[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2024203917A1 - Polishing composition - Google Patents

Polishing composition Download PDF

Info

Publication number
WO2024203917A1
WO2024203917A1 PCT/JP2024/011421 JP2024011421W WO2024203917A1 WO 2024203917 A1 WO2024203917 A1 WO 2024203917A1 JP 2024011421 W JP2024011421 W JP 2024011421W WO 2024203917 A1 WO2024203917 A1 WO 2024203917A1
Authority
WO
WIPO (PCT)
Prior art keywords
polishing
less
particles
polishing composition
acid
Prior art date
Application number
PCT/JP2024/011421
Other languages
French (fr)
Japanese (ja)
Inventor
康昭 伊藤
雄一郎 中貝
Original Assignee
株式会社フジミインコーポレーテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジミインコーポレーテッド filed Critical 株式会社フジミインコーポレーテッド
Publication of WO2024203917A1 publication Critical patent/WO2024203917A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting

Definitions

  • the present invention relates to a polishing composition.
  • This application claims priority based on Japanese Patent Application No. 2023-056600, filed on March 30, 2023, the entire contents of which are incorporated herein by reference.
  • Abrasive compositions are used to polish the surfaces of materials such as metals, semimetals, nonmetals, and oxides thereof.
  • surfaces made of compound semiconductor materials such as silicon carbide, boron carbide, tungsten carbide, silicon nitride, titanium nitride, and gallium nitride are processed by polishing (lapping) by supplying diamond abrasive grains between the surface and a polishing table.
  • polishing polishing
  • Patent Document 1 is an example of a document that discloses this type of prior art.
  • the polishing speed when supplying a polishing liquid to polish an object be high enough for practical use.
  • polishing an object made of a high-hardness material such as silicon carbide it is desirable to further improve the polishing speed in order to improve the yield of the polished object.
  • possible methods include increasing the load applied to the object during polishing to increase the processing pressure, or increasing the rotation speed of the polishing platen of the polishing device.
  • problems such as damage to the object to be polished may occur due to increased friction. If a polishing liquid that can effectively reduce the friction generated during polishing could be provided, problems would be less likely to occur even when polishing conditions are made more severe, such as high processing pressure and high-speed rotation of the platen, which would be beneficial for further improving the polishing speed.
  • the present invention was made in consideration of these circumstances, and aims to provide a polishing composition that can stably improve the polishing removal rate while suppressing the coefficient of friction during polishing.
  • the inventors focused on the effect of reducing frictional force due to rolling friction when a polishing composition contains inorganic particles and resin particles, and discovered that the relationship between the numbers of inorganic particles and resin particles contributes to a reduction in the friction coefficient without reducing the polishing removal rate.
  • the polishing composition provided in this specification contains inorganic particles, an oxidizing agent, and resin particles, the oxidizing agent contains a composite metal oxide, and the ratio (Nrp/Nip) of the number of inorganic particles (Nip) to the number of resin particles (Nrp) is 80 or more.
  • the polishing composition disclosed herein contains inorganic particles.
  • the polishing composition containing inorganic particles exerts a mechanical polishing action, and thus a higher polishing removal rate can be achieved.
  • the material and properties of the inorganic particles are not particularly limited.
  • inorganic particles substantially composed of any of the following may be mentioned: oxide particles such as silica particles, alumina particles, cerium oxide particles, chromium oxide particles, titanium dioxide particles, zirconium oxide particles, magnesium oxide particles, manganese dioxide particles, zinc oxide particles, and iron oxide particles; nitride particles such as silicon nitride particles and boron nitride particles; carbide particles such as silicon carbide particles and boron carbide particles; diamond particles; carbonates such as calcium carbonate and barium carbonate; etc.
  • the inorganic particles may be used alone or in combination of two or more types.
  • oxide particles such as silica particles, alumina particles, cerium oxide particles, chromium oxide particles, zirconium oxide particles, manganese dioxide particles, and iron oxide particles are preferable because they can form a good surface.
  • silica particles, alumina particles, zirconium oxide particles, chromium oxide particles, and iron oxide particles are more preferable, silica particles and alumina particles are even more preferable, and alumina particles are particularly preferable.
  • alumina particles are used as inorganic particles, the technology disclosed herein can be applied to effectively improve the polishing removal rate.
  • the phrase "consisting essentially of X" or “consisting essentially of X” in relation to the composition of an inorganic particle means that the proportion of X in the inorganic particle (the purity of X) is 90% or more by weight.
  • the proportion of X in the inorganic particle is preferably 95% or more, more preferably 97% or more, even more preferably 98% or more, for example 99% or more.
  • the average primary particle diameter of the inorganic particles is not particularly limited. From the viewpoint of improving the polishing removal rate, the average primary particle diameter of the inorganic particles can be, for example, 5 nm or more, suitably 10 nm or more, preferably 20 nm or more, and may be 30 nm or more. From the viewpoint of further improving the polishing removal rate, in some embodiments, the average primary particle diameter of the inorganic particles may be 50 nm or more, 80 nm or more, 150 nm or more, 250 nm or more, or 350 nm or more.
  • the average primary particle diameter of the inorganic particles can be, for example, 5 ⁇ m or less, preferably 3 ⁇ m or less, more preferably 1 ⁇ m or less, 750 nm or less, or 500 nm or less. From the viewpoint of further improving the surface quality after polishing, in some embodiments, the average primary particle diameter of the inorganic particles may be 350 nm or less, 180 nm or less, 85 nm or less, or 50 nm or less.
  • the specific surface area can be measured, for example, using a surface area measuring device manufactured by Micromeritics, product name "Flow Sorb II 2300".
  • the average secondary particle diameter of the inorganic particles may be, for example, 10 nm or more, and from the viewpoint of easily increasing the polishing removal rate, it is preferably 50 nm or more, more preferably 100 nm or more, and may be 250 nm or more, or may be 400 nm or more. From the viewpoint of sufficiently securing the number per unit weight, it is appropriate to set the upper limit of the average secondary particle diameter of the inorganic particles to approximately 10 ⁇ m or less. Furthermore, from the viewpoint of surface quality after polishing, the above average secondary particle diameter is preferably 5 ⁇ m or less, more preferably 3 ⁇ m or less, for example 1 ⁇ m or less. From the viewpoint of further improving surface quality after polishing, in some embodiments, the average secondary particle diameter of the inorganic particles may be 600 nm or less, 300 nm or less, 170 nm or less, or 100 nm or less.
  • the average secondary particle diameter of inorganic particles can be measured as the volume average particle diameter (volume-based arithmetic mean diameter; Mv) for particles less than 500 nm by dynamic light scattering using, for example, a Nikkiso Co., Ltd. model "UPA-UT151.”
  • Mv volume-based arithmetic mean diameter
  • the volume average particle diameter can be measured by the pore electrical resistance method using a Beckman Coulter Co., Ltd. model "Multisizer 3.”
  • alumina particles When using alumina particles as inorganic particles, they can be appropriately selected from various known alumina particles. Examples of such known alumina particles include ⁇ -alumina and intermediate alumina. Intermediate alumina is a general term for alumina particles other than ⁇ -alumina, and specific examples include ⁇ -alumina, ⁇ -alumina, ⁇ -alumina, ⁇ -alumina, ⁇ -alumina, and ⁇ -alumina.
  • Alumina called fumed alumina typically alumina fine particles produced when alumina salt is fired at high temperatures
  • alumina called colloidal alumina or alumina sol e.g.
  • alumina hydrate such as boehmite
  • boehmite alumina hydrate
  • ⁇ -alumina alumina hydrate
  • the inorganic particles in the technology disclosed herein may include one type of such alumina particles alone or two or more types in combination.
  • the proportion of alumina particles in the total inorganic particles is preferably 70% by weight or more, more preferably 90% by weight or more, and even more preferably 95% by weight or more, and may be substantially 100% by weight.
  • the particle size of the alumina particles is not particularly limited and may be selected so as to achieve the desired polishing effect. From the viewpoint of improving the polishing removal rate, etc., the average secondary particle diameter of the alumina particles is preferably 50 nm or more, more preferably 80 nm or more, and may be 150 nm or more, 250 nm or more, or 300 nm or more.
  • the average secondary particle diameter of the alumina particles there is no particular upper limit to the average secondary particle diameter of the alumina particles, but from the viewpoint of surface quality after polishing, it is appropriate to make it approximately 5 ⁇ m or less, and from the viewpoint of further improving surface quality after polishing, it is preferably 3 ⁇ m or less, more preferably 1 ⁇ m or less, and may be 750 nm or less, 500 nm or less, 400 nm or less, or 350 nm or less.
  • the polishing composition disclosed herein may further contain inorganic particles made of a material other than the above-mentioned alumina (hereinafter also referred to as non-alumina particles) within a range that does not impair the effects of the present invention.
  • non-alumina particles include inorganic particles substantially composed of any of the following: oxide particles such as silica particles, cerium oxide particles, chromium oxide particles, titanium dioxide particles, zirconium oxide particles, magnesium oxide particles, manganese oxide particles, zinc oxide particles, and iron oxide particles; nitride particles such as silicon nitride particles and boron nitride particles; carbide particles such as silicon carbide particles and boron carbide particles; diamond particles; and carbonates such as calcium carbonate and barium carbonate.
  • oxide particles such as silica particles, cerium oxide particles, chromium oxide particles, titanium dioxide particles, zirconium oxide particles, magnesium oxide particles, manganese oxide particles, zinc oxide particles, and iron oxide particles
  • nitride particles such as silicon nitride particles and boron nitride particles
  • carbide particles such as silicon carbide particles and boron carbide particles
  • diamond particles and carbonates such as calcium carbonate and barium carbonate.
  • the content of the non-alumina particles is suitably, for example, 30% by weight or less of the total weight of the inorganic particles contained in the polishing composition, preferably 20% by weight or less, and more preferably 10% by weight or less.
  • the polishing composition contains silica particles as inorganic particles.
  • the silica particles can be appropriately selected from various known silica particles. Examples of such known silica particles include colloidal silica and dry process silica. Of these, the use of colloidal silica is preferred. With silica particles containing colloidal silica, good surface precision can be suitably achieved.
  • the shape (outer shape) of the silica particles may be spherical or non-spherical.
  • specific examples of non-spherical silica particles include a peanut shape (i.e., the shape of a peanut shell), a cocoon shape, a confetti shape, and a rugby ball shape.
  • the silica particles may be in the form of primary particles, or in the form of secondary particles in which multiple primary particles are aggregated.
  • silica particles in the form of primary particles and silica particles in the form of secondary particles may be mixed. In a preferred embodiment, at least a portion of the silica particles are contained in the polishing composition in the form of secondary particles.
  • Silica particles having an average primary particle diameter of more than 5 nm can be preferably used.
  • the average primary particle diameter of the silica particles is preferably 15 nm or more, more preferably 20 nm or more, even more preferably 25 nm or more, and particularly preferably 30 nm or more.
  • silica particles having an average primary particle diameter of 12 nm to 80 nm are preferred, and silica particles having an average primary particle diameter of 15 nm to 75 nm are preferred.
  • the average secondary particle diameter of the silica particles is not particularly limited, but from the viewpoint of polishing efficiency, etc., it is preferably 20 nm or more, more preferably 50 nm or more, and even more preferably 70 nm or more. From the viewpoint of obtaining a higher quality surface, the average secondary particle diameter of the silica particles is appropriately 500 nm or less, preferably 300 nm or less, more preferably 200 nm or less, even more preferably 130 nm or less, and particularly preferably 110 nm or less (e.g., 100 nm or less).
  • the true specific gravity (true density) of the silica particles is preferably 1.5 or more, more preferably 1.6 or more, and even more preferably 1.7 or more. Increasing the true specific gravity of the silica particles tends to increase the physical polishing ability. There is no particular upper limit to the true specific gravity of the silica particles, but it is typically 2.3 or less, for example 2.2 or less, 2.0 or less, or 1.9 or less.
  • the true specific gravity of the silica particles can be measured using a liquid substitution method using ethanol as the substitution liquid.
  • the shape (external shape) of the silica particles is preferably spherical.
  • the average value of the long axis/short axis ratio of the particles is in principle 1.00 or more, and from the viewpoint of improving the polishing removal speed, it may be, for example, 1.05 or more, or 1.10 or more.
  • the average aspect ratio of the particles is suitably 3.0 or less, and may be 2.0 or less. From the viewpoint of improving the smoothness of the polished surface and reducing scratches, the average aspect ratio of the particles is preferably 1.50 or less, and may be 1.30 or less, or may be 1.20 or less.
  • the shape (outer shape) and average aspect ratio of particles can be determined, for example, by observation with an electron microscope.
  • a specific procedure for determining the average aspect ratio is to extract the shapes of a specified number of particles (e.g., 200 particles) using a scanning electron microscope (SEM). The smallest rectangle that circumscribes the shape of each extracted particle is then drawn. Then, for the rectangle drawn for each particle shape, the long side length (long axis value) is divided by the short side length (short axis value) to calculate the long axis/short axis ratio (aspect ratio).
  • the average aspect ratio can be found by arithmetically averaging the aspect ratios of the specified number of particles.
  • the polishing composition may further contain inorganic particles made of a material other than silica (hereinafter also referred to as non-silica particles).
  • particles constituting such non-silica particles include oxide particles such as alumina particles, cerium oxide particles, chromium oxide particles, titanium dioxide particles, zirconium oxide particles, magnesium oxide particles, manganese oxide particles, zinc oxide particles, and iron oxide particles; nitride particles such as silicon nitride particles and boron nitride particles; carbide particles such as silicon carbide particles and boron carbide particles; diamond particles; carbonates such as calcium carbonate and barium carbonate; and the like.
  • the content of the non-silica particles is suitably, for example, 30% by weight or less of the total weight of the inorganic particles contained in the polishing composition, preferably 20% by weight or less, and more preferably 10% by weight or less.
  • the content of inorganic particles in the polishing composition disclosed herein is suitably less than 50 wt%, advantageously less than 40 wt%, preferably less than 30 wt%, more preferably less than 25 wt%, and may be less than 10 wt%, 9 wt% or less, 8 wt% or less, 7 wt% or less, or 6 wt% or less, from the viewpoint of surface quality after polishing, etc.
  • the content of inorganic particles in the polishing composition may be 0.5 wt% or less or less than 0.5 wt%, 0.1 wt% or less or less than 0.1 wt%, 0.05 wt% or less or less than 0.05 wt%, or 0.04 wt% or less or less than 0.04 wt%.
  • the lower limit of the content of inorganic particles in the polishing composition disclosed herein is not particularly limited, and may be, for example, 0.000001 wt % or more (i.e., 0.01 ppm or more). From the viewpoint of enhancing the use effect of the inorganic particles, in some embodiments, the content of inorganic particles in the polishing composition may be 0.00001 wt % or more, 0.0001 wt % or more, 0.001 wt % or more, 0.002 wt % or more, or 0.005 wt % or more.
  • the content of inorganic particles in the polishing composition may be 0.01 wt % or more, 0.02 wt % or more, 0.03 wt % or more, more than 0.1 wt %, more than 0.3 wt %, 0.5 wt % or more, or 0.8 wt % or more.
  • the content of inorganic particles in the polishing composition refers to the total content of the multiple types of inorganic particles.
  • the polishing composition disclosed herein is preferably one that is substantially free of diamond particles.
  • Diamond particles have a high hardness, which can be a limiting factor in improving smoothness.
  • diamond particles are generally expensive, and therefore cannot be said to be an advantageous material in terms of cost-effectiveness, and from a practical standpoint, the reliance on expensive materials such as diamond particles may be low.
  • particles that are substantially free of diamond particles means that the proportion of diamond particles among all particles contained in the polishing composition is 1% by weight or less, more preferably 0.5% by weight or less, typically 0.1% by weight or less, and includes the case where the proportion of diamond particles is 0% by weight. In such an embodiment, the effect of the application of the present invention can be preferably exhibited.
  • the polishing composition disclosed herein contains resin particles.
  • the polishing composition containing resin particles exhibits a frictional force reducing effect due to rolling friction, so that the friction coefficient can be reduced without decreasing the polishing removal rate.
  • resin particles are particles containing an organic substance.
  • the resin particles are particles containing an organic substance as a main component.
  • main component refers to a component that accounts for more than 50% by weight of the total.
  • the resin particles may have a solubility in water at 25°C of 5 g/100 mL or less.
  • the resin particles are preferably composed of a polymer containing carbon as a main component.
  • the material constituting the resin particles may be a thermoplastic resin or a thermosetting resin.
  • the thermoplastic resin include general-purpose resins; engineering resins; and the like.
  • the general-purpose resins include polyolefin resins such as polyethylene, polypropylene, polybutene, polyisobutylene, and polymethylpentene; polyethylene-vinyl acetate resins; acrylic resins such as polymethyl acrylate (PMA), polymethyl methacrylate (PMMA), polymethacrylic acid, and polyacrylic acid; styrene resins; styrene-acrylic resins; saturated polyester resins such as polyethylene terephthalate (PET); and vinyl chloride resins.
  • the engineering resins may be general-purpose engineering resins or super engineering resins.
  • the general-purpose engineering resins include polyamide resins such as nylon and aramid; polyacetal resins; polycarbonate resins; and the like.
  • the super engineering resins include fluororesins such as polytetrafluoroethylene (PTFE); polysulfone resins; polyethersulfone (PES) resins; thermoplastic polyimide resins; and the like.
  • thermosetting resins examples include phenol resins, melamine resins, amino resins, epoxy resins, urea resins, unsaturated polyester resins, polyurethane resins, acrylic-urethane resins, thermosetting polyimide resins, benzoguanamine resins, silicone resins, and the like.
  • resin particles resin particles substantially composed of any of the above resins can be used. The resin particles may be used alone or in combination of two or more.
  • polyolefin resins acrylic resins, styrene-acrylic resins, vinyl chloride resins, melamine resins, polyurethane resins, and acrylic-urethane resins are more preferred, styrene-acrylic resins and acrylic resins are even more preferred, and acrylic resins are particularly preferred.
  • acrylic resins are used as resin particles, the effect of improving the polishing removal rate can be suitably exhibited by applying the technology disclosed herein.
  • the phrase "consists essentially of X" or “consists essentially of X” in relation to the composition of a resin particle means that the proportion of X in the resin particle (the purity of X) is 90% or more by weight.
  • the proportion of X in the resin particle is preferably 95% or more, more preferably 97% or more, even more preferably 98% or more, for example 99% or more.
  • the resin particles may be charged or uncharged.
  • Anionic, cationic, nonionic, or amphoteric particles may be used as the resin particles.
  • At least one functional group selected from anionic, cationic, amphoteric, and nonionic functional groups may be introduced to the surface of the resin particles.
  • anionic functional groups include carboxylic acid type, sulfonic acid type, sulfate ester type, and phosphate ester type
  • examples of cationic functional groups include amine salt type and quaternary ammonium salt type.
  • Examples of amphoteric functional groups include alkanolamide type, carboxybetaine type, and glycine type
  • examples of nonionic functional groups include ether type and ester type.
  • the material constituting the resin particles is an anionic acrylic resin or a cationic acrylic resin. In other embodiments, the material constituting the resin particles is an anionic styrene-acrylic resin.
  • the resin constituting the resin particles may be either a resin that is a crosslinked product obtained by mixing and reacting a base agent with a curing agent (crosslinked resin) or a non-crosslinked resin (non-crosslinked resin).
  • the base agent is the above-mentioned resin (e.g., acrylic resin).
  • the curing agent is not particularly limited, but may be, for example, an epoxy compound or an isocyanate compound.
  • the material constituting the resin particles is a crosslinked acrylic resin or a non-crosslinked acrylic resin.
  • the material constituting the resin particles is a crosslinked styrene-acrylic resin or a non-crosslinked styrene-acrylic resin.
  • Resin particles prepared by a known method may be used, or those having particle size, shape, properties, etc. suitable as abrasives for polishing a substrate or other object to be polished (typically a silicon wafer) may be selected from among commercially available products available from various manufacturers.
  • acrylic resin particles may be selected from commercially available products available from Nippon Paint, DIC, Aica Kogyo, etc.
  • Styrene resin particles may be selected from commercially available products available from Nippon Paint, etc.
  • Styrene-acrylic resin particles may be selected from commercially available products available from Nippon Shokubai, Nippon Paint, etc.
  • Nylon resin particles may be selected from commercially available products available from Toray, etc.
  • Epoxy resin particles may be selected from commercially available products available from Toray, etc.
  • Saturated polyester resin particles may be selected from commercially available products available from Unitika, Sekisui Chemical, etc.
  • Polyurethane resin particles may be selected from commercially available products available from Aica Kogyo, etc.
  • the phenolic resin particles can be selected from commercially available products available from Air Water, Sumitomo Bakelite, etc.
  • the benzoguanamine resin particles can be selected from commercially available products available from Nippon Shokubai, etc.
  • the PES resin particles can be selected from commercially available products available from Japan Material Technology Institute, etc.
  • the PTFE resin particles can be selected from commercially available products available from Techno Chemical, etc. Such resin particles can be used alone or in combination of two or more types.
  • the average particle diameter of the resin particles may be, for example, 1 nm or more, and from the viewpoint of easily increasing the polishing removal rate, it is preferably 5 nm or more, more preferably 10 nm or more, may be 15 nm or more, or may be 20 nm or more. From the viewpoint of ensuring a sufficient number per unit weight, it is appropriate that the upper limit of the average particle diameter of the resin particles is approximately 10 ⁇ m or less. Furthermore, from the viewpoint of improving the polishing removal rate, the above average particle diameter is preferably 5 ⁇ m or less, more preferably 3 ⁇ m or less, for example, 2 ⁇ m or less, 1.5 ⁇ m or less, or 1 ⁇ m or less. From the viewpoint of further improving the polishing removal rate, in some embodiments, the average particle diameter of the resin particles may be 60 nm or less, 50 nm or less, 40 nm or less, or 30 nm or less.
  • the method for measuring the average particle diameter of the resin particles is not particularly limited, and a known method appropriate for the particle diameter can be used.
  • the median diameter in the particle size distribution measured by a laser diffraction scattering method can be used as the average particle diameter of the resin particles.
  • the manufacturer's nominal value can be used as the average particle diameter of the resin particles.
  • the content of resin particles in the polishing composition disclosed herein is suitably less than 10% by weight, advantageously less than 6% by weight, preferably less than 3% by weight, more preferably less than 2% by weight, and may be less than 1.5% by weight, 1.3% by weight or less, 1.2% by weight or less, 1.1% by weight or less, or 1.0% by weight or less.
  • the content of resin particles in the polishing composition may be 0.5% by weight or less or less than 0.5% by weight, 0.1% by weight or less or less than 0.1% by weight, 0.05% by weight or less or less than 0.05% by weight, or 0.04% by weight or less or less than 0.04% by weight.
  • the lower limit of the content of resin particles is not particularly limited, and may be, for example, 0.000001% by weight or more (i.e., 0.01 ppm or more). From the viewpoint of enhancing the effect of using the resin particles, in some embodiments, the content of the resin particles in the polishing composition may be 0.00001% by weight or more, 0.0001% by weight or more, 0.001% by weight or more, 0.002% by weight or more, or 0.005% by weight or more. In some embodiments, the content of the resin particles in the polishing composition may be 0.01% by weight or more, 0.02% by weight or more, 0.03% by weight or more, more than 0.1% by weight, more than 0.3% by weight, 0.5% by weight or more, or 0.8% by weight or more. When the polishing composition disclosed herein contains multiple types of resin particles, the content of the resin particles in the polishing composition refers to the total content of the multiple types of resin particles.
  • the number concentration of inorganic particles and the number concentration of resin particles satisfy a predetermined relationship. That is, in the polishing composition, the ratio of the number of resin particles (number concentration) Nrp [pieces/L] to the number of inorganic particles (number concentration) Nip [pieces/L], i.e., Nrp/Nip, is 80 or more. For example, it can be approximately 90 or more, and it is appropriate to set it to 100 or more. As Nrp/Nip increases, the friction coefficient tends to decrease. In some preferred embodiments, Nrp/Nip may be 120 or more, 140 or more, or even 160 or more.
  • the upper limit of Nrp/Nip is not particularly limited, but from the viewpoint of storage stability of the polishing composition, it can be, for example, about 500 ⁇ 10 4 or less, may be 400 ⁇ 10 4 or less, may be 300 ⁇ 10 4 or less, or may be 200 ⁇ 10 4 or less. In some embodiments, Nrp/Nip may be 100,000 or less, may be 50,000 or less, or may be 40,000 or less.
  • Nrp/Nip represents the numerical value when the number concentration of resin particles in the polishing composition is expressed in units of "pieces/L”
  • Nip represents the numerical value when the number concentration of inorganic particles in the polishing composition is expressed in units of "pieces/L”
  • both Nrp and Nip are dimensionless numbers.
  • the number concentration of the resin particles can be calculated in the same manner.
  • the radius of the inorganic particles is 1/2 the value of the average secondary particle diameter of the inorganic particles.
  • the radius of the resin particles is 1/2 the value of the average particle diameter of the resin particles.
  • the relationship between the content of inorganic particles and the content of resin particles is not particularly limited as long as the relationship of the number concentrations described above is satisfied.
  • the ratio of the content of resin particles Wrp [wt %] to the content of inorganic particles Wip [wt %], i.e., Wrp/Wip can be, for example, approximately 0.001 or more, and is preferably 0.0025 or more, and may be 0.003 or more, 0.004 or more, or 0.005 or more. In some preferred embodiments, Wrp/Wip may be 0.02 or more, or 0.03 or more.
  • the upper limit of Wrp/Wip is not particularly limited, but from the viewpoint of storage stability of the polishing composition, it can be, for example, approximately 5000 or less, and may be 1500 or less, 1000 or less, 800 or less, 400 or less, 250 or less, 100 or less, 80 or less, or 40 or less. In some embodiments, Wrp/Wip may be 30 or less, 20 or less, 10 or less, 5 or less, 1 or less, 0.5 or less, 0.1 or less, or 0.05 or less.
  • Wrp/Wip is the numerical value when the resin particle content in the polishing composition is expressed in units of "weight %”
  • Wip is the numerical value when the inorganic particle content in the polishing composition is expressed in units of "weight %.” Both Wrp and Wip are dimensionless numbers.
  • the polishing composition disclosed herein contains an oxidizing agent.
  • the oxidizing agent is effective in reducing the hardness of the material to be polished (e.g., a non-oxide material with high hardness such as silicon carbide) and weakening the material. Therefore, the oxidizing agent can exert the effect of improving the polishing removal rate in polishing the material to be polished.
  • the oxidizing agent does not include the metal salt described later.
  • the polishing composition disclosed herein is characterized by containing a complex metal oxide as an oxidizing agent.
  • the structure containing a complex metal oxide as an oxidizing agent makes it easy to improve the polishing performance.
  • the complex metal oxide can be used alone or in combination of two or more.
  • the complex metal oxide include ferric acids, permanganic acids, chromic acids, vanadic acids, ruthenic acids, molybdic acids, perrhenic acids, and tungstic acids. Among them, ferric acids, permanganic acids, chromic acids, vanadic acids, molybdic acids, and tungstic acids are more preferred, and permanganic acids and vanadic acids are even more preferred.
  • the complex metal oxide may include a complex transition metal oxide that is a salt of a cation selected from alkali metal ions and an anion selected from transition metal oxo acid ions.
  • Specific examples of the transition metal oxo acid ion in the composite transition metal oxide include permanganate ion, ferrate ion, chromate ion, dichromate ion, vanadate ion, ruthenate ion, molybdate ion, rhenate ion, tungstate ion, etc.
  • oxo acids of the fourth period transition metal elements in the periodic table are more preferred. Suitable examples of the fourth period transition metal elements in the periodic table include Fe, Mn, Cr, V, and Ti.
  • the alkali metal ion in the composite transition metal oxide is preferably Na + or K + .
  • sodium permanganate, potassium permanganate, and sodium metavanadate can be preferably used as the oxidizing agent.
  • the content of the oxidizing agent in the polishing composition disclosed herein is not particularly limited and may be appropriately set depending on the purpose and manner of use of the polishing composition. In some embodiments, from the viewpoint of improving the polishing removal rate, it is appropriate that the content of the oxidizing agent is approximately 0.5% by weight or more. From the viewpoint of improving the polishing removal rate, the content of the oxidizing agent is preferably 1% by weight or more, more preferably 1.4% by weight or more.
  • the content of the oxidizing agent may be 2.7% by weight or more, 4% by weight or more, 6% by weight or more, 6.5% by weight or more, 8% by weight or more, 9% by weight or more, 10% by weight or more, 15% by weight or more, 20% by weight or more, or 22% by weight or more.
  • the content of the oxidizing agent in the polishing composition is suitably about 45% by weight or less, preferably 40% by weight or less, more preferably 35% by weight or less, even more preferably 30% by weight or less, may be 25% by weight or less, may be 20% by weight or less, may be 15% by weight or less, or may be 10% by weight or less.
  • the polishing composition disclosed herein may or may not further contain an oxidizing agent other than the composite metal oxide (hereinafter also referred to as "other oxidizing agent").
  • an oxidizing agent other than the composite metal oxide hereinafter also referred to as "other oxidizing agent"
  • compounds that can be selected as the other oxidizing agent include peroxides such as hydrogen peroxide; periodic acids such as periodic acid and its salts, sodium periodate and potassium periodate; iodic acids such as iodic acid and its salts, ammonium iodate; bromic acids such as bromic acid and its salts, potassium bromate; persulfuric acids such as peroxomonosulfuric acid and peroxodisulfuric acid, and persulfuric acids such as ammonium persulfate and potassium persulfate; chloric acids and perchloric acids such as chloric acid and its salts, perchloric acid and its salts, potassium perchlorate; osmic acids such as peros
  • the other oxidizing agent one or more of such compounds can be used in combination.
  • the other oxidizing agent is an inorganic compound.
  • the compound used as the oxidizing agent is a salt (e.g., permanganate)
  • the compound may be present in the polishing composition in an ionic state.
  • the relationship between the content of the oxidizing agent and the content of the inorganic particles is not particularly limited, and can be appropriately set so as to achieve the desired effect depending on the purpose and mode of use.
  • the ratio of the content of the oxidizing agent Wx [wt %] to the content of the inorganic particles Wip [wt %], i.e., Wx/Wip can be, for example, approximately 0.001 or more, suitably 0.002 or more, may be 0.005 or more, may be 0.01 or more, may be 0.02 or more, may be 0.1 or more, is advantageously 0.15 or more, is preferably 0.2 or more, and is more preferably 0.3 or more.
  • Wx/Wip may be 0.5 or more, or may be 0.6 or more.
  • the upper limit of Wx/Wip is not particularly limited, but from the viewpoint of storage stability of the polishing composition, it can be, for example, approximately 20 or less, or it can be 15 or less, 10 or less, 5 or less, 3 or less, 2 or less, 1 or less, 0.8 or less, or 0.7 or less.
  • Wx is the numerical value of the oxidizing agent content in the polishing composition expressed in units of "weight %”
  • Wip is the numerical value of the inorganic particle content in the polishing composition expressed in units of "weight %.” Both Wx and Wip are dimensionless numbers.
  • the relationship between the content of the oxidizing agent and the content of the resin particles is not particularly limited, and can be appropriately set so as to achieve the desired effect depending on the purpose and mode of use.
  • the ratio of the content of the oxidizing agent Wx [wt %] to the content of the resin particles Wrp [wt %], i.e., Wx/Wrp can be, for example, approximately 0.1 or more, and is preferably 0.25 or more, and may be 0.5 or more, 1 or more, 2 or more, 5 or more, or 10 or more. As Wx/Wrp increases, the contribution of chemical polishing to the contribution of mechanical polishing tends to be greater. In some embodiments, Wx/Wrp may be 50 or more, 60 or more, or even 65 or more, 100 or more, 150 or more, or 200 or more.
  • the upper limit of Wx/Wrp is not particularly limited, but from the viewpoint of storage stability of the polishing composition, it can be, for example, approximately 5000 or less, and may be 1500 or less, 1000 or less, 800 or less, 400 or less, 300 or less, 200 or less, 100 or less, or 75 or less. In some embodiments, Wx/Wrp may be 50 or less, 40 or less, or 30 or less.
  • Wx is the numerical value when the content of the oxidizing agent in the polishing composition is expressed in units of "weight %”
  • Wrp is the numerical value when the content of the resin particles in the polishing composition is expressed in units of "weight %”
  • both Wx and Wrp are dimensionless numbers.
  • the polishing composition disclosed herein may contain a metal salt.
  • the metal salt By using the metal salt, the polishing removal rate is more likely to be improved.
  • the performance deterioration of the polishing composition e.g., the decrease in the polishing removal rate, etc.
  • the metal salt can be selected from one or more of the metal salts A, B, and C described below.
  • the polishing composition comprises metal salt A selected from alkaline earth metal salts.
  • the metal salt A one kind of alkaline earth metal salt may be used alone, or two or more kinds of alkaline earth metal salts may be used in combination.
