[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2024203824A1 - Rubber composition, vulcanization molded body, and rubber roll - Google Patents

Rubber composition, vulcanization molded body, and rubber roll Download PDF

Info

Publication number
WO2024203824A1
WO2024203824A1 PCT/JP2024/011249 JP2024011249W WO2024203824A1 WO 2024203824 A1 WO2024203824 A1 WO 2024203824A1 JP 2024011249 W JP2024011249 W JP 2024011249W WO 2024203824 A1 WO2024203824 A1 WO 2024203824A1
Authority
WO
WIPO (PCT)
Prior art keywords
rubber composition
rubber
vulcanized molded
chloroprene
molded body
Prior art date
Application number
PCT/JP2024/011249
Other languages
French (fr)
Japanese (ja)
Inventor
和也 樋口
Original Assignee
デンカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デンカ株式会社 filed Critical デンカ株式会社
Publication of WO2024203824A1 publication Critical patent/WO2024203824A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L11/00Compositions of homopolymers or copolymers of chloroprene

Definitions

  • the present invention relates to a rubber composition, a vulcanized molded product, and a rubber roll.
  • Rubber products are widely used as materials for general industrial transmission belts and conveyor belts, automotive air springs, vibration-proof rubber, hoses, wipers, immersion products, sealing parts, adhesives, boots, rubber-coated fabrics, rubber rolls, etc.
  • Patent Document 1 discloses an invention relating to a sulfur-modified chloroprene rubber composition comprising a sulfur-modified chloroprene rubber, a vulcanization accelerator, zinc oxide, and magnesium oxide, in which the blending amount of the vulcanization accelerator is 0.1 to 5 parts by weight, and the blending amounts of zinc oxide and magnesium oxide are specified by a previously determined relational expression between each blending amount and the Mooney scorch time t.
  • Patent Document 2 discloses an invention relating to a copolymer of a chloroprene monomer and an unsaturated nitrile compound, which has a Mooney viscosity ML(1+4)100°C of 20 to 80 and has a functional group of a specific structure.
  • the test vulcanized molded body 2 is a cylindrical vulcanized molded body having a diameter of 15 mm and a height of 25 mm, obtained by press-vulcanizing the rubber composition at 170°C for 20 minutes based on Japanese Patent Laid-Open No. 6299:2012. 1.4X-Y>45.0 (1)
  • a rubber composition containing a rubber component wherein a laminate obtained by stacking test vulcanized molded products 1 of the rubber composition to a thickness of 6.0 mm or more has a hardness measured with a type A durometer based on JIS K 6253-3:2023 of X, and a test vulcanized molded product 2 of the rubber composition is evaluated in a constant strain flexometer test based on JIS K 6265:2018 under conditions of 40°C, strain of 0.175 inches, load of 55 pounds, and vibration frequency of 1,800 times per minute, and the hardness X and heat generation Y satisfy the following formula (1), and the test vulcanized molded product 1 is obtained by stacking test vulcanized molded products 1 of the rubber composition to a thickness of 6.0 mm or more.
  • the test vulcanized molded body 1 is a cylindrical vulcanized molded body having a diameter of 15 mm and a height of 25 mm, obtained by press-vulcanizing the rubber composition at 170°C for 20 minutes based on MHI No. 6299:2012. 1.4X-Y>45.0 (1)
  • the chloroprene polymer contains 80 to 100 mass % of chloroprene monomer units relative to 100 mass % of the chloroprene polymer.
  • a rubber roll comprising a core and a surface layer provided on the peripheral surface of the core, the surface layer including the vulcanized molded article according to [5], and used in at least one of an acid washing line and an alkali washing line.
  • a vulcanized molded product containing a rubber component wherein when the vulcanized molded product is made into a test vulcanized molded product 1' having a thickness of 6.0 mm or more, the hardness measured with a type A durometer based on JIS K 6253-3:2023 is X', and when the vulcanized molded product is made into a cylindrical test vulcanized molded product 2' having a diameter of 15 mm and a height of 25 mm, the heat generation determined by evaluation in a constant strain flexometer test based on JIS K 6265:2018 under conditions of 40°C, strain of 0.175 inches, load of 55 pounds, and vibration frequency of 1,800 times per minute is Y', the hardness X' and heat generation Y' satisfy the following formula (2). 1.4X'-Y'>45.0 (2)
  • the rubber composition according to the present invention makes it possible to obtain a vulcanized molded article having excellent water resistance and alkali resistance. Furthermore, since the vulcanized molded article according to the present invention has excellent water resistance and alkali resistance, these properties can be utilized to use it as various components that require water resistance and/or alkali resistance, such as rubber rolls.
  • the rubber roll according to one embodiment of the present invention has excellent water resistance and alkali resistance, and can be used, for example, as at least one rubber roll in an acid washing line and an alkali washing line.
  • Rubber Composition The rubber composition according to the present invention contains a rubber component.
  • the rubber component according to the present invention may contain at least one selected from chloroprene rubber, natural rubber (NR), hydrogenated acrylonitrile butadiene rubber (H-NBR), acrylonitrile butadiene rubber (NBR), and chlorosulfonated polyethylene (CSM).
  • the rubber component preferably contains at least one selected from chloroprene rubber and natural rubber (NR), and the rubber composition according to one embodiment of the present invention preferably contains chloroprene rubber, i.e., it preferably contains a chloroprene polymer.
  • Examples of the chloroprene-based polymer include a chloroprene homopolymer and a chloroprene copolymer (a copolymer of chloroprene and a monomer copolymerizable with chloroprene).
  • the polymer structure of the chloroprene-based polymer is not particularly limited.
  • 2-chloro-1,3-butadiene may contain a small amount of 1-chloro-1,3-butadiene as an impurity.
  • 2-chloro-1,3-butadiene containing such a small amount of 1-chloro-1,3-butadiene can also be used as the chloroprene monomer in this embodiment.
  • the chloroprene-based polymer according to one embodiment of the present invention may have a monomer unit derived from a monomer other than the chloroprene monomer.
  • the monomer other than the chloroprene monomer is not particularly limited as long as it is copolymerizable with the chloroprene monomer, and examples of the monomer other than the chloroprene monomer include unsaturated nitriles, esters of (meth)acrylic acid (methyl (meth)acrylate, butyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, etc.), hydroxyalkyl (meth)acrylates (2-hydroxymethyl (meth)acrylate, 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, etc.), 2,3-dichloro-1,3-butadiene, 1-chloro-1,3-butadiene, butadiene, isoprene, ethylene, sty
  • the chloroprene-based polymer according to one embodiment of the present invention may contain at least one monomer unit selected from 2,3-dichloro-1,3-butadiene and an unsaturated nitrile monomer.
  • the chloroprene polymer according to one embodiment of the present invention may contain unsaturated nitrile monomer units.
  • the chloroprene polymer according to one embodiment of the present invention can have an unsaturated nitrile monomer unit content of 25% by mass or less, preferably 20% by mass or less, and more preferably less than 20% by mass, when the chloroprene polymer is taken as 100% by mass.
  • the unsaturated nitrile monomer unit content in the chloroprene rubber according to one embodiment of the present invention is, for example, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, or 25% by mass, and may be within a range between any two of the numerical values exemplified here.
  • the content of the unsaturated nitrile monomer unit in the rubber composition equal to or less than the above upper limit, the water resistance and cold resistance of the vulcanized molded product of the rubber composition are further improved.
  • the oil resistance of the vulcanized molded product of the rubber composition is improved.
  • unsaturated nitriles examples include acrylonitrile, methacrylonitrile, ethacrylonitrile, and phenylacrylonitrile.
  • the unsaturated nitriles may be used alone or in combination of two or more. It is preferable that the unsaturated nitrile contains acrylonitrile, from the viewpoint of easily obtaining excellent moldability, and from the viewpoint of easily obtaining excellent breaking strength, breaking elongation, hardness, tear strength, and oil resistance in the vulcanized molded product.
  • the content of unsaturated nitrile monomer units contained in chloroprene rubber can be calculated from the content of nitrogen atoms in the chloroprene rubber. Specifically, the content of nitrogen atoms in 100 mg of chloroprene rubber can be measured using an elemental analyzer (Sumigraph 220F: manufactured by Sumika Chemical Analysis Center Co., Ltd.), and the content of structural units derived from unsaturated nitrile monomers can be calculated. Elemental analysis can be performed under the following conditions.
  • the electric furnace temperatures are set to 900°C for the reactor, 600°C for the reduction furnace, 70°C for the column, and 100°C for the detector, and oxygen is flowed at 0.2 mL/min as the combustion gas and 80 mL/min as the carrier gas.
  • a calibration curve can be created using aspartic acid (10.52%), which has a known nitrogen content, as a standard substance.
  • the chloroprene polymer according to one embodiment of the present invention preferably contains 75 to 100 mass% of chloroprene monomer units, and more preferably 80 to 100 mass%, when the chloroprene polymer is taken as 100 mass%.
  • the content of chloroprene monomer units in the chloroprene polymer may be, for example, 75, 80, 85, 90, 95, 99, or 100 mass%, and may be within a range between any two of the numerical values exemplified here.
  • the chloroprene polymer according to one embodiment of the present invention may contain 0 to 20 mass% of monomer units other than chloroprene monomer units and unsaturated nitrile monomer units when the chloroprene polymer is taken as 100 mass%.
  • the content of monomer units other than chloroprene monomer units and unsaturated nitrile monomer units in the chloroprene polymer may be, for example, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, or 20 mass%, and may be within a range between any two of the numerical values exemplified here.
  • the chloroprene-based rubber according to one embodiment of the present invention can contain at least one polymer selected from a chloroprene homopolymer, a copolymer containing chloroprene monomer units and unsaturated nitrile monomer units, and a copolymer containing chloroprene monomer units and 2,3-dichloro-1,3-butadiene monomer units.
  • the rubber component according to the present invention may use one chloroprene rubber alone or two or more chloroprene rubbers in combination.
  • the rubber composition according to one embodiment of the present invention contains two or more chloroprene-based rubbers, it is preferable that the content based on the total amount of each monomer unit contained in the two or more chloroprene-based polymers be within the above-mentioned numerical range relative to 100 mass% in total of the two or more chloroprene-based polymers contained in the rubber composition.
  • the chloroprene polymer (chloroprene homopolymer, chloroprene copolymer, etc.) contained in the chloroprene rubber of the present invention may be a sulfur-modified chloroprene polymer, a mercaptan-modified chloroprene polymer, a xanthogen-modified chloroprene polymer, a dithiocarbonate-based chloroprene polymer, a trithiocarbonate-based chloroprene polymer, a carbamate-based chloroprene polymer, etc.
  • the chloroprene rubber can be obtained by a production method including an emulsion polymerization step of emulsion polymerizing raw material monomers including a chloroprene monomer.
  • a chloroprene monomer or a raw material monomer containing a chloroprene monomer and other monomers is emulsion-polymerized using an appropriate amount of an emulsifier, a dispersant, a catalyst, a chain transfer agent, etc., and when the target final conversion rate is reached, a polymerization terminator is added to obtain a latex containing a chloroprene-based polymer containing a chloroprene monomer unit.
  • unreacted monomers can be removed from the polymerization liquid obtained by the emulsion polymerization step.
  • the method is not particularly limited, and examples of the method include a steam stripping method. Thereafter, the pH is adjusted, and a chloroprene rubber containing a chloroprene-based polymer is obtained through conventional processes such as freeze coagulation, water washing, and hot air drying.
  • Polymerization initiators include potassium persulfate, ammonium persulfate, sodium persulfate, hydrogen peroxide, t-butyl hydroperoxide, and other organic peroxides.
  • the emulsifier used in emulsion polymerization is not particularly limited, and any known emulsifier commonly used in emulsion polymerization of chloroprene can be used.
  • emulsifiers include alkali metal salts of saturated or unsaturated fatty acids having 6 to 22 carbon atoms, alkali metal salts of rosin acid or disproportionated rosin acid (e.g. potassium rosinate), and alkali metal salts of formalin condensates of ⁇ -naphthalenesulfonic acid (e.g. sodium salt).
  • the molecular weight regulator used in emulsion polymerization is not particularly limited, and any known molecular weight regulator commonly used in emulsion polymerization of chloroprene can be used, such as mercaptan compounds, xanthogen compounds, dithiocarbonate compounds, trithiocarbonate compounds, and carbamate compounds.
  • mercaptan compounds, xanthogen compounds, dithiocarbonate compounds, trithiocarbonate compounds, and carbamate compounds can be suitably used as molecular weight regulators for the chloroprene rubber according to one embodiment of the present invention.
  • the polymerization temperature and the final conversion rate of the monomer are not particularly limited, but the polymerization temperature may be, for example, 0 to 50°C or 10 to 50°C.
  • the polymerization may be carried out so that the final conversion rate of the monomer falls within the range of 40 to 95% by mass.
  • a polymerization terminator that stops the polymerization reaction may be added to terminate the polymerization when the desired conversion rate is reached.
  • polymerization terminator there are no particular limitations on the polymerization terminator, and any known polymerization terminator commonly used in emulsion polymerization of chloroprene can be used.
  • polymerization terminators include phenothiazine (thiodiphenylamine), 4-t-butylcatechol, and 2,2-methylenebis-4-methyl-6-t-butylphenol.
  • the chloroprene rubber according to one embodiment of the present invention can be obtained, for example, by removing unreacted monomers by steam stripping, adjusting the pH of the latex, and then going through conventional processes such as freeze coagulation, water washing, and hot air drying.
  • Chloroprene rubber is classified into mercaptan-modified type, xanthogen-modified type, sulfur-modified type, dithiocarbonate-based type, trithiocarbonate-based type, and carbamate-based type depending on the type of molecular weight regulator.
  • the rubber composition according to the present invention may contain an organic peroxide.
  • One or more organic peroxides may be freely selected and used.
  • organic peroxides include dicumyl peroxide, benzoyl peroxide, 1,1-bis(t-butylperoxy)-3,5,5-trimethylcyclohexane, diisobutyryl peroxide, cumyl peroxyneodecanoate, di-n-propyl peroxydicarbonate, diisopropyl peroxydicarbonate, di-sec-butyl peroxydicarbonate, 1,1,3,3-tetramethylbutyl peroxyneodecanoate, di(4-t-butylcyclohexyl) peroxydicarbonate, di(2-ethylhexyl) peroxydicarbonate, t-hexyl peroxyneodecanoate, t-butyl peroxyneoheptanoate, t- Hexyl peroxypivalate, t-butyl peroxypivalate, di
  • At least one selected from dicumyl peroxide, 1,4-bis[(t-butylperoxy)isopropyl]benzene, t-butyl- ⁇ -cumyl peroxide, 2,5-dimethyl-2,5-bis(t-butylperoxy)hexane, and 2,5-dimethyl-2,5-bis(t-butylperoxy)hexyne-3 is preferred, with 1,4-bis[(t-butylperoxy)isopropyl]benzene being particularly preferred.
  • the rubber composition according to the present invention preferably contains 0 to 5 parts by mass of organic peroxide relative to the rubber components contained in the rubber composition, from the viewpoint of ensuring processing safety and being able to obtain a good vulcanized molded product.
  • the content of organic peroxide is, for example, 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 2, 3, 4, or 5 parts by mass, and may be within a range between any two of the numerical values exemplified here.
  • the rubber composition according to one embodiment of the present invention does not contain an organic peroxide, and by adjusting the types and amounts of other components, it is also possible to adjust the hardness X, heat generation Y, and the relationship between hardness X and heat generation Y.
  • the rubber composition according to the present invention may contain a vulcanizing agent.
  • the type of vulcanizing agent is not particularly limited as long as it does not impair the effects of the present invention.
  • the vulcanizing agent is preferably a vulcanizing agent that can be used for vulcanizing chloroprene-based rubber.
  • One or more vulcanizing agents may be freely selected and used.
  • An example of the vulcanizing agent is zinc oxide.
  • the rubber composition according to the present invention preferably contains 1 to 15 parts by mass of a vulcanizing agent relative to the rubber component contained in the rubber composition, from the viewpoint of ensuring processing safety and being able to obtain a sufficiently vulcanized molded product.
  • the content of the vulcanizing agent is, for example, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, or 15 parts by mass relative to 100 parts by mass of the rubber component contained in the rubber composition, and may be within a range between any two of the numerical values exemplified here.
  • the rubber composition according to one embodiment of the present invention may contain an acid acceptor.
  • the acid acceptor may contain at least one selected from the group consisting of hydrotalcite compounds, magnesium-aluminum solid solutions, magnesium oxide, lead oxide, trimead tetroxide, iron trioxide, titanium dioxide, and calcium oxide, and may contain at least one selected from the group consisting of hydrotalcite compounds, magnesium-aluminum solid solutions, and magnesium oxide, and preferably contains magnesium oxide.
  • the acid acceptors may be used alone or in combination of two or more.
