[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2024204090A1 - Composite compound for low dielectric loss resin compositions, low dielectric loss resin composition, molded body for high frequency devices, and high frequency device - Google Patents

Composite compound for low dielectric loss resin compositions, low dielectric loss resin composition, molded body for high frequency devices, and high frequency device Download PDF

Info

Publication number
WO2024204090A1
WO2024204090A1 PCT/JP2024/011750 JP2024011750W WO2024204090A1 WO 2024204090 A1 WO2024204090 A1 WO 2024204090A1 JP 2024011750 W JP2024011750 W JP 2024011750W WO 2024204090 A1 WO2024204090 A1 WO 2024204090A1
Authority
WO
WIPO (PCT)
Prior art keywords
dielectric loss
resins
low dielectric
resin composition
composite compound
Prior art date
Application number
PCT/JP2024/011750
Other languages
French (fr)
Japanese (ja)
Inventor
貴志 大野
啓伍 藤原
一孝 村上
類 長谷部
哲郎 西田
Original Assignee
ステラケミファ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ステラケミファ株式会社 filed Critical ステラケミファ株式会社
Publication of WO2024204090A1 publication Critical patent/WO2024204090A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/48Halides, with or without other cations besides aluminium
    • C01F7/50Fluorides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds

Definitions

  • the present invention relates to a composite compound for a low dielectric loss resin composition that can be used in electronic components such as circuit boards and information and communication devices, a low dielectric loss resin composition, a molded article for high-frequency devices, and high-frequency devices.
  • the loss factor is calculated by multiplying the square root of the relative dielectric constant ( ⁇ r ) and the dielectric loss tangent (tan ⁇ ).
  • Patent Document 1 discloses a thermosetting resin composition containing, as essential components, (A) a polyimide resin having a carboxyl group or an acid anhydride group and a linear hydrocarbon structure with a number average molecular weight of 300 to 6,000, (B) an epoxy resin, (C) an organic solvent with a boiling point of 100°C or higher, and spherical silica, with the aim of achieving a low relative dielectric constant and low dielectric dissipation factor in a multilayer printed circuit board. According to Patent Document 1, it is possible to form an interlayer insulating resin layer that has sufficient adhesion to a conductor and has high heat resistance, flame retardancy, low dielectric constant, low dielectric dissipation factor, and low water absorption.
  • Patent Document 2 also discloses an inorganic filler whose surface has been modified by sequentially introducing an alkyl group and an amine group, which has excellent compatibility and reactivity with epoxy resins. According to Patent Document 2, by producing an epoxy resin composition using this surface-modified inorganic filler such as silica, it is possible to impart the property of a low dielectric loss factor.
  • Patent Document 3 also discloses a surface-treated metal oxide particle material having a metal oxide particle material such as silica and a polyorganosiloxane compound that surface-treats the metal oxide particle material. According to Patent Document 3, by incorporating the surface-treated metal oxide particle material into a resin material, it is possible to suppress the viscosity of the resulting resin composition, and also to suppress the relative dielectric constant and dielectric tangent of the resin composition.
  • Patent Documents 1 to 3 still have large relative dielectric constants and dielectric loss tangents in the high frequency band, so there is a demand for further reduction in dielectric loss.
  • the present invention aims to provide a new composite compound for a low dielectric loss resin composition that reduces the relative dielectric constant and dielectric tangent in the high frequency band and is excellent at reducing dielectric loss, a low dielectric loss resin composition, a molded body for high frequency devices, and high frequency devices.
  • the composite compound for low dielectric loss resin compositions of the present invention is a composite compound for low dielectric loss resin compositions, which is characterized in that it contains a base material made of an inorganic fluoride and fluororesin particles held on at least a portion of the surface of the base material, and the dielectric tangent of the fluororesin particles is 0.002 or less at a frequency of 1 GHz or more and a temperature of 25°C.
  • the fluororesin particles are held on the surface of the inorganic fluoride base material by thermal fusion.
  • the fluororesin is polytetrafluoroethylene.
  • the inorganic fluoride is preferably MFn (wherein M is at least one selected from the group consisting of Li, Na, K, Mg, Al, Ca, Sc, Mn, Fe, Ga, Rb, Sr, Y, Zr, Sn, Ba, La, Ce, Yb, Hf and Bi, and n is an integer of 1 to 4) or K 2 SiF 6 .
  • the inorganic fluoride is AlF3 .
  • the average particle diameter D50 of the base material made of the inorganic fluoride is 0.05 ⁇ m or more and 75 ⁇ m or less.
  • the content of the fluororesin particles is 0.5% by mass or more and less than 26% by mass with respect to the total mass of the base material made of the inorganic fluoride.
  • the low dielectric loss resin composition of the present invention is characterized by containing at least a polymer resin and a composite compound for the low dielectric loss resin composition.
  • the content of the composite compound is 1% by mass or more and 85% by mass or less with respect to the total mass of the low dielectric loss resin composition.
  • the polymer resin contains at least one type of thermoplastic resin and/or at least one type of thermosetting resin.
  • the polymer resin is at least one selected from the group consisting of olefin resins, styrene resins, polyvinyl resins, methacrylic resins, thermoplastic elastomer resins, thermoplastic polyurethane resins, polyacrylonitrile resins, polylactic acid resins, polyamide polyacetal resins, polycarbonate resins, polyphenylene ether resins, polyethylene terephthalate resins, polysulfone resins, polyether sulfone resins, polyphenylene sulfide resins, polyether ether ketone resins, liquid crystal polymer resins, polyimide resins, fluororesins, phenolic resins, amine resins, furan resins, unsaturated polyester resins, epoxy resins, diallyl phthalate resins, guanamine resins, ketone resins, silicone resins, thermosetting elastomer resins, natural rubber, synthetic
  • the molded article for high-frequency devices of the present invention is a molded article for high-frequency devices used in a frequency band of 1 GHz or more, and is characterized in that it is made of a molded article containing the low dielectric loss resin composition.
  • the high-frequency device of the present invention is a high-frequency device used in a frequency band of 1 GHz or more, and is characterized by including the low dielectric loss resin composition.
  • the high-frequency device of the present invention is a high-frequency device used in a frequency band of 1 GHz or more, and is characterized by including the above-mentioned molded article for high-frequency devices.
  • a composite compound in which fluororesin particles are held on at least a portion of the surface of an inorganic fluoride as a base material can be contained in a low dielectric loss resin composition.
  • a low dielectric loss resin composition containing this composite compound in a molded body for high frequency devices or in high frequency devices attenuation of electrical signals due to transmission loss can be suppressed even when used in the high frequency band of 1 GHz or more, enabling high speed, high frequency transmission.
  • FIG. 1(a) is an SEM image of Example 1 after mixing ⁇ -AlF 3 and PTFE particles
  • FIG. 1(b) is an SEM image of a composite compound in which PTFE particles are heat-fused to the surface of ⁇ -AlF 3
  • FIG. 2(a) is an SEM image of Example 2 after mixing ⁇ -AlF 3 and PTFE particles
  • FIG. 2(b) is an SEM image of a composite compound in which PTFE particles are thermally fused to the surface of ⁇ -AlF 3
  • FIG. 3(a) is an SEM image of Example 5 after mixing ⁇ -AlF 3 and PTFE particles
  • FIG. 3(b) is an SEM image of a composite compound in which PTFE particles are heat-fused to the surface of ⁇ -AlF 3 .
  • FIG. 4(a) is an SEM image of Example 6 after mixing CaF2 and PTFE particles
  • FIG. 4(b) is an SEM image of a composite compound in which PTFE particles are heat-fused to the surface of CaF2 .
  • FIG. 5(a) is an SEM image of Example 8 after mixing ⁇ -AlF 3 and PTFE particles
  • FIG. 5(b) is an SEM image of a composite compound in which PTFE particles are thermally fused to the surface of ⁇ -AlF 3 .
  • FIG. 6(a) is an SEM image of Comparative Example 4 after mixing silica and PTFE particles
  • FIG. 6(b) is an SEM image of a composite of silica and PTFE particles.
  • FIG. 7(a) is a reference photograph showing how the slurry composition falls smoothly
  • FIG. 7(b) is a reference photograph showing how the slurry composition falls in a lump.
  • composite compound for a low dielectric loss resin composition (hereinafter referred to as the "composite compound") will be described below.
  • the composite compound of this embodiment includes a base material (hereinafter sometimes referred to as "base material") made of an inorganic fluoride, and fluororesin particles (hereinafter sometimes referred to as “fluororesin particles”) held on at least a part of the surface of the base material.
  • base material made of an inorganic fluoride
  • fluororesin particles hereinafter sometimes referred to as "fluororesin particles” held on at least a part of the surface of the base material.
  • the term “held” on at least a part of the surface of the base material means that the fluororesin particles are held (fixed) by chemical bonding to the surface of the base material, as well as the fluororesin particles are thermally melted and physically held (fixed) on the surface of the base material.
  • the composite compound is preferably in a form in which the fluororesin particles are held on the surface of the base material by thermal fusion.
  • thermal fusion means that fluororesin particles, at least the surface of which is thermally melted by heating, come into contact with a base material made of an inorganic fluoride, and the fluororesin particles are fixed to the base material at the contact surface.
  • the melting point of the fluororesin is usually lower than the melting point of the inorganic fluoride.
  • inorganic fluorides have a higher relative dielectric constant and dielectric loss tangent in the high frequency band than silica. Therefore, it is possible to hold fluororesin on the surface of silica as a base material. However, in that case, it was found that even if the relative dielectric constant value can be reduced, the dielectric loss tangent value cannot be reduced.
  • the present invention employs an inorganic fluoride from among many inorganic fillers as the base material, and further employs a fluororesin from among many polymer resins in combination as the polymer resin to be held on the surface of this base material.
  • the present invention can reduce the relative dielectric constant and dielectric tangent in the high frequency band compared to silica alone or when a fluororesin is held on the surface of the silica. It also has good affinity with polymer resins, making it possible to obtain a resin composition in which the composite compound is uniformly dispersed, and it has also been found to have excellent chemical resistance.
  • the upper limit of the dielectric constant ⁇ r0 [-] of the composite compound is preferably 6 or less, more preferably 4 or less, and particularly preferably 3 or less, at a frequency of 1 GHz or more and a temperature of 25° C.
  • the dielectric constant ⁇ r0 of the composite compound is 6 or less, the loss factor can be reduced, and the dielectric loss can be reduced.
  • the upper limit of the dielectric loss tangent tan ⁇ 0 [-] of the composite compound is preferably 0.01 or less, more preferably 0.005 or less, further preferably 0.002 or less, and particularly preferably 0.001 or less, at a frequency of 1 GHz or more and a temperature of 25° C.
  • the dielectric loss tangent tan ⁇ 0 of the composite compound is 0.01 or less, the loss factor can be reduced, and the dielectric loss can be reduced.
  • the upper limit of the loss factor of the composite compound is preferably less than 6, more preferably 4 or less, and particularly preferably 3 or less. If the loss factor is less than 6, the loss factor of the composite compound can be reduced, and the dielectric loss can be reduced.
  • the values of the dielectric constant ⁇ r0 and the dielectric tangent tan ⁇ 0 used to quantify the dielectric properties and the dielectric loss are based on values obtained by measuring the composite compound.
  • the measuring method can be appropriately selected. Specifically, for example, each of them can be measured by the method described in the examples below.
  • the loss factor can be calculated based on the following formula using the measured values of the relative dielectric constant ⁇ r0 and the dielectric tangent tan ⁇ 0 of the composite compound.
  • (Loss coefficient) ( ⁇ r0 ) 1/2 ⁇ tan ⁇ 0 ⁇ 10 3 (In the formula, ⁇ r0 [-] represents the relative dielectric constant of the composite compound obtained by measurement, and tan ⁇ 0 [-] represents the dielectric tangent thereof.)
  • the dielectric constant ⁇ r0 is a parameter that indicates the degree of polarization of the composite compound obtained by measurement, and the higher the dielectric constant, the greater the delay in the propagation of the electric signal. Therefore, in order to increase the propagation speed of the signal, a lower dielectric constant is preferable.
  • the dielectric loss tangent tan ⁇ 0 is a parameter that indicates the amount of the signal that propagates through the inside of the composite compound, which is obtained by measurement, that is lost due to conversion to heat. Therefore, the lower the dielectric loss tangent, the less the signal loss and the improved signal transmission rate.
  • the base material made of the inorganic fluoride of this embodiment is preferably a powdered solid particle.
  • the inorganic fluoride is preferably MFn (wherein M is at least one selected from the group consisting of Li, Na, K, Mg, Al, Ca, Sc, Mn, Fe, Ga, Rb, Sr, Y, Zr, Sn, Ba, La, Ce, Yb, Hf, and Bi, and n is an integer of 1 to 4) or K 2 SiF 6 (potassium silicofluoride).
  • examples of inorganic fluorides include LiF (lithium fluoride), NaF (sodium fluoride), KF (potassium fluoride), MgF2 (magnesium fluoride), AlF3 (aluminum fluoride), CaF2 (calcium fluoride), ScF3 (scandium fluoride), MnF2 (manganese fluoride), FeF3 (iron fluoride), GaF3 (gallium fluoride), RbF (rubidium fluoride), SrF2 (strontium fluoride), YF3 (yttrium fluoride), ZrF4 (zirconium fluoride), SnF2 (tin fluoride), BaF2 (barium fluoride), LaF3 (lanthanum fluoride), CeF3 (cerium fluoride), YbF2 (ytterbium difluoride), YbF 3 (ytterbium trifluoride), HfF 4 (hafnium fluoride),
  • inorganic fluorides from the viewpoint of reducing the dielectric loss of the composite compound, aluminum fluoride, calcium fluoride and magnesium fluoride are preferred, with aluminum fluoride being more preferred. Furthermore, for aluminum fluoride, those containing crystalline aluminum fluoride having an ⁇ phase as the main component are preferred. Crystalline aluminum fluoride having an ⁇ phase exhibits excellent low dielectric loss characteristics in the high frequency band of 1 GHz or more. Therefore, by using a base material containing aluminum fluoride as the main component as a constituent material of a low dielectric loss resin composition, a remarkable effect of reducing the dielectric loss of the low dielectric loss resin composition is achieved.
  • the half-width of the peak on the (012) plane of the ⁇ phase in the X-ray diffraction pattern of aluminum fluoride is 0.3° or less, preferably 0.25° or less, and more preferably 0.2°.
  • the proportion of the surface layer in the entire particle increases. Since the energy state of the particle surface is higher than that of the interior, the structural order is easily disturbed and the crystallinity decreases. Therefore, the physical and chemical properties derived from the bulk change from the original ones, and the dielectric tangent is likely to increase on the particle surface. Therefore, regardless of the average particle size of the inorganic compound, it is desirable for the crystallinity to be high.
  • the degree of crystallinity can be evaluated by the half-width of the X-ray diffraction peak of the (012) plane derived from aluminum fluoride in this embodiment.
  • the smaller the value of the half-width the higher the crystallinity and the smaller the fluctuation of the crystal structure, and therefore the smaller the dielectric tangent. Therefore, in the case of aluminum fluoride, the crystallinity can be improved by reducing the half-width of the peak on the (012) plane in the X-ray diffraction pattern.
  • the upper limit of the half-width is set to 0.3° or less, which prevents the crystallinity of aluminum fluoride from becoming too high while also preventing an increase in the dielectric tangent, thereby reducing the loss factor and enabling a reduction in dielectric loss.
  • the lower limit of the half-width is preferably 0.12° or more, and more preferably 0.15° or more.
  • the lower limit of the half-width is preferably 0.12° or more, and more preferably 0.15° or more.
  • the composite compound of this embodiment is applied to a low dielectric loss resin composition and made into a film-like or sheet-like molded product, even when it is used in electronic components such as thin-layered printed wiring boards, flexible circuit boards, and high-frequency boards, it is possible to reduce or suppress the surface unevenness and prevent the deterioration of electrical properties. In addition, it is possible to manufacture a film-like or sheet-like molded product with a sufficiently suppressed film thickness.
  • half width means full width at half maximum.
  • X-ray diffraction pattern refers to a plot line of diffraction intensity measured at each incidence angle in a two-dimensional graph with the incidence angle on the horizontal axis and the diffraction intensity on the vertical axis when a sample is measured by (powder) X-ray diffraction.
  • the (012) plane of the ⁇ phase in the X-ray diffraction pattern of aluminum fluoride is the orientation plane of the aluminum fluoride crystals, and means the (012) plane of the ⁇ phase in the X-ray diffraction pattern.
  • the peak of the diffraction intensity due to the (012) plane of the ⁇ phase of aluminum fluoride is located at a 2 ⁇ of approximately 25.3°.
  • the upper limit of the dielectric constant ⁇ r1 [ ⁇ ] of the inorganic fluoride particles is preferably 6 or less, more preferably 4 or less, and even more preferably 3 or less, at a frequency of 1 GHz or more and a temperature of 25° C.
  • the dielectric constant ⁇ r1 of the inorganic fluoride particles is 6 or less, the loss factor can be reduced, and the dielectric loss can be reduced.
  • the upper limit of the dielectric loss tangent tan ⁇ 1 [-] of the inorganic fluoride particles is preferably 0.008 or less, more preferably 0.005 or less, further preferably 0.002 or less, and particularly preferably 0.001 or less, at a frequency of 1 GHz or more and a temperature of 25° C.
  • the dielectric loss tangent tan ⁇ 1 of the inorganic fluoride particles is 0.008 or less, the loss factor can be reduced, and the dielectric loss can be reduced.
  • the upper limit of the loss factor of the inorganic fluoride particles is preferably less than 6, more preferably 4 or less, and even more preferably 3 or less. If the loss factor is less than 6, the loss factor of the low dielectric loss resin composition can be reduced, and the dielectric loss can be reduced.
  • the values of the relative dielectric constant ⁇ r1 and the dielectric tangent tan ⁇ 1 used to quantify the dielectric properties and the dielectric loss are based on values obtained by measuring inorganic fluoride particles made of powder.
  • the measuring method can be appropriately selected. Specifically, for example, each of them can be measured by the method described in the examples below.
  • the loss factor can be calculated based on the following formula using the measured values of the relative dielectric constant ⁇ r1 and the dielectric tangent tan ⁇ 1 of the inorganic fluoride particles made of powder.
  • (Loss coefficient) ( ⁇ r1 ) 1/2 ⁇ tan ⁇ 1 ⁇ 10 3
  • ⁇ r1 [-] represents the relative dielectric constant of the inorganic fluoride particles made of powder obtained by measurement
  • tan ⁇ 1 [-] represents the dielectric tangent thereof.
  • the dielectric constant ⁇ r1 is a parameter indicating the degree of polarization of the inorganic fluoride particles obtained by measurement, and the higher the dielectric constant, the greater the delay in the propagation of the electric signal. Therefore, in order to increase the propagation speed of the signal, a lower dielectric constant is preferable.
  • the dielectric loss tangent tan ⁇ 1 is a parameter indicating the amount of the signal propagating inside the inorganic fluoride particles that is lost due to conversion to heat, obtained by measurement. Therefore, the lower the dielectric loss tangent, the less the signal loss and the improved signal transmission rate.
  • the average particle diameter D50 of the inorganic fluoride particles is not particularly limited, and can be appropriately set according to, for example, the shape of the molded product containing the low dielectric loss resin composition, such as the size and thickness, and the adjustment of the fluidity of the material containing the inorganic fluoride particles in the preparation of the low dielectric loss resin composition.
  • the upper limit of the average particle diameter D50 of the inorganic fluoride particles is preferably 75 ⁇ m or less, more preferably 50 ⁇ m or less, even more preferably 10 ⁇ m or less, and particularly preferably 1 ⁇ m or less.
  • the lower limit of the average particle diameter D50 of the inorganic fluoride particles is preferably 0.05 ⁇ m or more, more preferably 0.075 ⁇ m or more, and even more preferably 0.1 ⁇ m or more. If the average particle diameter D50 of the inorganic fluoride particles is too large, it becomes difficult to make the surface of the molded product flat when applied to a film-like or sheet-like molded product. As a result, for example, when forming a laminate, the electrical properties of the laminate may be impaired due to the unevenness of the molded product surface.
  • the average particle diameter D50 of the inorganic fluoride particles is too small, it becomes difficult to mix the composite compound uniformly with the polymer resin, and the viscosity of the mixture may increase to such an extent that it becomes difficult to mold the low dielectric loss resin composition.
  • the average particle diameter D50 of the inorganic fluoride particles is preferably set to 1/5 or less of the thickness of the molded product within the above numerical range, and more preferably set to 1/10 or less.
  • the average particle diameter D50 of the inorganic fluoride particles is preferably 10 ⁇ m or less, more preferably 2 ⁇ m or less, and even more preferably 1 ⁇ m or less.
  • the average particle diameter D50 of inorganic fluoride particles is a value obtained by measurement using a laser diffraction/scattering method, for example, using a Microtrac MT3300EXII (product name: manufactured by Nikkiso Co., Ltd.).
  • the oxygen content of the inorganic fluoride particles is preferably 2% by mass or less, more preferably 1.5% by mass or less, and even more preferably 1% by mass or less, based on the total mass of the inorganic fluoride particles.
  • the content of oxygen-atom-containing components e.g., surface hydroxyl groups, adsorbed moisture, and oxides and oxyfluorides as impurities
  • the content of oxygen-atom-containing components e.g., surface hydroxyl groups, adsorbed moisture, and oxides and oxyfluorides as impurities
  • the crystallinity of the inorganic fluoride particles can be improved.
  • the insulating properties of the inorganic fluoride particles can be improved. Furthermore, by reducing hydroxyl groups and adsorbed moisture, which have high polarizability, as oxygen-atom-containing components, the deterioration of the dielectric properties can be suppressed.
  • the oxygen content of inorganic fluoride particles can be measured, for example, using an X-ray fluorescence analyzer (X-ray Fluorescence, product name: ZSX Primus II, manufactured by Rigaku Corporation).
  • X-ray Fluorescence product name: ZSX Primus II, manufactured by Rigaku Corporation.
  • the shape of the inorganic fluoride particles is not particularly limited, and may be appropriately selected, for example, taking into consideration the fluidity of the mixture when mixed with fluororesin particles in producing a composite compound, or the fluidity of the mixture when the composite compound is mixed with a polymer resin.
  • the shape may be appropriately selected depending on the purpose, such as controlling the mechanical strength, thermal conductivity, and gas diffusivity of a molded product containing a low dielectric loss resin composition.
  • the mass reduction after heat treatment at 400°C or more is preferably 2% by mass or less, more preferably 1.5% by mass or less, and even more preferably 1% by mass or less, based on the mass of the inorganic fluoride particles before heat treatment.
  • the mass reduction after heat treatment at 400°C or more is preferably 2% by mass or less, more preferably 1.5% by mass or less, and even more preferably 1% by mass or less, based on the mass of the inorganic fluoride particles before heat treatment.
  • the method for reducing the mass reduction after the heat treatment to 2% by mass or less is not particularly limited.
  • a method of removing or reducing materials with high thermal decomposition temperatures contained in the inorganic fluoride particles, materials that do not undergo a phase change when heated, and impurities that cause mass reduction during the synthesis of the inorganic fluoride particles by performing heat treatment or chemical treatment in advance can be mentioned.
  • the fluororesin particles of this embodiment may be held on at least a part of the base material surface.
  • the fluororesin particles are held on a part of the base material surface, the Lewis acid sites are exposed on the base material surface where the fluororesin particles are not held.
  • fluororesins do not have good compatibility with polymer resins, but by preventing a part of the base material surface from being covered with fluororesin particles, the affinity of the composite compound to the polymer resin (details will be described later) in the low dielectric loss resin composition is well maintained, and the dispersibility in the polymer resin is prevented from decreasing.
  • the amount of fluororesin particles held is large, for example, when the fluororesin particles are held on the entire surface of the base material, the dielectric loss can be further reduced.
  • the fluororesin particles are not particularly limited, and examples include those made of polytetrafluoroethylene (PTFE), tetrafluoroethylene perfluorovinyl ether copolymer (PFA), and tetrafluoroethylene hexafluoropropylene copolymer (FEP). Of these fluororesins, PTFE is preferred from the viewpoint of reducing dielectric loss.
  • PTFE polytetrafluoroethylene
  • PFA tetrafluoroethylene perfluorovinyl ether copolymer
  • FEP tetrafluoroethylene hexafluoropropylene copolymer
  • the average particle diameter d50 of the fluororesin particles is preferably in the range of 1/10 to 1/2 of the average particle diameter D50 of the inorganic fluoride particles.
  • the average particle diameter d50 of the fluororesin particles 1/10 or more of the average particle diameter D50 of the inorganic fluoride particles, the base material can be entirely covered.
  • the average particle diameter d50 of the fluororesin particles 1/2 or less of the average particle diameter D50 of the inorganic fluoride particles self-fusion can be prevented.
  • the average particle diameter d50 of the fluororesin particles is a value obtained by measurement using a laser diffraction/scattering method, for example, using a Microtrac MT3300EXII (product name: manufactured by Nikkiso Co., Ltd.).
  • the shape of the fluororesin particles before they are held in the base material is not particularly limited, and any shape can be used, such as spherical, approximately spherical, elliptical, rod-shaped, needle-shaped, spindle-shaped, plate-shaped, etc.
  • the particles may contain fluororesin particles of the same shape, or may contain fluororesin particles of two or more different shapes.
  • the upper limit of the relative dielectric constant ⁇ r2 [-] of the fluororesin particles is preferably 3.5 or less, more preferably 3.0 or less, and even more preferably 2.9 or less, at a frequency of 1 GHz or more and a temperature of 25° C.
  • the relative dielectric constant ⁇ r2 of the fluororesin particles is 3.5 or less, the loss factor of the composite compound and the low dielectric loss resin composition containing the composite compound can be reduced, and the dielectric loss can be reduced.
  • the fluororesin particles used have a dielectric loss tangent tan ⁇ 2 [-] of 0.002 or less, preferably 0.001 or less, at a frequency of 1 GHz or more and a temperature of 25° C.
  • the dielectric loss tangent tan ⁇ 2 of the fluororesin particles is 0.002 or less, the dielectric loss tangent of the composite compound and the low dielectric loss resin composition containing the composite compound can be reduced, thereby further reducing the dielectric loss.
  • the upper limit of the loss factor of the fluororesin particles is preferably 6 or less, more preferably 4 or less, and even more preferably 3 or less. If the loss factor is 6 or less, the loss factor of the composite compound and the low dielectric loss resin composition can be reduced, and the dielectric loss can be further reduced.