  • the metal salt A the polishing removal rate can be improved.
  • the metal salt A preferably comprises one or more of Mg, Ca, Sr, and Ba. Among them, any of Ca and Sr is preferred, and Ca is more preferred.
  • the type of salt in the metal salt A is not particularly limited, and may be an inorganic acid salt or an organic acid salt.
  • inorganic acid salts include salts of hydrohalic acids such as hydrochloric acid, hydrobromic acid, and hydrofluoric acid, and salts of nitric acid, sulfuric acid, carbonic acid, silicic acid, boric acid, and phosphoric acid.
  • organic acid salts include salts of carboxylic acids such as formic acid, acetic acid, propionic acid, benzoic acid, glycine acid, butyric acid, citric acid, tartaric acid, and trifluoroacetic acid; organic sulfonic acids such as methanesulfonic acid, trifluoromethanesulfonic acid, benzenesulfonic acid, and toluenesulfonic acid; organic phosphonic acids such as methylphosphonic acid, benzenephosphonic acid, and toluenephosphonic acid; and organic phosphoric acids such as ethylphosphoric acid.
  • carboxylic acids such as formic acid, acetic acid, propionic acid, benzoic acid, glycine acid, butyric acid, citric acid, tartaric acid, and trifluoroacetic acid
  • organic sulfonic acids such as methanesulfonic acid, trifluoromethanesulfonic acid, benzenes
  • salts of hydrochloric acid, nitric acid, sulfuric acid, and phosphoric acid are preferred, and salts of hydrochloric acid and nitric acid are more preferred.
  • the technology disclosed herein can be preferably implemented, for example, in an embodiment in which a nitrate or chloride of an alkaline earth metal is used as the metal salt A.
  • alkaline earth metal salts that can be used as metal salt A include chlorides such as magnesium chloride, calcium chloride, strontium chloride, and barium chloride; bromides such as magnesium bromide, calcium bromide, strontium bromide, and barium bromide; fluorides such as magnesium fluoride, calcium fluoride, strontium fluoride, and barium fluoride; nitrates such as magnesium nitrate, calcium nitrate, strontium nitrate, and barium nitrate; sulfates such as magnesium sulfate, calcium sulfate, strontium sulfate, and barium sulfate; carbonates such as magnesium carbonate, calcium carbonate, strontium carbonate, and barium carbonate; carboxylates such as magnesium acetate, calcium acetate, strontium acetate, barium acetate, magnesium benzoate, calcium benzoate, barium benzoate, magnesium citrate, calcium citrate, strontium
  • the metal salt A is preferably a water-soluble salt. By using a water-soluble metal salt A, a good surface with few defects such as scratches can be efficiently formed.
  • metal salt A is preferably a compound that is not oxidized by oxidizing agent.From this viewpoint, by appropriately selecting oxidizing agent and metal salt A, it is possible to prevent the deactivation of the oxidizing agent caused by the oxidation of metal salt A by the oxidizing agent, and suppress the deterioration of the performance of polishing composition over time (for example, the decrease in polishing removal rate, etc.).From this viewpoint, calcium nitrate can be mentioned as a preferred metal salt A.
  • the concentration (content) of metal salt A in the polishing composition is not particularly limited and can be appropriately set so as to achieve the desired effect depending on the purpose and manner of use of the polishing composition.
  • the concentration of metal salt A may be, for example, approximately 1000 mM or less (i.e., 1 mol/L or less), may be 500 mM or less, or may be 300 mM or less.
  • the concentration of metal salt A is suitably 200 mM or less, preferably 100 mM or less, more preferably 50 mM or less, may be 30 mM or less, may be 20 mM or less, or may be 10 mM or less.
  • the lower limit of the concentration of metal salt A may be, for example, 0.1 mM or more, and from the viewpoint of appropriately exerting the effect of using metal salt A, it is preferably 0.5 mM or more, more preferably 1 mM or more, and may be 2.5 mM or more, 5 mM or more, 10 mM or more, 20 mM or more, or 30 mM or more.
  • the relationship between the concentration of metal salt A and the content of inorganic particles is not particularly limited, and can be appropriately set so as to achieve the desired effect according to the purpose of use and the mode of use.
  • the ratio of the concentration CA of metal salt A (if a plurality of metal salts A are contained, the total concentration thereof) [mM] to the content Wip of inorganic particles (if a plurality of inorganic particles are contained, the total content thereof) [wt %], i.e., CA/Wip can be, for example, 0.05 or more, and is suitably 0.1 or more, may be 0.2 or more, preferably 1 or more, more preferably 3 or more, may be 5 or more, or may be 10 or more.
  • CA/Wip When CA/Wip is larger, the contribution of chemical polishing to the contribution of mechanical polishing tends to be larger.
  • CA/Wip may be 12 or more, may be 15 or more, or may be 18 or more.
  • the upper limit of CA/Wip is not particularly limited, but from the viewpoint of storage stability of the polishing composition, it can be, for example, about 20,000 or less, may be 10,000 or less, may be 5,000 or less, may be 2,500 or less, or may be 1,000 or less.
  • CA/Wip may be 100 or less, may be 50 or less, may be 40 or less, or may be 30 or less.
  • CA represents the numerical value when the concentration of metal salt A in the polishing composition is expressed in units of "mM”
  • Wip represents the numerical value when the content of inorganic particles in the polishing composition is expressed in units of "weight %”
  • both Wip and CA are dimensionless numbers.
  • the polishing composition contains a metal salt B selected from salts of a cation containing a metal belonging to Groups 3 to 16 of the periodic table and an anion.
  • a metal salt B selected from salts of a cation containing a metal belonging to Groups 3 to 16 of the periodic table and an anion.
  • the metal salt B one metal salt selected from salts of a cation containing a metal belonging to Groups 3 to 16 of the periodic table and an anion can be used alone or in combination of two or more metal salts.
  • the cation of metal salt B may be a cation containing a transition metal, i.e., a metal belonging to groups 3 to 12 of the periodic table, or a cation containing a poor metal, i.e., a metal belonging to groups 13 to 16.
  • the transition metal is preferably one belonging to groups 4 to 11 of the periodic table, and is also suitable for those belonging to periods 4 to 6 of the periodic table, with those belonging to periods 4 to 5 being preferred, and those belonging to period 4 being more preferred.
  • the poor metal is preferably one belonging to groups 13 to 15 of the periodic table, and more preferably one belonging to groups 13 to 14, and is also preferably one belonging to periods 3 to 5 of the periodic table, and more preferably one belonging to periods 3 to 4, with the poor metal belonging to period 3 being particularly preferred, i.e., aluminum.
  • metal salt B is preferably a salt of an anion and a cation containing a metal whose hydrated metal ion has a pKa of less than about 7.
  • Metal salt B which is a salt of such a cation and an anion, generates a hydrated metal cation in water, and the hydrated metal cation acts as a pH buffer because the proton on the coordinated water is in an equilibrium between attachment and detachment, and thus is easy to suppress the deterioration of the performance of the polishing composition over time.
  • metal salt B can preferably be a salt of a metal cation whose hydrated metal ion has a pKa of less than 7.0 or 6.0 or less, for example, and an anion.
  • metal cations having a pKa of 6.0 or less include, but are not limited to, Al 3+ (pKa of hydrated metal ion: 5.0), Cr 3+ (pKa of hydrated metal ion: 4.2), Fe 3+ (pKa of hydrated metal ion: 2.2), ZrO 2+ (pKa of hydrated metal ion: -0.3), Ga 3+ (pKa of hydrated metal ion: 2.6), and In 3+ (pKa of hydrated metal ion: 4.0).
  • the type of salt in the metal salt B is not particularly limited, and may be an inorganic acid salt or an organic acid salt.
  • inorganic acid salts include salts of hydrohalic acids such as hydrochloric acid, hydrobromic acid, and hydrofluoric acid, and salts of nitric acid, sulfuric acid, carbonic acid, silicic acid, boric acid, and phosphoric acid.
  • organic acid salts include salts of carboxylic acids such as formic acid, acetic acid, propionic acid, benzoic acid, glycine acid, butyric acid, citric acid, tartaric acid, and trifluoroacetic acid; organic sulfonic acids such as methanesulfonic acid, trifluoromethanesulfonic acid, benzenesulfonic acid, and toluenesulfonic acid; organic phosphonic acids such as methylphosphonic acid, benzenephosphonic acid, and toluenephosphonic acid; and organic phosphoric acids such as ethylphosphoric acid.
  • carboxylic acids such as formic acid, acetic acid, propionic acid, benzoic acid, glycine acid, butyric acid, citric acid, tartaric acid, and trifluoroacetic acid
  • organic sulfonic acids such as methanesulfonic acid, trifluoromethanesulfonic acid, benzenes
  • salts of hydrochloric acid, nitric acid, sulfuric acid, and phosphoric acid are preferred, and salts of hydrochloric acid, nitric acid, and sulfuric acid are more preferred.
  • the technology disclosed herein can be preferably carried out in an embodiment using, for example, a salt of any one of the cations Al 3+ , Cr 3+ , Fe 3+ , ZrO 2+ , Ga 3+ , and In 3+ with a nitrate ion (NO 3 ⁇ ) or a chloride ion (Cl ⁇ ) as metal salt B.
  • the metal salt B is preferably a water-soluble salt. By using a water-soluble metal salt B, a good surface with few defects such as scratches can be efficiently formed.
  • metal salt B is preferably a compound that is not oxidized by oxidizing agent.From this viewpoint, by appropriately selecting oxidizing agent and metal salt B, it is possible to prevent the deactivation of the oxidizing agent caused by the oxidation of metal salt B by the oxidizing agent, and to suppress the deterioration of the performance of polishing composition over time (for example, the decrease in polishing removal rate, etc.).
  • preferred examples of metal salt B include aluminum nitrate, aluminum chloride, etc.
  • the concentration (content) of metal salt B in the polishing composition is not particularly limited and can be appropriately set so as to achieve the desired effect depending on the purpose and mode of use of the polishing composition.
  • the concentration of metal salt B may be, for example, approximately 1000 mM or less (i.e., 1 mol/L or less), may be 500 mM or less, or may be 300 mM or less.
  • the concentration of metal salt B is appropriately 200 mM or less, preferably 100 mM or less, more preferably 50 mM or less, may be 40 mM or less, may be 35 mM or less, or may be 32 mM or less.
  • the lower limit of the concentration of metal salt B may be, for example, 0.1 mM or more, and from the viewpoint of appropriately exerting the effect of use of metal salt B, it is advantageous to set it to 1 mM or more, preferably 5 mM or more, more preferably 10 mM or more (e.g., 15 mM or more), may be 20 mM or more, or may be 25 mM or more.
  • the relationship between the concentration of metal salt B and the content of inorganic particles is not particularly limited, and can be appropriately set so as to achieve the desired effect according to the purpose of use and the mode of use.
  • the ratio of the concentration CB of metal salt B (the total concentration of multiple metal salts B) [mM] to the content Wip of inorganic particles (the total content of multiple inorganic particles) [wt %], i.e., CB/Wip can be, for example, 0.05 or more, and is suitably 0.1 or more, may be 0.2 or more, preferably 1 or more, more preferably 3 or more, may be 5 or more, or may be 10 or more.
  • CB/Wip When CB/Wip is larger, the contribution of chemical polishing to the contribution of mechanical polishing tends to be larger.
  • CB/Wip may be 20 or more, 50 or more, 100 or more, or 300 or more.
  • the upper limit of CB/Wip is not particularly limited, but from the viewpoint of storage stability of the polishing composition, it can be, for example, about 10,000 or less, may be 5,000 or less, or may be 2,500 or less. In some embodiments, CB/Wip may be 1,000 or less, 800 or less, or 600 or less.
  • CB/Wip represents the numerical value when the concentration of metal salt B in the polishing composition is expressed in units of "mM”
  • Wip represents the numerical value when the content of inorganic particles in the polishing composition is expressed in units of "weight %”
  • both CB and Wip are dimensionless numbers.
  • the polishing composition contains a metal salt C selected from salts of a cation containing a transition metal, i.e., a metal belonging to Groups 3 to 12 of the periodic table, and an anion.
  • the metal salt C can be used alone or in combination of two or more.
  • the above transition metals are preferably those belonging to groups 4 to 11 of the periodic table, and more preferably those belonging to periods 4 to 6 of the periodic table, more preferably those belonging to periods 4 to 5, and even more preferably those belonging to period 4.
  • the metal salt C is preferably a salt of an anion and a cation containing a metal whose hydrated metal ion has a pKa value of less than about 7.
  • the metal salt C which is a salt of such a cation and an anion, forms a hydrated metal cation in water, and the hydrated metal cation acts as a pH buffer because the proton on the coordinated water is in an attachment/detachment equilibrium, and is easy to suppress the performance deterioration of the polishing composition over time.
  • the metal salt C can preferably be a salt of an anion and a cation containing a metal whose hydrated metal ion has a pKa value of less than 7 or less than 6.
  • metal cations having a pKa of 6 or less for their hydrated metal ions include, but are not limited to, Cr 3+ (pKa of their hydrated metal ions is 4.2), Fe 3+ (pKa of their hydrated metal ions is 2.2), Hf 4+ (pKa of their hydrated metal ions is 0.2), Zr 4+ (pKa of their hydrated metal ions is -0.3), Ti 4+ (pKa of their hydrated metal ions is -4.0), etc.
  • Examples of cations constituting the metal salt C include, but are not limited to, single-atom transition metal cations such as Cr3 + , Fe3 + , Hf4 +, Zr4 +, Ti4 + , etc.; oxytransition metal cations such as ZrO2 + , ZrO + , HfO + , TiO + , TiO2 +, etc.; transition metal hydroxide cations such as ZrOH + , HfOH + , etc.
  • the type of the salt in the metal salt C is not particularly limited, and may be an inorganic salt or an organic salt.
  • inorganic salts include hydrohalic acids such as hydrochloric acid, hydrobromic acid, and hydrofluoric acid, inorganic acid salts such as nitric acid, sulfuric acid, carbonic acid, silicic acid, boric acid, and phosphoric acid; sulfides; oxides; oxyhalides such as oxychlorides, oxybromides, and oxyfluorides; oxyinorganic acid salts such as oxynitrates, oxysulfates, oxycarbonates, oxysilicates, oxyborates, and oxyphosphates; and oxysulfides.
  • organic salts include organic acid salts such as formic acid, acetic acid, propionic acid, benzoic acid, glycine acid, butyric acid, citric acid, tartaric acid, and trifluoroacetic acid; organic sulfonic acids such as methanesulfonic acid, trifluoromethanesulfonic acid, benzenesulfonic acid, and toluenesulfonic acid; organic phosphonic acids such as methylphosphonic acid, benzenephosphonic acid, and toluenephosphonic acid; organic phosphoric acids such as ethyl phosphoric acid; and oxyorganic acid salts such as oxyacetates.
  • organic acid salts such as formic acid, acetic acid, propionic acid, benzoic acid, glycine acid, butyric acid, citric acid, tartaric acid, and trifluoroacetic acid
  • organic sulfonic acids such as methanesulfonic acid, trifluoromethan
  • salts of hydrochloric acid, nitric acid, sulfuric acid, and phosphoric acid are preferred, and salts of hydrochloric acid and nitric acid are more preferred.
  • the technology disclosed herein can be preferably implemented, for example, in an embodiment in which the metal salt C is an oxytransition metal salt that is a salt of an oxytransition metal cation and an anion.
  • the technology can be preferably implemented in an embodiment in which a salt of an oxytransition metal cation, such as ZrO 2+ , ZrO + , HfO + , TiO + , or TiO 2+, is used with a nitrate ion (NO 3 ⁇ ), a sulfate ion (SO 4 2 ⁇ ), or a chloride ion (Cl ⁇ ).
  • a salt of an oxytransition metal cation such as ZrO 2+ , ZrO + , HfO + , TiO + , or TiO 2+
  • Metal salt C when dissolved in water, produces a polynuclear transition metal complex consisting of a transition metal and oxygen atoms and/or hydrogen.
  • metal salt C such as zirconyl nitrate, zirconium sulfate, or zirconium chloride
  • metal salt C can also be preferably embodied in the form of a polynuclear transition metal complex consisting of a transition metal and oxygen atoms and/or hydrogen produced by dissolving in water.
  • An example of a preferred polynuclear transition metal complex is a polynuclear transition metal complex consisting of zirconium and oxygen atoms and/or hydrogen.
  • the metal salt C is preferably a compound that is not oxidized by the oxidizing agent. From this viewpoint, by appropriately selecting the oxidizing agent and the metal salt C, it is possible to prevent the metal salt C from being oxidized by the oxidizing agent, thereby preventing the performance of the polishing composition from deteriorating over time (e.g., a decrease in the polishing removal rate, etc.). From this viewpoint, an example of a preferred metal salt C is zirconyl nitrate.
  • the concentration (content) of metal salt C in the polishing composition is not particularly limited and can be appropriately set so as to achieve the desired effect depending on the purpose and manner of use of the polishing composition.
  • the concentration of metal salt C may be, for example, approximately 1000 mM or less (i.e., 1 mol/L or less), may be 500 mM or less, or may be 300 mM or less.
  • the concentration of metal salt C is suitably 200 mM or less, preferably 100 mM or less, more preferably 50 mM or less, may be 30 mM or less, may be 20 mM or less, or may be 10 mM or less.
  • the lower limit of the concentration of metal salt C may be, for example, 0.1 mM or more, and from the viewpoint of properly exerting the effect of using metal salt C, it is advantageous to set it to 1 mM or more, preferably 5 mM or more, more preferably 10 mM or more (for example, 15 mM or more), and may be 18 mM or more, 20 mM or more, or 30 mM or more.
  • the relationship between the concentration of the metal salt C and the content of the inorganic particles is not particularly limited, and can be appropriately set so as to achieve the desired effect according to the purpose of use and the mode of use.
  • the ratio of the concentration CC of the metal salt C (the total concentration of a plurality of metal salts C) [mM] to the content Wip of the inorganic particles (the total content of a plurality of inorganic particles) [wt %], i.e., CC/Wip can be, for example, 0.05 or more, and is preferably 0.1 or more, and may be 0.2 or more, preferably 1 or more, more preferably 3 or more, may be 5 or more, or may be 10 or more.
  • CC/Wip may be 12 or more, 15 or more, or 18 or more. In some other embodiments, CC/Wip may be 50 or more, 100 or more, 150 or more, 200 or more, or 250 or more.
  • the upper limit of C/Wip is not particularly limited, but from the viewpoint of storage stability of the polishing composition, it may be, for example, about 20,000 or less, 10,000 or less, 5,000 or less, 2,500 or less, or 1,000 or less. In some embodiments, CC/Wip may be 100 or less, 50 or less, 40 or less, or 30 or less.
  • CC represents the numerical value when the concentration of metal salt C in the polishing composition is expressed in units of "mM”
  • Wip represents the numerical value when the content of inorganic particles in the polishing composition is expressed in units of "weight %”
  • both Wip and CC are dimensionless numbers.
  • the polishing composition disclosed herein typically contains water.
  • water ion-exchanged water (deionized water), pure water, ultrapure water, distilled water, etc. can be preferably used.
  • the polishing composition disclosed herein may further contain an organic solvent (lower alcohol, lower ketone, etc.) that can be uniformly mixed with water, if necessary.
  • an organic solvent lower alcohol, lower ketone, etc.
  • 90% by volume or more of the solvent contained in the polishing composition is water, preferably 95% by volume or more is water, and more preferably 99 to 100% by volume is water.
  • the polishing composition may contain an acid as necessary for the purpose of adjusting pH or improving the polishing removal rate.
  • Both inorganic and organic acids can be used as the acid.
  • inorganic acids include sulfuric acid, nitric acid, hydrochloric acid, and carbonic acid.
  • organic acids include aliphatic carboxylic acids such as formic acid, acetic acid, and propionic acid, aromatic carboxylic acids such as benzoic acid and phthalic acid, citric acid, oxalic acid, tartaric acid, malic acid, maleic acid, fumaric acid, succinic acid, organic sulfonic acid, and organic phosphonic acid. These can be used alone or in combination of two or more.
  • the amount of the acid is not particularly limited, and can be determined according to the purpose of use (e.g., pH adjustment).
  • the composition may be substantially free of acid.
  • the polishing composition may contain a basic compound as necessary for the purpose of adjusting pH or improving the polishing removal rate.
  • the basic compound refers to a compound that has the function of increasing the pH of the polishing composition by being added to the polishing composition.
  • Examples of basic compounds include alkali metal hydroxides such as potassium hydroxide and sodium hydroxide; carbonates and bicarbonates such as ammonium hydrogen carbonate, ammonium carbonate, potassium hydrogen carbonate, potassium carbonate, sodium hydrogen carbonate, and sodium carbonate; ammonia; quaternary ammonium compounds such as quaternary ammonium hydroxides such as tetramethylammonium hydroxide, tetraethylammonium hydroxide, and tetrabutylammonium hydroxide; and other amines, phosphates, hydrogen phosphates, and organic acid salts.
  • the basic compounds may be used alone or in combination of two or more.
  • the amount used is not particularly limited, and may be used in accordance with the purpose of use (e.g., pH adjustment).
  • the composition may be substantially free of a basic compound.
  • the polishing composition disclosed herein may further contain, as necessary, known additives that can be used in polishing compositions (for example, polishing compositions used for polishing high-hardness materials such as silicon carbide), such as chelating agents, thickening agents, dispersants, surface protective agents, wetting agents, surfactants, rust inhibitors, preservatives, and antifungal agents, within the scope that does not impair the effects of the present invention.
  • additives for example, polishing compositions used for polishing high-hardness materials such as silicon carbide
  • chelating agents such as chelating agents, thickening agents, dispersants, surface protective agents, wetting agents, surfactants, rust inhibitors, preservatives, and antifungal agents
  • the content of the above additives may be appropriately set depending on the purpose of their addition, and detailed explanations are omitted since they do not characterize the present invention.
  • the pH of the polishing composition is suitably about 1 to 12.
  • the pH may be 12.0 or less, 11.0 or less, 10.0 or less, 9.0 or less, less than 9.0, 8.0 or less, less than 8.0, 7.0 or less, less than 7.0, or 6.0 or less.
  • a metal salt e.g., metal salt B
  • the pH of the polishing composition is preferably less than 6.0, 5.0 or less, less than 5.0, 4.0 or less, or less than 4.0.
  • the pH may be, for example, 1.0 or more, 1.5 or more, 2.0 or more, or 2.5 or more.
  • the method for preparing the polishing composition disclosed herein is not particularly limited.
  • the components contained in the polishing composition may be mixed using a well-known mixing device such as a blade stirrer, ultrasonic disperser, or homomixer.
  • the manner in which these components are mixed is not particularly limited, and for example, all the components may be mixed at once, or may be mixed in an appropriately set order.
  • the polishing composition disclosed herein may be a one-component type or a multi-component type, including a two-component type.
  • the polishing composition may be configured such that part A containing some of the components (e.g., components other than water) of the polishing composition and part B containing the remaining components are mixed and used to polish an object to be polished.
  • the multi-component polishing composition may further contain part C in addition to the above-mentioned parts A and B. These may be stored separately before use, for example, and mixed at the time of use to prepare a one-component polishing composition. When mixed, water for dilution may be further mixed.
  • the multi-component polishing composition disclosed herein contains particles (inorganic particles or resin particles) and water in part A, and contains an oxidizing agent and water in part B.
  • This embodiment can improve the storage stability of the polishing composition.
  • the optionally used part C may or may not contain inorganic particles, resin particles, and a portion of the oxidizing agent.
  • the object to be polished by the polishing composition disclosed herein is not particularly limited.
  • the polishing composition disclosed herein can be applied to polishing a substrate having a surface composed of a compound semiconductor material, that is, a compound semiconductor substrate.
  • the constituent material of the compound semiconductor substrate is not particularly limited, and may be, for example, II-VI group compound semiconductors such as cadmium telluride, zinc selenide, cadmium sulfide, cadmium mercury telluride, zinc cadmium telluride, etc.; III-V group compound semiconductors such as gallium nitride, gallium arsenide, gallium phosphide, indium phosphide, aluminum gallium arsenide, gallium indium arsenide, indium gallium nitride arsenide, aluminum gallium indium phosphide, etc.; IV-IV group compound semiconductors such as silicon carbide and germanium silicide; etc.
  • II-VI group compound semiconductors such as cadmium telluride, zinc selenide, cadmium sulfide, cadmium mercury telluride, zinc cadmium telluride, etc.
  • III-V group compound semiconductors such as gallium nitride, gallium
  • the object to be polished may be composed of a plurality of these materials.
  • the polishing composition disclosed herein can be applied to polishing a substrate having a surface composed of a chemical semiconductor material that is not an oxide (i.e., a non-oxide).
  • a non-oxide chemical semiconductor material In polishing a substrate having a surface composed of a non-oxide chemical semiconductor material, the polishing-accelerating effect of the oxidizing agent contained in the polishing composition disclosed herein is easily and suitably exhibited.
  • the polishing composition disclosed herein can be preferably used for polishing the surface of an object to be polished having a Vickers hardness of, for example, 500 Hv or more.
  • the Vickers hardness is preferably 700 Hv or more, for example, 1000 Hv or more, or 1500 Hv or more.
  • the Vickers hardness of the material to be polished may be 1800 Hv or more, 2000 Hv or more, or 2200 Hv or more.
  • the upper limit of the Vickers hardness of the surface of the object to be polished is not particularly limited, and may be, for example, approximately 7000 Hv or less, 5000 Hv or less, or 3000 Hv or less. In this specification, the Vickers hardness can be measured based on JIS R 1610:2003.
  • the international standard corresponding to the above JIS standard is ISO 14705:2000.
  • Materials having a Vickers hardness of 1500 Hv or more include silicon carbide, silicon nitride, titanium nitride, gallium nitride, etc.
  • the object to be polished in the technology disclosed herein may have a single crystal surface of the above material that is mechanically and chemically stable.
  • the surface of the object to be polished is preferably composed of either silicon carbide or gallium nitride, and more preferably composed of silicon carbide.
  • Silicon carbide is expected to be a compound semiconductor substrate material with low power loss and excellent heat resistance, etc., and the practical advantage of improving productivity by increasing the polishing removal rate is particularly great.
  • the technology disclosed herein can be particularly preferably applied to polishing the single crystal surface of silicon carbide.
  • the polishing composition disclosed herein can be used for polishing an object to be polished, for example, in an embodiment including the following operations. That is, prepare a polishing liquid (slurry) containing any of the polishing compositions disclosed herein.
  • the preparation of the polishing liquid may include the polishing composition being adjusted in concentration (e.g., diluted), adjusted in pH, etc. to prepare the polishing liquid.
  • the polishing composition may be used as it is as the polishing liquid.
  • the preparation of the polishing liquid may include mixing the agents, diluting one or more agents before the mixing, diluting the mixture after the mixing, etc.
  • the polishing liquid is supplied to the object to be polished, and the object is polished by a method that is generally used by those skilled in the art.
  • the object to be polished is set in a general polishing device, and the polishing liquid is supplied to the surface of the object to be polished through the polishing pad of the polishing device.
  • the polishing liquid is continuously supplied, and the polishing pad is pressed against the surface of the object to be polished, and the two are moved relatively (for example, rotated). Through this polishing process, the polishing of the object to be polished is completed.
  • contents (concentrations) and content (concentration) ratios for each component that may be contained in the polishing composition in the technology disclosed herein typically refer to the contents and content ratios in the polishing composition when it is actually supplied to the object to be polished (i.e., at the point of use), and therefore can be read as the contents and content ratios in the polishing liquid.
  • a polishing method for polishing an object to be polished typically, a material to be polished
  • the polishing method is characterized by including a step of polishing an object to be polished using the polishing composition disclosed herein.
  • a preferred embodiment of the polishing method includes a step of performing preliminary polishing (preliminary polishing step) and a step of performing finish polishing (finish polishing step).
  • the preliminary polishing step is a polishing step arranged immediately before the finish polishing step.
  • the preliminary polishing step may be a single-stage polishing step or a multiple-stage polishing step of two or more stages.
  • the finish polishing step here refers to a step of performing finish polishing on an object to be polished that has been subjected to preliminary polishing, and is the polishing step arranged last (i.e., the most downstream) of the polishing steps that are performed using a polishing slurry containing abrasive grains.
  • the polishing composition disclosed herein may be used in the preliminary polishing step, may be used in the finish polishing step, or may be used in both the preliminary polishing step and the finish polishing step.
  • Preliminary polishing and finish polishing can be applied to both polishing with a single-sided polishing machine and polishing with a double-sided polishing machine.
  • the object to be polished is attached to a ceramic plate with wax or held using a holder called a template, and one side of the object to be polished is polished by pressing a polishing pad against one side of the object to be polished while supplying a polishing composition and moving the two relative to each other.
  • the above movement is, for example, rotational movement.
  • the object to be polished is held using a holder called a carrier, and while supplying a polishing composition from above, a polishing pad is pressed against the opposing side of the object to be polished and they are rotated in relative directions to polish both sides of the object to be polished simultaneously.
  • the above polishing conditions are appropriately set based on the type of material to be polished, the target surface properties (specifically, smoothness), the polishing removal rate, etc., and are not limited to specific conditions.
  • the polishing composition disclosed herein can be used in a wide pressure range, for example, from 10 kPa to 150 kPa.
  • the above processing pressure may be, for example, 5 kPa or more, 10 kPa or more, 20 kPa or more, 30 kPa or more, or 40 kPa or more, and can be 100 kPa or less, 80 kPa or less, or 60 kPa or less.
  • the polishing composition disclosed herein can be preferably used for polishing under processing conditions of, for example, 30 kPa or more or higher, and the productivity of the target object (polished object) obtained through such polishing can be increased.
  • processing pressure here is synonymous with the polishing pressure.
  • the polishing pad used in each polishing process disclosed herein is not particularly limited.
  • any of nonwoven fabric type, suede type, and hard foam polyurethane type may be used.
  • a hard foam polyurethane type polishing pad may be preferably used.
  • the polishing pad used in the technology disclosed herein is a polishing pad that does not contain abrasive grains.
  • the object to be polished that has been polished by the method disclosed herein is typically washed after polishing. This washing can be carried out using an appropriate cleaning liquid. There are no particular limitations on the cleaning liquid used, and any known or commonly used liquid can be appropriately selected and used.
  • the polishing method disclosed herein may include any other steps in addition to the preliminary polishing step and the finish polishing step.
  • steps include a mechanical polishing step and a lapping step that are performed before the preliminary polishing step.
  • the mechanical polishing step the object to be polished is polished using a liquid in which diamond abrasive grains are dispersed in a solvent.
  • the dispersion liquid does not contain an oxidizing agent.
  • the lapping step is a step in which the surface of a polishing table, for example a cast iron table, is pressed against the object to be polished to polish it. Therefore, a polishing pad is not used in the lapping step.
  • the lapping step is typically performed by supplying abrasive grains between the polishing table and the object to be polished.
  • the abrasive grains are typically diamond abrasive grains.
  • the polishing method disclosed herein may also include an additional step before the preliminary polishing step or between the preliminary polishing step and the finish polishing step.
  • the additional step is, for example, a cleaning step or a polishing step.
  • the technology disclosed herein may include a method for manufacturing an abrasive, which includes a polishing step using any of the polishing methods described above, and the provision of an abrasive manufactured by the method.
  • the above-mentioned method for manufacturing an abrasive is, for example, a method for manufacturing a silicon carbide substrate. That is, according to the technology disclosed herein, a method for manufacturing an abrasive, which includes polishing an object to be polished having a surface made of a high-hardness material by applying any of the polishing methods disclosed herein, and an abrasive manufactured by the method are provided. According to the above manufacturing method, a substrate manufactured through polishing, such as a silicon carbide substrate, can be efficiently provided.
  • a polishing composition comprising inorganic particles, an oxidizing agent, and resin particles, wherein the oxidizing agent comprises a composite metal oxide, and the ratio (Nrp/Nip) of the number of the inorganic particles (Nip) to the number of the resin particles (Nrp) is 80 or more.
  • the oxide particles contain alumina.
  • the oxide particles contain silica.
  • polishing composition contains 1.6 wt% oxidizing agent and 5.9 wt% inorganic particles.
  • concentration of resin particles in the polishing composition, the ratio (Nrp/Nip) of the number concentration Nrp [pieces/L] of resin particles to the number concentration Nip [pieces/L] of inorganic particles used, and the resin particles, oxidizing agent, inorganic particles used are as shown in Table 1.
  • Comparative Example 1 An oxidizing agent, inorganic particles, and deionized water were mixed to prepare a polishing composition.
  • the polishing composition contained 1.6 wt% of an oxidizing agent and 5.9 wt% of inorganic particles.
  • an acid was added to the composition of Comparative Example 1 to adjust the pH.
  • the oxidizing agent and inorganic particles used were as shown in Table 1.
  • a SiC wafer was pre-polished using a preliminary polishing composition containing alumina particles.
  • the polished SiC wafer was polished under the following conditions using the polishing composition according to each example as it is as a polishing liquid.
  • Polishing equipment Fujikoshi Machinery Industry Co., Ltd., model "RDP-500” Polishing pad: Nitta Haas "SUBA800XY” (non-woven fabric type) Processing pressure: 29.4 kPa Platen rotation speed: 100 rpm Head rotation speed: 100 rpm Polishing liquid supply rate: 20 mL/min Polishing liquid usage method: pour-over Polishing time: 1 hour Polishing object: 1-inch SiC wafer (conductivity type: n-type, crystal type 4H-SiC, off angle of main surface (0001) to C-axis: 4°), Si surface, 1 wafer/batch Polishing liquid temperature: 23°C
  • polishing removal rate polishing removal amount [cm] ⁇ 10 7 /polishing time [h]
  • the friction coefficient was measured when polishing a SiC wafer using each polishing composition.
  • a template using a suede backing material was used as a wafer holder. The wafer was attached so that it protruded from the template by 200 ⁇ m or more. During polishing, the wafer was kept in a water-tensioned state against the suede material. The friction coefficient was directly adopted as the value output from the polishing device.
  • the polishing composition of the example having an Nrp/Nip ratio of 80 or more was able to improve the polishing removal rate and reduce friction compared to the polishing composition of Comparative Example 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

