーボンナノチューブ(B1)の平均長さとしては、例えば0.1μm以上、好ましくは1μm以上、より好ましくは5μm以上であり、例えば100μm以下、好ましくは80μm以下、より好ましくは60μm以下である。 The average length of the carbon nanotubes (B1) is, for example, 0.1 μm or more, preferably 1 μm or more, more preferably 5 μm or more, and is, for example, 100 μm or less, preferably 80 μm or less, more preferably 60 μm or less.
 カーボンナノチューブ(B1)のBET比表面積としては、粘度及び導電性の関係から、通常100m/g以上、好ましくは130m/g以上、より好ましくは160m/g以上であり、通常800m/g以下、好ましくは600m/g以下、より好ましくは400m/g以下である。
 本発明のBET比表面積は窒素吸着測定によるBET法で算出することができる。具体的には、例えば、JIS Z8830:2013に準拠し、比表面積測定装置(BERSORP-MAX(マイクロトラック・ベル株式会社))を用いて、BET比表面積(m/g)を測定できる。
The BET specific surface area of the carbon nanotubes (B1) is, in consideration of the relationship between viscosity and electrical conductivity, usually 100 m 2 /g or more, preferably 130 m 2 /g or more, more preferably 160 m 2 /g or more, and usually 800 m 2 /g or less, preferably 600 m 2 /g or less, more preferably 400 m 2 /g or less.
The BET specific surface area of the present invention can be calculated by the BET method using nitrogen adsorption measurement. Specifically, for example, the BET specific surface area (m 2 /g) can be measured using a specific surface area measuring device (BERSORP-MAX (Microtrac-Bell Co., Ltd.)) in accordance with JIS Z8830:2013.
 カーボンナノチューブ(B1)の酸性基量としては、分散性及び貯蔵性の観点から、通常0.01mmol/g以上、好ましくは0.01mmol/g以上であり、通常1.0mmol/g以下、好ましくは0.5mmol/g以下、より好ましくは0.2mmol/g以下、さらに好ましくは0.1mmol/g以下である。酸性基量が0.01mmol/g以上であれば分散性が良好となり、また1.0mmol/g以下であれば貯蔵性が良好となる。 The amount of acidic groups in the carbon nanotubes (B1) is usually 0.01 mmol/g or more, preferably 0.01 mmol/g or more, and usually 1.0 mmol/g or less, preferably 0.5 mmol/g or less, more preferably 0.2 mmol/g or less, and even more preferably 0.1 mmol/g or less, from the viewpoints of dispersibility and storage property. If the amount of acidic groups is 0.01 mmol/g or more, the dispersibility will be good, and if it is 1.0 mmol/g or less, the storage property will be good.
 上記酸性基は以下のカーボンナノチューブの酸処理により付与することができる。 The above acidic groups can be imparted to carbon nanotubes by acid treatment as described below.
 (酸処理方法)
 酸処理の方法としては、カーボンナノチューブに酸を接触させることができれば特に限定されないが、カーボンナノチューブを酸処理液(酸の水溶液)中に浸漬させる方法が好ましい。酸処理液に含まれる酸としては、特に限定されないが、例えば硝酸、硫酸、塩酸が挙げられる。これらは、一種を単独又は二種以上を組み合わせて用いることができる。そしてこれらの中でも、硝酸、硫酸が好ましい。
カーボンナノチューブの酸性基量は、酸処理液の濃度、温度、処理時間等によって調整することができる。
(Acid Treatment Method)
The acid treatment method is not particularly limited as long as it can bring the carbon nanotubes into contact with the acid, but a method of immersing the carbon nanotubes in an acid treatment solution (aqueous solution of acid) is preferred. The acid contained in the acid treatment solution is not particularly limited, but examples thereof include nitric acid, sulfuric acid, and hydrochloric acid. These can be used alone or in combination of two or more. Among these, nitric acid and sulfuric acid are preferred.
The amount of acidic groups in the carbon nanotubes can be adjusted by the concentration of the acid treatment solution, the temperature, the treatment time, and the like.
 酸処理後、後述する洗浄方法により表面に付着した余剰な酸成分を除去し、酸処理カーボンナノチューブを得ることができる。
酸処理したカーボンナノチューブを洗浄する方法としては、特に限定されないが、水洗が好ましい。例えば、酸処理をしたカーボンナノチューブから、ろ過などの既知の手法でカーボンナノチューブを回収し、続いてカーボンナノチューブを水洗する。上記洗浄後、必要に応じて、表面に付着した水を乾燥により除去する等して、酸処理カーボンナノチューブを得ることができる。
After the acid treatment, the excess acid component adhering to the surface is removed by a washing method described below, thereby obtaining acid-treated carbon nanotubes.
The method for washing the acid-treated carbon nanotubes is not particularly limited, but washing with water is preferred. For example, the carbon nanotubes are collected from the acid-treated carbon nanotubes by a known method such as filtration, and then washed with water. After the above washing, the water adhering to the surface can be removed by drying, etc., as necessary, to obtain the acid-treated carbon nanotubes.
 また、カーボンナノチューブ(B1)の体積換算のメディアン径(D50)としては、後述する実施例で記載する方法で測定した場合、通常10μm以上、好ましくは15μm以上、より好ましくは20μm以上であり、通常250μm以下、好ましくは200μm以下、より好ましくは150μm以下である。ここでメディアン径(D50)はカーボンナノチューブの粒子にレーザー光を照射し、その散乱光からカーボンナノチューブの直径を球形に換算して求めることができる。メディアン径(D50)が大きいほどカーボンナノチューブの凝集塊が多く存在し、分散性が悪いことを意味する。メディアン径(D50)が250μmより大きい場合、電極中でカーボンナノチューブの凝集塊が存在する可能性が高くなり、電極全体における導電性が不均一となる。一方、メディアン径(D50)が10μmよりも小さい場合、繊維長が短くなっていることから導電パスが不十分であり、導電性が低下してしまう。メディアン径(D50)が10μm以上250μm以下の範囲内である場合、カーボンナノチューブは導電性を維持したまま電極内で均一に分散することが可能になる。 The volume-equivalent median diameter (D50) of the carbon nanotubes (B1) is usually 10 μm or more, preferably 15 μm or more, more preferably 20 μm or more, and usually 250 μm or less, preferably 200 μm or less, more preferably 150 μm or less, when measured by the method described in the examples below. Here, the median diameter (D50) can be obtained by irradiating a carbon nanotube particle with a laser beam and converting the diameter of the carbon nanotube into a sphere from the scattered light. The larger the median diameter (D50), the more carbon nanotube agglomerates there are, which means that the dispersibility is poor. If the median diameter (D50) is larger than 250 μm, there is a high possibility that carbon nanotube agglomerates exist in the electrode, and the conductivity of the entire electrode becomes non-uniform. On the other hand, if the median diameter (D50) is smaller than 10 μm, the fiber length is short, so the conductive path is insufficient, and the conductivity decreases. When the median diameter (D50) is within the range of 10 μm or more and 250 μm or less, the carbon nanotubes can be uniformly dispersed within the electrode while maintaining their electrical conductivity.
 また、上記カーボンナノチューブ(B1)のラマンスペクトルにおいて、1560cm-1以上1600cm-1以下の範囲内での最大ピーク強度をG、1310cm-1以上1350cm-1以下の範囲内での最大ピーク強度をDとした際のG/D比が、通常0.1以上、好ましくは0.4以上、より好ましくは0.6以上であり、通常5.0以下、好ましくは3.0以下より好ましくは1.0以下であることがより好ましい。 In the Raman spectrum of the carbon nanotube (B1), the G/D ratio, where G is the maximum peak intensity in the range of 1560 cm -1 to 1600 cm -1 and D is the maximum peak intensity in the range of 1310 cm -1 to 1350 cm -1 , is usually 0.1 or more, preferably 0.4 or more, more preferably 0.6 or more, and is usually 5.0 or less, preferably 3.0 or less, more preferably 1.0 or less.
 ここで、G/D比が0.1以上5.0以下の範囲内であると、炭素表面の欠陥や結晶界面が少なく導電性が高くなりやすいため好適である。 Here, a G/D ratio in the range of 0.1 to 5.0 is preferable because it tends to have high conductivity due to fewer defects and crystal interfaces on the carbon surface.
 また、導電性顔料(B)としてカーボンナノチューブ(B1)を用いる場合、前記工程1の粉砕前後のカーボンナノチューブ(B1)において、下記(1)及び(2)を満たすことが好ましい。
(1)1560cm-1以上1600cm-1以下の範囲内での最大ピーク強度をG、1310cm-1以上1350cm-1以下の範囲内での最大ピーク強度をDとした際の粉砕前のカーボンナノチューブ(B1)のG/D比が、0.1以上5.0以下である。
(2)粉砕前のカーボンナノチューブ(B1)のG/D比をα、粉砕後のカーボンナノチューブ(B1)のG/D比をβとした場合に、β/α<1.00である。
また、上記β/αは粉砕が進むと値が小さくなり、通常β/α<1.00であり、0.50<β/α<1.00が好ましく、0.70<β/α<0.98がより好ましく、0.90<β/α<0.96がさらに好ましい。
β/αが上記範囲内であると、比較的短時間の粉砕時間で適度に粉砕面が活性化し、後述する工程2の分散工程において良好な分散性及び貯蔵安定性が得られ、その塗工膜は優れた導電性と仕上がり性を得ることができる。
In addition, when carbon nanotubes (B1) are used as the conductive pigment (B), it is preferable that the carbon nanotubes (B1) before and after the pulverization in the step 1 satisfy the following (1) and (2).
(1) The G/D ratio of the carbon nanotubes (B1) before pulverization is 0.1 or more and 5.0 or less , where G is the maximum peak intensity in the range of 1560 cm −1 to 1600 cm −1 and D is the maximum peak intensity in the range of 1310 cm −1 to 1350 cm −1.
(2) When the G/D ratio of the carbon nanotubes (B1) before pulverization is α and the G/D ratio of the carbon nanotubes (B1) after pulverization is β, β/α<1.00.
Furthermore, the value of the above β/α decreases as the pulverization progresses, and is usually β/α<1.00, preferably 0.50<β/α<1.00, more preferably 0.70<β/α<0.98, and even more preferably 0.90<β/α<0.96.
When β/α is within the above range, the ground surface is suitably activated in a relatively short grinding time, and good dispersibility and storage stability can be obtained in the dispersion step of step 2 described below, and the coating film can have excellent conductivity and finish.
 その他の導電性顔料(B2)
 カーボンナノチューブ(B1)以外のその他の導電性顔料(B2)としては、例えば、アセチレンブラック、ケッチェンブラック、ファーネスブラック、サーマルブラック、グラフェン、黒鉛からなる群より選ばれる少なくとも一種の導電性カーボンが挙げられる。好ましくは、アセチレンブラック、ケッチェンブラック、ファーネスブラック、サーマルブラックからなる群より選ばれる一種以上であり、より好ましくは、アセチレンブラック、ケッチェンブラックからなる群より選ばれる一種以上であり、さらに好ましくはアセチレンブラックである。
Other conductive pigments (B2)
Examples of the conductive pigment (B2) other than the carbon nanotubes (B1) include at least one conductive carbon selected from the group consisting of acetylene black, ketjen black, furnace black, thermal black, graphene, and graphite. Preferably, it is at least one selected from the group consisting of acetylene black, ketjen black, furnace black, and thermal black, more preferably at least one selected from the group consisting of acetylene black and ketjen black, and even more preferably it is acetylene black.
 その他の導電性顔料(B2)の平均一次粒子径としては、例えば10nm以上、好ましくは20nm以上であり、例えば80nm以下好ましくは70nm以下であることがより好ましい。ここで、平均一次粒子径は、導電性顔料(B2)を電子顕微鏡で観察し、100個の粒子について、それぞれ投影面積を求めてその面積に等しい円を仮定したときの直径を求め、100個の粒子の直径を単純平均して求めた一次粒子の平均粒子径をいう。なお、顔料が凝集状態になっていた場合は、凝集粒子を構成している一次粒子で計算をする。 The average primary particle diameter of the other conductive pigment (B2) is, for example, 10 nm or more, preferably 20 nm or more, and more preferably, for example, 80 nm or less, and more preferably, 70 nm or less. Here, the average primary particle diameter refers to the average particle diameter of primary particles obtained by observing the conductive pigment (B2) under an electron microscope, calculating the projected area of each of 100 particles, calculating the diameter of a circle assuming an area equal to that area, and then averaging the diameters of the 100 particles. Note that if the pigment is in an aggregated state, the calculation is performed using the primary particles that make up the aggregated particles.
 その他の導電性顔料(B2)のBET比表面積は、特に限定されない。粘度及び導電性の関係から、例えば1m/g以上、好ましくは10m/g以上、より好ましくは20m/g以上であり、例えば500m/g以下、好ましくは250m/g以下、より好ましくは200m/g以下である。 The BET specific surface area of the other conductive pigment (B2) is not particularly limited and is, for example, 1 m 2 /g or more, preferably 10 m 2 /g or more, more preferably 20 m 2 /g or more, and is, for example, 500 m 2 /g or less, preferably 250 m 2 /g or less, more preferably 200 m 2 /g or less, depending on the relationship between viscosity and conductivity.
 その他の導電性顔料(B2)のジブチルフタレート(DBP)吸油量は、特に限定されない。顔料分散性及び導電性の関係から、例えば60ml/100g以上、好ましくは150ml/100g以上であり、例えば1,000ml/100g以下、好ましくは800ml/100g以下である。 The dibutyl phthalate (DBP) oil absorption of the other conductive pigment (B2) is not particularly limited. In relation to pigment dispersibility and conductivity, it is, for example, 60 ml/100 g or more, preferably 150 ml/100 g or more, and, for example, 1,000 ml/100 g or less, preferably 800 ml/100 g or less.
 粉砕方法及び粉砕機
 上記導電性顔料(B)は粉砕機により粉砕(解砕含む)される。本発明においては特に導電性顔料(B)としてカーボンノチューブを含むことが好適である。
 工程1の粉砕工程においては、ガラスビーズ、ジルコニアビーズ、スチールボール等の粉砕メジア(メディアともいう)を内蔵した粉砕機を使用して粉砕するものである。粉砕は、粉砕メジア同士の衝突、及び/又は粉砕機と粉砕メジアとの衝突による粉砕力や破壊力を利用して行なわれる。粉砕装置としては、高速回転型衝撃式ミル、ジェットミル、ロールミル、アトライター、ボールミル、振動ミル、ビーズミルなどの既知の粉砕装置を用いることができる。
Grinding method and grinding machine The conductive pigment (B) is ground (including disintegration) by a grinding machine. In the present invention, it is particularly preferable that the conductive pigment (B) contains carbon nanotubes.
In the pulverization step of step 1, pulverization is performed using a pulverizer incorporating pulverization media such as glass beads, zirconia beads, steel balls, etc. The pulverization is performed by utilizing the pulverizing or destructive force caused by the collision of the pulverization media with each other and/or the collision of the pulverizer with the pulverization media. Known pulverization devices such as a high-speed rotation impact mill, jet mill, roll mill, attritor, ball mill, vibration mill, and bead mill can be used as the pulverization device.
 また、粉砕時に各種の蒸気又は気体を粉砕機内に吹き込んで導電性顔料(B)表面を更なる活性化又は活性度の調整をすることができる。蒸気としては、酸性又は塩基性の化合物などが好適であり、気体としては、酸素、窒素などが好適である。 In addition, various types of steam or gas can be blown into the grinder during grinding to further activate the surface of the conductive pigment (B) or adjust the activity. As the steam, acidic or basic compounds are suitable, and as the gas, oxygen, nitrogen, etc. are suitable.
 上記の粉砕はいわゆる乾式分散で行うことが好ましい。ここで、「乾式分散」とは、実質的に液状成分を含有させないで顔料を粉砕することであり、顔料に対して直接エネルギーを加えることができるため高効率かつ強力な粉砕(解砕)が可能である。また、粉砕面が活性化し周囲の物質と相互作用を起こすため、後述する工程2の分散工程において良好な分散性及び貯蔵安定性が得られ、その塗工膜は優れた導電性と仕上がり性を得ることができる。 The above-mentioned pulverization is preferably carried out by so-called dry dispersion. Here, "dry dispersion" means pulverizing the pigment without substantially containing any liquid components, and since energy can be applied directly to the pigment, highly efficient and powerful pulverization (disintegration) is possible. In addition, since the pulverized surface is activated and interacts with the surrounding substances, good dispersibility and storage stability can be obtained in the dispersion step of step 2 described below, and the coating film can have excellent conductivity and finish.
 粉砕メジアの外径は、0.1~5mmが好ましく、0.5~3mmがより好ましい。上記の範囲であれば、所望の粉砕力が得られ、導電性顔料(B)がカーボンナノチューブの場合は繊維形状を過度に破壊せず効率的に顔料を粉砕及び解砕させることができる。 The outer diameter of the grinding media is preferably 0.1 to 5 mm, and more preferably 0.5 to 3 mm. Within the above range, the desired grinding force can be obtained, and when the conductive pigment (B) is carbon nanotubes, the pigment can be efficiently ground and disintegrated without excessively destroying the fiber shape.
 工程2(分散工程)
 工程2は、前記工程1で得られた導電性顔料組成物に、顔料分散樹脂(A)、溶媒(C)、及び必要に応じて含むことができるフッ素樹脂(D)を含有する成分を混合して分散する工程であり、工程2によって液状の導電性顔料ペーストを得ることができる。
Step 2 (dispersion step)
Step 2 is a step of mixing and dispersing a component containing a pigment dispersing resin (A), a solvent (C), and a fluororesin (D) which may be included as necessary, into the conductive pigment composition obtained in step 1, and a liquid conductive pigment paste can be obtained by step 2.
 導電性顔料ペーストの固形分濃度の上限としては、通常80質量%未満であり、好ましくは50質量%未満であり、より好ましくは20質量%未満であり、さらに好ましくは10質量%未満である。下限としては、通常0.1質量%以上であり、好ましくは0.5質量%以上であり、より好ましくは1質量%以上であり、さらに好ましくは2質量%以上である。 The upper limit of the solids concentration of the conductive pigment paste is usually less than 80% by mass, preferably less than 50% by mass, more preferably less than 20% by mass, and even more preferably less than 10% by mass. The lower limit is usually 0.1% by mass or more, preferably 0.5% by mass or more, more preferably 1% by mass or more, and even more preferably 2% by mass or more.
 前記導電性顔料ペーストは、顔料分散樹脂(A)、導電性顔料(B)、溶媒(C)、及び必要に応じて含むことができるフッ素樹脂(D)を含有する導電性顔料のペーストであって、顔料分散樹脂(A)が、アミド基、イミド基、水酸基、カルボキシル基、スルホン酸基、リン酸基、シラノール基、シアノ基、ピロリドン基、アミノ基からなる群より選ばれる少なくとも一種の極性官能基を有し、かつ顔料分散樹脂(A)の極性官能基濃度が0.3mmol/g以上23mmol/g以下であることが好ましい。
また、さらに必要に応じて高極性低分子量成分(E)を含有することが好ましい。
The conductive pigment paste is a conductive pigment paste containing a pigment dispersion resin (A), a conductive pigment (B), a solvent (C), and a fluororesin (D) which may be included as necessary, and it is preferable that the pigment dispersion resin (A) has at least one polar functional group selected from the group consisting of an amide group, an imide group, a hydroxyl group, a carboxyl group, a sulfonic acid group, a phosphate group, a silanol group, a cyano group, a pyrrolidone group, and an amino group, and that the concentration of the polar functional group in the pigment dispersion resin (A) is 0.3 mmol/g or more and 23 mmol/g or less.
It is also preferred that the composition further contains a highly polar, low molecular weight component (E) as required.
 工程2の分散工程において、上記に述べた各成分を、例えば、ペイントシェーカー、サンドミル、ボールミル、ペブルミル、LMZミル、DCPパールミル、遊星ボールミル、ホモジナイザー、二軸混練機、薄膜旋回型高速ミキサー(フィルミックス社製、商品名「クレアミックス」等)等の従来公知の分散機を用いて均一に混合、分散させることにより調製することができる。
なお、各成分の混合する順序は特に限定されない。
In the dispersing step of step 2, the above-mentioned components can be uniformly mixed and dispersed using a conventionally known dispersing machine such as a paint shaker, a sand mill, a ball mill, a pebble mill, an LMZ mill, a DCP pearl mill, a planetary ball mill, a homogenizer, a twin-screw kneader, or a thin film swirling high-speed mixer (manufactured by Filmix, product name "Clearmix", etc.).
The order in which the components are mixed is not particularly limited.
 顔料分散樹脂(A)