  • M 2+ at least one divalent metal ion selected from Mg 2+ , Zn 2+ , etc.
  • M 3+ at least one trivalent metal ion selected from Al 3+ , Fe 3+ , etc.
  • a n- at least one n-type anion selected from CO 3 2- , Cl - , NO 3 2- , etc.
  • X 0 ⁇ X ⁇ 0.33.
  • hydrotalcite examples include Mg4.3Al2 ( OH ) 12.6CO3.3.5H2O , Mg3ZnAl2 (OH) 12CO3.3H2O , Mg4.5Al2 ( OH ) 13CO3.3.5H2O , Mg4.5Al2 ( OH ) 13CO3 , Mg4Al2 ( OH ) 12CO3.3.5H2O , Mg6Al2 ( OH ) 16CO3.4H2O , Mg5Al2 ( OH ) 14CO3.4H2O , and Mg3Al2 ( OH ) 10CO3.1.7H2O .
  • Particularly preferred is Mg4.3 Al2 ( OH ) 12.6CO3.3.5H2O , Mg3ZnAl2 ( OH ) 12CO3.3H2O .
  • the amount of the acid acceptor added can be 0.1 to 15 parts by mass per 100 parts by mass of the rubber component contained in the rubber composition.
  • the amount of the acid acceptor added can be, for example, 0.1, 0.2, 0.3, 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, or 15 parts by mass, and may be within a range between any two of the numerical values exemplified here.
  • the rubber composition according to one embodiment of the present invention may contain a maleimide compound.
  • the maleimide compounds may be used alone or in combination of two or more.
  • Maleimide compounds can contribute to the vulcanization of rubber compositions as co-crosslinking agents.
  • maleimide compounds include N,N'-o-phenylene bismaleimide, N,N'-m-phenylene bismaleimide, N,N'-p-phenylene bismaleimide, N,N'-(4,4'-diphenylmethane)bismaleimide, 2,2-bis-[4-(4-maleimidophenoxy)phenyl]propane, bis(3-ethyl-5-methyl-4-maleimidophenyl)methane, bisphenol A diphenyl ether bismaleimide, 3,3'-dimethyl-5,5'-diethyl-4,4'-diphenylmethane bismaleimide, 4-methyl-1,3-phenylene bismaleimide, and 1,6'-bismaleimide-(2,2,4-trimethyl)hexane. From the viewpoint of improving the heat resistance of the resulting vulcanized product and vulcan
  • the rubber composition according to one embodiment of the present invention may contain 0 to 10 parts by mass of a maleimide compound per 100 parts by mass of the rubber component.
  • the content of the maleimide compound may be, for example, 0, 0.1, 0.2, 0.3, 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 parts by mass, and may be within a range between any two of the numerical values exemplified here.
  • the rubber composition according to one embodiment of the present invention may not contain a maleimide compound, and instead, by adjusting the types and amounts of other components, the hardness X, heat generation Y, and the relationship between hardness X and heat generation Y can be adjusted.
  • the rubber composition according to an embodiment of the present invention may contain a filler, and may contain carbon black.
  • carbon black include furnace carbon black such as SAF, ISAF, HAF, EPC, XCF, FEF, GPF, HMF, and SRF, modified carbon black such as hydrophilic carbon black, channel black, lamp black, thermal carbon such as FT and MT, acetylene black, and ketjen black.
  • the rubber composition according to the present invention may contain 0 parts by mass or more and less than 100 parts by mass of carbon black per 100 parts by mass of the rubber component.
  • the carbon black content may be, for example, 0, 1, 2, 3, 4, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, or 99 parts by mass, or may be within a range between any two of the numerical values exemplified here.
  • the rubber composition according to the present invention may also contain fillers other than carbon black, provided that the effects of the present invention are not impaired.
  • fillers other than carbon black include silica, such as wet silica filler (hydrated silica), dry silica filler (anhydrous silicic acid), and colloidal silica filler, clay, talc, and calcium carbonate. These may be used alone or in combination of two or more.
  • the total amount of carbon black and fillers (reinforcing materials) other than carbon black contained in the rubber composition is preferably 0 to 100 parts by mass.
  • the content of fillers/reinforcing materials other than carbon black can be 50 mass% or less.
  • the content of fillers/reinforcing materials other than carbon black can be, for example, 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, or 50 mass%, and may be within a range between any two of the numerical values exemplified here.
  • the rubber composition according to one embodiment of the present invention can also not contain fillers (reinforcing materials) other than carbon black.
  • the rubber composition according to one embodiment of the present invention can adjust the hardness X and heat generation Y, and the relationship between hardness X and heat generation Y, by not blending carbon black and fillers other than carbon black, and adjusting the types and blending amounts of other components.
  • the rubber composition according to one embodiment of the present invention may contain a silane coupling agent.
  • silane coupling agent there is no particular limitation on the silane coupling agent, and those used in commercially available rubber compositions can be used, such as vinyl coupling agents, epoxy coupling agents, styryl coupling agents, methacrylic coupling agents, acrylic coupling agents, amino coupling agents, polysulfide coupling agents, and mercapto coupling agents.
  • vinyl coupling agents, methacrylic coupling agents, and acrylic coupling agents that start reacting under high temperature conditions during crosslinking are preferred.
  • the rubber composition according to one embodiment of the present invention may contain 0.5 to 10 parts by mass of a silane coupling agent per 100 parts by mass of silica contained in the rubber composition.
  • the content of the silane coupling agent may be, for example, 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 parts by mass per 100 parts by mass of silica, and may be within a range between any two of the numerical values exemplified here.
  • Silica may be used alone or in combination of two or more types.
  • silane coupling agent By containing the above-mentioned silane coupling agent and setting the content of the silane coupling agent within the above numerical range, it is possible to improve the dispersibility of the silica filler in the rubber and the reinforcing effect between the rubber and the silica filler, and to suppress the occurrence of scorch.
  • the rubber composition according to the present invention may further contain a lubricant and/or a processing aid.
  • the lubricant and processing aid are mainly added to improve processability, such as making the rubber composition easier to peel off from rolls, molding dies, extruder screws, etc.
  • Examples of the lubricant and processing aid include fatty acids such as stearic acid, paraffin processing aids such as polyethylene, fatty acid amides, vaseline, factice, etc. These may be used alone or in combination of two or more.
  • the rubber composition according to the present invention may contain 0.1 to 15 parts by mass of the lubricant and processing aid per 100 parts by mass of the rubber component, and may also be 1 to 10 parts by mass.
  • the content of the lubricant and processing aid is, for example, 0.1, 0.2, 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, or 15 parts by mass, and may be within a range between any two of the numerical values exemplified here.
  • the rubber composition according to the present invention may contain a vulcanization accelerator, and may contain 0 to 5.0 parts by mass of the vulcanization accelerator when the rubber composition contained in the composition is 100 parts by mass.
  • the content of the vulcanization accelerator is, for example, 0, 0.1, 0.2, 0.3, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0 parts by mass, and may be within a range between any two of the numerical values exemplified here.
  • the rubber composition according to the present invention may not contain a vulcanization accelerator.
  • the rubber composition according to one embodiment of the present invention does not contain a vulcanization accelerator, and by adjusting the type and amount of other components, it is also possible to adjust the hardness X and heat generation Y, and the relationship between the hardness X and heat generation Y.
  • the type of vulcanization accelerator is not particularly limited as long as it does not impair the effects of the present invention.
  • the vulcanization accelerator is preferably a vulcanization accelerator that can be used for vulcanization of chloroprene rubber.
  • the vulcanization accelerator can be freely selected and used alone or in combination of two or more kinds.
  • Examples of the vulcanization accelerator include sulfur, thiuram-based vulcanization accelerators, dithiocarbamate-based vulcanization accelerators, thiourea-based vulcanization accelerators, guanidine-based vulcanization accelerators, xanthogenate-based vulcanization accelerators, and thiazole-based vulcanization accelerators.
  • thiuram vulcanization accelerator examples include tetramethylthiuram disulfide (TMTD), tetraethylthiuram disulfide, tetrabutylthiuram disulfide, tetrakis(2-ethylhexyl)thiuram disulfide, tetramethylthiuram monosulfide, and dipentamethylenethiuram tetrasulfide.
  • TMTD tetramethylthiuram disulfide
  • TMTD tetraethylthiuram disulfide
  • tetrabutylthiuram disulfide examples include tetrakis(2-ethylhexyl)thiuram disulfide, tetramethylthiuram monosulfide, and dipentamethylenethiuram tetrasulfide.
  • dithiocarbamate-based vulcanization accelerator examples include sodium dibutyldithiocarbamate, zinc dimethyldithiocarbamate, zinc diethyldithiocarbamate, zinc N-ethyl-N-phenyldithiocarbamate, zinc N-pentamethylenedithiocarbamate, copper dimethyldithiocarbamate, ferric dimethyldithiocarbamate, and tellurium diethyldithiocarbamate.
  • thiourea-based vulcanization accelerator examples include thiourea compounds such as ethylene thiourea, diethyl thiourea (N,N'-diethyl thiourea), trimethyl thiourea, diphenyl thiourea (N,N'-diphenyl thiourea), and 1,3-trimethylene-2-thiourea.
  • guanidine vulcanization accelerator include 1,3-diphenylguanidine, 1,3-di-o-tolylguanidine, 1-o-tolylbiguanide, and di-o-tolylguanidine salts of dicatechol borate.
  • Examples of the xanthogenate-based vulcanization accelerator include zinc butylxanthogenate and zinc isopropylxanthogenate.
  • Examples of the thiazole-based vulcanization accelerator include 2-mercaptobenzothiazole, di-2-benzothiazolyl disulfide, 2-mercaptobenzothiazole zinc salt, 2-mercaptobenzothiazole cyclohexylamine salt, 2-(4'-morpholinodithio)benzothiazole, and N-cyclohexylbenzothiazole-2-sulfenamide. These may be used alone or in combination of two or more.
  • the rubber composition according to the present invention may further contain components such as an antiaging agent, an antioxidant, a flame retardant, and a vulcanization retarder, as long as the effects of the present invention are not impaired.
  • the antiaging agent and the antioxidant include ozone antiaging agents, phenolic antiaging agents, amine antiaging agents, acrylate antiaging agents, imidazole antiaging agents, carbamic acid metal salts, waxes, phosphorus antiaging agents, and sulfur antiaging agents.
  • the imidazole antiaging agents include 2-mercaptobenzimidazole, 2-mercaptomethylbenzimidazole, and zinc salts of 2-mercaptobenzimidazole.
  • the rubber composition according to the present invention may contain 0.1 to 10 parts by mass of the antiaging agent and the antioxidant in total, relative to 100 parts by mass of the rubber component contained in the rubber composition.
  • the rubber composition according to one embodiment of the present invention can be obtained by kneading the rubber component and other necessary components at a temperature equal to or lower than the vulcanization temperature.
  • the method for producing the rubber composition according to one embodiment of the present invention can include a mixing step of mixing the rubber component and other necessary components at a temperature equal to or lower than the vulcanization temperature.
  • the production method may include a first mixing step, a standing step, and a second mixing step.
  • first mixing step raw materials including a rubber component and compounding ingredients for the first mixing step are mixed to obtain a rubber composition precursor
  • the standing step the rubber composition precursor is stood at 23°C or less for 12 hours or more
  • the compounding ingredients for the second mixing step are added to the rubber composition precursor after standing and mixed to obtain a rubber composition.
  • the rubber composition precursor is allowed to stand for 12 hours or more at 23° C. or lower.
  • the standing temperature can be, for example, 5 to 23° C., and may be 5, 8, 11, 14, 17, 20, or 23° C., or may be within a range between any two of the numerical values exemplified here.
  • the standing time can be, for example, 12 to 24 hours, and may be, for example, 12, 14, 16, 18, 20, 22, or 24 hours, or may be within a range between any two of the numerical values exemplified here.
  • the hardness X and heat generation Y can be adjusted by undergoing a standing process.
  • the compounding components for the second mixing step are added to the rubber composition precursor after standing and mixed to obtain a rubber composition.
  • the compounding components for the second mixing step may include a vulcanizing agent, a vulcanization accelerator, an organic peroxide, and a maleimide compound.
  • the compounding components for the second mixing step may also include carbon black, a lubricant, a processing aid, a plasticizer, an acid acceptor, an anti-aging agent, etc.
  • the test vulcanized molded article 1 is a sheet-like vulcanized molded article having a thickness of 2 mm obtained by press-vulcanizing a rubber composition based on JIS K 6299:2012 under conditions of 170°C and 20 minutes.
  • the test vulcanized molded article 2 was a cylindrical vulcanized molded article having a diameter of 15 mm and a height of 25 mm, which was obtained by press-vulcanizing the rubber composition at 170° C. for 20 minutes.
  • the rubber composition according to the present invention is a rubber composition capable of obtaining a vulcanized molded article having excellent water resistance and alkali resistance by adjusting the hardness X and heat generation Y of the vulcanized molded article of the rubber composition so that the hardness X and heat generation Y satisfy the relationship of formula (1).
  • the hardness X can be controlled by adjusting the manufacturing conditions described later, for example, by the amount of the filler and the plasticizer.
  • the heat generation Y can be controlled by adjusting the manufacturing conditions described later, for example, by the type and amount of the filler, the crosslink density of the obtained vulcanized molded body, and the type and amount of the plasticizer.
  • the value of (1.4X-Y) can be greater than 45.0 and less than or equal to 100.0, for example, 45.5, 50.0, 55.0, 60.0, 65.0, 70.0, 75.0, 80.0, 85.0, 90.0, 95.0, 100.0, or within a range between any two of the numerical values exemplified here.
  • the hardness X of a laminate obtained by stacking test vulcanized molded bodies 1 of the rubber composition to a thickness of 6.0 mm or more, as measured with a type A durometer according to JIS K 6253-3:2023, is 40 to 98.
  • the hardness X may be, for example, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, or 98, or may be within a range between any two of the numerical values exemplified here.
  • Hardness X can be controlled by adjusting the manufacturing method of the rubber composition, for example, the presence or absence, type and amount of each component blended into the rubber composition, particularly the type and amount of filler and plasticizer, as well as the manufacturing conditions of the rubber composition (particularly the presence or absence, temperature and time of a standing process).
  • the heat generation Y determined by evaluating a test vulcanized molded product 2 of the rubber composition in a constant strain flexometer test based on JIS K 6265:2018 under conditions of 40°C, strain of 0.175 inches, load of 55 pounds, and vibration frequency of 1,800 times per minute is preferably 85°C or less.
  • Heat generation Y may be, for example, 1, 2, 3, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, or 85°C, or may be within a range between any two of the values exemplified here.
  • the heat generation Y can be controlled by adjusting the manufacturing method of the rubber composition, in particular the presence or absence, type and amount of each component blended into the rubber composition, such as the presence or absence, type and amount of fillers and components that contribute to vulcanization and crosslinking, as well as the manufacturing conditions of the rubber composition (in particular the presence or absence, temperature and time of a standing process).
  • Hardness X and heat generation Y can be specifically evaluated by the method described in the Examples.
  • the volume change rate ⁇ V calculated based on JIS K 6258 is preferably less than 9%, and more preferably less than 6%.
  • the volume change rate ⁇ V when immersed in water at 70°C for 144 hours is, for example, 0, 1, 2, 3, 4, 5, 6, 7, 8% or less than 9%, and may be within a range between any two of the numerical values exemplified here.
  • the volume change rate ⁇ V calculated based on JIS K 6258 is preferably less than 10%, and more preferably less than 7%.
  • the volume change rate ⁇ V is, for example, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9%, or less than 10%, and may be within a range between any two of the numerical values exemplified here.
  • the water resistance and alkali resistance of the vulcanized molded product of the rubber composition can be measured specifically by the method described in the Examples.
  • Unvulcanized molded body, vulcanized product, and vulcanized molded body uses the rubber composition according to one embodiment of the present invention, and is a molded body (molded product) of the rubber composition (unvulcanized state) according to one embodiment of the present invention.
  • the manufacturing method of the unvulcanized molded body according to one embodiment of the present invention includes a step of molding the rubber composition (unvulcanized state) according to one embodiment of the present invention.
  • the unvulcanized molded body according to one embodiment of the present invention is made of the rubber composition (unvulcanized state) according to one embodiment of the present invention.
  • the vulcanizate according to one embodiment of the present invention is a vulcanizate of the rubber composition according to one embodiment of the present invention.
  • the method for producing the vulcanizate according to one embodiment of the present invention includes a step of vulcanizing the rubber composition according to one embodiment of the present invention.
  • the vulcanized molded product according to one embodiment of the present invention is a vulcanized molded product of a rubber composition according to one embodiment of the present invention.