  • the values of the relative dielectric constant ⁇ r2 and the dielectric tangent tan ⁇ 2 used to quantify the dielectric properties and dielectric loss are based on values obtained by measuring the fluororesin particles.
  • the measurement method can be appropriately selected. Specifically, for example, each of them can be measured by the method described in the examples below.
  • the loss factor can be calculated based on the following formula using the measured values of the relative dielectric constant ⁇ r2 and the dielectric tangent tan ⁇ 2 of the fluororesin particles.
  • (Loss coefficient) ( ⁇ r2 ) 1/2 ⁇ tan ⁇ 2 ⁇ 10 3 (In the formula, ⁇ r2 [-] represents the relative dielectric constant of the fluororesin particles obtained by measurement, and tan ⁇ 2 [-] represents the dielectric tangent.)
  • the dielectric constant ⁇ r2 is a parameter that indicates the degree of polarization of the fluororesin particles obtained by measurement, and the higher the dielectric constant, the greater the delay in the propagation of the electric signal. Therefore, in order to increase the signal propagation speed, a lower dielectric constant is preferable.
  • the dielectric loss tangent tan ⁇ 2 is a parameter that indicates the amount of a signal that propagates inside the fluororesin particles, obtained by measurement, that is lost due to conversion to heat. Therefore, the lower the dielectric loss tangent, the less the signal loss and the improved signal transmission rate.
  • the method for producing the composite compound of the present embodiment is not particularly limited, and a known method can be adopted.
  • the method when producing a composite compound in which fluororesin particles are thermally fused to the surface of a base material, the method includes at least a mixing step of mixing fluororesin particles and an inorganic fluoride base material, a heating step of heating the mixture of fluororesin particles and an inorganic fluoride base material, and a cooling step of cooling the mixture after heating (composite treatment).
  • the heating method in the heating step is not particularly limited, and any known method can be used.
  • the heating temperature is not particularly limited as long as it is equal to or higher than the melting point and lower than the boiling point of the fluororesin particles, and can be set appropriately depending on the type of fluororesin, etc.
  • the heating time is also not particularly limited, and can be set appropriately depending on the heating temperature and the type of material of the fluororesin particles, etc.
  • the cooling method in the cooling step is not particularly limited, and can be performed by, for example, natural cooling or rapid cooling.
  • the surface of the inorganic fluoride base material of this embodiment may be chemically modified by introducing functional groups such as hydroxyl groups, epoxy groups, carboxyl groups, carbonyl groups, amino groups, perfluoroalkane groups, ether groups, and ester groups, within the scope of not impairing the effects of the present invention.
  • the surface of the fluororesin particles of this embodiment may also be chemically modified by introducing functional groups such as hydroxyl groups, epoxy groups, carboxyl groups, carbonyl groups, amino groups, perfluoroalkane groups, ether groups, and ester groups, within the scope of not impairing the effects of the present invention.
  • the inorganic fluoride and fluororesin particles can be any combination of the materials exemplified above, but it is preferable to use fluororesin particles that have at least one value smaller than that of the inorganic fluoride, among the relative dielectric constant, dielectric tangent, and loss factor. This makes it possible to further reduce the dielectric loss compared to the case where only inorganic filler consisting of inorganic fluoride particles is used in the low dielectric loss resin composition.
  • slurry composition for the low dielectric loss resin composition of this embodiment (hereinafter referred to as "slurry composition") will be described below.
  • the slurry composition of this embodiment contains at least the above-mentioned complex compound and a solvent.
  • the slurry composition is a dispersion in which the complex compound is dispersed (including floating and suspended) in a solvent.
  • the term "dispersion” refers to a state in which the complex compound is dispersed as a dispersoid in a solvent that is a dispersion medium.
  • the term "dispersion” does not include a solid colloid (organogel) in which a dispersoid is dispersed in a solid dispersion medium and fluidity is lost.
  • the lower limit of the content of the complex compound is preferably 1 mass% or more, more preferably 10 mass% or more, and even more preferably 20 mass% or more, based on the total mass of the slurry composition.
  • the upper limit of the content of the complex compound is preferably 85 mass% or less, more preferably 82 mass% or less, and even more preferably 79 mass% or less, based on the total mass of the slurry composition.
  • Straight-chain alkanes are preferred as the solvent, and straight-chain alkanes having 10 or more carbon atoms and 16 or less carbon atoms are more preferred. More specifically, straight-chain alkanes include n-decane, n-tetradecane, and n-hexadecane. These solvents can be used alone or in combination of two or more. Among these straight-chain alkanes, n-hexadecane is particularly preferred because it can exist as a liquid at room temperature (for example, 5°C to 35°C), has low polarity among straight-chain alkanes, and is difficult to dissolve in water due to its low polarity.
  • the lower limit of the solvent content is preferably 1 mass% or more, more preferably 5 mass% or more, and even more preferably 15 mass% or more, based on the total mass of the slurry composition.
  • the upper limit of the solvent content is preferably 99 mass% or less, more preferably 90 mass% or less, and even more preferably 80 mass% or less, based on the total mass of the slurry composition.
  • the upper limit of the dielectric constant ⁇ r3 [-] of the slurry composition is preferably 6 or less, more preferably 4 or less, and even more preferably 3 or less, at a frequency of 1 GHz or more and a temperature of 25° C.
  • the dielectric constant ⁇ r3 of the slurry composition is 6 or less, the loss factor can be reduced, and the dielectric loss can be reduced.
  • the upper limit of the dielectric loss tangent tan ⁇ 3 [-] of the slurry composition is preferably 0.005 or less, more preferably 0.002 or less, and particularly preferably 0.001 or less, at a frequency of 1 GHz or more and a temperature of 25° C.
  • the dielectric loss tangent tan ⁇ 3 of the slurry composition is 0.005 or less, the loss factor can be reduced, and the dielectric loss can be reduced.
  • the upper limit of the loss factor of the slurry composition is preferably less than 6, more preferably 4 or less, and even more preferably 3 or less. If the loss factor is less than 6, the loss factor of the slurry composition can be reduced, and the dielectric loss can be reduced.
  • the loss factor can be calculated based on the following formula using the measured values of the relative dielectric constant ⁇ r3 and the dielectric tangent tan ⁇ 3 of the slurry composition.
  • (Loss coefficient) ( ⁇ r3 ) 1/2 ⁇ tan ⁇ 3 ⁇ 10 3 (In the formula, ⁇ r3 [-] represents the relative dielectric constant of the slurry composition obtained by measurement, and tan ⁇ 3 [-] represents the dielectric tangent thereof.)
  • the dielectric constant ⁇ r3 is a parameter indicating the degree of polarization of the slurry composition obtained by measurement, and the higher the dielectric constant, the greater the delay in the propagation of the electric signal. Therefore, in order to increase the signal propagation speed, a lower dielectric constant is preferable.
  • the dielectric loss tangent tan ⁇ 3 is a parameter indicating the amount of the signal propagating inside the slurry composition, which is obtained by measurement, that is lost due to conversion to heat. Therefore, the lower the dielectric loss tangent, the less the signal loss and the improved signal transmission rate.
  • the slurry composition of this embodiment can contain other additives to the extent that it does not contradict the object of the present invention.
  • the other additives are not particularly limited, and examples thereof include ultraviolet protection agents, colorants, flame retardants, stabilizers, and dispersants.
  • the content of the other additives is not particularly limited, and can be set appropriately depending on the application, purpose, etc.
  • the method for producing the slurry composition of this embodiment is not particularly limited, and the slurry composition of this embodiment can be produced by adding a predetermined amount of a complex compound to a solvent and stirring for a predetermined period of time.
  • the low dielectric loss resin composition of the present embodiment contains at least the above-mentioned composite compound and a polymer resin.
  • the lower limit of the content of the complex compound is preferably 1 mass% or more, more preferably 10 mass% or more, and even more preferably 20 mass% or more, based on the total mass of the low dielectric loss resin composition.
  • the upper limit of the content of the complex compound is preferably 85 mass% or less, more preferably 82 mass% or less, and even more preferably 79 mass% or less, based on the total mass of the low dielectric loss resin composition.
  • the lower limit of the content of the complex compound is 1 mass% or more, the loss coefficient of the low dielectric loss resin composition becomes small, and the dielectric loss is reduced.
  • the upper limit of the content of the complex compound is 85 mass% or less, deterioration of physical strength such as brittleness can be prevented, and it is possible to improve hardness, reduce the thermal expansion coefficient, and improve weather resistance.
  • the polymer resin preferably contains at least one type of thermoplastic resin and/or at least one type of thermosetting resin.
  • the polymer resins include, for example, olefin-based resins such as polyethylene resin and polypropylene resin; styrene-based resins such as polystyrene resin and acrylonitrile butadiene styrene resin (ABS resin); polyvinyl resins such as polyvinyl acetate resin, polyvinyl chloride resin, polyvinyl alcohol resin and polyvinylidene chloride resin; methacrylic resin; thermoplastic elastomer resin; thermoplastic polyurethane resin; polyacrylonitrile resin; polylactic acid resin; polyamide polyacetal resin; polycarbonate resin; polyphenylene ether resin; polyethylene terephthalate resin; polysulfone resin; polyether sulfone resin; polyphenylene sulfide resin; polyether ether ketone resin; liquid crystal polymer resin; polyimide resin.
  • olefin-based resins such as polyethylene resin and polypropylene resin
  • polymer resin examples include fluororesins such as polytetrafluoroethylene resin (PTFE), copolymers of polytetrafluoroethylene and perfluoroalkoxyethylene (PFA), polychlorotrifluoroethylene resin (PCTFE), tetrafluoroethylene-hexafluoropropylene copolymer (FEP) and tetrafluoroethylene-ethylene copolymer (ETFE); phenol resins; amine resins such as urea resins and melamine resins; furan resins; unsaturated polyester resins; epoxy resins; diallyl phthalate resins; guanamine resins; ketone resins; silicone resins; thermosetting elastomer resins; natural rubbers; synthetic rubbers such as neoprene rubber, styrene butadiene rubber, isoprene rubber, butyl rubber and urethane rubber; and modified versions thereof.
  • fluororesins such as polytetrafluor
  • polymer resins can be used alone or in combination of two or more types depending on the processability and application of the low dielectric loss resin composition.
  • the processability can be improved by increasing the fluidity.
  • the degree of polymerization of the polymer resin is not particularly limited and can be selected appropriately depending on the application of the low dielectric loss resin composition.
  • the polymer resin content is preferably 15% by mass or more and 99% by mass or less, more preferably 18% by mass or more and 90% by mass or less, and even more preferably 21% by mass or more and 80% by mass or less, based on the total mass of the low dielectric loss resin composition.
  • the polymer resin content 15% by mass or more, the properties of the polymer resin, such as adhesion and water resistance, can be fully expressed.
  • the polymer resin content 99% by mass or less the dielectric loss of the resin composition can be reduced by adding a composite compound while maintaining the properties of the polymer resin.
  • the upper limit of the dielectric constant ⁇ r4 [-] of the low dielectric loss resin composition is preferably 6 or less, more preferably 4 or less, and particularly preferably 3 or less, at a frequency of 1 GHz or more and a temperature of 25° C.
  • the dielectric constant ⁇ r4 of the low dielectric loss resin composition is 6 or less, the loss factor can be reduced, and the dielectric loss can be reduced.
  • the upper limit of the dielectric loss tangent tan ⁇ 4 [-] of the low dielectric loss resin composition is preferably 0.02 or less, more preferably 0.005 or less, even more preferably 0.002 or less, and particularly preferably 0.001 or less, at a frequency of 1 GHz or more and a temperature of 25° C.
  • the dielectric loss tangent tan ⁇ 4 of the low dielectric loss resin composition is 0.02 or less, the loss factor can be reduced, and the dielectric loss can be reduced.
  • the upper limit of the loss factor of the low dielectric loss resin composition is preferably less than 6, more preferably 4 or less, and particularly preferably 3 or less. If the loss factor is less than 6, the loss factor of the low dielectric loss resin composition can be reduced, and the dielectric loss can be reduced.
  • the values of the relative dielectric constant ⁇ r4 and the dielectric tangent tan ⁇ 4 used to quantify the dielectric properties and dielectric loss are based on the values obtained by measuring the low dielectric loss resin composition.
  • the measurement method can be appropriately selected. Specifically, for example, each of them can be measured by the method described in the examples below.
  • the loss factor can be calculated based on the following formula using the measured values of the relative dielectric constant ⁇ r4 and the dielectric tangent tan ⁇ 4 of the low dielectric loss resin composition.
  • (Loss coefficient) ( ⁇ r4 ) 1/2 ⁇ tan ⁇ 4 ⁇ 10 3 (In the formula, ⁇ r4 [-] represents the relative dielectric constant of the low dielectric loss resin composition obtained by measurement, and tan ⁇ 4 [-] represents the dielectric tangent thereof.)
  • the relative dielectric constant ⁇ r4 is a parameter that indicates the degree of polarization of the low dielectric loss resin composition obtained by measurement, and the higher the relative dielectric constant, the greater the propagation delay of the electric signal. Therefore, in order to increase the propagation speed of the signal, a lower relative dielectric constant is preferable.
  • the dielectric loss tangent tan ⁇ 4 is a parameter that indicates the amount of the signal propagating inside the low dielectric loss resin composition that is lost due to conversion to heat, obtained by measurement. Therefore, the lower the dielectric loss tangent, the less the signal loss and the improved signal transmission rate.
  • the low dielectric loss resin composition of the present embodiment can be produced by adding the composite compound and any other additives to a polymer resin and uniformly mixing or kneading them.
  • the low dielectric loss resin composition can be produced by adding and dispersing the composite compound and any other additives to a solution (e.g., varnish or dispersion liquid) in which the polymer resin or a monomer that forms the polymer resin is dissolved or dispersed in an organic solvent.
  • the low dielectric loss resin composition of this embodiment may contain impurities to the extent that it does not contradict the object of the present invention.
  • impurities include metal impurities containing elements other than those constituting the inorganic fluoride, and metal oxides.
  • the content of the impurities is preferably 100 ppm or less, more preferably 10 ppm or less, based on the total mass of the low dielectric loss resin composition.
  • the low dielectric loss resin composition of this embodiment can contain other additives to the extent that it does not contradict the object of the present invention.
  • the other additives are not particularly limited, and examples thereof include hardeners, lubricants, crystal nucleating agents, ultraviolet protection agents, colorants, flame retardants, stabilizers, plasticizers, reinforcing agents, and dispersants.
  • the content of the other additives is not particularly limited, and can be set appropriately depending on the application, purpose, etc.
  • the low dielectric loss resin composition of this embodiment can be used as a resin composition for insulating films (solder resist), a resin composition for semiconductor encapsulation, an adhesive, a paint, a coating material for wiring for power supplies and communications, etc.
  • the molded article for high-frequency devices (hereinafter referred to as "molded article") of this embodiment is made of a molded article containing a low dielectric loss resin composition.
  • the molded body can be manufactured, for example, by using a known kneader and extruder.
  • a known kneader and extruder for example, an enclosed pressure kneader or an open roll can be used.
  • the molded body can be manufactured using the low dielectric loss resin composition material.
  • a pellet-shaped low dielectric loss resin composition material is manufactured using an extruder, a molded body can be manufactured using an injection molding machine.
  • the polymer resin is mixed with the composite compound and other additives using a molding machine such as an extruder, the number of steps can be reduced, and production efficiency can be improved.
  • the composite compound may be appropriately dried before being mixed with the polymer resin.
  • a sheet-shaped molded product when manufacturing a sheet-shaped molded product, it can be manufactured by a known method. For example, a complex compound and any other additives are added to a varnish tank filled with a solution containing a polymer resin (resin varnish) and uniformly dispersed, and the dispersion is heated under specified temperature conditions. The cured product produced by heating is stretched into a sheet, thereby manufacturing a sheet-shaped molded product.
  • a complex compound and any other additives are added to a varnish tank filled with a solution containing a polymer resin (resin varnish) and uniformly dispersed, and the dispersion is heated under specified temperature conditions.
  • the cured product produced by heating is stretched into a sheet, thereby manufacturing a sheet-shaped molded product.
  • a sheet-like substrate such as a glass cloth or a bonding sheet is passed through a tank of a dispersion liquid containing a polymer resin, a composite compound, and any other additives while immersed in the dispersion liquid, thereby impregnating the sheet-like substrate with the dispersion liquid.
  • the sheet impregnated with the dispersion liquid is then dried to produce an impregnated sheet impregnated with the low dielectric loss resin composition. It is also possible to produce a laminate in which multiple layers of the low dielectric loss resin composition are laminated by passing the sheet-like substrate through the tank of the dispersion liquid multiple times.
  • the high-frequency device includes a low dielectric loss resin composition or includes a molded article of a low dielectric loss resin composition.
  • the high-frequency device of this embodiment is used for information processing and information communication that are performed by electronically exchanging signals.
  • the high-frequency device of this embodiment is used in high-frequency bands where the frequency band of radio waves and signals used during communication is 1 GHz or higher, and more preferably 10 GHz or higher.
  • the high-frequency device of this embodiment also includes high-frequency electronic components used in such high-frequency bands.
  • high-frequency devices include housings for information processing and information communication devices, circuit boards, printed wiring boards, transmission lines, high-frequency electronic components such as capacitors and inductors, and ceiling and wall materials for rooms in which high-frequency devices are installed.
  • high-frequency devices equipped with insulating films and semiconductor sealing resins formed from a low dielectric loss resin composition, and wiring coated with a low dielectric loss resin composition as a coating material are also included in the high-frequency devices of this embodiment.
  • Example 1 ⁇ Inorganic fluorides> First, ⁇ -AlF 3 (manufactured by Stella Chemifa Co., Ltd.) was prepared as an inorganic fluoride, and the half-width of the peak on the (012) plane in the X-ray diffraction pattern of this powdered ⁇ -AlF 3 was measured. For the measurement, an X-ray diffractometer (product name: RINT-ULTIMA, manufactured by Rigaku Co., Ltd.) was used.
  • the average particle diameter D50 of ⁇ -AlF 3 was measured.
  • 0.1 to 0.3 g of powdered ⁇ -AlF 3 was added to 200 mL of circulating solvent (water) flowing in a particle size distribution measuring device (product name: Microtrac MT3300EXII, manufactured by Nikkiso Co., Ltd.).
  • a particle size distribution measuring device product name: Microtrac MT3300EXII, manufactured by Nikkiso Co., Ltd.
  • the average particle diameter at which the cumulative volume was 50% was calculated as D50.
  • the average particle diameter D50 of ⁇ -AlF 3 was 2 ⁇ m.
  • the powder of ⁇ -AlF 3 was filled into a quartz tube, and the relative dielectric constant and dielectric loss tangent were measured by a cavity resonator method in the 10 GHz frequency range under an environmental atmosphere with a temperature of 25°C and a relative humidity of 40%.
  • a vector network analyzer manufactured by Anritsu Co., Ltd., product name: MS46122B was used for the measurement.
  • the measured values of the relative dielectric constant and dielectric loss tangent of the quartz tube filled with ⁇ -AlF 3 were corrected for voids using the bulk density and true density of ⁇ -AlF 3 and the amount of ⁇ -AlF 3 filled relative to the filling volume, and the relative dielectric constant ⁇ r1 [-] and dielectric loss tangent tan ⁇ 1 [-] of ⁇ -AlF 3 were calculated.
  • the relative dielectric constant ⁇ r1 was 3.2 [-] and the dielectric loss tangent tan ⁇ 1 was 0.0027 [-].
  • PTFE particles having an average particle diameter d50 in the range of 200 nm to 500 nm, a relative dielectric constant ⁇ r2 of 3.0 [-] or less, and a dielectric loss tangent tan ⁇ 2 of 0.002 [-] or less were used.
  • Example 2 In this embodiment, the content of ⁇ - AlF3 was changed to 90 parts by mass, and the content of PTFE particles was changed to 10 parts by mass.Other than that, the composite compound according to this embodiment was prepared in the same manner as in embodiment 1.
  • Comparative Example 1 100 parts by mass of an inorganic filler made of ⁇ - AlF3 was used in place of the composite compound.
  • Example 3 In this example, ⁇ -AlF 3 having an average particle diameter D50 of 2 ⁇ m was changed to ⁇ -AlF 3 having an average particle diameter D50 of 10 ⁇ m. Otherwise, the composite compound according to this example was produced in the same manner as in Example 1.
  • Example 4 In this example, the ⁇ -AlF 3 having an average particle diameter D50 of 2 ⁇ m was changed to ⁇ -AlF 3 having an average particle diameter D50 of 10 ⁇ m. Otherwise, the composite compound according to this example was produced in the same manner as in Example 2.
  • Example 5 In this embodiment, the content of ⁇ - AlF3 is changed to 80 parts by mass, and the content of PTFE particles is changed to 20 parts by mass.Other than that, the composite compound according to this embodiment is prepared in the same manner as in embodiment 3.
  • Example 6 In this embodiment, 95 parts by mass of CaF 2 (manufactured by Stella Chemifa Co., Ltd.) with an average particle diameter D50 of 40 ⁇ m was used instead of ⁇ -AlF 3. Also, the content of PTFE particles was changed to 5 parts by mass. Other than that, the composite compound according to this embodiment was produced in the same manner as in Example 1.
  • Example 7 In this example, 95 parts by mass of K 2 SiF 6 (manufactured by Stella Chemifa Co., Ltd.) having an average particle diameter D50 of 3 ⁇ m was used instead of ⁇ -AlF 3. The content of the PTFE particles was changed to 5 parts by mass. Other than these, the composite compound according to this example was produced in the same manner as in Example 1.
  • Comparative Example 2 100 parts by mass of an inorganic filler made of ⁇ -AlF 3 having an average particle size D50 of 10 ⁇ m was used in place of the composite compound.
  • Comparative Example 3 100 parts by mass of an inorganic filler made of silica having an average particle size D50 of 1 ⁇ m was used in place of the composite compound.
  • Comparative Example 4 In this comparative example, 95 parts by mass of silica having an average particle size D50 of 1 ⁇ m was used instead of ⁇ -AlF 3. Also, the content of PTFE particles was changed to 5 parts by mass. Other than that, the composite according to this comparative example was produced in the same manner as in Example 1.
  • Comparative Example 5 100 parts by mass of an inorganic filler made of CaF2 having an average particle diameter D50 of 40 ⁇ m was used in place of the composite compound.
  • Comparative Example 6 (Comparative Example 6) In this comparative example, 100 parts by mass of an inorganic filler made of K 2 SiF 6 having an average particle size D50 of 3 ⁇ m was used in place of the composite compound.
  • Example 8 In this embodiment, the content of ⁇ - AlF3 was changed to 95 parts by mass, and the content of PTFE particles was changed to 5 parts by mass.Other than that, the composite compound according to this embodiment was prepared in the same manner as in Example 1.
  • SEM image SEM images were taken using an electron microscope (product name: SU1510, manufactured by Hitachi High-Technologies Corporation) for the composite compounds according to Examples 1, 2, 5, 6, and 8, and the composite according to Comparative Example 4. The respective SEM images are shown in Figs.
  • the composite compounds according to Examples 1 and 2 have a lower dielectric tangent value compared to the inorganic filler made of ⁇ -AlF 3 according to Comparative Example 1, and it was confirmed that the dielectric loss was reduced.
  • the dielectric tangent value was lower compared to the inorganic filler made of ⁇ -AlF 3 according to Comparative Example 2, and it was confirmed that the dielectric loss was reduced.
  • the dielectric tangent value was lower compared to the inorganic filler made of CaF 2 according to Comparative Example 5, and in the composite compound according to Example 7, the dielectric tangent value was lower compared to the inorganic filler made of K 2 SiF 6 according to Comparative Example 6, and it was confirmed that the dielectric loss was reduced in both cases. This is thought to be due to the fact that the PTFE particles are thermally fused to the surface of the base material made of each inorganic fluoride and composited, and the dielectric loss of the PTFE particles is expressed as a synergistic effect.
  • the relative dielectric constant was 2.8 and the dielectric loss tangent was 0.0016.
  • Comparative Example 4 in which a composite treatment was performed on a mixture of silica and PTFE particles, the relative dielectric constant value decreased compared to the silica in Comparative Example 3, but the dielectric loss tangent value increased (worsened), and no synergistic effect was confirmed by using PTFE particles in combination.
  • the decrease in the relative dielectric constant value in the composite in Comparative Example 4 is presumed to be due to the formation of air layers in the silica during the composite treatment with PTFE particles.
  • the composite compound of Example 5 contains a large amount of PTFE particles, more PTFE particles were heat-fused to the surface of the base material compared to the composite compounds of Examples 1 to 4, 6, and 7, and as a result, it is considered that the affinity with the epoxy resin was reduced and the fluidity was slightly reduced.
  • the composite compound of Example 8 was able to suppress aluminum elution to 100 ppm or less even when immersed in an aqueous sodium hydroxide solution at 80°C for three days, confirming that it has excellent chemical resistance.
  • silicon eluted at 3 mass% or more relative to the total mass of each confirming that they have poor chemical resistance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Provided are: a novel composite compound for low dielectric loss resin compositions, the composite compound suppressing the loss coefficient in a high frequency band and having a good dielectric loss; a low dielectric loss resin composition; a molded body for high frequency devices; and a high frequency device. A composite compound for low dielectric loss resin compositions according to the present invention is for use in a low dielectric loss resin composition, and is characterized by containing a base material that is composed of an inorganic fluoride, and fluororesin particles that are held on at least a part of the surface of the base material. This composite compound for low dielectric loss resin compositions is also characterized in that the dielectric loss tangent of the fluororesin particles is 0.002 or less at a frequency of 1 GHz or more and a temperature of 25°C.