 前記顔料分散樹脂(A)は、少なくとも一種の炭素数12以上のアルキル基を有することが好ましい。前記炭素数12以上のアルキル基は、それ自体公知のアルキル基(炭化水素基)を特に制限なく用いることができ、直鎖状又は分岐状のアルキル基が好ましく、直鎖状のアルキル基がより好ましい。
前記炭素数12以上のアルキル基としては、炭素数12以上30未満のアルキル基が好ましく、15以上26未満のアルキル基がより好ましく、19以上24未満のアルキル基がさらに好ましい。
前記炭素数12以上のアルキル基は、例えば、炭素数12以上のアルキル基を含有する重合性モノマーを(共)重合することで樹脂に導入することができる。
炭素数12以上のアルキル基を含有する重合性モノマーとしては、例えば、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート、イソステアリル(メタ)アクリレート、ベヘニル(メタ)アクリレート、ラウリル(メタ)アクリルアミド、ステアリル(メタ)アクリルアミド、ベヘニル(メタ)アクリルアミド等が挙げられる。これらは、一種を単独で又は二種以上を組み合わせて用いることができる。
顔料分散樹脂(A)が炭素数12以上のアルキル基の比較的嵩高い側鎖を有すると、立体反発によって顔料分散性と貯蔵安定性が向上すると考えられる。
Pigment dispersing resin (A)
The pigment dispersion resin (A) preferably has at least one alkyl group having 12 or more carbon atoms. As the alkyl group having 12 or more carbon atoms, any known alkyl group (hydrocarbon group) can be used without any particular limitation, and a linear or branched alkyl group is preferable, and a linear alkyl group is more preferable.
The alkyl group having 12 or more carbon atoms is preferably an alkyl group having 12 or more and less than 30 carbon atoms, more preferably an alkyl group having 15 or more and less than 26 carbon atoms, and even more preferably an alkyl group having 19 or more and less than 24 carbon atoms.
The alkyl group having 12 or more carbon atoms can be introduced into the resin, for example, by (co)polymerizing a polymerizable monomer containing an alkyl group having 12 or more carbon atoms.
Examples of polymerizable monomers containing an alkyl group having 12 or more carbon atoms include lauryl (meth)acrylate, stearyl (meth)acrylate, isostearyl (meth)acrylate, behenyl (meth)acrylate, lauryl (meth)acrylamide, stearyl (meth)acrylamide, behenyl (meth)acrylamide, etc. These may be used alone or in combination of two or more.
It is believed that when the pigment dispersing resin (A) has a relatively bulky side chain of an alkyl group having 12 or more carbon atoms, the pigment dispersibility and storage stability are improved due to steric repulsion.
 また、前記顔料分散樹脂(A)は、アミド基、イミド基、水酸基、カルボキシル基、スルホン酸基、リン酸基、シラノール基、シアノ基、ピロリドン基、及びアミノ基からなる群より選ばれる少なくとも一種の極性官能基を有することが好ましい。顔料分散樹脂(A)が極性官能基を有する場合、その極性官能基濃度が0.3mmol/g以上23mmol/g以下であることが好ましい。また、上記の酸基は塩になっていてもよい。
なかでも、極性官能基としては、アミド基、水酸基、カルボキシル基、スルホン酸基、リン酸基、及びアミノ基を少なくとも用いることが好ましく、水酸基、カルボキシル基、及びアミノ基を少なくとも用いることがより好ましい。
The pigment dispersion resin (A) preferably has at least one polar functional group selected from the group consisting of an amide group, an imide group, a hydroxyl group, a carboxyl group, a sulfonic acid group, a phosphoric acid group, a silanol group, a cyano group, a pyrrolidone group, and an amino group. When the pigment dispersion resin (A) has a polar functional group, the polar functional group concentration is preferably 0.3 mmol/g or more and 23 mmol/g or less. The acid group may be in the form of a salt.
Among them, as the polar functional group, it is preferable to use at least an amide group, a hydroxyl group, a carboxyl group, a sulfonic acid group, a phosphoric acid group, and an amino group, and it is more preferable to use at least a hydroxyl group, a carboxyl group, and an amino group.
 樹脂の種類としては、後述するフッ素樹脂(D)以外の樹脂であれば特に限定されない。例えば、アクリル樹脂、ポリエステル樹脂、エポキシ樹脂、ポリエーテル樹脂、アルキド樹脂、ウレタン樹脂、ポリビニルアルコール、ポリビニルアセタール、ポリビニルピロリドン、ポリ酢酸ビニル、シリコーン樹脂、ポリカーボネート樹脂、塩素系樹脂、及びこれらの複合樹脂等が挙げられる。これらの樹脂は、一種を単独で又は二種以上を組み合わせて用いることができる。 The type of resin is not particularly limited as long as it is a resin other than the fluororesin (D) described below. Examples include acrylic resin, polyester resin, epoxy resin, polyether resin, alkyd resin, urethane resin, polyvinyl alcohol, polyvinyl acetal, polyvinylpyrrolidone, polyvinyl acetate, silicone resin, polycarbonate resin, chlorine-based resin, and composite resins thereof. These resins can be used alone or in combination of two or more.
 なかでも、顔料分散性、貯蔵安定性、及び仕上がり性等の観点から、顔料分散樹脂(A)としては、下記式(1)の重合性不飽和基含有モノマーを含むモノマーを重合又は共重合することにより得られるビニル(共)重合体(A1)を含有することが好ましく、特に、少なくとも一種の(メタ)アクリロイル基を含有する重合性不飽和基含有モノマーを(共)重合したアクリル樹脂が好ましい。
尚、本発明の「(共)重合体」とは、一種類のモノマーを重合した重合体と二種以上のモノマーを共重合した共重合体の両方を含むものである。
Among these, from the viewpoints of pigment dispersibility, storage stability, finish quality, and the like, the pigment dispersing resin (A) preferably contains a vinyl (co)polymer (A1) obtained by polymerizing or copolymerizing a monomer containing a polymerizable unsaturated group-containing monomer of the following formula (1), and in particular, an acrylic resin obtained by (co)polymerizing at least one polymerizable unsaturated group-containing monomer that contains a (meth)acryloyl group is preferred.
Incidentally, the "(co)polymer" of the present invention includes both a polymer obtained by polymerizing one type of monomer and a copolymer obtained by copolymerizing two or more types of monomers.
 C(-R)=C(-R) ・・・式(1)
[上記式において、Rは、それぞれ同じでも異なってもよく、水素原子又は有機基である。]
上記ビニル(共)重合体(A1)としては、例えば、水酸基含有ビニル(共)重合体、カルボキシル基含有ビニル(共)重合体、アミド基含有ビニル(共)重合体、スルホン酸基含有ビニル(共)重合体、リン酸基含有ビニル(共)重合体、ピロリドン基含有ビニル(共)重合体、アミノ基含有(共)重合体等が挙げられる。これらの(共)重合体は、一種を単独で又は二種以上を組み合わせて用いることができる。
C(-R) 2 =C(-R) 2 ...Formula (1)
[In the above formula, R may be the same or different and is a hydrogen atom or an organic group.]
Examples of the vinyl (co)polymer (A1) include hydroxyl group-containing vinyl (co)polymers, carboxyl group-containing vinyl (co)polymers, amide group-containing vinyl (co)polymers, sulfonic acid group-containing vinyl (co)polymers, and the like. Examples of such (co)polymers include vinyl (co)polymers containing phosphoric acid groups, vinyl (co)polymers containing pyrrolidone groups, and vinyl (co)polymers containing amino groups. They can be used alone or in combination of two or more.
 水酸基含有ビニル(共)重合体としては、例えば、ポリヒドロキシエチル(メタ)アクリレート、ポリビニルアルコール、ビニルアルコール-脂肪酸ビニル共重合体、ビニルアルコール-エチレン共重合体、ビニルアルコール-(N-ビニルホルムアミド)共重合体、ヒドロキシエチル(メタ)アクリレートとその他の重合性不飽和モノマーとの共重合体等が挙げられる。(共)重合体中のビニルアルコール単位は脂肪酸ビニル単位を(共)重合した後に加水分解して得られたものでもよい。 Examples of hydroxyl group-containing vinyl (co)polymers include polyhydroxyethyl (meth)acrylate, polyvinyl alcohol, vinyl alcohol-fatty acid vinyl copolymer, vinyl alcohol-ethylene copolymer, vinyl alcohol-(N-vinylformamide) copolymer, and copolymers of hydroxyethyl (meth)acrylate and other polymerizable unsaturated monomers. The vinyl alcohol units in the (co)polymer may be obtained by (co)polymerizing fatty acid vinyl units and then hydrolyzing them.
 カルボキシル基含有ビニル(共)重合体としては、例えば、(メタ)アクリル酸の重合体、又はポリ(メタ)アクリル酸とその他の重合性不飽和モノマーとの共重合体等が挙げられる。 Examples of carboxyl group-containing vinyl (co)polymers include polymers of (meth)acrylic acid, and copolymers of poly(meth)acrylic acid and other polymerizable unsaturated monomers.
 アミド基含有ビニル(共)重合体としては、例えば、(メタ)アクリルアミドの重合体、又は(メタ)アクリルアミドとその他の重合性不飽和モノマーとの共重合体等が挙げられる。 Examples of amide group-containing vinyl (co)polymers include (meth)acrylamide polymers and copolymers of (meth)acrylamide and other polymerizable unsaturated monomers.
 スルホン酸基含有ビニル(共)重合体としては、例えば、アリルスルホン酸又はスチレンスルホン酸等の重合体、アリルスルホン酸及び/又はスチレンスルホン酸とその他の重合性不飽和モノマーとの共重合体等が挙げられる。 Examples of sulfonic acid group-containing vinyl (co)polymers include polymers of allylsulfonic acid or styrenesulfonic acid, copolymers of allylsulfonic acid and/or styrenesulfonic acid with other polymerizable unsaturated monomers, etc.
 リン酸基含有ビニル(共)重合体としては、例えば、(メタ)アクリロイルオキシアルキルアシッドホスフェートの重合体、又は(メタ)アクリロイルオキシアルキルアシッドホスフェートとその他の重合性不飽和モノマーとの共重合体等が挙げられる。 Examples of phosphate group-containing vinyl (co)polymers include polymers of (meth)acryloyloxyalkyl acid phosphate, and copolymers of (meth)acryloyloxyalkyl acid phosphate with other polymerizable unsaturated monomers.
 アミノ基含有ビニル(共)重合体としては、例えば、N,N-ジメチルアミノエチル(メタ)アクリレート、N,N-ジエチルアミノエチル(メタ)アクリレートとその他の重合性不飽和モノマーとの共重合体等が挙げられる。 Examples of amino group-containing vinyl (co)polymers include N,N-dimethylaminoethyl (meth)acrylate and copolymers of N,N-diethylaminoethyl (meth)acrylate with other polymerizable unsaturated monomers.
 共重合可能なその他の重合性不飽和モノマーとしては、例えば、ギ酸ビニル、酢酸ビニル、プロピオン酸ビニル、酢酸イソプロペニル、バレリン酸ビニル、カプリル酸ビニル、カプリン酸ビニル、ラウリン酸ビニル、ステアリン酸ビニル、安息香酸ビニル、バーサティック酸ビニル、ピバリン酸ビニル等のカルボン酸ビニルエステル単量体;エチレン、プロピレン、ブチレン等のオレフィン類;スチレン、α-メチルスチレン等の芳香族ビニル類;(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸2-エチルヘキシル、フマル酸ジメチル、マレイン酸ジメチル、マレイン酸ジエチル、イタコン酸ジイソプロピル等のエチレン性不飽和カルボン酸アルキルエステル単量体;メチルビニルエーテル、n-プロピルビニルエーテル、イソブチルビニルエーテル、ドデシルビニルエーテル等のビニルエーテル単量体;塩化ビニル、塩化ビニリデン、フッ化ビニル、フッ化ビニリデン等のハロゲン化ビニル単量体又はビニリデン単量体;酢酸アリル、塩化アリル等のアリル化合物;3-(メタ)アクリルアミドプロピルトリメチルアンモニウムクロライド等の第四級アンモニウム基含有単量体等が挙げられる。これらの単量体は、一種を単独で又は二種以上を組み合わせて用いることができる。 Other copolymerizable unsaturated monomers include, for example, vinyl formate, vinyl acetate, vinyl propionate, isopropenyl acetate, vinyl valerate, vinyl caprylate, vinyl caprate, vinyl laurate, vinyl stearate, vinyl benzoate, vinyl versatate, and vinyl pivalate; olefins such as ethylene, propylene, and butylene; aromatic vinyls such as styrene and α-methylstyrene; methyl (meth)acrylate, ethyl (meth)acrylate, n-butyl (meth)acrylate, and 2-ethylhexyl (meth)acrylate. ethylenically unsaturated carboxylic acid alkyl ester monomers such as dimethyl fumarate, dimethyl maleate, diethyl maleate, and diisopropyl itaconate; vinyl ether monomers such as methyl vinyl ether, n-propyl vinyl ether, isobutyl vinyl ether, and dodecyl vinyl ether; halogenated vinyl monomers or vinylidene monomers such as vinyl chloride, vinylidene chloride, vinyl fluoride, and vinylidene fluoride; allyl compounds such as allyl acetate and allyl chloride; and quaternary ammonium group-containing monomers such as 3-(meth)acrylamidopropyltrimethylammonium chloride. These monomers can be used alone or in combination of two or more.
 顔料分散樹脂(A)の極性官能基濃度は、顔料分散性、貯蔵安定性、及び溶媒との相溶性の観点から、通常0.3mmol/g~23mmol/gであり、0.3mmol/g~12mmol/gであることが好ましく、0.4mmol/g~8.0mmol/gであることがより好ましく、0.4mmol/g~6.0mmol/gであることがさらに好ましく、0.4mmol/g~2.0mmol/gであることがさらに特に好ましい。 From the viewpoints of pigment dispersibility, storage stability, and compatibility with the solvent, the polar functional group concentration of the pigment dispersing resin (A) is usually 0.3 mmol/g to 23 mmol/g, preferably 0.3 mmol/g to 12 mmol/g, more preferably 0.4 mmol/g to 8.0 mmol/g, even more preferably 0.4 mmol/g to 6.0 mmol/g, and even more preferably 0.4 mmol/g to 2.0 mmol/g.
 上記ビニル(共)重合体(A1)の重合方法は、それ自体既知の重合方法で製造することができ、例えば溶液重合を用いることが好ましいが、これに限られるものではなく、バルク重合や乳化重合や懸濁重合等でもよい。溶液重合を行う場合には、連続重合でもよいしバッチ重合でもよく、単量体は一括して仕込んでもよいし、分割して仕込んでもよく、あるいは連続的又は断続的に添加してもよい。 The vinyl (co)polymer (A1) can be produced by a polymerization method known per se. For example, it is preferable to use solution polymerization, but this is not limiting, and bulk polymerization, emulsion polymerization, suspension polymerization, etc. may also be used. When solution polymerization is performed, continuous polymerization or batch polymerization may be used, and the monomers may be charged all at once or in portions, or may be added continuously or intermittently.
 溶液重合において使用する重合開始剤は、特に限定するものではないが、具体的には、例えば、アゾビスイソブチロニトリル、2,2’-アゾビス(2-メチルブチロニトリル)、アゾビス-2,4-ジメチルパレロニトリル、アゾビス(4-メトキシ-2,4-ジメチルパレロニトリル)等のアゾ化合物;アセチルパーオキサイド、ベンゾイルパーオキサイド、ラウロイルパーオキサイド、アセチルシクロヘキシルスルホニルパーオキシド、2,4,4-トリメチルペンチル-2-パーオキシフェノキシアセテート等の過酸化物;ジイソプピルパーオキシジカーボネート、ジ-2-エチルヘキシルパーオキシジカーボネート、ジエトキシエチルパーオキシジカーボネート等のパーカーボネート化合物;t-ブチルパーオキシネオデカネート、α-クミルパーオキシネオデカネート、t-ブチルパーオキシネオデカネート等のパーエステル化合物;アゾビスジメチルバレロニトリル、アゾビスメトキシバレロニトリル等の公知のラジカル重合開始剤を使用できる。 The polymerization initiator used in the solution polymerization is not particularly limited, but specific examples include azo compounds such as azobisisobutyronitrile, 2,2'-azobis(2-methylbutyronitrile), azobis-2,4-dimethylparabennitrile, and azobis(4-methoxy-2,4-dimethylparabennitrile); acetyl peroxide, benzoyl peroxide, lauroyl peroxide, acetylcyclohexylsulfonyl peroxide, and 2,4,4-trimethylpentyl-2,4-dimethylparabennitrile. -Peroxides such as peroxyphenoxyacetate; percarbonate compounds such as diisopropyl peroxydicarbonate, di-2-ethylhexyl peroxydicarbonate, and diethoxyethyl peroxydicarbonate; perester compounds such as t-butyl peroxyneodecanate, α-cumyl peroxyneodecanate, and t-butyl peroxyneodecanate; and known radical polymerization initiators such as azobisdimethylvaleronitrile and azobismethoxyvaleronitrile can be used.
 重合反応温度は、特に限定するものではないが、通常30℃以上200℃以下程度の範囲で設定できる。 The polymerization reaction temperature is not particularly limited, but can usually be set in the range of 30°C or higher and 200°C or lower.
 上記のようにして得ることができるビニル(共)重合体(A1)は、重合度が例えば100以上、好ましくは150以上であり、例えば4,000以下、好ましくは3,000以下、より好ましくは700以下である。 The vinyl (co)polymer (A1) obtainable as described above has a degree of polymerization of, for example, 100 or more, preferably 150 or more, and, for example, 4,000 or less, preferably 3,000 or less, more preferably 700 or less.
 また、重量平均分子量としては、例えば1,000以上、好ましくは2,000以上、より好ましくは7,000以上であり、例えば2,000,000以下、好ましくは1,000,000以下、より好ましくは500,000以下である。 The weight average molecular weight is, for example, 1,000 or more, preferably 2,000 or more, more preferably 7,000 or more, and, for example, 2,000,000 or less, preferably 1,000,000 or less, more preferably 500,000 or less.
 なお、本明細書における重量平均分子量は、特に記載がない限り、ゲルパーミュエーションクロマトグラフ(GPC)を用いて測定した保持時間(保持容量)を、同一条件で測定した分子量既知の標準ポリスチレンの保持時間(保持容量)によりポリスチレンの分子量に換算して求めた値である。具体的には、ゲルパーミュエーションクロマトグラフとして、「HLC8120GPC」(東ソー社製、商品名)を用い、カラムとして、「TSKgel G-4000HXL」、「TSKgel G-3000HXL」、「TSKgel G-2500HXL」及び「TSKgel G-2000HXL」(いずれも東ソー社製、商品名)の4本を用い、移動相テトラヒドロフラン、測定温度40℃、流速1mL/min及び検出器RIの条件下で測定することができる。 In this specification, unless otherwise specified, the weight average molecular weight is a value obtained by converting the retention time (retention volume) measured using a gel permeation chromatograph (GPC) into the molecular weight of polystyrene using the retention time (retention volume) of a standard polystyrene of known molecular weight measured under the same conditions. Specifically, the gel permeation chromatograph is "HLC8120GPC" (product name, manufactured by Tosoh Corporation), and the four columns are "TSKgel G-4000HXL", "TSKgel G-3000HXL", "TSKgel G-2500HXL" and "TSKgel G-2000HXL" (all product names, manufactured by Tosoh Corporation), and the measurements can be performed under the following conditions: mobile phase tetrahydrofuran, measurement temperature 40°C, flow rate 1mL/min, and detector RI.
 上記ビニル(共)重合体(A1)は、合成終了後に脱溶媒及び/又は溶媒置換することで、固体又は任意の溶媒に置き換えた樹脂溶液にできる。 After completion of the synthesis, the vinyl (co)polymer (A1) can be converted into a solid or into a resin solution in which any solvent has been replaced by removing the solvent and/or replacing the solvent.
 脱溶媒の方法としては、常圧で加熱により行ってもよいし、減圧下で脱溶媒してもよい。溶媒置換の方法としては、脱溶媒前、脱溶媒途中、又は脱溶媒後のいずれの段階で置換溶媒を投入してもよい。 The method of desolvation may be by heating at normal pressure or under reduced pressure. The method of solvent replacement may be to add a replacement solvent at any stage before, during, or after desolvation.
 また、前記分散樹脂(A)における炭素数12以上のアルキル基の含有量としては、ビニル(共)重合体(A1)の場合、全モノマーを100質量%としたときの当該モノマーの質量割合として、1~100質量%が好ましく、10~90質量%がより好ましく、20~80質量%がさらに好ましく、30~60質量%が特に好ましい。
なお、炭素数12以上のアルキル基の含有量としては、樹脂に反応性の炭素数12以上のアルキル基を有する化合物を後から付加した場合は当該化合物の質量割合で計算するものとする。
In addition, the content of the alkyl group having 12 or more carbon atoms in the dispersion resin (A), in the case of the vinyl (co)polymer (A1), is preferably 1 to 100 mass%, more preferably 10 to 90 mass%, even more preferably 20 to 80 mass%, and particularly preferably 30 to 60 mass%, expressed as the mass ratio of the monomer when all monomers are taken as 100 mass%.
Incidentally, the content of the alkyl group having 12 or more carbon atoms is calculated based on the mass proportion of a compound having a reactive alkyl group having 12 or more carbon atoms added to the resin later.
 前記顔料分散樹脂(A)は、固体の状態から樹脂溶液化する際は、溶媒への溶解性の観点から、予め60℃以上(好ましくは80℃以上)(上限は200℃以下、好ましくは100℃以下)の液温の溶媒と混合及び溶解して樹脂溶液化してから、さらに他の成分[成分(B)、(C)、(D)など]と混合することが好ましい。
なお、「液温」とは、溶解時の溶媒又は樹脂溶液の温度のことである。
予め60℃以上の溶媒に固形の顔料分散樹脂(A)を混入して溶解してもよく、また固形の顔料分散樹脂(A)と溶媒を混合してから60℃以上の温度に加温してもよい。
また、顔料分散樹脂(A)と溶媒以外の成分を含有していてもよい。
使用する溶媒は、一種を単独で又は二種以上を組み合わせて用いることができ、種類としては後述する溶媒(C)で挙げたものを好適に用いることができる。
When the pigment dispersion resin (A) is converted from a solid state into a resin solution, it is preferable that the pigment dispersion resin (A) is first mixed and dissolved in a solvent having a liquid temperature of 60° C. or higher (preferably 80° C. or higher) (the upper limit is 200° C. or lower, preferably 100° C. or lower) to convert it into a resin solution, and then mixed with other components [components (B), (C), (D), etc.], from the viewpoint of solubility in the solvent.