  • the vulcanized molded product according to one embodiment of the present invention uses a vulcanizate according to one embodiment of the present invention, and is a molded product (molded article) of the vulcanizate according to one embodiment of the present invention.
  • the vulcanized molded product according to one embodiment of the present invention is made of a vulcanizate according to one embodiment of the present invention.
  • the vulcanized molded product according to one embodiment of the present invention can be obtained by molding a vulcanized product obtained by vulcanizing a rubber composition (unvulcanized state) according to one embodiment of the present invention, and can also be obtained by vulcanizing a molded product obtained by molding a rubber composition (unvulcanized state) according to one embodiment of the present invention.
  • the vulcanized molded product according to one embodiment of the present invention can be obtained by vulcanizing a rubber composition according to one embodiment of the present invention after or during molding.
  • the method for producing a vulcanized molded product according to one embodiment of the present invention includes a step of molding a vulcanized product according to one embodiment of the present invention, or a step of vulcanizing an unvulcanized molded product according to one embodiment of the present invention.
  • the vulcanized molded product has a hardness of X', measured with a type A durometer in accordance with JIS K 6253-3:2023 when the vulcanized molded product is made into a test vulcanized molded product 1' having a thickness of 6.0 mm or more, and Y', measured with a constant strain flexometer test under conditions of 40°C, strain of 0.175 inches, load of 55 pounds, and vibration frequency of 1,800 times per minute when the vulcanized molded product is made into a cylindrical test vulcanized molded product 2' having a diameter of 15 mm and a height of 25 mm, in accordance with JIS K 6265:2018, It is preferable that the hardness X′ and the heat generation Y′ satisfy the following formula (2).
  • the test vulcanization molded article 1' having a thickness of 6.0 mm or more may be a laminate of a plurality of vulcanization molded articles having a thickness of less than 6.0 mm.
  • the test vulcanization molded article 1' may have a thickness of 6.0 mm or more and 7.0 mm or less.
  • the value of (1.4X-Y) is greater than 45.0, for example, 45.5, 50.0, 55.0, 60.0, 65.0, 70.0, 75.0, 80.0, 85.0, 90.0, 95.0, 100.0, and may be within a range between any two of the values given here as examples.
  • the hardness X' of the test vulcanized molded body 1' may be, for example, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, or 98, and may be within a range between any two of the numerical values exemplified here.
  • the heat generation Y' of the test vulcanized molded body 2' may be, for example, 1, 2, 3, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, or 85°C, or may be within a range between any two of the values exemplified here.
  • the vulcanized molded product according to one embodiment of the present invention has a volume change rate ⁇ V calculated based on JIS K 6258 when immersed in water at 70°C for 144 hours of preferably less than 9%, more preferably less than 6%.
  • the volume change rate ⁇ V when immersed in water at 70°C for 144 hours of may be, for example, 0, 1, 2, 3, 4, 5, 6, 7, 8% or less than 9%, and may be within a range between any two of the numerical values exemplified here.
  • the vulcanized molded product according to one embodiment of the present invention has a volume change rate ⁇ V calculated based on JIS K 6258 when immersed in 10% sodium hydroxide at 70°C for 144 hours, which is preferably less than 10%, and more preferably less than 7%.
  • the volume change rate ⁇ V when immersed in water at 70°C for 144 hours may be, for example, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9% or less than 10%, and may be within a range between any two of the numerical values exemplified here.
  • the hardness, heat generation, water resistance, and alkali resistance of the vulcanized molded body can be specifically measured by the method described in the Examples.
  • the hardness, heat generation, water resistance, and alkali resistance of the vulcanized molded body can also be controlled by adjusting the manufacturing method of the rubber composition, for example, the presence, type, and amount of each component blended into the rubber composition, particularly the presence, type, and amount of fillers and components that contribute to vulcanization and crosslinking, as well as the manufacturing conditions of the rubber composition (particularly the presence, temperature, and time of a standing process).
  • the unvulcanized molded product, vulcanized product, and vulcanized molded product according to one embodiment of the present invention can be used as rubber parts in various industrial fields such as buildings, structures, ships, railways, coal mines, and automobiles.
  • the rubber composition according to the present invention has excellent water resistance and alkali resistance, so it can be used as various components where these properties are required.
  • the rubber composition, vulcanized product, and vulcanized molded product according to one embodiment of the present invention can be used as rubber parts in various industrial fields such as buildings, structures, ships, railways, coal mines, and automobiles, and can be used for rubber parts such as automotive rubber parts (e.g., automotive seal materials), hose materials, rubber molded products, gaskets, rubber rolls, industrial cables, industrial conveyor belts, and sponges.
  • automotive rubber parts e.g., automotive seal materials
  • hose materials e.g., rubber molded products
  • gaskets e.g., rubber molded products
  • gaskets e.g., rubber molded products
  • gaskets e.g., rubber molded products
  • gaskets e.g., rubber molded products
  • gaskets e.g., rubber molded products
  • gaskets e.g., rubber molded products
  • gaskets e.g., rubber molded products
  • gaskets e.g., rubber molded products
  • Rubber components for automobiles include gaskets, oil seals, and packings, which are components that prevent leakage of liquids and gases and intrusion of garbage and foreign objects such as rainwater and dust into machines and devices.
  • gaskets used for fixed applications and oil seals and packings used for moving parts and movable parts.
  • various materials are used according to the purpose, as opposed to soft gaskets such as O-rings and rubber sheets.
  • packings are used for rotating parts such as the shafts of pumps and motors, moving parts of valves, reciprocating parts such as pistons, connecting parts of couplers, water stop parts of water faucets, etc.
  • the rubber composition of the present invention can improve water resistance and alkali resistance. This makes it possible to manufacture automobile parts with excellent oil resistance, which was difficult to do with conventional rubber compositions.
  • Hose materials are flexible pipes, and specific examples include high- and low-pressure hoses for water supply, oil supply, air supply, steam, and hydraulic use.
  • the rubber composition of the present invention can enhance the water resistance and alkali resistance of the hose material while maintaining the processability of the unvulcanized product. This makes it possible to manufacture, for example, a hose material with excellent water resistance and alkali resistance, which was difficult to achieve with conventional rubber compositions.
  • the rubber molded products include anti-vibration rubber, vibration-damping materials, boots, etc.
  • Anti-vibration rubber and vibration-damping materials are rubbers that prevent the transmission and spread of vibrations, and specifically include torsional dampers, engine mounts, muffler hangers, etc. for automobiles and various vehicles that absorb vibrations during engine operation to prevent noise.
  • the rubber composition of the present invention can improve the water resistance and alkali resistance of anti-vibration rubber and vibration-damping materials. This makes it possible to produce anti-vibration rubber and vibration-damping materials with excellent water resistance and alkali resistance, which was difficult to achieve with conventional rubber compositions.
  • a boot is a bellows-shaped member whose outer diameter gradually increases from one end to the other end, and specific examples include constant velocity joint cover boots for protecting drive parts such as automobile drive systems, ball joint cover boots (dust cover boots), rack and pinion gear boots, etc.
  • the rubber composition of the present invention can improve water resistance and alkali resistance. This makes it possible to manufacture boots that can be used in harsher environments than conventional rubber compositions.
  • Gaskets, oil seals and packings are components that prevent leakage of liquids or gases and intrusion of garbage or foreign objects such as rainwater or dust into machines or equipment.
  • gaskets used for fixed applications and oil seals and packings used for moving parts.
  • various materials are used according to the purpose, as opposed to soft gaskets such as O-rings and rubber sheets.
  • Packings are also used for rotating parts such as the shafts of pumps and motors, the movable parts of valves, reciprocating parts such as pistons, the connection parts of couplers, the water stop parts of water faucets, etc.
  • the rubber composition of the present invention can improve the water resistance and alkali resistance of these members. This makes it possible to manufacture sealing members with excellent water resistance and alkali resistance, which was difficult to achieve with conventional rubber compositions.
  • Rubber roll A rubber roll is manufactured by adhesively covering a metal core such as an iron core with rubber, and is generally manufactured by winding a rubber sheet around a metal iron core in a spiral shape. Rubber materials such as NBR, EPDM, and CR are used for rubber rolls according to the required characteristics of various applications such as papermaking, various metal manufacturing, film manufacturing, printing, general industrial use, agricultural equipment such as rice hullers, and food processing. CR has good mechanical strength that can withstand the friction of the object being conveyed, so it is used in a wide range of rubber roll applications. Furthermore, there is a problem that rubber rolls that convey heavy objects are deformed by load, and improvements are required.
  • the rubber composition of the present invention can increase the water resistance and alkali resistance of the rubber roll.
  • the rubber composition according to one embodiment of the present invention can be used as a rubber roll used in at least one of an acid washing line and an alkali washing line.
  • a rubber roll according to one embodiment of the present invention comprises a core and a surface layer provided on the peripheral surface of the core, the surface layer including the vulcanized molded body described above, and the rubber roll is used in at least one of an acid washing line and an alkali washing line.
  • An industrial cable is a linear member for transmitting electrical or optical signals. It is made by covering a good conductor such as copper or a copper alloy, or an optical fiber, with an insulating covering layer, and a wide variety of industrial cables are manufactured depending on their structure and installation location.
  • the rubber composition of the present invention can improve the water resistance and alkali resistance of industrial cables. This makes it possible to manufacture industrial cables with excellent water resistance and alkali resistance, which was difficult to achieve with conventional rubber compositions.
  • Industrial conveyor belts are available in rubber, resin, and metal, and are selected according to a wide variety of usage methods. Among these, rubber conveyor belts are inexpensive and widely used, but when used in an environment where there is a lot of friction and collision with the transported goods, they tend to deteriorate and break.
  • the rubber composition of the present invention can improve the water resistance and alkali resistance of industrial conveyor belts. This makes it possible to manufacture industrial conveyor belts with excellent water resistance and alkali resistance that can be used in harsh environments, which was difficult with conventional rubber compositions.
  • a sponge is a porous material with numerous fine holes inside, and is specifically used in vibration-proofing members, sponge seal parts, wet suits, shoes, etc.
  • the rubber composition of the present invention can improve the acid resistance and water resistance of the sponge.
  • a chloroprene-unsaturated nitrile copolymer rubber is used, it is also possible to improve the flame retardancy of the sponge. This makes it possible to produce a sponge with excellent water resistance and alkali resistance that can be used in harsh environments, which was difficult with conventional rubber compositions, and a sponge with excellent flame retardancy.
  • the hardness of the resulting sponge can be appropriately adjusted by adjusting the content of the foaming agent, etc.
  • Methods for molding the rubber composition (unvulcanized state) and vulcanized product according to one embodiment of the present invention include press molding, extrusion molding, calendar molding, etc.
  • the temperature for vulcanizing the rubber composition may be set appropriately according to the composition of the rubber composition, and may be 140 to 220°C.
  • the vulcanization temperature may be, for example, 140, 150, 160, 170, 180, 190, 200, 210, or 220°C, and may be within a range between any two of the numerical values exemplified here.
  • the vulcanization time for vulcanizing the rubber composition may be set appropriately according to the composition of the rubber composition, the shape of the unvulcanized molded body, etc., and may be 10 to 300 minutes.
  • the above-mentioned polymerization rate [%] of the chloroprene-based latex was calculated from the dry mass when the chloroprene-based latex was air-dried. Specifically, it was calculated from the following formula (A).
  • the "solid content concentration” is the concentration [mass %] of the solid content obtained by heating 2 g of the sampled chloroprene-based latex at 130°C and removing volatile components such as the solvent (water), volatile chemicals, and raw materials.
  • the “total charge amount” is the total amount [g] of the raw materials, reagents, and solvent (water) charged in the polymerization vessel from the start of polymerization to a certain time.
  • the “evaporation residue” is the mass [g] of the chemicals and raw materials charged from the start of polymerization to a certain time that do not volatilize under the condition of 130°C and remain as solids together with the polymer.
  • the “charge amount of monomer” is the total [g] of the monomer charged in the polymerization vessel at the beginning and the amount of the monomer added in portions from the start of polymerization to a certain time.
  • the pH of the above-mentioned chloroprene-based latex (R-2) was adjusted to 7.0 using acetic acid or sodium hydroxide, and the chloroprene-based latex was frozen and coagulated on a metal plate cooled to -20°C to break the emulsion, yielding a sheet.
  • the sheet was washed with water and then dried at 130°C for 15 minutes to obtain solid chloroprene-based rubber (A-2).
  • the content of acrylonitrile monomer units contained in the chloroprene rubber (A-2) was calculated from the content of nitrogen atoms in the chloroprene-acrylonitrile copolymer rubber. Specifically, an elemental analyzer (Sumigraph 220F: manufactured by Sumika Chemical Analysis Center Co., Ltd.) was used to measure the content of nitrogen atoms in 100 mg of chloroprene rubber (A-2), and the content of acrylonitrile monomer units was calculated. The content of acrylonitrile monomer units was 10.0% by mass.
  • the above elemental analysis was carried out as follows.
  • the electric furnace temperatures were set to 900°C for the reactor, 600°C for the reduction furnace, 70°C for the column, and 100°C for the detector.
  • Oxygen gas was flowed at 0.2 mL/min as the combustion gas, and helium gas was flowed at 80 mL/min as the carrier gas.
  • the calibration curve was created using aspartic acid (10.52%) with a known nitrogen content as the standard substance.
  • the chloroprene rubber (A-2) obtained by the above-mentioned production method had an acrylonitrile monomer unit content of 10.0 mass %.
  • Chloroprene rubber A-1 Chloroprene-acrylonitrile copolymer AN (acrylonitrile monomer unit) content: 5% by mass
  • Chloroprene rubber A-2 Chloroprene-acrylonitrile copolymer AN (acrylonitrile monomer unit) content 10% by mass
  • Chloroprene rubber A-5 mercaptan-modified chloroprene rubber (chloroprene homopolymer), manufactured by Denka Co., Ltd., S-40V ⁇ Natural rubber: HB Chemical Company, SMR-CV60
  • Carbon black Asahi #70, HAF, manufactured by Asahi Carbon Co., Ltd.
  • Organic peroxide 1,4-bis[(t-butylperoxy)isopropyl]benzene, NOF Corporation, Perbutyl P-40
  • Vulcanization accelerator Noccela TMU: Trimethylthiourea, manufactured by Ouchi Shinko Chemical Industry Co., Ltd., Noccela TMU Sulfur: Sulfur, manufactured by Hosoi Chemical Industry Co., Ltd., fine sulfur 200 mesh
  • Noccela TT Tetramethylthiuram disulfide, manufactured by Ouchi Shinko Chemical Industry Co., Ltd., Noccela TT
  • Noccela CZ N-cyclohexyl-2-benzothiazolyl sulfenamide, manufactured by Ouchi Shinko Chemical Industry Co., Ltd., Noccela CZ
  • the test vulcanized molded articles 1 were stacked to a thickness of 6.0 mm or more to form a laminate.
  • the hardness of the laminate was measured with a type A durometer in accordance with JIS K 6253-3:2023.
  • the thickness of the laminate was 6.0 to 7.0 mm.
  • the rubber composition was press-vulcanized at 170°C for 20 minutes to obtain a cylindrical vulcanized molded body (test vulcanized molded body 2) having a diameter of 15 mm and a height of 25 mm.
  • test vulcanized molded body 2 Based on JIS K 6265:2018, a Goodrich Flexometer was used to evaluate heat generation by a constant strain flexometer test.
  • the constant strain flexometer test is a test method for evaluating fatigue characteristics due to heat generation inside a test piece by applying a dynamic repeated load to a test piece such as vulcanized rubber. In detail, a static initial load is applied to the test piece under a constant temperature condition, and a sine vibration of a constant amplitude is further applied to measure the heat generation and creep amount of the test piece that change over time.
  • the test method was performed based on JIS K 6265:2018 under conditions of 40°C, strain of 0.175 inches, load of 55 pounds, and vibration frequency of 1,800 times per minute, and heat generation (°C

