[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2024203945A1 - Metal powder for molding, and molded article - Google Patents

Metal powder for molding, and molded article Download PDF

Info

Publication number
WO2024203945A1
WO2024203945A1 PCT/JP2024/011470 JP2024011470W WO2024203945A1 WO 2024203945 A1 WO2024203945 A1 WO 2024203945A1 JP 2024011470 W JP2024011470 W JP 2024011470W WO 2024203945 A1 WO2024203945 A1 WO 2024203945A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
content
metal powder
less
present
Prior art date
Application number
PCT/JP2024/011470
Other languages
French (fr)
Japanese (ja)
Inventor
範英 福澤
大樹 齋藤
ジュエ 王
和也 斉藤
Original Assignee
株式会社プロテリアル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社プロテリアル filed Critical 株式会社プロテリアル
Publication of WO2024203945A1 publication Critical patent/WO2024203945A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • B22F10/366Scanning parameters, e.g. hatch distance or scanning strategy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • B22F10/64Treatment of workpieces or articles after build-up by thermal means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur

Definitions

  • the present invention relates to metal powder for molding and molded objects using the same.
  • Age-hardened austenitic tool steels are non-magnetic and highly hard, and are therefore used in plastic molds and jigs that require non-magnetic properties.
  • Patent Document 1 proposes an age-hardened austenitic tool steel.
  • Age-hardened austenitic tool steels are also required to be machinable, and Patent Document 1 optimizes high strength and machinability through component design.
  • Such age-hardened austenitic tool steels are manufactured by the so-called smelting process, in which steel material is obtained by hot plastic processing of steel ingots obtained by an ingot-making process such as normal casting or remelting casting.
  • the age-hardened austenitic tool steel of Patent Document 1 has a composition that allows the formation of carbides and MnS in order to obtain high strength and machinability.
  • carbides and MnS that crystallize from the molten metal during normal casting or remelt casting are deformed by hot plastic processing to form the steel into its final shape.
  • These carbides and MnS remain in the subsequent heat treatment process, making it difficult to refine them while still in the steel state.
  • the object of the present invention is to provide a metal powder for molding capable of producing objects that have both high strength and machinability, and objects made using the same.
  • the inventors investigated methods for controlling the structure of age-hardened austenitic tool steel, and discovered that by adopting a process for solidifying and molding metal powder for molding, it is possible to obtain molded products that combine high strength and machinability by refining the structure, thus arriving at the present invention.
  • the present invention provides a useful technology for manufacturing objects that combine high strength and machinability by refining the microstructural morphology of age-hardened austenitic tool steel.
  • FIG. 2 is an elemental mapping image of S obtained by analyzing a cross section of a metal powder for molding according to an embodiment of the present invention using an electron probe microanalyzer (EPMA).
  • FIG. 13 is a diagram showing an element mapping image of S obtained by analyzing a cross section parallel to the layering direction of a shaped object according to an example of the present invention by EPMA.
  • FIG. 2 is a diagram showing an element mapping image of S when a cross section of a steel material serving as a comparative example is analyzed by EPMA. 13 is an optical microscope photograph of a molded object according to an embodiment of the present invention after solution treatment. 4 is an optical microscope photograph of a comparative steel material after solution treatment.
  • C is an austenite-forming element together with Mn and Ni, and is an element necessary for maintaining the structure of the shaped article of the present invention as austenite.
  • C forms carbides together with Cr, Mo, and V.
  • C is an element necessary for improving hardness and wear resistance.
  • the C content is set to 0.40 mass % or more.
  • the C content is preferably 0.45 mass % or more, and more preferably 0.50 mass % or more.
  • the C content is set to 0.70 mass% or less.
  • the C content is preferably 0.65 mass % or less, and more preferably 0.60 mass % or less.
  • Si 1.40% by mass or less
  • Si is an element necessary for improving oxidation resistance. However, if there is too much Si, segregation may occur inside the shaped object, which may reduce the strength. For this reason, the Si content is set to 1.40% by mass or less.
  • the Si content is preferably set to 1.00% by mass or less, and more preferably 0.60% by mass or less.
  • the Si content is preferably 0.1 ppm by mass or more, and more preferably 0.5 ppm by mass or more.
  • Mn 5.00-15.00% by mass Mn, together with C and Ni, is an austenite-forming element and is necessary for maintaining the structure of the shaped article of the present invention as austenite. If the Mn content is too low, ferrite will be generated, and the aging treatment will cause the formation of ferrite. There is a risk of lowering the maximum hardness. For this reason, the Mn content is set to 5.00 mass% or more. In the present invention, for the same reason as above, the Mn content is set to 5.50 mass% or more. It is preferable that the content of the Cr content is 6.00 mass % or more, and more preferable that the content of the Cr content is 6.00 mass % or more.
  • the Mn content is set to 15.00 mass% or less.
  • the Mn content is preferably 10.00 mass % or less.
  • Ni 2.00 to 10.00% by mass Ni, together with C and Mn, is an element necessary for maintaining the structure of the shaped article of the present invention as austenite.
  • Ni forms fine intermetallic particles with Al during aging treatment after solution treatment.
  • Ni is an element necessary for forming a compound and obtaining the hardness required for an age-hardened austenitic tool steel. Therefore, the Ni content is set to 2.00 mass % or more.
  • the Ni content is preferably 3.00 mass % or more, and more preferably 5.00 mass % or more.
  • the Ni content is set to 10.00 mass% or less.
  • the Ni content is preferably 9.00 mass % or less, and more preferably 8.00 mass % or less.
  • the Cr content is preferably 8.00 mass% or more, and more preferably 9.00 mass% or more.
  • the Cr content is set to 14.00 mass% or less.
  • the Cr content is preferably set to 13.00 mass% or less, and 12. 00% by mass or less is more preferable.
  • the Mo content is preferably 1.30 mass% or more, and more preferably 1.80 mass% or more. is more preferred.
  • the Mo content is set to 5.00 mass% or less.
  • the Mo content is preferably 4.00 mass % or less, and more preferably 3.00 mass % or less.
  • V 1.00-2.50% by mass
  • Vanadium (V) is an element necessary for forming carbides and suppressing the coarsening of crystal grains during solution treatment.
  • V precipitates fine carbides during aging treatment, and is particularly effective in preventing coarsening of grains during high aging.
  • V is an element necessary for obtaining hardness. Therefore, the V content is set to 1.00 mass % or more. In the present invention, for the same reason as above, the V content is set to 1.20 mass %. % is preferable.
  • the V content is set to 2.50 mass% or less.
  • the V content is preferably 2.00 mass % or less, and more preferably 1.50 mass % or less.
  • Cu 0.60-4.00% by mass
  • Cu is an element necessary for forming fine intermetallic compounds with Fe during aging treatment after solution treatment, and for obtaining the hardness required for age-hardening austenitic tool steel.
  • Cu is an element that has the effect of enhancing corrosion resistance. Therefore, the Cu content is set to 0.60 mass % or more. In the present invention, for the same reason as above, the Cu content is set to 0.80 mass %. % or more, and more preferably 1.00% by mass or more. On the other hand, if the Cu content is too high, there is a concern that the hardness may decrease. For this reason, the Cu content is set to 4.00 mass% or less. The content is preferably 3.50% by mass or less, and more preferably 3.00% by mass or less.
  • Al 0.60-4.00% by mass
  • Al is an element necessary for forming fine intermetallic compounds with Ni during aging treatment after solution treatment, and for obtaining the hardness required for age-hardenable austenitic tool steel.
  • the Al content is set to 0.60 mass % or more. In the present invention, for the same reason as above, the Al content is preferably set to 0.90 mass % or more. On the other hand, if the Al content is too high, it will lead to the formation of ferrite. Therefore, the Al content is set to 4.00 mass% or less. For the same reason as above, in the present invention, the Al content is set to 4.00 mass% or less. It is preferably 3.00% by mass or less, and more preferably 2.00% by mass or less.
  • S 0.0500 to 0.1500% by mass
  • S (sulfur) is an element necessary for forming sulfides together with Mn and improving machinability. If the S content is too high, the toughness of the obtained shaped article is reduced. For this reason, the S content is set to 0.0500 to 0.1500 mass%. In the present invention, for the same reason as above, the S content is set to 0.0500 to 0.1000 mass%. preferable.
  • the metal powder of the present invention can be produced by, for example, gas atomization, water atomization, disk atomization, plasma atomization, rotating electrode atomization, or the like.
  • the gas atomization method can use scrap metal, raw metal materials, etc. as the melting raw material, and can be manufactured at a lower cost than the plasma atomization method, the rotating electrode method, etc., which require the preparation of a raw material with a desired composition and shape in advance, and is therefore preferable as a manufacturing method for obtaining the metal powder of the present invention.