The "liquid temperature" refers to the temperature of the solvent or resin solution at the time of dissolution.
The solid pigment dispersion resin (A) may be mixed and dissolved in a solvent at 60° C. or higher in advance, or the solid pigment dispersion resin (A) may be mixed with a solvent and then heated to a temperature of 60° C. or higher.
Furthermore, the ink may contain components other than the pigment dispersing resin (A) and the solvent.
The solvent to be used may be one type alone or two or more types in combination. As the type, those exemplified as the solvent (C) described later can be suitably used.
 顔料分散樹脂(A)の固形分含有量は、導電性顔料ペーストの固形分総量100質量%を基準として、例えば0.1質量%以上、好ましくは1質量%以上、より好ましくは3質量%以上であり、例えば40質量%以下、好ましくは30質量%以下、より好ましくは20質量%以下である。 The solid content of the pigment dispersion resin (A) is, based on 100% by mass of the total solid content of the conductive pigment paste, for example, 0.1% by mass or more, preferably 1% by mass or more, and more preferably 3% by mass or more, and for example, 40% by mass or less, preferably 30% by mass or less, and more preferably 20% by mass or less.
 また、顔料分散樹脂(A)の固形分含有量は、導電性顔料ペーストの総量100質量%を基準として、例えば0.1質量%以上、好ましくは0.4質量%以上、より好ましくは0.7質量%以上であり、例えば10質量%以下、好ましくは5質量%以下、より好ましくは2質量%以下である。 The solid content of the pigment dispersion resin (A) is, based on 100% by mass of the total amount of the conductive pigment paste, for example, 0.1% by mass or more, preferably 0.4% by mass or more, and more preferably 0.7% by mass or more, and for example, 10% by mass or less, preferably 5% by mass or less, and more preferably 2% by mass or less.
 また、顔料分散樹脂(A)の固形分含有量は、導電性顔料(B)の含有量100質量%を基準として、例えば0.1質量%以上、好ましくは1質量%以上、より好ましくは5質量%以上であり、例えば150質量%以下、好ましくは120質量%以下、より好ましくは80質量%以下である。 The solid content of the pigment dispersion resin (A) is, based on the content of the conductive pigment (B) of 100% by mass, for example, 0.1% by mass or more, preferably 1% by mass or more, more preferably 5% by mass or more, and for example, 150% by mass or less, preferably 120% by mass or less, more preferably 80% by mass or less.
 溶媒(C)
 前記溶媒(C)は、水や各種有機溶媒などを好適に用いることができる。
具体的には、例えば、n-ブタン、n-ヘキサン、n-ヘプタン、n-オクタン、シクロペンタン、シクロヘキサン、シクロブタン等の炭化水素系溶剤;トルエン、キシレン等の芳香族系溶剤;メチルイソブチルケトン等のケトン系溶剤;n-ブチルエーテル、ジオキサン、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコール等のエーテル系溶剤;酢酸エチル、酢酸n-ブチル、酢酸イソブチル、エチレングリコールモノメチルエーテルアセテート、ブチルカルビトールアセテート等のエステル系溶剤;メチルエチルケトン、メチルイソブチルケトン、ジイソブチルケトン等のケトン系溶剤;エタノール、イソプロパノール、n-ブタノール、sec-ブタノール、イソブタノール等の等のアルコール系溶剤;エクアミド(アミド系溶剤、出光興産社製、商品名)、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルホルムアミド、N-メチルアセトアミド、N-メチルプロピオアミド、N-メチル-2-ピロリドン等のアミド系溶剤等を挙げることができる。
Solvent (C)
As the solvent (C), water or various organic solvents can be suitably used.
Specific examples of the solvent include hydrocarbon solvents such as n-butane, n-hexane, n-heptane, n-octane, cyclopentane, cyclohexane, and cyclobutane; aromatic solvents such as toluene and xylene; ketone solvents such as methyl isobutyl ketone; ether solvents such as n-butyl ether, dioxane, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, and diethylene glycol; ethyl acetate, n-butyl acetate, isobutyl acetate, and ethylene glycol monomethyl ether. Examples of the solvent include ester-based solvents such as ethyl ether acetate and butyl carbitol acetate; ketone-based solvents such as methyl ethyl ketone, methyl isobutyl ketone and diisobutyl ketone; alcohol-based solvents such as ethanol, isopropanol, n-butanol, sec-butanol and isobutanol; and amide-based solvents such as Equamide (an amide-based solvent, product name, manufactured by Idemitsu Kosan Co., Ltd.), N,N-dimethylformamide, N,N-dimethylacetamide, N-methylformamide, N-methylacetamide, N-methylpropioamide and N-methyl-2-pyrrolidone.
 なかでも、アミド系溶剤が好ましく、N-メチル-2-ピロリドンがより好ましい。これらの溶媒は、一種を単独で又は二種以上を組み合わせて用いることができる。 Among these, amide-based solvents are preferred, and N-methyl-2-pyrrolidone is more preferred. These solvents can be used alone or in combination of two or more.
 また、導電性顔料ペーストの顔料分散性や樹脂成分を変質又は加水分解させない観点から、実質的に水を含まないことが好ましい。ここで「実質的に水を含まない」とは、導電性顔料ペーストの全量100質量%を基準として、水の含有量が、通常1質量%以下であり、好ましくは0.5質量%以下であり、特に好ましくは0.1質量%以下であることをいう。
本発明において、導電性顔料ペーストの水の分含有量は、カールフィッシャー電量滴定法にて測定できる。具体的には、カールフィッシャー水分率計(京都電子工業社製、商品名「MKC-610」)を用い、該装置に備えられた水分気化装置(京都電子社製、商品名「ADP-611」)の設定温度は130℃として測定できる。
From the viewpoint of pigment dispersibility of the conductive pigment paste and preventing deterioration or hydrolysis of the resin component, it is preferable that the conductive pigment paste is substantially free of water. Here, "substantially free of water" means that the water content is usually 1 mass % or less, preferably 0.5 mass % or less, and particularly preferably 0.1 mass % or less, based on 100 mass % of the total amount of the conductive pigment paste.
In the present invention, the water content of the conductive pigment paste can be measured by Karl Fischer coulometric titration. Specifically, the water content can be measured using a Karl Fischer moisture meter (manufactured by Kyoto Electronics Manufacturing Co., Ltd., product name "MKC-610") with the moisture vaporizer (manufactured by Kyoto Electronics Co., Ltd., product name "ADP-611") attached to the device set at a temperature of 130°C.
 N-メチル-2-ピロリドン等のアミド系化合物(溶剤)を用いる場合、不純物としてアミン成分を含むことがあり、本発明の導電性顔料ペーストにおいて、この不純物であるアミン成分によってロット毎に粘度又は増粘傾向が異なることがあった。 When using amide compounds (solvents) such as N-methyl-2-pyrrolidone, amine components may be included as impurities, and in the conductive pigment paste of the present invention, the viscosity or tendency to thicken may vary from lot to lot depending on the amine components that are impurities.
 また、本発明の導電性顔料ペーストを後述する方法で電極層にする場合、溶媒等は揮発するため残らないが、廃棄物削減、環境対応、及び/又は原料コスト削減のために揮発した溶媒を回収及び再利用することが好ましい。すなわち、溶媒(C)として再生品を使用することが好ましい。この再生溶媒(再生品)には、本発明の導電性顔料ペーストにもともと含有しているアミン化合物(E1)も含まれることになり、同じくロット毎に導電性顔料ペーストの粘度又は増粘傾向が異なることになる。また、アミン化合物は強い臭気を有する場合が多い。 In addition, when the conductive pigment paste of the present invention is made into an electrode layer by the method described below, the solvent and the like volatilize and do not remain, but it is preferable to recover and reuse the volatilized solvent in order to reduce waste, be environmentally friendly, and/or reduce raw material costs. In other words, it is preferable to use a recycled product as the solvent (C). This recycled solvent (recycled product) will also contain the amine compound (E1) that is originally contained in the conductive pigment paste of the present invention, and similarly the viscosity or thickening tendency of the conductive pigment paste will differ from lot to lot. Furthermore, amine compounds often have a strong odor.
 従って、再生品である溶媒(C)中のアミン化合物含有量を一定量以下に管理・調整することが好ましく、アミン化合物含有量としては、通常1質量%以下であり、好ましくは0.5質量%以下であり、特に好ましくは0.1質量%以下であることが好適である。 Therefore, it is preferable to control and adjust the amine compound content in the recycled solvent (C) to a certain amount or less, and the amine compound content is usually 1 mass% or less, preferably 0.5 mass% or less, and particularly preferably 0.1 mass% or less.
 また、アミン化合物の含有量は、イオンクロマトグラフィー質量分析(IC-MS:Ion Chromatography - Mass Spectrometry)等の一般的な分析により定量することができる。予め混入が予想されるアミン種のピークについて検量線を作成することにより含有量の定量が可能である。 The amount of amine compounds contained can be quantified using common analyses such as ion chromatography-mass spectrometry (IC-MS). The amount can be quantified by creating a calibration curve for the peaks of amine species that are expected to be present.
 なお、上記「溶媒(C)として再生品を使用」とは、本発明の導電性顔料ペーストに用いられる溶媒(C)中に再生品が10質量%以上(好ましくは20質量%以上)含まれるということである。 The above phrase "using recycled products as the solvent (C)" means that the solvent (C) used in the conductive pigment paste of the present invention contains 10% by mass or more (preferably 20% by mass or more) of recycled products.
 導電性顔料ペーストにおける溶媒(C)の含有量は、導電性顔料ペーストの総量100質量%を基準として、例えば40質量%以上、好ましくは60質量%以上、より好ましくは80質量%以上であり、例えば99質量%以下、好ましくは98質量%以下、より好ましくは97質量%以下である。
また、導電性顔料ペーストの固形分としては、導電性顔料ペーストの総量100質量%を基準として、例えば1質量%以上、好ましくは2質量%以上、より好ましくは3質量%以上であり、例えば60質量%以下、好ましくは40質量%以下、より好ましくは20質量%以下である。
The content of the solvent (C) in the conductive pigment paste is, based on 100 mass% of the total amount of the conductive pigment paste, for example, 40 mass% or more, preferably 60 mass% or more, and more preferably 80 mass% or more, and for example, 99 mass% or less, preferably 98 mass% or less, and more preferably 97 mass% or less.
The solid content of the conductive pigment paste is, for example, 1 mass % or more, preferably 2 mass % or more, and more preferably 3 mass % or more, based on 100 mass % of the total amount of the conductive pigment paste, and is, for example, 60 mass % or less, preferably 40 mass % or less, and more preferably 20 mass % or less.
 フッ素樹脂(D)
 前記フッ素樹脂(D)は、電極層の膜形成を目的とする樹脂であり、導電性顔料ペーストに、必要に応じて含むことができ、含有することが好ましい。
また、後述する合材ペーストには必須の成分である。
Fluorine resin (D)
The fluororesin (D) is a resin intended for forming a film of an electrode layer, and may be contained in the conductive pigment paste as necessary, and is preferably contained therein.
It is also an essential component of the composite paste described below.
 フッ素樹脂(D)としては、特にポリフッ化ビニリデン(PVDF)が好ましく、一種を単独で又は二種以上を組み合わせて用いることができる。また、ポリフッ化ビニリデンは各種の変性がされていてもよく、基材との密着性の観点から、極性官能基を有することが好ましい。 As the fluororesin (D), polyvinylidene fluoride (PVDF) is particularly preferred, and one type may be used alone or two or more types may be used in combination. Furthermore, polyvinylidene fluoride may be modified in various ways, and from the viewpoint of adhesion to the substrate, it is preferable that it has a polar functional group.
 フッ素樹脂(D)は、顔料分散時に含有していてもよく、あるいは顔料分散後に添加して含有してもよい。また、後述する合材ペーストの製造時に含有してもよい。
フッ素樹脂(D)の重量平均分子量としては、基材との密着性、膜物性の補強、及び耐溶剤性の観点から、例えば10万以上、好ましくは50万以上、より好ましくは65万以上であり、例えば300万以下、好ましくは200万以下である。
The fluororesin (D) may be contained when the pigment is dispersed, or may be added after the pigment is dispersed, or may be contained during the production of a composite paste, which will be described later.
The weight average molecular weight of the fluororesin (D) is, from the viewpoints of adhesion to the substrate, reinforcement of the film properties, and solvent resistance, for example, 100,000 or more, preferably 500,000 or more, more preferably 650,000 or more, and for example, 3,000,000 or less, preferably 2,000,000 or less.
 フッ素樹脂(D)を含む場合の含有量は、導電性顔料ペーストの固形分100質量%を基準として、例えば10.0質量%以上、好ましくは30.0質量%以上、より好ましくは40.0質量%以上であり、例えば99.0質量%以下、好ましくは80.0質量%以下、より好ましくは60.0質量%以下である。また、導電性顔料ペーストの総量100質量%を基準として、例えば0.1質量%以上、好ましくは0.5質量%以上、より好ましくは1質量%以上であり、例えば10質量%以下、好ましくは7質量%以下、より好ましくは5質量%以下である。 When fluororesin (D) is included, the content is, based on 100% by mass of the solid content of the conductive pigment paste, for example, 10.0% by mass or more, preferably 30.0% by mass or more, more preferably 40.0% by mass or more, and for example, 99.0% by mass or less, preferably 80.0% by mass or less, more preferably 60.0% by mass or less. Also, based on 100% by mass of the total amount of the conductive pigment paste, the content is, for example, 0.1% by mass or more, preferably 0.5% by mass or more, more preferably 1% by mass or more, and for example, 10% by mass or less, preferably 7% by mass or less, more preferably 5% by mass or less.
 フッ素樹脂(D)を固体の状態から樹脂溶液化する際は、溶媒への溶解性の観点から、予め40℃以上(好ましくは60℃以上、より好ましくは80℃以上)(上限は200℃以下、好ましくは100℃以下)の液温で溶媒と混合及び溶解して樹脂溶液化してから、さらに前記導電性顔料組成物と混合及び分散することが好ましい。
なお、「液温」とは、溶解時の溶媒又は樹脂溶液の温度のことである。
予め40℃以上の溶媒に固形のフッ素樹脂(D)を混入して溶解してもよく、また固形のフッ素樹脂(D)と溶媒を混合してから40℃以上の温度に加温してもよい。
また、フッ素樹脂(D)と溶媒以外の成分を含有していてもよい。
上記の熱溶解をする場合、フッ素樹脂(D)はポリフッ化ビニリデン(又はその変性体)が好ましい。
使用する溶媒は、一種を単独で又は二種以上を組み合わせて用いることができ、種類としては前記溶媒(C)で挙げたものを好適に用いることができる。
また、上記の通り熱溶解した樹脂溶液を10℃以上40℃未満の所定温度まで冷却することが好ましく、該冷却工程は、下記式:
冷却速度=(冷却開始時の溶液温度-冷却終了時の溶液温度)/冷却時間
で定義される冷却速度が0.5℃/分以上(好ましくは1℃/分以上)となることが析出を防止する観点から好ましい。
When the fluororesin (D) is made into a resin solution from a solid state, from the viewpoint of solubility in the solvent, it is preferred that the fluororesin (D) is first mixed and dissolved in a solvent at a liquid temperature of 40° C. or higher (preferably 60° C. or higher, more preferably 80° C. or higher) (the upper limit is 200° C. or lower, preferably 100° C. or lower) to make a resin solution, and then the fluororesin (D) is further mixed and dispersed with the conductive pigment composition.
The "liquid temperature" refers to the temperature of the solvent or resin solution at the time of dissolution.
The solid fluororesin (D) may be mixed and dissolved in a solvent at 40° C. or higher in advance, or the solid fluororesin (D) may be mixed with a solvent and then heated to a temperature of 40° C. or higher.
Furthermore, the composition may contain components other than the fluororesin (D) and the solvent.
When the above-mentioned hot dissolution is carried out, the fluororesin (D) is preferably polyvinylidene fluoride (or a modified product thereof).
The solvent to be used may be one type alone or two or more types in combination, and as the type, those exemplified as the solvent (C) above can be suitably used.
In addition, it is preferable to cool the resin solution that has been hot dissolved as described above to a predetermined temperature of 10° C. or more and less than 40° C., and the cooling step is carried out by reacting the resin solution with ... by the following reaction:
From the viewpoint of preventing precipitation, it is preferable that the cooling rate, defined as cooling rate=(solution temperature at the start of cooling−solution temperature at the end of cooling)/cooling time, is 0.5° C./min or more (preferably 1° C./min or more).
 高極性低分子量成分(E)
 前記高極性低分子量成分(E)は、導電性顔料のぬれ性及び/又は貯蔵安定性を上げる成分であり、例えば、それ自体既知の塩基性成分や酸性成分が挙げられ、なかでもアミン化合物(E1)を含有することが好ましい。
High polar low molecular weight component (E)
The highly polar, low-molecular-weight component (E) is a component that increases the wettability and/or storage stability of the conductive pigment. Examples of the highly polar, low-molecular-weight component (E) include basic components and acidic components known per se. Among these, amine compounds ( It is preferred that the compound contains a cyclic alkyl group.
 上記高極性低分子量成分(E)中のアミン化合物(E1)の含有量としては、高極性低分子量成分(E)100質量%を基準として、例えば50質量%以上、好ましくは75質量%以上、より好ましくは95質量%以上である。 The content of the amine compound (E1) in the highly polar, low molecular weight component (E) is, for example, 50% by mass or more, preferably 75% by mass or more, and more preferably 95% by mass or more, based on 100% by mass of the highly polar, low molecular weight component (E).
 上記アミン化合物(E1)としては、例えば、アンモニア、1級アミン、2級アミン、3級アミン等が挙げられる。 Examples of the amine compound (E1) include ammonia, primary amines, secondary amines, and tertiary amines.