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

The present invention provides a rubber composition which makes it possible to achieve a vulcanization molded body that has excellent water resistance and alkali resistance. The present invention specifically provides a rubber composition which contains a rubber component, wherein if X is the hardness of a laminate, which is obtained by superposing vulcanization molded bodies 1 of the rubber composition for testing upon each other until the thickness of the laminate reaches 6.0 mm or more, as measured by a type A durometer in accordance with JIS K 6253-3 (2023) and Y is the heat generation as obtained by evaluating a vulcanization molded body 2 of the rubber composition for testing by a constant strain flexometer test in accordance with JIS K 6265 (2018) under the conditions of 40° C, a strain of 0.175 inch, a load of 55 pounds and a frequency of 1,800 times per minute, the hardness X and the heat generation Y satisfy the formula (1) below. Meanwhile, the vulcanization molded body 1 for testing is a sheet-like vulcanization molded body having a thickness of 2 mm, the sheet-like vulcanization molded body being obtained by press-vulcanizing the rubber composition in accordance with JIS K 6299 (2012) under the conditions of 170°C and 20 minutes, and the vulcanization molded body 2 for testing is a cylindrical vulcanization molded body having a diameter of 15 mm and a height of 25 mm, the cylindrical vulcanization molded body being obtained by press-vulcanizing the rubber composition under conditions of 170°C and 20 minutes. (1): 1.4X - Y > 45.0

Description

ゴム組成物、加硫成形体、及びゴムロールRubber composition, vulcanized molded product, and rubber roll

 本発明は、ゴム組成物、加硫成形体、及びゴムロールに関する。 The present invention relates to a rubber composition, a vulcanized molded product, and a rubber roll.

 ゴム製品は、一般産業用の伝動ベルトやコンベアベルト、自動車用空気バネ、防振ゴム、ホース、ワイパー、浸漬製品、シール部品、接着剤、ブーツ、ゴム引布、ゴムロールなどの材料として広く使用されている。 Rubber products are widely used as materials for general industrial transmission belts and conveyor belts, automotive air springs, vibration-proof rubber, hoses, wipers, immersion products, sealing parts, adhesives, boots, rubber-coated fabrics, rubber rolls, etc.

 例えば、特許文献1には、硫黄変性クロロプレンゴム、加硫促進剤、酸化亜鉛及び酸化マグネシウムからなり、上記加硫促進剤の配合量が0.1~5重量部であり、酸化亜鉛の配合量及び酸化マグネシウムの配合量が、それぞれの配合量とムーニースコーチ時間tとの予め求めた関係式により特定される、硫黄変性クロロプレンゴム組成物に係る発明が開示されている。
 また、特許文献2には、ムーニー粘度ML(1+4)100℃が20~80であり、特定の構造の官能基を有する、クロロプレン単量体と不飽和ニトリル化合物の共重合体に係る発明が開示されている。
For example, Patent Document 1 discloses an invention relating to a sulfur-modified chloroprene rubber composition comprising a sulfur-modified chloroprene rubber, a vulcanization accelerator, zinc oxide, and magnesium oxide, in which the blending amount of the vulcanization accelerator is 0.1 to 5 parts by weight, and the blending amounts of zinc oxide and magnesium oxide are specified by a previously determined relational expression between each blending amount and the Mooney scorch time t.
Furthermore, Patent Document 2 discloses an invention relating to a copolymer of a chloroprene monomer and an unsaturated nitrile compound, which has a Mooney viscosity ML(1+4)100°C of 20 to 80 and has a functional group of a specific structure.

特開平11-209522号公報Japanese Patent Application Publication No. 11-209522 国際公開第2020/044899号International Publication No. 2020/044899

 しかしながら、従来のゴム組成物は、該組成物の加硫成形体における耐水性及び耐アルカリ性に改善の余地があった。 However, conventional rubber compositions have room for improvement in terms of water resistance and alkali resistance in vulcanized molded products made from the composition.

 本発明は、このような事情に鑑みてなされたものであり、優れた耐水性及び耐アルカリ性を有する加硫成形体を得ることができるゴム組成物を提供するものである。 The present invention was made in consideration of these circumstances, and provides a rubber composition that can produce vulcanized molded products with excellent water resistance and alkali resistance.