  • the metal powder of the present invention preferably has a 50% particle size (hereinafter referred to as "D50") of a cumulative particle size distribution based on volume of 10 to 250 ⁇ m.
  • D50 50% particle size
  • the cumulative particle size distribution of the metal powder of the present invention is represented by a cumulative volumetric particle size distribution, and its D50 is represented by a value measured by the laser diffraction scattering method defined in JIS Z 8825.
  • the particle size of the metal powder of the present invention is preferably adjusted by sieving classification using a mesh or air current classification in accordance with the molding method.
  • the metal powder is melted by the laser beam as a heat source, while coarse powder that is difficult to melt must be removed in order to minimize the range of the thermal effect.
  • fine powder with high adhesion must be removed. Therefore, when the metal powder of the present invention is applied to the powder bed fusion method, it is preferable to adjust D50 to the range of 10 to 53 ⁇ m.
  • the maximum length of MnS included in the observation field in a cross section parallel to the stacking direction is less than 1 ⁇ m.
  • the cross section parallel to the stacking direction refers to, for example, a cross section parallel to the filling direction of the metal powder in the case of a shaped product obtained by a pressure sintering method, or a cross section parallel to the direction in which multiple laminar solidified layers are formed in the case of a shaped product obtained by an additive manufacturing method.
  • An example of an elemental mapping image of S when MnS confirmed in a cross section parallel to the layering direction of a molded object was analyzed by EPMA is shown in Figure 2.
  • the dot-like inclusions shown in gray in the base material shown in black are MnS.
  • the maximum length of MnS less than 1 ⁇ m, internal defects such as cracks can be reduced, and deterioration of mechanical properties such as ductility and toughness can be suppressed.
  • EPMA for example, can be used to perform surface analysis of the S concentration distribution in a cross section parallel to the stacking direction. First, a cross section parallel to the stacking direction of the molded object is taken from an arbitrary position on the molded object. Then, an arbitrary area can be analyzed with EPMA at, for example, 5000x magnification to obtain the S distribution.
  • the shaped object of the present invention has an S content of 0.0500 to 0.1500 mass%. And, in the present invention, for the same reasons as above, it is preferable that the S content be 0.0500 to 0.1000 mass%.
  • the shaped object of the present invention can be obtained, for example, by a powder sintering method.
  • the shaped object can be obtained by pressure sintering the above-mentioned metal powder.
  • pressure sintering for example, a HIP method, a hot pressing method, an electric current sintering method, etc. can be applied.
  • the object of the present invention can also be applied to an additive manufacturing method in which a step of spreading metal powder in layers and a step of forming solidified layers by successively melting and solidifying the spread metal powder with a scanning heat source to form a solidified layer are repeated to form a plurality of solidified layers.
  • a laser or an electron beam can be used as the scanning heat source.
  • the laser output is too high, the molten part of the metal during laser irradiation will become deeper, making it easier for strong segregation to form during solidification.
  • the laser output is too low, the metal powder will not melt sufficiently, and many voids resulting from gaps in the metal powder will form in the molded object after solidification. For this reason, it is preferable to set the laser output to 50 to 350 W.
  • the metal powder will not receive enough heat, making it difficult to melt the powder as needed for shaping, and many voids will likely form in the solidified component.
  • the laser scanning speed is too slow, the molten part of the metal will become deep during laser irradiation, making it more likely for segregation to form.
  • excess heat will be applied to the metal powder, causing the molten part to flow vigorously, which will entrain gas and make it more likely for air bubbles to become mixed into the solidified component. For this reason, it is preferable to set the scanning speed to 200 to 2000 mm/sec.
  • the scanning pitch is the distance between the scanning beams. If the scanning pitch becomes too small, the molten part of the metal becomes deep during laser irradiation, making it easier for segregation to form. For this reason, it is preferable to set the scanning pitch to 0.02 to 0.20 mm.
  • the “layer thickness per scan” refers to the "thickness of each metal powder layer” that is laid out when shaping each layer. If the layer thickness per scan is too small, the number of layers required to reach the desired size of the object will increase, and the time required for shaping will increase. For this reason, it is preferable to set the layer thickness per scan to 10 to 200 ⁇ m.
  • the molded product of the present invention is preferably further subjected to a heat treatment process including a solution treatment and an aging treatment.
  • the age-hardened austenitic tool steel is used as a product after the component is subjected to a solution treatment and an aging treatment.
  • a solution treatment By performing a solution treatment, the intermetallic compounds precipitated by the heat during molding are put into solution, and further, by recrystallizing the anisotropic structure formed by the pressure sintering method or the molten pool or solidified structure formed by the additive manufacturing method, a structure with equiaxed crystal grains is obtained, and the anisotropy of the mechanical properties can be suppressed.
  • the solution treatment temperature is preferably 1100°C or higher, and more preferably 1150°C or higher. Increasing the solution treatment temperature improves the effect of eliminating segregation formed during shaping. However, if the solution treatment temperature is too high, the main body of the shaped object melts, and the strength and toughness of the shaped object decrease. For this reason, the solution treatment temperature is preferably 1250°C or lower, and more preferably 1200°C or lower.
  • the solution treatment time (maintenance time at the solution treatment temperature) is preferably 10 minutes or more, and more preferably 15 minutes or more. By increasing the solution treatment time, the effect of eliminating segregation formed during shaping is improved. However, if the solution treatment time is too long, the prior austenite grain size becomes coarse. For this reason, the solution treatment time is preferably 120 minutes or less, and more preferably 90 minutes or less.
  • the aging temperature is preferably 400°C or higher, more preferably 450°C or higher, and even more preferably 500°C or higher.
  • the aging temperature is particularly preferably 550°C or higher. Increasing the aging temperature further improves the effect of improving strength. However, if the aging temperature is too high, the intermetallic compounds become coarse, and sufficient strength commensurate with the amount of precipitation of the intermetallic compounds cannot be obtained. For this reason, the aging temperature is preferably 900°C or lower, and more preferably 800°C or lower.
  • the aging treatment time (maintenance time at the aging treatment temperature) is preferably 30 minutes or more, and more preferably 60 minutes or more.
  • the aging treatment time is preferably 600 minutes or less, and more preferably 400 minutes or less.
  • each metal raw material so as to have the composition of Sample No. 1-1 in Table 1
  • the raw materials were charged into a high-frequency induction melting furnace and melted, and the molten metal was pulverized with argon gas to obtain an atomized powder.
  • the resulting atomized powder was subjected to sieving classification using a mesh and air flow classification to adjust the powder particle size, thereby obtaining a metal powder of the present invention having a D50 of 28.8 ⁇ m.
  • a molded object was produced using this metal powder.
  • an EOS-M290 manufactured by EOS was used to produce the molded object under the molding conditions shown in Table 2.
  • Figure 1 shows elemental mapping images of S when a cross section of a metal powder according to an example of the present invention, a shaped product according to an example of the present invention, and a steel material according to a comparative example were analyzed by EPMA.
  • a large number of MnS particles having a maximum length exceeding 10 ⁇ m were confirmed, as shown in the gray areas in FIG.
  • the maximum length of all MnS particles was less than 1 ⁇ m, and it was confirmed that the MnS particles were finely dispersed.
  • Fig. 4 shows the optical micrographs of the shaped article according to the present invention
  • Fig. 5 shows the optical micrographs of the steel material according to the comparative example.
  • the steel material of the comparative example a large number of MnS particles with a maximum length exceeding 10 ⁇ m were confirmed.
  • the maximum length of all MnS particles was less than 1 ⁇ m, and it was confirmed that the MnS particles were finely dispersed.
  • Such fine dispersion of MnS and carbides is expected to have a favorable effect on the mechanical properties and machinability required for a tool steel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Thermal Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Powder Metallurgy (AREA)

Abstract

Provided are: a metal powder for molding from which a molded article having both high strength and machinability can be produced; and a molded article molded by using the same. Provided are: a metal powder for molding which contains 0.40-0.70 mass% of C, at most 1.40 mass% of Si, 5.00-15.00 mass% of Mn, 2.00-10.00 mass% of Ni, 7.00-14.00 mass% of Cr, 0.80-5.00 mass% of Mo, 1.00-2.50 mass% of V, 0.60-4.00 mass% of Cu, 0.60-4.00 mass% of Al, and 0.0500-0.1500 mass% of S, with the balance being Fe and inevitable impurities; and a molded article molded by using the same.