 1級アミンとしては、例えば、エチルアミン、n-プロピルアミン、sec-プロピルアミン、n-ブチルアミン、sec-ブチルアミン、i-ブチルアミン、tert-ブチルアミン、ペンチルアミン、ヘキシルアミン、ヘプチルアミン、オクチルアミン、デシルアミン、ラウリルアミン、ミスチリルアミン、1,2-ジメチルヘキシルアミン、3-ペンチルアミン、2-エチルヘキシルアミン、アリルアミン、アミノエタノール、1-アミノプロパノール、2-アミノプロパノール、アミノブタノール、アミノペンタノール、アミノヘキサノール、3-エトキシプロピルアミン、3-プロポキシプロピルアミン、3-イソプロポキシプロピルアミン、3-ブトキシプロピルアミン、3-イソブトキシプロピルアミン、3-(2-エチルヘキシロキシ)プロピルアミン、アミノシクロペンタン、アミノシクロヘキサン、アミノノルボルネン、アミノメチルシクロヘキサン、アミノベンゼン、ベンジルアミン、フェネチルアミン、α-フェニルエチルアミン、ナフチルアミン、フルフリルアミン等の1級モノアミン;エチレンジアミン、1,2-ジアミノプロパン、1,3-ジアミノプロパン、1,2-ジアミノブタン、1,3-ジアミノブタン、1,4-ジアミノブタン、1,5-ジアミノペンタン、1,6-ジアミノヘキサン、1,7-ジアミノヘプタン、1,8-ジアミノオクタン、ジメチルアミノプロピルアミン、ジエチルアミノプロピルアミン、ビス-(3-アミノプロピル)エーテル、1,2-ビス-(3-アミノプロポキシ)エタン、1,3-ビス-(3-アミノプロポキシ)-2,2’-ジメチルプロパン、アミノエチルエタノールアミン、1,2-ビスアミノシクロヘキサン、1,3-ビスアミノシクロヘキサン、1,4-ビスアミノシクロヘキサン、1,3-ビスアミノメチルシクロヘキサン、1,4-ビスアミノメチルシクロヘキサン、1,3-ビスアミノエチルシクロヘキサン、1,4-ビスアミノエチルシクロヘキサン、1,3-ビスアミノプロピルシクロヘキサン、1,4-ビスアミノプロピルシクロヘキサン、水添4,4’-ジアミノジフェニルメタン、2-アミノピペリジン、4-アミノピペリジン、2-アミノメチルピペリジン、4-アミノメチルピペリジン、2-アミノエチルピペリジン、4-アミノエチルピペリジン、N-アミノエチルピペリジン、N-アミノプロピルピペリジン、N-アミノエチルモルホリン、N-アミノプロピルモルホリン、イソホロンジアミン、メンタンジアミン、1,4-ビスアミノプロピルピペラジン、o-フェニレンジアミン、m-フェニレンジアミン、p-フェニレンジアミン、2,4-トリレンジアミン、2,6-トリレンジアミン、2,4-トルエンジアミン、m-アミノベンジルアミン、4-クロロ-o-フェニレンジアミン、テトラクロロ-p-キシリレンジアミン、4-メトキシ-6-メチル-m-フェニレンジアミン、m-キシリレンジアミン、p-キシリレンジアミン、1,5-ナフタレンジアミン、2,6-ナフタレンジアミン、ベンジジン、4,4’-ビス(o-トルイジン)、ジアニシジン、4,4’-ジアミノジフェニルメタン、2,2-(4,4’-ジアミノジフェニル)プロパン、4,4’-ジアミノジフェニルエーテル、4,4’-チオジアニリン、4,4’-ジアミノジフェニルスルホン、4,4’-ジアミノジトリルスルホン、メチレンビス(o-クロロアニリン)、3,9-ビス(3-アミノプロピル)2,4,8,10-テトラオキサスピロ[5,5]ウンデカン、ジエチレントリアミン、イミノビスプロピルアミン、メチルイミノビスプロピルアミン、ビス(ヘキサメチレン)トリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ペンタエチレンヘキサミン、N-アミノエチルピペラジン、N-アミノプロピルピペラジン、1,4-ビス(アミノエチルピペラジン)、1,4-ビス(アミノプロピルピペラジン)、2,6-ジアミノピリジン、ビス(3,4-ジアミノフェニル)スルホン等の1級ポリアミン等が挙げられる。 Primary amines include, for example, ethylamine, n-propylamine, sec-propylamine, n-butylamine, sec-butylamine, i-butylamine, tert-butylamine, pentylamine, hexylamine, heptylamine, octylamine, decylamine, laurylamine, myristyrylamine, 1,2-dimethylhexylamine, 3-pentylamine, 2-ethylhexylamine, allylamine, aminoethanol, 1-aminopropanol, 2-aminopropanol, aminobutanol, aminopentanol, aminohexanol, 3-ethoxypropylamine, 3-propoxypropylamine, 3-isopropoxypropylamine, 3-butoxypropylamine, 3-isobutoxypropylamine, 3-(2-ethylhexyloxy)propylamine, aminocyclopentane, aminocyclohexane, aminonorbornene, aminomethylcyclohexane, aminobenzene, benzylamine, phenethylamine, α-furan, primary monoamines such as phenylethylamine, naphthylamine, and furfurylamine; ethylenediamine, 1,2-diaminopropane, 1,3-diaminopropane, 1,2-diaminobutane, 1,3-diaminobutane, 1,4-diaminobutane, 1,5-diaminopentane, 1,6-diaminohexane, 1,7-diaminoheptane, 1,8-diaminooctane, dimethylaminopropylamine, diethylaminopropylamine, bis-(3-aminopropyl)ether, 1,2- Bis-(3-aminopropoxy)ethane, 1,3-bis-(3-aminopropoxy)-2,2'-dimethylpropane, aminoethylethanolamine, 1,2-bisaminocyclohexane, 1,3-bisaminocyclohexane, 1,4-bisaminocyclohexane, 1,3-bisaminomethylcyclohexane, 1,4-bisaminomethylcyclohexane, 1,3-bisaminoethylcyclohexane, 1,4-bisaminoethylcyclohexane, 1,3-bisaminopropylcyclohexane, 1,4-bisaminopropylcyclohexane, hydrogenated 4,4'-diaminodiphenylmethane, 2-aminopiperidine, 4-aminopiperidine, 2-aminomethylpiperidine, 4-aminomethylpiperidine, 2-aminoethylpiperidine, 4-aminoethylpiperidine, N-aminoethylpiperidine, N-aminopropylpiperidine, N-aminoethylmorpholine, N-aminopropylmorpholine, isophoronediamine, menthanediamine, 1,4-bisa Aminopropylpiperazine, o-phenylenediamine, m-phenylenediamine, p-phenylenediamine, 2,4-tolylenediamine, 2,6-tolylenediamine, 2,4-toluenediamine, m-aminobenzylamine, 4-chloro-o-phenylenediamine, tetrachloro-p-xylylenediamine, 4-methoxy-6-methyl-m-phenylenediamine, m-xylylenediamine, p-xylylenediamine, 1,5-naphthalenediamine, 2,6-naphthalenediamine Benzidine, 4,4'-bis(o-toluidine), dianisidine, 4,4'-diaminodiphenylmethane, 2,2-(4,4'-diaminodiphenyl)propane, 4,4'-diaminodiphenyl ether, 4,4'-thiodianiline, 4,4'-diaminodiphenyl sulfone, 4,4'-diaminoditolyl sulfone, methylenebis(o-chloroaniline), 3,9-bis(3-aminopropyl)2,4,8,10-tetraoxaspiro[5,5]undecane, diethylene Examples of primary polyamines include bis(hexamethylene)triamine, iminobispropylamine, methyliminobispropylamine, bis(hexamethylene)triamine, triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine, N-aminoethylpiperazine, N-aminopropylpiperazine, 1,4-bis(aminoethylpiperazine), 1,4-bis(aminopropylpiperazine), 2,6-diaminopyridine, and bis(3,4-diaminophenyl)sulfone.
 2級アミンとしては、例えば、ジエチルアミン、ジプロピルアミン、ジ-n-ブチルアミン、ジ-sec-ブチルアミン、ジイソブチルアミン、ジ-n-ペンチルアミン、ジ-3-ペンチルアミン、ジヘキシルアミン、ジオクチルアミン、ジ(2-エチルヘキシル)アミン、メチルヘキシルアミン、ジアリルアミン、ピロリジン、ピペリジン、2,4-ルペチジン、2,6-ルペチジン、3,5-ルペチジン、ジフェニルアミン、N-メチルアニリン、N-エチルアニリン、ジベンジルアミン、メチルベンジルアミン、ジナフチルアミン、ピロール、インドリン、インドール、モルホリン等の2級モノアミン;N,N’-ジメチルエチレンジアミン、N,N’-ジメチル-1,2-ジアミノプロパン、N,N’-ジメチル-1,3-ジアミノプロパン、N,N’-ジメチル-1,2-ジアミノブタン、N,N’-ジメチル-1,3-ジアミノブタン、N,N’-ジメチル-1,4-ジアミノブタン、N,N’-ジメチル-1,5-ジアミノペンタン、N,N’-ジメチル-1,6-ジアミノヘキサン、N,N’-ジメチル-1,7-ジアミノヘプタン、N,N’-ジエチルエチレンジアミン、N,N’-ジエチル-1,2-ジアミノプロパン、N,N’-ジエチル-1,3-ジアミノプロパン、N,N’-ジエチル-1,2-ジアミノブタン、N,N’-ジエチル-1,3-ジアミノブタン、N,N’-ジエチル-1,4-ジアミノブタン、N,N’-ジエチル-1,6-ジアミノヘキサン、ピペラジン、2-メチルピペラジン、2,5-ジメチルピペラジン、2,6-ジメチルピペラジン、ホモピペラジン、1,1-ジ-(4-ピペリジル)メタン、1,2-ジ-(4-ピペリジル)エタン、1,3-ジ-(4-ピペリジル)プロパン、1,4-ジ-(4-ピペリジル)ブタン等の2級ポリアミン等が挙げられる。 Secondary amines include, for example, diethylamine, dipropylamine, di-n-butylamine, di-sec-butylamine, diisobutylamine, di-n-pentylamine, di-3-pentylamine, dihexylamine, dioctylamine, di(2-ethylhexyl)amine, methylhexylamine, diallylamine, pyrrolidine, piperidine, 2,4-leupetidine, 2,6-leupetidine, 3,5-leupetidine, diphenylamine, secondary monoamines such as N,N'-dimethylethylenediamine, N,N'-dimethyl-1,2-diaminopropane, N,N'-dimethyl-1,3-diaminopropane, N,N'-dimethyl-1,2-diaminobutane, N,N'-dimethyl-1,3 ... '-Dimethyl-1,4-diaminobutane, N,N'-dimethyl-1,5-diaminopentane, N,N'-dimethyl-1,6-diaminohexane, N,N'-dimethyl-1,7-diaminoheptane, N,N'-diethylethylenediamine, N,N'-diethyl-1,2-diaminopropane, N,N'-diethyl-1,3-diaminopropane, N,N'-diethyl-1,2-diaminobutane, N,N'-diethyl-1,3-diaminobutane Examples of secondary polyamines include hexane, N,N'-diethyl-1,4-diaminobutane, N,N'-diethyl-1,6-diaminohexane, piperazine, 2-methylpiperazine, 2,5-dimethylpiperazine, 2,6-dimethylpiperazine, homopiperazine, 1,1-di-(4-piperidyl)methane, 1,2-di-(4-piperidyl)ethane, 1,3-di-(4-piperidyl)propane, and 1,4-di-(4-piperidyl)butane.
 3級アミンとしては、例えば、トリメチルアミン、トリエチルアミン、トリ-n-プロピルアミン、トリ-iso-プロピルアミン、トリ-1,2-ジメチルプロピルアミン、トリ-3-メトキシプロピルアミン、トリ-n-ブチルアミン、トリ-iso-ブチルアミン、トリ-sec-ブチルアミン、トリ-ペンチルアミン、トリ-3-ペンチルアミン、トリ-n-ヘキシルアミン、トリ-n-オクチルアミン、トリ-2-エチルヘキシルアミン、トリ-ドデシルアミン、トリ-ラウリルアミン、ジシクロヘキシルエチルアミン、シクロヘキシルジエチルアミン、トリ-シクロヘキシルアミン、N,N-ジメチルヘキシルアミン、N-メチルジヘキシルアミン、N,N-ジメチルシクロヘキシルアミン、N-メチルジシクロヘキシルアミン、N、N-ジエチルエタノールアミン、N、N-ジメチルエタノールアミン、N-エチルジエタノールアミン、トリエタノールアミン、トリベンジルアミン、N,N-ジメチルベンジルアミン、ジエチルベンジルアミン、トリフェニルアミン、N,N-ジメチルアミノ-p-クレゾール、N,N-ジメチルアミノメチルフェノール、2-(N,N-ジメチルアミノメチル)フェノール、N,N-ジメチルアニリン、N,N-ジエチルアニリン、ピリジン、キノリン、N-メチルモルホリン、N-メチルピペリジン、2-(2-ジメチルアミノエトキシ)-4-メチル-1,3,2-ジオキサボルナン、2-、3-、4-ピコリン等の3級モノアミン;テトラメチルエチレンジアミン、ピラジン、N,N’-ジメチルピペラジン、N,N’-ビス((2-ヒドロキシ)プロピル)ピペラジン、ヘキサメチレンテトラミン、N,N,N’,N’-テトラメチル-1,3-ブタンアミン、2-ジメチルアミノ-2-ヒドロキシプロパン、ジエチルアミノエタノール、N,N,N-トリス(3-ジメチルアミノプロピル)アミン、2,4,6-トリス(N,N-ジメチルアミノメチル)フェノール、ヘプタメチルイソビグアニド等の3級ポリアミン等が挙げられる。 Examples of tertiary amines include trimethylamine, triethylamine, tri-n-propylamine, tri-iso-propylamine, tri-1,2-dimethylpropylamine, tri-3-methoxypropylamine, tri-n-butylamine, tri-iso-butylamine, tri-sec-butylamine, tri-pentylamine, tri-3-pentylamine, tri-n-hexylamine, tri-n-octylamine, tri-2-ethylhexylamine, tri-dodecylamine, tri-laurylamine, dicyclohexylethylamine, cyclohexyldiethylamine, tri-cyclohexylamine, N,N-dimethylhexylamine, N-methyldihexylamine, N,N-dimethylcyclohexylamine, N-methyldicyclohexylamine, N,N-diethylethanolamine, N,N-dimethylethanolamine, N-ethyldiethanolamine, triethanolamine, tribenzylamine, N,N-dimethylbenzylamine, diethylbenzylamine, tertiary monoamines such as diphenylamine, triphenylamine, N,N-dimethylamino-p-cresol, N,N-dimethylaminomethylphenol, 2-(N,N-dimethylaminomethyl)phenol, N,N-dimethylaniline, N,N-diethylaniline, pyridine, quinoline, N-methylmorpholine, N-methylpiperidine, 2-(2-dimethylaminoethoxy)-4-methyl-1,3,2-dioxabornane, and 2-, 3-, and 4-picoline; tetramethylethylenediamine, Examples of tertiary polyamines include pyrazine, N,N'-dimethylpiperazine, N,N'-bis((2-hydroxy)propyl)piperazine, hexamethylenetetramine, N,N,N',N'-tetramethyl-1,3-butanamine, 2-dimethylamino-2-hydroxypropane, diethylaminoethanol, N,N,N-tris(3-dimethylaminopropyl)amine, 2,4,6-tris(N,N-dimethylaminomethyl)phenol, and heptamethylisobiguanide.
 これらは、一種を単独で又は二種以上を組み合わせて用いることができる。 These can be used alone or in combination of two or more types.
 なかでも、1級のアミン化合物が好ましく、1価のアミン化合物(モノアミン)が好ましい。 Among these, primary amine compounds are preferred, and monovalent amine compounds (monoamines) are more preferred.
 上記アミン化合物(E1)としては、アルカノールアミン、脂肪族アミン、脂環族アミン、芳香族アミン等が挙げられ、いずれも好適に使用できるが、芳香族アミンが好ましい。 The above amine compound (E1) may be an alkanolamine, an aliphatic amine, an alicyclic amine, an aromatic amine, etc., any of which may be suitably used, but aromatic amines are preferred.
 乾燥後の電極層にアミン化合物が残らないことが好ましいため、アミン化合物(E1)の重量平均分子量が1,000未満であることが好ましく、800以下であることがより好ましく、500以下であることがさらに好ましく、350以下であることが特に好ましく、250以下であることがさらに特に好ましい。
また同じ理由で、アミン化合物の沸点としては、400℃以下が好ましく、300℃以下がより好ましく、200℃以下がさらに好ましい。
また、沸点が低い場合は製造又は貯蔵中に揮発する可能性があり、さらに臭気の観点から、下限としては50℃以上が好ましく、100℃以上がより好ましい。
 また、アミン化合物(E1)のアミン価としては、通常5mgKOH/g以上、好ましくは50mgKOH/g以上、より好ましくは105mgKOH/g以上であり、通常1,000mgKOH/g以下の範囲内である。
Since it is preferable that no amine compound remains in the electrode layer after drying, the weight average molecular weight of the amine compound (E1) is preferably less than 1,000, more preferably 800 or less, even more preferably 500 or less, particularly preferably 350 or less, and even more particularly preferably 250 or less.
For the same reason, the boiling point of the amine compound is preferably 400° C. or lower, more preferably 300° C. or lower, and even more preferably 200° C. or lower.
Furthermore, if the boiling point is low, there is a possibility that the liquid will volatilize during production or storage, and furthermore, from the viewpoint of odor, the lower limit is preferably 50° C. or higher, and more preferably 100° C. or higher.
The amine value of the amine compound (E1) is usually 5 mgKOH/g or more, preferably 50 mgKOH/g or more, more preferably 105 mgKOH/g or more, and is usually within the range of 1,000 mgKOH/g or less.
 その他の高極性低分子量成分としては、アミン化合物(E1)と併用して、例えば、有機酸及び無機酸から選ばれる酸性の高極性低分子量成分の一種を単独で又は二種以上を組み合わせて用いることができる。また、有機塩基及び無機塩基から選ばれる塩基性の高極性低分子量成分の一種を単独で又は二種以上を組み合わせて用いることができる。
 有機酸としては、例えば、有機カルボン酸(ギ酸、酢酸、プロピオン酸、安息香酸、フタル酸等)、有機スルホン酸(ベンゼンスルホン酸等)等が、無機酸としては、例えば、塩酸、硫酸、硝酸、リン酸等が、それぞれ挙げられ、これらの酸無水物も用いることができる。
As the other highly polar, low molecular weight component, for example, an acidic highly polar, low molecular weight component selected from organic acids and inorganic acids can be used alone or in combination with two or more of them in combination with the amine compound (E1). Also, a basic highly polar, low molecular weight component selected from organic bases and inorganic bases can be used alone or in combination with two or more of them in combination.
Examples of the organic acid include organic carboxylic acids (formic acid, acetic acid, propionic acid, benzoic acid, phthalic acid, etc.), organic sulfonic acids (benzenesulfonic acid, etc.), and examples of the inorganic acid include hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, and the like. Acid anhydrides of these acids can also be used.
 有機塩基としては、アミン化合物以外の塩基成分や、無機塩基としては、例えば、金属水酸化物(水酸化ナトリウム、水酸化カリウム等)等が、それぞれ挙げられる。 Examples of organic bases include base components other than amine compounds, and examples of inorganic bases include metal hydroxides (sodium hydroxide, potassium hydroxide, etc.).
 上記高極性低分子量成分(E)の含有量としては、導電性顔料ペーストの固形分100質量%を基準として、例えば1質量%以上、好ましくは1.5質量%以上、より好ましくは2質量%以上であり、例えば600質量%以下、好ましくは300質量%以下、より好ましくは50質量%以下が好適である。 The content of the highly polar, low molecular weight component (E) is, for example, 1% by mass or more, preferably 1.5% by mass or more, and more preferably 2% by mass or more, based on 100% by mass of the solid content of the conductive pigment paste, and is, for example, 600% by mass or less, preferably 300% by mass or less, and more preferably 50% by mass or less.
 また、導電性顔料(B)の固形分100質量%を基準として、下限としては、例えば1質量%以上、好ましくは2質量%以上、より好ましくは5質量%以上である。上限としては、例えば1,000質量%以下、好ましくは500質量%以下、より好ましくは50質量%以下である。
また、導電性顔料ペーストの総量100質量%を基準として、下限としては、例えば0.01質量%以上、好ましくは0.05質量%以上、より好ましくは0.1質量%以上である。上限としては、例えば10質量%以下、好ましくは5質量%以下、より好ましくは1質量%以下である。
Based on 100% by mass of the solid content of the conductive pigment (B), the lower limit is, for example, 1% by mass or more, preferably 2% by mass or more, and more preferably 5% by mass or more, and the upper limit is, for example, 1,000% by mass or less, preferably 500% by mass or less, and more preferably 50% by mass or less.
Based on 100% by mass of the total amount of the conductive pigment paste, the lower limit is, for example, 0.01% by mass or more, preferably 0.05% by mass or more, and more preferably 0.1% by mass or more, and the upper limit is, for example, 10% by mass or less, preferably 5% by mass or less, and more preferably 1% by mass or less.
 高極性低分子量成分(E)[特にアミン化合物(E1)]は、臭気が強いものが多いため、配合時や乾燥過程で作業環境が悪化する場合がある。また、一般的に高価なためコスト増になる場合がある。従って、必要最低限の含有量にする必要がある。 Many highly polar, low molecular weight components (E) [especially amine compounds (E1)] have a strong odor, which can lead to poor working conditions during mixing and drying. In addition, they are generally expensive, which can lead to increased costs. Therefore, it is necessary to keep the content at the minimum necessary.
 また、溶媒(C)と高極性低分子量成分(E)の含有比率としては、溶媒(C)と高極性低分子量成分(E)の質量比で、通常100/0.01~100/10の範囲内であり、好ましくは100/0.02~100/7の範囲内であり、より好ましくは100/0.05~100/5の範囲内であり、より好ましくは100/0.1~100/4の範囲内であることが好適である。 The content ratio of the solvent (C) to the highly polar, low molecular weight component (E) is usually within the range of 100/0.01 to 100/10, preferably within the range of 100/0.02 to 100/7, more preferably within the range of 100/0.05 to 100/5, and more preferably within the range of 100/0.1 to 100/4, in terms of the mass ratio of the solvent (C) to the highly polar, low molecular weight component (E).
 その他の成分
 前記導電性顔料ペーストとしては、上記の成分(A)、(B)、(C)、及び必要に応じて含むことができる(D)と成分(E)の他に、さらにその他の成分を含有することができる。
Other Components The conductive pigment paste may further contain other components in addition to the above-mentioned components (A), (B), and (C), and the components (D) and (E) which may be included as necessary.
 その他の成分としては、例えば、顔料分散樹脂(A)及びフッ素樹脂(D)以外の樹脂、中和剤、消泡剤、防腐剤、防錆剤、可塑剤、導電性顔料(B)以外の顔料等を挙げることができる。 Other components include, for example, resins other than the pigment dispersion resin (A) and the fluororesin (D), neutralizing agents, defoamers, preservatives, rust inhibitors, plasticizers, pigments other than the conductive pigment (B), etc.
 導電性顔料(B)以外の顔料としては、例えば、チタン白、亜鉛華等の白色顔料;シアニンブルー、インダスレンブルー等の青色顔料;シアニングリーン、緑青等の緑色顔料;アゾ系やキナクリドン系等の有機赤色顔料、ベンガラ等の赤色顔料;ベンツイミダゾロン系、イソインドリノン系、イソインドリン系及びキノフタロン系等の有機黄色顔料、チタンイエロー、黄鉛等の黄色顔料等が挙げられる。これらの顔料は、一種を単独で又は二種以上を組み合わせて用いることができる。これらの導電性顔料(B)以外の顔料は、導電性を大きく損なわない範囲内で色調整や膜の物性補強等の目的で使用することができ、顔料分散樹脂(A)と導電性顔料(B)と共に同時に分散してもよく、また、顔料分散樹脂(A)と導電性顔料(B)を分散してペーストを作成した後に顔料又は顔料ペーストとして混ぜてもよい。 Pigments other than the conductive pigment (B) include, for example, white pigments such as titanium white and zinc oxide; blue pigments such as cyanine blue and indanthrene blue; green pigments such as cyanine green and verdigris; organic red pigments such as azo and quinacridone, red pigments such as red iron oxide; organic yellow pigments such as benzimidazolone, isoindolinone, isoindoline and quinophthalone, and yellow pigments such as titanium yellow and yellow lead. These pigments can be used alone or in combination of two or more. These pigments other than the conductive pigment (B) can be used for purposes such as color adjustment and reinforcement of the physical properties of the film within a range that does not significantly impair the conductivity, and may be dispersed simultaneously with the pigment dispersion resin (A) and the conductive pigment (B), or may be mixed as a pigment or pigment paste after dispersing the pigment dispersion resin (A) and the conductive pigment (B) to prepare a paste.
 上記導電性顔料(B)以外の顔料の含有量としては、導電性顔料ペースト中の全顔料100質量%を基準として、10質量以下が好ましく、5質量%以下がより好ましく、1質量%以下がさらに好ましく、実質的に含有しないことが特に好ましい。 The content of pigments other than the conductive pigment (B) is preferably 10% by mass or less, more preferably 5% by mass or less, and even more preferably 1% by mass or less, based on 100% by mass of all pigments in the conductive pigment paste, and it is particularly preferable that they are substantially not contained.
 上記導電性顔料ペーストの粘度としては、顔料分散性や貯蔵安定性などの観点から、せん断速度2s-1での粘度が、例えば5,000mPa・s未満、好ましくは2,500mPa・s未満、より好ましくは1,000mPa・s未満であり、例えば10mPa・s以上、好ましくは50mPa・s以上より好ましくは100mPa・s以上である。 From the viewpoints of pigment dispersibility, storage stability, and the like, the viscosity of the conductive pigment paste at a shear rate of 2 s −1 is, for example, less than 5,000 mPa·s, preferably less than 2,500 mPa·s, and more preferably less than 1,000 mPa·s, and is, for example, 10 mPa·s or more, preferably 50 mPa·s or more, and more preferably 100 mPa·s or more.
 粘度の測定は、例えば、コーン&プレート型粘度計(HAAKE社製、商品名「Mars2」、直径35mm、2°傾斜のコーン&プレート)を用いて測定することができる。 The viscosity can be measured, for example, using a cone and plate viscometer (manufactured by HAAKE, product name "Mars2", diameter 35 mm, cone and plate inclined at 2°).
 [(リチウムイオン二次電池用)合材ペーストの製造方法]
 工程3(電極活物質の混合工程)
 本発明の製造方法においては、まず前記工程1及び工程2によって導電性顔料を有する導電性顔料ペーストが調整される。さらに工程3(電極活物質の混合工程)として、前記導電性顔料ペーストと少なくとも一種の電極活物質(F)を混合してリチウムイオン二次電池用の合材ペーストを製造することができる。
[Method of manufacturing composite paste (for lithium ion secondary batteries)]
Step 3 (electrode active material mixing step)