Description

低誘電損失樹脂組成物用の複合化合物、低誘電損失樹脂組成物、高周波機器用成形体及び高周波機器Composite compound for low dielectric loss resin composition, low dielectric loss resin composition, molded body for high frequency device, and high frequency device
 本発明は、回路基板等の電子部品や情報通信機器等に適用することが可能な低誘電損失樹脂組成物用の複合化合物、低誘電損失樹脂組成物、高周波機器用成形体及び高周波機器に関する。 The present invention relates to a composite compound for a low dielectric loss resin composition that can be used in electronic components such as circuit boards and information and communication devices, a low dielectric loss resin composition, a molded article for high-frequency devices, and high-frequency devices.
 近年、プリント配線基板、フレキシブル回路基板及び高周波基板等の電子部品、並びに情報通信機器等に於いては、高速かつ大容量のデータ通信を実現するため、使用される電気信号の高周波数化が進んでいる。 In recent years, electronic components such as printed wiring boards, flexible circuit boards, and high-frequency boards, as well as information and communication devices, have been using increasingly higher frequencies for electrical signals in order to achieve high-speed, large-capacity data communication.
 特に、高周波用途の電子部品等では、周波数の増加に伴って伝送路の伝送損失により電気信号の減衰が大きくなり、伝送信頼性が低下する場合がある。そのため、高周波機器やその部品等に於いては、損失係数の値が小さい材料が求められている。ここで、損失係数は、比誘電率(ε)の平方根の値と誘電正接(tanδ)の値との積により得られるものである。 In particular, in electronic components for high frequency applications, the attenuation of electrical signals increases due to transmission loss in the transmission path as the frequency increases, and transmission reliability may decrease. Therefore, materials with small loss factors are required for high frequency devices and their components. Here, the loss factor is calculated by multiplying the square root of the relative dielectric constant ( εr ) and the dielectric loss tangent (tan δ).
 例えば、特許文献1には、多層プリント基板の低比誘電率及び低誘電正接化を図ることを目的として、(A)カルボキシル基又は酸無水物基を有し、かつ、数平均分子量300~6,000の線状炭化水素構造を有するポリイミド樹脂、(B)エポキシ樹脂、(C)沸点が100℃以上の有機溶剤、及び球状シリカを必須成分とする熱硬化性樹脂組成物が開示されている。この特許文献1によれば、導体との充分な密着性を有し、高耐熱性、難燃性、低誘電率、低誘電正接及び低吸水率の層間絶縁樹脂層を形成することが可能とされている。 For example, Patent Document 1 discloses a thermosetting resin composition containing, as essential components, (A) a polyimide resin having a carboxyl group or an acid anhydride group and a linear hydrocarbon structure with a number average molecular weight of 300 to 6,000, (B) an epoxy resin, (C) an organic solvent with a boiling point of 100°C or higher, and spherical silica, with the aim of achieving a low relative dielectric constant and low dielectric dissipation factor in a multilayer printed circuit board. According to Patent Document 1, it is possible to form an interlayer insulating resin layer that has sufficient adhesion to a conductor and has high heat resistance, flame retardancy, low dielectric constant, low dielectric dissipation factor, and low water absorption.
 また特許文献2には、アルキル基及びエポキシ樹脂との相溶性及び反応性に優れたアミン基を順次導入して表面改質された無機充填剤が開示されている。この特許文献2によれば、この表面改質されたシリカ等の無機充填剤を用いてエポキシ樹脂組成物を製造することにより、低誘電損率の特性を付与できるとされている。 Patent Document 2 also discloses an inorganic filler whose surface has been modified by sequentially introducing an alkyl group and an amine group, which has excellent compatibility and reactivity with epoxy resins. According to Patent Document 2, by producing an epoxy resin composition using this surface-modified inorganic filler such as silica, it is possible to impart the property of a low dielectric loss factor.
 また特許文献3には、シリカ等の金属酸化物粒子材料と、前記金属酸化物粒子材料を表面処理するポリオルガノシロキサン化合物とを有する表面処理済金属酸化物粒子材料が開示されている。この特許文献3によれば、表面処理済金属酸化物粒子材料を樹脂材料中に含有させることにより、得られる樹脂組成物の粘度を抑制でき、かつ、その樹脂組成物の比誘電率及び誘電正接を抑制することができるとされている。 Patent Document 3 also discloses a surface-treated metal oxide particle material having a metal oxide particle material such as silica and a polyorganosiloxane compound that surface-treats the metal oxide particle material. According to Patent Document 3, by incorporating the surface-treated metal oxide particle material into a resin material, it is possible to suppress the viscosity of the resulting resin composition, and also to suppress the relative dielectric constant and dielectric tangent of the resin composition.
 しかし、特許文献1~3に開示の樹脂組成物では、依然として高周波帯域に於ける比誘電率や誘電正接が大きいため、さらなる誘電損失の低減が求められている。 However, the resin compositions disclosed in Patent Documents 1 to 3 still have large relative dielectric constants and dielectric loss tangents in the high frequency band, so there is a demand for further reduction in dielectric loss.
特許第5564012号Patent No. 5564012 特開2015-67534号公報JP 2015-67534 A 特開2020-66678号公報JP 2020-66678 A
 本発明は、高周波帯域に於ける比誘電率及び誘電正接を低減させ、誘電損失の低減に優れた新規の低誘電損失樹脂組成物用の複合化合物、低誘電損失樹脂組成物、高周波機器用成形体及び高周波機器を提供することを目的とする。 The present invention aims to provide a new composite compound for a low dielectric loss resin composition that reduces the relative dielectric constant and dielectric tangent in the high frequency band and is excellent at reducing dielectric loss, a low dielectric loss resin composition, a molded body for high frequency devices, and high frequency devices.
 本発明の低誘電損失樹脂組成物用の複合化合物は、前記の課題を解決するために、低誘電損失樹脂組成物用の複合化合物であって、無機フッ化物からなる母材と、前記母材の表面の少なくとも一部に保持されたフッ素樹脂の粒子と、を含み、前記フッ素樹脂の粒子の誘電正接が、周波数1GHz以上及び温度25℃に於いて、0.002以下であることを特徴とする。 The composite compound for low dielectric loss resin compositions of the present invention is a composite compound for low dielectric loss resin compositions, which is characterized in that it contains a base material made of an inorganic fluoride and fluororesin particles held on at least a portion of the surface of the base material, and the dielectric tangent of the fluororesin particles is 0.002 or less at a frequency of 1 GHz or more and a temperature of 25°C.
 前記の構成に於いては、前記フッ素樹脂の粒子が、前記無機フッ化物からなる母材の表面に熱融着により保持されていることが好ましい。 In the above configuration, it is preferable that the fluororesin particles are held on the surface of the inorganic fluoride base material by thermal fusion.
 また前記の構成に於いては、前記フッ素樹脂が、ポリテトラフルオロエチレンであることが好ましい。 In the above configuration, it is preferable that the fluororesin is polytetrafluoroethylene.
 また前記の構成に於いては、前記無機フッ化物がMFn(式中、MはLi、Na、K、Mg、Al、Ca、Sc、Mn、Fe、Ga、Rb、Sr、Y、Zr、Sn、Ba、La、Ce、Yb、Hf及びBiからなる群より選ばれる少なくとも1種であり、nは1~4の整数を表す。)又はKSiFであることが好ましい。 In the above-mentioned structure, the inorganic fluoride is preferably MFn (wherein M is at least one selected from the group consisting of Li, Na, K, Mg, Al, Ca, Sc, Mn, Fe, Ga, Rb, Sr, Y, Zr, Sn, Ba, La, Ce, Yb, Hf and Bi, and n is an integer of 1 to 4) or K 2 SiF 6 .
 さらに前記の構成に於いては、前記無機フッ化物がAlFであることが好ましい。 Furthermore, in the above-mentioned structure, it is preferable that the inorganic fluoride is AlF3 .
 また前記の構成に於いては、前記無機フッ化物からなる母材の平均粒子径D50が、0.05μm以上、75μm以下であることが好ましい。 In addition, in the above-mentioned configuration, it is preferable that the average particle diameter D50 of the base material made of the inorganic fluoride is 0.05 μm or more and 75 μm or less.
 また前記の構成に於いては、前記フッ素樹脂の粒子の含有量が、前記無機フッ化物からなる母材の全質量に対し、0.5質量%以上、26質量%未満であることが好ましい。 In addition, in the above-mentioned configuration, it is preferable that the content of the fluororesin particles is 0.5% by mass or more and less than 26% by mass with respect to the total mass of the base material made of the inorganic fluoride.
 本発明の低誘電損失樹脂組成物は、前記の課題を解決するために、高分子樹脂と、前記低誘電損失樹脂組成物用の複合化合物とを少なくとも含むことを特徴とする。 In order to solve the above problems, the low dielectric loss resin composition of the present invention is characterized by containing at least a polymer resin and a composite compound for the low dielectric loss resin composition.
 前記の構成に於いては、前記複合化合物の含有量が、前記低誘電損失樹脂組成物の全質量に対し、1質量%以上、85質量%以下であることが好ましい。 In the above-mentioned composition, it is preferable that the content of the composite compound is 1% by mass or more and 85% by mass or less with respect to the total mass of the low dielectric loss resin composition.
 また前記の構成に於いては、前記高分子樹脂が、少なくとも1種の熱可塑性樹脂及び/又は少なくとも1種の熱硬化性樹脂を含むことが好ましい。 In the above configuration, it is preferable that the polymer resin contains at least one type of thermoplastic resin and/or at least one type of thermosetting resin.
 さらに前記の構成に於いては、前記高分子樹脂が、オレフィン系樹脂、スチレン系樹脂、ポリビニル樹脂、メタクリル樹脂、熱可塑性エラストマー樹脂、熱可塑性ポリウレタン樹脂、ポリアクリロニトリル樹脂、ポリ乳酸樹脂、ポリアミドポリアセタール樹脂、ポリカーボネート樹脂、ポリフェニレンエーテル樹脂、ポリエチレンテレフタラート樹脂、ポリスルフォン樹脂、ポリエーテルスルフォン樹脂、ポリフェニレンスルファイド樹脂、ポリエーテルエーテルケトン樹脂、液晶ポリマー樹脂、ポリイミド樹脂、フッ素樹脂、フェノール樹脂、アミン樹脂、フラン樹脂、不飽和ポリエステル樹脂、エポキシ樹脂、ジアリルフタレート樹脂、グアナミン樹脂、ケトン樹脂、シリコーン樹脂、熱硬化性エラストマー樹脂、天然ゴム、合成ゴム、及びこれらの変性体からなる群より選ばれる少なくとも1種であることが好ましい。 Furthermore, in the above-mentioned configuration, it is preferable that the polymer resin is at least one selected from the group consisting of olefin resins, styrene resins, polyvinyl resins, methacrylic resins, thermoplastic elastomer resins, thermoplastic polyurethane resins, polyacrylonitrile resins, polylactic acid resins, polyamide polyacetal resins, polycarbonate resins, polyphenylene ether resins, polyethylene terephthalate resins, polysulfone resins, polyether sulfone resins, polyphenylene sulfide resins, polyether ether ketone resins, liquid crystal polymer resins, polyimide resins, fluororesins, phenolic resins, amine resins, furan resins, unsaturated polyester resins, epoxy resins, diallyl phthalate resins, guanamine resins, ketone resins, silicone resins, thermosetting elastomer resins, natural rubber, synthetic rubber, and modified versions thereof.
 本発明の高周波機器用成形体は、前記の課題を解決するために、1GHz以上の周波数帯域で使用される高周波機器用成形体であって、前記低誘電損失樹脂組成物を含む成形体からなることを特徴とする。 In order to solve the above problems, the molded article for high-frequency devices of the present invention is a molded article for high-frequency devices used in a frequency band of 1 GHz or more, and is characterized in that it is made of a molded article containing the low dielectric loss resin composition.
 本発明の高周波機器は、前記の課題を解決するために、1GHz以上の周波数帯域で使用される高周波機器であって、前記低誘電損失樹脂組成物を含むことを特徴とする。 In order to solve the above problems, the high-frequency device of the present invention is a high-frequency device used in a frequency band of 1 GHz or more, and is characterized by including the low dielectric loss resin composition.
 また、本発明の高周波機器は、前記の課題を解決するために、1GHz以上の周波数帯域で使用される高周波機器であって、前記高周波機器用成形体を備えることを特徴とする。 In order to solve the above problems, the high-frequency device of the present invention is a high-frequency device used in a frequency band of 1 GHz or more, and is characterized by including the above-mentioned molded article for high-frequency devices.
 本発明によれば、シリカ等の従来の無機充填剤に代えて、母材としての無機フッ化物の表面の少なくとも一部にフッ素樹脂粒子を保持させた複合化合物を、低誘電損失樹脂組成物に含有させることができる。これにより、本発明では、高周波帯域に於ける損失係数を低減し、誘電損失の低減を図ることができる。また、当該複合化合物を含む低誘電損失樹脂組成物を高周波機器用成形体や高周波機器に用いることで、1GHz以上の高周波帯域で使用しても伝送損失による電気信号の減衰を抑制し、高速・高周波伝送を可能にする。 According to the present invention, instead of conventional inorganic fillers such as silica, a composite compound in which fluororesin particles are held on at least a portion of the surface of an inorganic fluoride as a base material can be contained in a low dielectric loss resin composition. This allows the present invention to reduce the loss factor in the high frequency band and reduce dielectric loss. Furthermore, by using a low dielectric loss resin composition containing this composite compound in a molded body for high frequency devices or in high frequency devices, attenuation of electrical signals due to transmission loss can be suppressed even when used in the high frequency band of 1 GHz or more, enabling high speed, high frequency transmission.
図1(a)は実施例1に係るα-AlFとPTFE粒子とを混合した後のSEM画像であり、図1(b)はα-AlFの表面にPTFE粒子が熱融着した複合化合物のSEM画像である。FIG. 1(a) is an SEM image of Example 1 after mixing α-AlF 3 and PTFE particles, and FIG. 1(b) is an SEM image of a composite compound in which PTFE particles are heat-fused to the surface of α-AlF 3 . 図2(a)は実施例2に係るα-AlFとPTFE粒子とを混合した後のSEM画像であり、図2(b)はα-AlFの表面にPTFE粒子が熱融着した複合化合物のSEM画像である。FIG. 2(a) is an SEM image of Example 2 after mixing α-AlF 3 and PTFE particles, and FIG. 2(b) is an SEM image of a composite compound in which PTFE particles are thermally fused to the surface of α-AlF 3 . 図3(a)は実施例5に係るα-AlFとPTFE粒子とを混合した後のSEM画像であり、図3(b)はα-AlFの表面にPTFE粒子が熱融着した複合化合物のSEM画像である。FIG. 3(a) is an SEM image of Example 5 after mixing α-AlF 3 and PTFE particles, and FIG. 3(b) is an SEM image of a composite compound in which PTFE particles are heat-fused to the surface of α-AlF 3 . 図4(a)は実施例6に係るCaFとPTFE粒子とを混合した後のSEM画像であり、図4(b)はCaFの表面にPTFE粒子が熱融着した複合化合物のSEM画像である。FIG. 4(a) is an SEM image of Example 6 after mixing CaF2 and PTFE particles, and FIG. 4(b) is an SEM image of a composite compound in which PTFE particles are heat-fused to the surface of CaF2 . 図5(a)は実施例8に係るα-AlFとPTFE粒子とを混合した後のSEM画像であり、図5(b)はα-AlFの表面にPTFE粒子が熱融着した複合化合物のSEM画像である。FIG. 5(a) is an SEM image of Example 8 after mixing α-AlF 3 and PTFE particles, and FIG. 5(b) is an SEM image of a composite compound in which PTFE particles are thermally fused to the surface of α-AlF 3 . 図6(a)は比較例4に係るシリカとPTFE粒子とを混合した後のSEM画像であり、図6(b)はシリカとPTFE粒子からなる複合物のSEM画像である。FIG. 6(a) is an SEM image of Comparative Example 4 after mixing silica and PTFE particles, and FIG. 6(b) is an SEM image of a composite of silica and PTFE particles. 図7(a)はスラリー組成物がなめらかに落下する様子を表す参考写真であり、図7(b)はスラリー組成物がまとまって落下する様子を表す参考写真である。FIG. 7(a) is a reference photograph showing how the slurry composition falls smoothly, and FIG. 7(b) is a reference photograph showing how the slurry composition falls in a lump.
(低誘電損失樹脂組成物用の複合化合物)
 先ず、本実施の形態に係る低誘電損失樹脂組成物用の複合化合物(以下、「複合化合物」という。)について以下に説明する。
(Composite Compound for Low Dielectric Loss Resin Composition)
First, the composite compound for a low dielectric loss resin composition according to the present embodiment (hereinafter referred to as the "composite compound") will be described below.
 本実施の形態の複合化合物は、無機フッ化物からなる母材(以下、「母材」という場合がある。)と、母材表面の少なくとも一部に保持されたフッ素樹脂の粒子(以下、「フッ素樹脂粒子」という場合がある。)とを含む。ここで、本明細書に於いて、フッ素樹脂粒子が母材の表面の少なくとも一部に「保持された」とは、当該フッ素樹脂粒子が母材表面に化学的に結合して保持(固定化)される場合の他、当該フッ素樹脂粒子が熱溶融することにより、母材表面に熱融着して物理的に保持(固定化)される場合を含む意味である。本実施の形態に於いて複合化合物は、フッ素樹脂粒子が母材表面に熱融着により保持される態様が好ましい。また、本明細書に於いて「熱融着」とは、加熱により少なくとも表面が熱溶融したフッ素樹脂粒子が無機フッ化物からなる母材と接触し、その接触面でフッ素樹脂粒子が母材に固着した状態を意味する。尚、フッ素樹脂の融点は通常、無機フッ化物の融点よりも低い。 The composite compound of this embodiment includes a base material (hereinafter sometimes referred to as "base material") made of an inorganic fluoride, and fluororesin particles (hereinafter sometimes referred to as "fluororesin particles") held on at least a part of the surface of the base material. In this specification, the term "held" on at least a part of the surface of the base material means that the fluororesin particles are held (fixed) by chemical bonding to the surface of the base material, as well as the fluororesin particles are thermally melted and physically held (fixed) on the surface of the base material. In this embodiment, the composite compound is preferably in a form in which the fluororesin particles are held on the surface of the base material by thermal fusion. In addition, in this specification, "thermal fusion" means that fluororesin particles, at least the surface of which is thermally melted by heating, come into contact with a base material made of an inorganic fluoride, and the fluororesin particles are fixed to the base material at the contact surface. The melting point of the fluororesin is usually lower than the melting point of the inorganic fluoride.
 本発明に於いては、無機フッ化物からなる母材表面にフッ素樹脂粒子を保持させることで、無機フッ化物のみを低誘電損失樹脂組成物に含有させる場合と比較して、高周波帯域に於ける比誘電率及び誘電正接を低減させ、誘電損失を低減させることができる。一般に、無機フッ化物は、シリカよりも高周波帯域に於ける比誘電率や誘電正接の値が大きい。従って、シリカを母材としてその表面にフッ素樹脂を保持させることも考えられる。しかし、その場合、比誘電率の値は低減できても誘電正接の値を低減させることができないことが判明した。また、高分子樹脂との親和性が良好でないため、高分子樹脂中に均一に分散した低誘電損失樹脂組成物を得ることが困難であることも判明した。さらに、そのような低誘電損失樹脂組成物を電子部品等の材料に用いた場合に、例えば、アルカリエッチング等によりアルカリ性の溶液が接触したときにシリカが溶出するなど、耐薬品(アルカリ)性も良好でないことが判明した。 In the present invention, by holding fluororesin particles on the surface of a base material made of inorganic fluoride, it is possible to reduce the relative dielectric constant and dielectric loss tangent in the high frequency band and reduce the dielectric loss, compared to the case where only inorganic fluoride is contained in the low dielectric loss resin composition. In general, inorganic fluorides have a higher relative dielectric constant and dielectric loss tangent in the high frequency band than silica. Therefore, it is possible to hold fluororesin on the surface of silica as a base material. However, in that case, it was found that even if the relative dielectric constant value can be reduced, the dielectric loss tangent value cannot be reduced. It was also found that it is difficult to obtain a low dielectric loss resin composition that is uniformly dispersed in a polymer resin because of poor affinity with the polymer resin. Furthermore, it was found that when such a low dielectric loss resin composition is used as a material for electronic parts, for example, the silica is eluted when it comes into contact with an alkaline solution during alkaline etching, and the chemical resistance (alkali) is also poor.
 他方、本発明では、多数の無機充填剤の中から無機フッ化物を母材として採用し、さらに多数の高分子樹脂の中から、この母材表面に保持させる高分子樹脂としてフッ素樹脂を組み合わせて用いるものである。これにより本発明では、シリカ単独の場合や、当該シリカの表面にフッ素樹脂を保持させた場合よりも、高周波帯域に於ける比誘電率及び誘電正接を低減できることが見出された。また、高分子樹脂との親和性も良好であり、そのため複合化合物が均一に分散した樹脂組成物が得られることが可能な上、耐薬品性にも優れていることが見出された。 In contrast, the present invention employs an inorganic fluoride from among many inorganic fillers as the base material, and further employs a fluororesin from among many polymer resins in combination as the polymer resin to be held on the surface of this base material. As a result, it has been found that the present invention can reduce the relative dielectric constant and dielectric tangent in the high frequency band compared to silica alone or when a fluororesin is held on the surface of the silica. It also has good affinity with polymer resins, making it possible to obtain a resin composition in which the composite compound is uniformly dispersed, and it has also been found to have excellent chemical resistance.
 複合化合物の比誘電率εr0[-]の上限値は、1GHz以上の周波数及び25℃の温度に於いて、6以下であることが好ましく、4以下であることがより好ましく、3以下であることが特に好ましい。複合化合物の比誘電率εr0が6以下であると、損失係数を低減することができ、誘電損失の低減が図れる。 The upper limit of the dielectric constant ε r0 [-] of the composite compound is preferably 6 or less, more preferably 4 or less, and particularly preferably 3 or less, at a frequency of 1 GHz or more and a temperature of 25° C. When the dielectric constant ε r0 of the composite compound is 6 or less, the loss factor can be reduced, and the dielectric loss can be reduced.
 また、複合化合物の誘電正接tanδ[-]の上限値は、1GHz以上の周波数及び25℃の温度に於いて、0.01以下であることが好ましく、0.005以下であることがより好ましく、0.002以下であることがさらに好ましく、0.001以下であることが特に好ましい。複合化合物の誘電正接tanδが0.01以下であると、損失係数を低減することができ、誘電損失の低減が図れる。 The upper limit of the dielectric loss tangent tan δ 0 [-] of the composite compound is preferably 0.01 or less, more preferably 0.005 or less, further preferably 0.002 or less, and particularly preferably 0.001 or less, at a frequency of 1 GHz or more and a temperature of 25° C. When the dielectric loss tangent tan δ 0 of the composite compound is 0.01 or less, the loss factor can be reduced, and the dielectric loss can be reduced.
 複合化合物の損失係数の上限値は6未満であることが好ましく、4以下であることがより好ましく、3以下であることが特に好ましい。損失係数が6未満であると、複合化合物の損失係数を低減し、誘電損失を低減させることができる。 The upper limit of the loss factor of the composite compound is preferably less than 6, more preferably 4 or less, and particularly preferably 3 or less. If the loss factor is less than 6, the loss factor of the composite compound can be reduced, and the dielectric loss can be reduced.
 尚、誘電特性及び誘電損失の数値化に用いられる比誘電率εr0及び誘電正接tanδの各数値は、複合化合物を測定し、その測定によって得られた値に基づくものである。測定方法は、適宜選択することができる。具体的には、例えば、後述の実施例で述べる方法によりそれぞれ測定可能である。 The values of the dielectric constant εr0 and the dielectric tangent tanδ0 used to quantify the dielectric properties and the dielectric loss are based on values obtained by measuring the composite compound. The measuring method can be appropriately selected. Specifically, for example, each of them can be measured by the method described in the examples below.
 損失係数は、複合化合物の比誘電率εr0及び誘電正接tanδの測定値を用いて、以下の式に基づき算出することができる。
 (損失係数)=(εr01/2×tanδ×10
 (式中、εr0[-]は測定によって得られた複合化合物の比誘電率を表し、tanδ[-]はその誘電正接を表す。)
The loss factor can be calculated based on the following formula using the measured values of the relative dielectric constant ε r0 and the dielectric tangent tan δ 0 of the composite compound.
(Loss coefficient) = (ε r0 ) 1/2 × tan δ 0 × 10 3
(In the formula, ε r0 [-] represents the relative dielectric constant of the composite compound obtained by measurement, and tan δ 0 [-] represents the dielectric tangent thereof.)
 比誘電率εr0は測定によって得られた複合化合物の分極の程度を示すパラメーターであり、比誘電率が高い程電気信号の伝播遅延が大きくなる。従って、信号の伝播速度を高めるためには、比誘電率は低い方が好ましい。誘電正接tanδは、測定によって得られた、複合化合物の内部を伝播する信号が熱に変換されることにより失われる量を示すパラメーターである。従って、誘電正接が低い程信号の損失が少なくなり、信号伝達率が向上する。 The dielectric constant εr0 is a parameter that indicates the degree of polarization of the composite compound obtained by measurement, and the higher the dielectric constant, the greater the delay in the propagation of the electric signal. Therefore, in order to increase the propagation speed of the signal, a lower dielectric constant is preferable. The dielectric loss tangent tanδ0 is a parameter that indicates the amount of the signal that propagates through the inside of the composite compound, which is obtained by measurement, that is lost due to conversion to heat. Therefore, the lower the dielectric loss tangent, the less the signal loss and the improved signal transmission rate.
 <無機フッ化物>
 次に、本実施の形態の無機フッ化物からなる母材について説明する、本実施の形態の母材は、粉体状の固体粒子であることが好ましい。無機フッ化物としては、MFn(式中、MはLi、Na、K、Mg、Al、Ca、Sc、Mn、Fe、Ga、Rb、Sr、Y、Zr、Sn、Ba、La、Ce、Yb、Hf及びBiからなる群より選ばれる少なくとも1種であり、nは1~4の整数を表す。)又はKSiF(ケイフッ化カリウム)であることが好ましい。無機フッ化物としては、より具体的には、例えば、LiF(フッ化リチウム)、NaF(フッ化ナトリウム)、KF(フッ化カリウム)、MgF(フッ化マグネシウム)、AlF(フッ化アルミニウム)、CaF(フッ化カルシウム)、ScF(フッ化スカンジウム)、MnF(フッ化マンガン)、FeF(フッ化鉄)、GaF(フッ化ガリウム)、RbF(フッ化ルビジウム)、SrF(フッ化ストロンチウム)、YF(フッ化イットリウム)、ZrF(フッ化ジルコニウム)、SnF(フッ化スズ)、BaF(フッ化バリウム)、LaF(フッ化ランタン)、CeF(フッ化セリウム)、YbF(二フッ化イッテルビウム)、YbF(三フッ化イッテルビウム)、HfF(フッ化ハフニウム)及びBiF(フッ化ビスマス)等が挙げられる。
<Inorganic fluorides>
Next, the base material made of the inorganic fluoride of this embodiment will be described. The base material of this embodiment is preferably a powdered solid particle. The inorganic fluoride is preferably MFn (wherein M is at least one selected from the group consisting of Li, Na, K, Mg, Al, Ca, Sc, Mn, Fe, Ga, Rb, Sr, Y, Zr, Sn, Ba, La, Ce, Yb, Hf, and Bi, and n is an integer of 1 to 4) or K 2 SiF 6 (potassium silicofluoride). More specifically, examples of inorganic fluorides include LiF (lithium fluoride), NaF (sodium fluoride), KF (potassium fluoride), MgF2 (magnesium fluoride), AlF3 (aluminum fluoride), CaF2 (calcium fluoride), ScF3 (scandium fluoride), MnF2 (manganese fluoride), FeF3 (iron fluoride), GaF3 (gallium fluoride), RbF (rubidium fluoride), SrF2 (strontium fluoride), YF3 (yttrium fluoride), ZrF4 (zirconium fluoride), SnF2 (tin fluoride), BaF2 (barium fluoride), LaF3 (lanthanum fluoride), CeF3 (cerium fluoride), YbF2 (ytterbium difluoride), YbF 3 (ytterbium trifluoride), HfF 4 (hafnium fluoride), and BiF 3 (bismuth fluoride).
 例示した無機フッ化物のうち、複合化合物の誘電損失の低減の観点からは、フッ化アルミニウム、フッ化カルシウム及びフッ化マグネシウムが好ましく、フッ化アルミニウムがより好ましい。さらにフッ化アルミニウムに於いては、α相を有する結晶性のフッ化アルミニウムを主成分として含むものが好ましい。α相を有する結晶性のフッ化アルミニウムは、1GHz以上の高周波帯域に於いて優れた低誘電損失特性を発揮する。そのため、当該フッ化アルミニウムを主成分として含むものを母材として、低誘電損失樹脂組成物の構成材料に用いることにより、当該低誘電損失樹脂組成物の誘電損失を低減させるという顕著な効果を奏する。 Among the inorganic fluorides given as examples, from the viewpoint of reducing the dielectric loss of the composite compound, aluminum fluoride, calcium fluoride and magnesium fluoride are preferred, with aluminum fluoride being more preferred. Furthermore, for aluminum fluoride, those containing crystalline aluminum fluoride having an α phase as the main component are preferred. Crystalline aluminum fluoride having an α phase exhibits excellent low dielectric loss characteristics in the high frequency band of 1 GHz or more. Therefore, by using a base material containing aluminum fluoride as the main component as a constituent material of a low dielectric loss resin composition, a remarkable effect of reducing the dielectric loss of the low dielectric loss resin composition is achieved.