Description

造形用金属粉末および造形物Metal powders for molding and molded objects
 本発明は、造形用金属粉末およびこれを用いた造形物に関する。 The present invention relates to metal powder for molding and molded objects using the same.
 時効硬化型オーステナイト系工具鋼は、非磁性かつ高硬度であるという特徴から、プラマグ成形型や非磁性が求められる治具などに活用されている。時効硬化型オーステナイト系工具鋼として、例えば特許文献1が提案されている。時効硬化型オーステナイト系工具鋼には、被削性も要求されており、特許文献1では成分設計によって高強度および被削性の最適化がなされている。このような時効硬化型オーステナイト系工具鋼は、普通鋳造または再溶解鋳造といった造塊プロセスで得た鋼塊を熱間で塑性加工して鋼材を得る、所謂溶製法で製造されている。 Age-hardened austenitic tool steels are non-magnetic and highly hard, and are therefore used in plastic molds and jigs that require non-magnetic properties. For example, Patent Document 1 proposes an age-hardened austenitic tool steel. Age-hardened austenitic tool steels are also required to be machinable, and Patent Document 1 optimizes high strength and machinability through component design. Such age-hardened austenitic tool steels are manufactured by the so-called smelting process, in which steel material is obtained by hot plastic processing of steel ingots obtained by an ingot-making process such as normal casting or remelting casting.
特開昭63-203753号公報Japanese Patent Application Publication No. 63-203753
 特許文献1の時効硬化型オーステナイト系工具鋼は、高強度および被削性を得るために、炭化物やMnSが形成される成分組成となっている。これを溶製法で製造する場合は、普通鋳造または再溶解鋳造中に溶湯から晶出した炭化物やMnSを、熱間での塑性加工によって変形させ、最終形状の鋼材に成形する。これら炭化物やMnSは、その後の熱処理工程においても残存し、鋼材の状態で微細化させることが困難であった。 The age-hardened austenitic tool steel of Patent Document 1 has a composition that allows the formation of carbides and MnS in order to obtain high strength and machinability. When this is manufactured by the ingot process, the carbides and MnS that crystallize from the molten metal during normal casting or remelt casting are deformed by hot plastic processing to form the steel into its final shape. These carbides and MnS remain in the subsequent heat treatment process, making it difficult to refine them while still in the steel state.
 本発明の目的は、高強度および被削性を兼ね備えた造形物を製造可能な造形用金属粉末およびこれを用いた造形物を提供することである。 The object of the present invention is to provide a metal powder for molding capable of producing objects that have both high strength and machinability, and objects made using the same.
 本発明者は、時効硬化型オーステナイト系工具鋼の組織制御手法を検討し、造形用金属粉末を固化成形するプロセスを採用することで、組織形態の微細化により、高強度および被削性を兼ね備えた造形物を得ることができることを見い出し、本発明に到達した。 The inventors investigated methods for controlling the structure of age-hardened austenitic tool steel, and discovered that by adopting a process for solidifying and molding metal powder for molding, it is possible to obtain molded products that combine high strength and machinability by refining the structure, thus arriving at the present invention.
 本発明は、質量%で、C=0.40~0.70%、Si=1.40%以下、Mn=5.00~15.00%、Ni=2.00~10.00%、Cr=7.00~14.00%、Mo=0.80~5.00%、V=1.00~2.50%、Cu=0.60~4.00%、Al=0.60~4.00%、S=0.0500~0.1500%含有し、残部がFeおよび不可避的不純物からなる造形用金属粉末である。 The present invention is a metal powder for molding that contains, by mass%, C = 0.40-0.70%, Si = 1.40% or less, Mn = 5.00-15.00%, Ni = 2.00-10.00%, Cr = 7.00-14.00%, Mo = 0.80-5.00%, V = 1.00-2.50%, Cu = 0.60-4.00%, Al = 0.60-4.00%, S = 0.0500-0.1500%, and the balance being Fe and unavoidable impurities.
 そして、本発明は、質量%で、C=0.40~0.70%、Si=1.40%以下、Mn=5.00~15.00%、Ni=2.00~10.00%、Cr=7.00~14.00%、Mo=0.80~5.00%、V=1.00~2.50%、Cu=0.60~4.00%、Al=0.60~4.00%、S=0.0500~0.1500%含有し、残部がFeおよび不可避的不純物からなり、積層方向と平行な断面において、MnSの最大長さが1μm未満の造形物である。 The present invention is a shaped object containing, by mass%, C = 0.40-0.70%, Si = 1.40% or less, Mn = 5.00-15.00%, Ni = 2.00-10.00%, Cr = 7.00-14.00%, Mo = 0.80-5.00%, V = 1.00-2.50%, Cu = 0.60-4.00%, Al = 0.60-4.00%, S = 0.0500-0.1500%, with the remainder being Fe and unavoidable impurities, and in which the maximum length of MnS in a cross section parallel to the lamination direction is less than 1 μm.
 本発明は、時効硬化型オーステナイト系工具鋼の組織形態の微細化により、高強度および被削性を兼ね備えた造形物の製造に有用な技術となる。 The present invention provides a useful technology for manufacturing objects that combine high strength and machinability by refining the microstructural morphology of age-hardened austenitic tool steel.
本発明例となる造形用金属粉末の断面を、EPMA(電子線マイクロアナライザー)で分析したときの、Sの元素マッピング画像を示す図。FIG. 2 is an elemental mapping image of S obtained by analyzing a cross section of a metal powder for molding according to an embodiment of the present invention using an electron probe microanalyzer (EPMA). 本発明例となる造形物の積層方向と平行する断面を、EPMAで分析したときの、Sの元素マッピング画像を示す図。FIG. 13 is a diagram showing an element mapping image of S obtained by analyzing a cross section parallel to the layering direction of a shaped object according to an example of the present invention by EPMA. 比較例となる鋼材の断面を、EPMAで分析したときの、Sの元素マッピング画像を示す図。FIG. 2 is a diagram showing an element mapping image of S when a cross section of a steel material serving as a comparative example is analyzed by EPMA. 本発明例となる造形物の溶体化処理後の光学顕微鏡写真。13 is an optical microscope photograph of a molded object according to an embodiment of the present invention after solution treatment. 比較例となる鋼材の溶体化処理後の光学顕微鏡写真。4 is an optical microscope photograph of a comparative steel material after solution treatment.
 本発明の造形用金属粉末(以下、単に「金属粉末」ともいう。)および造形物は、質量%で、C=0.40~0.70%、Si=1.40%以下、Mn=5.00~15.00%、Ni=2.00~10.00%、Cr=7.00~14.00%、Mo=0.80~5.00%、V=1.00~2.50%、Cu=0.60~4.00%、Al=0.60~4.00%、S=0.0500~0.1500%含有し、残部がFeおよび不可避的不純物からなる。 The metal powder for molding (hereinafter also simply referred to as "metal powder") and molded object of the present invention contain, by mass%, C = 0.40-0.70%, Si = 1.40% or less, Mn = 5.00-15.00%, Ni = 2.00-10.00%, Cr = 7.00-14.00%, Mo = 0.80-5.00%, V = 1.00-2.50%, Cu = 0.60-4.00%, Al = 0.60-4.00%, S = 0.0500-0.1500%, with the remainder being Fe and unavoidable impurities.
 C=0.40~0.70質量%
 C(炭素)は、Mn、Niとともにオーステナイト形成元素として、本発明の造形物の組織をオーステナイトとして保つために必要な元素である。また、Cは、Cr、Mo、Vとともに炭化物を形成することで、硬さの向上や、耐摩耗性を向上させるためにも必要な元素である。Cの含有量は、造形物の硬さを得る観点から、0.40質量%以上とする。本発明では、上記と同様の理由から、Cの含有量を0.45質量%以上にすることが好ましく、0.50質量%以上がより好ましい。
 一方、Cの含有量が高すぎると、粗大な炭化物が形成されてしまい、靭性の低下を招く虞がある。このため、Cの含有量は、0.70質量%以下とする。本発明では、上記と同様の理由から、Cの含有量を0.65質量%以下にすることが好ましく、0.60質量%以下がより好ましい。
C=0.40-0.70% by mass
Carbon (C) is an austenite-forming element together with Mn and Ni, and is an element necessary for maintaining the structure of the shaped article of the present invention as austenite. In addition, C forms carbides together with Cr, Mo, and V. C is an element necessary for improving hardness and wear resistance. From the viewpoint of obtaining hardness of the shaped product, the C content is set to 0.40 mass % or more. For the same reasons as above, the C content is preferably 0.45 mass % or more, and more preferably 0.50 mass % or more.
On the other hand, if the C content is too high, coarse carbides are formed, which may lead to a decrease in toughness. For this reason, the C content is set to 0.70 mass% or less. For the same reasons as above, the C content is preferably 0.65 mass % or less, and more preferably 0.60 mass % or less.