In the production method of the present invention, first, a conductive pigment paste containing a conductive pigment is prepared by the above-mentioned steps 1 and 2. Furthermore, in step 3 (electrode active material mixing step), the conductive pigment paste and at least one kind of electrode active material (F) are mixed to produce a composite paste for a lithium ion secondary battery.
 電極活物質(F)の固形分含有量は、合材ペーストの総量100質量%を基準として、通常10質量%以上、好ましくは20質量%以上であり、通常99質量%以下、好ましくは95質量%以下であることが、電池性能の面から好適である。
なお、前記導電性顔料ペーストでは任意成分であったフッ素樹脂(D)は、合材ペーストでは必須成分であり、必ず含有される。
フッ素樹脂(D)の固形分含有量は、合材ペーストの総量100質量%を基準として、通常0.05質量%以上、好ましくは0.1質量%以上であり、通常10質量%以下、好ましくは2質量%以下であることが、電池性能、ペースト粘度等の面から好適である。
The solid content of the electrode active material (F) is usually 10% by mass or more, preferably 20% by mass or more, based on 100% by mass of the total amount of the composite paste, and is usually 99% by mass or less, preferably 95% by mass or less, which is suitable in terms of battery performance.
The fluororesin (D), which was an optional component in the conductive pigment paste, is an essential component in the composite paste and is always contained therein.
The solid content of the fluororesin (D) is usually 0.05 mass % or more, preferably 0.1 mass % or more, based on 100 mass % of the total amount of the composite paste, and is usually 10 mass % or less, preferably 2 mass % or less, which is suitable in terms of battery performance, paste viscosity, etc.
 工程3の混合工程においては、従来公知の混合機及び分散機を用いて合材ペーストを均一に混合することができる。 In the mixing step of step 3, the composite paste can be mixed uniformly using a conventional mixer and disperser.
 上記合材ペースト固形分中の顔料分散樹脂(A)の固形分含有量は、合材ペーストの総量100質量%を基準として、通常0.01質量%以上、好ましくは0.05質量%以上であり、通常10質量%以下、好ましくは1質量%以下であることが、電池性能、ペースト粘度等の面から好適である。 The solid content of the pigment dispersion resin (A) in the solid content of the composite paste is usually 0.01% by mass or more, preferably 0.05% by mass or more, based on 100% by mass of the total amount of the composite paste, and is usually 10% by mass or less, preferably 1% by mass or less, which is suitable in terms of battery performance, paste viscosity, etc.
 本発明の合材ペーストにおいては、合材ペーストにおける貯蔵安定性(増粘抑制)の観点から、高極性低分子量成分(E)を含有しており、高極性低分子量成分(E)として、少なくとも一種のアミン化合物(E1)を含有していることが好ましい。
高極性低分子量成分(E)を導電性顔料(B)に接触させ(濡れさせ)、次いで電極活物質(F)を混合することで導電性顔料(B)と電極活物質(F)との凝集が緩和される観点から、まず導電性顔料(B)と高極性低分子量成分(E)を混合する順序を含むことが好ましい。
In the composite paste of the present invention, from the viewpoint of storage stability (suppression of thickening) in the composite paste, it contains a highly polar, low molecular weight component (E), and it is preferable that the highly polar, low molecular weight component (E) contains at least one type of amine compound (E1).
From the viewpoint of alleviating aggregation between the conductive pigment (B) and the electrode active material (F) by contacting (wetting) the highly polar, low molecular weight component (E) with the conductive pigment (B) and then mixing the electrode active material (F), it is preferable to include a sequence of first mixing the conductive pigment (B) and the highly polar, low molecular weight component (E).
 本発明の合材ペースト固形分中の導電性顔料(B)の固形分含有量は、合材ペーストの総量100質量%を基準として、通常0.01質量%以上、好ましくは0.05質量%以上、より好ましくは0.1質量%以上であり、通常30質量%以下、好ましくは10質量%以下、より好ましくは5質量%以下であることが電池性能の点から好適である。また、本発明の合材ペースト中の溶媒(C)の含有量は、合材ペーストの総量100質量%を基準として、通常1質量%以上、好ましくは4質量%以上、より好ましくは7質量%以上であり、通常90質量%以下、好ましくは70質量%以下、より好ましくは50質量%以下であることが電極乾燥効率、ペースト粘度の点から好適である。 The solid content of the conductive pigment (B) in the composite paste solids of the present invention is typically 0.01% by mass or more, preferably 0.05% by mass or more, more preferably 0.1% by mass or more, based on 100% by mass of the total composite paste, and is typically 30% by mass or less, preferably 10% by mass or less, more preferably 5% by mass or less, which is preferred in terms of battery performance. The content of the solvent (C) in the composite paste of the present invention is typically 1% by mass or more, preferably 4% by mass or more, more preferably 7% by mass or more, based on 100% by mass of the total composite paste, and is typically 90% by mass or less, preferably 70% by mass or less, more preferably 50% by mass or less, which is preferred in terms of electrode drying efficiency and paste viscosity.
 上記合材ペーストは、リチウムイオン二次電池電極用の正極又は負極用途に使用することが好適であり、好ましくは正極用途として使用することが好適である。 The above composite paste is suitable for use as a positive or negative electrode for lithium ion secondary batteries, and is preferably used as a positive electrode.
 電極活物質(F)
 前記電極活物質(F)としては、例えば、ニッケル酸リチウム(LiNiO)、マンガン酸リチウム(LiMn)、コバルト酸リチウム(LiCoO)、LiNi1/3Co1/3Mn1/3等のリチウム複合酸化物;リン酸鉄リチウム(LiFePO);ナトリウム複合酸化物;カリウム複合酸化物等が挙げられる。これらの電極活物質(F)は、一種を単独で又は二種以上を組み合わせて用いることができる。上記リン酸鉄リチウムを含有する電極活物質は、安価でありサイクル特性及びエネルギー密度が比較的良好であるため、好適に用いることができる。
Electrode active material (F)
Examples of the electrode active material (F) include lithium composite oxides such as lithium nickel oxide (LiNiO 2 ), lithium manganate (LiMn 2 O 4 ), lithium cobalt oxide (LiCoO 2 ), and LiNi 1/3 Co 1/3 Mn 1/3 O 2 ; lithium iron phosphate (LiFePO 4 ); sodium composite oxide; and potassium composite oxide. These electrode active materials (F) can be used alone or in combination of two or more. The electrode active material containing lithium iron phosphate is inexpensive and has relatively good cycle characteristics and energy density, and can therefore be used preferably.
 電極活物質の粒子径としては、通常0.5μm以上、好ましくは10.5μm以上であり、通常30μm以下、好ましくは20μm以下である。 The particle size of the electrode active material is usually 0.5 μm or more, preferably 10.5 μm or more, and usually 30 μm or less, preferably 20 μm or less.
 本発明のリチウムイオン二次電池電極用合材ペースト固形分100質量%中の電極活物質(F)の固形分含有量は、通常50質量%以上、好ましくは60質量%以上であり、かつ100質量%未満であることが、電池容量、電池抵抗等の面から好適である。 The solid content of the electrode active material (F) in the 100% by mass solids of the composite paste for lithium ion secondary battery electrodes of the present invention is usually 50% by mass or more, preferably 60% by mass or more, and is preferably less than 100% by mass in terms of battery capacity, battery resistance, etc.
 合材ペースト中に上記電極活物質(F)を含有すると、貯蔵により増粘する場合がある。その理由としては、電極活物質(F)は、粒子表面に原料由来のアルカリ金属の水酸化物(例えば、LiOH、KOH、NaOHなど)を有することになるため、酸性表面を有する導電性顔料(B)により凝集(増粘)すると考えられる。そのため、高極性低分子量成分(E)[特にアミン化合物(E1)]を一定量以上含有することにより合材ペーストの貯蔵増粘を抑制することができる。 When the composite paste contains the electrode active material (F), it may thicken during storage. The reason for this is that the electrode active material (F) has alkali metal hydroxides (e.g., LiOH, KOH, NaOH, etc.) derived from the raw materials on the particle surface, and is thought to aggregate (thicken) due to the conductive pigment (B) having an acidic surface. Therefore, by containing a certain amount or more of the highly polar low molecular weight component (E) [particularly the amine compound (E1)], it is possible to suppress the thickening of the composite paste during storage.
 また、本発明の電極活物質(F)は、その表面の少なくとも一部をカーボンナノチューブで覆った電極活物質複合体(F-1)を好適に用いることができる。
上記複合体(F-1)は、予め電極活物質(F)と、カーボンナノチューブと、必要に応じて他の成分(例えば、溶媒や分散樹脂)とを混合して得ることができ、必要に応じて混合後に乾燥工程を入れることができ、電極活物質(F)にカーボンナノチューブをより均一に吸着及び/又は定着することができる。
また、上記の通り製造した電極活物質複合体(F-1)は、カーボンナノチューブを電極活物質表面へ吸着及び/又は定着することで、電極活物質の周辺で均一な導電ネットワークを形成することができる。
前記電極活物質複合体(F-1)で用いることができるカーボンナノチューブとしては、それ自体公知のものを特に制限なく用いることができるが、前記カーボンナノチューブ(B1)で挙げたカーボンナノチューブを好適に用いることができる。
As the electrode active material (F) of the present invention, an electrode active material composite (F-1) having at least a part of its surface covered with carbon nanotubes can be suitably used.
The composite (F-1) can be obtained in advance by mixing the electrode active material (F), the carbon nanotubes, and, if necessary, other components (e.g., a solvent or a dispersion resin). If necessary, a drying step can be added after mixing, so that the carbon nanotubes can be more uniformly adsorbed and/or fixed to the electrode active material (F).
Furthermore, the electrode active material composite (F-1) produced as described above can form a uniform conductive network around the electrode active material by adsorbing and/or fixing the carbon nanotubes to the surface of the electrode active material.
As the carbon nanotubes that can be used in the electrode active material composite (F-1), any known carbon nanotubes can be used without any particular limitation, but the carbon nanotubes exemplified as the carbon nanotubes (B1) can be preferably used.
 [リチウムイオン二次電池電極]
 リチウムイオン二次電池用電極層の製法
 前述したように、リチウムイオン二次電池用電極層(電極合材層又は合材層とも呼ぶ)は、リチウムイオン二次電池用合材ペーストを正極又は負極の芯材表面(集電体)に塗布し、これを乾燥することで、電極層を製造することができるが、特に正極に用いることが好ましい。
[Lithium-ion secondary battery electrodes]
As described above, an electrode layer for a lithium ion secondary battery (also referred to as an electrode mixture layer or a mixture layer) can be produced by applying a mixture paste for a lithium ion secondary battery to a core surface (current collector) of a positive electrode or a negative electrode and drying the applied paste, and is particularly preferably used for a positive electrode.
 また、本発明の製造方法で得られた導電性顔料ペーストの用途としては、合材層(電極層)のペーストとして用いる以外に、電極芯材と合材層(電極層)との間のプライマー層(機能層、接着層ともいわれる)としても用いることができる。
リチウムイオン二次電池用合材ペーストの塗布方法は、ダイコーター等を用いたそれ自体公知の方法により行うことができる。リチウムイオン二次電池用合材ペーストの塗布量は特に限定されないが、乾燥後の合材層の厚みが、例えば0.04mm以上、好ましくは0.06mm以上であり、例えば0.30mm以下、好ましくは0.24mm以下の範囲となるように設定することができる。乾燥工程の温度としては、例えば80℃以上、好ましくは100℃以上であり、例えば250℃以下、好ましくは200℃以下の範囲内で適宜設定することができる。乾燥工程の時間としては、例えば5秒以上であり、例えば120分以下、好ましくは60分以下の範囲内で適宜設定することができる。
Furthermore, the conductive pigment paste obtained by the production method of the present invention can be used not only as a paste for a composite layer (electrode layer) but also as a primer layer (also called a functional layer or adhesive layer) between an electrode core material and a composite layer (electrode layer).
The method of applying the composite paste for lithium ion secondary batteries can be carried out by a method known per se using a die coater or the like. The amount of application of the composite paste for lithium ion secondary batteries is not particularly limited, but can be set so that the thickness of the composite layer after drying is, for example, 0.04 mm or more, preferably 0.06 mm or more, and, for example, 0.30 mm or less, preferably 0.24 mm or less. The temperature of the drying step can be appropriately set, for example, 80° C. or more, preferably 100° C. or more, and, for example, 250° C. or less, preferably 200° C. or less. The time of the drying step can be appropriately set, for example, 5 seconds or more, and, for example, 120 minutes or less, preferably 60 minutes or less.
 上記乾燥工程で溶媒(C)及び必要に応じて含有できる高極性低分子量成分(E)の全部又は一部が揮発するが、前述した通り、廃棄物削減、環境対応、及び/又はコスト削減のために、揮発した成分(C)及び成分(E)を回収・再利用することが好ましい。 In the drying step, all or part of the solvent (C) and the highly polar, low molecular weight component (E) that may be contained as needed volatilize. As mentioned above, however, in order to reduce waste, be environmentally friendly, and/or reduce costs, it is preferable to recover and reuse the volatilized components (C) and (E).
 以下に、実施例を挙げて本発明をより具体的に説明するが、本発明はこれら特定の実施形態に限定されるものではない。各例中の「部」は質量部、「%」は質量%を示す。 The present invention will be described in more detail below with reference to examples, but the present invention is not limited to these specific embodiments. In each example, "parts" refers to parts by mass and "%" refers to % by mass.
 [分散樹脂の製造]
 製造例1
 温度計、サーモスタット、撹拌装置、還流冷却器及び水分離器を備えた反応容器に、N-メチル-2-ピロリドン(注1)75部を加え、窒素気流中で120℃に加温した。120℃に達したら、下記表1に示したモノマー種(合計100部)及び2,2’-アゾビス(2-メチルブチロニトリル)2部の混合物を3時間かけて滴下した。添加終了後120℃で30分間熟成し、2,2’-アゾビス(2-メチルブチロニトリル)1部とN-メチル-2-ピロリドン(注1)20部の混合物を1時間要して滴下した。さらに120℃で1時間熟成を行った後に冷却し、N-メチル-2-ピロリドン(注1)を加えて固形分50%のアクリル樹脂(A1)を得た。極性官能基濃度は1.3mmol/gである。
[Production of Dispersion Resin]
Production Example 1
A reaction vessel equipped with a thermometer, a thermostat, a stirrer, a reflux condenser, and a water separator was charged with 75 parts of N-methyl-2-pyrrolidone (note 1) and heated to 120°C in a nitrogen stream. When the temperature reached 120°C, a mixture of the monomer species (total 100 parts) shown in Table 1 below and 2 parts of 2,2'-azobis(2-methylbutyronitrile) was added dropwise over 3 hours. After the addition was completed, the mixture was aged at 120°C for 30 minutes, and a mixture of 1 part of 2,2'-azobis(2-methylbutyronitrile) and 20 parts of N-methyl-2-pyrrolidone (note 1) was added dropwise over 1 hour. After further aging at 120°C for 1 hour, the mixture was cooled, and N-methyl-2-pyrrolidone (note 1) was added to obtain an acrylic resin (A1) with a solid content of 50%. The polar functional group concentration was 1.3 mmol/g.
(注1)N-メチル-2-ピロリドン:水分含有量500ppm(注2)、アミン含有量500ppm(注2)、再生品
(注2)水分含有量とアミン含有量は、カールフィッシャー水分率計(京都電子工業製、商品名「MKC-610」)とイオンクロマトグラフィー(島津製作所製、商品名「prominence HIC-NS」)を用いて測定した。
(Note 1) N-methyl-2-pyrrolidone: water content 500 ppm (Note 2), amine content 500 ppm (Note 2), recycled product (Note 2) The water content and amine content were measured using a Karl Fischer moisture meter (Kyoto Electronics Manufacturing Co., Ltd., product name "MKC-610") and ion chromatography (Shimadzu Corporation, product name "prominence HIC-NS").
 製造例2
 下記表1のモノマー種とする以外は製造例1と同様にして固形分50%のアクリル樹脂(A2)を得た。
尚、得られた樹脂の重量平均分子量の値を下記表1に記す。なお、表中「樹脂A1」は、アクリル樹脂(A1)を、「樹脂A2」は、アクリル樹脂(A2)を意味する。
Production Example 2
An acrylic resin (A2) having a solids content of 50% was obtained in the same manner as in Production Example 1, except that the monomer types shown in Table 1 below were used.
The weight average molecular weights of the resins obtained are shown in Table 1. In the table, "resin A1" means acrylic resin (A1), and "resin A2" means acrylic resin (A2).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 上記表1中のモノマー種の略称は下記の通りである。
・SLMA:ラウリルメタクリレート(炭素数12の炭化水素基を有する)
・BEMA:ベヘニルメタクリレート(炭素数22の炭化水素基を有する)
・St:スチレン
・DMAEMA:N,N-ジメチルアミノエチルメタクリレート。
The abbreviations for the monomer species in Table 1 above are as follows.
SLMA: Lauryl methacrylate (having a hydrocarbon group with 12 carbon atoms)
BEMA: Behenyl methacrylate (having a hydrocarbon group with 22 carbon atoms)
St: styrene DMAEMA: N,N-dimethylaminoethyl methacrylate.
 [カーボンナノチューブ(CNT)の粉砕]
 製造例3
 連続乾式ビーズミル「ドライスター SDA1」(アシザワ・ファインテック株式会社製)を用いて、ジルコニアビーズ(直径3.0mm)、充填率70%、ミル周速5.0m/sで、カーボンナノチューブ(CNT1(下記表2))を供給量0.5kg/hrで1時間粉砕し、カーボンナノチューブ粉砕品(C1-1)を得た。
粉砕前のカーボンナノチューブのG/D比をα、粉砕後のG/D比をβとした場合の、β/αは0.97であった。G/D比は後述する方法で測定した。
[Crushing of Carbon Nanotubes (CNT)]
Production Example 3
Using a continuous dry bead mill "Drystar SDA1" (manufactured by Ashizawa Finetech Co., Ltd.), carbon nanotubes (CNT1 (Table 2 below)) were pulverized for 1 hour at a supply rate of 0.5 kg/hr with zirconia beads (diameter 3.0 mm), a filling rate of 70%, and a mill peripheral speed of 5.0 m/s, to obtain a pulverized carbon nanotube product (C1-1).
When the G/D ratio of the carbon nanotubes before pulverization is α and the G/D ratio after pulverization is β, β/α was 0.97. The G/D ratio was measured by the method described below.
 製造例4
 連続乾式ビーズミル「ドライスター SDA1」(アシザワ・ファインテック株式会社製)を用いて、ジルコニアビーズ(直径3.0mm)、充填率70%、ミル周速5.0m/sで、カーボンナノチューブ(CNT1(下記表2))を供給量0.5kg/hrで2時間粉砕し、カーボンナノチューブ粉砕品(C1-2)を得た。
粉砕前のカーボンナノチューブのG/D比をα、粉砕後のG/D比をβとした場合の、β/αは0.95であった。G/D比は後述する方法で測定した。
Production Example 4
Using a continuous dry bead mill "Drystar SDA1" (manufactured by Ashizawa Finetech Co., Ltd.), carbon nanotubes (CNT1 (Table 2 below)) were pulverized for 2 hours at a supply rate of 0.5 kg/hr with zirconia beads (diameter 3.0 mm), a filling rate of 70%, and a mill peripheral speed of 5.0 m/s, to obtain a pulverized carbon nanotube product (C1-2).
When the G/D ratio of the carbon nanotubes before pulverization is α and the G/D ratio after pulverization is β, β/α was 0.95. The G/D ratio was measured by the method described below.
 製造例5
 連続乾式ビーズミル「ドライスター SDA1」(アシザワ・ファインテック株式会社製)を用いて、ジルコニアビーズ(直径3.0mm)、充填率70%、ミル周速5.0m/sで、カーボンナノチューブ(CNT2(下記表2))を供給量0.5kg/hrで2時間粉砕し、カーボンナノチューブ粉砕品(C2-2)を得た。
粉砕前のカーボンナノチューブのG/D比をα、粉砕後のG/D比をβとした場合の、β/αは0.95であった。G/D比は後述する方法で測定した。
Production Example 5
Using a continuous dry bead mill "Drystar SDA1" (manufactured by Ashizawa Finetech Co., Ltd.), carbon nanotubes (CNT2 (Table 2 below)) were pulverized for 2 hours at a supply rate of 0.5 kg/hr with zirconia beads (diameter 3.0 mm), a filling rate of 70%, and a mill peripheral speed of 5.0 m/s, to obtain a pulverized carbon nanotube product (C2-2).