 本発明によれば、ゴム成分を含むゴム組成物であって、前記ゴム組成物の試験用加硫成形体1を、厚み6.0mm以上になるまで重ねた積層体の、JIS K 6253-3:2023に基づきタイプAデュロメータで測定した硬さをXとし、前記ゴム組成物の試験用加硫成形体2を、JIS K 6265:2018に基づき、40℃、歪み0.175インチ、荷重55ポンド、振動数毎分1,800回の条件で、定ひずみフレクソメーター試験で評価することにより求めた発熱をYとしたとき、硬さXと発熱Yが、以下の式(1)を満たし、前記試験用加硫成形体1は、前記ゴム組成物をJIS K 6299:2012に基づき、170℃、20分の条件でプレス加硫して得た、厚さ2mmのシート状の加硫成形体であり、前記試験用加硫成形体2は、前記ゴム組成物を170℃、20分の条件でプレス加硫して得た、直径15mm、高さ25mmの円柱状の加硫成形体である、ゴム組成物が提供される。
 1.4X-Y>45.0  (1)
According to the present invention, there is provided a rubber composition containing a rubber component, wherein a laminate obtained by stacking test vulcanized molded articles 1 of the rubber composition to a thickness of 6.0 mm or more has a hardness measured by a type A durometer based on JIS K 6253-3:2023 of X, and a test vulcanized molded article 2 of the rubber composition is evaluated in a constant strain flexometer test based on JIS K 6265:2018 under conditions of 40°C, strain of 0.175 inches, load of 55 pounds, and vibration frequency of 1,800 times per minute, and the hardness X and heat generation Y satisfy the following formula (1), and the test vulcanized molded article 1 is obtained by stacking test vulcanized molded articles 1 of the rubber composition to a thickness of 6.0 mm or more, and the hardness X and heat generation Y satisfy the following formula (1), The test vulcanized molded body 1 is a cylindrical vulcanized molded body having a diameter of 15 mm and a height of 25 mm, obtained by press-vulcanizing the rubber composition at 170°C for 20 minutes based on Japanese Patent Laid-Open No. 6299:2012. The test vulcanized molded body 2 is a cylindrical vulcanized molded body having a diameter of 15 mm and a height of 25 mm, obtained by press-vulcanizing the rubber composition at 170°C for 20 minutes based on Japanese Patent Laid-Open No. 6299:2012.
1.4X-Y>45.0 (1)

 本発明者は、鋭意検討を行ったところ、ゴム組成物の試験用加硫成形体1の硬さXと、ゴム組成物の試験用加硫成形体2の発熱Yが特定の関係を満たすよう、ゴム組成物の配合を調整することにより、優れた耐水性及び耐アルカリ性の加硫成形体を得ることができるゴム組成物となることを見出し、本発明の完成に至った。 The inventors conducted extensive research and discovered that by adjusting the rubber composition formulation so that the hardness X of a test vulcanized molded product 1 of the rubber composition and the heat generation Y of a test vulcanized molded product 2 of the rubber composition satisfy a specific relationship, a rubber composition can be obtained that can produce a vulcanized molded product with excellent water resistance and alkali resistance, which led to the completion of the present invention.

 以下、本発明の種々の実施形態を例示する。以下に示す実施形態は互いに組み合わせ可能である。 Below are examples of various embodiments of the present invention. The embodiments shown below can be combined with each other.

[1]ゴム成分を含むゴム組成物であって、前記ゴム組成物の試験用加硫成形体1を、厚み6.0mm以上になるまで重ねた積層体の、JIS K 6253-3:2023に基づきタイプAデュロメータで測定した硬さをXとし、前記ゴム組成物の試験用加硫成形体2を、JIS K 6265:2018に基づき、40℃、歪み0.175インチ、荷重55ポンド、振動数毎分1,800回の条件で、定ひずみフレクソメーター試験で評価することにより求めた発熱をYとしたとき、硬さXと発熱Yが、以下の式(1)を満たし、前記試験用加硫成形体1は、前記ゴム組成物をJIS K 6299:2012に基づき、170℃、20分の条件でプレス加硫して得た、厚さ2mmのシート状の加硫成形体であり、前記試験用加硫成形体2は、前記ゴム組成物を170℃、20分の条件でプレス加硫して得た、直径15mm、高さ25mmの円柱状の加硫成形体である、ゴム組成物。
  1.4X-Y>45.0  (1)
[2]前記硬さXが、40以上、98以下である、[1]に記載のゴム組成物。
[3]前記ゴム成分は、クロロプレン系重合体を含む、[1]又は[2]記載の、ゴム組成物。
[4]前記クロロプレン系重合体は、前記クロロプレン系重合体100質量%に対して、クロロプレン単量体単位を80~100質量%含む、[3]に記載の、ゴム組成物。
[5][1]~[4]のいずれかに記載のゴム組成物の、加硫成形体。
[6]ゴムロールであって、芯金と、前記芯金の周面に設けられた表面層を具備し、前記表面層が[5]に記載の加硫成形体を含み、前記ゴムロールは、酸洗浄ライン及びアルカリ洗浄ラインのうち少なくとも1つで用いられる、ゴムロール。
[7]ゴム成分を含む加硫成形体であって、前記加硫成形体を厚み6.0mm以上の試験用加硫成形体1'とした際、JIS K 6253-3:2023に基づきタイプAデュロメータで測定した硬さをX'とし、前記加硫成形体を直径15mm、高さ25mmの円柱状の試験用加硫成形体2'とした際、JIS K 6265:2018に基づき、40℃、歪み0.175インチ、荷重55ポンド、振動数毎分1,800回の条件で、定ひずみフレクソメーター試験で評価することにより求めた発熱をY'としたとき、硬さX'と発熱Y'が、以下の式(2)を満たす、加硫成形体。
  1.4X'-Y'>45.0  (2)
[1] A rubber composition containing a rubber component, wherein a laminate obtained by stacking test vulcanized molded products 1 of the rubber composition to a thickness of 6.0 mm or more has a hardness measured with a type A durometer based on JIS K 6253-3:2023 of X, and a test vulcanized molded product 2 of the rubber composition is evaluated in a constant strain flexometer test based on JIS K 6265:2018 under conditions of 40°C, strain of 0.175 inches, load of 55 pounds, and vibration frequency of 1,800 times per minute, and the hardness X and heat generation Y satisfy the following formula (1), and the test vulcanized molded product 1 is obtained by stacking test vulcanized molded products 1 of the rubber composition to a thickness of 6.0 mm or more. The test vulcanized molded body 1 is a cylindrical vulcanized molded body having a diameter of 15 mm and a height of 25 mm, obtained by press-vulcanizing the rubber composition at 170°C for 20 minutes based on MHI No. 6299:2012.
1.4X-Y>45.0 (1)
[2] The rubber composition according to [1], wherein the hardness X is 40 or more and 98 or less.
[3] The rubber composition according to [1] or [2], wherein the rubber component contains a chloroprene-based polymer.
[4] The rubber composition according to [3], wherein the chloroprene polymer contains 80 to 100 mass % of chloroprene monomer units relative to 100 mass % of the chloroprene polymer.
[5] A vulcanized molded article of the rubber composition according to any one of [1] to [4].
[6] A rubber roll comprising a core and a surface layer provided on the peripheral surface of the core, the surface layer including the vulcanized molded article according to [5], and used in at least one of an acid washing line and an alkali washing line.
[7] A vulcanized molded product containing a rubber component, wherein when the vulcanized molded product is made into a test vulcanized molded product 1' having a thickness of 6.0 mm or more, the hardness measured with a type A durometer based on JIS K 6253-3:2023 is X', and when the vulcanized molded product is made into a cylindrical test vulcanized molded product 2' having a diameter of 15 mm and a height of 25 mm, the heat generation determined by evaluation in a constant strain flexometer test based on JIS K 6265:2018 under conditions of 40°C, strain of 0.175 inches, load of 55 pounds, and vibration frequency of 1,800 times per minute is Y', the hardness X' and heat generation Y' satisfy the following formula (2).
1.4X'-Y'>45.0 (2)

 本発明に係るゴム組成物によれば、優れた耐水性及び耐アルカリ性を有する加硫成形体を得ることができる。また、本発明に係る加硫成形体は、優れた耐水性及び耐アルカリ性を有するため、これらの特性を活かし、耐水性及び/又は耐アルカリ性等が必要とされる様々な部材、例えば、ゴムロールとして用いることができる。本発明の一実施形態に係るゴムロールは、耐水性及び耐アルカリ性に優れ、例えば、酸洗浄ライン及びアルカリ洗浄ラインのうち少なくとも1つのゴムロールとして利用することができる。 The rubber composition according to the present invention makes it possible to obtain a vulcanized molded article having excellent water resistance and alkali resistance. Furthermore, since the vulcanized molded article according to the present invention has excellent water resistance and alkali resistance, these properties can be utilized to use it as various components that require water resistance and/or alkali resistance, such as rubber rolls. The rubber roll according to one embodiment of the present invention has excellent water resistance and alkali resistance, and can be used, for example, as at least one rubber roll in an acid washing line and an alkali washing line.

 以下、本発明の実施形態を例示して本発明について詳細な説明をする。本発明は、これらの記載によりなんら限定されるものではない。以下に示す本発明の実施形態の各特徴事項は、互いに組み合わせ可能である。また、各特徴事項について独立して発明が成立する。 The present invention will be described in detail below by illustrating embodiments of the present invention. The present invention is not limited in any way by these descriptions. The features of the embodiments of the present invention shown below can be combined with each other. Furthermore, each feature can be an invention independently.

1.ゴム組成物
 本発明に係るゴム組成物は、ゴム成分を含む。
1. Rubber Composition The rubber composition according to the present invention contains a rubber component.

1.1 ゴム成分
 本発明に係るゴム成分は、クロロプレン系ゴム、天然ゴム(NR)、水素化アクリロニトリルブタジエンゴム(H-NBR)、アクリロニトリルブタジエンゴム(NBR)、クロロスルフォン化ポリエチレン(CSM)から選ばれる少なくとも一種を含むことができる。ゴム成分は、クロロプレン系ゴム、及び天然ゴム(NR)から選ばれる少なくとも一種を含むことが好ましく、本発明の一実施形態に係るゴム組成物は、クロロプレン系ゴムを含むことが好ましく、すなわち、クロロプレン系重合体を含むことが好ましい。
1.1 Rubber Component The rubber component according to the present invention may contain at least one selected from chloroprene rubber, natural rubber (NR), hydrogenated acrylonitrile butadiene rubber (H-NBR), acrylonitrile butadiene rubber (NBR), and chlorosulfonated polyethylene (CSM). The rubber component preferably contains at least one selected from chloroprene rubber and natural rubber (NR), and the rubber composition according to one embodiment of the present invention preferably contains chloroprene rubber, i.e., it preferably contains a chloroprene polymer.

1.1.1 クロロプレン系ゴム
 本発明に係るクロロプレン系ゴムは、クロロプレン(2-クロロ-1,3-ブタジエン)を単量体単位(単量体単位=構造単位)として有するクロロプレン系重合体を含むゴムを示す。クロロプレン系重合体としては、クロロプレンの単独重合体、クロロプレンの共重合体(クロロプレンと、クロロプレンに共重合可能な単量体との共重合体)等が挙げられる。クロロプレン系重合体のポリマー構造は、特に限定されるものではない。
1.1.1 Chloroprene-Based Rubber The chloroprene-based rubber according to the present invention refers to a rubber containing a chloroprene-based polymer having chloroprene (2-chloro-1,3-butadiene) as a monomer unit (monomer unit = structural unit). Examples of the chloroprene-based polymer include a chloroprene homopolymer and a chloroprene copolymer (a copolymer of chloroprene and a monomer copolymerizable with chloroprene). The polymer structure of the chloroprene-based polymer is not particularly limited.

 なお、市販品の2-クロロ-1,3ブタジエンには不純物として少量の1-クロロ-1,3-ブタジエンが含まれる場合がある。このような少量の1-クロロ-1,3-ブタジエンを含む2-クロロ-1,3ブタジエンを、本実施形態のクロロプレン単量体として用いることもできる。 Note that commercially available 2-chloro-1,3-butadiene may contain a small amount of 1-chloro-1,3-butadiene as an impurity. 2-chloro-1,3-butadiene containing such a small amount of 1-chloro-1,3-butadiene can also be used as the chloroprene monomer in this embodiment.

 本発明の一実施形態に係るクロロプレン系重合体は、クロロプレン単量体以外の単量体に由来する単量体単位を有するものとできる。クロロプレン単量体以外の単量体としては、クロロプレン単量体と共重合可能であれば特に制限はないが、不飽和ニトリル、(メタ)アクリル酸のエステル類((メタ)アクリル酸メチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸2-エチルヘキシル等)、ヒドロキシアルキル(メタ)アクリレート(2-ヒドロキシメチル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート等)、2,3-ジクロロ-1,3-ブタジエン、1-クロロ-1,3-ブタジエン、ブタジエン、イソプレン、エチレン、スチレン、硫黄等が挙げられる。本発明の一実施形態に係るクロロプレン系重合体は、2,3-ジクロロ-1,3-ブタジエン及び不飽和ニトリル単量体から選ばれる少なくとも1種の単量体単位を含むことができる。本発明の一実施形態に係るクロロプレン系重合体は、不飽和ニトリル単量体単位を含むことができる。 The chloroprene-based polymer according to one embodiment of the present invention may have a monomer unit derived from a monomer other than the chloroprene monomer. The monomer other than the chloroprene monomer is not particularly limited as long as it is copolymerizable with the chloroprene monomer, and examples of the monomer other than the chloroprene monomer include unsaturated nitriles, esters of (meth)acrylic acid (methyl (meth)acrylate, butyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, etc.), hydroxyalkyl (meth)acrylates (2-hydroxymethyl (meth)acrylate, 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, etc.), 2,3-dichloro-1,3-butadiene, 1-chloro-1,3-butadiene, butadiene, isoprene, ethylene, styrene, sulfur, etc. The chloroprene-based polymer according to one embodiment of the present invention may contain at least one monomer unit selected from 2,3-dichloro-1,3-butadiene and an unsaturated nitrile monomer. The chloroprene polymer according to one embodiment of the present invention may contain unsaturated nitrile monomer units.