 Si=1.40質量%以下
 Siは、耐酸化性を高めるために必要な元素である。ただし、Siが多すぎると、造形物の内部に偏析が生じてしまい、強度が低下する虞がある。このため、Siの含有量は、1.40質量%以下とする。本発明では、上記と同様の理由から、Siの含有量を1.00質量%以下にすることが好ましく、0.60質量%以下がより好ましい。
 なお、Siは、工業的量産性を考慮して、0.1質量ppm以上にすることが好ましく、0.5質量ppm以上にすることがより好ましい。
Si = 1.40% by mass or less Si is an element necessary for improving oxidation resistance. However, if there is too much Si, segregation may occur inside the shaped object, which may reduce the strength. For this reason, the Si content is set to 1.40% by mass or less. In the present invention, for the same reasons as above, the Si content is preferably set to 1.00% by mass or less, and more preferably 0.60% by mass or less.
In addition, taking into consideration industrial mass productivity, the Si content is preferably 0.1 ppm by mass or more, and more preferably 0.5 ppm by mass or more.
 Mn=5.00~15.00質量%
 Mnは、C、Niとともにオーステナイト形成元素として、本発明の造形物の組織をオーステナイトとして保つために必要な元素である。Mnの含有量は、低すぎるとフェライトが生成されてしまい、時効処理における最高硬さを低下させる虞がある。このため、Mnの含有量は、5.00質量%以上とする。本発明では、上記と同様の理由から、Mnの含有量を5.50質量%以上にすることが好ましく、6.00質量%以上がより好ましい。
 一方、Mnの含有量が高すぎると、被削性を低下させる虞がある。このため、Mnの含有量は、15.00質量%以下とする。本発明では、上記と同様の理由から、Mnの含有量を10.00質量%以下にすることが好ましい。
Mn=5.00-15.00% by mass
Mn, together with C and Ni, is an austenite-forming element and is necessary for maintaining the structure of the shaped article of the present invention as austenite. If the Mn content is too low, ferrite will be generated, and the aging treatment will cause the formation of ferrite. There is a risk of lowering the maximum hardness. For this reason, the Mn content is set to 5.00 mass% or more. In the present invention, for the same reason as above, the Mn content is set to 5.50 mass% or more. It is preferable that the content of the Cr content is 6.00 mass % or more, and more preferable that the content of the Cr content is 6.00 mass % or more.
On the other hand, if the Mn content is too high, there is a risk of reducing machinability. Therefore, the Mn content is set to 15.00 mass% or less. For the same reason as above, in the present invention, The Mn content is preferably 10.00 mass % or less.
 Ni=2.00~10.00質量%
 Niは、C、Mnとともに、本発明の造形物の組織をオーステナイトとして保つために必要な元素である。また、Niは、溶体化処理後の時効処理において、Alとの間に微細な金属間化合物を形成し、時効硬化型オーステナイト系工具鋼として必要な硬度を得るために必要な元素である。このため、Niの含有量は、2.00質量%以上とする。本発明では、上記と同様の理由から、Niの含有量を3.00質量%以上にすることが好ましく、5.00質量%以上がより好ましい。
 一方、Niの含有量が高すぎると、造形物の組織に非金属介在物が増加してしまい、靭性が低下する虞がある。このため、Niの含有量は、10.00質量%以下とする。本発明では、上記と同様の理由から、Niの含有量を9.00質量%以下にすることが好ましく、8.00質量%以下がより好ましい。
Ni = 2.00 to 10.00% by mass
Ni, together with C and Mn, is an element necessary for maintaining the structure of the shaped article of the present invention as austenite. In addition, Ni forms fine intermetallic particles with Al during aging treatment after solution treatment. Ni is an element necessary for forming a compound and obtaining the hardness required for an age-hardened austenitic tool steel. Therefore, the Ni content is set to 2.00 mass % or more. For the same reason, the Ni content is preferably 3.00 mass % or more, and more preferably 5.00 mass % or more.
On the other hand, if the Ni content is too high, nonmetallic inclusions will increase in the structure of the molded product, which may reduce toughness. For this reason, the Ni content is set to 10.00 mass% or less. In the present invention, for the same reasons as above, the Ni content is preferably 9.00 mass % or less, and more preferably 8.00 mass % or less.
 Cr=7.00~14.00質量%
 Crは、鋼材の耐食性や耐酸化性を高め、また炭化物を形成して溶体化処理時の結晶粒の粗大化を抑制するために必要な元素である。このため、Crの含有量は、7.00質量%以上とする。本発明では、上記と同様の理由から、Crの含有量を8.00質量%以上にすることが好ましく、9.00質量%以上がより好ましい。
 一方、Crの含有量が高すぎると、粗大な炭化物の生成を助長してしまい、靭性が低下する虞がある。また、Crの含有量が高すぎると、高温強度の低下やフェライトの生成を招く。このため、Crの含有量は、14.00質量%以下とする。本発明では、上記と同様の理由から、Crの含有量を13.00質量%以下にすることが好ましく、12.00質量%以下がより好ましい。
Cr=7.00-14.00% by mass
Cr is an element necessary for improving the corrosion resistance and oxidation resistance of steel materials, and for suppressing the coarsening of crystal grains during solution treatment by forming carbides. In the present invention, for the same reasons as above, the Cr content is preferably 8.00 mass% or more, and more preferably 9.00 mass% or more.
On the other hand, if the Cr content is too high, it may promote the formation of coarse carbides, which may reduce the toughness. Also, if the Cr content is too high, it may reduce the high-temperature strength and suppress the formation of ferrite. For this reason, the Cr content is set to 14.00 mass% or less. In the present invention, for the same reason as above, the Cr content is preferably set to 13.00 mass% or less, and 12. 00% by mass or less is more preferable.
 Mo=0.80~5.00質量%
 Moは、炭化物を形成して溶体化処理時の結晶粒の粗大化を抑制し、時効処理時に微細な炭化物を析出し、高い時効硬さと高温強度を得るために必要な元素である。このため、Moの含有量は、0.80質量%以上とする。本発明では、上記と同様の理由から、Moの含有量を1.30質量%以上にすることが好ましく、1.80質量%以上がより好ましい。
 一方、Moの含有量が高すぎると、粗大な炭化物が形成されてしまい、靭性を低下させる懸念がある。このため、Moの含有量は、5.00質量%以下とする。本発明では、上記と同様の理由から、Moの含有量を4.00質量%以下にすることが好ましく、3.00質量%以下がより好ましい。
Mo=0.80-5.00% by mass
Mo is an element that is necessary for forming carbides to suppress the coarsening of crystal grains during solution treatment, precipitating fine carbides during aging treatment, and obtaining high aging hardness and high-temperature strength. In the present invention, for the same reasons as above, the Mo content is preferably 1.30 mass% or more, and more preferably 1.80 mass% or more. is more preferred.
On the other hand, if the Mo content is too high, coarse carbides are formed, which may reduce toughness. For this reason, the Mo content is set to 5.00 mass% or less. For the same reasons as above, the Mo content is preferably 4.00 mass % or less, and more preferably 3.00 mass % or less.
 V=1.00~2.50質量%
 V(バナジウム)は、炭化物を形成し、溶体化処理時の結晶粒の粗大化を抑制するために必要な元素である。また、Vは、時効処理時に微細な炭化物を析出し、特に高い時効硬さを得るために必要な元素である。このため、Vの含有量は、1.00質量%以上とする。本発明では、上記と同様の理由から、Vの含有量を1.20質量%にすることが好ましい。
 一方、Vの含有量が高すぎると、粗大な炭化物が形成されてしまい、靭性を低下させる懸念がある。このため、Vの含有量は、2.50質量%以下とする。本発明では、上記と同様の理由から、Vの含有量を2.00質量%以下にすることが好ましく、1.50質量%以下がより好ましい。
V=1.00-2.50% by mass
Vanadium (V) is an element necessary for forming carbides and suppressing the coarsening of crystal grains during solution treatment. In addition, V precipitates fine carbides during aging treatment, and is particularly effective in preventing coarsening of grains during high aging. V is an element necessary for obtaining hardness. Therefore, the V content is set to 1.00 mass % or more. In the present invention, for the same reason as above, the V content is set to 1.20 mass %. % is preferable.
On the other hand, if the V content is too high, coarse carbides are formed, which may reduce the toughness. For this reason, the V content is set to 2.50 mass% or less. For the same reasons as above, the V content is preferably 2.00 mass % or less, and more preferably 1.50 mass % or less.