When the G/D ratio of the carbon nanotubes before pulverization is α and the G/D ratio after pulverization is β, β/α was 0.95. The G/D ratio was measured by the method described below.
 製造例6
 連続乾式ビーズミル「ドライスター SDA1」(アシザワ・ファインテック株式会社製)を用いて、ジルコニアビーズ(直径3.0mm)、充填率70%、ミル周速5.0m/sで、カーボンナノチューブ(CNT3(下記表2))を供給量0.5kg/hrで1時間粉砕し、カーボンナノチューブ粉砕品(C3-1)を得た。
粉砕前のカーボンナノチューブのG/D比をα、粉砕後のG/D比をβとした場合の、β/αは0.97であった。G/D比は後述する方法で測定した。
Production Example 6
Using a continuous dry bead mill "Drystar SDA1" (manufactured by Ashizawa Finetech Co., Ltd.), carbon nanotubes (CNT3 (Table 2 below)) were pulverized for 1 hour at a supply rate of 0.5 kg/hr with zirconia beads (diameter 3.0 mm), a filling rate of 70%, and a mill peripheral speed of 5.0 m/s, to obtain a pulverized carbon nanotube product (C3-1).
When the G/D ratio of the carbon nanotubes before pulverization is α and the G/D ratio after pulverization is β, β/α was 0.97. The G/D ratio was measured by the method described below.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
上記カーボンナノチューブは全て多層カーボンナノチューブである。
なお、上記表2中のメディアン径(D50)、G/D比、比表面積(BET比表面積)、及び酸性基量は後述する方法で測定した。
The above carbon nanotubes are all multi-walled carbon nanotubes.
The median diameter (D50), G/D ratio, specific surface area (BET specific surface area), and amount of acidic groups in Table 2 were measured by the methods described below.
 [導電性顔料ペースト及び合材ペーストの製造]
 実施例1A
 容器にN-メチル-2-ピロリドン(注1)5000部、粉砕したカーボンナノチューブ(C1-2)200部、分散樹脂としてポリビニルピロリドン80部(固形分40部)(注3)、KFポリマーW#7300(クレハ社製、商品名、ポリフッ化ビニリデン、重量平均分子量100万)の樹脂溶液1800部(固形分180部)(注4)、及びアミンとしてベンジルアミン25部を撹拌しながら混合し、最後にN-メチル-2-ピロリドン(注1)で合計質量10000部となるように調整した。続いてボールミルにて4時間分散し、導電性顔料ペースト(A-1)を製造した。
(注3)ポリビニルピロリドン:重量平均分子量(Mw)12000、極性官能基濃度9.0(mmol/g)
(注4)ポリフッ化ビニリデンの樹脂溶液は、予め80℃の温度でポリフッ化ビニリデンとN-メチル-2-ピロリドン(注1)とを混合及び溶解したものであり、次いで40分かけて30℃まで冷却して樹脂溶液を得た。
[Production of conductive pigment paste and composite paste]
Example 1A
In a container, 5,000 parts of N-methyl-2-pyrrolidone (Note 1), 200 parts of crushed carbon nanotubes (C1-2), 80 parts of polyvinylpyrrolidone (40 parts solids) (Note 3) as a dispersion resin, 1,800 parts of KF Polymer W#7300 (manufactured by Kureha Corporation, trade name, polyvinylidene fluoride, weight average molecular weight 1,000,000) resin solution (180 parts solids) (Note 4), and 25 parts of benzylamine as an amine were mixed while stirring, and finally N-methyl-2-pyrrolidone (Note 1) was used to adjust the total mass to 10,000 parts. Then, the mixture was dispersed in a ball mill for 4 hours to produce a conductive pigment paste (A-1).
(Note 3) Polyvinylpyrrolidone: weight average molecular weight (Mw) 12,000, polar functional group concentration 9.0 (mmol/g)
(Note 4) The polyvinylidene fluoride resin solution was prepared by mixing and dissolving polyvinylidene fluoride and N-methyl-2-pyrrolidone (Note 1) at a temperature of 80°C, and then cooling the mixture to 30°C over 40 minutes to obtain a resin solution.
 実施例2A~10A、比較例1A~2A
 分散樹脂、カーボンナノチューブ(CNT)及びアミンを下記表3の配合とする以外は実施例1Aと同様にして導電性顔料ペースト(A-2)~(A-12)を得た。
なお、比較例では粉砕(乾式分散)していないカーボンナノチューブ[CNT1(C1-0)]を使用している。
また、後述する導電性顔料ペーストの評価試験の結果を下記表3に記す。
Examples 2A to 10A, Comparative Examples 1A to 2A
Conductive pigment pastes (A-2) to (A-12) were obtained in the same manner as in Example 1A, except that the dispersion resin, carbon nanotubes (CNT), and amine were mixed as shown in Table 3 below.
In the comparative example, carbon nanotubes [CNT1 (C1-0)] that were not pulverized (dry dispersed) were used.
The results of the evaluation test of the conductive pigment paste described below are shown in Table 3 below.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
上記表3の分散樹脂の配合量は固形分の値である。
上記表3中の分散樹脂の組成は下記の通りである。
・ポリビニルブチラール:平均重合度600、水酸基量12モル%、ブチラール基量87モル%、アセチル基量1モル%、極性官能基濃度1.0(mmol/g)
・ポリメチルメタクリレート:重量平均分子量20000、メチルメタクリレートのホモポリマー、極性官能基濃度0(mmol/g)。
上記表3中のアミンの沸点及び分子量は下記の通りである。
・ベンジルアミン:沸点185℃、分子量107
・アミノメチルプロパノール:沸点166℃、分子量89。
The blending amounts of the dispersing resin in Table 3 above are values based on solid content.
The compositions of the dispersing resins in Table 3 above are as follows:
Polyvinyl butyral: average degree of polymerization 600, amount of hydroxyl groups 12 mol%, amount of butyral groups 87 mol%, amount of acetyl groups 1 mol%, concentration of polar functional groups 1.0 (mmol/g)
Polymethyl methacrylate: weight average molecular weight 20,000, homopolymer of methyl methacrylate, polar functional group concentration 0 (mmol/g).
The boiling points and molecular weights of the amines in Table 3 above are as follows:
Benzylamine: boiling point 185°C, molecular weight 107
Aminomethylpropanol: boiling point 166°C, molecular weight 89.
 実施例1B
 上記導電性顔料ペースト(A-1)100部に対して、電極活物質粒子(組成式LiNi0.5Mn1.5で表されるスピネル構造のリチウムニッケルマンガン酸化物粒子、平均粒子径6μm、BET比表面積0.7m/g)900部をディスパーで混合して合材ペースト(B-1)を製造した。
Example 1B
100 parts of the conductive pigment paste (A-1) was mixed with 900 parts of electrode active material particles ( lithium nickel manganese oxide particles having a spinel structure represented by the composition formula LiNi0.5Mn1.5O4 , average particle diameter 6 μm, BET specific surface area 0.7 m2 /g) using a disper to produce a composite paste (B-1).
 実施例2B~10B、比較例1B~2B
 下記表4の配合とする以外は実施例1Bと同様にして合材ペースト(B-2)~(B-12)を得た。
また、後述する合材ペーストの評価試験の結果を上記表3に記す。
Examples 2B to 10B, Comparative Examples 1B to 2B
Composite pastes (B-2) to (B-12) were obtained in the same manner as in Example 1B except that the compositions were as shown in Table 4 below.
The results of the evaluation test of the composite paste, which will be described later, are shown in Table 3 above.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 <メディアン径(D50)>
 メディアン径(D50)の測定は、レーザー回折/散乱式 粒子径分布測定装置「LA-960」(HORIBA社製、商品名)を用い、下記の手順で行った。
<Median diameter (D50)>
The median diameter (D50) was measured using a laser diffraction/scattering type particle size distribution measuring device "LA-960" (trade name, manufactured by HORIBA Co., Ltd.) according to the following procedure.
 [水分散媒の調製]
 蒸留水100mLにF10MC(日本製紙社製、商品名、カルボキシメチルセルロースナトリウム(以下CMCNaとも記載))0.10gを添加し、24時間以上常温で撹拌し溶解させ、CMCNa0.1質量%の水分散媒を調製した。
[Preparation of aqueous dispersion medium]
0.10 g of F10MC (trade name, carboxymethylcellulose sodium (hereinafter also referred to as CMCNa), manufactured by Nippon Paper Industries Co., Ltd.) was added to 100 mL of distilled water and dissolved by stirring at room temperature for 24 hours or more to prepare an aqueous dispersion medium containing 0.1% by mass of CMCNa.
 [CMCNa水溶液の調製]
 蒸留水100mLにF10MC(日本製紙社製、商品名、カルボキシメチルセルロースナトリウム)2.0gを添加し、24時間以上常温で撹拌し溶解させ、CMCNa2.0質量%の水溶液を調製した。
[Preparation of CMCNa aqueous solution]
2.0 g of F10MC (trade name, sodium carboxymethylcellulose, manufactured by Nippon Paper Industries Co., Ltd.) was added to 100 mL of distilled water and dissolved by stirring at room temperature for 24 hours or more to prepare an aqueous solution of 2.0 mass % CMCNa.
 [測定前処理]
 バイアル瓶にカーボンナノチューブを6.0mg秤量し、前記水分散媒6.0gを添加した。測定前処理に超音波ホモジナイザー(マイクロテック・ニチオン社製、「SmurtNR-50」)を用いた。チップの劣化がないことを確認し、チップが処理サンプル液面から10mm以上つかるように調整した。TIME SET(照射時間)を40秒、POW SETを50%、START POWを50%(出力50%)とし、出力電力が一定であるオートパワー運転による超音波照射により均一化させカーボンナノチューブ水分散液を作製した。
[Pre-measurement processing]
6.0 mg of carbon nanotubes were weighed into a vial, and 6.0 g of the aqueous dispersion medium was added. An ultrasonic homogenizer (Microtec Nithion, "SmurtNR-50") was used for pre-measurement treatment. The tip was confirmed to be free of deterioration, and was adjusted so that the tip was immersed 10 mm or more below the surface of the sample to be treated. The time set (irradiation time) was 40 seconds, the power set was 50%, the start power was 50% (output 50%), and the carbon nanotube aqueous dispersion was homogenized by ultrasonic irradiation using auto power operation with a constant output power.
 [測定]
 前記カーボンナノチューブ水分散液を用い、カーボンナノチューブの1μm以下の分散粒子の割合及びメディアン径(D50)の測定を、以下の方法に従い実施した。
 LS 13 320 ユニバーサルリキッドモジュールの光学モデルをカーボンナノチューブ1.520、水1.333とそれぞれの屈折率に設定し、モジュ-ル洗浄終了後にCMCNa水溶液を約1.0mL充填する。
 ポンプスピード50%の条件でオフセット測定、光軸調整、バックグラウンド測定を行った後、粒度分布計に、調製したカーボンナノチューブ水分散液を粒子によってビームの外側に散乱する光のパーセントを示す相対濃度が8~12%、もしくはPIDSが40%~55%になるように加え、粒度分布計付属装置により78W、2分間超音波照射を行い(測定前処理)、30秒循環し気泡を除いた後に粒度分布測定を行った。粒度(粒子径)に対する体積%のグラフを得て、1μm以下の分散粒子の存在割合及びメディアン径(D50)を求めた。
 測定は、カーボンナノチューブ1試料につき、採取場所を変え3測定用サンプルを採取して粒度分布測定を行い、1μm以下の分散粒子の存在割合及びメディアン径(D50)をその平均値で求めた。
[measurement]
Using the carbon nanotube aqueous dispersion, the proportion of dispersed carbon nanotube particles having a size of 1 μm or less and the median diameter (D50) were measured according to the following methods.
The optical model of the LS 13 320 universal liquid module is set to a refractive index of 1.520 for carbon nanotubes and 1.333 for water, and after the module has been washed, it is filled with approximately 1.0 mL of a CMCNa aqueous solution.
After performing offset measurement, optical axis adjustment, and background measurement under the condition of 50% pump speed, the prepared carbon nanotube aqueous dispersion was added to the particle size distribution meter so that the relative concentration, which indicates the percentage of light scattered outside the beam by the particles, was 8-12%, or the PIDS was 40-55%, and ultrasonic irradiation was performed for 2 minutes at 78 W using the particle size distribution meter attachment (measurement pretreatment), and after circulating for 30 seconds to remove air bubbles, the particle size distribution was measured. A graph of particle size (particle diameter) versus volume % was obtained, and the presence ratio and median diameter (D50) of dispersed particles of 1 μm or less were determined.
For each carbon nanotube sample, three measurement samples were taken from different locations and particle size distribution was measured. The proportion of dispersed particles of 1 μm or less and the median diameter (D50) were calculated as the average value.
 <カーボンナノチューブのG/D比>
 カーボンナノチューブのラマンスペクトルは、ラマン顕微鏡(堀場製作所社製、商品名「XploRA」)にカーボンナノチューブを設置し、532nmのレーザー波長を用いて測定を行った。得られたピークの内、スペクトルで1560cm-1以上~1600cm-1以下の範囲内で最大ピーク強度をG、1310cm-1以上~1350cm-1以下の範囲内で最大ピーク強度をDとした際のG/Dの比をカーボンナノチューブのG/D比とした。
<G/D ratio of carbon nanotubes>
The Raman spectrum of the carbon nanotube was measured by placing the carbon nanotube in a Raman microscope (manufactured by Horiba, Ltd., product name "XploRA") and using a laser wavelength of 532 nm. The G/D ratio of the carbon nanotube was determined by taking the maximum peak intensity G within the range of 1560 cm -1 to 1600 cm -1 in the spectrum and the maximum peak intensity D within the range of 1310 cm -1 to 1350 cm -1 .
 <比表面積(BET比表面積)>
 カーボンナノチューブのBET比表面積は、JIS Z8830:2013に準拠し、比表面積測定装置(BERSORP-MAX(マイクロトラック・ベル株式会社))を用いて、BET比表面積(m/g)を測定した。
<Specific surface area (BET specific surface area)>
The BET specific surface area of the carbon nanotubes was measured as a BET specific surface area (m 2 /g) in accordance with JIS Z8830:2013 using a specific surface area measuring device (BERSORP-MAX (Microtrac-Bell Corporation)).
 <カーボンナノチューブ(CNT)の酸性基量>
 CNTを2g精秤し、0.01Mのベンジルアミン/n-メチルピロリドン溶液50mlに浸漬させ、超音波照射機で1時間分散処理をした。その後遠心分離を行い、上澄みをフィルターでろ過した。得られたろ液中に残存するベンジルアミンを0.1Mの塩酸で電位差滴定することにより定量分析し、得られたCNT1g当たりの酸性基量(mmol/g)を特定した。
<Amount of Acidic Groups in Carbon Nanotubes (CNTs)>
2 g of CNT was weighed out, immersed in 50 ml of 0.01 M benzylamine/n-methylpyrrolidone solution, and dispersed for 1 hour using an ultrasonic irradiator. Then, the mixture was centrifuged and the supernatant was filtered through a filter. The benzylamine remaining in the obtained filtrate was quantitatively analyzed by potentiometric titration with 0.1 M hydrochloric acid, and the amount of acidic groups (mmol/g) per 1 g of the obtained CNT was identified.
 評価試験
 上記実施例及び比較例で得られた導電性顔料ペースト及び合材ペーストの評価試験を行った。1つでも不合格の評価結果がある場合、評価としては不合格である。
Evaluation Tests Evaluation tests were carried out on the conductive pigment pastes and composite pastes obtained in the above Examples and Comparative Examples. If there was even one unacceptable evaluation result, the evaluation was deemed to be unacceptable.
 <分散性>
 得られた導電性顔料ペーストをJIS K-5600-2-5の分散度試験に準じ、ツブゲージを用いて下記基準により分散性を評価した。C及びDが不合格である。
A:顔料が10μm未満で分散されている。分散性は非常に良好である。
B:顔料が10μm以上、かつ20μm未満で分散されている。分散性はやや良好である。
C:顔料が20μm以上で分散されているが、目視で凝集物は確認できない。分散性はやや劣る。
D:目視で凝集物が確認される。分散性は非常に劣る。
<Dispersibility>
The conductive pigment paste thus obtained was subjected to the dispersion test of JIS K-5600-2-5, and the dispersibility was evaluated using a grain gauge according to the following criteria. C and D are failures.
A: The pigment is dispersed at a particle size of less than 10 μm. The dispersibility is very good.
B: The pigment is dispersed at a size of 10 μm or more and less than 20 μm. The dispersibility is somewhat good.
C: The pigment is dispersed at a particle size of 20 μm or more, but no aggregates are visible. Dispersibility is somewhat poor.
D: Aggregates are visually observed. Dispersibility is very poor.
 <体積抵抗率(導電性)>
 得られた導電性顔料ペーストに関して、さらに体積抵抗率の測定を行った。体積抵抗率の測定では、バインダーとしてポリフッ化ビニリデンの5質量%溶液(クレハ社製、商品名「KFポリマーW#7300」、溶媒:N-メチル-2-ピロリドン)を使用した。
 得られた導電性顔料ペーストの導電性顔料(B)の質量と、導電性顔料ペーストの顔料分散樹脂(A)固形分及びKFポリマーW#7300固形分を合計した質量との比が5:100となるように、導電性顔料ペーストとKFポリマーW#7300溶液を量り取り、超音波ホモジナイザーで2分間混合して測定用試料を得た。
 ガラス板(2mm×100mm×150mm)上に測定用試料をドクターブレード法にて塗工して、80℃60分で加熱乾燥し、ガラス板上に塗工膜を形成した。得られた塗工膜について膜厚を測定した後、ASPプローブ(三菱化学アナリテック社製、商品名「MCP-TP03P」)を用いて、抵抗率計(三菱化学アナリテック社製、商品名「Loresta-GP MCP-T610」)で抵抗値を測定し、得られた抵抗値に抵抗率補正係数(RCF)4.532及び塗工膜の膜厚を乗じて体積抵抗率を算出した。体積抵抗率は下記基準により評価した。Dが不合格である。
A:体積抵抗率が、7Ω・cm未満であり、導電性は良好である。
B:体積抵抗率が、7Ω・cm以上、かつ15Ω・cm未満であり、導電性は普通である。
D:体積抵抗率が、15Ω・cm以上であり、導電性は劣る。
<Volume resistivity (conductivity)>
The volume resistivity of the obtained conductive pigment paste was further measured. In the measurement of the volume resistivity, a 5 mass % solution of polyvinylidene fluoride (manufactured by Kureha Corporation, product name "KF Polymer W#7300", solvent: N-methyl-2-pyrrolidone) was used as a binder.
The conductive pigment paste and the KF Polymer W#7300 solution were weighed out so that the ratio of the mass of the conductive pigment (B) in the obtained conductive pigment paste to the total mass of the solid content of the pigment dispersion resin (A) and the solid content of the KF Polymer W#7300 in the conductive pigment paste was 5:100, and mixed for 2 minutes with an ultrasonic homogenizer to obtain a measurement sample.
A sample for measurement was applied to a glass plate (2 mm x 100 mm x 150 mm) by the doctor blade method, and the plate was dried by heating at 80 ° C. for 60 minutes to form a coating film on the glass plate. After measuring the film thickness of the coating film obtained, the resistance value was measured with an ASP probe (manufactured by Mitsubishi Chemical Analytech Co., Ltd., product name "MCP-TP03P") and a resistivity meter (manufactured by Mitsubishi Chemical Analytech Co., Ltd., product name "Loresta-GP MCP-T610"), and the obtained resistance value was multiplied by a resistivity correction factor (RCF) of 4.532 and the film thickness of the coating film to calculate the volume resistivity. The volume resistivity was evaluated according to the following criteria. D is a failure.
A: The volume resistivity is less than 7 Ω·cm and the electrical conductivity is good.
B: The volume resistivity is 7 Ω·cm or more and less than 15 Ω·cm, and the electrical conductivity is normal.
D: The volume resistivity is 15 Ω·cm or more, and the electrical conductivity is poor.
 <初期粘度>
 得られた合材ペーストをコーン&プレート型粘度計(HAAKE社製、商品名「Mars2」、直径35mm、2°傾斜のコーン&プレート)を用い、シアーレート2.0sec-1で粘度を測定し、下記基準により評価した。Dが不合格である。
A:粘度が、10Pa・s未満である。
B:粘度が、10Pa・s以上、かつ20Pa・s未満である。
C:粘度が、20Pa・s以上、かつ50Pa・s未満である。
D:粘度が、50Pa・s以上である。
<Initial viscosity>
The viscosity of the obtained composite paste was measured at a shear rate of 2.0 sec -1 using a cone and plate viscometer (manufactured by HAAKE, product name "Mars2", diameter 35 mm, cone and plate inclined at 2°) and evaluated according to the following criteria. D is failure.
A: The viscosity is less than 10 Pa·s.
B: Viscosity is 10 Pa·s or more and less than 20 Pa·s.
C: Viscosity is 20 Pa·s or more and less than 50 Pa·s.
D: Viscosity is 50 Pa·s or more.
 [電池用電極層の製造]
 応用例1C~10C
 実施例1B~10Bで得られた合材ペーストを、平均厚み15μmの長尺状アルミニウム箔(正極集電体)の両面に、片面あたりの目付量が10mg/cm(固形分基準)となるようにローラコート法で帯状に塗布して乾燥(乾燥温度180℃、10分間)することにより、正極層を形成した。この正極集電体に担持された正極活物質層(正極電極層)をロールプレス機により圧延して、性状を調整した。
得られた電極層は残存溶媒量が1%未満であり、仕上がり性などが良好な電極層であった。
 