 フッ化アルミニウムのX線回折パターンにおけるα相の(012)面でのピークの半値幅は0.3°以下であり、好ましくは0.25°以下、より好ましくは0.2°である。一般に、無機化合物の粒子の平均粒子径が小さくなるに従い、粒子全体に占める表面層の割合が増加する。粒子表面のエネルギー状態は内部に比べて高いため、構造秩序が乱れやすく結晶性が低下する。そのため、バルク由来の物理的・化学的性質が本来のものから変化し、粒子表面では誘電正接が大きくなりやすい。従って、無機化合物の平均粒子径に関わらず、結晶性は高いことが望ましい。ここで結晶性の程度は、本実施の形態の場合、フッ化アルミニウムに由来する(012)面のX線回折ピークの半値幅で評価することができる。一般に、半値幅の値が小さい程、結晶性が高くなり、結晶構造の揺らぎが小さくなるため、誘電正接も小さくなる。従って、フッ化アルミニウムの場合もX線回折パターンにおける(012)面でのピークの半値幅を小さくすることにより、その結晶性を高めることができる。このような観点から、本実施の形態では、半値幅の上限値を0.3°以下にすることにより、フッ化アルミニウムの結晶性が高くなり過ぎるのを抑制しつつ、誘電正接の上昇を抑制し、その結果、損失係数を低減し、誘電損失の低減を可能にしている。 The half-width of the peak on the (012) plane of the α phase in the X-ray diffraction pattern of aluminum fluoride is 0.3° or less, preferably 0.25° or less, and more preferably 0.2°. In general, as the average particle size of inorganic compound particles decreases, the proportion of the surface layer in the entire particle increases. Since the energy state of the particle surface is higher than that of the interior, the structural order is easily disturbed and the crystallinity decreases. Therefore, the physical and chemical properties derived from the bulk change from the original ones, and the dielectric tangent is likely to increase on the particle surface. Therefore, regardless of the average particle size of the inorganic compound, it is desirable for the crystallinity to be high. Here, the degree of crystallinity can be evaluated by the half-width of the X-ray diffraction peak of the (012) plane derived from aluminum fluoride in this embodiment. In general, the smaller the value of the half-width, the higher the crystallinity and the smaller the fluctuation of the crystal structure, and therefore the smaller the dielectric tangent. Therefore, in the case of aluminum fluoride, the crystallinity can be improved by reducing the half-width of the peak on the (012) plane in the X-ray diffraction pattern. From this perspective, in this embodiment, the upper limit of the half-width is set to 0.3° or less, which prevents the crystallinity of aluminum fluoride from becoming too high while also preventing an increase in the dielectric tangent, thereby reducing the loss factor and enabling a reduction in dielectric loss.
 また、半値幅の下限値は0.12°以上であることが好ましく、0.15°以上であることがより好ましい。半値幅の下限値を0.12°以上にすることにより、非晶質のフッ化アルミニウムが結晶化する際、又は結晶成長する際、結晶粒が成長し過ぎて、結晶粒の粒径が過度に大きくなるのを防止することができる。これにより、フッ化アルミニウムの平均粒子径D50が大きくなるのを防止し、フッ化アルミニウムの結晶性が高くなり過ぎるのを抑制することができる。その結果、本実施の形態の複合化合物を低誘電損失樹脂組成物に適用し、フィルム状又はシート状の成形品にした場合には、薄層化したプリント配線基板、フレキシブル回路基板及び高周波基板等の電子部品に用いても、表面の凹凸を低減又は抑制し電気特性の低下を防止することができる。また、膜厚を十分に抑制したフィルム状又はシート状の成形品を製造することができる。 Furthermore, the lower limit of the half-width is preferably 0.12° or more, and more preferably 0.15° or more. By setting the lower limit of the half-width to 0.12° or more, when amorphous aluminum fluoride crystallizes or grows, it is possible to prevent the crystal grains from growing too large and the grain size of the crystal grains from becoming excessively large. This prevents the average particle diameter D50 of aluminum fluoride from becoming large, and suppresses the crystallinity of aluminum fluoride from becoming too high. As a result, when the composite compound of this embodiment is applied to a low dielectric loss resin composition and made into a film-like or sheet-like molded product, even when it is used in electronic components such as thin-layered printed wiring boards, flexible circuit boards, and high-frequency boards, it is possible to reduce or suppress the surface unevenness and prevent the deterioration of electrical properties. In addition, it is possible to manufacture a film-like or sheet-like molded product with a sufficiently suppressed film thickness.
 ここで、本明細書に於いて「半値幅」とは、半値全幅を意味する。また「X線回折パターン」とは、(粉体)X線回折による試料測定を行った際の、入射角を横軸、回折強度を縦軸とする二次元グラフに於ける、各入射角で測定される回折強度のプロット線のことを指す。「フッ化アルミニウムのX線回折パターンにおけるα相の(012)面」とは、フッ化アルミニウムの結晶の配向面であって、X線回折パターンにおけるα相の(012)面を意味する。尚、フッ化アルミニウムのα相の(012)面による回折強度のピークは、2θが25.3°付近に位置する。 In this specification, "half width" means full width at half maximum. Also, "X-ray diffraction pattern" refers to a plot line of diffraction intensity measured at each incidence angle in a two-dimensional graph with the incidence angle on the horizontal axis and the diffraction intensity on the vertical axis when a sample is measured by (powder) X-ray diffraction. "The (012) plane of the α phase in the X-ray diffraction pattern of aluminum fluoride" is the orientation plane of the aluminum fluoride crystals, and means the (012) plane of the α phase in the X-ray diffraction pattern. The peak of the diffraction intensity due to the (012) plane of the α phase of aluminum fluoride is located at a 2θ of approximately 25.3°.
 無機フッ化物粒子の比誘電率εr1[-]の上限値は、1GHz以上の周波数及び25℃の温度に於いて、6以下であることが好ましく、4以下であることがより好ましく、3以下であることがさらに好ましい。無機フッ化物粒子の比誘電率εr1が6以下であると、損失係数を低減することができ、誘電損失の低減が図れる。 The upper limit of the dielectric constant ε r1 [−] of the inorganic fluoride particles is preferably 6 or less, more preferably 4 or less, and even more preferably 3 or less, at a frequency of 1 GHz or more and a temperature of 25° C. When the dielectric constant ε r1 of the inorganic fluoride particles is 6 or less, the loss factor can be reduced, and the dielectric loss can be reduced.
 また、無機フッ化物粒子の誘電正接tanδ[-]の上限値は、1GHz以上の周波数及び25℃の温度に於いて、0.008以下であることが好ましく、0.005以下であることがより好ましく、0.002以下であることがさらに好ましく、0.001以下であることが特に好ましい。無機フッ化物粒子の誘電正接tanδが0.008以下であると、損失係数を低減することができ、誘電損失の低減が図れる。 The upper limit of the dielectric loss tangent tan δ 1 [-] of the inorganic fluoride particles is preferably 0.008 or less, more preferably 0.005 or less, further preferably 0.002 or less, and particularly preferably 0.001 or less, at a frequency of 1 GHz or more and a temperature of 25° C. When the dielectric loss tangent tan δ 1 of the inorganic fluoride particles is 0.008 or less, the loss factor can be reduced, and the dielectric loss can be reduced.
 無機フッ化物粒子の損失係数の上限値は6未満であることが好ましく、4以下であることがより好ましく、3以下であることがさらに好ましい。損失係数が6未満であると、低誘電損失樹脂組成物の損失係数を低減し、誘電損失を低減させることができる。 The upper limit of the loss factor of the inorganic fluoride particles is preferably less than 6, more preferably 4 or less, and even more preferably 3 or less. If the loss factor is less than 6, the loss factor of the low dielectric loss resin composition can be reduced, and the dielectric loss can be reduced.
 尚、誘電特性及び誘電損失の数値化に用いられる比誘電率εr1及び誘電正接tanδの各数値は、粉体からなる無機フッ化物粒子を測定し、その測定によって得られた値に基づくものである。測定方法は、適宜選択することができる。具体的には、例えば、後述の実施例で述べる方法によりそれぞれ測定可能である。 The values of the relative dielectric constant εr1 and the dielectric tangent tanδ1 used to quantify the dielectric properties and the dielectric loss are based on values obtained by measuring inorganic fluoride particles made of powder. The measuring method can be appropriately selected. Specifically, for example, each of them can be measured by the method described in the examples below.
 損失係数は、粉体からなる無機フッ化物粒子の比誘電率εr1及び誘電正接tanδの測定値を用いて、以下の式に基づき算出することができる。
 (損失係数)=(εr11/2×tanδ×10
 (式中、εr1[-]は測定によって得られた粉体からなる無機フッ化物粒子の比誘電率を表し、tanδ[-]はその誘電正接を表す。)
The loss factor can be calculated based on the following formula using the measured values of the relative dielectric constant ε r1 and the dielectric tangent tan δ 1 of the inorganic fluoride particles made of powder.
(Loss coefficient) = (ε r1 ) 1/2 × tan δ 1 × 10 3
(In the formula, ε r1 [-] represents the relative dielectric constant of the inorganic fluoride particles made of powder obtained by measurement, and tan δ 1 [-] represents the dielectric tangent thereof.)
 比誘電率εr1は測定によって得られた無機フッ化物粒子の分極の程度を示すパラメーターであり、比誘電率が高い程電気信号の伝播遅延が大きくなる。従って、信号の伝播速度を高めるためには、比誘電率は低い方が好ましい。誘電正接tanδは、測定によって得られた、無機フッ化物粒子の内部を伝播する信号が熱に変換されることにより失われる量を示すパラメーターである。従って、誘電正接が低い程信号の損失が少なくなり、信号伝達率が向上する。 The dielectric constant εr1 is a parameter indicating the degree of polarization of the inorganic fluoride particles obtained by measurement, and the higher the dielectric constant, the greater the delay in the propagation of the electric signal. Therefore, in order to increase the propagation speed of the signal, a lower dielectric constant is preferable. The dielectric loss tangent tanδ1 is a parameter indicating the amount of the signal propagating inside the inorganic fluoride particles that is lost due to conversion to heat, obtained by measurement. Therefore, the lower the dielectric loss tangent, the less the signal loss and the improved signal transmission rate.
 無機フッ化物粒子の平均粒子径D50(体積基準積算粒度分布に於ける積算粒度で50%の粒子径)は特に限定されず、例えば、低誘電損失樹脂組成物を含む成形品の大きさや厚さ等の形状、低誘電損失樹脂組成物の作製に於いて、無機フッ化物粒子を含む材料の流動性の調整等の理由に応じて適宜設定することができる。通常、無機フッ化物粒子の平均粒子径D50の上限値は、75μm以下が好ましく、50μm以下がより好ましく、10μm以下がさらに好ましく、1μm以下が特に好ましい。その一方、無機フッ化物粒子の平均粒子径D50の下限値は、0.05μm以上が好ましく、0.075μm以上がより好ましく、0.1μm以上がさらに好ましい。無機フッ化物粒子の平均粒子径D50が大き過ぎると、フィルム状又はシート状の成形品に適用した場合の成形品の表面を平坦面にすることが困難になる。その結果、例えば、積層物を形成する際、成形品表面の凹凸により積層物の電気特性が損なわれる場合がある。その一方、無機フッ化物粒子の平均粒子径D50が小さ過ぎると、高分子樹脂に複合化合物を混合させる際に、均一な混合が困難になり、混合物の粘度が低誘電損失樹脂組成物の成形を困難にするほど上昇することがある。 The average particle diameter D50 of the inorganic fluoride particles (particle diameter at 50% of the cumulative particle size in the volume-based cumulative particle size distribution) is not particularly limited, and can be appropriately set according to, for example, the shape of the molded product containing the low dielectric loss resin composition, such as the size and thickness, and the adjustment of the fluidity of the material containing the inorganic fluoride particles in the preparation of the low dielectric loss resin composition. Usually, the upper limit of the average particle diameter D50 of the inorganic fluoride particles is preferably 75 μm or less, more preferably 50 μm or less, even more preferably 10 μm or less, and particularly preferably 1 μm or less. On the other hand, the lower limit of the average particle diameter D50 of the inorganic fluoride particles is preferably 0.05 μm or more, more preferably 0.075 μm or more, and even more preferably 0.1 μm or more. If the average particle diameter D50 of the inorganic fluoride particles is too large, it becomes difficult to make the surface of the molded product flat when applied to a film-like or sheet-like molded product. As a result, for example, when forming a laminate, the electrical properties of the laminate may be impaired due to the unevenness of the molded product surface. On the other hand, if the average particle diameter D50 of the inorganic fluoride particles is too small, it becomes difficult to mix the composite compound uniformly with the polymer resin, and the viscosity of the mixture may increase to such an extent that it becomes difficult to mold the low dielectric loss resin composition.
 また、無機フッ化物粒子の平均粒子径D50は、本実施の形態の低誘電損失樹脂組成物がフィルム状又はシート状の成形品である場合、前記数値範囲内で当該成形品の厚さに対し1/5以下に設定することが好ましく、1/10以下に設定することがより好ましい。例えば、低誘電損失樹脂組成物の成形品が厚さ20μm程度のフィルム状又はシート状である場合、無機フッ化物粒子の平均粒子径D50は10μm以下が好ましく、2μm以下がより好ましく、1μm以下がさらに好ましい。これにより、無機フッ化物粒子を含む複合化合物を単層状に整列した状態で、フィルム状又はシート状の成形品を成形することができる。その結果、表面の凹凸を低減し又は防止した成形品を得ることができる。また、無機フッ化物粒子を含む複合化合物を溶媒中に分散させた硬化前のスラリー組成物に於いて、複合化合物の沈降を抑制し、複合化合物が均一に充填されたフィルム状又はシート状の成形品を得ることができる。 In addition, when the low dielectric loss resin composition of this embodiment is a film- or sheet-shaped molded product, the average particle diameter D50 of the inorganic fluoride particles is preferably set to 1/5 or less of the thickness of the molded product within the above numerical range, and more preferably set to 1/10 or less. For example, when the molded product of the low dielectric loss resin composition is a film or sheet-shaped product with a thickness of about 20 μm, the average particle diameter D50 of the inorganic fluoride particles is preferably 10 μm or less, more preferably 2 μm or less, and even more preferably 1 μm or less. This makes it possible to mold a film- or sheet-shaped molded product with the composite compound containing the inorganic fluoride particles aligned in a single layer. As a result, a molded product with reduced or prevented surface unevenness can be obtained. In addition, in a slurry composition before curing in which a composite compound containing inorganic fluoride particles is dispersed in a solvent, the precipitation of the composite compound can be suppressed, and a film- or sheet-shaped molded product in which the composite compound is uniformly filled can be obtained.
 尚、無機フッ化物粒子の平均粒子径D50は、例えば、Microtrac MT3300EXII(商品名:日機装(株)製)を用いてレーザー回折・散乱法により測定して得られる値である。 The average particle diameter D50 of inorganic fluoride particles is a value obtained by measurement using a laser diffraction/scattering method, for example, using a Microtrac MT3300EXII (product name: manufactured by Nikkiso Co., Ltd.).
 無機フッ化物粒子の酸素含有量は、無機フッ化物粒子の全質量に対し2質量%以下であることが好ましく、1.5質量%以下であることがより好ましく、1質量%以下であることがさらに好ましい。無機フッ化物粒子中に含まれる酸素原子含有成分(例えば、表面水酸基、吸着水分、及び不純物としての酸化物やオキシフッ化物等)の含有を低減することができ、誘電特性に及ぼす影響を抑制することができる。より具体的には、不純物としての酸素原子含有成分の含有を低減することにより、無機フッ化物粒子の結晶性の向上が図れる。また、酸素原子含有成分としてのオキシフッ化物の含有を低減することにより、無機フッ化物粒子の絶縁性の向上も図れる。さらに、酸素原子含有成分として、分極率が高い水酸基や吸着水分を低減することにより、誘電特性の低下も抑制することができる。 The oxygen content of the inorganic fluoride particles is preferably 2% by mass or less, more preferably 1.5% by mass or less, and even more preferably 1% by mass or less, based on the total mass of the inorganic fluoride particles. The content of oxygen-atom-containing components (e.g., surface hydroxyl groups, adsorbed moisture, and oxides and oxyfluorides as impurities) contained in the inorganic fluoride particles can be reduced, and the influence on the dielectric properties can be suppressed. More specifically, by reducing the content of oxygen-atom-containing components as impurities, the crystallinity of the inorganic fluoride particles can be improved. In addition, by reducing the content of oxyfluorides as oxygen-atom-containing components, the insulating properties of the inorganic fluoride particles can be improved. Furthermore, by reducing hydroxyl groups and adsorbed moisture, which have high polarizability, as oxygen-atom-containing components, the deterioration of the dielectric properties can be suppressed.
 尚、無機フッ化物粒子の酸素含有量は、例えば、蛍光X線分析装置(X‐ray Fluorescence、商品名:ZSX Primus II、(株)リガク製)を用いることにより測定可能である。 The oxygen content of inorganic fluoride particles can be measured, for example, using an X-ray fluorescence analyzer (X-ray Fluorescence, product name: ZSX Primus II, manufactured by Rigaku Corporation).
 無機フッ化物粒子の形状は特に限定されず、例えば、複合化合物を製造する際にフッ素樹脂粒子と混合したときの混合物の流動性や、複合化合物を高分子樹脂に混合したときの混合物の流動性を考慮して適宜選択される。また、低誘電損失樹脂組成物を含む成形品の機械的強度、熱伝導性及びガス拡散性等の制御など、目的に応じて適宜選択することもできる。 The shape of the inorganic fluoride particles is not particularly limited, and may be appropriately selected, for example, taking into consideration the fluidity of the mixture when mixed with fluororesin particles in producing a composite compound, or the fluidity of the mixture when the composite compound is mixed with a polymer resin. In addition, the shape may be appropriately selected depending on the purpose, such as controlling the mechanical strength, thermal conductivity, and gas diffusivity of a molded product containing a low dielectric loss resin composition.
 無機フッ化物粒子の形状は、具体的には、例えば、球状、略球状、楕円状、棒状、針状、紡錘状、板状等の任意の形状のものを使用することができる。また、無機フッ化物粒子は、これらの形状の何れかを有し、かつ内部に空間が設けられた中空状のものであってもよい。さらに、本実施の形態の無機フッ化物粒子に於いては、同種の形状の無機フッ化物粒子が含まれていてもよく、2種以上の異なる形状の無機フッ化物粒子が含まれていてもよい。 Specifically, the shape of the inorganic fluoride particles may be any shape, such as spherical, approximately spherical, elliptical, rod-like, needle-like, spindle-like, plate-like, etc. The inorganic fluoride particles may have any of these shapes and may be hollow with an internal space. Furthermore, the inorganic fluoride particles of this embodiment may contain inorganic fluoride particles of the same type of shape, or may contain inorganic fluoride particles of two or more different shapes.
 また、本実施の形態の無機フッ化物粒子に於いては、例えば、400℃以上の加熱処理を行った後の質量減少分が、加熱処理前の無機フッ化物粒子の質量に対し2質量%以下であることが好ましく、1.5質量%以下であることがより好ましく、1質量%以下であることがさらに好ましい。前記加熱処理後の減少分が2質量%以下の無機フッ化物粒子を用いることにより、高分子樹脂を形成するモノマーの重合の際の発熱や、熱処理の際の不純物の脱ガス及び高分子樹脂の主成分の熱分解等により、低誘電損失樹脂組成物の低誘電損失特性及び機械的強度等が低下するのを防止することができる。無機フッ化物粒子に於いて、前記加熱処理後の減少分を2質量%以下に低減する方法としては特に限定されない。例えば、無機フッ化物粒子に含まれる加熱分解温度が高い材料、加熱の際に相変化を生じない材料、及び無機フッ化物粒子の合成の際に質量減少の原因となる不純物を、予め熱処理や薬液処理を施して除去ないし低減する方法が挙げられる。 In addition, in the inorganic fluoride particles of this embodiment, for example, the mass reduction after heat treatment at 400°C or more is preferably 2% by mass or less, more preferably 1.5% by mass or less, and even more preferably 1% by mass or less, based on the mass of the inorganic fluoride particles before heat treatment. By using inorganic fluoride particles with a mass reduction of 2% by mass or less after the heat treatment, it is possible to prevent the low dielectric loss characteristics and mechanical strength of the low dielectric loss resin composition from being reduced due to heat generation during polymerization of the monomers that form the polymer resin, degassing of impurities during heat treatment, and thermal decomposition of the main component of the polymer resin. In the inorganic fluoride particles, the method for reducing the mass reduction after the heat treatment to 2% by mass or less is not particularly limited. For example, a method of removing or reducing materials with high thermal decomposition temperatures contained in the inorganic fluoride particles, materials that do not undergo a phase change when heated, and impurities that cause mass reduction during the synthesis of the inorganic fluoride particles by performing heat treatment or chemical treatment in advance can be mentioned.
 <フッ素樹脂粒子>
 本実施の形態のフッ素樹脂粒子は、母材表面の少なくとも一部に保持されていればよい。フッ素樹脂粒子が母材表面の一部に保持される態様の場合、フッ素樹脂粒子が保持されていない母材表面ではルイス酸点がむき出しの状態となる。一般に、フッ素樹脂は高分子樹脂との相溶性が良好ではないが、母材表面の一部がフッ素樹脂粒子で被覆されないようにすることで、低誘電損失樹脂組成物中での高分子樹脂(詳細については後述する。)に対する複合化合物の親和性が良好に保持され、高分子樹脂中での分散性が低下するのを抑制することができる。その一方、フッ素樹脂粒子が、例えば、母材の表面の全面に保持されるなど、フッ素樹脂粒子の保持量が多い態様の場合には、誘電損失をさらに低減させることができる。
<Fluororesin Particles>
The fluororesin particles of this embodiment may be held on at least a part of the base material surface. In the case where the fluororesin particles are held on a part of the base material surface, the Lewis acid sites are exposed on the base material surface where the fluororesin particles are not held. In general, fluororesins do not have good compatibility with polymer resins, but by preventing a part of the base material surface from being covered with fluororesin particles, the affinity of the composite compound to the polymer resin (details will be described later) in the low dielectric loss resin composition is well maintained, and the dispersibility in the polymer resin is prevented from decreasing. On the other hand, in the case where the amount of fluororesin particles held is large, for example, when the fluororesin particles are held on the entire surface of the base material, the dielectric loss can be further reduced.
 フッ素樹脂粒子としては特に限定されず、例えば、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレンパーフルオロビニルエーテル共重合体(PFA)、及びテトラフルオロエチレンヘキサフルオロプロピレン共重合体(FEP)等からなるものが挙げられる。これらのフッ素樹脂のうち、誘電損失を低減させるとの観点からは、PTFEが好ましい。 The fluororesin particles are not particularly limited, and examples include those made of polytetrafluoroethylene (PTFE), tetrafluoroethylene perfluorovinyl ether copolymer (PFA), and tetrafluoroethylene hexafluoropropylene copolymer (FEP). Of these fluororesins, PTFE is preferred from the viewpoint of reducing dielectric loss.
 フッ素樹脂粒子の平均粒子径d50(体積基準積算粒度分布に於ける積算粒度で50%の粒子径)は、無機フッ化物粒子の平均粒子径D50に対し、1/10以上、1/2以下の範囲内が好ましい。フッ素樹脂粒子の平均粒子径d50を無機フッ化物粒子の平均粒子径D50に対し1/10以上にすることにより、母材を全体的に被覆することができる。その一方、フッ素樹脂粒子の平均粒子径d50を無機フッ化物粒子の平均粒子径D50に対し1/2以下にすることにより、自己融着を阻止することができる。 The average particle diameter d50 of the fluororesin particles (particle diameter at 50% of the cumulative particle size in the volume-based cumulative particle size distribution) is preferably in the range of 1/10 to 1/2 of the average particle diameter D50 of the inorganic fluoride particles. By making the average particle diameter d50 of the fluororesin particles 1/10 or more of the average particle diameter D50 of the inorganic fluoride particles, the base material can be entirely covered. On the other hand, by making the average particle diameter d50 of the fluororesin particles 1/2 or less of the average particle diameter D50 of the inorganic fluoride particles, self-fusion can be prevented.
 尚、フッ素樹脂粒子の平均粒子径d50は、例えば、Microtrac MT3300EXII(商品名:日機装(株)製)を用いてレーザー回折・散乱法により測定して得られる値である。 The average particle diameter d50 of the fluororesin particles is a value obtained by measurement using a laser diffraction/scattering method, for example, using a Microtrac MT3300EXII (product name: manufactured by Nikkiso Co., Ltd.).
 母材に保持される前のフッ素樹脂粒子の形状は特に限定されず、例えば、球状、略球状、楕円状、棒状、針状、紡錘状、板状等の任意の形状のものを使用することができる。また、同種の形状のフッ素樹脂粒子が含まれていてもよく、2種以上の異なる形状のフッ素樹脂粒子が含まれていてもよい。 The shape of the fluororesin particles before they are held in the base material is not particularly limited, and any shape can be used, such as spherical, approximately spherical, elliptical, rod-shaped, needle-shaped, spindle-shaped, plate-shaped, etc. Furthermore, the particles may contain fluororesin particles of the same shape, or may contain fluororesin particles of two or more different shapes.
 フッ素樹脂粒子の含有量は、母材の全質量に対し、0.5質量%以上、26質量%未満の範囲内であることが好ましく、1質量%以上、25質量%以下の範囲内であることがより好ましく、1質量%以上、15質量%以下の範囲内であることがさらに好ましく、1質量%以上、10質量%以下の範囲内であることが特に好ましい。フッ素樹脂粒子の含有量を0.5質量%以上にすることにより、複合化合物の良好な低誘電損失特性を維持することができる。その一方、フッ素樹脂粒子の含有量を26質量%未満にすることにより、高分子樹脂に対する複合化合物の親和性が良好に保持され、高分子樹脂中での分散性の低下を抑制することができる。 The content of the fluororesin particles is preferably in the range of 0.5% by mass or more and less than 26% by mass, more preferably in the range of 1% by mass or more and less than 25% by mass, even more preferably in the range of 1% by mass or more and less than 15% by mass, and particularly preferably in the range of 1% by mass or more and less than 10% by mass. By making the content of the fluororesin particles 0.5% by mass or more, it is possible to maintain the good low dielectric loss characteristics of the composite compound. On the other hand, by making the content of the fluororesin particles less than 26% by mass, it is possible to maintain the affinity of the composite compound to the polymer resin well and to suppress a decrease in dispersibility in the polymer resin.
 フッ素樹脂粒子の比誘電率εr2[-]の上限値は、1GHz以上の周波数及び25℃の温度に於いて、3.5以下であることが好ましく、3.0以下であることがより好ましく、2.9以下であることがさらに好ましい。フッ素樹脂粒子の比誘電率εr2が3.5以下であると、複合化合物及び当該複合化合物を含む低誘電損失樹脂組成物の損失係数の低減が図れ、誘電損失の低減が図れる。 The upper limit of the relative dielectric constant ε r2 [-] of the fluororesin particles is preferably 3.5 or less, more preferably 3.0 or less, and even more preferably 2.9 or less, at a frequency of 1 GHz or more and a temperature of 25° C. When the relative dielectric constant ε r2 of the fluororesin particles is 3.5 or less, the loss factor of the composite compound and the low dielectric loss resin composition containing the composite compound can be reduced, and the dielectric loss can be reduced.
 また、フッ素樹脂粒子としては、その誘電正接tanδ[-]が周波数1GHz以上、かつ温度25℃に於いて0.002以下であり、好ましくは0.001以下のものが用いられる。フッ素樹脂粒子の誘電正接tanδが0.002以下であると、複合化合物及び当該複合化合物を含む低誘電損失樹脂組成物の誘電正接を低下させ、誘電損失を一層低減させることができる。 The fluororesin particles used have a dielectric loss tangent tan δ 2 [-] of 0.002 or less, preferably 0.001 or less, at a frequency of 1 GHz or more and a temperature of 25° C. When the dielectric loss tangent tan δ 2 of the fluororesin particles is 0.002 or less, the dielectric loss tangent of the composite compound and the low dielectric loss resin composition containing the composite compound can be reduced, thereby further reducing the dielectric loss.
 フッ素樹脂粒子の損失係数の上限値は6以下であることが好ましく、4以下であることがより好ましく、3以下であることがさらに好ましい。損失係数が6以下であると、複合化合物及び当該低誘電損失樹脂組成物の損失係数を低減し、誘電損失を一層低減させることができる。 The upper limit of the loss factor of the fluororesin particles is preferably 6 or less, more preferably 4 or less, and even more preferably 3 or less. If the loss factor is 6 or less, the loss factor of the composite compound and the low dielectric loss resin composition can be reduced, and the dielectric loss can be further reduced.
 尚、誘電特性及び誘電損失の数値化に用いられる比誘電率εr2及び誘電正接tanδの各数値は、フッ素樹脂粒子を測定し、その測定によって得られた値に基づくものである。測定方法は、適宜選択することができる。具体的には、例えば、後述の実施例で述べる方法によりそれぞれ測定可能である。 The values of the relative dielectric constant εr2 and the dielectric tangent tanδ2 used to quantify the dielectric properties and dielectric loss are based on values obtained by measuring the fluororesin particles. The measurement method can be appropriately selected. Specifically, for example, each of them can be measured by the method described in the examples below.
 損失係数は、フッ素樹脂粒子の比誘電率εr2及び誘電正接tanδの測定値を用いて、以下の式に基づき算出することができる。
 (損失係数)=(εr21/2×tanδ×10
 (式中、εr2[-]は測定によって得られたフッ素樹脂粒子の比誘電率を表し、tanδ[-]はその誘電正接を表す。)
The loss factor can be calculated based on the following formula using the measured values of the relative dielectric constant ε r2 and the dielectric tangent tan δ 2 of the fluororesin particles.
(Loss coefficient) = (ε r2 ) 1/2 × tan δ 2 × 10 3
(In the formula, ε r2 [-] represents the relative dielectric constant of the fluororesin particles obtained by measurement, and tan δ 2 [-] represents the dielectric tangent.)