 Cu=0.60~4.00質量%
 Cuは、溶体化処理後の時効処理において、Feとの間に微細な金属間化合物を形成し、時効硬化型オーステナイト系工具鋼として必要な硬度を得るために必要な元素である。また、Cuは、耐食性を高める効果がある元素である。このため、Cuの含有量は、0.60質量%以上とする。本発明では、上記と同様の理由から、Cuの含有量を0.80質量%以上にすることが好ましく、1.00質量%以上がより好ましい。
 一方、Cuの含有量が高すぎると、硬度を低下させる懸念がある。このため、Cuの含有量は、4.00質量%以下とする。本発明では、上記と同様の理由から、Cuの含有量を3.50質量%以下にすることが好ましく、3.00質量%以下がより好ましい。
Cu=0.60-4.00% by mass
Cu is an element necessary for forming fine intermetallic compounds with Fe during aging treatment after solution treatment, and for obtaining the hardness required for age-hardening austenitic tool steel. Cu is an element that has the effect of enhancing corrosion resistance. Therefore, the Cu content is set to 0.60 mass % or more. In the present invention, for the same reason as above, the Cu content is set to 0.80 mass %. % or more, and more preferably 1.00% by mass or more.
On the other hand, if the Cu content is too high, there is a concern that the hardness may decrease. For this reason, the Cu content is set to 4.00 mass% or less. The content is preferably 3.50% by mass or less, and more preferably 3.00% by mass or less.
 Al=0.60~4.00質量%
 Alは、溶体化処理後の時効処理において、Niとの間に微細な金属間化合物を形成し、時効硬化型オーステナイト系工具鋼として必要な硬度を得るために必要な元素である。このため、Alの含有量は、0.60質量%以上とする。本発明では、上記と同様の理由から、Alの含有量を0.90質量%以上にすることが好ましい。
 一方、Alの含有量が高すぎると、フェライトの生成を招く。このため、Al含有量は、4.00質量%以下とする。本発明では、上記と同様の理由から、Alの含有量を3.00質量%以下にすることが好ましく、2.00質量%以下がより好ましい。
Al=0.60-4.00% by mass
Al is an element necessary for forming fine intermetallic compounds with Ni during aging treatment after solution treatment, and for obtaining the hardness required for age-hardenable austenitic tool steel. The Al content is set to 0.60 mass % or more. In the present invention, for the same reason as above, the Al content is preferably set to 0.90 mass % or more.
On the other hand, if the Al content is too high, it will lead to the formation of ferrite. Therefore, the Al content is set to 4.00 mass% or less. For the same reason as above, in the present invention, the Al content is set to 4.00 mass% or less. It is preferably 3.00% by mass or less, and more preferably 2.00% by mass or less.
 S=0.0500~0.1500質量%
 S(硫黄)は、Mnとの間に硫化物を形成し、被削性を向上させるために必要な元素である。Sの含有量が高すぎると、得られる造形物の靭性を低下させる。このため、Sの含有量は、0.0500~0.1500質量%とする。本発明では、上記と同様の理由から、Sの含有量を0.0500~0.1000質量%にすることが好ましい。
S=0.0500 to 0.1500% by mass
S (sulfur) is an element necessary for forming sulfides together with Mn and improving machinability. If the S content is too high, the toughness of the obtained shaped article is reduced. For this reason, the S content is set to 0.0500 to 0.1500 mass%. In the present invention, for the same reason as above, the S content is set to 0.0500 to 0.1000 mass%. preferable.
 本発明の金属粉末は、例えば、ガスアトマイズ法や水アトマイズ法、ディスクアトマイズ法、プラズマアトマイズ法、回転電極法等によって製造することができる。
 これらの製造方法の中でも、ガスアトマイズ法は、スクラップ金属や金属粗原料等を溶解原料に使用することが可能であり、予め所望の組成および形状の原料を準備する必要があるプラズマアトマイズ法や回転電極法等と比較して、安価なコストで製造することが可能となる。このため、本発明の金属粉末を得る製法として好ましい。
The metal powder of the present invention can be produced by, for example, gas atomization, water atomization, disk atomization, plasma atomization, rotating electrode atomization, or the like.
Among these manufacturing methods, the gas atomization method can use scrap metal, raw metal materials, etc. as the melting raw material, and can be manufactured at a lower cost than the plasma atomization method, the rotating electrode method, etc., which require the preparation of a raw material with a desired composition and shape in advance, and is therefore preferable as a manufacturing method for obtaining the metal powder of the present invention.
 本発明の金属粉末は、体積基準の累積粒度分布の50%粒径(以下、「D50」という。)が10~250μmであることが好ましい。本発明の金属粉末は、そのD50を250μm以下とすることにより、粉末の溶融が容易になり、造形物中に欠陥が形成されることを抑制できる。
 また、本発明の金属粉末は、そのD50を10μm以上とすることにより、雰囲気中の湿気等の影響を受けにくくなり、良好な流動性を確保することができる。
 尚、本発明の金属粉末おける累積粒度分布は、累積体積粒度分布で表わされ、そのD50は、JIS Z 8825で規定される、レーザー回折散乱法による測定値で表わされる。
The metal powder of the present invention preferably has a 50% particle size (hereinafter referred to as "D50") of a cumulative particle size distribution based on volume of 10 to 250 μm. By making the metal powder of the present invention have a D50 of 250 μm or less, the powder can be easily melted and the formation of defects in the molded product can be suppressed.
Furthermore, by making the metal powder of the present invention have a D50 of 10 μm or more, it becomes less susceptible to the effects of moisture in the atmosphere, etc., and good fluidity can be ensured.
The cumulative particle size distribution of the metal powder of the present invention is represented by a cumulative volumetric particle size distribution, and its D50 is represented by a value measured by the laser diffraction scattering method defined in JIS Z 8825.
 本発明の金属粉末は、造形方法に合わせて、メッシュを用いた篩別分級や気流分級等により粉末粒径を調整することが好ましい。
 例えば、レーザービームを用いた粉末床溶融結合法に使用される金属粉末は、熱源となるレーザービームにより金属粉末を溶融させる一方で、熱影響の範囲を極力狭めるために溶融しづらい粗大な粉末を除去する必要がある。また、金属粉末の敷設性を確保するための最適な流動性を得るために、付着性の高い微細な粉末も除去する必要がある。このため、本発明の金属粉末を粉末床溶融結合法に適用する場合は、D50を10~53μmの範囲に調整することが好ましい。
The particle size of the metal powder of the present invention is preferably adjusted by sieving classification using a mesh or air current classification in accordance with the molding method.
For example, in the case of metal powder used in the powder bed fusion method using a laser beam, the metal powder is melted by the laser beam as a heat source, while coarse powder that is difficult to melt must be removed in order to minimize the range of the thermal effect. Also, in order to obtain optimal fluidity to ensure the laying of the metal powder, fine powder with high adhesion must be removed. Therefore, when the metal powder of the present invention is applied to the powder bed fusion method, it is preferable to adjust D50 to the range of 10 to 53 μm.
 本発明の造形物は、積層方向と平行な断面において、観察視野中に含まれるMnSの最大長さが1μm未満である。ここで、積層方向と平行な断面とは、例えば、加圧焼結法により得た造形物であれば金属粉末の充填方向と平行な断面のことをいい、積層造形法により得た造形物であれば複数の層状の凝固層が形成される方向と平行な断面のことをいう。
 造形物の積層方向と平行な断面に確認されるMnSをEPMAで分析したときの、Sの元素マッピング画像の一例を図2に示す。図2中で、黒色部で示される素地中に灰色部で示される点状の介在物がMnSである。
 本発明の造形物は、MnSの最大長さを1μm未満とすることで、割れなどの内部欠陥を減少させることができ、延性や靭性などの機械的特性の低下を抑制できる。
In the shaped product of the present invention, the maximum length of MnS included in the observation field in a cross section parallel to the stacking direction is less than 1 μm. Here, the cross section parallel to the stacking direction refers to, for example, a cross section parallel to the filling direction of the metal powder in the case of a shaped product obtained by a pressure sintering method, or a cross section parallel to the direction in which multiple laminar solidified layers are formed in the case of a shaped product obtained by an additive manufacturing method.