 
[Production of battery electrode layer]
Application Examples 1C to 10C
The composite pastes obtained in Examples 1B to 10B were applied in strip form by roller coating to both sides of a long aluminum foil (positive electrode current collector) having an average thickness of 15 μm so that the basis weight per side was 10 mg/cm 2 (based on solid content), and then dried (drying temperature 180° C., 10 minutes) to form a positive electrode layer. The positive electrode active material layer (positive electrode layer) supported on this positive electrode current collector was rolled with a roll press machine to adjust the properties.
The resulting electrode layer had a residual solvent amount of less than 1% and was an electrode layer with good finish and other properties.

Claims (11)

  1.  顔料分散樹脂(A)、導電性顔料(B)、溶媒(C)、及び必要に応じて含むことができるフッ素樹脂(D)を含有する導電性顔料ペーストの製造方法であって、
    工程1:導電性顔料(B)の顔料濃度が50質量%以上の導電性顔料組成物を粉砕機により粉砕する工程、並びに、
    工程2:前記工程1で得られた導電性顔料組成物に、顔料分散樹脂(A)、溶媒(C)、及び必要に応じて含むことができるフッ素樹脂(D)を含む成分を混合して分散する工程、
    を順次行う工程を含むことを特徴とする導電性顔料ペーストの製造方法。
    A method for producing a conductive pigment paste containing a pigment dispersing resin (A), a conductive pigment (B), a solvent (C), and a fluororesin (D) which may be included as necessary, comprising the steps of:
    Step 1: A step of pulverizing a conductive pigment composition having a pigment concentration of 50 mass% or more of the conductive pigment (B) by a pulverizer; and
    Step 2: A step of mixing and dispersing the conductive pigment composition obtained in step 1 with components including a pigment dispersing resin (A), a solvent (C), and a fluororesin (D) which may be included as needed;
    A method for producing a conductive pigment paste, comprising the steps of:
  2.  導電性顔料(B)が、カーボンナノチューブ(B1)を含有することを特徴とする請求項1に記載の導電性顔料ペーストの製造方法。 The method for producing a conductive pigment paste according to claim 1, characterized in that the conductive pigment (B) contains carbon nanotubes (B1).
  3.  工程1の粉砕前後のカーボンナノチューブ(B1)において、下記(1)及び(2);
    (1)1560cm-1以上1600cm-1以下の範囲内での最大ピーク強度をG、1310cm-1以上1350cm-1以下の範囲内での最大ピーク強度をDとした際の粉砕前のカーボンナノチューブ(B1)のG/D比が、0.1以上5.0以下である、
    (2)粉砕前のカーボンナノチューブ(B1)のG/D比をα、粉砕後のカーボンナノチューブ(B1)のG/D比をβとした場合に、β/α<1.00である、
    を満たす、請求項2に記載の導電性顔料ペーストの製造方法。
    In the carbon nanotubes (B1) before and after the pulverization in step 1, the following (1) and (2) are
    (1) The G/D ratio of the carbon nanotubes (B1) before pulverization is 0.1 or more and 5.0 or less, where G is the maximum peak intensity in the range of 1560 cm -1 to 1600 cm - 1 and D is the maximum peak intensity in the range of 1310 cm-1 to 1350 cm -1 .
    (2) When the G/D ratio of the carbon nanotubes (B1) before pulverization is α and the G/D ratio of the carbon nanotubes (B1) after pulverization is β, β/α<1.00;
    The method for producing a conductive pigment paste according to claim 2 , which satisfies the above.
  4.  顔料分散樹脂(A)が、少なくとも一種の、炭素数12以上のアルキル基を有することを特徴とする請求項1に記載の導電性顔料ペーストの製造方法。 The method for producing a conductive pigment paste according to claim 1, characterized in that the pigment dispersion resin (A) has at least one alkyl group having 12 or more carbon atoms.
  5.  顔料分散樹脂(A)が、アミド基、イミド基、水酸基、カルボキシル基、スルホン酸基、リン酸基、シラノール基、シアノ基、ピロリドン基、及びアミノ基からなる群より選ばれる少なくとも一種の極性官能基を有し、かつ顔料分散樹脂(A)の極性官能基濃度が0.3mmol/g~23mmol/gであることを特徴とする請求項1に記載の導電性顔料ペーストの製造方法。 The method for producing a conductive pigment paste according to claim 1, characterized in that the pigment dispersion resin (A) has at least one polar functional group selected from the group consisting of amide groups, imide groups, hydroxyl groups, carboxyl groups, sulfonic acid groups, phosphate groups, silanol groups, cyano groups, pyrrolidone groups, and amino groups, and the concentration of the polar functional groups in the pigment dispersion resin (A) is 0.3 mmol/g to 23 mmol/g.
  6.  導電性顔料ペーストがフッ素樹脂(D)を含み、該フッ素樹脂(D)を混合する工程が、予め40℃以上の液温の溶媒と混合及び溶解する工程を含むか、若しくはフッ素樹脂(D)と溶媒とを混合してから40℃以上の温度に加温する工程を含むことを特徴とする請求項1に記載の導電性顔料ペーストの製造方法。 The method for producing a conductive pigment paste according to claim 1, characterized in that the conductive pigment paste contains a fluororesin (D), and the step of mixing the fluororesin (D) includes a step of mixing and dissolving the fluororesin with a solvent having a liquid temperature of 40°C or higher in advance, or a step of mixing the fluororesin (D) with a solvent and then heating the mixture to a temperature of 40°C or higher.
  7.  溶媒(C)が、N-メチル-2-ピロリドンであることを特徴とする請求項1に記載の導電性顔料ペーストの製造方法。 The method for producing a conductive pigment paste according to claim 1, characterized in that the solvent (C) is N-methyl-2-pyrrolidone.
  8.  前記工程2が、
    工程2-1:分散後に得られる導電性顔料ペーストに含まれる導電性顔料組成物の総量100質量%を基準として、70質量%以下の量となる導電性顔料組成物を含む成分を分散機内に添加し、分散処理を行う工程、及び
    工程2-2:所望の濃度になるまで導電性顔料組成物を分散機内に添加して分散処理を行う工程、
    を順次行う工程を含むことを特徴とする請求項1に記載の製造方法。
    The step 2 is
    Step 2-1: adding components containing a conductive pigment composition in an amount of 70 mass% or less based on 100 mass% of the total amount of the conductive pigment composition contained in the conductive pigment paste obtained after dispersion into a disperser and performing a dispersion treatment; and Step 2-2: adding the conductive pigment composition into the disperser until a desired concentration is reached, and performing a dispersion treatment.
    2. The method according to claim 1, further comprising the steps of:
  9.  請求項1~8のいずれか1項に記載された導電性顔料ペーストの製造方法で得られる導電性顔料ペーストに、さらに
    工程3:少なくとも一種の電極活物質(F)を混合する工程、
    を含むことを特徴とするリチウムイオン二次電池用合材ペーストの製造方法。
    The conductive pigment paste obtained by the method for producing a conductive pigment paste according to any one of claims 1 to 8 further comprises step 3: mixing at least one electrode active material (F);
    A method for producing a composite paste for a lithium ion secondary battery, comprising:
  10.  請求項9の製造方法で得られるリチウムイオン二次電池用合材ペーストを集電体に塗工する工程を含むリチウムイオン二次電池用電極層の製造方法。 A method for producing an electrode layer for a lithium ion secondary battery, comprising a step of applying a composite paste for a lithium ion secondary battery obtained by the method of claim 9 to a current collector.
  11.  請求項10のリチウムイオン二次電池用電極層の製造方法で得られた電極層の端部又は上層に電極絶縁部を塗工する工程を含むリチウムイオン二次電池用電極の製造方法。
     