The present invention provides a polishing composition with which friction on a polishing target can be reduced while maintaining a satisfactory polishing speed. The polishing composition contains inorganic particles, an oxidizing agent, and resin particles, the oxidizing agent contains a composite metal oxide, and the ratio (Nrp/Nip) of the number (Nip) of inorganic particles and the number (Nrp) of resin particles is 80 or higher.

Description

研磨用組成物Polishing composition
 本発明は、研磨用組成物に関する。
 本出願は、2023年3月30日に出願された日本国特許出願2023-056600に基づく優先権を主張しており、その出願の全内容は本明細書中に参照として組み入れられている。
The present invention relates to a polishing composition.
This application claims priority based on Japanese Patent Application No. 2023-056600, filed on March 30, 2023, the entire contents of which are incorporated herein by reference.
 金属や半金属、非金属、その酸化物等の材料の表面に対して、研磨用組成物を用いた研磨が行われている。例えば、炭化ケイ素、炭化ホウ素、炭化タングステン、窒化ケイ素、窒化チタン、窒化ガリウム等の化合物半導体材料により構成された表面は、その表面と研磨定盤との間にダイヤモンド砥粒を供給して行う研磨(ラッピング)によって加工される。しかし、ダイヤモンド砥粒を用いるラッピングでは、スクラッチや打痕の発生、残存等による欠陥や歪みが生じやすい。そこで、ダイヤモンド砥粒を用いたラッピングの後に、あるいは当該ラッピングに代えて、研磨パッドと研磨用組成物を用いる研磨(ポリシング)を行うことが検討されている。この種の従来技術を開示する文献として、特許文献1が挙げられる。 Abrasive compositions are used to polish the surfaces of materials such as metals, semimetals, nonmetals, and oxides thereof. For example, surfaces made of compound semiconductor materials such as silicon carbide, boron carbide, tungsten carbide, silicon nitride, titanium nitride, and gallium nitride are processed by polishing (lapping) by supplying diamond abrasive grains between the surface and a polishing table. However, lapping using diamond abrasive grains is prone to defects and distortions due to the generation and persistence of scratches and dents. Therefore, polishing (polishing) using a polishing pad and a polishing composition after lapping using diamond abrasive grains, or instead of lapping, is being considered. Patent Document 1 is an example of a document that discloses this type of prior art.
国際公開第2016/072370号International Publication No. 2016/072370
 製造効率やコスト面の観点から、研磨液を供給して研磨対象物を研磨するときの研磨速度は実用上十分に大きいことが望まれる。例えば、炭化ケイ素等のように高硬度材料から構成された研磨対象物の研磨においては、研磨物の歩留まりを向上させる観点から、研磨速度のさらなる向上が望まれている。 From the standpoint of manufacturing efficiency and cost, it is desirable that the polishing speed when supplying a polishing liquid to polish an object be high enough for practical use. For example, when polishing an object made of a high-hardness material such as silicon carbide, it is desirable to further improve the polishing speed in order to improve the yield of the polished object.
 高硬度材料から構成された研磨対象物に対する研磨速度の向上を、研磨条件の設定により達成しようとする場合、研磨時に研磨対象物に掛かる荷重を増やして加工圧力を増大させたり、研磨装置の定盤回転を高速化したりする方法が考えられる。しかしながら、上記方法では摩擦力の上昇により、研磨対象物の破損等の不具合の発生が懸念される。研磨で発生する摩擦を効果的に低減させ得る研磨液が提供されれば、たとえ高加工圧力、定盤の高速回転など研磨条件をよりシビアにした場合であっても不具合が生じにくくなり、研磨速度のさらなる向上のために有益である。 When attempting to improve the polishing speed for objects made of high-hardness materials by adjusting the polishing conditions, possible methods include increasing the load applied to the object during polishing to increase the processing pressure, or increasing the rotation speed of the polishing platen of the polishing device. However, the above methods raise concerns that problems such as damage to the object to be polished may occur due to increased friction. If a polishing liquid that can effectively reduce the friction generated during polishing could be provided, problems would be less likely to occur even when polishing conditions are made more severe, such as high processing pressure and high-speed rotation of the platen, which would be beneficial for further improving the polishing speed.
 本発明は、かかる事情に鑑みてなされたものであって、研磨中の摩擦係数を抑制しながら、安定的に研磨除去速度を向上し得る研磨用組成物を提供することを目的とする。 The present invention was made in consideration of these circumstances, and aims to provide a polishing composition that can stably improve the polishing removal rate while suppressing the coefficient of friction during polishing.
 本発明者らは、研磨用組成物が無機粒子および樹脂粒子を含む際、転がり摩擦による摩擦力低減効果に注目し、無機粒子および樹脂粒子の個数の関係が研磨除去速度を低下させることなく摩擦係数の低下に寄与していることを見出した。 The inventors focused on the effect of reducing frictional force due to rolling friction when a polishing composition contains inorganic particles and resin particles, and discovered that the relationship between the numbers of inorganic particles and resin particles contributes to a reduction in the friction coefficient without reducing the polishing removal rate.
 本明細書により提供される研磨用組成物は、無機粒子と、酸化剤と、樹脂粒子を含み、酸化剤は複合金属酸化物を含み、無機粒子の個数(Nip)と樹脂粒子の個数(Nrp)の比(Nrp/Nip)が80以上である。かかる研磨用組成物によると、研磨中の摩擦係数を抑制しながら、安定的に研磨除去速度を向上させることができる。 The polishing composition provided in this specification contains inorganic particles, an oxidizing agent, and resin particles, the oxidizing agent contains a composite metal oxide, and the ratio (Nrp/Nip) of the number of inorganic particles (Nip) to the number of resin particles (Nrp) is 80 or more. With such a polishing composition, it is possible to stably improve the polishing removal rate while suppressing the coefficient of friction during polishing.
 以下、本発明の好適な実施形態を説明する。なお、本明細書において特に言及している事項以外の事柄であって本発明の実施に必要な事柄は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。 The following describes preferred embodiments of the present invention. Note that matters other than those specifically mentioned in this specification that are necessary for implementing the present invention can be understood as design matters for a person skilled in the art based on the prior art in the relevant field. The present invention can be implemented based on the contents disclosed in this specification and common technical knowledge in the relevant field.
 <研磨用組成物>
 (無機粒子)
 ここに開示される研磨用組成物は、無機粒子を含む。無機粒子を含む研磨用組成物によると、機械的な研磨作用が発揮されることにより、より高い研磨除去速度が実現され得る。
<Polishing Composition>
(Inorganic particles)
The polishing composition disclosed herein contains inorganic particles. The polishing composition containing inorganic particles exerts a mechanical polishing action, and thus a higher polishing removal rate can be achieved.
 無機粒子の材質や性状は特に制限されない。例えば、シリカ粒子、アルミナ粒子、酸化セリウム粒子、酸化クロム粒子、二酸化チタン粒子、酸化ジルコニウム粒子、酸化マグネシウム粒子、二酸化マンガン粒子、酸化亜鉛粒子、酸化鉄粒子等の酸化物粒子;窒化ケイ素粒子、窒化ホウ素粒子等の窒化物粒子;炭化ケイ素粒子、炭化ホウ素粒子等の炭化物粒子;ダイヤモンド粒子;炭酸カルシウムや炭酸バリウム等の炭酸塩;等のいずれかから実質的に構成される無機粒子が挙げられる。無機粒子は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。なかでも、シリカ粒子、アルミナ粒子、酸化セリウム粒子、酸化クロム粒子、酸化ジルコニウム粒子、二酸化マンガン粒子、酸化鉄粒子等の酸化物粒子は、良好な表面を形成し得るので好ましい。そのなかでも、シリカ粒子、アルミナ粒子、酸化ジルコニウム粒子、酸化クロム粒子、酸化鉄粒子がより好ましく、シリカ粒子、アルミナ粒子がさらに好ましく、アルミナ粒子が特に好ましい。無機粒子としてアルミナ粒子を用いる態様において、ここに開示される技術を適用して研磨除去速度の向上効果が好適に発揮され得る。 The material and properties of the inorganic particles are not particularly limited. For example, inorganic particles substantially composed of any of the following may be mentioned: oxide particles such as silica particles, alumina particles, cerium oxide particles, chromium oxide particles, titanium dioxide particles, zirconium oxide particles, magnesium oxide particles, manganese dioxide particles, zinc oxide particles, and iron oxide particles; nitride particles such as silicon nitride particles and boron nitride particles; carbide particles such as silicon carbide particles and boron carbide particles; diamond particles; carbonates such as calcium carbonate and barium carbonate; etc. The inorganic particles may be used alone or in combination of two or more types. Among them, oxide particles such as silica particles, alumina particles, cerium oxide particles, chromium oxide particles, zirconium oxide particles, manganese dioxide particles, and iron oxide particles are preferable because they can form a good surface. Among them, silica particles, alumina particles, zirconium oxide particles, chromium oxide particles, and iron oxide particles are more preferable, silica particles and alumina particles are even more preferable, and alumina particles are particularly preferable. In embodiments where alumina particles are used as inorganic particles, the technology disclosed herein can be applied to effectively improve the polishing removal rate.
 なお、本明細書において、無機粒子の組成について「実質的にXからなる」または「実質的にXから構成される」とは、当該無機粒子に占めるXの割合(Xの純度)が、重量基準で90%以上であることをいう。また、上記無機粒子に占めるXの割合は、95%以上が好ましく、97%以上がより好ましく、98%以上がさらに好ましく、例えば99%以上である。 In this specification, the phrase "consisting essentially of X" or "consisting essentially of X" in relation to the composition of an inorganic particle means that the proportion of X in the inorganic particle (the purity of X) is 90% or more by weight. The proportion of X in the inorganic particle is preferably 95% or more, more preferably 97% or more, even more preferably 98% or more, for example 99% or more.
 無機粒子の平均一次粒子径は、特に限定されない。研磨除去速度向上の観点から、無機粒子の平均一次粒子径は、例えば5nm以上とすることができ、10nm以上が適当であり、好ましくは20nm以上であり、30nm以上であってもよい。研磨除去速度のさらなる向上の観点から、いくつかの態様において、無機粒子の平均一次粒子径は、50nm以上でもよく、80nm以上でもよく、150nm以上でもよく、250nm以上でもよく、350nm以上でもよい。また、研磨後の面品質等の観点から、無機粒子の平均一次粒子径は、例えば5μm以下とすることができ、3μm以下であることが好ましく、1μm以下であることがより好ましく、750nm以下でもよく、500nm以下でもよい。研磨後のさらなる面品質向上等の観点から、いくつかの態様において、無機粒子の平均一次粒子径は、350nm以下でもよく、180nm以下でもよく、85nm以下でもよく、50nm以下でもよい。 The average primary particle diameter of the inorganic particles is not particularly limited. From the viewpoint of improving the polishing removal rate, the average primary particle diameter of the inorganic particles can be, for example, 5 nm or more, suitably 10 nm or more, preferably 20 nm or more, and may be 30 nm or more. From the viewpoint of further improving the polishing removal rate, in some embodiments, the average primary particle diameter of the inorganic particles may be 50 nm or more, 80 nm or more, 150 nm or more, 250 nm or more, or 350 nm or more. In addition, from the viewpoint of surface quality after polishing, the average primary particle diameter of the inorganic particles can be, for example, 5 μm or less, preferably 3 μm or less, more preferably 1 μm or less, 750 nm or less, or 500 nm or less. From the viewpoint of further improving the surface quality after polishing, in some embodiments, the average primary particle diameter of the inorganic particles may be 350 nm or less, 180 nm or less, 85 nm or less, or 50 nm or less.
 なお、本明細書において平均一次粒子径とは、BET法により測定される比表面積(BET値)から、平均一次粒子径(nm)=6000/(真密度(g/cm)×BET値(m/g))の式により算出される粒子径(BET粒子径)をいう。上記比表面積は、例えば、マイクロメリテックス社製の表面積測定装置、商品名「Flow Sorb II 2300」を用いて測定することができる。 In this specification, the average primary particle size refers to a particle size (BET particle size) calculated from the specific surface area (BET value) measured by the BET method by the formula: average primary particle size (nm) = 6000/(true density (g/ cm3 ) x BET value ( m2 /g)). The specific surface area can be measured, for example, using a surface area measuring device manufactured by Micromeritics, product name "Flow Sorb II 2300".
 無機粒子の平均二次粒子径は、例えば10nm以上であってよく、研磨除去速度を高めやすくする観点から、好ましくは50nm以上、より好ましくは100nm以上であり、250nm以上でもよく、400nm以上でもよい。無機粒子の平均二次粒子径の上限は、単位重量当たりの個数を充分に確保する観点から、凡そ10μm以下とすることが適当である。また、研磨後の面品質等の観点から、上記平均二次粒子径は、好ましくは5μm以下、より好ましくは3μm以下、例えば1μm以下である。研磨後のさらなる面品質向上の観点から、いくつかの態様において、無機粒子の平均二次粒子径は、600nm以下でもよく、300nm以下でもよく、170nm以下でもよく、100nm以下でもよい。 The average secondary particle diameter of the inorganic particles may be, for example, 10 nm or more, and from the viewpoint of easily increasing the polishing removal rate, it is preferably 50 nm or more, more preferably 100 nm or more, and may be 250 nm or more, or may be 400 nm or more. From the viewpoint of sufficiently securing the number per unit weight, it is appropriate to set the upper limit of the average secondary particle diameter of the inorganic particles to approximately 10 μm or less. Furthermore, from the viewpoint of surface quality after polishing, the above average secondary particle diameter is preferably 5 μm or less, more preferably 3 μm or less, for example 1 μm or less. From the viewpoint of further improving surface quality after polishing, in some embodiments, the average secondary particle diameter of the inorganic particles may be 600 nm or less, 300 nm or less, 170 nm or less, or 100 nm or less.
 無機粒子の平均二次粒子径は、500nm未満の粒子については、例えば、日機装社製の型式「UPA-UT151」を用いた動的光散乱法により、体積平均粒子径(体積基準の算術平均径;Mv)として測定することができる。また、500nm以上の粒子についてはBECKMAN COULTER社製の型式「Multisizer 3」を用いた細孔電気抵抗法等により、体積平均粒子径として測定することができる。 The average secondary particle diameter of inorganic particles can be measured as the volume average particle diameter (volume-based arithmetic mean diameter; Mv) for particles less than 500 nm by dynamic light scattering using, for example, a Nikkiso Co., Ltd. model "UPA-UT151." For particles 500 nm or larger, the volume average particle diameter can be measured by the pore electrical resistance method using a Beckman Coulter Co., Ltd. model "Multisizer 3."
 無機粒子としてアルミナ粒子を用いる場合、公知の各種アルミナ粒子のなかから適宜選択して使用することができる。そのような公知のアルミナ粒子の例には、α-アルミナおよび中間アルミナが含まれる。ここで中間アルミナとは、α-アルミナ以外のアルミナ粒子の総称であり、具体的には、γ-アルミナ、δ-アルミナ、θ-アルミナ、η-アルミナ、κ-アルミナ、χ-アルミナ等が例示される。また、製法による分類に基づきフュームドアルミナと称されるアルミナ(典型的にはアルミナ塩を高温焼成する際に生産されるアルミナ微粒子)を使用してもよい。さらに、コロイダルアルミナまたはアルミナゾルと称されるアルミナ(例えばベーマイト等のアルミナ水和物)も、上記公知のアルミナ粒子の例に含まれる。加工性の観点から、α-アルミナを含むことが好ましい。ここに開示される技術における無機粒子は、このようなアルミナ粒子の1種を単独でまたは2種以上を組み合わせて含むものであり得る。 When using alumina particles as inorganic particles, they can be appropriately selected from various known alumina particles. Examples of such known alumina particles include α-alumina and intermediate alumina. Intermediate alumina is a general term for alumina particles other than α-alumina, and specific examples include γ-alumina, δ-alumina, θ-alumina, η-alumina, κ-alumina, and χ-alumina. Alumina called fumed alumina (typically alumina fine particles produced when alumina salt is fired at high temperatures) based on classification by manufacturing method may also be used. Furthermore, alumina called colloidal alumina or alumina sol (e.g. alumina hydrate such as boehmite) is also included as an example of the above known alumina particles. From the viewpoint of processability, it is preferable to include α-alumina. The inorganic particles in the technology disclosed herein may include one type of such alumina particles alone or two or more types in combination.
 無機粒子としてアルミナ粒子を用いる場合、使用する無機粒子全体に占めるアルミナ粒子の割合は、概して高い方が有利である。例えば、無機粒子全体に占めるアルミナ粒子の割合は、好ましくは70重量%以上、より好ましくは90重量%以上、さらに好ましくは95重量%以上であり、実質的に100重量%でもよい。 When using alumina particles as inorganic particles, it is generally advantageous to have a higher proportion of alumina particles in the total inorganic particles used. For example, the proportion of alumina particles in the total inorganic particles is preferably 70% by weight or more, more preferably 90% by weight or more, and even more preferably 95% by weight or more, and may be substantially 100% by weight.
 アルミナ粒子の粒子サイズは、特に限定されず、所望の研磨効果が発揮されるように選択し得る。研磨除去速度向上等の観点から、アルミナ粒子の平均二次粒子径は、好ましくは50nm以上、より好ましくは80nm以上であり、150nm以上でもよく、250nm以上でもよく、300nm以上でもよい。アルミナ粒子の平均二次粒子径の上限は特に限定されないが、研磨後の面品質等の観点から、概ね5μm以下にすることが適当であり、研磨後のさらなる面品質の向上等の観点から3μm以下であることが好ましく、1μm以下であることがより好ましく、750nm以下でもよく、500nm以下でもよく、400nm以下でもよく、350nm以下でもよい。 The particle size of the alumina particles is not particularly limited and may be selected so as to achieve the desired polishing effect. From the viewpoint of improving the polishing removal rate, etc., the average secondary particle diameter of the alumina particles is preferably 50 nm or more, more preferably 80 nm or more, and may be 150 nm or more, 250 nm or more, or 300 nm or more. There is no particular upper limit to the average secondary particle diameter of the alumina particles, but from the viewpoint of surface quality after polishing, it is appropriate to make it approximately 5 μm or less, and from the viewpoint of further improving surface quality after polishing, it is preferably 3 μm or less, more preferably 1 μm or less, and may be 750 nm or less, 500 nm or less, 400 nm or less, or 350 nm or less.
 無機粒子としてアルミナ粒子を用いる場合、ここに開示される研磨用組成物は、本発明の効果を損なわない範囲で、上記アルミナ以外の材質からなる無機粒子(以下、非アルミナ粒子ともいう。)をさらに含有してもよい。そのような非アルミナ粒子の例として、シリカ粒子、酸化セリウム粒子、酸化クロム粒子、二酸化チタン粒子、酸化ジルコニウム粒子、酸化マグネシウム粒子、酸化マンガン粒子、酸化亜鉛粒子、酸化鉄粒子等の酸化物粒子;窒化ケイ素粒子、窒化ホウ素粒子等の窒化物粒子;炭化ケイ素粒子、炭化ホウ素粒子等の炭化物粒子;ダイヤモンド粒子;炭酸カルシウムや炭酸バリウム等の炭酸塩等のいずれかから実質的に構成される無機粒子が挙げられる。 When alumina particles are used as the inorganic particles, the polishing composition disclosed herein may further contain inorganic particles made of a material other than the above-mentioned alumina (hereinafter also referred to as non-alumina particles) within a range that does not impair the effects of the present invention. Examples of such non-alumina particles include inorganic particles substantially composed of any of the following: oxide particles such as silica particles, cerium oxide particles, chromium oxide particles, titanium dioxide particles, zirconium oxide particles, magnesium oxide particles, manganese oxide particles, zinc oxide particles, and iron oxide particles; nitride particles such as silicon nitride particles and boron nitride particles; carbide particles such as silicon carbide particles and boron carbide particles; diamond particles; and carbonates such as calcium carbonate and barium carbonate.
 上記非アルミナ粒子の含有量は、研磨用組成物に含まれる無機粒子の全重量のうち、例えば30重量%以下とすることが適当であり、好ましくは20重量%以下、より好ましくは10重量%以下である。 The content of the non-alumina particles is suitably, for example, 30% by weight or less of the total weight of the inorganic particles contained in the polishing composition, preferably 20% by weight or less, and more preferably 10% by weight or less.
 ここに開示される技術の好ましい他の一態様において、研磨用組成物は、無機粒子としてシリカ粒子を含む。シリカ粒子は、公知の各種シリカ粒子のなかから適宜選択して使用することができる。そのような公知のシリカ粒子としては、コロイダルシリカ、乾式法シリカ等が挙げられる。なかでも、コロイダルシリカの使用が好ましい。コロイダルシリカを含むシリカ粒子によると、良好な面精度が好適に達成され得る。 In another preferred embodiment of the technology disclosed herein, the polishing composition contains silica particles as inorganic particles. The silica particles can be appropriately selected from various known silica particles. Examples of such known silica particles include colloidal silica and dry process silica. Of these, the use of colloidal silica is preferred. With silica particles containing colloidal silica, good surface precision can be suitably achieved.
 シリカ粒子の形状(外形)は、球形であってもよく、非球形であってもよい。例えば、非球形をなすシリカ粒子の具体例としては、ピーナッツ形状(すなわち、落花生の殻の形状)、繭型形状、金平糖形状、ラグビーボール形状等が挙げられる。ここに開示される技術において、シリカ粒子は、一次粒子の形態であってもよく、複数の一次粒子が会合した二次粒子の形態であってもよい。また、一次粒子の形態のシリカ粒子と二次粒子の形態のシリカ粒子とが混在していてもよい。好ましい一態様では、少なくとも一部のシリカ粒子が二次粒子の形態で研磨用組成物中に含まれている。 The shape (outer shape) of the silica particles may be spherical or non-spherical. For example, specific examples of non-spherical silica particles include a peanut shape (i.e., the shape of a peanut shell), a cocoon shape, a confetti shape, and a rugby ball shape. In the technology disclosed herein, the silica particles may be in the form of primary particles, or in the form of secondary particles in which multiple primary particles are aggregated. Furthermore, silica particles in the form of primary particles and silica particles in the form of secondary particles may be mixed. In a preferred embodiment, at least a portion of the silica particles are contained in the polishing composition in the form of secondary particles.
 シリカ粒子としては、その平均一次粒子径が5nmよりも大きいものを好ましく採用することができる。研磨効率等の観点から、シリカ粒子の平均一次粒子径は、好ましくは15nm以上、より好ましくは20nm以上、さらに好ましくは25nm以上、特に好ましくは30nm以上である。シリカ粒子の平均一次粒子径の上限は特に限定されないが、概ね120nm以下にすることが適当であり、好ましくは100nm以下、より好ましくは85nm以下である。例えば、研磨効率および面品質をより高いレベルで両立させる観点から、平均一次粒子径が12nm以上80nm以下のシリカ粒子が好ましく、15nm以上75nm以下のシリカ粒子が好ましい。 Silica particles having an average primary particle diameter of more than 5 nm can be preferably used. From the viewpoint of polishing efficiency, etc., the average primary particle diameter of the silica particles is preferably 15 nm or more, more preferably 20 nm or more, even more preferably 25 nm or more, and particularly preferably 30 nm or more. There is no particular upper limit to the average primary particle diameter of the silica particles, but it is appropriate to set it to approximately 120 nm or less, preferably 100 nm or less, and more preferably 85 nm or less. For example, from the viewpoint of achieving a higher level of both polishing efficiency and surface quality, silica particles having an average primary particle diameter of 12 nm to 80 nm are preferred, and silica particles having an average primary particle diameter of 15 nm to 75 nm are preferred.
 シリカ粒子の平均二次粒子径は特に限定されないが、研磨効率等の観点から、好ましくは20nm以上、より好ましくは50nm以上、さらに好ましくは70nm以上である。また、より高品位の表面を得るという観点から、シリカ粒子の平均二次粒子径は、500nm以下が適当であり、好ましくは300nm以下、より好ましくは200nm以下、さらに好ましくは130nm以下、特に好ましくは110nm以下(例えば100nm以下)である。 The average secondary particle diameter of the silica particles is not particularly limited, but from the viewpoint of polishing efficiency, etc., it is preferably 20 nm or more, more preferably 50 nm or more, and even more preferably 70 nm or more. From the viewpoint of obtaining a higher quality surface, the average secondary particle diameter of the silica particles is appropriately 500 nm or less, preferably 300 nm or less, more preferably 200 nm or less, even more preferably 130 nm or less, and particularly preferably 110 nm or less (e.g., 100 nm or less).
 シリカ粒子の真比重(真密度)は、1.5以上であることが好ましく、より好ましくは1.6以上、さらに好ましくは1.7以上である。シリカ粒子の真比重の増大により、物理的な研磨能力は高くなる傾向にある。シリカ粒子の真比重の上限は特に限定されないが、典型的には2.3以下、例えば2.2以下、2.0以下、1.9以下である。シリカ粒子の真比重としては、置換液としてエタノールを用いた液体置換法による測定値を採用し得る。 The true specific gravity (true density) of the silica particles is preferably 1.5 or more, more preferably 1.6 or more, and even more preferably 1.7 or more. Increasing the true specific gravity of the silica particles tends to increase the physical polishing ability. There is no particular upper limit to the true specific gravity of the silica particles, but it is typically 2.3 or less, for example 2.2 or less, 2.0 or less, or 1.9 or less. The true specific gravity of the silica particles can be measured using a liquid substitution method using ethanol as the substitution liquid.
 シリカ粒子の形状(外形)は、球状であることが好ましい。特に限定するものではないが、粒子の長径/短径比の平均値(平均アスペクト比)は、原理的に1.00以上であり、研磨除去速度を向上する観点から、例えば1.05以上であってもよく、1.10以上でもよい。また、粒子の平均アスペクト比は、3.0以下であることが適当であり、2.0以下であってもよい。研磨面の平滑性向上やスクラッチ低減の観点から、粒子の平均アスペクト比は、好ましくは1.50以下であり、1.30以下であってもよく、1.20以下でもよい。 The shape (external shape) of the silica particles is preferably spherical. Although not particularly limited, the average value of the long axis/short axis ratio of the particles (average aspect ratio) is in principle 1.00 or more, and from the viewpoint of improving the polishing removal speed, it may be, for example, 1.05 or more, or 1.10 or more. Furthermore, the average aspect ratio of the particles is suitably 3.0 or less, and may be 2.0 or less. From the viewpoint of improving the smoothness of the polished surface and reducing scratches, the average aspect ratio of the particles is preferably 1.50 or less, and may be 1.30 or less, or may be 1.20 or less.
 粒子の形状(外形)や平均アスペクト比は、例えば、電子顕微鏡観察により把握することができる。平均アスペクト比を把握する具体的な手順としては、例えば、走査型電子顕微鏡(SEM)を用いて、所定個数(例えば200個)の粒子の形状を抽出する。抽出した各々の粒子の形状に外接する最小の長方形を描く。そして、各粒子の形状に対して描かれた長方形について、その長辺の長さ(長径の値)を短辺の長さ(短径の値)で除した値を長径/短径比(アスペクト比)として算出する。上記所定個数の粒子のアスペクト比を算術平均することにより、平均アスペクト比を求めることができる。 The shape (outer shape) and average aspect ratio of particles can be determined, for example, by observation with an electron microscope. A specific procedure for determining the average aspect ratio is to extract the shapes of a specified number of particles (e.g., 200 particles) using a scanning electron microscope (SEM). The smallest rectangle that circumscribes the shape of each extracted particle is then drawn. Then, for the rectangle drawn for each particle shape, the long side length (long axis value) is divided by the short side length (short axis value) to calculate the long axis/short axis ratio (aspect ratio). The average aspect ratio can be found by arithmetically averaging the aspect ratios of the specified number of particles.