An example of an elemental mapping image of S when MnS confirmed in a cross section parallel to the layering direction of a molded object was analyzed by EPMA is shown in Figure 2. In Figure 2, the dot-like inclusions shown in gray in the base material shown in black are MnS.
In the shaped article of the present invention, by making the maximum length of MnS less than 1 μm, internal defects such as cracks can be reduced, and deterioration of mechanical properties such as ductility and toughness can be suppressed.
 MnSの最大長さが1μm未満であることを測定するための、積層方向と平行な断面におけるSの濃度分布を面分析するには、例えば、EPMAを利用することができる。まず、造形物の任意の位置から、造形物の積層方向と平行する断面を採取する。そして、任意の領域、例えば5000倍で、EPMA分析することで、Sの分布を得ることができる。 To measure whether the maximum length of MnS is less than 1 μm, EPMA, for example, can be used to perform surface analysis of the S concentration distribution in a cross section parallel to the stacking direction. First, a cross section parallel to the stacking direction of the molded object is taken from an arbitrary position on the molded object. Then, an arbitrary area can be analyzed with EPMA at, for example, 5000x magnification to obtain the S distribution.
 また、本発明の造形物は、被削性を向上させる観点から、Sの含有量を、0.0500~0.1500質量%にする。そして、本発明では、上記と同様の理由から、Sの含有量を0.0500~0.1000質量%にすることが好ましい。 Furthermore, from the viewpoint of improving machinability, the shaped object of the present invention has an S content of 0.0500 to 0.1500 mass%. And, in the present invention, for the same reasons as above, it is preferable that the S content be 0.0500 to 0.1000 mass%.
 本発明の造形物は、例えば、粉末焼結法で得ることができる。具体的には、上述した金属粉末を加圧焼結することにより得ることができる。そして、加圧焼結としては、例えば、HIP法、ホットプレス法、通電焼結法等を適用することができる。
 また、本発明の造形物は、金属粉末を層状に敷き詰める工程と、この敷き詰められた金属粉末を走査熱源によって逐次溶融し凝固させることで凝固層を形成する工程とを繰り返して、複数の層状の凝固層を形成する積層造形法も適用することができる。ここで、走査熱源には、例えば、レーザーや電子ビームを利用できる。そして、この走査熱源の直径を、金属粉末の平均直径よりも大きくすることで、金属粉末の集合を均等に溶融できる点で好ましい。
The shaped object of the present invention can be obtained, for example, by a powder sintering method. Specifically, the shaped object can be obtained by pressure sintering the above-mentioned metal powder. For pressure sintering, for example, a HIP method, a hot pressing method, an electric current sintering method, etc. can be applied.
The object of the present invention can also be applied to an additive manufacturing method in which a step of spreading metal powder in layers and a step of forming solidified layers by successively melting and solidifying the spread metal powder with a scanning heat source to form a solidified layer are repeated to form a plurality of solidified layers. Here, for example, a laser or an electron beam can be used as the scanning heat source. In addition, it is preferable to make the diameter of the scanning heat source larger than the average diameter of the metal powder, in order to melt the collection of metal powder evenly.
 レーザー出力が高すぎると、レーザー照射中の金属の溶融部が深くなって、凝固時に強い偏析が形成されやすくなる。しかし、レーザー出力が低すぎると、金属粉末を十分に溶融できなくなり、凝固後の造形物中には、金属粉末の隙間に由来する空孔が多く形成されてしまう。このため、レーザー出力は50~350Wとすることが好ましい。 If the laser output is too high, the molten part of the metal during laser irradiation will become deeper, making it easier for strong segregation to form during solidification. However, if the laser output is too low, the metal powder will not melt sufficiently, and many voids resulting from gaps in the metal powder will form in the molded object after solidification. For this reason, it is preferable to set the laser output to 50 to 350 W.
 レーザーの走査速度が速すぎると、金属粉末が十分な熱を得られないことで、造形に必要な溶融が困難になってしまい、凝固後の部材中に空孔が多く形成されやすくなる。一方、レーザーの走査速度が遅すぎると、レーザー照射中の金属の溶融部が深くなって偏析が形成されやすくなる。また、レーザーの走査速度が遅すぎると、金属粉末に過剰な熱が与えられて溶融部の流動が盛んになることでガスを巻き込んでしまい、凝固後の部材に気泡が混入しやすい。このため、走査速度は200~2000mm/秒とすることが好ましい。 If the laser scanning speed is too fast, the metal powder will not receive enough heat, making it difficult to melt the powder as needed for shaping, and many voids will likely form in the solidified component. On the other hand, if the laser scanning speed is too slow, the molten part of the metal will become deep during laser irradiation, making it more likely for segregation to form. Also, if the laser scanning speed is too slow, excess heat will be applied to the metal powder, causing the molten part to flow vigorously, which will entrain gas and make it more likely for air bubbles to become mixed into the solidified component. For this reason, it is preferable to set the scanning speed to 200 to 2000 mm/sec.
 走査ピッチが大きくなりすぎると、レーザー照射時に、敷き詰められた金属粉末を全面で溶融することが難しくなってしまい、凝固後の部材の内部に空孔が形成される要因となり得る。なお、走査ピッチとは、走査するビーム間の距離のことである。そして、走査ピッチが小さくなりすぎると、レーザー照射中の金属の溶融部が深くなって偏析が形成されやすくなる。このため、走査ピッチは0.02~0.20mmとすることが好ましい。 If the scanning pitch becomes too large, it becomes difficult to melt the entire surface of the spread metal powder when the laser is irradiated, which can lead to the formation of voids inside the component after solidification. The scanning pitch is the distance between the scanning beams. If the scanning pitch becomes too small, the molten part of the metal becomes deep during laser irradiation, making it easier for segregation to form. For this reason, it is preferable to set the scanning pitch to 0.02 to 0.20 mm.
 なお、一走査あたりの積層厚さが大きすぎると、レーザー照射時に、敷き詰められた金属粉末の全体に熱が伝わり難くなって、造形に必要な溶融が困難になる。「一走査あたりの積層厚さ」とは、一層々々を造形するときに敷き詰めた「一層毎の金属粉末層の厚さ」のことである。そして、一走査あたりの積層厚さが小さすぎると、所定の造形物の大きさにするまでの積層数が多くなって、造形に要する時間が長くなる。このため、一走査あたりの積層厚さは10~200μmとすることが好ましい。 If the layer thickness per scan is too large, heat will not be easily transferred to the entire metal powder when the laser is irradiated, making it difficult to achieve the melting required for shaping. The "layer thickness per scan" refers to the "thickness of each metal powder layer" that is laid out when shaping each layer. If the layer thickness per scan is too small, the number of layers required to reach the desired size of the object will increase, and the time required for shaping will increase. For this reason, it is preferable to set the layer thickness per scan to 10 to 200 μm.
 本発明の造形物は、さらに、溶体化処理および時効処理を含む熱処理工程を行なうことが好ましい。時効硬化型オーステナイト系工具鋼は、部材に溶体化処理および時効処理を施してから製品として使用される。溶体化処理を行なうことで、造形中の熱で析出した金属間化合物を溶体化させ、さらに、加圧焼結法によって形成される異方性または積層造形法で形成される溶融池や凝固組織によって形成される異方性を有した組織形態を再結晶させることで、等軸状の結晶粒を有した組織とし、機械的特性の異方性を抑制することができる。 The molded product of the present invention is preferably further subjected to a heat treatment process including a solution treatment and an aging treatment. The age-hardened austenitic tool steel is used as a product after the component is subjected to a solution treatment and an aging treatment. By performing a solution treatment, the intermetallic compounds precipitated by the heat during molding are put into solution, and further, by recrystallizing the anisotropic structure formed by the pressure sintering method or the molten pool or solidified structure formed by the additive manufacturing method, a structure with equiaxed crystal grains is obtained, and the anisotropy of the mechanical properties can be suppressed.