    A method for producing an electrode for a lithium ion secondary battery, comprising the step of applying an electrode insulating portion to an end portion or an upper layer of the electrode layer obtained by the method for producing an electrode layer for a lithium ion secondary battery according to claim 10.
PCT/JP2024/011891 2023-03-27 2024-03-26 Method for manufacturing conductive pigment paste and method for manufacturing mixture paste WO2024204162A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2024519246A JP7565474B1 (en) 2023-03-27 2024-03-26 Method for producing conductive pigment paste and method for producing composite paste

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2023-049366 2023-03-27
JP2023049366 2023-03-27

Publications (1)

Publication Number Publication Date
WO2024204162A1 true WO2024204162A1 (en) 2024-10-03

Family

ID=92906513

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2024/011891 WO2024204162A1 (en) 2023-03-27 2024-03-26 Method for manufacturing conductive pigment paste and method for manufacturing mixture paste

Country Status (2)

Country Link
JP (1) JP7565474B1 (en)
WO (1) WO2024204162A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016084697A1 (en) * 2014-11-26 2016-06-02 昭和電工株式会社 Method for manufacturing electroconductive paste, and electroconductive paste
JP2016115576A (en) * 2014-12-16 2016-06-23 株式会社日立ハイテクファインシステムズ Manufacturing method of lithium ion battery, manufacturing device of lithium ion battery and lithium ion battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016084697A1 (en) * 2014-11-26 2016-06-02 昭和電工株式会社 Method for manufacturing electroconductive paste, and electroconductive paste
JP2016115576A (en) * 2014-12-16 2016-06-23 株式会社日立ハイテクファインシステムズ Manufacturing method of lithium ion battery, manufacturing device of lithium ion battery and lithium ion battery

Also Published As

Publication number Publication date
JP7565474B1 (en) 2024-10-10

Similar Documents

Publication Publication Date Title
JP6638846B1 (en) Dispersant, dispersion, electrode, and resin composition
JP7301881B2 (en) CARBON NANOTUBE DISPERSION AND METHOD FOR MANUFACTURING SAME
JP7362989B2 (en) Conductive pigment paste, composite paste, and electrodes for lithium-ion batteries
JP7098076B1 (en) Carbon material dispersion and its use
JP7381757B2 (en) Carbon material dispersion liquid
WO2022172847A1 (en) Conductive pigment paste, coating material and coating film
WO2024024162A1 (en) Carbon material dispersion and use thereof
JP6755218B2 (en) Nanocarbon dispersion
KR102632651B1 (en) carbon material dispersion
JP7565474B1 (en) Method for producing conductive pigment paste and method for producing composite paste
JP7565475B1 (en) Method for producing carbon nanotube dispersion paste and method for producing composite paste for lithium ion secondary batteries
JP7583978B1 (en) Carbon nanotube dispersion paste, composite paste, and method for manufacturing electrode layer for lithium ion secondary battery
WO2024204168A1 (en) Carbon nanotube dispersion paste, composite paste, and lithium ion secondary battery electrode layer production method
KR102718047B1 (en) Method for producing carbon material dispersion
JP7453487B1 (en) Conductive pigment paste, composite paste, and electrodes for lithium-ion batteries
WO2023048203A1 (en) Conductive pigment paste, mixture paste, and electrode for lithium ion battery
WO2024063003A1 (en) Electroconductive pigment paste, mix paste, and electrode for lithium-ion batteries
CN118103463A (en) Conductive pigment paste, clad material paste, and electrode for lithium ion battery
JP7212605B2 (en) Conductive polymer and conductive polymer composition
KR102728085B1 (en) Carbon material dispersion and its use
TW202405100A (en) Carbon material dispersion and use therefor
JP2022176926A (en) Method for producing conductive pigment paste
JP2022176927A (en) Method for producing conductive pigment paste
JP2022122391A (en) Conductive pigment paste, mixture paste and coating film