 研磨用組成物がシリカ粒子を含む態様において、該研磨用組成物は、シリカ以外の材質からなる無機粒子(以下、非シリカ粒子ともいう。)をさらに含有してもよい。そのような非シリカ粒子を構成する粒子の例として、アルミナ粒子、酸化セリウム粒子、酸化クロム粒子、二酸化チタン粒子、酸化ジルコニウム粒子、酸化マグネシウム粒子、酸化マンガン粒子、酸化亜鉛粒子、酸化鉄粒子等の酸化物粒子;窒化ケイ素粒子、窒化ホウ素粒子等の窒化物粒子;炭化ケイ素粒子、炭化ホウ素粒子等の炭化物粒子;ダイヤモンド粒子;炭酸カルシウムや炭酸バリウム等の炭酸塩;等のいずれかから実質的に構成される粒子が挙げられる。 In an embodiment in which the polishing composition contains silica particles, the polishing composition may further contain inorganic particles made of a material other than silica (hereinafter also referred to as non-silica particles). Examples of particles constituting such non-silica particles include oxide particles such as alumina particles, cerium oxide particles, chromium oxide particles, titanium dioxide particles, zirconium oxide particles, magnesium oxide particles, manganese oxide particles, zinc oxide particles, and iron oxide particles; nitride particles such as silicon nitride particles and boron nitride particles; carbide particles such as silicon carbide particles and boron carbide particles; diamond particles; carbonates such as calcium carbonate and barium carbonate; and the like.
 上記非シリカ粒子の含有量は、研磨用組成物に含まれる無機粒子の全重量のうち、例えば30重量%以下とすることが適当であり、好ましくは20重量%以下、より好ましくは10重量%以下である。 The content of the non-silica particles is suitably, for example, 30% by weight or less of the total weight of the inorganic particles contained in the polishing composition, preferably 20% by weight or less, and more preferably 10% by weight or less.
 ここに開示される研磨用組成物における無機粒子の含有量は、研磨後の面品質等の観点から、50重量%未満であることが適当であり、40重量%未満であることが有利であり、30重量%未満であることが好ましく、25重量%未満であることがより好ましく、10重量%未満でもよく、9重量%以下でもよく、8重量%以下でもよく、7重量%以下でもよく、6重量%以下でもよい。いくつかの態様において、研磨用組成物における無機粒子の含有量は、0.5重量%以下または0.5重量%未満でもよく、0.1重量%以下または0.1重量%未満でもよく、0.05重量%以下または0.05重量%未満でもよく、0.04重量%以下または0.04重量%未満でもよい。 The content of inorganic particles in the polishing composition disclosed herein is suitably less than 50 wt%, advantageously less than 40 wt%, preferably less than 30 wt%, more preferably less than 25 wt%, and may be less than 10 wt%, 9 wt% or less, 8 wt% or less, 7 wt% or less, or 6 wt% or less, from the viewpoint of surface quality after polishing, etc. In some embodiments, the content of inorganic particles in the polishing composition may be 0.5 wt% or less or less than 0.5 wt%, 0.1 wt% or less or less than 0.1 wt%, 0.05 wt% or less or less than 0.05 wt%, or 0.04 wt% or less or less than 0.04 wt%.
 ここに開示される研磨用組成物における無機粒子の含有量の下限は特に制限されず、例えば0.000001重量%以上(すなわち、0.01ppm以上)であり得る。無機粒子の使用効果を高める観点から、いくつかの態様において、研磨用組成物における無機粒子の含有量は、0.00001重量%以上でもよく、0.0001重量%以上でもよく、0.001重量%以上でもよく、0.002重量%以上でもよく、0.005重量%以上でもよい。いくつかの態様において、研磨用組成物における無機粒子の含有量は、0.01重量%以上でもよく、0.02重量%以上でもよく、0.03重量%以上でもよく、0.1重量%超であってもよく、0.3重量%超でもよく、0.5重量%以上でもよく、0.8重量%以上でもよい。ここに開示される研磨用組成物が複数種類の無機粒子を含む場合、該研磨用組成物における無機粒子の含有量とは、上記複数種類の無機粒子の合計含有量のことをいう。 The lower limit of the content of inorganic particles in the polishing composition disclosed herein is not particularly limited, and may be, for example, 0.000001 wt % or more (i.e., 0.01 ppm or more). From the viewpoint of enhancing the use effect of the inorganic particles, in some embodiments, the content of inorganic particles in the polishing composition may be 0.00001 wt % or more, 0.0001 wt % or more, 0.001 wt % or more, 0.002 wt % or more, or 0.005 wt % or more. In some embodiments, the content of inorganic particles in the polishing composition may be 0.01 wt % or more, 0.02 wt % or more, 0.03 wt % or more, more than 0.1 wt %, more than 0.3 wt %, 0.5 wt % or more, or 0.8 wt % or more. When the polishing composition disclosed herein contains multiple types of inorganic particles, the content of inorganic particles in the polishing composition refers to the total content of the multiple types of inorganic particles.
 ここに開示される研磨用組成物は、粒子としてダイヤモンド粒子を実質的に含まないものであることが好ましい。ダイヤモンド粒子は硬度が高いため、平滑性向上の制限要因となり得る。また、ダイヤモンド粒子は概して高価であることから、費用対効果の点で有利な材料とはいえず、実用面からは、ダイヤモンド粒子等の高価格材料への依存度は低くてもよい。ここで、粒子がダイヤモンド粒子を実質的に含まないとは、研磨用組成物に含まれる粒子全体のうちダイヤモンド粒子の割合が1重量%以下、より好ましくは0.5重量%以下、典型的には0.1重量%以下であることをいい、ダイヤモンド粒子の割合が0重量%である場合を包含する。このような態様において、本発明の適用効果が好適に発揮され得る。 The polishing composition disclosed herein is preferably one that is substantially free of diamond particles. Diamond particles have a high hardness, which can be a limiting factor in improving smoothness. In addition, diamond particles are generally expensive, and therefore cannot be said to be an advantageous material in terms of cost-effectiveness, and from a practical standpoint, the reliance on expensive materials such as diamond particles may be low. Here, "particles that are substantially free of diamond particles" means that the proportion of diamond particles among all particles contained in the polishing composition is 1% by weight or less, more preferably 0.5% by weight or less, typically 0.1% by weight or less, and includes the case where the proportion of diamond particles is 0% by weight. In such an embodiment, the effect of the application of the present invention can be preferably exhibited.
 (樹脂粒子)
 ここに開示される研磨用組成物は、樹脂粒子を含む。樹脂粒子を含む研磨用組成物によると、転がり摩擦による摩擦力低減効果が発揮されることにより、研磨除去速度を低下させることなく摩擦係数を低減することができる。本明細書において「樹脂粒子」とは、有機物を含む粒子である。いくつかの好ましい態様において、上記樹脂粒子は、有機物を主成分として含む粒子である。ここで本明細書において「主成分」とは全体の50重量%を超える成分を指す。上記樹脂粒子は、25℃の水に対する溶解度が5g/100mL以下であり得る。
(Resin particles)
The polishing composition disclosed herein contains resin particles. The polishing composition containing resin particles exhibits a frictional force reducing effect due to rolling friction, so that the friction coefficient can be reduced without decreasing the polishing removal rate. In this specification, "resin particles" are particles containing an organic substance. In some preferred embodiments, the resin particles are particles containing an organic substance as a main component. Here, in this specification, "main component" refers to a component that accounts for more than 50% by weight of the total. The resin particles may have a solubility in water at 25°C of 5 g/100 mL or less.
 樹脂粒子は、主成分として、炭素を含むポリマーにより構成されていることが好ましい。樹脂粒子を構成する材料としては、熱可塑性樹脂でもよく、熱硬化性樹脂でもよい。熱可塑性樹脂としては、汎用樹脂;エンジニアリング樹脂;等が挙げられる。上記汎用樹脂としては、ポリエチレン、ポリプロピレン、ポリブテン、ポリイソブチレン、ポリメチルペンテン等のポリオレフィン樹脂;ポリエチレン-酢酸ビニル樹脂;ポリアクリル酸メチル(PMA)、ポリメタクリル酸メチル(PMMA)、ポリメタクリル酸、ポリアクリル酸等のアクリル樹脂;スチレン樹脂;スチレン・アクリル樹脂;ポリエチレンテレフタレート(PET)等の飽和ポリエステル樹脂;塩化ビニル樹脂;等が挙げられる。上記エンジニアリング樹脂は、汎用エンジニアリング樹脂でもよく、スーパーエンジニアリング樹脂でもよい。汎用エンジニアリング樹脂としては、ナイロン、アラミド等のポリアミド樹脂;ポリアセタール樹脂;ポリカーボネート樹脂;等が挙げられる。スーパーエンジニアリング樹脂としては、ポリテトラフルオロエチレン(PTFE)等のフッ素樹脂;ポリスルホン樹脂;ポリエーテルスルホン(PES)樹脂;熱可塑性ポリイミド樹脂;等が挙げられる。熱硬化性樹脂としては、フェノール樹脂;メラミン樹脂;アミノ樹脂;エポキシ樹脂;尿素樹脂;不飽和ポリエステル樹脂;ポリウレタン樹脂;アクリル・ウレタン樹脂;熱硬化性ポリイミド樹脂;ベンゾグアナミン樹脂;シリコーン樹脂;等が挙げられる。樹脂粒子として、上記樹脂のいずれかから実質的に構成される樹脂粒子を用いることができる。樹脂粒子は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。なかでも、ポリオレフィン樹脂、アクリル樹脂、スチレン・アクリル樹脂、塩化ビニル樹脂、メラミン樹脂、ポリウレタン樹脂、アクリル・ウレタン樹脂がより好ましく、スチレン・アクリル樹脂、アクリル樹脂がさらに好ましく、アクリル樹脂が特に好ましい。樹脂粒子としてアクリル樹脂を用いる態様において、ここに開示される技術を適用して研磨除去速度の向上効果が好適に発揮され得る。 The resin particles are preferably composed of a polymer containing carbon as a main component. The material constituting the resin particles may be a thermoplastic resin or a thermosetting resin. Examples of the thermoplastic resin include general-purpose resins; engineering resins; and the like. Examples of the general-purpose resins include polyolefin resins such as polyethylene, polypropylene, polybutene, polyisobutylene, and polymethylpentene; polyethylene-vinyl acetate resins; acrylic resins such as polymethyl acrylate (PMA), polymethyl methacrylate (PMMA), polymethacrylic acid, and polyacrylic acid; styrene resins; styrene-acrylic resins; saturated polyester resins such as polyethylene terephthalate (PET); and vinyl chloride resins. The engineering resins may be general-purpose engineering resins or super engineering resins. Examples of the general-purpose engineering resins include polyamide resins such as nylon and aramid; polyacetal resins; polycarbonate resins; and the like. Examples of the super engineering resins include fluororesins such as polytetrafluoroethylene (PTFE); polysulfone resins; polyethersulfone (PES) resins; thermoplastic polyimide resins; and the like. Examples of thermosetting resins include phenol resins, melamine resins, amino resins, epoxy resins, urea resins, unsaturated polyester resins, polyurethane resins, acrylic-urethane resins, thermosetting polyimide resins, benzoguanamine resins, silicone resins, and the like. As the resin particles, resin particles substantially composed of any of the above resins can be used. The resin particles may be used alone or in combination of two or more. Among them, polyolefin resins, acrylic resins, styrene-acrylic resins, vinyl chloride resins, melamine resins, polyurethane resins, and acrylic-urethane resins are more preferred, styrene-acrylic resins and acrylic resins are even more preferred, and acrylic resins are particularly preferred. In an embodiment in which acrylic resins are used as resin particles, the effect of improving the polishing removal rate can be suitably exhibited by applying the technology disclosed herein.
 なお、本明細書において、樹脂粒子の組成について「実質的にXからなる」または「実質的にXから構成される」とは、当該樹脂粒子に占めるXの割合(Xの純度)が、重量基準で90%以上であることをいう。また、上記樹脂粒子に占めるXの割合は、95%以上が好ましく、97%以上がより好ましく、98%以上がさらに好ましく、例えば99%以上である。 In this specification, the phrase "consists essentially of X" or "consists essentially of X" in relation to the composition of a resin particle means that the proportion of X in the resin particle (the purity of X) is 90% or more by weight. The proportion of X in the resin particle is preferably 95% or more, more preferably 97% or more, even more preferably 98% or more, for example 99% or more.
 樹脂粒子は、電荷を帯びた粒子であってもよいし、電荷を帯びていない粒子であってもよい。樹脂粒子としては、アニオン性、カチオン性、ノニオン性、両性のいずれの粒子も使用可能である。樹脂粒子の表面には、アニオン系、カチオン系、両性系、および非イオン系官能基から選択される少なくとも1種の官能基が導入されていてもよい。アニオン系官能基としては、例えば、カルボン酸型、スルホン酸型、硫酸エステル型、リン酸エステル型等が挙げられ、カチオン系官能基としては、例えば、アミン塩型、第4級アンモニウム塩型等が挙げられる。両性系官能基としては、例えば、アルカノールアミド型、カルボキシベタイン型、およびグリシン型等が挙げられ、非イオン系官能基としては、例えば、エーテル型、エステル型等が挙げられる。 The resin particles may be charged or uncharged. Anionic, cationic, nonionic, or amphoteric particles may be used as the resin particles. At least one functional group selected from anionic, cationic, amphoteric, and nonionic functional groups may be introduced to the surface of the resin particles. Examples of anionic functional groups include carboxylic acid type, sulfonic acid type, sulfate ester type, and phosphate ester type, and examples of cationic functional groups include amine salt type and quaternary ammonium salt type. Examples of amphoteric functional groups include alkanolamide type, carboxybetaine type, and glycine type, and examples of nonionic functional groups include ether type and ester type.
 いくつかの態様において、樹脂粒子を構成する材料は、アニオン系アクリル樹脂またはカチオン系アクリル樹脂である。また、他のいくつかの態様において、樹脂粒子を構成する材料は、アニオン系スチレン・アクリル樹脂である。 In some embodiments, the material constituting the resin particles is an anionic acrylic resin or a cationic acrylic resin. In other embodiments, the material constituting the resin particles is an anionic styrene-acrylic resin.
 また、樹脂粒子を構成する材料としての樹脂としては、主剤と硬化剤を混合して反応させた架橋物である樹脂(架橋樹脂)および非架橋の樹脂(非架橋樹脂)のいずれの樹脂であってもよい。主剤としては、上記樹脂(例えばアクリル樹脂)が用いられる。硬化剤としては、特に限定されるものではないが、例えば、エポキシ化合物、イソシアネート化合物等が用いられる。いくつかの態様において、樹脂粒子を構成する材料は、架橋アクリル樹脂または非架橋アクリル樹脂である。また、他のいくつかの態様において、樹脂粒子を構成する材料は、架橋スチレン・アクリル樹脂または非架橋スチレン・アクリル樹脂である。 The resin constituting the resin particles may be either a resin that is a crosslinked product obtained by mixing and reacting a base agent with a curing agent (crosslinked resin) or a non-crosslinked resin (non-crosslinked resin). The base agent is the above-mentioned resin (e.g., acrylic resin). The curing agent is not particularly limited, but may be, for example, an epoxy compound or an isocyanate compound. In some embodiments, the material constituting the resin particles is a crosslinked acrylic resin or a non-crosslinked acrylic resin. In other embodiments, the material constituting the resin particles is a crosslinked styrene-acrylic resin or a non-crosslinked styrene-acrylic resin.
 樹脂粒子は、公知の方法を用いて調製したものを用いてもよいし、種々のメーカから入手可能な市販品のなかから、粒子径、形状、性状等が基板等の研磨対象物(典型的にはシリコンウェーハ)を研磨するための砥粒として好適であるものを選択して用いることができる。例えば、アクリル樹脂粒子は、日本ペイント、DIC、アイカ工業等から入手可能な市販品のなかから選択して用いることができる。スチレン樹脂粒子は、日本ペイント等から入手可能な市販品のなかから選択して用いることができる。スチレン・アクリル樹脂粒子は、日本触媒、日本ペイント等から入手可能な市販品のなかから選択して用いることができる。ナイロン樹脂粒子は、東レ等から入手可能な市販品のなかから選択して用いることができる。エポキシ樹脂粒子は、東レ等から入手可能な市販品のなかから選択して用いることができる。飽和ポリエステル樹脂粒子は、ユニチカ、積水化成品工業等から入手可能な市販品のなかから選択して用いることができる。ポリウレタン樹脂粒子は、アイカ工業等から入手可能な市販品のなかから選択して用いることができる。フェノール樹脂粒子は、エア・ウォーター、住友ベークライト等から入手可能な市販品のなかから選択して用いることができる。ベンゾグアナミン樹脂粒子は、日本触媒等から入手可能な市販品のなかから選択して用いることができる。PES樹脂粒子は、日本材料技研等から入手可能な市販品のなかから選択して用いることができる。PTFE樹脂粒子は、テクノケミカル等から入手可能な市販品のなかから選択して用いることができる。このような樹脂粒子は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。 Resin particles prepared by a known method may be used, or those having particle size, shape, properties, etc. suitable as abrasives for polishing a substrate or other object to be polished (typically a silicon wafer) may be selected from among commercially available products available from various manufacturers. For example, acrylic resin particles may be selected from commercially available products available from Nippon Paint, DIC, Aica Kogyo, etc. Styrene resin particles may be selected from commercially available products available from Nippon Paint, etc. Styrene-acrylic resin particles may be selected from commercially available products available from Nippon Shokubai, Nippon Paint, etc. Nylon resin particles may be selected from commercially available products available from Toray, etc. Epoxy resin particles may be selected from commercially available products available from Toray, etc. Saturated polyester resin particles may be selected from commercially available products available from Unitika, Sekisui Chemical, etc. Polyurethane resin particles may be selected from commercially available products available from Aica Kogyo, etc. The phenolic resin particles can be selected from commercially available products available from Air Water, Sumitomo Bakelite, etc. The benzoguanamine resin particles can be selected from commercially available products available from Nippon Shokubai, etc. The PES resin particles can be selected from commercially available products available from Japan Material Technology Institute, etc. The PTFE resin particles can be selected from commercially available products available from Techno Chemical, etc. Such resin particles can be used alone or in combination of two or more types.
 樹脂粒子の平均粒子径は、例えば1nm以上であってよく、研磨除去速度を高めやすくする観点から、好ましくは5nm以上、より好ましくは10nm以上であり、15nm以上でもよく、20nm以上でもよい。樹脂粒子の平均粒子径の上限は、単位重量当たりの個数を充分に確保する観点から、凡そ10μm以下とすることが適当である。また、研磨除去速度向上の観点から、上記平均粒子径は、好ましくは5μm以下、より好ましくは3μm以下、例えば2μm以下、1.5μm以下、1μm以下である。研磨除去速度のさらなる向上の観点から、いくつかの態様において、樹脂粒子の平均粒子径は、60nm以下でもよく、50nm以下でもよく、40nm以下でもよく、30nm以下でもよい。 The average particle diameter of the resin particles may be, for example, 1 nm or more, and from the viewpoint of easily increasing the polishing removal rate, it is preferably 5 nm or more, more preferably 10 nm or more, may be 15 nm or more, or may be 20 nm or more. From the viewpoint of ensuring a sufficient number per unit weight, it is appropriate that the upper limit of the average particle diameter of the resin particles is approximately 10 μm or less. Furthermore, from the viewpoint of improving the polishing removal rate, the above average particle diameter is preferably 5 μm or less, more preferably 3 μm or less, for example, 2 μm or less, 1.5 μm or less, or 1 μm or less. From the viewpoint of further improving the polishing removal rate, in some embodiments, the average particle diameter of the resin particles may be 60 nm or less, 50 nm or less, 40 nm or less, or 30 nm or less.
 樹脂粒子の平均粒子径の測定方法としては、特に限定されず、粒径に応じて適切な公知の方法が用いられ得る。樹脂粒子の平均粒子径としては、例えば、レーザー回折散乱法で測定された粒度分布におけるメジアン径を採用することができる。また、市販品の樹脂粒子を用いる場合は、樹脂粒子の平均粒子径としてはメーカ公称値(カタログ値)を採用することができる。 The method for measuring the average particle diameter of the resin particles is not particularly limited, and a known method appropriate for the particle diameter can be used. For example, the median diameter in the particle size distribution measured by a laser diffraction scattering method can be used as the average particle diameter of the resin particles. In addition, when using commercially available resin particles, the manufacturer's nominal value (catalog value) can be used as the average particle diameter of the resin particles.
 ここに開示される研磨用組成物における樹脂粒子の含有量は、研磨後の面品質等の観点から、10重量%未満であることが適当であり、6重量%未満であることが有利であり、3重量%未満であることが好ましく、2重量%未満であることがより好ましく、1.5重量%未満でもよく、1.3重量%以下でもよく、1.2重量%以下でもよく、1.1重量%以下でもよく、1.0重量%以下でもよい。いくつかの態様において、研磨用組成物における樹脂粒子の含有量は、0.5重量%以下または0.5重量%未満でもよく、0.1重量%以下または0.1重量%未満でもよく、0.05重量%以下または0.05重量%未満でもよく、0.04重量%以下または0.04重量%未満でもよい。樹脂粒子の含有量の下限は特に制限されず、例えば0.000001重量%以上(すなわち、0.01ppm以上)であり得る。樹脂粒子の使用効果を高める観点から、いくつかの態様において、研磨用組成物における樹脂粒子の含有量は、0.00001重量%以上でもよく、0.0001重量%以上でもよく、0.001重量%以上でもよく、0.002重量%以上でもよく、0.005重量%以上でもよい。いくつかの態様において、研磨用組成物における樹脂粒子の含有量は、0.01重量%以上でもよく、0.02重量%以上でもよく、0.03重量%以上でもよく、0.1重量%超であってもよく、0.3重量%超でもよく、0.5重量%以上でもよく、0.8重量%以上でもよい。ここに開示される研磨用組成物が複数種類の樹脂粒子を含む場合、該研磨用組成物における樹脂粒子の含有量とは、上記複数種類の樹脂粒子の合計含有量のことをいう。 The content of resin particles in the polishing composition disclosed herein is suitably less than 10% by weight, advantageously less than 6% by weight, preferably less than 3% by weight, more preferably less than 2% by weight, and may be less than 1.5% by weight, 1.3% by weight or less, 1.2% by weight or less, 1.1% by weight or less, or 1.0% by weight or less. In some embodiments, the content of resin particles in the polishing composition may be 0.5% by weight or less or less than 0.5% by weight, 0.1% by weight or less or less than 0.1% by weight, 0.05% by weight or less or less than 0.05% by weight, or 0.04% by weight or less or less than 0.04% by weight. The lower limit of the content of resin particles is not particularly limited, and may be, for example, 0.000001% by weight or more (i.e., 0.01 ppm or more). From the viewpoint of enhancing the effect of using the resin particles, in some embodiments, the content of the resin particles in the polishing composition may be 0.00001% by weight or more, 0.0001% by weight or more, 0.001% by weight or more, 0.002% by weight or more, or 0.005% by weight or more. In some embodiments, the content of the resin particles in the polishing composition may be 0.01% by weight or more, 0.02% by weight or more, 0.03% by weight or more, more than 0.1% by weight, more than 0.3% by weight, 0.5% by weight or more, or 0.8% by weight or more. When the polishing composition disclosed herein contains multiple types of resin particles, the content of the resin particles in the polishing composition refers to the total content of the multiple types of resin particles.
 ここに開示される研磨用組成物において、無機粒子の個数濃度と樹脂粒子の個数濃度とは、所定の関係を満たす。すなわち、研磨用組成物中、無機粒子の個数(個数濃度)Nip[個/L]に対する樹脂粒子の個数(個数濃度)Nrp[個/L]の比、すなわちNrp/Nipは、80以上である。例えば凡そ90以上とすることができ、100以上とすることが適当である。Nrp/Nipがより大きくなると、摩擦係数が低下する傾向にある。いくつかの好ましい態様において、Nrp/Nipは、120以上でもよく、140以上でもよく、さらには160以上でもよい。 In the polishing composition disclosed herein, the number concentration of inorganic particles and the number concentration of resin particles satisfy a predetermined relationship. That is, in the polishing composition, the ratio of the number of resin particles (number concentration) Nrp [pieces/L] to the number of inorganic particles (number concentration) Nip [pieces/L], i.e., Nrp/Nip, is 80 or more. For example, it can be approximately 90 or more, and it is appropriate to set it to 100 or more. As Nrp/Nip increases, the friction coefficient tends to decrease. In some preferred embodiments, Nrp/Nip may be 120 or more, 140 or more, or even 160 or more.
 ここに開示される研磨用組成物において、Nrp/Nipの上限は特に制限されないが、研磨用組成物の貯蔵安定性の観点から、例えば凡そ500×10以下とすることができ、400×10以下でもよく、300×10以下でもよく、200×10以下でもよい。いくつかの態様において、Nrp/Nipは、100000以下でもよく、50000以下でもよく、40000以下でもよい。 In the polishing composition disclosed herein, the upper limit of Nrp/Nip is not particularly limited, but from the viewpoint of storage stability of the polishing composition, it can be, for example, about 500 × 10 4 or less, may be 400 × 10 4 or less, may be 300 × 10 4 or less, or may be 200 × 10 4 or less. In some embodiments, Nrp/Nip may be 100,000 or less, may be 50,000 or less, or may be 40,000 or less.
 上記「Nrp/Nip」において、「Nrp」とは研磨用組成物における樹脂粒子の個数濃度を「個/L」の単位で表した場合の数値部分、「Nip」とは研磨用組成物における無機粒子の個数濃度を「個/L」の単位で表した場合の数値部分を表しており、NrpおよびNipはいずれも無次元数である。 In the above "Nrp/Nip," "Nrp" represents the numerical value when the number concentration of resin particles in the polishing composition is expressed in units of "pieces/L," and "Nip" represents the numerical value when the number concentration of inorganic particles in the polishing composition is expressed in units of "pieces/L," and both Nrp and Nip are dimensionless numbers.
 上記の無機粒子の個数濃度は、無機粒子の個数濃度(個/L)=研磨用組成物中の無機粒子の濃度(g/L)/無機粒子1個あたりの重量(g/個)の式により算出される。ここで、無機粒子1個あたりの重量は、無機粒子1個あたりの重量(g/個)=(4/3)×π×(無機粒子の半径(m))×無機粒子の密度(g/m)の式により算出される。上記の樹脂粒子の個数濃度も同様に算出することができる。上記無機粒子の半径としては、上記無機粒子の平均二次粒子径の1/2の値が用いられる。上記樹脂粒子の半径としては、上記樹脂粒子の平均粒子径の1/2の値が用いられる。 The number concentration of the inorganic particles is calculated by the formula: number concentration of inorganic particles (pieces/L) = concentration of inorganic particles in the polishing composition (g/L) / weight per inorganic particle (g/piece). Here, the weight per inorganic particle is calculated by the formula: weight per inorganic particle (g/piece) = (4/3) x π x (radius of inorganic particle (m)) 3 x density of inorganic particle (g/m 3 ). The number concentration of the resin particles can be calculated in the same manner. The radius of the inorganic particles is 1/2 the value of the average secondary particle diameter of the inorganic particles. The radius of the resin particles is 1/2 the value of the average particle diameter of the resin particles.
 ここに開示される研磨用組成物において、無機粒子の含有量と樹脂粒子の含有量との関係は、上述の個数濃度の関係を満たす限り、特に限定されない。無機粒子の含有量Wip[重量%]に対する樹脂粒子の含有量Wrp[重量%]の比、すなわちWrp/Wipは、例えば凡そ0.001以上とすることができ、0.0025以上とすることが適当であり、0.003以上でもよく、0.004以上でもよく、0.005以上でもよい。いくつかの好ましい態様において、Wrp/Wipは、0.02以上でもよく、0.03以上でもよい。 In the polishing composition disclosed herein, the relationship between the content of inorganic particles and the content of resin particles is not particularly limited as long as the relationship of the number concentrations described above is satisfied. The ratio of the content of resin particles Wrp [wt %] to the content of inorganic particles Wip [wt %], i.e., Wrp/Wip, can be, for example, approximately 0.001 or more, and is preferably 0.0025 or more, and may be 0.003 or more, 0.004 or more, or 0.005 or more. In some preferred embodiments, Wrp/Wip may be 0.02 or more, or 0.03 or more.
 ここに開示される研磨用組成物において、Wrp/Wipの上限は特に制限されないが、研磨用組成物の保存安定性等の観点から、例えば凡そ5000以下とすることができ、1500以下でもよく、1000以下でもよく、800以下でもよく、400以下でもよく、250以下でもよく、100以下でもよく、80以下でもよく、40以下でもよい。いくつかの態様において、Wrp/Wipは、30以下でもよく、20以下でもよく、10以下でもよく、5以下でもよく、1以下でもよく、0.5以下でもよく、0.1以下でもよく、0.05以下でもよい。 In the polishing composition disclosed herein, the upper limit of Wrp/Wip is not particularly limited, but from the viewpoint of storage stability of the polishing composition, it can be, for example, approximately 5000 or less, and may be 1500 or less, 1000 or less, 800 or less, 400 or less, 250 or less, 100 or less, 80 or less, or 40 or less. In some embodiments, Wrp/Wip may be 30 or less, 20 or less, 10 or less, 5 or less, 1 or less, 0.5 or less, 0.1 or less, or 0.05 or less.
 上記「Wrp/Wip」において、「Wrp」とは研磨用組成物における樹脂粒子の含有量を「重量%」の単位で表した場合の数値部分、「Wip」とは研磨用組成物における無機粒子の含有量を「重量%」の単位で表した場合の数値部分を表しており、WrpおよびWipはいずれも無次元数である。 In the above "Wrp/Wip," "Wrp" is the numerical value when the resin particle content in the polishing composition is expressed in units of "weight %," and "Wip" is the numerical value when the inorganic particle content in the polishing composition is expressed in units of "weight %." Both Wrp and Wip are dimensionless numbers.
 (酸化剤)
 ここに開示される研磨用組成物は、酸化剤を含む。酸化剤は、研磨対象材料(例えば、炭化ケイ素等のような高硬度の非酸化物材料)の硬度を低下させ、該材料を脆弱にすることに有効である。このため、酸化剤は、研磨対象材料のポリシングにおいて、研磨除去速度を向上させる効果を発揮し得る。本明細書において、酸化剤には、後述する金属塩は含まれないものとする。
(Oxidizing Agent)
The polishing composition disclosed herein contains an oxidizing agent. The oxidizing agent is effective in reducing the hardness of the material to be polished (e.g., a non-oxide material with high hardness such as silicon carbide) and weakening the material. Therefore, the oxidizing agent can exert the effect of improving the polishing removal rate in polishing the material to be polished. In this specification, the oxidizing agent does not include the metal salt described later.