 本発明の一実施形態に係るクロロプレン系重合体は、クロロプレン系重合体を100質量%としたとき、不飽和ニトリル単量体単位の含有率を25質量%以下とでき、20質量%以下であることが好ましく、20質量%未満であることがより好ましい。本発明の一実施形態に係るクロロプレン系ゴムにおける不飽和ニトリル単量体単位の含有率は、例えば、0、1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25質量%であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。ゴム組成物中の不飽和ニトリル単量体単位の含有率を上記上限以下とすることにより、ゴム組成物の加硫成形体の耐水性及び耐寒性がより向上する。また、不飽和ニトリル単量体単位を含むことにより、ゴム組成物の加硫成形体の耐油性が向上する。 The chloroprene polymer according to one embodiment of the present invention can have an unsaturated nitrile monomer unit content of 25% by mass or less, preferably 20% by mass or less, and more preferably less than 20% by mass, when the chloroprene polymer is taken as 100% by mass. The unsaturated nitrile monomer unit content in the chloroprene rubber according to one embodiment of the present invention is, for example, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, or 25% by mass, and may be within a range between any two of the numerical values exemplified here. By making the content of the unsaturated nitrile monomer unit in the rubber composition equal to or less than the above upper limit, the water resistance and cold resistance of the vulcanized molded product of the rubber composition are further improved. In addition, by including the unsaturated nitrile monomer unit, the oil resistance of the vulcanized molded product of the rubber composition is improved.

 不飽和ニトリルとしては、アクリロニトリル、メタクリロニトリル、エタクリロニトリル、フェニルアクリロニトリル等が挙げられる。不飽和ニトリルは、1種単独で又は2種以上を組み合わせて用いることができる。不飽和ニトリルは、優れた成形性が得られやすい観点、並びに、加硫成形体において優れた破断強度、破断伸び、硬さ、引き裂き強度、耐油性が得られやすい観点から、アクリロニトリルを含むことが好ましい。 Examples of unsaturated nitriles include acrylonitrile, methacrylonitrile, ethacrylonitrile, and phenylacrylonitrile. The unsaturated nitriles may be used alone or in combination of two or more. It is preferable that the unsaturated nitrile contains acrylonitrile, from the viewpoint of easily obtaining excellent moldability, and from the viewpoint of easily obtaining excellent breaking strength, breaking elongation, hardness, tear strength, and oil resistance in the vulcanized molded product.

 クロロプレン系ゴムに含まれる不飽和ニトリル単量体単位の含有量は、クロロプレン系ゴム中の窒素原子の含有量から算出することができる。具体的には、元素分析装置(スミグラフ220F:株式会社住化分析センター製)を用いて100mgのクロロプレン系ゴムにおける窒素原子の含有量を測定し、不飽和ニトリル単量体由来の構造単位の含有量を算出できる。元素分析の測定は次の条件で行うことができる。例えば、電気炉温度として反応炉900℃、還元炉600℃、カラム温度70℃、検出器温度100℃に設定し、燃焼用ガスとして酸素を0.2mL/min、キャリアーガスとしてヘリウムを80mL/minフローする。検量線は、窒素含有量が既知のアスパラギン酸(10.52%)を標準物質として用いて作成できる。 The content of unsaturated nitrile monomer units contained in chloroprene rubber can be calculated from the content of nitrogen atoms in the chloroprene rubber. Specifically, the content of nitrogen atoms in 100 mg of chloroprene rubber can be measured using an elemental analyzer (Sumigraph 220F: manufactured by Sumika Chemical Analysis Center Co., Ltd.), and the content of structural units derived from unsaturated nitrile monomers can be calculated. Elemental analysis can be performed under the following conditions. For example, the electric furnace temperatures are set to 900°C for the reactor, 600°C for the reduction furnace, 70°C for the column, and 100°C for the detector, and oxygen is flowed at 0.2 mL/min as the combustion gas and 80 mL/min as the carrier gas. A calibration curve can be created using aspartic acid (10.52%), which has a known nitrogen content, as a standard substance.

 本発明の一実施形態に係るクロロプレン系重合体は、クロロプレン系重合体を100質量%としたとき、クロロプレン単量体単位を75~100質量%含むことが好ましく、80~100質量部含むことがより好ましい。クロロプレン系重合体におけるクロロプレン単量体単位の含有率は、例えば、75、80、85、90、95、99、100質量%であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。クロロプレン単量体単位の含有率を上記数値範囲内とすることにより、硬度、引張強度、及び耐寒性のバランスに優れる成形体を得ることができるゴム組成物とすることができる。 The chloroprene polymer according to one embodiment of the present invention preferably contains 75 to 100 mass% of chloroprene monomer units, and more preferably 80 to 100 mass%, when the chloroprene polymer is taken as 100 mass%. The content of chloroprene monomer units in the chloroprene polymer may be, for example, 75, 80, 85, 90, 95, 99, or 100 mass%, and may be within a range between any two of the numerical values exemplified here. By setting the content of chloroprene monomer units within the above numerical range, a rubber composition can be obtained that can give a molded article with an excellent balance of hardness, tensile strength, and cold resistance.

 本発明の一実施形態に係るクロロプレン系重合体は、クロロプレン系重合体を100質量%としたとき、クロロプレン単量体単位及び不飽和ニトリル単量体単位以外の単量体単位を0~20質量%含むことができる。クロロプレン系重合体におけるクロロプレン単量体単位及び不飽和ニトリル単量体単位以外の単量体単位の含有率は、例えば、0、2、4、6、8、10、12、14、16、18、20質量%であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。クロロプレン単量体及び不飽和ニトリル単量体以外の単量体の共重合量を上記範囲に調整することで、得られるゴム組成物の特性を損なわずに、これらの単量体を共重合させたことによる効果を発現することができる。 The chloroprene polymer according to one embodiment of the present invention may contain 0 to 20 mass% of monomer units other than chloroprene monomer units and unsaturated nitrile monomer units when the chloroprene polymer is taken as 100 mass%. The content of monomer units other than chloroprene monomer units and unsaturated nitrile monomer units in the chloroprene polymer may be, for example, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, or 20 mass%, and may be within a range between any two of the numerical values exemplified here. By adjusting the copolymerization amount of monomers other than chloroprene monomer and unsaturated nitrile monomer to the above range, it is possible to achieve the effect of copolymerizing these monomers without impairing the properties of the resulting rubber composition.

 本発明の一実施形態に係るクロロプレン系ゴムは、クロロプレンの単独重合体、クロロプレン単量体単位と不飽和ニトリル単量体単位を含む共重合体、及びクロロプレン単量体単位と2,3-ジクロロ-1,3-ブタジエン単量体単位を含む共重合体から選ばれる少なくとも1種の重合体を含むことができる。 The chloroprene-based rubber according to one embodiment of the present invention can contain at least one polymer selected from a chloroprene homopolymer, a copolymer containing chloroprene monomer units and unsaturated nitrile monomer units, and a copolymer containing chloroprene monomer units and 2,3-dichloro-1,3-butadiene monomer units.

 本発明に係るゴム成分は、クロロプレン系ゴムを、1種単独で又は2種以上を組み合わせて用いることができる。
 本発明の一実施形態に係るゴム組成物が、2種以上のクロロプレン系ゴムを含む場合、ゴム組成物に含まれる2種以上のクロロプレン系重合体の合計100質量%に対して、2種以上のクロロプレン系重合体に含まれる各単量体単位の合計量に基づく含有率が上記数値範囲内であることが好ましい。
The rubber component according to the present invention may use one chloroprene rubber alone or two or more chloroprene rubbers in combination.
When the rubber composition according to one embodiment of the present invention contains two or more chloroprene-based rubbers, it is preferable that the content based on the total amount of each monomer unit contained in the two or more chloroprene-based polymers be within the above-mentioned numerical range relative to 100 mass% in total of the two or more chloroprene-based polymers contained in the rubber composition.

 本発明に係るクロロプレン系ゴムに含まれるクロロプレン系重合体(クロロプレンの単独重合体、クロロプレンの共重合体等)は、硫黄変性クロロプレン重合体、メルカプタン変性クロロプレン重合体、キサントゲン変性クロロプレン重合体、ジチオカルボナート系クロロプレン重合体、トリチオカルボナート系クロロプレン重合体、カルバメート系クロロプレン重合体などであってよい。 The chloroprene polymer (chloroprene homopolymer, chloroprene copolymer, etc.) contained in the chloroprene rubber of the present invention may be a sulfur-modified chloroprene polymer, a mercaptan-modified chloroprene polymer, a xanthogen-modified chloroprene polymer, a dithiocarbonate-based chloroprene polymer, a trithiocarbonate-based chloroprene polymer, a carbamate-based chloroprene polymer, etc.

1.1.2 クロロプレン系ゴムの製造方法
 本発明に係るクロロプレン系ゴムの製造方法は特に限定されないが、クロロプレン単量体を含む原料単量体を乳化重合する乳化重合工程を含む製造方法によって得ることができる。
 本発明の一実施形態に係る乳化重合工程では、クロロプレン単量体、又は、クロロプレン単量体及び他の単量体を含む原料単量体を、乳化剤や分散剤や触媒や連鎖移動剤等を適宜に用いて乳化重合させ、目的とする最終転化率に達した際に重合停止剤を添加してクロロプレン単量体単位を含むクロロプレン系重合体を含むラテックスを得ることができる。次に、乳化重合工程により得られた重合液から、未反応単量体の除去を行うことができる。その方法は、特に限定されるものではなく、例えば、スチームストリッピング法が挙げられる。その後、pHを調整し、常法の凍結凝固、水洗、熱風乾燥などの工程を経て、クロロプレン系重合体を含むクロロプレン系ゴムを得ることができる。
1.1.2 Method for Producing Chloroprene Rubber There is no particular limitation on the method for producing the chloroprene rubber of the present invention. The chloroprene rubber can be obtained by a production method including an emulsion polymerization step of emulsion polymerizing raw material monomers including a chloroprene monomer.
In the emulsion polymerization step according to one embodiment of the present invention, a chloroprene monomer or a raw material monomer containing a chloroprene monomer and other monomers is emulsion-polymerized using an appropriate amount of an emulsifier, a dispersant, a catalyst, a chain transfer agent, etc., and when the target final conversion rate is reached, a polymerization terminator is added to obtain a latex containing a chloroprene-based polymer containing a chloroprene monomer unit. Next, unreacted monomers can be removed from the polymerization liquid obtained by the emulsion polymerization step. The method is not particularly limited, and examples of the method include a steam stripping method. Thereafter, the pH is adjusted, and a chloroprene rubber containing a chloroprene-based polymer is obtained through conventional processes such as freeze coagulation, water washing, and hot air drying.

 乳化重合する場合に用いる重合開始剤としては、特に制限はなく、クロロプレンの乳化重合に一般に用いられる公知の重合開始剤を用いることができる。重合開始剤としては、過硫酸カリウム、過硫酸アンモニウム、過硫酸ナトリウム、過酸化水素、t-ブチルハイドロパーオキサイド等の有機過酸化物などが挙げられる。 There are no particular limitations on the polymerization initiator used in emulsion polymerization, and any known polymerization initiator commonly used in emulsion polymerization of chloroprene can be used. Polymerization initiators include potassium persulfate, ammonium persulfate, sodium persulfate, hydrogen peroxide, t-butyl hydroperoxide, and other organic peroxides.

 乳化重合する場合に用いる乳化剤としては、特に制限はなく、クロロプレンの乳化重合に一般に用いられる公知の乳化剤を用いることができる。乳化剤としては、炭素数が6~22の飽和又は不飽和の脂肪酸のアルカリ金属塩、ロジン酸又は不均化ロジン酸のアルカリ金属塩(例えばロジン酸カリウム)、β-ナフタレンスルホン酸のホルマリン縮合物のアルカリ金属塩(例えばナトリウム塩)等が挙げられる。 The emulsifier used in emulsion polymerization is not particularly limited, and any known emulsifier commonly used in emulsion polymerization of chloroprene can be used. Examples of emulsifiers include alkali metal salts of saturated or unsaturated fatty acids having 6 to 22 carbon atoms, alkali metal salts of rosin acid or disproportionated rosin acid (e.g. potassium rosinate), and alkali metal salts of formalin condensates of β-naphthalenesulfonic acid (e.g. sodium salt).