 比誘電率εr2は測定によって得られたフッ素樹脂粒子の分極の程度を示すパラメーターであり、比誘電率が高い程電気信号の伝播遅延が大きくなる。従って、信号の伝播速度を高めるためには、比誘電率は低い方が好ましい。誘電正接tanδは、測定によって得られた、フッ素樹脂粒子の内部を伝播する信号が熱に変換されることにより失われる量を示すパラメーターである。従って、誘電正接が低い程信号の損失が少なくなり、信号伝達率が向上する。 The dielectric constant εr2 is a parameter that indicates the degree of polarization of the fluororesin particles obtained by measurement, and the higher the dielectric constant, the greater the delay in the propagation of the electric signal. Therefore, in order to increase the signal propagation speed, a lower dielectric constant is preferable. The dielectric loss tangent tanδ2 is a parameter that indicates the amount of a signal that propagates inside the fluororesin particles, obtained by measurement, that is lost due to conversion to heat. Therefore, the lower the dielectric loss tangent, the less the signal loss and the improved signal transmission rate.
 <複合化合物の製造方法>
 次に、複合化合物の製造方法について、以下に説明する。
 本実施の形態の複合化合物の製造方法としては特に限定されず、公知の方法を採用することができる。例えば、フッ素樹脂粒子が母材の表面に熱融着した態様の複合化合物を製造する場合、その方法としては、フッ素樹脂粒子と無機フッ化物の母材とを混合する混合工程と、フッ素樹脂粒子と無機フッ化物の母材との混合物を加熱する加熱工程と、加熱後の混合物を冷却する冷却工程とを少なくとも含む方法(複合化処理)が挙げられる。
<Method of producing a composite compound>
Next, a method for producing the composite compound will be described below.
The method for producing the composite compound of the present embodiment is not particularly limited, and a known method can be adopted. For example, when producing a composite compound in which fluororesin particles are thermally fused to the surface of a base material, the method includes at least a mixing step of mixing fluororesin particles and an inorganic fluoride base material, a heating step of heating the mixture of fluororesin particles and an inorganic fluoride base material, and a cooling step of cooling the mixture after heating (composite treatment).
 加熱工程に於ける加熱方法としては特に限定されず、公知の方法を採用することができる。また、加熱温度としては、フッ素樹脂粒子の融点以上、沸点未満であれば特に限定されず、フッ素樹脂の種類等に応じて適宜設定することができる。さらに、加熱時間としても特に限定されず、加熱温度やフッ素樹脂粒子の材料の種類等に応じて適宜設定することができる。冷却工程に於ける冷却方法としては特に限定されず、例えば、自然放冷や急冷等により行うことができる。 The heating method in the heating step is not particularly limited, and any known method can be used. The heating temperature is not particularly limited as long as it is equal to or higher than the melting point and lower than the boiling point of the fluororesin particles, and can be set appropriately depending on the type of fluororesin, etc. The heating time is also not particularly limited, and can be set appropriately depending on the heating temperature and the type of material of the fluororesin particles, etc. The cooling method in the cooling step is not particularly limited, and can be performed by, for example, natural cooling or rapid cooling.
 <その他>
 本実施の形態の無機フッ化物の母材表面には、本発明の効果を阻害しない範囲で水酸基、エポキシ基、カルボキシル基、カルボニル基、アミノ基、パーフルオロアルカン基、エーテル基、及びエステル基等の官能基が導入された化学修飾がなされていてもよい。また、本実施形態のフッ素樹脂粒子の表面にも、本発明の効果を阻害しない範囲で水酸基、エポキシ基、カルボキシル基、カルボニル基、アミノ基、パーフルオロアルカン基、エーテル基、及びエステル基等の官能基が導入された化学修飾がなされていてもよい。
<Other>
The surface of the inorganic fluoride base material of this embodiment may be chemically modified by introducing functional groups such as hydroxyl groups, epoxy groups, carboxyl groups, carbonyl groups, amino groups, perfluoroalkane groups, ether groups, and ester groups, within the scope of not impairing the effects of the present invention. The surface of the fluororesin particles of this embodiment may also be chemically modified by introducing functional groups such as hydroxyl groups, epoxy groups, carboxyl groups, carbonyl groups, amino groups, perfluoroalkane groups, ether groups, and ester groups, within the scope of not impairing the effects of the present invention.
 また本実施の形態に於いて、無機フッ化物及びフッ素樹脂粒子は、前述の例示した材料を任意に組み合わせて用いることが可能であるが、フッ素樹脂粒子は、無機フッ化物と比較して比誘電率、誘電正接及び損失係数のうち、少なくとも何れか1つの値が小さいものを用いるのが好ましい。これにより、無機フッ化物粒子からなる無機充填剤のみを低誘電損失樹脂組成物に用いる場合と比較して、誘電損失をさらに低減させることができる。 In the present embodiment, the inorganic fluoride and fluororesin particles can be any combination of the materials exemplified above, but it is preferable to use fluororesin particles that have at least one value smaller than that of the inorganic fluoride, among the relative dielectric constant, dielectric tangent, and loss factor. This makes it possible to further reduce the dielectric loss compared to the case where only inorganic filler consisting of inorganic fluoride particles is used in the low dielectric loss resin composition.
(低誘電損失樹脂組成物用のスラリー組成物)
 次に、本実施の形態の低誘電損失樹脂組成物用のスラリー組成物(以下、「スラリー組成物」という。)について以下に説明する。
(Slurry Composition for Low Dielectric Loss Resin Composition)
Next, the slurry composition for the low dielectric loss resin composition of this embodiment (hereinafter referred to as "slurry composition") will be described below.
 本実施の形態のスラリー組成物は、前述の複合化合物と溶媒とを少なくとも含む。スラリー組成物は、複合化合物が溶媒中に分散(浮遊及び懸濁を含む。)した分散体である。ここで本明細書に於いて、「分散体」とは、分散媒である溶媒中に複合化合物が分散質として分散している状態のものを意味する。但し、「分散体」には、固体の分散媒に分散質が分散し、流動性が失われた固体コロイド(オルガノゲル)を含まない。 The slurry composition of this embodiment contains at least the above-mentioned complex compound and a solvent. The slurry composition is a dispersion in which the complex compound is dispersed (including floating and suspended) in a solvent. In this specification, the term "dispersion" refers to a state in which the complex compound is dispersed as a dispersoid in a solvent that is a dispersion medium. However, the term "dispersion" does not include a solid colloid (organogel) in which a dispersoid is dispersed in a solid dispersion medium and fluidity is lost.
 複合化合物の含有量に関し、その下限値は、スラリー組成物の全質量に対し、1質量%以上であることが好ましく、10質量%以上であることがより好ましく、20質量%以上であることがさらに好ましい。その一方、複合化合物の含有量の上限値は、スラリー組成物の全質量に対し、85質量%以下であることが好ましく、82質量%以下であることがより好ましく、79質量%以下であることがさらに好ましい。複合化合物の含有量の下限値が1質量%以上であると、スラリー組成物の損失係数が小さくなり、誘電損失の低減が図られる。 The lower limit of the content of the complex compound is preferably 1 mass% or more, more preferably 10 mass% or more, and even more preferably 20 mass% or more, based on the total mass of the slurry composition. On the other hand, the upper limit of the content of the complex compound is preferably 85 mass% or less, more preferably 82 mass% or less, and even more preferably 79 mass% or less, based on the total mass of the slurry composition. When the lower limit of the content of the complex compound is 1 mass% or more, the loss coefficient of the slurry composition is reduced, and the dielectric loss is reduced.
 溶媒としては直鎖状アルカンが好ましく、炭素数が10以上、16以下の直鎖状アルカンがより好ましい。直鎖状アルカンとしては、より具体的には、n-デカン、n-テトラデカン、及びn-ヘキサデカン等が挙げられる。これらの溶媒は1種類を単独で、又は2種類以上を混合して用いることができる。また、これらの直鎖状アルカンのうち、常温(例えば、5℃~35℃)で液体として存在することができ、直鎖状アルカンの中で極性が小さく、かつ、誘電特性評価の観点からは、n-ヘキサデカンが特に好ましい。尚、炭素数が10以上の直鎖状アルカンであると、極性が小さいため誘電率及び誘電正接が低く、水に対し難溶性である。また、沸点も高いため、沸点が低いヘキサンのように揮発により濃度が変化することも抑制することができる。その一方、炭素数が16以下の直鎖状アルカンであると、融点を20℃以下に抑制できるため、常温に於いて固体で存在することによる取り扱い性の低下を防止することができる。ここで、本明細書に於いて炭素数の範囲を表す場合、その範囲は当該範囲に含まれる全ての整数の炭素数を含むことを意味する。従って、例えば「炭素数10以上、16以下」の直鎖状アルカンとは、炭素数が10、11、12、13、14、15及び16の全ての直鎖状アルカンを意味する。 Straight-chain alkanes are preferred as the solvent, and straight-chain alkanes having 10 or more carbon atoms and 16 or less carbon atoms are more preferred. More specifically, straight-chain alkanes include n-decane, n-tetradecane, and n-hexadecane. These solvents can be used alone or in combination of two or more. Among these straight-chain alkanes, n-hexadecane is particularly preferred because it can exist as a liquid at room temperature (for example, 5°C to 35°C), has low polarity among straight-chain alkanes, and is difficult to dissolve in water due to its low polarity. In addition, since the boiling point is high, it is possible to suppress the concentration from changing due to volatilization, as in the case of hexane, which has a low boiling point. On the other hand, straight-chain alkanes having 16 or less carbon atoms can suppress the melting point to 20°C or less, and therefore prevent the deterioration of handleability due to their existence as a solid at room temperature. Here, when a range of carbon numbers is expressed in this specification, the range means that all integer carbon numbers included in the range are included. Therefore, for example, a linear alkane having "10 to 16 carbon atoms" means all linear alkanes having 10, 11, 12, 13, 14, 15, and 16 carbon atoms.
 溶媒の含有量に関し、その下限値は、スラリー組成物の全質量に対し、1質量%以上であることが好ましく、5質量%以上であることがより好ましく、15質量%以上であることがさらに好ましい。その一方、溶媒の含有量の上限値は、スラリー組成物の全質量に対し、99質量%以下であることが好ましく、90質量%以下であることがより好ましく、80質量%以下であることがさらに好ましい。 The lower limit of the solvent content is preferably 1 mass% or more, more preferably 5 mass% or more, and even more preferably 15 mass% or more, based on the total mass of the slurry composition. On the other hand, the upper limit of the solvent content is preferably 99 mass% or less, more preferably 90 mass% or less, and even more preferably 80 mass% or less, based on the total mass of the slurry composition.
 スラリー組成物の比誘電率εr3[-]の上限値は、1GHz以上の周波数及び25℃の温度に於いて、6以下であることが好ましく、4以下であることがより好ましく、3以下であることがさらに好ましい。スラリー組成物の比誘電率εr3が6以下であると、損失係数を低減することができ、誘電損失の低減が図れる。 The upper limit of the dielectric constant ε r3 [-] of the slurry composition is preferably 6 or less, more preferably 4 or less, and even more preferably 3 or less, at a frequency of 1 GHz or more and a temperature of 25° C. When the dielectric constant ε r3 of the slurry composition is 6 or less, the loss factor can be reduced, and the dielectric loss can be reduced.
 また、スラリー組成物の誘電正接tanδ[-]の上限値は、1GHz以上の周波数及び25℃の温度に於いて、0.005以下であることが好ましく、0.002以下であることがより好ましく、0.001以下であることが特に好ましい。スラリー組成物の誘電正接tanδが0.005以下であると、損失係数を低減することができ、誘電損失の低減が図れる。 The upper limit of the dielectric loss tangent tan δ 3 [-] of the slurry composition is preferably 0.005 or less, more preferably 0.002 or less, and particularly preferably 0.001 or less, at a frequency of 1 GHz or more and a temperature of 25° C. When the dielectric loss tangent tan δ 3 of the slurry composition is 0.005 or less, the loss factor can be reduced, and the dielectric loss can be reduced.
 スラリー組成物の損失係数の上限値は6未満であることが好ましく、4以下であることがより好ましく、3以下であることがさらに好ましい。損失係数が6未満であると、スラリー組成物の損失係数を低減し、誘電損失を低減させることができる。 The upper limit of the loss factor of the slurry composition is preferably less than 6, more preferably 4 or less, and even more preferably 3 or less. If the loss factor is less than 6, the loss factor of the slurry composition can be reduced, and the dielectric loss can be reduced.
 尚、誘電特性及び誘電損失の数値化に用いられる比誘電率εr3及び誘電正接tanδの各数値は、スラリー組成物を測定し、その測定によって得られた値に基づくものである。測定方法は、適宜選択することができる。具体的には、例えば、後述の実施例で述べる方法によりそれぞれ測定可能である。 The values of the relative dielectric constant εr3 and the dielectric tangent tanδ3 used to quantify the dielectric properties and the dielectric loss are based on the values obtained by measuring the slurry composition. The measurement method can be appropriately selected. Specifically, for example, each of them can be measured by the method described in the examples below.
 損失係数は、スラリー組成物の比誘電率εr3及び誘電正接tanδの測定値を用いて、以下の式に基づき算出することができる。
 (損失係数)=(εr31/2×tanδ×10
 (式中、εr3[-]は測定によって得られたスラリー組成物の比誘電率を表し、tanδ[-]はその誘電正接を表す。)
The loss factor can be calculated based on the following formula using the measured values of the relative dielectric constant εr3 and the dielectric tangent tan δ3 of the slurry composition.
(Loss coefficient) = (ε r3 ) 1/2 × tan δ 3 × 10 3
(In the formula, ε r3 [-] represents the relative dielectric constant of the slurry composition obtained by measurement, and tan δ 3 [-] represents the dielectric tangent thereof.)
 比誘電率εr3は測定によって得られたスラリー組成物の分極の程度を示すパラメーターであり、比誘電率が高い程電気信号の伝播遅延が大きくなる。従って、信号の伝播速度を高めるためには、比誘電率は低い方が好ましい。誘電正接tanδは、測定によって得られた、スラリー組成物の内部を伝播する信号が熱に変換されることにより失われる量を示すパラメーターである。従って、誘電正接が低い程信号の損失が少なくなり、信号伝達率が向上する。 The dielectric constant εr3 is a parameter indicating the degree of polarization of the slurry composition obtained by measurement, and the higher the dielectric constant, the greater the delay in the propagation of the electric signal. Therefore, in order to increase the signal propagation speed, a lower dielectric constant is preferable. The dielectric loss tangent tanδ3 is a parameter indicating the amount of the signal propagating inside the slurry composition, which is obtained by measurement, that is lost due to conversion to heat. Therefore, the lower the dielectric loss tangent, the less the signal loss and the improved signal transmission rate.
 また、本実施の形態のスラリー組成物には、本発明の目的に反しない範囲で他の添加剤を含有させることができる。他の添加剤としては特に限定されず、例えば、紫外線防止剤、着色剤、難燃剤、安定剤及び分散剤等が挙げられる。また、他の添加剤の含有量は特に限定されず、用途や目的等に応じて適宜設定することができる。 Furthermore, the slurry composition of this embodiment can contain other additives to the extent that it does not contradict the object of the present invention. The other additives are not particularly limited, and examples thereof include ultraviolet protection agents, colorants, flame retardants, stabilizers, and dispersants. Furthermore, the content of the other additives is not particularly limited, and can be set appropriately depending on the application, purpose, etc.
 本実施の形態のスラリー組成物の製造方法については特に限定されず、所定量の複合化合物を溶媒中に添加し、所定時間撹拌することにより、本実施の形態のスラリー組成物を製造することができる。 The method for producing the slurry composition of this embodiment is not particularly limited, and the slurry composition of this embodiment can be produced by adding a predetermined amount of a complex compound to a solvent and stirring for a predetermined period of time.
(低誘電損失樹脂組成物)
 次に、本実施の形態の低誘電損失樹脂組成物について以下に説明する。
 本実施の形態の低誘電損失樹脂組成物は、前述の複合化合物と高分子樹脂とを少なくとも含む。
(Low dielectric loss resin composition)
Next, the low dielectric loss resin composition of the present embodiment will be described below.
The low dielectric loss resin composition of the present embodiment contains at least the above-mentioned composite compound and a polymer resin.
 複合化合物の含有量に関し、その下限値は、低誘電損失樹脂組成物の全質量に対し、1質量%以上であることが好ましく、10質量%以上であることがより好ましく、20質量%以上であることがさらに好ましい。その一方、複合化合物の含有量の上限値は、低誘電損失樹脂組成物の全質量に対し、85質量%以下であることが好ましく、82質量%以下であることがより好ましく、79質量%以下であることがさらに好ましい。複合化合物の含有量の下限値が1質量%以上であると、低誘電損失樹脂組成物の損失係数が小さくなり、誘電損失の低減が図られる。その一方、複合化合物の含有量の上限値が85質量%以下であると、脆性などの物理的強度の劣化を防止でき硬度の向上、熱膨張係数の低下及び耐候性の向上が可能になる。 The lower limit of the content of the complex compound is preferably 1 mass% or more, more preferably 10 mass% or more, and even more preferably 20 mass% or more, based on the total mass of the low dielectric loss resin composition. On the other hand, the upper limit of the content of the complex compound is preferably 85 mass% or less, more preferably 82 mass% or less, and even more preferably 79 mass% or less, based on the total mass of the low dielectric loss resin composition. When the lower limit of the content of the complex compound is 1 mass% or more, the loss coefficient of the low dielectric loss resin composition becomes small, and the dielectric loss is reduced. On the other hand, when the upper limit of the content of the complex compound is 85 mass% or less, deterioration of physical strength such as brittleness can be prevented, and it is possible to improve hardness, reduce the thermal expansion coefficient, and improve weather resistance.
 高分子樹脂は、少なくとも1種の熱可塑性樹脂及び/又は少なくとも1種の熱硬化性樹脂を含むものが好ましい。 The polymer resin preferably contains at least one type of thermoplastic resin and/or at least one type of thermosetting resin.
 高分子樹脂は、より具体的には、例えば、ポリエチレン樹脂及びポリプロピレン樹脂等のオレフィン系樹脂;ポリスチレン樹脂及びアクリロニトリルブタジエンスチレン樹脂(ABS樹脂)等のスチレン系樹脂;ポリ酢酸ビニル樹脂、ポリ塩化ビニル樹脂、ポリビニルアルコール樹脂及びポリ塩化ビニリデン樹脂等のポリビニル樹脂;メタクリル樹脂;熱可塑性エラストマー樹脂;熱可塑性ポリウレタン樹脂;ポリアクリロニトリル樹脂;ポリ乳酸樹脂;ポリアミドポリアセタール樹脂;ポリカーボネート樹脂;ポリフェニレンエーテル樹脂;ポリエチレンテレフタラート樹脂;ポリスルフォン樹脂;ポリエーテルスルフォン樹脂;ポリフェニレンスルファイド樹脂;ポリエーテルエーテルケトン樹脂;液晶ポリマー樹脂;ポリイミド樹脂;ポリテトラフルオロエチレン樹脂(PTFE)、ポリテトラフルオロエチレンとパーフルオロアルコキシエチレンとの共重合体(PFA)、ポリクロロトリフルオロエチレン樹脂(PCTFE)、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)及びテトラフルオロエチレン-エチレン共重合体(ETFE)等のフッ素樹脂;フェノール樹脂;尿素樹脂及びメラミン樹脂等のアミン樹脂;フラン樹脂;不飽和ポリエステル樹脂;エポキシ樹脂;ジアリルフタレート樹脂;グアナミン樹脂;ケトン樹脂;シリコーン樹脂;熱硬化性エラストマー樹脂;天然ゴム;ネオプレンゴム、スチレンブタジエンゴム、イソプレンゴム、ブチルゴム及びウレタンゴム等の合成ゴム;並びにこれらの変性体等が挙げられる。これらの高分子樹脂は、低誘電損失樹脂組成物の加工性及び用途等に応じて、1種類を単独で、又は2種類以上を混合して用いることができる。例えば、ポリフェニレンエーテル樹脂にエポキシ樹脂を混合した高分子樹脂を用いる場合には、流動性を増大させることで加工性を向上させることができる。尚、高分子樹脂の重合度は特に限定されず、低誘電損失樹脂組成物の用途等に応じて適宜選択することができる。 More specifically, the polymer resins include, for example, olefin-based resins such as polyethylene resin and polypropylene resin; styrene-based resins such as polystyrene resin and acrylonitrile butadiene styrene resin (ABS resin); polyvinyl resins such as polyvinyl acetate resin, polyvinyl chloride resin, polyvinyl alcohol resin and polyvinylidene chloride resin; methacrylic resin; thermoplastic elastomer resin; thermoplastic polyurethane resin; polyacrylonitrile resin; polylactic acid resin; polyamide polyacetal resin; polycarbonate resin; polyphenylene ether resin; polyethylene terephthalate resin; polysulfone resin; polyether sulfone resin; polyphenylene sulfide resin; polyether ether ketone resin; liquid crystal polymer resin; polyimide resin. Examples of the polymer resin include fluororesins such as polytetrafluoroethylene resin (PTFE), copolymers of polytetrafluoroethylene and perfluoroalkoxyethylene (PFA), polychlorotrifluoroethylene resin (PCTFE), tetrafluoroethylene-hexafluoropropylene copolymer (FEP) and tetrafluoroethylene-ethylene copolymer (ETFE); phenol resins; amine resins such as urea resins and melamine resins; furan resins; unsaturated polyester resins; epoxy resins; diallyl phthalate resins; guanamine resins; ketone resins; silicone resins; thermosetting elastomer resins; natural rubbers; synthetic rubbers such as neoprene rubber, styrene butadiene rubber, isoprene rubber, butyl rubber and urethane rubber; and modified versions thereof. These polymer resins can be used alone or in combination of two or more types depending on the processability and application of the low dielectric loss resin composition. For example, when using a polymer resin in which an epoxy resin is mixed with a polyphenylene ether resin, the processability can be improved by increasing the fluidity. The degree of polymerization of the polymer resin is not particularly limited and can be selected appropriately depending on the application of the low dielectric loss resin composition.
 高分子樹脂の含有量は、低誘電損失樹脂組成物の全質量に対し、15質量%以上、99質量%以下が好ましく、18質量%以上、90質量%以下がより好ましく、21質量%以上、80質量%以下がさらに好ましい。高分子樹脂の含有量を15質量%以上にすることにより、接着性や耐水性などの高分子樹脂の特性を十分に発現することができる。その一方、高分子樹脂の含有量を99質量%以下にすることにより、高分子樹脂の特性を維持しつつ、複合化合物の添加により樹脂組成物の誘電損失を低減することができる。 The polymer resin content is preferably 15% by mass or more and 99% by mass or less, more preferably 18% by mass or more and 90% by mass or less, and even more preferably 21% by mass or more and 80% by mass or less, based on the total mass of the low dielectric loss resin composition. By making the polymer resin content 15% by mass or more, the properties of the polymer resin, such as adhesion and water resistance, can be fully expressed. On the other hand, by making the polymer resin content 99% by mass or less, the dielectric loss of the resin composition can be reduced by adding a composite compound while maintaining the properties of the polymer resin.
 低誘電損失樹脂組成物の比誘電率εr4[-]の上限値は、1GHz以上の周波数及び25℃の温度に於いて、6以下であることが好ましく、4以下であることがより好ましく、3以下であることが特に好ましい。低誘電損失樹脂組成物の比誘電率εr4が6以下であると、損失係数を低減することができ、誘電損失の低減が図れる。 The upper limit of the dielectric constant ε r4 [-] of the low dielectric loss resin composition is preferably 6 or less, more preferably 4 or less, and particularly preferably 3 or less, at a frequency of 1 GHz or more and a temperature of 25° C. When the dielectric constant ε r4 of the low dielectric loss resin composition is 6 or less, the loss factor can be reduced, and the dielectric loss can be reduced.
 また、低誘電損失樹脂組成物の誘電正接tanδ[-]の上限値は、1GHz以上の周波数及び25℃の温度に於いて、0.02以下であることが好ましく、0.005以下であることがより好ましく、0.002以下であることがさらに好ましく、0.001以下であることが特に好ましい。低誘電損失樹脂組成物の誘電正接tanδが0.02以下であると、損失係数を低減することができ、誘電損失の低減が図れる。 The upper limit of the dielectric loss tangent tan δ 4 [-] of the low dielectric loss resin composition is preferably 0.02 or less, more preferably 0.005 or less, even more preferably 0.002 or less, and particularly preferably 0.001 or less, at a frequency of 1 GHz or more and a temperature of 25° C. When the dielectric loss tangent tan δ 4 of the low dielectric loss resin composition is 0.02 or less, the loss factor can be reduced, and the dielectric loss can be reduced.
 低誘電損失樹脂組成物の損失係数の上限値は6未満であることが好ましく、4以下であることがより好ましく、3以下であることが特に好ましい。損失係数が6未満であると、低誘電損失樹脂組成物の損失係数を低減し、誘電損失を低減させることができる。 The upper limit of the loss factor of the low dielectric loss resin composition is preferably less than 6, more preferably 4 or less, and particularly preferably 3 or less. If the loss factor is less than 6, the loss factor of the low dielectric loss resin composition can be reduced, and the dielectric loss can be reduced.
 尚、誘電特性及び誘電損失の数値化に用いられる比誘電率εr4及び誘電正接tanδの各数値は、低誘電損失樹脂組成物を測定し、その測定によって得られた値に基づくものである。測定方法は、適宜選択することができる。具体的には、例えば、後述の実施例で述べる方法によりそれぞれ測定可能である。 The values of the relative dielectric constant εr4 and the dielectric tangent tanδ4 used to quantify the dielectric properties and dielectric loss are based on the values obtained by measuring the low dielectric loss resin composition. The measurement method can be appropriately selected. Specifically, for example, each of them can be measured by the method described in the examples below.
 損失係数は、低誘電損失樹脂組成物の比誘電率εr4及び誘電正接tanδの測定値を用いて、以下の式に基づき算出することができる。
 (損失係数)=(εr41/2×tanδ×10
 (式中、εr4[-]は測定によって得られた低誘電損失樹脂組成物の比誘電率を表し、tanδ[-]はその誘電正接を表す。)
The loss factor can be calculated based on the following formula using the measured values of the relative dielectric constant εr4 and the dielectric tangent tanδ4 of the low dielectric loss resin composition.
(Loss coefficient) = (ε r4 ) 1/2 × tan δ 4 × 10 3
(In the formula, ε r4 [-] represents the relative dielectric constant of the low dielectric loss resin composition obtained by measurement, and tan δ 4 [-] represents the dielectric tangent thereof.)
 比誘電率εr4は測定によって得られた低誘電損失樹脂組成物の分極の程度を示すパラメーターであり、比誘電率が高い程電気信号の伝播遅延が大きくなる。従って、信号の伝播速度を高めるためには、比誘電率は低い方が好ましい。誘電正接tanδは、測定によって得られた、低誘電損失樹脂組成物の内部を伝播する信号が熱に変換されることにより失われる量を示すパラメーターである。従って、誘電正接が低い程信号の損失が少なくなり、信号伝達率が向上する。 The relative dielectric constant ε r4 is a parameter that indicates the degree of polarization of the low dielectric loss resin composition obtained by measurement, and the higher the relative dielectric constant, the greater the propagation delay of the electric signal. Therefore, in order to increase the propagation speed of the signal, a lower relative dielectric constant is preferable. The dielectric loss tangent tanδ 4 is a parameter that indicates the amount of the signal propagating inside the low dielectric loss resin composition that is lost due to conversion to heat, obtained by measurement. Therefore, the lower the dielectric loss tangent, the less the signal loss and the improved signal transmission rate.
 次に、本実施の形態に係る低誘電損失樹脂組成物の製造方法について、以下に説明する。
 本実施の形態の低誘電損失樹脂組成物は、高分子樹脂中に複合化合物、及び任意のその他の添加剤等を添加し均一に混合又は混練することにより製造することができる。また、高分子樹脂や、高分子樹脂を形成するモノマーが有機溶媒等に溶解又は分散した溶液(例えば、ワニス又は分散液等。)に、複合化合物及び任意のその他の添加剤等を添加して分散させることにより製造することができる。
Next, a method for producing the low dielectric loss resin composition according to the present embodiment will be described below.
The low dielectric loss resin composition of the present embodiment can be produced by adding the composite compound and any other additives to a polymer resin and uniformly mixing or kneading them. Alternatively, the low dielectric loss resin composition can be produced by adding and dispersing the composite compound and any other additives to a solution (e.g., varnish or dispersion liquid) in which the polymer resin or a monomer that forms the polymer resin is dissolved or dispersed in an organic solvent.
 本実施の形態の低誘電損失樹脂組成物に於いては、本発明の目的に反しない範囲で不純物が含まれていてもよい。当該不純物としては、例えば、無機フッ化物を構成する元素以外の元素を有する金属不純物、及び金属酸化物等が挙げられる。不純物の含有量は、低誘電損失樹脂組成物の全質量に対し、好ましくは100ppm以下、より好ましくは10ppm以下である。 The low dielectric loss resin composition of this embodiment may contain impurities to the extent that it does not contradict the object of the present invention. Examples of such impurities include metal impurities containing elements other than those constituting the inorganic fluoride, and metal oxides. The content of the impurities is preferably 100 ppm or less, more preferably 10 ppm or less, based on the total mass of the low dielectric loss resin composition.
 また、本実施の形態の低誘電損失樹脂組成物には、本発明の目的に反しない範囲で他の添加剤を含有させることができる。他の添加剤としては特に限定されず、例えば、硬化剤、滑剤、結晶核剤、紫外線防止剤、着色剤、難燃剤、安定剤、可塑剤、強化剤及び分散剤等が挙げられる。他の添加剤の含有量は特に限定されず、用途や目的等に応じて適宜設定することができる。 Furthermore, the low dielectric loss resin composition of this embodiment can contain other additives to the extent that it does not contradict the object of the present invention. The other additives are not particularly limited, and examples thereof include hardeners, lubricants, crystal nucleating agents, ultraviolet protection agents, colorants, flame retardants, stabilizers, plasticizers, reinforcing agents, and dispersants. The content of the other additives is not particularly limited, and can be set appropriately depending on the application, purpose, etc.
 本実施の形態の低誘電損失樹脂組成物は、絶縁膜用樹脂組成物(ソルダーレジスト)、半導体封止樹脂組成物、接着剤、塗料、電源用及び通信用等の配線の被覆材等として用いることが可能である。 The low dielectric loss resin composition of this embodiment can be used as a resin composition for insulating films (solder resist), a resin composition for semiconductor encapsulation, an adhesive, a paint, a coating material for wiring for power supplies and communications, etc.