 ここに開示される研磨用組成物は、酸化剤として複合金属酸化物を含有することを特徴とする。酸化剤として複合金属酸化物を含有する構成によると、研磨性能を向上させやすい。上記複合金属酸化物は、1種を単独でまたは2種以上を組み合わせて用いることができる。上記複合金属酸化物としては、鉄酸類、過マンガン酸類、クロム酸類、バナジン酸類、ルテニウム酸類、モリブデン酸類、過レニウム酸類、タングステン酸類が挙げられる。なかでも、鉄酸類、過マンガン酸類、クロム酸類、バナジン酸類、モリブデン酸類、タングステン酸類がより好ましく、過マンガン酸類、バナジン酸類がさらに好ましい。また、上記複合金属酸化物としては、アルカリ金属イオンから選択されるカチオンと、遷移金属オキソ酸イオンから選択されるアニオンと、の塩である複合遷移金属酸化物を含んでもよい。上記複合遷移金属酸化物における遷移金属オキソ酸イオンの具体例としては、過マンガン酸イオン、鉄酸イオン、クロム酸イオン、二クロム酸イオン、バナジン酸イオン、ルテニウム酸イオン、モリブデン酸イオン、レニウム酸イオン、タングステン酸イオン等が挙げられる。これらのうち、周期表の第4周期遷移金属元素のオキソ酸がより好ましい。周期表の第4周期遷移金属元素の好適例としては、Fe、Mn、Cr、V、Tiが挙げられる。なかでも、Fe、Mn、Cr、Vがより好ましく、Mn、Vがさらに好ましい。上記複合遷移金属酸化物におけるアルカリ金属イオンは、Na、Kであることが好ましい。いくつかの態様において、酸化剤として過マンガン酸ナトリウム、過マンガン酸カリウム、メタバナジン酸ナトリウムを好ましく採用し得る。 The polishing composition disclosed herein is characterized by containing a complex metal oxide as an oxidizing agent. The structure containing a complex metal oxide as an oxidizing agent makes it easy to improve the polishing performance. The complex metal oxide can be used alone or in combination of two or more. Examples of the complex metal oxide include ferric acids, permanganic acids, chromic acids, vanadic acids, ruthenic acids, molybdic acids, perrhenic acids, and tungstic acids. Among them, ferric acids, permanganic acids, chromic acids, vanadic acids, molybdic acids, and tungstic acids are more preferred, and permanganic acids and vanadic acids are even more preferred. In addition, the complex metal oxide may include a complex transition metal oxide that is a salt of a cation selected from alkali metal ions and an anion selected from transition metal oxo acid ions. Specific examples of the transition metal oxo acid ion in the composite transition metal oxide include permanganate ion, ferrate ion, chromate ion, dichromate ion, vanadate ion, ruthenate ion, molybdate ion, rhenate ion, tungstate ion, etc. Among these, oxo acids of the fourth period transition metal elements in the periodic table are more preferred. Suitable examples of the fourth period transition metal elements in the periodic table include Fe, Mn, Cr, V, and Ti. Among these, Fe, Mn, Cr, and V are more preferred, and Mn and V are even more preferred. The alkali metal ion in the composite transition metal oxide is preferably Na + or K + . In some embodiments, sodium permanganate, potassium permanganate, and sodium metavanadate can be preferably used as the oxidizing agent.
 ここに開示される研磨用組成物における酸化剤の含有量は、特に限定されず、該研磨用組成物の使用目的や使用態様に応じて適切に設定し得る。いくつかの態様において、研磨除去速度向上の観点から、酸化剤の含有量は、凡そ0.5重量%以上とすることが適当である。研磨除去速度を向上する観点から、酸化剤の含有量は、好ましくは1重量%以上、より好ましくは1.4重量%以上である。いくつかの態様において、酸化剤の含有量は、2.7重量%以上でもよく、4重量%以上でもよく、6重量%以上でもよく、6.5重量%以上でもよく、8重量%以上でもよく、9重量%以上でもよく、10重量%以上でもよく、15重量%以上でもよく、20重量%以上でもよく、22重量%以上でもよい。また、いくつかの態様において、研磨用組成物における酸化剤の含有量は、凡そ45重量%以下とすることが適当であり、40重量%以下とすることが好ましく、より好ましくは35重量%以下であり、さらに好ましくは30重量%以下であり、25重量%以下でもよく、20重量%以下でもよく、15重量%以下でもよく、10重量%以下でもよい。 The content of the oxidizing agent in the polishing composition disclosed herein is not particularly limited and may be appropriately set depending on the purpose and manner of use of the polishing composition. In some embodiments, from the viewpoint of improving the polishing removal rate, it is appropriate that the content of the oxidizing agent is approximately 0.5% by weight or more. From the viewpoint of improving the polishing removal rate, the content of the oxidizing agent is preferably 1% by weight or more, more preferably 1.4% by weight or more. In some embodiments, the content of the oxidizing agent may be 2.7% by weight or more, 4% by weight or more, 6% by weight or more, 6.5% by weight or more, 8% by weight or more, 9% by weight or more, 10% by weight or more, 15% by weight or more, 20% by weight or more, or 22% by weight or more. In some embodiments, the content of the oxidizing agent in the polishing composition is suitably about 45% by weight or less, preferably 40% by weight or less, more preferably 35% by weight or less, even more preferably 30% by weight or less, may be 25% by weight or less, may be 20% by weight or less, may be 15% by weight or less, or may be 10% by weight or less.
 ここに開示される研磨用組成物は、複合金属酸化物以外の酸化剤(以下、「他の酸化剤」ともいう。)をさらに含んでもよく、含まなくてもよい。他の酸化剤の選択肢となり得る化合物の具体例としては、過酸化水素等の過酸化物;過ヨウ素酸、その塩である過ヨウ素酸ナトリウム、過ヨウ素酸カリウム等の過ヨウ素酸類;ヨウ素酸、その塩であるヨウ素酸アンモニウム等のヨウ素酸類;臭素酸、その塩である臭素酸カリウム等の臭素酸類;ペルオキソ一硫酸、ペルオキソ二硫酸等の過硫酸、その塩である過硫酸アンモニウム、過硫酸カリウム等の過硫酸類;塩素酸やその塩、過塩素酸、その塩である過塩素酸カリウム等の、塩素酸類や過塩素酸類;過オスミウム酸、オスミウム酸等のオスミウム酸類;過セレン酸、セレン酸等のセレン酸類;硝酸セリウムアンモニウム;が挙げられる。他の酸化剤としては、このような化合物の1種または2種以上を組み合わせて用いることができる。いくつかの態様では、研磨用組成物の性能安定性(例えば、長期保存による劣化防止)等の観点から、他の酸化剤は無機化合物であることが好ましい。 The polishing composition disclosed herein may or may not further contain an oxidizing agent other than the composite metal oxide (hereinafter also referred to as "other oxidizing agent"). Specific examples of compounds that can be selected as the other oxidizing agent include peroxides such as hydrogen peroxide; periodic acids such as periodic acid and its salts, sodium periodate and potassium periodate; iodic acids such as iodic acid and its salts, ammonium iodate; bromic acids such as bromic acid and its salts, potassium bromate; persulfuric acids such as peroxomonosulfuric acid and peroxodisulfuric acid, and persulfuric acids such as ammonium persulfate and potassium persulfate; chloric acids and perchloric acids such as chloric acid and its salts, perchloric acid and its salts, potassium perchlorate; osmic acids such as perosmic acid and osmic acid; selenic acids such as perselenic acid and selenic acid; and ammonium cerium nitrate. As the other oxidizing agent, one or more of such compounds can be used in combination. In some embodiments, from the viewpoint of the performance stability of the polishing composition (e.g., prevention of deterioration due to long-term storage), etc., it is preferable that the other oxidizing agent is an inorganic compound.
 なお、酸化剤として用いられる化合物が塩(例えば、過マンガン酸塩)である場合、該化合物は、研磨用組成物中においてイオンの状態で存在していてもよい。 When the compound used as the oxidizing agent is a salt (e.g., permanganate), the compound may be present in the polishing composition in an ionic state.
 ここに開示される研磨用組成物において、酸化剤の含有量と無機粒子の含有量との関係は、特に限定されず、使用目的や使用態様に応じて所望の効果が達成されるように適切に設定し得る。無機粒子の含有量Wip[重量%]に対する酸化剤の含有量Wx[重量%]の比、すなわちWx/Wipは、例えば凡そ0.001以上とすることができ、0.002以上とすることが適当であり、0.005以上でもよく、0.01以上でもよく、0.02以上でもよく、0.1以上でもよく、0.15以上であることが有利であり、0.2以上であることが好ましく、0.3以上であることがより好ましい。Wx/Wipがより大きくなると、機械的研磨の寄与に対する化学的研磨の寄与がより大きくなる傾向にある。いくつかの態様において、Wx/Wipは、0.5以上でもよく、0.6以上でもよい。 In the polishing composition disclosed herein, the relationship between the content of the oxidizing agent and the content of the inorganic particles is not particularly limited, and can be appropriately set so as to achieve the desired effect depending on the purpose and mode of use. The ratio of the content of the oxidizing agent Wx [wt %] to the content of the inorganic particles Wip [wt %], i.e., Wx/Wip, can be, for example, approximately 0.001 or more, suitably 0.002 or more, may be 0.005 or more, may be 0.01 or more, may be 0.02 or more, may be 0.1 or more, is advantageously 0.15 or more, is preferably 0.2 or more, and is more preferably 0.3 or more. The larger Wx/Wip is, the greater the contribution of chemical polishing to the contribution of mechanical polishing tends to be. In some embodiments, Wx/Wip may be 0.5 or more, or may be 0.6 or more.
 ここに開示される研磨用組成物において、Wx/Wipの上限は特に制限されないが、研磨用組成物の保存安定性等の観点から、例えば凡そ20以下とすることができ、15以下でもよく、10以下でもよく、5以下でもよく、3以下でもよく、2以下でもよく、1以下でもよく、0.8以下でもよく、0.7以下でもよい。 In the polishing composition disclosed herein, the upper limit of Wx/Wip is not particularly limited, but from the viewpoint of storage stability of the polishing composition, it can be, for example, approximately 20 or less, or it can be 15 or less, 10 or less, 5 or less, 3 or less, 2 or less, 1 or less, 0.8 or less, or 0.7 or less.
 上記「Wx/Wip」において、「Wx」とは研磨用組成物における酸化剤の含有量を「重量%」の単位で表した場合の数値部分、「Wip」とは研磨用組成物における無機粒子の含有量を「重量%」の単位で表した場合の数値部分を表しており、WxおよびWipはいずれも無次元数である。 In the above "Wx/Wip," "Wx" is the numerical value of the oxidizing agent content in the polishing composition expressed in units of "weight %," and "Wip" is the numerical value of the inorganic particle content in the polishing composition expressed in units of "weight %." Both Wx and Wip are dimensionless numbers.
 ここに開示される研磨用組成物において、酸化剤の含有量と樹脂粒子の含有量との関係は、特に限定されず、使用目的や使用態様に応じて所望の効果が達成されるように適切に設定し得る。樹脂粒子の含有量Wrp[重量%]に対する酸化剤の含有量Wx[重量%]の比、すなわちWx/Wrpは、例えば凡そ0.1以上とすることができ、0.25以上とすることが適当であり、0.5以上でもよく、1以上でもよく、2以上でもよく、5以上でもよく、10以上でもよい。Wx/Wrpがより大きくなると、機械的研磨の寄与に対する化学的研磨の寄与がより大きくなる傾向にある。いくつかの態様において、Wx/Wrpは、50以上でもよく、60以上でもよく、さらには65以上でもよく、100以上でもよく、150以上でもよく、200以上でもよい。 In the polishing composition disclosed herein, the relationship between the content of the oxidizing agent and the content of the resin particles is not particularly limited, and can be appropriately set so as to achieve the desired effect depending on the purpose and mode of use. The ratio of the content of the oxidizing agent Wx [wt %] to the content of the resin particles Wrp [wt %], i.e., Wx/Wrp, can be, for example, approximately 0.1 or more, and is preferably 0.25 or more, and may be 0.5 or more, 1 or more, 2 or more, 5 or more, or 10 or more. As Wx/Wrp increases, the contribution of chemical polishing to the contribution of mechanical polishing tends to be greater. In some embodiments, Wx/Wrp may be 50 or more, 60 or more, or even 65 or more, 100 or more, 150 or more, or 200 or more.
 ここに開示される研磨用組成物において、Wx/Wrpの上限は特に制限されないが、研磨用組成物の保存安定性等の観点から、例えば凡そ5000以下とすることができ、1500以下でもよく、1000以下でもよく、800以下でもよく、400以下でもよく、300以下でもよく、200以下でもよく、100以下でもよく、75以下でもよい。いくつかの態様において、Wx/Wrpは、50以下でもよく、40以下でもよく、30以下でもよい。 In the polishing composition disclosed herein, the upper limit of Wx/Wrp is not particularly limited, but from the viewpoint of storage stability of the polishing composition, it can be, for example, approximately 5000 or less, and may be 1500 or less, 1000 or less, 800 or less, 400 or less, 300 or less, 200 or less, 100 or less, or 75 or less. In some embodiments, Wx/Wrp may be 50 or less, 40 or less, or 30 or less.
 上記「Wx/Wrp」において、「Wx」とは研磨用組成物における酸化剤の含有量を「重量%」の単位で表した場合の数値部分、「Wrp」とは研磨用組成物における樹脂粒子の含有量を「重量%」の単位で表した場合の数値部分を表しており、WxおよびWrpはいずれも無次元数である。 In the above "Wx/Wrp," "Wx" is the numerical value when the content of the oxidizing agent in the polishing composition is expressed in units of "weight %," and "Wrp" is the numerical value when the content of the resin particles in the polishing composition is expressed in units of "weight %," and both Wx and Wrp are dimensionless numbers.
 (金属塩)
 ここに開示される研磨用組成物は、金属塩を含んでもよい。上記金属塩を用いると、研磨除去速度がより向上しやすい。また、上記金属塩を用いると、研磨用組成物の性能劣化(例えば、研磨除去速度の低下等)が抑制されやすい。上記金属塩は、後述の金属塩A、金属塩B、金属塩Cの中から1種、または複数種を選択することができる。
(Metal Salts)
The polishing composition disclosed herein may contain a metal salt. By using the metal salt, the polishing removal rate is more likely to be improved. In addition, by using the metal salt, the performance deterioration of the polishing composition (e.g., the decrease in the polishing removal rate, etc.) is more likely to be suppressed. The metal salt can be selected from one or more of the metal salts A, B, and C described below.
 (金属塩A)
 いくつかの好ましい態様において、研磨用組成物は、アルカリ土類金属塩から選択される金属塩Aを含む。金属塩Aとしては、1種のアルカリ土類金属塩を単独で用いてもよく、2種以上のアルカリ土類金属塩を組み合わせて用いてもよい。金属塩Aを用いることにより、研磨除去速度が向上し得る。金属塩Aは、アルカリ土類金属に属する元素として、Mg、Ca、Sr、Baのうちのいずれか1種または2種以上を含むことが好ましい。なかでもCa、Srのうちのいずれかが好ましく、Caがより好ましい。
(Metal Salt A)
In some preferred embodiments, the polishing composition comprises metal salt A selected from alkaline earth metal salts. As the metal salt A, one kind of alkaline earth metal salt may be used alone, or two or more kinds of alkaline earth metal salts may be used in combination. By using the metal salt A, the polishing removal rate can be improved. As an element belonging to alkaline earth metals, the metal salt A preferably comprises one or more of Mg, Ca, Sr, and Ba. Among them, any of Ca and Sr is preferred, and Ca is more preferred.
 金属塩Aにおける塩の種類は特に限定されず、無機酸塩であっても有機酸塩であってもよい。無機酸塩の例としては、塩酸、臭化水素酸、フッ化水素酸等のハロゲン化水素酸や、硝酸、硫酸、炭酸、ケイ酸、ホウ酸、リン酸等の塩が挙げられる。有機酸塩の例としては、ギ酸、酢酸、プロピオン酸、安息香酸、グリシン酸、酪酸、クエン酸、酒石酸、トリフルオロ酢酸等のカルボン酸;メタンスルホン酸、トリフルオロメタンスルホン酸、ベンゼンスルホン酸、トルエンスルホン酸等の有機スルホン酸;メチルホスホン酸、ベンゼンホスホン酸、トルエンホスホン酸等の有機ホスホン酸;エチルリン酸等の有機リン酸;等の塩が挙げられる。なかでも、塩酸、硝酸、硫酸、リン酸の塩が好ましく、塩酸、硝酸の塩がより好ましい。ここに開示される技術は、例えば、金属塩Aとしてアルカリ土類金属の硝酸塩または塩化物を用いる態様で好ましく実施され得る。 The type of salt in the metal salt A is not particularly limited, and may be an inorganic acid salt or an organic acid salt. Examples of inorganic acid salts include salts of hydrohalic acids such as hydrochloric acid, hydrobromic acid, and hydrofluoric acid, and salts of nitric acid, sulfuric acid, carbonic acid, silicic acid, boric acid, and phosphoric acid. Examples of organic acid salts include salts of carboxylic acids such as formic acid, acetic acid, propionic acid, benzoic acid, glycine acid, butyric acid, citric acid, tartaric acid, and trifluoroacetic acid; organic sulfonic acids such as methanesulfonic acid, trifluoromethanesulfonic acid, benzenesulfonic acid, and toluenesulfonic acid; organic phosphonic acids such as methylphosphonic acid, benzenephosphonic acid, and toluenephosphonic acid; and organic phosphoric acids such as ethylphosphoric acid. Among these, salts of hydrochloric acid, nitric acid, sulfuric acid, and phosphoric acid are preferred, and salts of hydrochloric acid and nitric acid are more preferred. The technology disclosed herein can be preferably implemented, for example, in an embodiment in which a nitrate or chloride of an alkaline earth metal is used as the metal salt A.
 金属塩Aの選択肢となり得るアルカリ土類金属塩の具体例としては、塩化マグネシウム、塩化カルシウム、塩化ストロンチウム、塩化バリウム等の塩化物;臭化マグネシウム、臭化カルシウム、臭化ストロンチウム、臭化バリウム等の臭化物;フッ化マグネシウム、フッ化カルシウム、フッ化ストロンチウム、フッ化バリウム等のフッ化物;硝酸マグネシウム、硝酸カルシウム、硝酸ストロンチウム、硝酸バリウム等の硝酸塩;硫酸マグネシウム、硫酸カルシウム、硫酸ストロンチウム、硫酸バリウム等の硫酸塩;炭酸マグネシウム、炭酸カルシウム、炭酸ストロンチウム、炭酸バリウム等の炭酸塩;酢酸マグネシウム、酢酸カルシウム、酢酸ストロンチウム、酢酸バリウム、安息香酸マグネシウム、安息香酸カルシウム、安息香酸バリウム、クエン酸マグネシウム、クエン酸カルシウム、クエン酸ストロンチウム、クエン酸バリウム等のカルボン酸塩;等が挙げられる。 Specific examples of alkaline earth metal salts that can be used as metal salt A include chlorides such as magnesium chloride, calcium chloride, strontium chloride, and barium chloride; bromides such as magnesium bromide, calcium bromide, strontium bromide, and barium bromide; fluorides such as magnesium fluoride, calcium fluoride, strontium fluoride, and barium fluoride; nitrates such as magnesium nitrate, calcium nitrate, strontium nitrate, and barium nitrate; sulfates such as magnesium sulfate, calcium sulfate, strontium sulfate, and barium sulfate; carbonates such as magnesium carbonate, calcium carbonate, strontium carbonate, and barium carbonate; carboxylates such as magnesium acetate, calcium acetate, strontium acetate, barium acetate, magnesium benzoate, calcium benzoate, barium benzoate, magnesium citrate, calcium citrate, strontium citrate, and barium citrate; etc.
 金属塩Aは、好ましくは水溶性の塩である。水溶性の金属塩Aを用いることにより、スクラッチ等の欠陥の少ない良好な表面を効率よく形成し得る。
 また、金属塩Aは、酸化剤によって酸化されない化合物であることが好ましい。かかる観点から酸化剤および金属塩Aを適切に選択することにより、金属塩Aが酸化剤で酸化されることによる該酸化剤の失活を防ぎ、経時による研磨用組成物の性能劣化(例えば、研磨除去速度の低下等)を抑制することができる。かかる観点から、好ましい金属塩Aとして硝酸カルシウムが挙げられる。
The metal salt A is preferably a water-soluble salt. By using a water-soluble metal salt A, a good surface with few defects such as scratches can be efficiently formed.
In addition, metal salt A is preferably a compound that is not oxidized by oxidizing agent.From this viewpoint, by appropriately selecting oxidizing agent and metal salt A, it is possible to prevent the deactivation of the oxidizing agent caused by the oxidation of metal salt A by the oxidizing agent, and suppress the deterioration of the performance of polishing composition over time (for example, the decrease in polishing removal rate, etc.).From this viewpoint, calcium nitrate can be mentioned as a preferred metal salt A.
 研磨用組成物が金属塩Aを含む場合において、研磨用組成物における金属塩Aの濃度(含有量)は、特に限定されず、該研磨用組成物の使用目的や使用態様に応じて、所望の効果が達成されるように適切に設定し得る。金属塩Aの濃度は、例えば凡そ1000mM以下(すなわち、1モル/L以下)であってよく、500mM以下でもよく、300mM以下でもよい。いくつかの態様において、金属塩Aの濃度は、200mM以下とすることが適当であり、100mM以下とすることが好ましく、50mM以下とすることがより好ましく、30mM以下でもよく、20mM以下でもよく、10mM以下でもよい。金属塩Aの濃度の下限は、例えば0.1mM以上であってよく、金属塩Aの使用効果を適切に発揮する観点から0.5mM以上とすることが好ましく、1mM以上とすることがより好ましく、2.5mM以上でもよく、5mM以上でもよく、10mM以上でもよく、20mM以上でもよく、30mM以上でもよい。 When the polishing composition contains metal salt A, the concentration (content) of metal salt A in the polishing composition is not particularly limited and can be appropriately set so as to achieve the desired effect depending on the purpose and manner of use of the polishing composition. The concentration of metal salt A may be, for example, approximately 1000 mM or less (i.e., 1 mol/L or less), may be 500 mM or less, or may be 300 mM or less. In some embodiments, the concentration of metal salt A is suitably 200 mM or less, preferably 100 mM or less, more preferably 50 mM or less, may be 30 mM or less, may be 20 mM or less, or may be 10 mM or less. The lower limit of the concentration of metal salt A may be, for example, 0.1 mM or more, and from the viewpoint of appropriately exerting the effect of using metal salt A, it is preferably 0.5 mM or more, more preferably 1 mM or more, and may be 2.5 mM or more, 5 mM or more, 10 mM or more, 20 mM or more, or 30 mM or more.
 金属塩Aを含む研磨用組成物において、金属塩Aの濃度と無機粒子の含有量との関係は、特に限定されず、使用目的や使用態様に応じて所望の効果が達成されるように適切に設定し得る。無機粒子の含有量Wip(複数の無機粒子を含む場合には、それらの合計含有量)[重量%]に対する金属塩Aの濃度CA(複数の金属塩Aを含む場合には、それらの合計濃度)[mM]の比、すなわちCA/Wipは、例えば0.05以上とすることができ、0.1以上とすることが適当であり、0.2以上であってもよく、1以上であることが好ましく、3以上であることがより好ましく、5以上でもよく、10以上でもよい。CA/Wipがより大きくなると、機械的研磨の寄与に対する化学的研磨の寄与がより大きくなる傾向にある。いくつかの態様において、CA/Wipは、12以上でもよく、15以上でもよく、18以上でもよい。CA/Wipの上限は特に制限されないが、研磨用組成物の保存安定性等の観点から、例えば凡そ20000以下とすることができ、10000以下でもよく、5000以下でもよく、2500以下でもよく、1000以下でもよい。いくつかの態様において、CA/Wipは、100以下でもよく、50以下でもよく、40以下でもよく、30以下でもよい。
 なお、上記「CA/Wip」において、「CA」とは研磨用組成物における金属塩Aの濃度を「mM」の単位で表した場合の数値部分、「Wip」とは研磨用組成物における無機粒子の含有量を「重量%」の単位で表した場合の数値部分を表しており、WipおよびCAはいずれも無次元数である。
In the polishing composition containing metal salt A, the relationship between the concentration of metal salt A and the content of inorganic particles is not particularly limited, and can be appropriately set so as to achieve the desired effect according to the purpose of use and the mode of use. The ratio of the concentration CA of metal salt A (if a plurality of metal salts A are contained, the total concentration thereof) [mM] to the content Wip of inorganic particles (if a plurality of inorganic particles are contained, the total content thereof) [wt %], i.e., CA/Wip, can be, for example, 0.05 or more, and is suitably 0.1 or more, may be 0.2 or more, preferably 1 or more, more preferably 3 or more, may be 5 or more, or may be 10 or more. When CA/Wip is larger, the contribution of chemical polishing to the contribution of mechanical polishing tends to be larger. In some embodiments, CA/Wip may be 12 or more, may be 15 or more, or may be 18 or more. The upper limit of CA/Wip is not particularly limited, but from the viewpoint of storage stability of the polishing composition, it can be, for example, about 20,000 or less, may be 10,000 or less, may be 5,000 or less, may be 2,500 or less, or may be 1,000 or less. In some embodiments, CA/Wip may be 100 or less, may be 50 or less, may be 40 or less, or may be 30 or less.
In the above "CA/Wip,""CA" represents the numerical value when the concentration of metal salt A in the polishing composition is expressed in units of "mM," and "Wip" represents the numerical value when the content of inorganic particles in the polishing composition is expressed in units of "weight %," and both Wip and CA are dimensionless numbers.
 (金属塩B)
 いくつかの好ましい態様において、研磨用組成物は、周期表の第3~16族に属する金属を含むカチオンと、アニオンとの塩から選択される金属塩Bを含む。金属塩Bとしては、周期表の第3~16族に属する金属を含むカチオンと、アニオンとの塩から選択される金属塩の1種を単独でまたは2種以上を組み合わせて用いることができる。金属塩Bを用いることにより、研磨除去速度が向上し得る。
(Metal Salt B)
In some preferred embodiments, the polishing composition contains a metal salt B selected from salts of a cation containing a metal belonging to Groups 3 to 16 of the periodic table and an anion. As the metal salt B, one metal salt selected from salts of a cation containing a metal belonging to Groups 3 to 16 of the periodic table and an anion can be used alone or in combination of two or more metal salts. By using the metal salt B, the polishing removal rate can be improved.
 金属塩Bのカチオンは、遷移金属、すなわち周期表の第3~12族に属する金属を含むカチオンでもよく、貧金属、すなわち第13~16族に属する金属を含むカチオンでもよい。上記遷移金属としては、周期表の第4~11族に属するものが好ましく、また、周期表の第4~6周期に属するものが適当であり、第4~5周期に属するものが好ましく、第4周期に属するものがより好ましい。上記貧金属としては、周期表の第13~15族に属するものが好ましく、第13~14族に属するものがより好ましく、また、周期表の第3~5周期に属するものが好ましく、第3~4周期に属するものがより好ましく、第3周期に属する貧金属、すなわちアルミニウムが特に好ましい。 The cation of metal salt B may be a cation containing a transition metal, i.e., a metal belonging to groups 3 to 12 of the periodic table, or a cation containing a poor metal, i.e., a metal belonging to groups 13 to 16. The transition metal is preferably one belonging to groups 4 to 11 of the periodic table, and is also suitable for those belonging to periods 4 to 6 of the periodic table, with those belonging to periods 4 to 5 being preferred, and those belonging to period 4 being more preferred. The poor metal is preferably one belonging to groups 13 to 15 of the periodic table, and more preferably one belonging to groups 13 to 14, and is also preferably one belonging to periods 3 to 5 of the periodic table, and more preferably one belonging to periods 3 to 4, with the poor metal belonging to period 3 being particularly preferred, i.e., aluminum.
 いくつかの態様において、金属塩Bは、水和金属イオンのpKaが凡そ7未満である金属を含むカチオンと、アニオンとの塩であることが好ましい。このようなカチオンとアニオンとの塩である金属塩Bは、水中で水和金属カチオンを生成し、その水和金属カチオンは配位水上のプロトンが着脱平衡にあることからpH緩衝剤として作用することにより、経時による研磨用組成物の性能劣化を抑制しやすい。かかる観点から、金属塩Bとしては、水和金属イオンのpKaが、例えば7.0未満、または6.0以下である金属カチオンと、アニオンとの塩を好ましく採用し得る。水和金属イオンのpKaが6.0以下である金属カチオンとしては、例えばAl3+(水和金属イオンのpKaが5.0)、Cr3+(水和金属イオンのpKaが4.2)、Fe3+(水和金属イオンのpKaが2.2)、ZrO2+(水和金属イオンのpKaが-0.3)、Ga3+(水和金属イオンのpKaが2.6)、In3+(水和金属イオンのpKaが4.0)が挙げられるが、これらに限定されない。 In some embodiments, metal salt B is preferably a salt of an anion and a cation containing a metal whose hydrated metal ion has a pKa of less than about 7. Metal salt B, which is a salt of such a cation and an anion, generates a hydrated metal cation in water, and the hydrated metal cation acts as a pH buffer because the proton on the coordinated water is in an equilibrium between attachment and detachment, and thus is easy to suppress the deterioration of the performance of the polishing composition over time. From this viewpoint, metal salt B can preferably be a salt of a metal cation whose hydrated metal ion has a pKa of less than 7.0 or 6.0 or less, for example, and an anion. Examples of metal cations having a pKa of 6.0 or less include, but are not limited to, Al 3+ (pKa of hydrated metal ion: 5.0), Cr 3+ (pKa of hydrated metal ion: 4.2), Fe 3+ (pKa of hydrated metal ion: 2.2), ZrO 2+ (pKa of hydrated metal ion: -0.3), Ga 3+ (pKa of hydrated metal ion: 2.6), and In 3+ (pKa of hydrated metal ion: 4.0).
 金属塩Bにおける塩の種類は特に限定されず、無機酸塩であっても有機酸塩であってもよい。無機酸塩の例としては、塩酸、臭化水素酸、フッ化水素酸等のハロゲン化水素酸や、硝酸、硫酸、炭酸、ケイ酸、ホウ酸、リン酸等の塩が挙げられる。有機酸塩の例としては、ギ酸、酢酸、プロピオン酸、安息香酸、グリシン酸、酪酸、クエン酸、酒石酸、トリフルオロ酢酸等のカルボン酸;メタンスルホン酸、トリフルオロメタンスルホン酸、ベンゼンスルホン酸、トルエンスルホン酸等の有機スルホン酸;メチルホスホン酸、ベンゼンホスホン酸、トルエンホスホン酸等の有機ホスホン酸;エチルリン酸等の有機リン酸;等の塩が挙げられる。なかでも、塩酸、硝酸、硫酸、リン酸の塩が好ましく、塩酸、硝酸、硫酸の塩がより好ましい。ここに開示される技術は、例えば、金属塩Bとして、Al3+、Cr3+、Fe3+、ZrO2+、Ga3+、In3+のいずれかのカチオンと、硝酸イオン(NO3-)または塩化物イオン(Cl)との塩を用いる態様で好ましく実施され得る。 The type of salt in the metal salt B is not particularly limited, and may be an inorganic acid salt or an organic acid salt. Examples of inorganic acid salts include salts of hydrohalic acids such as hydrochloric acid, hydrobromic acid, and hydrofluoric acid, and salts of nitric acid, sulfuric acid, carbonic acid, silicic acid, boric acid, and phosphoric acid. Examples of organic acid salts include salts of carboxylic acids such as formic acid, acetic acid, propionic acid, benzoic acid, glycine acid, butyric acid, citric acid, tartaric acid, and trifluoroacetic acid; organic sulfonic acids such as methanesulfonic acid, trifluoromethanesulfonic acid, benzenesulfonic acid, and toluenesulfonic acid; organic phosphonic acids such as methylphosphonic acid, benzenephosphonic acid, and toluenephosphonic acid; and organic phosphoric acids such as ethylphosphoric acid. Among them, salts of hydrochloric acid, nitric acid, sulfuric acid, and phosphoric acid are preferred, and salts of hydrochloric acid, nitric acid, and sulfuric acid are more preferred. The technology disclosed herein can be preferably carried out in an embodiment using, for example, a salt of any one of the cations Al 3+ , Cr 3+ , Fe 3+ , ZrO 2+ , Ga 3+ , and In 3+ with a nitrate ion (NO 3− ) or a chloride ion (Cl ) as metal salt B.