 乳化重合する場合に用いる分子量調整剤としては、特に制限はなく、クロロプレンの乳化重合に一般に用いられる公知の分子量調整剤を用いることができ、例えば、メルカプタン系化合物、キサントゲン系化合物、ジチオカルボナート系化合物、トリチオカルボナート系化合物及びカルバメート系化合物がある。本発明の一実施形態に係るクロロプレン系ゴムの分子量調整剤としては、キサントゲン系化合物、ジチオカルボナート系化合物、トリチオカルボナート系化合物及びカルバメート系化合物を好適に使用できる。 The molecular weight regulator used in emulsion polymerization is not particularly limited, and any known molecular weight regulator commonly used in emulsion polymerization of chloroprene can be used, such as mercaptan compounds, xanthogen compounds, dithiocarbonate compounds, trithiocarbonate compounds, and carbamate compounds. Xanthogen compounds, dithiocarbonate compounds, trithiocarbonate compounds, and carbamate compounds can be suitably used as molecular weight regulators for the chloroprene rubber according to one embodiment of the present invention.

 重合温度及び単量体の最終転化率は特に制限するものではないが、重合温度は、例えば0~50℃又は10~50℃であってよい。単量体の最終転化率が40~95質量%の範囲に入るように重合を行ってよい。最終転化率を調整するためには、所望する転化率になった時に、重合反応を停止させる重合停止剤を添加して重合を停止させればよい。 The polymerization temperature and the final conversion rate of the monomer are not particularly limited, but the polymerization temperature may be, for example, 0 to 50°C or 10 to 50°C. The polymerization may be carried out so that the final conversion rate of the monomer falls within the range of 40 to 95% by mass. In order to adjust the final conversion rate, a polymerization terminator that stops the polymerization reaction may be added to terminate the polymerization when the desired conversion rate is reached.

 重合停止剤としては、特に制限はなく、クロロプレンの乳化重合に一般に用いられる公知の重合停止剤を用いることができる。重合停止剤としては、フェノチアジン(チオジフェニルアミン)、4-t-ブチルカテコール、2,2-メチレンビス-4-メチル-6-t-ブチルフェノール等が挙げられる。 There are no particular limitations on the polymerization terminator, and any known polymerization terminator commonly used in emulsion polymerization of chloroprene can be used. Examples of polymerization terminators include phenothiazine (thiodiphenylamine), 4-t-butylcatechol, and 2,2-methylenebis-4-methyl-6-t-butylphenol.

 本発明の一実施形態に係るクロロプレン系ゴムは、例えば、スチームストリッピング法によって未反応の単量体を除去した後、上記ラテックスのpHを調整し、常法の凍結凝固、水洗、熱風乾燥等の工程を経て得ることができる。 The chloroprene rubber according to one embodiment of the present invention can be obtained, for example, by removing unreacted monomers by steam stripping, adjusting the pH of the latex, and then going through conventional processes such as freeze coagulation, water washing, and hot air drying.

 クロロプレン系ゴムは、分子量調整剤の種類によりメルカプタン変性タイプ、キサントゲン変性タイプ、硫黄変性タイプ、ジチオカルボナート系タイプ、トリチオカルボナート系タイプ及びカルバメート系タイプに分類される。 Chloroprene rubber is classified into mercaptan-modified type, xanthogen-modified type, sulfur-modified type, dithiocarbonate-based type, trithiocarbonate-based type, and carbamate-based type depending on the type of molecular weight regulator.

1.2 有機過酸化物
 本発明に係るゴム組成物は、有機過酸化物を含むことができる。有機過酸化物は、1種又は2種以上自由に選択して用いることができる。
1.2 Organic Peroxide The rubber composition according to the present invention may contain an organic peroxide. One or more organic peroxides may be freely selected and used.

 有機過酸化物としては、例えば、ジクミルパーオキサイド、ベンゾイルパーオキサイド、1,1-ビス(t-ブチルパーオキシ)-3,5,5-トリメチルシクロヘキサン、ジイソブチリルパーオキサイド、クミルパーオキシネオデカノエート、ジ-n-プロピルパーオキシジカーボネート、ジイソプロピルパーオキシジカーボネート、ジ-sec-ブチルパーオキシジカーボネート、1,1,3,3-テトラメチルブチルパーオキシネオデカノエート、ジ(4-t-ブチルシクロへキシル)パーオキシジカーボネート、ジ(2-エチルヘキシル)パーオキシジカーボネート、t-ヘキシルパーオキシネオデカノエート、t-ブチルパーオキシネオデカノエート、t-ブチルパーオキシネオヘプタノエート、t-ヘキシルパーオキシピバレート、t-ブチルパーオキシピバレート、ジ(3,5,5-トリメチルヘキサノイル)パーオキサイド、ジラウロイルパーオキサイド、1,1,3,3-テトラメチルブチルパーオキシ-2-エチルヘキサノエート、ジコハク酸パーオキサイド、2,5-ジメチル-2,5-ジ(2-エチルヘキサノイルパーオキシ)ヘキサン、t-ヘキシルパーオキシ-2-エチルヘキサノエート、ジ(4-メチルベンゾイル)パーオキサイド、t-ブチルパーオキシ-2-エチルヘキサノエート、ジ(3-メチルベンゾイル)パーオキサイド、ベンゾイル(3-メチルベンゾイル)パーオキサイド、ジベンゾイルパーオキサイド、1,1-ジ(t-ブチルパーオキシ)-2-メチルシクロヘキサン、1,1-ジ(t-ヘキシルパーオキシ)-3,3,5-トリメチルシクロヘキサン、1,1-ジ(t-ヘキシルパーオキシ)シクロヘキサン、1,1-ジ(t-ブチルパーオキシ)シクロヘキサン、2,2-ジ(4,4-ジ-(t-ブチルパーオキシ)シクロへキシル)プロパン、t-ヘキシルパーオキシイソプロピルモノカーボネート、t-ブチルパーオキシマレイン酸、t-ブチルパーオキシ-3,5,5-トリメチルヘキサノエート、t-ブチルパーオキシラウレート、t-ブチルパーオキシイソプロピルモノカーボネート、t-ブチルパーオキシ2-エチルヘキシルモノカーボネート、t-ヘキシルパーオキシベンゾエート、2,5-ジ-メチル-2,5-ジ(ベンゾイルパーオキシ)ヘキサン、t-ブチルパーオキシアセテート、2,2-ジ-(t-ブチルパーオキシ)ブタン、t-ブチルパーオキシベンゾエート、n-ブチル4,4-ジ-(t-ブチルパーオキシ)バレレート、1,4-ビス[(t-ブチルパーオキシ)イソプロピル]ベンゼン、ジ-t-ヘキシルパーオキサイド、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン、t-ブチルクミルパーオキサイド、ジ-t-ブチルパーオキサイド、p-メンタンヒドロパーオキサイド、2,5-ジメチル-2,5-ビス(t-ブチルペルオキシ)ヘキシン-3、ジイソプロピルベンゼンヒドロパーオキサイド、1,1,3,3-テトラメチルブチルヒドロパーオキサイド、クメンヒドロパーオキサイド、t-ブチルヒドロパーオキサイドなどがある。この中でも、ジクミルパーオキサイド、1,4-ビス[(t-ブチルパーオキシ)イソプロピル]ベンゼン、t-ブチルα-クミルペルオキシド、2,5-ジメチル-2,5-ビス(t-ブチルパーオキシ)ヘキサン、2,5-ジメチル-2,5-ビス(t-ブチルペルオキシ)ヘキシン-3から選ばれる少なくとも1種であることが好ましく、特に好ましくは1,4-ビス[(t-ブチルパーオキシ)イソプロピル]ベンゼンである。 Examples of organic peroxides include dicumyl peroxide, benzoyl peroxide, 1,1-bis(t-butylperoxy)-3,5,5-trimethylcyclohexane, diisobutyryl peroxide, cumyl peroxyneodecanoate, di-n-propyl peroxydicarbonate, diisopropyl peroxydicarbonate, di-sec-butyl peroxydicarbonate, 1,1,3,3-tetramethylbutyl peroxyneodecanoate, di(4-t-butylcyclohexyl) peroxydicarbonate, di(2-ethylhexyl) peroxydicarbonate, t-hexyl peroxyneodecanoate, t-butyl peroxyneodecanoate, t-butyl peroxyneoheptanoate, t- Hexyl peroxypivalate, t-butyl peroxypivalate, di(3,5,5-trimethylhexanoyl)peroxide, dilauroyl peroxide, 1,1,3,3-tetramethylbutylperoxy-2-ethylhexanoate, disuccinic acid peroxide, 2,5-dimethyl-2,5-di(2-ethylhexanoylperoxy)hexane, t-hexylperoxy-2-ethylhexanoate, di(4-methylbenzoyl)peroxide, t-butylperoxy-2-ethylhexanoate, di(3-methylbenzoyl)peroxide, benzoyl(3-methylbenzoyl)peroxide, dibenzoyl peroxide, 1,1-di(t-butylperoxy)-2-methylcyclohexane, 1, 1-di(t-hexylperoxy)-3,3,5-trimethylcyclohexane, 1,1-di(t-hexylperoxy)cyclohexane, 1,1-di(t-butylperoxy)cyclohexane, 2,2-di(4,4-di-(t-butylperoxy)cyclohexyl)propane, t-hexylperoxyisopropyl monocarbonate, t-butylperoxymaleic acid, t-butylperoxy-3,5,5-trimethylhexanoate, t-butylperoxylaurate, t-butylperoxyisopropyl monocarbonate, t-butylperoxy2-ethylhexyl monocarbonate, t-hexylperoxybenzoate, 2,5-di-methyl-2,5-di(benzoylperoxy)hexane, t-butylperoxy butylperoxyacetate, 2,2-di-(t-butylperoxy)butane, t-butylperoxybenzoate, n-butyl 4,4-di-(t-butylperoxy)valerate, 1,4-bis[(t-butylperoxy)isopropyl]benzene, di-t-hexyl peroxide, 2,5-dimethyl-2,5-di(t-butylperoxy)hexane, t-butylcumyl peroxide, di-t-butyl peroxide, p-menthane hydroperoxide, 2,5-dimethyl-2,5-bis(t-butylperoxy)hexyne-3, diisopropylbenzene hydroperoxide, 1,1,3,3-tetramethylbutyl hydroperoxide, cumene hydroperoxide, and t-butyl hydroperoxide. Among these, at least one selected from dicumyl peroxide, 1,4-bis[(t-butylperoxy)isopropyl]benzene, t-butyl-α-cumyl peroxide, 2,5-dimethyl-2,5-bis(t-butylperoxy)hexane, and 2,5-dimethyl-2,5-bis(t-butylperoxy)hexyne-3 is preferred, with 1,4-bis[(t-butylperoxy)isopropyl]benzene being particularly preferred.

 本発明に係るゴム組成物は、加工安全性が確保され、良好な加硫成形体を得ることができる観点から、ゴム組成物に含まれるゴム成分に対して、有機過酸化物を0~5質量部含むことが好ましい。有機過酸化物の含有量は、例えば、0、0.1、0.2、0.3、0.4、0.5、0.6、0.7、0.8、0.9、1、2,3,4,5質量部であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。また、本発明の一実施形態に係るゴム組成物は、有機過酸化物を配合せず、他の成分の種類の及び配合量を調整することで、硬さX及び発熱Y並びに硬さXと発熱Yの関係を調整することもできる。 The rubber composition according to the present invention preferably contains 0 to 5 parts by mass of organic peroxide relative to the rubber components contained in the rubber composition, from the viewpoint of ensuring processing safety and being able to obtain a good vulcanized molded product. The content of organic peroxide is, for example, 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 2, 3, 4, or 5 parts by mass, and may be within a range between any two of the numerical values exemplified here. In addition, the rubber composition according to one embodiment of the present invention does not contain an organic peroxide, and by adjusting the types and amounts of other components, it is also possible to adjust the hardness X, heat generation Y, and the relationship between hardness X and heat generation Y.

1.3 加硫剤
 本発明に係るゴム組成物は、加硫剤を含むことができる。加硫剤の種類は、本発明の効果を損なわなければ特に限定されない。加硫剤は、クロロプレン系ゴムの加硫に用いることができる加硫剤であることが好ましい。加硫剤は、1種又は2種以上自由に選択して用いることができる。加硫剤としては、酸化亜鉛を挙げることができる。
1.3 Vulcanizing agent The rubber composition according to the present invention may contain a vulcanizing agent. The type of vulcanizing agent is not particularly limited as long as it does not impair the effects of the present invention. The vulcanizing agent is preferably a vulcanizing agent that can be used for vulcanizing chloroprene-based rubber. One or more vulcanizing agents may be freely selected and used. An example of the vulcanizing agent is zinc oxide.

 本発明に係るゴム組成物は、加工安全性が確保され、十分に加硫された加硫成形体を得ることができる観点から、ゴム組成物に含まれるゴム成分に対して、加硫剤を1~15質量部含むことが好ましい。加硫剤の含有量は、ゴム組成物に含まれるゴム成分100質量部に対して、例えば、1、2、3、4、5、6、7、8、9、10、11、12、13、14、15質量部であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。 The rubber composition according to the present invention preferably contains 1 to 15 parts by mass of a vulcanizing agent relative to the rubber component contained in the rubber composition, from the viewpoint of ensuring processing safety and being able to obtain a sufficiently vulcanized molded product. The content of the vulcanizing agent is, for example, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, or 15 parts by mass relative to 100 parts by mass of the rubber component contained in the rubber composition, and may be within a range between any two of the numerical values exemplified here.