(高周波機器用成形体及びその製造方法)
 本実施の形態の高周波機器用成形体(以下、「成形体」という。)は、低誘電損失樹脂組成物を含む成形体からなる。
(Molded body for high-frequency device and its manufacturing method)
The molded article for high-frequency devices (hereinafter referred to as "molded article") of this embodiment is made of a molded article containing a low dielectric loss resin composition.
 成形体は、例えば、公知の混練機及び押出機を用いることにより製造可能である。混練機としては、例えば、密閉式の加圧ニーダーやオープンロールを用いることができる。これらの混練機を用いてシート状の低誘電損失樹脂組成物材料を製造した後、当該低誘電損失樹脂組成物材料を用いて成形体を製造することができる。また、押出機によりペレット状の低誘電損失樹脂組成物材料を製造した後、射出成形機を用いて成形体を製造することもできる。押出機等の成形機を用いて高分子樹脂と複合化合物及びその他の添加剤等との混合を行う場合には、工程数を削減することができ生産効率の向上が可能になる。また、高分子樹脂との混合前に、複合化合物に対し適宜乾燥処理等を行ってもよい。 The molded body can be manufactured, for example, by using a known kneader and extruder. As the kneader, for example, an enclosed pressure kneader or an open roll can be used. After a sheet-shaped low dielectric loss resin composition material is manufactured using these kneaders, the molded body can be manufactured using the low dielectric loss resin composition material. Also, after a pellet-shaped low dielectric loss resin composition material is manufactured using an extruder, a molded body can be manufactured using an injection molding machine. When the polymer resin is mixed with the composite compound and other additives using a molding machine such as an extruder, the number of steps can be reduced, and production efficiency can be improved. Also, the composite compound may be appropriately dried before being mixed with the polymer resin.
 また、シート状の成形体を製造する場合は、公知の方法により製造可能である。例えば、高分子樹脂を含む溶液(樹脂ワニス)が満たされたワニス槽に、複合化合物及び任意のその他の添加剤等を添加して均一に分散させ、分散液を所定の温度条件で加熱する。加熱により製造された硬化物をシート状に延伸し、これによりシート状の成形体を製造することができる。 In addition, when manufacturing a sheet-shaped molded product, it can be manufactured by a known method. For example, a complex compound and any other additives are added to a varnish tank filled with a solution containing a polymer resin (resin varnish) and uniformly dispersed, and the dispersion is heated under specified temperature conditions. The cured product produced by heating is stretched into a sheet, thereby manufacturing a sheet-shaped molded product.
 また、高分子樹脂、複合化合物及び任意のその他の添加剤等を含む分散液の液槽に、ガラスクロス、ボンディングシート等のシート状基材を浸漬した状態で通過させ、当該シート状基材に分散液を含浸させる。その後、分散液が含浸したシートに乾燥処理を施して低誘電損失樹脂組成物が含浸した含浸シートを製造することができる。尚、シート状基材を分散液の液槽に通過させる回数を複数回にすることで、複数の低誘電損失樹脂組成物層が積層された積層物を製造することも可能である。 Also, a sheet-like substrate such as a glass cloth or a bonding sheet is passed through a tank of a dispersion liquid containing a polymer resin, a composite compound, and any other additives while immersed in the dispersion liquid, thereby impregnating the sheet-like substrate with the dispersion liquid. The sheet impregnated with the dispersion liquid is then dried to produce an impregnated sheet impregnated with the low dielectric loss resin composition. It is also possible to produce a laminate in which multiple layers of the low dielectric loss resin composition are laminated by passing the sheet-like substrate through the tank of the dispersion liquid multiple times.
(高周波機器)
 本実施の形態に係る高周波機器は、低誘電損失樹脂組成物を含み、又は低誘電損失樹脂組成物の成形体を備える。
(High frequency equipment)
The high-frequency device according to the present embodiment includes a low dielectric loss resin composition or includes a molded article of a low dielectric loss resin composition.
 本実施の形態の高周波機器は、電子的に信号をやりとりすることにより行われる情報処理、及び情報通信に用いられる。特に、本実施の形態の高周波機器は、通信時に使用される電波や信号の周波数帯域が1GHz以上、より好ましくは10GHz以上の高周波帯域で使用される。また、本実施の形態の高周波機器には、その様な高周波帯域で使用される高周波電子部品も含まれる。 The high-frequency device of this embodiment is used for information processing and information communication that are performed by electronically exchanging signals. In particular, the high-frequency device of this embodiment is used in high-frequency bands where the frequency band of radio waves and signals used during communication is 1 GHz or higher, and more preferably 10 GHz or higher. The high-frequency device of this embodiment also includes high-frequency electronic components used in such high-frequency bands.
 高周波機器としては、例えば、情報処理及び情報通信機器の筐体、回路基板、印刷配線板、伝送線路、コンデンサ及びインダクタ等の高周波電子部品や、高周波機器を設置する部屋の天井材及び壁材等が挙げられる。また、低誘電損失樹脂組成物により成膜された絶縁膜や半導体封止樹脂、被覆材として低誘電損失樹脂組成物により被覆された配線等を備える高周波機器も、本実施の形態の高周波機器に含まれる。 Examples of high-frequency devices include housings for information processing and information communication devices, circuit boards, printed wiring boards, transmission lines, high-frequency electronic components such as capacitors and inductors, and ceiling and wall materials for rooms in which high-frequency devices are installed. In addition, high-frequency devices equipped with insulating films and semiconductor sealing resins formed from a low dielectric loss resin composition, and wiring coated with a low dielectric loss resin composition as a coating material, are also included in the high-frequency devices of this embodiment.
 以下に、この発明の好適な実施例を例示的に詳しく説明する。但し、この実施例に記載されている材料や配合量等は、特に限定的な記載がない限りは、この発明の範囲をそれらのみに限定する趣旨ではない。 Below, preferred embodiments of the present invention are described in detail as examples. However, the materials and compounding amounts described in these embodiments are not intended to limit the scope of the present invention unless otherwise specified.
(実施例1)
 <無機フッ化物>
 先ず、無機フッ化物としてα-AlF(ステラケミファ(株)製)を準備し、この粉体状のα-AlFについてX線回折パターンにおける(012)面でのピークの半値幅を測定した。測定には、X線回折装置(商品名:RINT-ULTIMA、(株)リガク製)を用いた。また、測定条件は以下の通りとした。
 ・X線管球:Cu
 ・管電圧:40kV
 ・管電流:40mA
 ・ステップサイズ(幅):0.02°
 ・測定範囲(回折角の走査範囲):2θ=10°~70°
Example 1
<Inorganic fluorides>
First, α-AlF 3 (manufactured by Stella Chemifa Co., Ltd.) was prepared as an inorganic fluoride, and the half-width of the peak on the (012) plane in the X-ray diffraction pattern of this powdered α-AlF 3 was measured. For the measurement, an X-ray diffractometer (product name: RINT-ULTIMA, manufactured by Rigaku Co., Ltd.) was used. The measurement conditions were as follows:
・X-ray tube: Cu
Tube voltage: 40 kV
Tube current: 40mA
・Step size (width): 0.02°
Measurement range (scanning range of diffraction angle): 2θ = 10° to 70°
 2θ=25.3°付近に現れるα-AlFの(012)面に対応する回折強度ピークから、半値幅を算出した。その結果、α-AlFの半値幅は、0.17°であった。 The half-width was calculated from the diffraction intensity peak corresponding to the (012) plane of α-AlF 3 appearing near 2θ=25.3°, and the half-width of α-AlF 3 was found to be 0.17°.
 続いて、α-AlFの平均粒子径D50を測定した。先ず、粒度分布測定装置(商品名:Microtrac MT3300EXII、日機装(株)製)内を流れる200mLの循環溶剤(水)に、粉体状のα-AlFを0.1~0.3gの範囲内で投入した。これにより、α-AlFの濃度が全質量に対し0.05~0.15質量%の範囲内の水分散液を作製し、この水分散液に対してレーザー回折・散乱法により測定した。得られた粒子径分布に於いて、累積体積が50%となる平均粒子径をD50として算出した。その結果、α-AlFの平均粒子径D50は2μmであった。 Next, the average particle diameter D50 of α-AlF 3 was measured. First, 0.1 to 0.3 g of powdered α-AlF 3 was added to 200 mL of circulating solvent (water) flowing in a particle size distribution measuring device (product name: Microtrac MT3300EXII, manufactured by Nikkiso Co., Ltd.). This produced an aqueous dispersion in which the concentration of α-AlF 3 was in the range of 0.05 to 0.15 mass% relative to the total mass, and this aqueous dispersion was measured by a laser diffraction/scattering method. In the obtained particle size distribution, the average particle diameter at which the cumulative volume was 50% was calculated as D50. As a result, the average particle diameter D50 of α-AlF 3 was 2 μm.
 次に、α-AlFの粉体を石英管に充填し、温度25℃、相対湿度40%の環境雰囲気下で、10GHz周波数領域の空洞共振器法により比誘電率及び誘電正接をそれぞれ測定した。測定には、ベクトルネットワークアナライザー(アンリツ(株)製、商品名:MS46122B)を用いた。その後、α-AlFが充填された石英管の比誘電率及び誘電正接の測定値に対し、α-AlFの嵩密度及び真密度と、充填容積に対するα-AlFの充填量とを用いて空隙部分の補正を行い、α-AlFの比誘電率εr1[-]と誘電正接tanδ[-]とを算出した。その結果、比誘電率εr1は3.2[-]であり、誘電正接tanδは0.0027[-]であった。 Next, the powder of α-AlF 3 was filled into a quartz tube, and the relative dielectric constant and dielectric loss tangent were measured by a cavity resonator method in the 10 GHz frequency range under an environmental atmosphere with a temperature of 25°C and a relative humidity of 40%. A vector network analyzer (manufactured by Anritsu Co., Ltd., product name: MS46122B) was used for the measurement. Then, the measured values of the relative dielectric constant and dielectric loss tangent of the quartz tube filled with α-AlF 3 were corrected for voids using the bulk density and true density of α-AlF 3 and the amount of α-AlF 3 filled relative to the filling volume, and the relative dielectric constant ε r1 [-] and dielectric loss tangent tanδ 1 [-] of α-AlF 3 were calculated. As a result, the relative dielectric constant ε r1 was 3.2 [-] and the dielectric loss tangent tanδ 1 was 0.0027 [-].
 <フッ素樹脂粒子>
 フッ素樹脂粒子として、平均粒子径d50が200nm以上500nm以下の範囲内であり、比誘電率εr2が3.0[-]以下であり、誘電正接tanδが0.002[-]以下であるPTFE粒子を用いた。
<Fluororesin Particles>
As the fluororesin particles, PTFE particles having an average particle diameter d50 in the range of 200 nm to 500 nm, a relative dielectric constant ε r2 of 3.0 [-] or less, and a dielectric loss tangent tan δ 2 of 0.002 [-] or less were used.
 <複合化合物の作製>
 99質量部のα-AlFと1質量部のPTFE粒子とを混合した後、PTFE粒子の融点以上の温度で、PTFE粒子がα-AlFの表面に熱融着する様に加熱を行った。その後、室温まで冷却して本実施例に係る複合化合物を作製した。
<Preparation of Complex Compounds>
After mixing 99 parts by mass of α-AlF 3 and 1 part by mass of PTFE particles, the mixture was heated at a temperature equal to or higher than the melting point of the PTFE particles so that the PTFE particles were thermally fused to the surface of the α-AlF 3. After that, the mixture was cooled to room temperature to prepare the composite compound according to this embodiment.
(実施例2)
 本実施例に於いては、α-AlFの含有量を90質量部に変更し、PTFE粒子の含有量を10質量部に変更した。それら以外は、実施例1と同様にして本実施例に係る複合化合物を作製した。
Example 2
In this embodiment, the content of α- AlF3 was changed to 90 parts by mass, and the content of PTFE particles was changed to 10 parts by mass.Other than that, the composite compound according to this embodiment was prepared in the same manner as in embodiment 1.
(比較例1)
 本比較例に於いては、複合化合物に代えてα-AlFからなる無機充填剤100質量部を用いた。
(Comparative Example 1)
In this comparative example, 100 parts by mass of an inorganic filler made of α- AlF3 was used in place of the composite compound.
(実施例3)
 本実施例に於いては、平均粒子径D50が2μmのα-AlFを、平均粒子径D50が10μmのα-AlFに変更した。それ以外は、実施例1と同様にして本実施例に係る複合化合物を作製した。
Example 3
In this example, α-AlF 3 having an average particle diameter D50 of 2 μm was changed to α-AlF 3 having an average particle diameter D50 of 10 μm. Otherwise, the composite compound according to this example was produced in the same manner as in Example 1.
(実施例4)
 本実施例に於いては、平均粒子径D50が2μmのα-AlFを、平均粒子径D50が10μmのα-AlFに変更した。それ以外は、実施例2と同様にして本実施例に係る複合化合物を作製した。
Example 4
In this example, the α-AlF 3 having an average particle diameter D50 of 2 μm was changed to α-AlF 3 having an average particle diameter D50 of 10 μm. Otherwise, the composite compound according to this example was produced in the same manner as in Example 2.
(実施例5)
 本実施例に於いては、α-AlFの含有量を80質量部に変更し、PTFE粒子の含有量を20質量部に変更した。それら以外は、実施例3と同様にして本実施例に係る複合化合物を作製した。
Example 5
In this embodiment, the content of α- AlF3 is changed to 80 parts by mass, and the content of PTFE particles is changed to 20 parts by mass.Other than that, the composite compound according to this embodiment is prepared in the same manner as in embodiment 3.
(実施例6)
 本実施例に於いては、α-AlFに代えて平均粒子径D50が40μmのCaF(ステラケミファ(株)製)95質量部を用いた。また、PTFE粒子の含有量を5質量部に変更した。それら以外は、実施例1と同様にして本実施例に係る複合化合物を作製した。
Example 6
In this embodiment, 95 parts by mass of CaF 2 (manufactured by Stella Chemifa Co., Ltd.) with an average particle diameter D50 of 40 μm was used instead of α-AlF 3. Also, the content of PTFE particles was changed to 5 parts by mass. Other than that, the composite compound according to this embodiment was produced in the same manner as in Example 1.
(実施例7)
 本実施例に於いては、α-AlFに代えて平均粒子径D50が3μmのKSiF(ステラケミファ(株)製95質量部を用いた。また、PTFE粒子の含有量を5質量部に変更した。それら以外は、実施例1と同様にして本実施例に係る複合化合物を作製した。
(Example 7)
In this example, 95 parts by mass of K 2 SiF 6 (manufactured by Stella Chemifa Co., Ltd.) having an average particle diameter D50 of 3 μm was used instead of α-AlF 3. The content of the PTFE particles was changed to 5 parts by mass. Other than these, the composite compound according to this example was produced in the same manner as in Example 1.
(比較例2)
 本比較例に於いては、複合化合物に代えて平均粒子径D50が10μmのα-AlFからなる無機充填剤100質量部を用いた。
(Comparative Example 2)
In this comparative example, 100 parts by mass of an inorganic filler made of α-AlF 3 having an average particle size D50 of 10 μm was used in place of the composite compound.
(比較例3)
 本比較例に於いては、複合化合物に代えて平均粒子径D50が1μmのシリカからなる無機充填剤100質量部を用いた。
(Comparative Example 3)
In this comparative example, 100 parts by mass of an inorganic filler made of silica having an average particle size D50 of 1 μm was used in place of the composite compound.
(比較例4)
 本比較例に於いては、α-AlFに代えて平均粒子径D50が1μmのシリカ95質量部を用いた。また、PTFE粒子の含有量を5質量部に変更した。それら以外は、実施例1と同様にして本比較例に係る複合物を作製した。
(Comparative Example 4)
In this comparative example, 95 parts by mass of silica having an average particle size D50 of 1 μm was used instead of α-AlF 3. Also, the content of PTFE particles was changed to 5 parts by mass. Other than that, the composite according to this comparative example was produced in the same manner as in Example 1.
(比較例5)
 本比較例に於いては、複合化合物に代えて平均粒子径D50が40μmのCaFからなる無機充填剤100質量部を用いた。
(Comparative Example 5)
In this comparative example, 100 parts by mass of an inorganic filler made of CaF2 having an average particle diameter D50 of 40 μm was used in place of the composite compound.
(比較例6)
 本比較例に於いては、複合化合物に代えて平均粒子径D50が3μmのKSiFからなる無機充填剤100質量部を用いた。
(Comparative Example 6)
In this comparative example, 100 parts by mass of an inorganic filler made of K 2 SiF 6 having an average particle size D50 of 3 μm was used in place of the composite compound.
(実施例8)
 本実施例に於いては、α-AlFの含有量を95質量部に変更し、PTFE粒子の含有量を5質量部に変更した。それら以外は、実施例1と同様にして本実施例に係る複合化合物を作製した。
(Example 8)
In this embodiment, the content of α- AlF3 was changed to 95 parts by mass, and the content of PTFE particles was changed to 5 parts by mass.Other than that, the composite compound according to this embodiment was prepared in the same manner as in Example 1.
(SEM画像)
 実施例1、2、5、6及び8に係る複合化合物、並びに比較例4に係る複合物について、電子顕微鏡(商品名:SU1510、(株)日立ハイテク製)を用いて、SEM画像を撮影した。図1~図6にそれぞれのSEM画像を示す。
(SEM image)
SEM images were taken using an electron microscope (product name: SU1510, manufactured by Hitachi High-Technologies Corporation) for the composite compounds according to Examples 1, 2, 5, 6, and 8, and the composite according to Comparative Example 4. The respective SEM images are shown in Figs.
 図1~図3及び図5から分かる通り、実施例1、2、5及び8に於いては、α-AlFとPTFE粒子の混合物に対して複合化処理を行うことにより、α-AlFの表面の一部にPTFE粒子が熱融着した複合化合物が得られていることが確認された。また、図4から分かる通り、実施例6に於いてもCaFとPTFE粒子の混合物に対して複合化処理を行うことにより、CaFの表面の一部にPTFE粒子が熱融着した複合化合物が得られていることが確認された。その一方、比較例4に於いては、図6から分かる通り、シリカとPTFE粒子の混合物に対して複合化処理を行っても、実施例1等の様な複合化合物が得られていないことが確認された。 As can be seen from Figures 1 to 3 and Figure 5, in Examples 1, 2, 5 and 8, it was confirmed that a composite compound in which PTFE particles are heat-fused to a part of the surface of α-AlF 3 was obtained by performing a composite treatment on a mixture of α-AlF 3 and PTFE particles. Also, as can be seen from Figure 4, it was confirmed that a composite compound in which PTFE particles are heat-fused to a part of the surface of CaF 2 was obtained by performing a composite treatment on a mixture of CaF 2 and PTFE particles in Example 6. On the other hand, in Comparative Example 4, as can be seen from Figure 6, it was confirmed that a composite compound like that in Example 1 was not obtained even when a composite treatment was performed on a mixture of silica and PTFE particles.
(比誘電率及び誘電正接の測定)
 実施例1~7に係る複合化合物、比較例1~3、5及び6に係る無機充填剤、並びに比較例4に係る複合物の各サンプルについて、それぞれの比誘電率及び誘電正接を測定した。すなわち、各サンプルについて、それぞれを石英管に充填し、温度25℃、相対湿度40%の環境雰囲気下で、10GHz周波数領域の空洞共振器法により比誘電率及び誘電正接を測定した。測定には、ベクトルネットワークアナライザー(アンリツ(株)製、商品名:MS46122B)を用いた。さらに、各サンプルが充填された石英管の比誘電率及び誘電正接の測定値に対し、各サンプルの嵩密度及び真密度と、充填容積に対する各サンプルの充填量とを用いて空隙部分の補正を行い、それぞれの比誘電率εr0[-]と誘電正接tanδ[-]とを算出した。結果を表1に示す。
(Measurement of dielectric constant and dielectric tangent)
The dielectric constant and dielectric loss tangent of each sample of the composite compounds according to Examples 1 to 7, the inorganic fillers according to Comparative Examples 1 to 3, 5 and 6, and the composite according to Comparative Example 4 were measured. That is, each sample was filled into a quartz tube, and the dielectric constant and dielectric loss tangent were measured by a cavity resonator method in the 10 GHz frequency range under an environmental atmosphere of a temperature of 25°C and a relative humidity of 40%. For the measurement, a vector network analyzer (manufactured by Anritsu Corporation, product name: MS46122B) was used. Furthermore, the measured values of the dielectric constant and dielectric loss tangent of the quartz tube filled with each sample were corrected for voids using the bulk density and true density of each sample and the filling amount of each sample relative to the filling volume, and the dielectric constant ε r0 [-] and dielectric loss tangent tan δ 0 [-] of each sample were calculated. The results are shown in Table 1.
 表1から分かる通り、実施例1及び2に係る複合化合物は、比較例1に係るα-AlFからなる無機充填剤と比較して誘電正接の値が低下しており、誘電損失が低減していることが確認された。また、実施例3~5に係る複合化合物に於いても、比較例2に係るα-AlFからなる無機充填剤と比較して誘電正接の値が低下しており、誘電損失が低減していることが確認された。さらに、実施例6に係る複合化合物に於いても比較例5に係るCaFからなる無機充填剤と比較して誘電正接の値が低下し、実施例7に係る複合化合物に於いても比較例6に係るKSiFからなる無機充填剤と比較して誘電正接の値が低下しており、何れも誘電損失が低減していることが確認された。これは、PTFE粒子がそれぞれの無機フッ化物からなる母材表面に熱融着して複合化されたことにより、PTFE粒子が備える誘電損失が相乗効果として発現したものと考えられる。 As can be seen from Table 1, the composite compounds according to Examples 1 and 2 have a lower dielectric tangent value compared to the inorganic filler made of α-AlF 3 according to Comparative Example 1, and it was confirmed that the dielectric loss was reduced. In addition, in the composite compounds according to Examples 3 to 5, the dielectric tangent value was lower compared to the inorganic filler made of α-AlF 3 according to Comparative Example 2, and it was confirmed that the dielectric loss was reduced. Furthermore, in the composite compound according to Example 6, the dielectric tangent value was lower compared to the inorganic filler made of CaF 2 according to Comparative Example 5, and in the composite compound according to Example 7, the dielectric tangent value was lower compared to the inorganic filler made of K 2 SiF 6 according to Comparative Example 6, and it was confirmed that the dielectric loss was reduced in both cases. This is thought to be due to the fact that the PTFE particles are thermally fused to the surface of the base material made of each inorganic fluoride and composited, and the dielectric loss of the PTFE particles is expressed as a synergistic effect.
 また、比較例3に係るシリカからなる無機充填剤の場合、比誘電率は2.8であり、誘電正接は0.0016であった。また、シリカとPTFE粒子の混合物に対し複合化処理を行った比較例4に於いては、比較例3に係るシリカと比較した場合、比誘電率の値が低下したものの、誘電正接の値は増大(悪化)し、PTFE粒子を併用したことによる相乗効果は確認されなかった。尚、比較例4に係る複合物に於いて比誘電率の値が低下したのは、PTFE粒子との複合化処理に於いて、シリカに空気層などが形成されるためと推測される。 In the case of the inorganic filler made of silica in Comparative Example 3, the relative dielectric constant was 2.8 and the dielectric loss tangent was 0.0016. In Comparative Example 4, in which a composite treatment was performed on a mixture of silica and PTFE particles, the relative dielectric constant value decreased compared to the silica in Comparative Example 3, but the dielectric loss tangent value increased (worsened), and no synergistic effect was confirmed by using PTFE particles in combination. The decrease in the relative dielectric constant value in the composite in Comparative Example 4 is presumed to be due to the formation of air layers in the silica during the composite treatment with PTFE particles.
(分散性及び流動性の評価)
 次に、実施例1~7に係る複合化合物、比較例1~3、5及び6に係る無機充填剤並びに比較例4に係る複合物の各サンプルについて、高分子樹脂に対する分散性の評価を行った。すなわち、各サンプルの濃度が、得られる組成物の全質量に対し50質量%となるように、各サンプルとエポキシ樹脂(商品名:jER(登録商標)828、jER(登録商標)キュア、三菱ケミカル(株)製)とを容器カップに入れ、脱泡撹拌機で混練して組成物を作製した。
(Evaluation of dispersibility and fluidity)
Next, the dispersibility in polymer resin was evaluated for each sample of the composite compounds according to Examples 1 to 7, the inorganic fillers according to Comparative Examples 1 to 3, 5 and 6, and the composite according to Comparative Example 4. That is, each sample and an epoxy resin (product names: jER (registered trademark) 828, jER (registered trademark) Cure, manufactured by Mitsubishi Chemical Corporation) were placed in a container cup so that the concentration of each sample was 50 mass% relative to the total mass of the obtained composition, and the compositions were prepared by kneading with a defoaming mixer.
 得られた各組成物について、以下の基準に基づき分散性及び流動性を評価した。結果を表1に示す。
 〇:図7(a)に示すように、スラリー組成物がなめらかに落下する。
 △:スラリー組成物が落下するがなめらかさに欠ける。
 ×:スラリー組成物が得られない、又は図7(b)に示すように、スラリー組成物がまとまって落下する。
The dispersibility and flowability of each of the resulting compositions were evaluated based on the following criteria. The results are shown in Table 1.
◯: As shown in FIG. 7( a ), the slurry composition falls smoothly.
Δ: The slurry composition falls but lacks smoothness.
×: No slurry composition was obtained, or as shown in FIG. 7( b ), the slurry composition fell in clumps.
 表1から分かる通り、実施例1~7では何れも、複合化合物がエポキシ樹脂中に良好に分散(懸濁)したスラリー組成物が得られた。特に、実施例1~4、6及び7に係る複合化合物はエポキシ樹脂中での分散性に優れており、何れも良好な流動性を有するスラリー組成物が得られた。一般に、PTFEは高分子樹脂との相溶性が良好ではないが、実施例1~4、6及び7の複合化合物に於いては、それぞれの無機フッ化物からなる母材表面がPTFE粒子に完全に覆われておらず、当該母材表面のルイス酸点がむき出しになっていると考えられる。そのため、これらの複合化合物ではエポキシ樹脂との親和性が保持された結果、エポキシ樹脂中に均一に分散したものと考えられる。その一方、実施例5の複合化合物に於いてはPTFE粒子の含有量が多いために、実施例1~4、6及び7の複合化合物と比較して、より多くのPTFE粒子が母材表面に熱融着した結果、エポキシ樹脂との親和性が低下し、流動性が若干低下したものと考えられる。 As can be seen from Table 1, in all of Examples 1 to 7, slurry compositions were obtained in which the composite compound was well dispersed (suspended) in the epoxy resin. In particular, the composite compounds of Examples 1 to 4, 6, and 7 had excellent dispersibility in the epoxy resin, and all of them obtained slurry compositions with good fluidity. Generally, PTFE does not have good compatibility with polymer resins, but in the composite compounds of Examples 1 to 4, 6, and 7, the surface of the base material made of each inorganic fluoride is not completely covered with PTFE particles, and it is considered that the Lewis acid sites on the surface of the base material are exposed. Therefore, it is considered that these composite compounds maintained their affinity with the epoxy resin, and as a result, they were uniformly dispersed in the epoxy resin. On the other hand, since the composite compound of Example 5 contains a large amount of PTFE particles, more PTFE particles were heat-fused to the surface of the base material compared to the composite compounds of Examples 1 to 4, 6, and 7, and as a result, it is considered that the affinity with the epoxy resin was reduced and the fluidity was slightly reduced.
 尚、比較例3及び4では、シリカはエポキシ樹脂に対する親和性が本来的に良好ではないため、エポキシ樹脂と相分離しスラリー組成物が得られなかった。 In addition, in Comparative Examples 3 and 4, silica does not inherently have good affinity with epoxy resins, so phase separation occurred with the epoxy resin and a slurry composition could not be obtained.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
(耐薬品性の評価)
 実施例8に係る複合化合物、比較例3に係るシリカ及び比較例4に係る複合物の何れかを、その濃度が10質量%となるように、1NのNaOH水溶液にそれぞれ投入した。投入後、温度80℃の環境下で3日間、静置した状態で保管した。保管の終了後、ICP-AES分析機器(商品名:ULTIMA 2、(株)堀場製作所製)にてAl元素又はSi元素の溶出量をそれぞれ測定した(Al検出波長396nm及び152nm、Si検出波長611nm及び251nm)。結果を表2に示す。
(Evaluation of chemical resistance)
Either the composite compound according to Example 8, the silica according to Comparative Example 3, or the composite according to Comparative Example 4 was added to a 1N NaOH aqueous solution so that the concentration was 10 mass%. After addition, the solution was stored in a stationary state for 3 days in an environment at a temperature of 80°C. After the storage was completed, the amount of eluted Al element or Si element was measured using an ICP-AES analyzer (product name: ULTIMA 2, manufactured by Horiba, Ltd.) (Al detection wavelengths: 396 nm and 152 nm, Si detection wavelengths: 611 nm and 251 nm). The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2から分かる通り、実施例8に係る複合化合物では、水酸化ナトリウム水溶液中に80℃の環境下で3日間浸漬しても、アルミニウムの溶出を100ppm以下に抑制することができ、耐薬品性に優れていることが確認された。その一方、比較例3に係るシリカ及び比較例4に係る複合物では何れも、ケイ素がそれぞれの全質量に対し3質量%以上溶出しており、耐薬品性に劣ることが確認された。 As can be seen from Table 2, the composite compound of Example 8 was able to suppress aluminum elution to 100 ppm or less even when immersed in an aqueous sodium hydroxide solution at 80°C for three days, confirming that it has excellent chemical resistance. On the other hand, in both the silica of Comparative Example 3 and the composite of Comparative Example 4, silicon eluted at 3 mass% or more relative to the total mass of each, confirming that they have poor chemical resistance.