 金属塩Bは、好ましくは水溶性の塩である。水溶性の金属塩Bを用いることにより、スクラッチ等の欠陥の少ない良好な表面を効率よく形成し得る。
 また、金属塩Bは、酸化剤によって酸化されない化合物であることが好ましい。かかる観点から酸化剤および金属塩Bを適切に選択することにより、金属塩Bが酸化剤で酸化されることによる該酸化剤の失活を防ぎ、経時による研磨用組成物の性能劣化(例えば、研磨除去速度の低下等)を抑制することができる。かかる観点から、好ましい金属塩Bとして硝酸アルミニウム、塩化アルミニウム等が例示される。
The metal salt B is preferably a water-soluble salt. By using a water-soluble metal salt B, a good surface with few defects such as scratches can be efficiently formed.
In addition, metal salt B is preferably a compound that is not oxidized by oxidizing agent.From this viewpoint, by appropriately selecting oxidizing agent and metal salt B, it is possible to prevent the deactivation of the oxidizing agent caused by the oxidation of metal salt B by the oxidizing agent, and to suppress the deterioration of the performance of polishing composition over time (for example, the decrease in polishing removal rate, etc.).From this viewpoint, preferred examples of metal salt B include aluminum nitrate, aluminum chloride, etc.
 研磨用組成物が金属塩Bを含む場合において、研磨用組成物における金属塩Bの濃度(含有量)は、特に限定されず、該研磨用組成物の使用目的や使用態様に応じて、所望の効果が達成されるように適切に設定し得る。金属塩Bの濃度は、例えば凡そ1000mM以下(すなわち、1モル/L以下)であってよく、500mM以下でもよく、300mM以下でもよい。いくつかの態様において、金属塩Bの濃度は、200mM以下とすることが適当であり、100mM以下とすることが好ましく、50mM以下とすることがより好ましく、40mM以下でもよく、35mM以下でもよく、32mM以下でもよい。金属塩Bの濃度の下限は、例えば0.1mM以上であってよく、金属塩Bの使用効果を適切に発揮する観点から1mM以上とすることが有利であり、5mM以上とすることが好ましく、10mM以上(例えば15mM以上)とすることがより好ましく、20mM以上であってもよく、25mM以上であってもよい。 When the polishing composition contains metal salt B, the concentration (content) of metal salt B in the polishing composition is not particularly limited and can be appropriately set so as to achieve the desired effect depending on the purpose and mode of use of the polishing composition. The concentration of metal salt B may be, for example, approximately 1000 mM or less (i.e., 1 mol/L or less), may be 500 mM or less, or may be 300 mM or less. In some embodiments, the concentration of metal salt B is appropriately 200 mM or less, preferably 100 mM or less, more preferably 50 mM or less, may be 40 mM or less, may be 35 mM or less, or may be 32 mM or less. The lower limit of the concentration of metal salt B may be, for example, 0.1 mM or more, and from the viewpoint of appropriately exerting the effect of use of metal salt B, it is advantageous to set it to 1 mM or more, preferably 5 mM or more, more preferably 10 mM or more (e.g., 15 mM or more), may be 20 mM or more, or may be 25 mM or more.
 金属塩Bを含む研磨用組成物において、金属塩Bの濃度と無機粒子の含有量との関係は、特に限定されず、使用目的や使用態様に応じて所望の効果が達成されるように適切に設定し得る。無機粒子の含有量Wip(複数の無機粒子を含む場合には、それらの合計含有量)[重量%]に対する金属塩Bの濃度CB(複数の金属塩Bを含む場合には、それらの合計濃度)[mM]の比、すなわちCB/Wipは、例えば0.05以上とすることができ、0.1以上とすることが適当であり、0.2以上であってもよく、1以上であることが好ましく、3以上であることがより好ましく、5以上でもよく、10以上でもよい。CB/Wipがより大きくなると、機械的研磨の寄与に対する化学的研磨の寄与がより大きくなる傾向にある。いくつかの態様において、CB/Wipは、20以上でもよく、50以上でもよく、100以上でもよく、300以上でもよい。CB/Wipの上限は特に制限されないが、研磨用組成物の保存安定性等の観点から、例えば凡そ10000以下とすることができ、5000以下でもよく、2500以下でもよい。いくつかの態様において、CB/Wipは、1000以下でもよく、800以下でもよく、600以下でもよい。
 なお、上記「CB/Wip」において、「CB」とは研磨用組成物における金属塩Bの濃度を「mM」の単位で表した場合の数値部分、「Wip」とは研磨用組成物における無機粒子の含有量を「重量%」の単位で表した場合の数値部分を表しており、CBおよびWipはいずれも無次元数である。
In the polishing composition containing metal salt B, the relationship between the concentration of metal salt B and the content of inorganic particles is not particularly limited, and can be appropriately set so as to achieve the desired effect according to the purpose of use and the mode of use. The ratio of the concentration CB of metal salt B (the total concentration of multiple metal salts B) [mM] to the content Wip of inorganic particles (the total content of multiple inorganic particles) [wt %], i.e., CB/Wip, can be, for example, 0.05 or more, and is suitably 0.1 or more, may be 0.2 or more, preferably 1 or more, more preferably 3 or more, may be 5 or more, or may be 10 or more. When CB/Wip is larger, the contribution of chemical polishing to the contribution of mechanical polishing tends to be larger. In some embodiments, CB/Wip may be 20 or more, 50 or more, 100 or more, or 300 or more. The upper limit of CB/Wip is not particularly limited, but from the viewpoint of storage stability of the polishing composition, it can be, for example, about 10,000 or less, may be 5,000 or less, or may be 2,500 or less. In some embodiments, CB/Wip may be 1,000 or less, 800 or less, or 600 or less.
In the above "CB/Wip,""CB" represents the numerical value when the concentration of metal salt B in the polishing composition is expressed in units of "mM," and "Wip" represents the numerical value when the content of inorganic particles in the polishing composition is expressed in units of "weight %," and both CB and Wip are dimensionless numbers.
 (金属塩C)
 いくつかの好ましい態様において、研磨用組成物は、遷移金属、すなわち周期表の第3~12族に属する金属を含むカチオンと、アニオンとの塩から選択される金属塩Cを含む。金属塩Cは、1種を単独でまたは2種以上を組み合わせて用いることができる。酸化剤を含む研磨用組成物において、金属塩Cを用いることにより、研磨対象物の研磨における研磨用組成物のpH変動による研磨用組成物の性能劣化(例えば、研磨除去速度の低下等)を抑制することができる。
(Metal Salt C)
In some preferred embodiments, the polishing composition contains a metal salt C selected from salts of a cation containing a transition metal, i.e., a metal belonging to Groups 3 to 12 of the periodic table, and an anion. The metal salt C can be used alone or in combination of two or more. By using the metal salt C in the polishing composition containing an oxidizing agent, it is possible to suppress deterioration of the performance of the polishing composition (e.g., a decrease in the polishing removal rate, etc.) caused by pH fluctuation of the polishing composition during polishing of an object to be polished.
 上記遷移金属としては、周期表の第4~11族に属するものが好ましく、また、周期表の第4~6周期に属するものが適当であり、第4~5周期に属するものが好ましく、第4周期に属するものがより好ましい。 The above transition metals are preferably those belonging to groups 4 to 11 of the periodic table, and more preferably those belonging to periods 4 to 6 of the periodic table, more preferably those belonging to periods 4 to 5, and even more preferably those belonging to period 4.
 いくつかの態様において、金属塩Cは、水和金属イオンのpKaが凡そ7より小さい金属を含むカチオンと、アニオンとの塩であることが好ましい。このようなカチオンとアニオンとの塩である金属塩Cは、水中で水和金属カチオンを形成し、その水和金属カチオンは配位水上のプロトンが着脱平衡にあることからpH緩衝剤として作用し、経時による研磨用組成物の性能劣化を抑制しやすい。かかる観点から、金属塩Cとしては、水和金属イオンのpKaが、例えば7より小さい、または6以下である金属を含むカチオンと、アニオンとの塩を好ましく採用し得る。水和金属イオンのpKaが6以下である金属のカチオンとしては、例えばCr3+(水和金属イオンのpKaが4.2)、Fe3+(水和金属イオンのpKaが2.2)、Hf4+(水和金属イオンのpKaが0.2)、Zr4+(水和金属イオンのpKaが-0.3)、Ti4+(水和金属イオンのpKaが-4.0)等が挙げられるが、これらに限定されない。 In some embodiments, the metal salt C is preferably a salt of an anion and a cation containing a metal whose hydrated metal ion has a pKa value of less than about 7. The metal salt C, which is a salt of such a cation and an anion, forms a hydrated metal cation in water, and the hydrated metal cation acts as a pH buffer because the proton on the coordinated water is in an attachment/detachment equilibrium, and is easy to suppress the performance deterioration of the polishing composition over time. From this viewpoint, the metal salt C can preferably be a salt of an anion and a cation containing a metal whose hydrated metal ion has a pKa value of less than 7 or less than 6. Examples of metal cations having a pKa of 6 or less for their hydrated metal ions include, but are not limited to, Cr 3+ (pKa of their hydrated metal ions is 4.2), Fe 3+ (pKa of their hydrated metal ions is 2.2), Hf 4+ (pKa of their hydrated metal ions is 0.2), Zr 4+ (pKa of their hydrated metal ions is -0.3), Ti 4+ (pKa of their hydrated metal ions is -4.0), etc.
 金属塩Cを構成するカチオンとしては、Cr3+、Fe3+、Hf4+、Zr4+、Ti4+等の単独原子遷移金属カチオン;ZrO2+、ZrO、HfO、TiO、TiO2+等のオキシ遷移金属カチオン;ZrOH、HfOH等の遷移金属水酸化物カチオン;等のカチオンが挙げられるが、これらに限定されない。 Examples of cations constituting the metal salt C include, but are not limited to, single-atom transition metal cations such as Cr3 + , Fe3 + , Hf4 +, Zr4 +, Ti4 + , etc.; oxytransition metal cations such as ZrO2 + , ZrO + , HfO + , TiO + , TiO2 +, etc.; transition metal hydroxide cations such as ZrOH + , HfOH + , etc.
 金属塩Cにおける塩の種類は特に限定されず、無機塩であっても有機塩であってもよい。無機塩の例としては、塩酸、臭化水素酸、フッ化水素酸等のハロゲン化水素酸や、硝酸、硫酸、炭酸、ケイ酸、ホウ酸、リン酸等の無機酸塩;硫化物;酸化物;オキシ塩化物、オキシ臭化物、オキシフッ化物等のオキシハロゲン化物;オキシ硝酸塩、オキシ硫酸塩、オキシ炭酸塩、オキシケイ酸塩、オキシホウ酸塩、オキシリン酸塩等のオキシ無機酸塩;オキシ硫化物;等の化合物が挙げられる。有機塩の例としては、ギ酸、酢酸、プロピオン酸、安息香酸、グリシン酸、酪酸、クエン酸、酒石酸、トリフルオロ酢酸等のカルボン酸;メタンスルホン酸、トリフルオロメタンスルホン酸、ベンゼンスルホン酸、トルエンスルホン酸等の有機スルホン酸;メチルホスホン酸、ベンゼンホスホン酸、トルエンホスホン酸等の有機ホスホン酸;エチルリン酸等の有機リン酸;オキシ酢酸塩等のオキシ有機酸塩;等の有機酸塩が挙げられる。なかでも、塩酸、硝酸、硫酸、リン酸の塩が好ましく、塩酸、硝酸の塩がより好ましい。ここに開示される技術は、例えば、金属塩Cとして、オキシ遷移金属カチオンと、アニオンとの塩であるオキシ遷移金属塩という態様で好ましく実施され得る。いくつかの好ましい態様として、ZrO2+、ZrO、HfO、TiO、TiO2+のいずれかのオキシ遷移金属カチオンと、硝酸イオン(NO3-)、硫酸イオン(SO 2-)または塩化物イオン(Cl)との塩を用いる態様で好ましく実施され得る。 The type of the salt in the metal salt C is not particularly limited, and may be an inorganic salt or an organic salt. Examples of inorganic salts include hydrohalic acids such as hydrochloric acid, hydrobromic acid, and hydrofluoric acid, inorganic acid salts such as nitric acid, sulfuric acid, carbonic acid, silicic acid, boric acid, and phosphoric acid; sulfides; oxides; oxyhalides such as oxychlorides, oxybromides, and oxyfluorides; oxyinorganic acid salts such as oxynitrates, oxysulfates, oxycarbonates, oxysilicates, oxyborates, and oxyphosphates; and oxysulfides. Examples of organic salts include organic acid salts such as formic acid, acetic acid, propionic acid, benzoic acid, glycine acid, butyric acid, citric acid, tartaric acid, and trifluoroacetic acid; organic sulfonic acids such as methanesulfonic acid, trifluoromethanesulfonic acid, benzenesulfonic acid, and toluenesulfonic acid; organic phosphonic acids such as methylphosphonic acid, benzenephosphonic acid, and toluenephosphonic acid; organic phosphoric acids such as ethyl phosphoric acid; and oxyorganic acid salts such as oxyacetates. Among these, salts of hydrochloric acid, nitric acid, sulfuric acid, and phosphoric acid are preferred, and salts of hydrochloric acid and nitric acid are more preferred. The technology disclosed herein can be preferably implemented, for example, in an embodiment in which the metal salt C is an oxytransition metal salt that is a salt of an oxytransition metal cation and an anion. In some preferred embodiments, the technology can be preferably implemented in an embodiment in which a salt of an oxytransition metal cation, such as ZrO 2+ , ZrO + , HfO + , TiO + , or TiO 2+, is used with a nitrate ion (NO 3− ), a sulfate ion (SO 4 2− ), or a chloride ion (Cl ).
 金属塩Cは、水に溶解することによって遷移金属と酸素原子および/または水素からなる多核遷移金属錯体を生成する。例えば、硝酸ジルコニル、硫酸ジルコニウム、塩化ジルコニウム等の金属塩Cを水に溶解すると、ジルコニウムと酸素原子および/または水素からなる多核遷移金属錯体を生成する。ここに開示される技術において、金属塩Cは、水に溶解して生成した遷移金属と酸素原子および/または水素からなる多核遷移金属錯体という態様でも好ましく実施され得る。好ましい多核遷移金属錯体として、ジルコニウムと酸素原子および/または水素からなる多核遷移金属錯体が例示される。 Metal salt C, when dissolved in water, produces a polynuclear transition metal complex consisting of a transition metal and oxygen atoms and/or hydrogen. For example, when metal salt C such as zirconyl nitrate, zirconium sulfate, or zirconium chloride is dissolved in water, a polynuclear transition metal complex consisting of zirconium and oxygen atoms and/or hydrogen is produced. In the technology disclosed herein, metal salt C can also be preferably embodied in the form of a polynuclear transition metal complex consisting of a transition metal and oxygen atoms and/or hydrogen produced by dissolving in water. An example of a preferred polynuclear transition metal complex is a polynuclear transition metal complex consisting of zirconium and oxygen atoms and/or hydrogen.
 金属塩Cは、酸化剤によって酸化されない化合物であることが好ましい。かかる観点から酸化剤および金属塩Cを適切に選択することにより、金属塩Cが酸化剤で酸化されることによる該酸化剤の失活を防ぎ、経時による研磨用組成物の性能劣化(例えば、研磨除去速度の低下等)を抑制することができる。かかる観点から、好ましい金属塩Cとして硝酸ジルコニル等が例示される。 The metal salt C is preferably a compound that is not oxidized by the oxidizing agent. From this viewpoint, by appropriately selecting the oxidizing agent and the metal salt C, it is possible to prevent the metal salt C from being oxidized by the oxidizing agent, thereby preventing the performance of the polishing composition from deteriorating over time (e.g., a decrease in the polishing removal rate, etc.). From this viewpoint, an example of a preferred metal salt C is zirconyl nitrate.
 研磨用組成物が金属塩Cを含む場合において、研磨用組成物における金属塩Cの濃度(含有量)は、特に限定されず、該研磨用組成物の使用目的や使用態様に応じて、所望の効果が達成されるように適切に設定し得る。金属塩Cの濃度は、例えば凡そ1000mM以下(すなわち、1モル/L以下)であってよく、500mM以下でもよく、300mM以下でもよい。いくつかの態様において、金属塩Cの濃度は、200mM以下とすることが適当であり、100mM以下とすることが好ましく、50mM以下とすることがより好ましく、30mM以下でもよく、20mM以下でもよく、10mM以下でもよい。研磨用組成物が金属塩Cを含む場合において、金属塩Cの濃度の下限は、例えば0.1mM以上であってよく、金属塩Cの使用効果を適切に発揮する観点から1mM以上とすることが有利であり、5mM以上とすることが好ましく、10mM以上(例えば15mM以上)とすることがより好ましく、18mM以上であってもよく、20mM以上であってもよく、30mM以上であってもよい。 When the polishing composition contains metal salt C, the concentration (content) of metal salt C in the polishing composition is not particularly limited and can be appropriately set so as to achieve the desired effect depending on the purpose and manner of use of the polishing composition. The concentration of metal salt C may be, for example, approximately 1000 mM or less (i.e., 1 mol/L or less), may be 500 mM or less, or may be 300 mM or less. In some embodiments, the concentration of metal salt C is suitably 200 mM or less, preferably 100 mM or less, more preferably 50 mM or less, may be 30 mM or less, may be 20 mM or less, or may be 10 mM or less. When the polishing composition contains metal salt C, the lower limit of the concentration of metal salt C may be, for example, 0.1 mM or more, and from the viewpoint of properly exerting the effect of using metal salt C, it is advantageous to set it to 1 mM or more, preferably 5 mM or more, more preferably 10 mM or more (for example, 15 mM or more), and may be 18 mM or more, 20 mM or more, or 30 mM or more.
 前述の金属塩Cを含む研磨用組成物において、金属塩Cの濃度と無機粒子の含有量との関係は、特に限定されず、使用目的や使用態様に応じて所望の効果が達成されるように適切に設定し得る。無機粒子の含有量Wip(複数の無機粒子を含む場合には、それらの合計含有量)[重量%]に対する金属塩Cの濃度CC(複数の金属塩Cを含む場合には、それらの合計濃度)[mM]の比、すなわちCC/Wipは、例えば0.05以上とすることができ、0.1以上とすることが適当であり、0.2以上であってもよく、1以上であることが好ましく、3以上であることがより好ましく、5以上でもよく、10以上でもよい。CC/Wipがより大きくなると、機械的研磨の寄与に対する化学的研磨の寄与がより大きくなる傾向にある。いくつかの態様において、CC/Wipは、12以上でもよく、15以上でもよく、18以上でもよい。他のいくつかの態様において、CC/Wipは、50以上でもよく、100以上でもよく、150以上でもよく、200以上でもよく、250以上でもよい。C/Wipの上限は特に制限されないが、研磨用組成物の保存安定性等の観点から、例えば凡そ20000以下とすることができ、10000以下でもよく、5000以下でもよく、2500以下でもよく、1000以下でもよい。いくつかの態様において、CC/Wipは、100以下でもよく、50以下でもよく、40以下でもよく、30以下でもよい。
 なお、上記「CC/Wip」において、「CC」とは研磨用組成物における金属塩Cの濃度を「mM」の単位で表した場合の数値部分、「Wip」とは研磨用組成物における無機粒子の含有量を「重量%」の単位で表した場合の数値部分を表しており、WipおよびCCはいずれも無次元数である。
In the polishing composition containing the metal salt C, the relationship between the concentration of the metal salt C and the content of the inorganic particles is not particularly limited, and can be appropriately set so as to achieve the desired effect according to the purpose of use and the mode of use. The ratio of the concentration CC of the metal salt C (the total concentration of a plurality of metal salts C) [mM] to the content Wip of the inorganic particles (the total content of a plurality of inorganic particles) [wt %], i.e., CC/Wip, can be, for example, 0.05 or more, and is preferably 0.1 or more, and may be 0.2 or more, preferably 1 or more, more preferably 3 or more, may be 5 or more, or may be 10 or more. The larger CC/Wip is, the greater the contribution of chemical polishing to the contribution of mechanical polishing tends to be. In some embodiments, CC/Wip may be 12 or more, 15 or more, or 18 or more. In some other embodiments, CC/Wip may be 50 or more, 100 or more, 150 or more, 200 or more, or 250 or more. The upper limit of C/Wip is not particularly limited, but from the viewpoint of storage stability of the polishing composition, it may be, for example, about 20,000 or less, 10,000 or less, 5,000 or less, 2,500 or less, or 1,000 or less. In some embodiments, CC/Wip may be 100 or less, 50 or less, 40 or less, or 30 or less.
In the above "CC/Wip,""CC" represents the numerical value when the concentration of metal salt C in the polishing composition is expressed in units of "mM," and "Wip" represents the numerical value when the content of inorganic particles in the polishing composition is expressed in units of "weight %," and both Wip and CC are dimensionless numbers.
 (水)
 ここに開示される研磨用組成物は、典型的には水を含む。水としては、イオン交換水(脱イオン水)、純水、超純水、蒸留水等を好ましく用いることができる。ここに開示される研磨用組成物は、必要に応じて、水と均一に混合し得る有機溶剤(低級アルコール、低級ケトン等)をさらに含んでいてもよい。通常は、研磨用組成物に含まれる溶媒の90体積%以上が水であることが適当であり、95体積%以上が水であることが好ましく、99~100体積%が水であることがより好ましい。
(water)
The polishing composition disclosed herein typically contains water. As the water, ion-exchanged water (deionized water), pure water, ultrapure water, distilled water, etc. can be preferably used. The polishing composition disclosed herein may further contain an organic solvent (lower alcohol, lower ketone, etc.) that can be uniformly mixed with water, if necessary. Usually, it is appropriate that 90% by volume or more of the solvent contained in the polishing composition is water, preferably 95% by volume or more is water, and more preferably 99 to 100% by volume is water.
 (酸)
 研磨用組成物は、pH調整や研磨除去速度を向上する等の目的で、必要に応じて酸を含有することができる。酸としては、無機酸および有機酸のいずれも使用可能である。無機酸の例としては、硫酸、硝酸、塩酸、炭酸等が挙げられる。有機酸の例としては、ギ酸、酢酸、プロピオン酸等の脂肪族カルボン酸、安息香酸、フタル酸等の芳香族カルボン酸、クエン酸、シュウ酸、酒石酸、リンゴ酸、マレイン酸、フマル酸、コハク酸、有機スルホン酸、有機ホスホン酸等が挙げられる。これらは、1種を単独でまたは2種以上を組み合わせて用いることができる。酸を使用する場合、その使用量は特に限定されず、使用目的(例えばpH調整)に応じた使用量とすることができる。あるいは、ここに開示される研磨用組成物のいくつかの態様では、酸を実質的に含有しない組成であってもよい。
(acid)
The polishing composition may contain an acid as necessary for the purpose of adjusting pH or improving the polishing removal rate. Both inorganic and organic acids can be used as the acid. Examples of inorganic acids include sulfuric acid, nitric acid, hydrochloric acid, and carbonic acid. Examples of organic acids include aliphatic carboxylic acids such as formic acid, acetic acid, and propionic acid, aromatic carboxylic acids such as benzoic acid and phthalic acid, citric acid, oxalic acid, tartaric acid, malic acid, maleic acid, fumaric acid, succinic acid, organic sulfonic acid, and organic phosphonic acid. These can be used alone or in combination of two or more. When an acid is used, the amount of the acid is not particularly limited, and can be determined according to the purpose of use (e.g., pH adjustment). Alternatively, in some embodiments of the polishing composition disclosed herein, the composition may be substantially free of acid.
 (塩基性化合物)
 研磨用組成物は、pH調整や研磨除去速度を向上する等の目的で、必要に応じて塩基性化合物を含有することができる。ここで塩基性化合物とは、研磨用組成物に添加されることによって該組成物のpHを上昇させる機能を有する化合物を指す。塩基性化合物の例としては、水酸化カリウム、水酸化ナトリウム等のアルカリ金属水酸化物;炭酸水素アンモニウム、炭酸アンモニウム、炭酸水素カリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸ナトリウム等の炭酸塩や炭酸水素塩;アンモニア;第四級アンモニウム化合物、例えば水酸化テトラメチルアンモニウム、水酸化テトラエチルアンモニウム、水酸化テトラブチルアンモニウム等の水酸化第四級アンモニウム;その他、アミン類、リン酸塩やリン酸水素塩、有機酸塩等が挙げられる。塩基性化合物は、1種を単独でまたは2種以上を組み合わせて用いることができる。塩基性化合物を使用する場合、その使用量は特に限定されず、使用目的(例えばpH調整)に応じた使用量とすることができる。あるいは、ここに開示される研磨用組成物のいくつかの態様では、塩基性化合物を実質的に含有しない組成であってもよい。
(Basic Compound)
The polishing composition may contain a basic compound as necessary for the purpose of adjusting pH or improving the polishing removal rate. Here, the basic compound refers to a compound that has the function of increasing the pH of the polishing composition by being added to the polishing composition. Examples of basic compounds include alkali metal hydroxides such as potassium hydroxide and sodium hydroxide; carbonates and bicarbonates such as ammonium hydrogen carbonate, ammonium carbonate, potassium hydrogen carbonate, potassium carbonate, sodium hydrogen carbonate, and sodium carbonate; ammonia; quaternary ammonium compounds such as quaternary ammonium hydroxides such as tetramethylammonium hydroxide, tetraethylammonium hydroxide, and tetrabutylammonium hydroxide; and other amines, phosphates, hydrogen phosphates, and organic acid salts. The basic compounds may be used alone or in combination of two or more. When a basic compound is used, the amount used is not particularly limited, and may be used in accordance with the purpose of use (e.g., pH adjustment). Alternatively, in some embodiments of the polishing composition disclosed herein, the composition may be substantially free of a basic compound.
 (その他の成分)
 ここに開示される研磨用組成物は、本発明の効果を損なわない範囲で、キレート剤、増粘剤、分散剤、表面保護剤、濡れ剤、界面活性剤、防錆剤、防腐剤、防カビ剤等の、研磨用組成物(例えば、炭化ケイ素等の高硬度材料の研磨に用いられる研磨用組成物)に用いられ得る公知の添加剤を、必要に応じてさらに含有してもよい。上記添加剤の含有量は、その添加目的に応じて適宜設定すればよく、本発明を特徴づけるものではないため、詳しい説明は省略する。
(Other ingredients)
The polishing composition disclosed herein may further contain, as necessary, known additives that can be used in polishing compositions (for example, polishing compositions used for polishing high-hardness materials such as silicon carbide), such as chelating agents, thickening agents, dispersants, surface protective agents, wetting agents, surfactants, rust inhibitors, preservatives, and antifungal agents, within the scope that does not impair the effects of the present invention. The content of the above additives may be appropriately set depending on the purpose of their addition, and detailed explanations are omitted since they do not characterize the present invention.
 (pH)
 研磨用組成物のpHは、1~12程度とすることが適当である。pHが上記範囲であると、実用的な研磨除去速度が達成されやすい。いくつかの態様において、上記pHは、12.0以下でもよく、11.0以下でもよく、10.0以下でもよく、9.0以下でもよく、9.0未満でもよく、8.0以下でもよく、8.0未満でもよく、7.0以下でもよく、7.0未満でもよく、6.0以下でもよい。金属塩を含む場合、金属塩(例えば金属塩B)の使用による研磨除去速度向上の効果をより発揮しやすくする観点から、いくつかの態様において、研磨用組成物のpHは、好ましくは6.0未満であり、5.0以下でもよく、5.0未満でもよく、4.0以下でもよく、4.0未満でもよい。上記pHは、例えば1.0以上であってよく、1.5以上でもよく、2.0以上でもよく、2.5以上でもよい。
(pH)
The pH of the polishing composition is suitably about 1 to 12. When the pH is in the above range, a practical polishing removal rate is easily achieved. In some embodiments, the pH may be 12.0 or less, 11.0 or less, 10.0 or less, 9.0 or less, less than 9.0, 8.0 or less, less than 8.0, 7.0 or less, less than 7.0, or 6.0 or less. When a metal salt is contained, from the viewpoint of more easily exerting the effect of improving the polishing removal rate by using a metal salt (e.g., metal salt B), in some embodiments, the pH of the polishing composition is preferably less than 6.0, 5.0 or less, less than 5.0, 4.0 or less, or less than 4.0. The pH may be, for example, 1.0 or more, 1.5 or more, 2.0 or more, or 2.5 or more.
 ここに開示される研磨用組成物の調製方法は特に限定されない。例えば、翼式攪拌機、超音波分散機、ホモミキサー等の周知の混合装置を用いて、研磨用組成物に含まれる各成分を混合するとよい。これらの成分を混合する態様は特に限定されず、例えば全成分を一度に混合してもよく、適宜設定した順序で混合してもよい。 The method for preparing the polishing composition disclosed herein is not particularly limited. For example, the components contained in the polishing composition may be mixed using a well-known mixing device such as a blade stirrer, ultrasonic disperser, or homomixer. The manner in which these components are mixed is not particularly limited, and for example, all the components may be mixed at once, or may be mixed in an appropriately set order.
 ここに開示される研磨用組成物は、一剤型であってもよいし、二剤型を始めとする多剤型であってもよい。例えば、該研磨用組成物の構成成分(例えば水以外の成分)のうち一部の成分を含むパートAと、残りの成分を含むパートBとが混合されて研磨対象物の研磨に用いられるように構成されていてもよい。上記多剤型の研磨用組成物は、上記パートAおよびパートBに加えて、パートCをさらに含んでもよい。これらは、例えば使用前は分けて保管されており、使用時に混合して一液の研磨用組成物が調製され得る。混合時には、希釈用の水等がさらに混合され得る。好ましい一態様において、ここに開示される多剤型の研磨用組成物は、パートAに粒子(無機粒子や樹脂粒子)と水とを含み、パートBに酸化剤と水とを含む。かかる態様により研磨用組成物の貯蔵安定性を向上できる。任意に用いられるパートCは、無機粒子、樹脂粒子および酸化剤の一部を含んでもよく、含まなくてもよい。 The polishing composition disclosed herein may be a one-component type or a multi-component type, including a two-component type. For example, the polishing composition may be configured such that part A containing some of the components (e.g., components other than water) of the polishing composition and part B containing the remaining components are mixed and used to polish an object to be polished. The multi-component polishing composition may further contain part C in addition to the above-mentioned parts A and B. These may be stored separately before use, for example, and mixed at the time of use to prepare a one-component polishing composition. When mixed, water for dilution may be further mixed. In a preferred embodiment, the multi-component polishing composition disclosed herein contains particles (inorganic particles or resin particles) and water in part A, and contains an oxidizing agent and water in part B. This embodiment can improve the storage stability of the polishing composition. The optionally used part C may or may not contain inorganic particles, resin particles, and a portion of the oxidizing agent.