 溶体化処理温度は、1100℃以上とすることが好ましく、1150℃以上とすることがより好ましい。溶体化処理温度を高くすることで、造形時に形成される偏析の解消効果が向上する。但し、溶体化処理温度が高くなりすぎると、造形物本体が溶融してしまうために、造形物の強度および靭性が低下する。このため、溶体化処理温度は1250℃以下とすることが好ましく、1200℃以下にすることがより好ましい。
 そして、溶体化処理時間(溶体化処理温度での維持時間)は、10分以上とすることが好ましく、15分以上にすることがより好ましい。溶体化処理時間を長くすることで、造形時に形成される偏析の解消効果が向上する。但し、溶体化処理時間が長くなりすぎると、旧オーステナイト粒径が粗大化する。このため、溶体化処理時間は120分以下とすることが好ましく、90分以下にすることがより好ましい。
The solution treatment temperature is preferably 1100°C or higher, and more preferably 1150°C or higher. Increasing the solution treatment temperature improves the effect of eliminating segregation formed during shaping. However, if the solution treatment temperature is too high, the main body of the shaped object melts, and the strength and toughness of the shaped object decrease. For this reason, the solution treatment temperature is preferably 1250°C or lower, and more preferably 1200°C or lower.
The solution treatment time (maintenance time at the solution treatment temperature) is preferably 10 minutes or more, and more preferably 15 minutes or more. By increasing the solution treatment time, the effect of eliminating segregation formed during shaping is improved. However, if the solution treatment time is too long, the prior austenite grain size becomes coarse. For this reason, the solution treatment time is preferably 120 minutes or less, and more preferably 90 minutes or less.
 そして、この部材に時効処理を行なうことで、各種の金属間化合物を組織中に析出させて、例えば、硬さを20~50HRCに調整して、より優れた高強度と高靭性とを得ることができる。
 時効処理温度は、400℃以上とすることが好ましく、450℃以上がより好ましく、500℃以上がさらに好ましい。時効処理温度は、550℃以上にすることが特に好ましい。時効処理温度を高くすることで、より強度向上の効果が向上する。但し、時効処理温度が高くなりすぎると、金属間化合物が粗大化して、金属間化合物の析出量に見合った強度が十分に得られなくなる。このため、時効処理温度は900℃以下とすることが好ましく、800℃以下にすることがより好ましい。
 そして、時効処理時間(時効処理温度での維持時間)は、30分以上とすることが好ましく、60分以上にすることがより好ましい。時効処理時間を長くすることで、形成される金属間化合物量が増加する。但し、時効処理時間が長くなりすぎると、金属間化合物が粗大化し、強度が低下する。このため、時効処理時間は600分以下とすることが好ましく、400分以下にすることがより好ましい。
Then, by subjecting this member to aging treatment, various intermetallic compounds are precipitated in the structure, and, for example, the hardness can be adjusted to 20 to 50 HRC, thereby obtaining superior high strength and high toughness.
The aging temperature is preferably 400°C or higher, more preferably 450°C or higher, and even more preferably 500°C or higher. The aging temperature is particularly preferably 550°C or higher. Increasing the aging temperature further improves the effect of improving strength. However, if the aging temperature is too high, the intermetallic compounds become coarse, and sufficient strength commensurate with the amount of precipitation of the intermetallic compounds cannot be obtained. For this reason, the aging temperature is preferably 900°C or lower, and more preferably 800°C or lower.
The aging treatment time (maintenance time at the aging treatment temperature) is preferably 30 minutes or more, and more preferably 60 minutes or more. By increasing the aging treatment time, the amount of intermetallic compounds formed increases. However, if the aging treatment time is too long, the intermetallic compounds become coarse and the strength decreases. For this reason, the aging treatment time is preferably 600 minutes or less, and more preferably 400 minutes or less.
 表1の試料No.1-1の組成となるように、各金属粗原料を準備した後、高周波誘導溶解炉に装入して溶融させ、この溶融金属をアルゴンガスによって粉砕することでアトマイズ粉末を得た。
 得られたアトマイズ粉末に対して、メッシュを用いた篩別分級および気流分級を行なうことで粉末粒径を調整して、D50が28.8μmである本発明例となる金属粉末を得た。
 次いで、この金属粉末を用いて造形物を製作した。造形には、EOS製のEOS-M290を用いて、表2に示す造形条件で造形物を作製した。得られた本発明例となる造形物の成分分析結果を表1に試料No.1-2として示す。
 また、比較例として、表1の試料No.2の成分組成となる溶湯から造塊プロセスを経て、熱間で塑性加工して得た鋼材を準備した。
After preparing each metal raw material so as to have the composition of Sample No. 1-1 in Table 1, the raw materials were charged into a high-frequency induction melting furnace and melted, and the molten metal was pulverized with argon gas to obtain an atomized powder.
The resulting atomized powder was subjected to sieving classification using a mesh and air flow classification to adjust the powder particle size, thereby obtaining a metal powder of the present invention having a D50 of 28.8 μm.
Next, a molded object was produced using this metal powder. For molding, an EOS-M290 manufactured by EOS was used to produce the molded object under the molding conditions shown in Table 2. The results of component analysis of the obtained molded object, which is an example of the present invention, are shown in Table 1 as Sample No. 1-2.
Also, as a comparative example, a steel material was prepared by subjecting a molten metal having the composition of sample No. 2 in Table 1 to an ingot-making process and then to hot plastic working.
 炭化物およびMnSの存在状態の確認をした。図1に本発明例となる金属粉末、図2に本発明例となる造形物、図3に比較例となる鋼材の断面をそれぞれEPMAで分析したときの、Sの元素マッピング画像をそれぞれ示す。
 比較例となる所謂溶製法で得られた鋼材においては、図3の灰色部で示されるように、最大長さが10μmを超えるMnSが多数確認された。
 これに対して、本発明例となる金属粉末およびそれを用いて造形した造形物においては、図1および図2の灰色部で示されるように、いずれのMnSも最大長さが1μm未満であり、微細に分散していることが確認できた。
The state of existence of carbides and MnS was confirmed. Figure 1 shows elemental mapping images of S when a cross section of a metal powder according to an example of the present invention, a shaped product according to an example of the present invention, and a steel material according to a comparative example were analyzed by EPMA.
In the comparative steel material obtained by the so-called melting method, a large number of MnS particles having a maximum length exceeding 10 μm were confirmed, as shown in the gray areas in FIG.
In contrast, in the metal powders of the present invention and the objects produced using the same, as shown in the gray areas in Figures 1 and 2, the maximum length of all MnS particles was less than 1 µm, and it was confirmed that the MnS particles were finely dispersed.
 上記で得た造形物に1180℃で1時間の溶体化処理を実施し、組織形態を確認した。図4に本発明例となる造形物、図5に比較例となる鋼材の光学顕微鏡組織をそれぞれ示す。
 比較例の鋼材においては、最大長さが10μmを超えるMnSが多数確認された。
 これに対して、本発明例となる造形物においては、いずれのMnSも最大長さが1μm未満であり、微細に分散していることが確認できた。
 このようなMnSや炭化物の微細分散は、工具鋼として必要な機械的特性や被削性に良好な効果を与えることが期待できる。
The shaped article obtained above was subjected to solution treatment at 1180° C. for 1 hour, and the microstructure was confirmed. Fig. 4 shows the optical micrographs of the shaped article according to the present invention, and Fig. 5 shows the optical micrographs of the steel material according to the comparative example.
In the steel material of the comparative example, a large number of MnS particles with a maximum length exceeding 10 μm were confirmed.
In contrast, in the shaped objects according to the present invention, the maximum length of all MnS particles was less than 1 μm, and it was confirmed that the MnS particles were finely dispersed.
Such fine dispersion of MnS and carbides is expected to have a favorable effect on the mechanical properties and machinability required for a tool steel.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002