Claims (14)

  1.  低誘電損失樹脂組成物用の複合化合物であって、
     無機フッ化物からなる母材と、
     前記母材の表面の少なくとも一部に保持されたフッ素樹脂の粒子と、
     を含み、
     前記フッ素樹脂の粒子の誘電正接が、周波数1GHz以上及び温度25℃に於いて、0.002以下である低誘電損失樹脂組成物用の複合化合物。
    A composite compound for a low dielectric loss resin composition, comprising:
    A base material made of an inorganic fluoride;
    Fluorine resin particles held on at least a portion of the surface of the base material;
    Including,
    The composite compound for a low dielectric loss resin composition, wherein the dielectric tangent of the fluororesin particles is 0.002 or less at a frequency of 1 GHz or more and a temperature of 25°C.
  2.  前記フッ素樹脂の粒子が、前記無機フッ化物からなる母材の表面に熱融着により保持されている請求項1に記載の低誘電損失樹脂組成物用の複合化合物。 The composite compound for low dielectric loss resin composition according to claim 1, in which the fluororesin particles are held by thermal fusion to the surface of the base material made of the inorganic fluoride.
  3.  前記フッ素樹脂が、ポリテトラフルオロエチレンである請求項1に記載の低誘電損失樹脂組成物用の複合化合物。 The composite compound for low dielectric loss resin composition according to claim 1, wherein the fluororesin is polytetrafluoroethylene.
  4.  前記無機フッ化物がMFn(式中、MはLi、Na、K、Mg、Al、Ca、Sc、Mn、Fe、Ga、Rb、Sr、Y、Zr、Sn、Ba、La、Ce、Yb、Hf及びBiからなる群より選ばれる少なくとも1種であり、nは1~4の整数を表す。)又はKSiFである請求項1に記載の低誘電損失樹脂組成物用の複合化合物。 The composite compound for low dielectric loss resin composition according to claim 1, wherein the inorganic fluoride is MFn (wherein M is at least one selected from the group consisting of Li, Na, K, Mg, Al, Ca, Sc, Mn, Fe, Ga, Rb, Sr, Y, Zr, Sn, Ba, La, Ce, Yb, Hf and Bi, and n is an integer of 1 to 4 ) or K2SiF6 .
  5.  前記無機フッ化物がAlFである請求項4に記載の低誘電損失樹脂組成物用の複合化合物。 The composite compound for low dielectric loss resin composition according to claim 4, wherein said inorganic fluoride is AlF3 .
  6.  前記無機フッ化物からなる母材の平均粒子径D50が、0.05μm以上、75μm以下である請求項1に記載の低誘電損失樹脂組成物用の複合化合物。 The composite compound for low dielectric loss resin composition according to claim 1, wherein the average particle diameter D50 of the base material made of the inorganic fluoride is 0.05 μm or more and 75 μm or less.
  7.  前記フッ素樹脂の粒子の含有量が、前記無機フッ化物からなる母材の全質量に対し、0.5質量%以上、26質量%未満である請求項1に記載の低誘電損失樹脂組成物用の複合化合物。 The composite compound for low dielectric loss resin composition according to claim 1, wherein the content of the fluororesin particles is 0.5% by mass or more and less than 26% by mass with respect to the total mass of the base material made of the inorganic fluoride.
  8.  高分子樹脂と、請求項1~7の何れか1項に記載の低誘電損失樹脂組成物用の複合化合物とを少なくとも含む低誘電損失樹脂組成物。 A low dielectric loss resin composition comprising at least a polymer resin and a composite compound for a low dielectric loss resin composition according to any one of claims 1 to 7.
  9.  前記複合化合物の含有量が、前記低誘電損失樹脂組成物の全質量に対し、1質量%以上、85質量%以下である請求項8に記載の低誘電損失樹脂組成物。 The low dielectric loss resin composition according to claim 8, wherein the content of the composite compound is 1 mass% or more and 85 mass% or less with respect to the total mass of the low dielectric loss resin composition.
  10.  前記高分子樹脂が、少なくとも1種の熱可塑性樹脂及び/又は少なくとも1種の熱硬化性樹脂を含む請求項8に記載の低誘電損失樹脂組成物。 The low dielectric loss resin composition according to claim 8, wherein the polymer resin comprises at least one thermoplastic resin and/or at least one thermosetting resin.
  11.  前記高分子樹脂が、オレフィン系樹脂、スチレン系樹脂、ポリビニル樹脂、メタクリル樹脂、熱可塑性エラストマー樹脂、熱可塑性ポリウレタン樹脂、ポリアクリロニトリル樹脂、ポリ乳酸樹脂、ポリアミドポリアセタール樹脂、ポリカーボネート樹脂、ポリフェニレンエーテル樹脂、ポリエチレンテレフタラート樹脂、ポリスルフォン樹脂、ポリエーテルスルフォン樹脂、ポリフェニレンスルファイド樹脂、ポリエーテルエーテルケトン樹脂、液晶ポリマー樹脂、ポリイミド樹脂、フッ素樹脂、フェノール樹脂、アミン樹脂、フラン樹脂、不飽和ポリエステル樹脂、エポキシ樹脂、ジアリルフタレート樹脂、グアナミン樹脂、ケトン樹脂、シリコーン樹脂、熱硬化性エラストマー樹脂、天然ゴム、合成ゴム、及びこれらの変性体からなる群より選ばれる少なくとも1種である請求項10に記載の低誘電損失樹脂組成物。 The low dielectric loss resin composition according to claim 10, wherein the polymer resin is at least one selected from the group consisting of olefin resins, styrene resins, polyvinyl resins, methacrylic resins, thermoplastic elastomer resins, thermoplastic polyurethane resins, polyacrylonitrile resins, polylactic acid resins, polyamide polyacetal resins, polycarbonate resins, polyphenylene ether resins, polyethylene terephthalate resins, polysulfone resins, polyether sulfone resins, polyphenylene sulfide resins, polyether ether ketone resins, liquid crystal polymer resins, polyimide resins, fluororesins, phenolic resins, amine resins, furan resins, unsaturated polyester resins, epoxy resins, diallyl phthalate resins, guanamine resins, ketone resins, silicone resins, thermosetting elastomer resins, natural rubber, synthetic rubber, and modified versions thereof.
  12.  1GHz以上の周波数帯域で使用される高周波機器用成形体であって、
     請求項8に記載の低誘電損失樹脂組成物を含む成形体からなる高周波機器用成形体。
    A molded article for high-frequency devices used in a frequency band of 1 GHz or more,
    A molded article for use in high-frequency devices, comprising a molded article comprising the low dielectric loss resin composition according to claim 8.
  13.  1GHz以上の周波数帯域で使用される高周波機器であって、
     請求項8に記載の低誘電損失樹脂組成物を含む高周波機器。
    A high-frequency device used in a frequency band of 1 GHz or more,
    A high-frequency device comprising the low dielectric loss resin composition according to claim 8.
  14.  1GHz以上の周波数帯域で使用される高周波機器であって、
     請求項12に記載の高周波機器用成形体を備える高周波機器。
    A high-frequency device used in a frequency band of 1 GHz or more,
    A high-frequency device comprising the molded article for high-frequency devices according to claim 12.
PCT/JP2024/011750 2023-03-31 2024-03-25 Composite compound for low dielectric loss resin compositions, low dielectric loss resin composition, molded body for high frequency devices, and high frequency device WO2024204090A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2023-059226 2023-03-31
JP2023059226 2023-03-31