<研磨対象物>
 ここに開示される研磨用組成物の研磨対象物は特に限定されない。例えば、ここに開示される研磨用組成物は、化合物半導体材料により構成された表面を有する基板、すなわち化合物半導体基板の研磨に適用され得る。化合物半導体基板の構成材料は、特に限定されず、例えば、テルル化カドミウム、セレン化亜鉛、硫化カドミウム、テルル化カドミウム水銀、テルル化亜鉛カドミウム等のII-VI族化合物半導体;窒化ガリウム、ヒ化ガリウム、リン化ガリウム、リン化インジウム、ヒ化アルミニウムガリウム、ヒ化ガリウムインジウム、ヒ化窒素インジウムガリウム、リン化アルミニウムガリウムインジウム等のIII-V族化合物半導体;炭化ケイ素、ケイ化ゲルマニウム等のIV-IV族化合物半導体;等であり得る。これらのうち複数の材料により構成された研磨対象物であってもよい。好ましい一態様において、ここに開示される研磨用組成物は、酸化物ではない(即ち、非酸化物の)化学物半導体材料により構成された表面を有する基板の研磨に適用され得る。非酸化物の化学物半導体材料により構成された表面を有する基板の研磨において、ここに開示される研磨用組成物に含有される酸化剤による研磨促進効果が好適に発揮されやすい。
<Object to be polished>
The object to be polished by the polishing composition disclosed herein is not particularly limited. For example, the polishing composition disclosed herein can be applied to polishing a substrate having a surface composed of a compound semiconductor material, that is, a compound semiconductor substrate. The constituent material of the compound semiconductor substrate is not particularly limited, and may be, for example, II-VI group compound semiconductors such as cadmium telluride, zinc selenide, cadmium sulfide, cadmium mercury telluride, zinc cadmium telluride, etc.; III-V group compound semiconductors such as gallium nitride, gallium arsenide, gallium phosphide, indium phosphide, aluminum gallium arsenide, gallium indium arsenide, indium gallium nitride arsenide, aluminum gallium indium phosphide, etc.; IV-IV group compound semiconductors such as silicon carbide and germanium silicide; etc. The object to be polished may be composed of a plurality of these materials. In a preferred embodiment, the polishing composition disclosed herein can be applied to polishing a substrate having a surface composed of a chemical semiconductor material that is not an oxide (i.e., a non-oxide). In polishing a substrate having a surface composed of a non-oxide chemical semiconductor material, the polishing-accelerating effect of the oxidizing agent contained in the polishing composition disclosed herein is easily and suitably exhibited.
 ここに開示される研磨用組成物は、例えば、500Hv以上のビッカース硬度を有する研磨対象物表面の研磨に好ましく用いられ得る。上記ビッカース硬度は、好ましくは700Hv以上であり、例えば1000Hv以上、あるいは1500Hv以上である。研磨対象材料のビッカース硬度は、1800Hv以上であってもよく、2000Hv以上でもよく、2200Hv以上でもよい。研磨対象物表面のビッカース硬度の上限は特に限定されず、例えば凡そ7000Hv以下であってよく、5000Hv以下でもよく、3000Hv以下でもよい。なお、本明細書において、ビッカース硬度は、JIS R 1610:2003に基づいて測定することができる。上記JIS規格に対応する国際規格はISO 14705:2000である。 The polishing composition disclosed herein can be preferably used for polishing the surface of an object to be polished having a Vickers hardness of, for example, 500 Hv or more. The Vickers hardness is preferably 700 Hv or more, for example, 1000 Hv or more, or 1500 Hv or more. The Vickers hardness of the material to be polished may be 1800 Hv or more, 2000 Hv or more, or 2200 Hv or more. The upper limit of the Vickers hardness of the surface of the object to be polished is not particularly limited, and may be, for example, approximately 7000 Hv or less, 5000 Hv or less, or 3000 Hv or less. In this specification, the Vickers hardness can be measured based on JIS R 1610:2003. The international standard corresponding to the above JIS standard is ISO 14705:2000.
 1500Hv以上のビッカース硬度を有する材料としては、炭化ケイ素、窒化ケイ素、窒化チタン、窒化ガリウム等が挙げられる。ここに開示される技術における研磨対象物は、機械的かつ化学的に安定な上記材料の単結晶表面を有するものであり得る。なかでも、研磨対象物表面は、炭化ケイ素および窒化ガリウムのうちのいずれかから構成されていることが好ましく、炭化ケイ素から構成されていることがより好ましい。炭化ケイ素は、電力損失が少なく耐熱性等に優れる化合物半導体基板材料として期待されており、研磨除去速度の向上により生産性を改善することの実用上の利点は特に大きい。ここに開示される技術は、炭化ケイ素の単結晶表面の研磨に対して特に好ましく適用され得る。 Materials having a Vickers hardness of 1500 Hv or more include silicon carbide, silicon nitride, titanium nitride, gallium nitride, etc. The object to be polished in the technology disclosed herein may have a single crystal surface of the above material that is mechanically and chemically stable. In particular, the surface of the object to be polished is preferably composed of either silicon carbide or gallium nitride, and more preferably composed of silicon carbide. Silicon carbide is expected to be a compound semiconductor substrate material with low power loss and excellent heat resistance, etc., and the practical advantage of improving productivity by increasing the polishing removal rate is particularly great. The technology disclosed herein can be particularly preferably applied to polishing the single crystal surface of silicon carbide.
<研磨方法>
 ここに開示される研磨用組成物は、例えば以下の操作を含む態様で、研磨対象物の研磨に使用することができる。
 すなわち、ここに開示されるいずれかの研磨用組成物を含む研磨液(スラリー)を用意する。上記研磨液を用意することには、研磨用組成物に、濃度調整(例えば希釈)、pH調整等の操作を加えて研磨液を調製することが含まれ得る。あるいは、上記研磨用組成物をそのまま研磨液として使用してもよい。また、多剤型の研磨用組成物の場合、上記研磨液を用意することには、それらの剤を混合すること、該混合の前に1または複数の剤を希釈すること、該混合の後にその混合物を希釈すること、等が含まれ得る。
 次いで、その研磨液を研磨対象物に供給し、当業者によってなされる通常の方法で研磨する。例えば、一般的な研磨装置に研磨対象物をセットし、該研磨装置の研磨パッドを通じて該研磨対象物の研磨対象面に上記研磨液を供給する方法である。典型的には、上記研磨液を連続的に供給しつつ、研磨対象物の研磨対象面に研磨パッドを押しつけて両者を相対的に移動(例えば回転移動)させる。かかるポリシング工程を経て研磨対象物の研磨が完了する。
<Polishing method>
The polishing composition disclosed herein can be used for polishing an object to be polished, for example, in an embodiment including the following operations.
That is, prepare a polishing liquid (slurry) containing any of the polishing compositions disclosed herein. The preparation of the polishing liquid may include the polishing composition being adjusted in concentration (e.g., diluted), adjusted in pH, etc. to prepare the polishing liquid. Alternatively, the polishing composition may be used as it is as the polishing liquid. In addition, in the case of a multi-agent type polishing composition, the preparation of the polishing liquid may include mixing the agents, diluting one or more agents before the mixing, diluting the mixture after the mixing, etc.
Next, the polishing liquid is supplied to the object to be polished, and the object is polished by a method that is generally used by those skilled in the art. For example, the object to be polished is set in a general polishing device, and the polishing liquid is supplied to the surface of the object to be polished through the polishing pad of the polishing device. Typically, the polishing liquid is continuously supplied, and the polishing pad is pressed against the surface of the object to be polished, and the two are moved relatively (for example, rotated). Through this polishing process, the polishing of the object to be polished is completed.
 なお、ここに開示される技術における研磨用組成物に含まれ得る各成分について上述した含有量(濃度)および含有量(濃度)の比は、典型的には、実際に研磨対象物に供給される際の(すなわち、point of useの)研磨用組成物における含有量および含有量の比を意味し、したがって研磨液における含有量および含有量の比と読み替えることができる。 The above-mentioned contents (concentrations) and content (concentration) ratios for each component that may be contained in the polishing composition in the technology disclosed herein typically refer to the contents and content ratios in the polishing composition when it is actually supplied to the object to be polished (i.e., at the point of use), and therefore can be read as the contents and content ratios in the polishing liquid.
 この明細書によると、研磨対象物(典型的には、研磨対象材料)を研磨する研磨方法および該研磨方法を用いた研磨物の製造方法が提供される。上記研磨方法は、ここに開示される研磨用組成物を用いて研磨対象物を研磨する工程を含むことによって特徴づけられる。好ましい一態様に係る研磨方法は、予備ポリシングを行う工程(予備ポリシング工程)と、仕上げポリシングを行う工程(仕上げポリシング工程)と、を含んでいる。典型的な一態様では、予備ポリシング工程は、仕上げポリシング工程の直前に配置されるポリシング工程である。予備ポリシング工程は、1段のポリシング工程であってもよく、2段以上の複数段のポリシング工程であってもよい。また、ここでいう仕上げポリシング工程は、予備ポリシングが行われた研磨対象物に対して仕上げポリシングを行う工程であって、砥粒を含むポリシング用スラリーを用いて行われるポリシング工程のうち最後に(すなわち、最も下流側に)配置される研磨工程のことをいう。このように予備ポリシング工程と仕上げポリシング工程とを含む研磨方法において、ここに開示される研磨用組成物は、予備ポリシング工程で用いられてもよく、仕上げポリシング工程で用いられてもよく、予備ポリシング工程および仕上げポリシング工程の両方で用いられてもよい。 According to this specification, a polishing method for polishing an object to be polished (typically, a material to be polished) and a method for manufacturing a polished product using the polishing method are provided. The polishing method is characterized by including a step of polishing an object to be polished using the polishing composition disclosed herein. A preferred embodiment of the polishing method includes a step of performing preliminary polishing (preliminary polishing step) and a step of performing finish polishing (finish polishing step). In a typical embodiment, the preliminary polishing step is a polishing step arranged immediately before the finish polishing step. The preliminary polishing step may be a single-stage polishing step or a multiple-stage polishing step of two or more stages. The finish polishing step here refers to a step of performing finish polishing on an object to be polished that has been subjected to preliminary polishing, and is the polishing step arranged last (i.e., the most downstream) of the polishing steps that are performed using a polishing slurry containing abrasive grains. In such a polishing method that includes a preliminary polishing step and a finish polishing step, the polishing composition disclosed herein may be used in the preliminary polishing step, may be used in the finish polishing step, or may be used in both the preliminary polishing step and the finish polishing step.
 予備ポリシングおよび仕上げポリシングは、片面研磨装置による研磨、両面研磨装置による研磨のいずれにも適用可能である。片面研磨装置では、セラミックプレートにワックスで研磨対象物を貼りつけたり、テンプレートと呼ばれる保持具を用いて研磨対象物を保持し、ポリシング用組成物を供給しながら研磨対象物の片面に研磨パッドを押しつけて両者を相対的に移動させることにより研磨対象物の片面を研磨する。上記移動は、例えば回転移動である。両面研磨装置では、キャリアと呼ばれる保持具を用いて研磨対象物を保持し、上方よりポリシング用組成物を供給しながら、研磨対象物の対向面に研磨パッドを押しつけ、それらを相対方向に回転させることにより研磨対象物の両面を同時に研磨する。 Preliminary polishing and finish polishing can be applied to both polishing with a single-sided polishing machine and polishing with a double-sided polishing machine. With a single-sided polishing machine, the object to be polished is attached to a ceramic plate with wax or held using a holder called a template, and one side of the object to be polished is polished by pressing a polishing pad against one side of the object to be polished while supplying a polishing composition and moving the two relative to each other. The above movement is, for example, rotational movement. With a double-sided polishing machine, the object to be polished is held using a holder called a carrier, and while supplying a polishing composition from above, a polishing pad is pressed against the opposing side of the object to be polished and they are rotated in relative directions to polish both sides of the object to be polished simultaneously.
 上記ポリシングの条件は、研磨される材料の種類や、目標とする表面性状(具体的には平滑性)、研磨除去速度等に基づいて適切に設定されるので、特定の条件に限定されない。例えば、加工圧力については、ここに開示される研磨用組成物は、例えば10kPa以上150kPa以下の広い圧力範囲で用いることができる。研磨除去速度を向上させる観点から、いくつかの態様において、上記加工圧力は、例えば5kPa以上、10kPa以上、20kPa以上、30kPa以上または40kPa以上であってよく、また、100kPa以下、80kPa以下または60kPa以下とすることができる。ここに開示される研磨用組成物は、例えば30kPa以上またはより高い加工条件での研磨にも好ましく用いることができ、かかる研磨を経て得られる目的物(研磨物)の生産性を高めることができる。なお、ここでいう加工圧力は研磨圧力と同義である。 The above polishing conditions are appropriately set based on the type of material to be polished, the target surface properties (specifically, smoothness), the polishing removal rate, etc., and are not limited to specific conditions. For example, the polishing composition disclosed herein can be used in a wide pressure range, for example, from 10 kPa to 150 kPa. From the viewpoint of improving the polishing removal rate, in some embodiments, the above processing pressure may be, for example, 5 kPa or more, 10 kPa or more, 20 kPa or more, 30 kPa or more, or 40 kPa or more, and can be 100 kPa or less, 80 kPa or less, or 60 kPa or less. The polishing composition disclosed herein can be preferably used for polishing under processing conditions of, for example, 30 kPa or more or higher, and the productivity of the target object (polished object) obtained through such polishing can be increased. Note that the processing pressure here is synonymous with the polishing pressure.
 ここに開示される各ポリシング工程で使用される研磨パッドは、特に限定されない。例えば、不織布タイプ、スウェードタイプ、硬質発泡ポリウレタンタイプのいずれを用いてもよい。いくつかの態様において、硬質発泡ポリウレタンタイプの研磨パッドを好ましく採用し得る。なお、ここに開示される技術において用いられる研磨パッドは、砥粒を含まない研磨パッドである。 The polishing pad used in each polishing process disclosed herein is not particularly limited. For example, any of nonwoven fabric type, suede type, and hard foam polyurethane type may be used. In some embodiments, a hard foam polyurethane type polishing pad may be preferably used. Note that the polishing pad used in the technology disclosed herein is a polishing pad that does not contain abrasive grains.
 ここに開示される方法により研磨された研磨対象物は、典型的にはポリシング後に洗浄される。この洗浄は、適当な洗浄液を用いて行うことができる。使用する洗浄液は特に限定されず、公知、慣用のものを適宜選択して用いることができる。 The object to be polished that has been polished by the method disclosed herein is typically washed after polishing. This washing can be carried out using an appropriate cleaning liquid. There are no particular limitations on the cleaning liquid used, and any known or commonly used liquid can be appropriately selected and used.
 なお、ここに開示される研磨方法は、上記予備ポリシング工程および仕上げポリシング工程に加えて任意の他の工程を含み得る。そのような工程としては、予備ポリシング工程の前に行われる機械研磨工程やラッピング工程が挙げられる。上記機械研磨工程は、ダイヤモンド砥粒を溶媒に分散させた液を用いて研磨対象物を研磨する。いくつかの好ましい態様において、上記分散液は酸化剤を含まない。上記ラッピング工程は、研磨定盤、例えば鋳鉄定盤の表面を研磨対象物に押し当てて研磨する工程である。したがって、ラッピング工程では研磨パッドは使用しない。ラッピング工程は、典型的には、研磨定盤と研磨対象物との間に砥粒を供給して行われる。上記砥粒は、典型的にはダイヤモンド砥粒である。また、ここに開示される研磨方法は、予備ポリシング工程の前や、予備ポリシング工程と仕上げポリシング工程との間に追加の工程を含んでもよい。追加の工程は、例えば洗浄工程やポリシング工程である。 The polishing method disclosed herein may include any other steps in addition to the preliminary polishing step and the finish polishing step. Examples of such steps include a mechanical polishing step and a lapping step that are performed before the preliminary polishing step. In the mechanical polishing step, the object to be polished is polished using a liquid in which diamond abrasive grains are dispersed in a solvent. In some preferred embodiments, the dispersion liquid does not contain an oxidizing agent. The lapping step is a step in which the surface of a polishing table, for example a cast iron table, is pressed against the object to be polished to polish it. Therefore, a polishing pad is not used in the lapping step. The lapping step is typically performed by supplying abrasive grains between the polishing table and the object to be polished. The abrasive grains are typically diamond abrasive grains. The polishing method disclosed herein may also include an additional step before the preliminary polishing step or between the preliminary polishing step and the finish polishing step. The additional step is, for example, a cleaning step or a polishing step.
<研磨物の製造方法>
 ここに開示される技術には、上述したいずれかの研磨方法によるポリシング工程を含む研磨物の製造方法および該方法により製造された研磨物の提供が含まれ得る。上記研磨物の製造方法は、例えば炭化ケイ素基板の製造方法である。すなわち、ここに開示される技術によると、高硬度材料から構成された表面を有する研磨対象物を、ここに開示されるいずれかの研磨方法を適用して研磨することを含む、研磨物の製造方法および該方法により製造された研磨物が提供される。上記製造方法によると、研磨を経て製造される基板、例えば炭化ケイ素基板が効率的に提供され得る。
<Method of manufacturing polished object>
The technology disclosed herein may include a method for manufacturing an abrasive, which includes a polishing step using any of the polishing methods described above, and the provision of an abrasive manufactured by the method. The above-mentioned method for manufacturing an abrasive is, for example, a method for manufacturing a silicon carbide substrate. That is, according to the technology disclosed herein, a method for manufacturing an abrasive, which includes polishing an object to be polished having a surface made of a high-hardness material by applying any of the polishing methods disclosed herein, and an abrasive manufactured by the method are provided. According to the above manufacturing method, a substrate manufactured through polishing, such as a silicon carbide substrate, can be efficiently provided.
 この明細書により開示される事項には、以下のものが含まれる。
 〔1〕 無機粒子と、酸化剤と、樹脂粒子を含む研磨用組成物であって、前記酸化剤が複合金属酸化物を含み、前記無機粒子の個数(Nip)と前記樹脂粒子の個数(Nrp)の比(Nrp/Nip)が80以上である、研磨用組成物。
 〔2〕 前記無機粒子が、酸化物粒子を含む、上記〔1〕に記載の研磨用組成物。
 〔3〕 前記酸化物粒子が、アルミナを含む、上記〔2〕に記載の研磨用組成物。
 〔4〕 前記酸化物粒子が、シリカを含む、上記〔2〕に記載の研磨用組成物。
 〔5〕 前記研磨用組成物のpHが9以下である、上記〔1〕~〔4〕のいずれかに記載の研磨用組成物。
 〔6〕 前記複合金属酸化物が、過マンガン酸類である、上記〔1〕~〔5〕のいずれかに記載の研磨用組成物。
 〔7〕 前記樹脂粒子が、ポリオレフィン樹脂、アクリル樹脂、スチレン・アクリル樹脂、塩化ビニル樹脂、メラミン樹脂、ポリウレタン樹脂およびアクリル・ウレタン樹脂からなる群から選択される1種を含む、上記〔1〕~〔6〕のいずれかに記載の研磨用組成物。
 〔8〕 前記樹脂粒子が、架橋アクリル樹脂を含む、上記〔7〕に記載の研磨用組成物。
 〔9〕 前記樹脂粒子が、架橋スチレン・アクリル樹脂を含む、上記〔7〕に記載の研磨用組成物。
 〔10〕 前記比(Nrp/Nip)が50000以下である、上記〔1〕~〔9〕のいずれかに記載の研磨用組成物。
 〔11〕 前記樹脂粒子の平均粒子径が5nm以上3μm以下である、上記〔1〕~〔10〕のいずれかに記載の研磨用組成物。
 〔12〕 ビッカース硬さ1500Hv以上の材料の研磨に用いられる、上記〔1〕~〔11〕のいずれかに記載の研磨用組成物。
 〔13〕 炭化ケイ素の研磨に用いられる、上記〔1〕~〔12〕のいずれかに記載の研磨用組成物。
The matters disclosed in this specification include the following.
[1] A polishing composition comprising inorganic particles, an oxidizing agent, and resin particles, wherein the oxidizing agent comprises a composite metal oxide, and the ratio (Nrp/Nip) of the number of the inorganic particles (Nip) to the number of the resin particles (Nrp) is 80 or more.
[2] The polishing composition according to the above [1], wherein the inorganic particles include oxide particles.
[3] The polishing composition according to [2] above, wherein the oxide particles contain alumina.
[4] The polishing composition according to [2] above, wherein the oxide particles contain silica.
[5] The polishing composition according to any one of [1] to [4] above, wherein the polishing composition has a pH of 9 or less.
[6] The polishing composition according to any one of [1] to [5] above, wherein the composite metal oxide is a permanganic acid.
[7] The polishing composition according to any one of [1] to [6] above, wherein the resin particles include one selected from the group consisting of polyolefin resin, acrylic resin, styrene-acrylic resin, vinyl chloride resin, melamine resin, polyurethane resin, and acrylic-urethane resin.
[8] The polishing composition according to the above [7], wherein the resin particles contain a crosslinked acrylic resin.
[9] The polishing composition according to the above [7], wherein the resin particles contain a crosslinked styrene-acrylic resin.
[10] The polishing composition according to any one of [1] to [9] above, wherein the ratio (Nrp/Nip) is 50,000 or less.
[11] The polishing composition according to any one of [1] to [10] above, wherein the resin particles have an average particle size of 5 nm or more and 3 μm or less.
[12] The polishing composition according to any one of [1] to [11] above, which is used for polishing a material having a Vickers hardness of 1500 Hv or more.
[13] The polishing composition according to any one of [1] to [12] above, which is used for polishing silicon carbide.
 以下、本発明に関するいくつかの実施例を説明するが、本発明をかかる実施例に示すものに限定することを意図したものではない。なお、以下の説明において「%」は、特に断りがない限り重量基準である。 Below, several examples of the present invention are described, but it is not intended that the present invention be limited to those shown in these examples. In the following description, "%" is based on weight unless otherwise specified.
<研磨用組成物の調製>
 (実施例1、実施例2、比較例3~9)
 樹脂粒子と、酸化剤と、無機粒子と、脱イオン水とを混合して研磨用組成物を調製した。研磨用組成物は、酸化剤を1.6重量%、無機粒子を5.9重量%含んでいた。研磨用組成物中の樹脂粒子の濃度、使用した樹脂粒子、酸化剤、無機粒子、および無機粒子の個数濃度Nip[個/L]に対する樹脂粒子の個数濃度Nrp[個/L]の比(Nrp/Nip)は表1の通りであった。
<Preparation of Polishing Composition>
(Example 1, Example 2, Comparative Examples 3 to 9)
Resin particles, oxidizing agent, inorganic particles, and deionized water are mixed to prepare a polishing composition.The polishing composition contains 1.6 wt% oxidizing agent and 5.9 wt% inorganic particles.The concentration of resin particles in the polishing composition, the ratio (Nrp/Nip) of the number concentration Nrp [pieces/L] of resin particles to the number concentration Nip [pieces/L] of inorganic particles used, and the resin particles, oxidizing agent, inorganic particles used are as shown in Table 1.
 (比較例1、比較例2)
 酸化剤と、無機粒子と、脱イオン水とを混合して研磨用組成物を調製した。研磨用組成物は、酸化剤を1.6重量%、無機粒子を5.9重量%含んでいた。比較例2は、比較例1の組成に酸を添加してpHを調整した。使用した酸化剤、無機粒子は表1の通りであった。
(Comparative Example 1 and Comparative Example 2)
An oxidizing agent, inorganic particles, and deionized water were mixed to prepare a polishing composition. The polishing composition contained 1.6 wt% of an oxidizing agent and 5.9 wt% of inorganic particles. In Comparative Example 2, an acid was added to the composition of Comparative Example 1 to adjust the pH. The oxidizing agent and inorganic particles used were as shown in Table 1.
<研磨対象物の研磨>
 アルミナ粒子を含む予備研磨用組成物を用いてSiCウェーハを予備研磨した。この研磨されたSiCウェーハを、各例に係る研磨用組成物をそのまま研磨液として使用して、下記の条件で研磨した。
  [ポリシング条件]
 研磨装置:不二越機械工業社、型式「RDP-500」
 研磨パッド:ニッタ・ハース社製「SUBA800XY」(不織布タイプ)
 加工圧力:29.4kPa
 定盤回転数:100回転/分
 ヘッド回転数:100回転/分
 研磨液の供給レート:20mL/分
 研磨液の使用方法:掛け捨て
 研磨時間:1時間
 研磨対象物:1インチSiCウェーハ(伝導型:n型、結晶型4H-SiC、主面(0001)のC軸に対するオフ角:4°)、Si面、1枚/バッチ
 研磨液の温度:23℃
<Polishing of the object to be polished>
A SiC wafer was pre-polished using a preliminary polishing composition containing alumina particles. The polished SiC wafer was polished under the following conditions using the polishing composition according to each example as it is as a polishing liquid.
[Polishing conditions]
Polishing equipment: Fujikoshi Machinery Industry Co., Ltd., model "RDP-500"
Polishing pad: Nitta Haas "SUBA800XY" (non-woven fabric type)
Processing pressure: 29.4 kPa
Platen rotation speed: 100 rpm Head rotation speed: 100 rpm Polishing liquid supply rate: 20 mL/min Polishing liquid usage method: pour-over Polishing time: 1 hour Polishing object: 1-inch SiC wafer (conductivity type: n-type, crystal type 4H-SiC, off angle of main surface (0001) to C-axis: 4°), Si surface, 1 wafer/batch Polishing liquid temperature: 23°C
<測定および評価>
 (研磨除去速度)
 上記ポリシング条件のもと、各例の研磨用組成物を用いてSiCウェーハを研磨した後、以下の計算式(1)、(2)に従って研磨除去速度を算出した。SiCの密度は3.21g/cmであり、研磨対象面積は19.62cmであった。
 (1)研磨取り代[cm]=研磨前後のSiCウェーハの重量の差[g]/SiCの密度[g/cm]/研磨対象面積[cm
 (2)研磨除去速度[nm/h]=研磨取り代[cm]×10/研磨時間[h]
<Measurement and Evaluation>
(Polishing removal rate)
Under the above polishing conditions, a SiC wafer was polished using each polishing composition, and the polishing removal rate was calculated according to the following formulas (1) and (2). The density of SiC was 3.21 g/ cm3 , and the area to be polished was 19.62 cm2 .
(1) Polishing stock removal [cm]=difference in weight of SiC wafer before and after polishing [g]/density of SiC [g/cm 3 ]/area to be polished [cm 2 ]
(2) Polishing removal rate [nm/h]=polishing removal amount [cm]×10 7 /polishing time [h]
 得られた結果を、比較例1についての研磨除去速度を100%とする相対値に換算した。値が大きいほど、研磨除去速度に優れることを示している。 The results were converted into relative values, with the polishing removal rate for Comparative Example 1 taken as 100%. A higher value indicates a better polishing removal rate.
 (摩擦係数)
 上記ポリシング条件のもと、各例の研磨用組成物を用いてSiCウェーハを研磨したときの摩擦係数を測定した。摩擦係数の測定に際しては、スウェード素材のバッキング材を用いたテンプレートをウェーハ保持具として使用した。ウェーハはテンプレートから200μm以上飛び出るように張り付けた。研磨時において、ウェーハはスウェード素材に対して水張りされた状態に保たれるようにした。摩擦係数は上記研磨装置から出力される値をそのまま採用した。
(Coefficient of Friction)
Under the above polishing conditions, the friction coefficient was measured when polishing a SiC wafer using each polishing composition. When measuring the friction coefficient, a template using a suede backing material was used as a wafer holder. The wafer was attached so that it protruded from the template by 200 μm or more. During polishing, the wafer was kept in a water-tensioned state against the suede material. The friction coefficient was directly adopted as the value output from the polishing device.
 得られた結果を、比較例1についての摩擦係数を100%とする相対値に換算した。値が小さいほど、摩擦が低減されていることを示している。 The results were converted into relative values, with the friction coefficient for Comparative Example 1 taken as 100%. A smaller value indicates a greater reduction in friction.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示されるように、Nrp/Nipが80以上である実施例の研磨用組成物によると、比較例1の研磨用組成物に比べて研磨除去速度を向上させ、摩擦を低減することができた。 As shown in Table 1, the polishing composition of the example having an Nrp/Nip ratio of 80 or more was able to improve the polishing removal rate and reduce friction compared to the polishing composition of Comparative Example 1.