 
Figure JPOXMLDOC01-appb-T000002

 

Claims (2)

  1.  質量%で、C=0.40~0.70%、Si=1.40%以下、Mn=5.00~15.00%、Ni=2.00~10.00%、Cr=7.00~14.00%、Mo=0.80~5.00%、V=1.00~2.50%、Cu=0.60~4.00%、Al=0.60~4.00%、S=0.0500~0.1500%含有し、残部がFeおよび不可避的不純物からなる造形用金属粉末。 A metal powder for molding containing, by mass, C = 0.40-0.70%, Si = 1.40% or less, Mn = 5.00-15.00%, Ni = 2.00-10.00%, Cr = 7.00-14.00%, Mo = 0.80-5.00%, V = 1.00-2.50%, Cu = 0.60-4.00%, Al = 0.60-4.00%, S = 0.0500-0.1500%, with the remainder being Fe and unavoidable impurities.
  2.  質量%で、C=0.40~0.70%、Si=1.40%以下、Mn=5.00~15.00%、Ni=2.00~10.00%、Cr=7.00~14.00%、Mo=0.80~5.00%、V=1.00~2.50%、Cu=0.60~4.00%、Al=0.60~4.00%、S=0.0500~0.1500%含有し、残部がFeおよび不可避的不純物からなり、積層方向と平行な断面において、MnSの最大長さが1μm未満である造形物。

     
    A shaped object containing, by mass, C = 0.40 to 0.70%, Si = 1.40% or less, Mn = 5.00 to 15.00%, Ni = 2.00 to 10.00%, Cr = 7.00 to 14.00%, Mo = 0.80 to 5.00%, V = 1.00 to 2.50%, Cu = 0.60 to 4.00%, Al = 0.60 to 4.00%, S = 0.0500 to 0.1500%, with the balance being Fe and unavoidable impurities, and in a cross section parallel to the stacking direction, the maximum length of MnS is less than 1 μm.

PCT/JP2024/011470 2023-03-31 2024-03-22 Metal powder for molding, and molded article WO2024203945A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2023-057799 2023-03-31
JP2023057799 2023-03-31

Publications (1)

Publication Number Publication Date
WO2024203945A1 true WO2024203945A1 (en) 2024-10-03

Family

ID=92905143

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2024/011470 WO2024203945A1 (en) 2023-03-31 2024-03-22 Metal powder for molding, and molded article

Country Status (1)

Country Link
WO (1) WO2024203945A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05302149A (en) * 1992-02-25 1993-11-16 Hitachi Metals Ltd Age hardening type austenitic tool steel
JP2010222661A (en) * 2009-03-24 2010-10-07 Seiko Epson Corp Metal powder and sintered compact
JP2020172674A (en) * 2019-04-09 2020-10-22 セイコーエプソン株式会社 Powder for lamination molding, lamination molded object and manufacturing method of lamination molded object

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05302149A (en) * 1992-02-25 1993-11-16 Hitachi Metals Ltd Age hardening type austenitic tool steel
JP2010222661A (en) * 2009-03-24 2010-10-07 Seiko Epson Corp Metal powder and sintered compact
JP2020172674A (en) * 2019-04-09 2020-10-22 セイコーエプソン株式会社 Powder for lamination molding, lamination molded object and manufacturing method of lamination molded object

Similar Documents

Publication Publication Date Title
CN113862543B (en) Method for manufacturing alloy member
JP6974607B2 (en) Laminated modeling hot tool and its manufacturing method, and metal powder for laminated modeling hot tool
CN108213422B (en) Preparation method of carbon-containing high-entropy alloy composite material
KR20180040513A (en) Ni-based superalloy powder for lamination molding
WO2020110891A1 (en) Powder for shaping
JPH07232256A (en) Martensite hot working tool steel die block body and manufacture thereof
WO2022244701A1 (en) Ferrous alloy foil, manufacturing method therefor, and component using same
WO2024203945A1 (en) Metal powder for molding, and molded article
US10724129B2 (en) Precipitation hardened high Ni heat-resistant alloy
GB2030598A (en) Method of manufacture of sintered parts
WO2023157965A1 (en) Fe-based alloy, alloy member, product, and method for manufacturing alloy member
US7553383B2 (en) Method for fabricating a martensitic steel without any melting
JP2003055747A (en) Sintered tool steel and production method therefor
WO2022196778A1 (en) Metal powder for additive manufacturing and additively manufactured product using same
WO2023182416A1 (en) Maraging steel powder for lamination shaping, maraging steel lamination shaped article, and method for manufacturing same
EP4180549B1 (en) Fe-based alloy for melt-solidification-shaping and metal powder
WO2024063151A1 (en) Hot work tool steel powder for additive fabrication and additively fabricated hot work tool steel object
WO2024070987A1 (en) Fe-based alloy, alloy member, product, and method for producing alloy member
JP7481406B2 (en) Fe-based alloy powder and manufacturing method for shaped body
JP7339412B2 (en) Ni-based alloy powder for additive manufacturing and additive manufacturing
WO2023083899A1 (en) Steel powder for use in additive manufacturing processes
CN116732444A (en) Maraging steel manufactured by additive and preparation method thereof
TW201819652A (en) Precipitation hardened high Ni heat-resistant alloy
JP2022148950A (en) METHOD FOR PRODUCING MOLDED ARTICLE INCLUDING Fe-BASED ALLOY POWDER
CN118119722A (en) Ni-based alloy powder suitable for additive manufacturing and additive manufactured body obtained by using same