Publications (1)

Publication Number Publication Date
WO2024204090A1 true WO2024204090A1 (en) 2024-10-03

Family

ID=92905362

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2024/011750 WO2024204090A1 (en) 2023-03-31 2024-03-25 Composite compound for low dielectric loss resin compositions, low dielectric loss resin composition, molded body for high frequency devices, and high frequency device

Country Status (1)

Country Link
WO (1) WO2024204090A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08101301A (en) * 1994-09-29 1996-04-16 Olympus Optical Co Ltd Optical thin film and its production
WO2018212279A1 (en) * 2017-05-17 2018-11-22 株式会社アドマテックス Composite particle material, production method therefor, composite particle material slurry, and resin composition
WO2022246892A1 (en) * 2021-05-28 2022-12-01 蚌埠壹石通聚合物复合材料有限公司 Ptfe composite powder, preparation method, and composite material containing ptfe composite powder
WO2022254960A1 (en) * 2021-06-04 2022-12-08 ステラケミファ株式会社 Low dielectric loss resin composition, method for producing same, molded body for high frequency devices, and high frequency device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08101301A (en) * 1994-09-29 1996-04-16 Olympus Optical Co Ltd Optical thin film and its production
WO2018212279A1 (en) * 2017-05-17 2018-11-22 株式会社アドマテックス Composite particle material, production method therefor, composite particle material slurry, and resin composition
WO2022246892A1 (en) * 2021-05-28 2022-12-01 蚌埠壹石通聚合物复合材料有限公司 Ptfe composite powder, preparation method, and composite material containing ptfe composite powder
WO2022254960A1 (en) * 2021-06-04 2022-12-08 ステラケミファ株式会社 Low dielectric loss resin composition, method for producing same, molded body for high frequency devices, and high frequency device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BESSEDE J.L., ELKOUN S., STOCHMIL C., ETIENNE S.: "Dielectric properties of PTFE-based composite insulating materials : interfaces effects", ELECTRICAL INSULATION AND DIELECTRIC PHENOMENA, vol. 2, 15 October 2000 (2000-10-15), pages 772 - 775, XP010522130 *

Similar Documents

Publication Publication Date Title
US5922453A (en) Ceramic-filled fluoropolymer composite containing polymeric powder for high frequency circuit substrates
US5115077A (en) Polyetheric copolymers, process for preparing the same compositions containing the same, their molded products, and their use
JP2021516711A (en) A meltable thermoplastic composite containing multiple different dielectric fillers
CN114729171B (en) Dispersion, method for producing dispersion, and molded article
CN111286176A (en) Liquid crystal polymer composition and preparation method thereof
WO2018030124A1 (en) Surface-roughened hexagonal boron nitride particles, method for producing same, composition, resin sheet, prepreg, metal-foil-clad laminate, and printed wiring board
KR102145067B1 (en) Laminate for flexible printed circuit board having low dielectric constant and low-loss properties
CN114980495A (en) Resin substrate having dielectric characteristics with low frequency dependence
CN111334007A (en) Reinforced polyethylene terephthalate composition and preparation method thereof
Ding et al. Investigation on preparation and properties of novel polyphenylene oxide based composites by injection molding
TW202248354A (en) Low dielectric loss resin composition, method for producing same, molded body for high frequency devices, and high frequency device
JPH10237311A (en) Alumina-charged resin or rubber composition
WO2024204090A1 (en) Composite compound for low dielectric loss resin compositions, low dielectric loss resin composition, molded body for high frequency devices, and high frequency device
CN111484692B (en) Circuit board
CN109467858B (en) Fluororesin composition and prepreg containing same
US11008451B2 (en) Fluorocarbon prepreg and resin composition thereof
JPS6358186B2 (en)
TW202436523A (en) Inorganic filler for low dielectric loss resin composition, slurry composition for low dielectric loss resin composition, low dielectric loss resin composition, molded body for high frequency device, and high frequency device
JP2022061412A (en) Production method of liquid composition and production method of laminate
WO2024171641A1 (en) Inorganic filler for low dielectric loss resin composition, slurry composition for low dielectric loss resin composition, low dielectric loss resin composition, molded body for high frequency apparatus, and high frequency device
JP2022098733A (en) Composition of tetrafluoroethylene polymer, liquid composition containing the same, and sheet
US20230416482A1 (en) Fluoroplastic substrate for high-speed communications and copper-clad fluoroplastic substrate for high-speed communications
JP3589935B2 (en) Curable polyvinyl benzyl ether resin composition and composite dielectric material
US20240186031A1 (en) Fluoropolymer compositions comprising amorphous fluoropolymer and crystalline fluoropolymer suitable for copper and electronic telecommunications articles
JP3605339B2 (en) Curable flame retarded polyvinyl benzyl ether resin composition