Claims (13)

  1.  無機粒子と、酸化剤と、樹脂粒子を含む研磨用組成物であって、
     前記酸化剤が複合金属酸化物を含み、
     前記無機粒子の個数(Nip)と前記樹脂粒子の個数(Nrp)の比(Nrp/Nip)が80以上である、研磨用組成物。
    A polishing composition comprising inorganic particles, an oxidizing agent, and resin particles,
    the oxidizing agent comprises a complex metal oxide;
    The polishing composition has a ratio (Nrp/Nip) of the number of the inorganic particles (Nip) to the number of the resin particles (Nrp) of 80 or more.
  2.  前記無機粒子が、酸化物粒子を含む、請求項1に記載の研磨用組成物。 The polishing composition according to claim 1, wherein the inorganic particles include oxide particles.
  3.  前記酸化物粒子が、アルミナを含む、請求項2に記載の研磨用組成物。 The polishing composition according to claim 2, wherein the oxide particles include alumina.
  4.  前記酸化物粒子が、シリカを含む、請求項2に記載の研磨用組成物。 The polishing composition according to claim 2, wherein the oxide particles include silica.
  5.  前記研磨用組成物のpHが9以下である、請求項1に記載の研磨用組成物。 The polishing composition according to claim 1, wherein the pH of the polishing composition is 9 or less.
  6.  前記複合金属酸化物が、過マンガン酸類である、請求項1に記載の研磨用組成物。 The polishing composition according to claim 1, wherein the composite metal oxide is a permanganate.
  7.  前記樹脂粒子が、ポリオレフィン樹脂、アクリル樹脂、スチレン・アクリル樹脂、塩化ビニル樹脂、メラミン樹脂、ポリウレタン樹脂およびアクリル・ウレタン樹脂からなる群から選択される1種を含む、請求項1に記載の研磨用組成物。 The polishing composition according to claim 1, wherein the resin particles include one selected from the group consisting of polyolefin resin, acrylic resin, styrene-acrylic resin, vinyl chloride resin, melamine resin, polyurethane resin, and acrylic-urethane resin.
  8.  前記樹脂粒子が、架橋アクリル樹脂を含む、請求項7に記載の研磨用組成物。 The polishing composition according to claim 7, wherein the resin particles include a crosslinked acrylic resin.
  9.  前記樹脂粒子が、架橋スチレン・アクリル樹脂を含む、請求項7に記載の研磨用組成物。 The polishing composition according to claim 7, wherein the resin particles contain a cross-linked styrene-acrylic resin.
  10.  前記比(Nrp/Nip)が50000以下である、請求項1に記載の研磨用組成物。 The polishing composition according to claim 1, wherein the ratio (Nrp/Nip) is 50,000 or less.
  11.  前記樹脂粒子の平均粒子径が5nm以上3μm以下である、請求項1に記載の研磨用組成物。 The polishing composition according to claim 1, wherein the average particle size of the resin particles is 5 nm or more and 3 μm or less.
  12.  ビッカース硬さ1500Hv以上の材料の研磨に用いられる、請求項1に記載の研磨用組成物。 The polishing composition according to claim 1, which is used for polishing materials having a Vickers hardness of 1500 Hv or more.
  13.  炭化ケイ素の研磨に用いられる、請求項1に記載の研磨用組成物。 The polishing composition according to claim 1, which is used for polishing silicon carbide.
PCT/JP2024/011421 2023-03-30 2024-03-22 Polishing composition WO2024203917A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2023-056600 2023-03-30
JP2023056600 2023-03-30

Publications (1)

Publication Number Publication Date
WO2024203917A1 true WO2024203917A1 (en) 2024-10-03

Family

ID=92906450

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2024/011421 WO2024203917A1 (en) 2023-03-30 2024-03-22 Polishing composition

Country Status (1)

Country Link
WO (1) WO2024203917A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004128475A (en) * 2002-08-02 2004-04-22 Jsr Corp Water borne dispersing element for chemical mechanical polishing and method of manufacturing semiconductor device
JP2005142516A (en) * 2003-06-11 2005-06-02 Toshiro Doi Slurry composition and method for chemical mechanical polishing
JP2005518670A (en) * 2002-02-26 2005-06-23 アプライド マテリアルズ インコーポレイテッド Method and composition for polishing a substrate
JP2005302973A (en) * 2004-04-12 2005-10-27 Jsr Corp Aqueous dispersant for chemical mechanical polishing, and method for the chemical mechanical polishing
JP2006310362A (en) * 2005-04-26 2006-11-09 Sumitomo Electric Ind Ltd Surface treatment method of group-iii nitride crystal, group-iii nitride crystal substrate, group-iii nitride crystal substrate having epitaxial layer, and semiconductor device
JP2015523716A (en) * 2012-05-23 2015-08-13 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Method for manufacturing semiconductor device and method for using chemical mechanical polishing composition
US20170110333A1 (en) * 2015-10-14 2017-04-20 International Business Machines Corporation Group iii arsenide material smoothing and chemical mechanical planarization processes

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005518670A (en) * 2002-02-26 2005-06-23 アプライド マテリアルズ インコーポレイテッド Method and composition for polishing a substrate
JP2004128475A (en) * 2002-08-02 2004-04-22 Jsr Corp Water borne dispersing element for chemical mechanical polishing and method of manufacturing semiconductor device
JP2005142516A (en) * 2003-06-11 2005-06-02 Toshiro Doi Slurry composition and method for chemical mechanical polishing
JP2005302973A (en) * 2004-04-12 2005-10-27 Jsr Corp Aqueous dispersant for chemical mechanical polishing, and method for the chemical mechanical polishing
JP2006310362A (en) * 2005-04-26 2006-11-09 Sumitomo Electric Ind Ltd Surface treatment method of group-iii nitride crystal, group-iii nitride crystal substrate, group-iii nitride crystal substrate having epitaxial layer, and semiconductor device
JP2015523716A (en) * 2012-05-23 2015-08-13 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Method for manufacturing semiconductor device and method for using chemical mechanical polishing composition
US20170110333A1 (en) * 2015-10-14 2017-04-20 International Business Machines Corporation Group iii arsenide material smoothing and chemical mechanical planarization processes

Similar Documents

Publication Publication Date Title
KR102716012B1 (en) Polishing composition
TWI731843B (en) Polishing composition
TWI721144B (en) Polishing composition
KR20220024518A (en) polishing composition
JP6622991B2 (en) Polishing composition
CN115380097B (en) Polishing composition
WO2024203917A1 (en) Polishing composition
WO2024203916A1 (en) Polishing composition
WO2022168859A1 (en) Polishing method and polishing composition
WO2022168860A1 (en) Polishing composition
WO2023054386A1 (en) Polishing composition
WO2023054385A1 (en) Polishing composition
WO2022168858A1 (en) Polishing composition
WO2023189512A1 (en) Polishing composition
CN118974199A (en) Polishing composition
JP2024141600A (en) Polishing composition and polishing method
TW202145332A (en) Polishing composition and polishing method