1.4 受酸剤
 本発明の一実施形態に係るゴム組成物は受酸剤を含むことができる。受酸剤としては、ハイドロタルサイト類化合物、マグネシウム・アルミニウム系固溶体、酸化マグネシウム、酸化鉛、四酸化三鉛、三酸化鉄、二酸化チタン、酸化カルシウムからなる群より選ばれる少なくとも一種を含むことができ、ハイドロタルサイト類化合物、マグネシウム・アルミニウム系固溶体、酸化マグネシウムからなる群より選ばれる少なくとも一種を含むことができ、酸化マグネシウムを含むことが好ましい。受酸剤は1種単独で又は2種以上を組み合わせて用いることができる。
1.4 Acid Acceptor The rubber composition according to one embodiment of the present invention may contain an acid acceptor. The acid acceptor may contain at least one selected from the group consisting of hydrotalcite compounds, magnesium-aluminum solid solutions, magnesium oxide, lead oxide, trimead tetroxide, iron trioxide, titanium dioxide, and calcium oxide, and may contain at least one selected from the group consisting of hydrotalcite compounds, magnesium-aluminum solid solutions, and magnesium oxide, and preferably contains magnesium oxide. The acid acceptors may be used alone or in combination of two or more.

 ハイドロタルサイトとしては、下記式で表されるものを用いることができる。
[M2+ 1-x3+ (OH)x+[An-x/n・mHO]x-
As the hydrotalcite, one represented by the following formula can be used.
[M 2+ 1-x M 3+ x (OH) 2 ] x+ [A n-x/n・mH 2 O] x-

 上記式において、
 M2+:Mg2+、Zn2+などから選ばれる少なくとも一つの2価金属イオン
 M3+:Al3+、Fe3+などから選ばれる少なくとも一つの3価金属イオン
 An-:CO 2-、Cl、NO 2-などから選ばれる少なくとも一つのn型アニオン
 X:0<X≦0.33とすることができる。
In the above formula,
M 2+ : at least one divalent metal ion selected from Mg 2+ , Zn 2+ , etc. M 3+ : at least one trivalent metal ion selected from Al 3+ , Fe 3+ , etc. A n- : at least one n-type anion selected from CO 3 2- , Cl - , NO 3 2- , etc. X: 0<X≦0.33.

 ハイドロタルサイトとしては、Mg4.3Al(OH)12.6CO・3.5HO、MgZnAl(OH)12CO・3HO、Mg4.5Al(OH)13CO・3.5HO、Mg4.5Al(OH)13CO、MgAl(OH)12CO・3.5HO、MgAl(OH)16CO・4HO、MgAl(OH)14CO・4HO、MgAl(OH)10CO・1.7HOなどがあげられ、特に好ましくは、Mg4.3Al(OH)12.6CO・3.5HO、MgZnAl(OH)12CO・3HOである。 Examples of hydrotalcite include Mg4.3Al2 ( OH ) 12.6CO3.3.5H2O , Mg3ZnAl2 (OH) 12CO3.3H2O , Mg4.5Al2 ( OH ) 13CO3.3.5H2O , Mg4.5Al2 ( OH ) 13CO3 , Mg4Al2 ( OH ) 12CO3.3.5H2O , Mg6Al2 ( OH ) 16CO3.4H2O , Mg5Al2 ( OH ) 14CO3.4H2O , and Mg3Al2 ( OH ) 10CO3.1.7H2O . Particularly preferred is Mg4.3 Al2 ( OH ) 12.6CO3.3.5H2O , Mg3ZnAl2 ( OH ) 12CO3.3H2O .

 受酸剤の添加量は、ゴム組成物に含まれるゴム成分100質量部に対して、0.1~15質量部とすることができる。受酸剤の添加量は、例えば、0.1、0.2、0.3、0.5、1、2、3、4、5、6、7、8、9、10、11、12、13、14、15質量部であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。 The amount of the acid acceptor added can be 0.1 to 15 parts by mass per 100 parts by mass of the rubber component contained in the rubber composition. The amount of the acid acceptor added can be, for example, 0.1, 0.2, 0.3, 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, or 15 parts by mass, and may be within a range between any two of the numerical values exemplified here.

1.5 マレイミド化合物
 本発明の一実施形態に係るゴム組成物は、マレイミド化合物を含有することができる。マレイミド化合物は1種単独で又は2種以上を組み合わせて用いることができる。
1.5 Maleimide Compound The rubber composition according to one embodiment of the present invention may contain a maleimide compound. The maleimide compounds may be used alone or in combination of two or more.

 マレイミド化合物は、共架橋剤として、ゴム組成物の加硫に寄与することができる。マレイミド化合物としては、例えば、N,N'-o-フェニレンビスマレイミド、N,N'-m-フェニレンビスマレイミド、N,N'-p-フェニレンビスマレイミド、N,N'-(4,4'-ジフェニルメタン)ビスマレイミド、2,2-ビス-[4-(4-マレイミドフェノキシ)フェニル]プロパン、ビス(3-エチル-5-メチル-4-マレイミドフェニル)メタン、ビスフェノール A ジフェニルエーテルビスマレイミド、3,3'-ジメチル-5,5'-ジエチル-4,4'-ジフェニルメタンビスマレイミド、4-メチル-1,3-フェニレンビスマレイミド、1,6'-ビスマレイミド-(2,2,4-トリメチル)ヘキサンを挙げることができる。得られる加硫物及び加硫成形体の耐熱性が向上するという観点から、特に好ましくはN,N'-m-フェニレンビスマレイミド(別名m-フェニレンジマレイミド)を用いるとよい。 Maleimide compounds can contribute to the vulcanization of rubber compositions as co-crosslinking agents. Examples of maleimide compounds include N,N'-o-phenylene bismaleimide, N,N'-m-phenylene bismaleimide, N,N'-p-phenylene bismaleimide, N,N'-(4,4'-diphenylmethane)bismaleimide, 2,2-bis-[4-(4-maleimidophenoxy)phenyl]propane, bis(3-ethyl-5-methyl-4-maleimidophenyl)methane, bisphenol A diphenyl ether bismaleimide, 3,3'-dimethyl-5,5'-diethyl-4,4'-diphenylmethane bismaleimide, 4-methyl-1,3-phenylene bismaleimide, and 1,6'-bismaleimide-(2,2,4-trimethyl)hexane. From the viewpoint of improving the heat resistance of the resulting vulcanized product and vulcanized molded body, it is particularly preferable to use N,N'-m-phenylene bismaleimide (also known as m-phenylene dimaleimide).

 本発明の一実施形態に係るゴム組成物は、ゴム成分100質量部に対してマレイミド化合物を0~10質量部含有することができる。マレイミド化合物の含有量は、例えば、0、0.1、0.2、0.3、0.5、1、2、3、4、5、6、7、8、9、10質量部であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。マレイミド化合物の含有量を上記下限以上とすることで、得られるゴム組成物の加硫がより十分に進行し、機械的特性や耐熱性が良好な加硫成形体を得ることができる。また、マレイミド化合物の含有量を上記上限以下とすることで、得られる加硫成形体のゴム弾性を十分に維持することができる。また、本発明の一実施形態に係るゴム組成物は、マレイミド化合物を配合せず、他の成分の種類の及び配合量を調整することで、硬さX及び発熱Y並びに硬さXと発熱Yの関係を調整することもできる。 The rubber composition according to one embodiment of the present invention may contain 0 to 10 parts by mass of a maleimide compound per 100 parts by mass of the rubber component. The content of the maleimide compound may be, for example, 0, 0.1, 0.2, 0.3, 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 parts by mass, and may be within a range between any two of the numerical values exemplified here. By setting the content of the maleimide compound to the above lower limit or more, the vulcanization of the obtained rubber composition proceeds more sufficiently, and a vulcanized molded product having good mechanical properties and heat resistance can be obtained. In addition, by setting the content of the maleimide compound to the above upper limit or less, the rubber elasticity of the obtained vulcanized molded product can be sufficiently maintained. In addition, the rubber composition according to one embodiment of the present invention may not contain a maleimide compound, and instead, by adjusting the types and amounts of other components, the hardness X, heat generation Y, and the relationship between hardness X and heat generation Y can be adjusted.

1.6 充填材
 本発明の一実施形態に係るゴム組成物は充填材を含むことができ、カーボンブラックを含むことができる。カーボンブラックとしては、SAF、ISAF、HAF、EPC、XCF、FEF、GPF、HMF、SRFなどのファーネスカーボンブラック、親水性カーボンブラックなどの改質カーボンブラック、チャンネルブラック、油煙ブラック、FT、MTなどのサーマルカーボン、アセチレンブラック、ケッチェンブラックをあげることができる。
1.6 Filler The rubber composition according to an embodiment of the present invention may contain a filler, and may contain carbon black. Examples of carbon black include furnace carbon black such as SAF, ISAF, HAF, EPC, XCF, FEF, GPF, HMF, and SRF, modified carbon black such as hydrophilic carbon black, channel black, lamp black, thermal carbon such as FT and MT, acetylene black, and ketjen black.

 本発明に係るゴム組成物は、ゴム成分100質量部に対し、カーボンブラックを0質量部以上、100質量部未満含むことができる。カーボンブラックの含有量は、例えば、0、1、2、3、4、5、10、15、20、25、30、35、40、45、50、55、60、65、70、75、80、85、90、95、99質量部であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。 The rubber composition according to the present invention may contain 0 parts by mass or more and less than 100 parts by mass of carbon black per 100 parts by mass of the rubber component. The carbon black content may be, for example, 0, 1, 2, 3, 4, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, or 99 parts by mass, or may be within a range between any two of the numerical values exemplified here.

 また、本発明に係るゴム組成物は、本発明の効果を阻害しない範囲で、カーボンブラック以外の充填材を含むこともできる。カーボンブラック以外の充填材としては湿式シリカフィラー(含水ケイ酸)、乾式シリカフィラー(無水ケイ酸)、コロイダルシリカフィラー等のシリカ、クレー、タルク、炭酸カルシウムを挙げることができる。これらは、1種単独で又は2種以上を組み合わせて用いることができる。 The rubber composition according to the present invention may also contain fillers other than carbon black, provided that the effects of the present invention are not impaired. Examples of fillers other than carbon black include silica, such as wet silica filler (hydrated silica), dry silica filler (anhydrous silicic acid), and colloidal silica filler, clay, talc, and calcium carbonate. These may be used alone or in combination of two or more.

 本発明の一実施形態に係るゴム組成物は、ゴム成分を100質量部としたとき、ゴム組成物に含まれるカーボンブラック及びカーボンブラック以外の充填材(補強材)の合計が0~100質量部であることが好ましい。本発明の一実施形態に係るゴム組成物は、ゴム組成物に含まれるカーボンブラック及びカーボンブラック以外の充填材(補強材)の合計を100質量%としたとき、カーボンブラック以外の充填材・補強材の含有率を50質量%以下とすることができる。カーボンブラック以外の充填材・補強材の含有率は、例えば、0、5、10、15、20、25、30、35、40、45、50質量%であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。本発明の一実施形態に係るゴム組成物は、カーボンブラック以外の充填材(補強材)を含まないこともできる。また、本発明の一実施形態に係るゴム組成物は、カーボンブラック及びカーボンブラック以外の充填材を配合せず、他の成分の種類の及び配合量を調整することで、硬さX及び発熱Y並びに硬さXと発熱Yの関係を調整することもできる。 In the rubber composition according to one embodiment of the present invention, when the rubber component is taken as 100 parts by mass, the total amount of carbon black and fillers (reinforcing materials) other than carbon black contained in the rubber composition is preferably 0 to 100 parts by mass. In the rubber composition according to one embodiment of the present invention, when the total amount of carbon black and fillers (reinforcing materials) other than carbon black contained in the rubber composition is taken as 100 mass%, the content of fillers/reinforcing materials other than carbon black can be 50 mass% or less. The content of fillers/reinforcing materials other than carbon black can be, for example, 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, or 50 mass%, and may be within a range between any two of the numerical values exemplified here. The rubber composition according to one embodiment of the present invention can also not contain fillers (reinforcing materials) other than carbon black. In addition, the rubber composition according to one embodiment of the present invention can adjust the hardness X and heat generation Y, and the relationship between hardness X and heat generation Y, by not blending carbon black and fillers other than carbon black, and adjusting the types and blending amounts of other components.

1.7 シランカップリング剤
 本発明の一実施形態に係るゴム組成物は、充填材としてシリカを含む場合、シランカップリング剤を含むことができる。シランカップリング剤としては、特に制限はなく、市販のゴム組成物に使用されているものが使用でき、例えば、ビニル系カップリング剤、エポキシ系カップリング剤、スチリル系カップリング剤、メタクリル系カップリング剤、アクリル系カップリング剤、アミノ系カップリング剤、ポリスルフィド系カップリング剤、メルカプト系カップリング剤がある。特に、耐スコーチ性や補強効果の観点から架橋時の高温条件下で反応が開始されるビニル系カップリング剤、メタクリル系カップリング剤、アクリル系カップリング剤が好ましい。
1.7 Silane coupling agent When the rubber composition according to one embodiment of the present invention contains silica as a filler, it may contain a silane coupling agent. There is no particular limitation on the silane coupling agent, and those used in commercially available rubber compositions can be used, such as vinyl coupling agents, epoxy coupling agents, styryl coupling agents, methacrylic coupling agents, acrylic coupling agents, amino coupling agents, polysulfide coupling agents, and mercapto coupling agents. In particular, from the viewpoint of scorch resistance and reinforcing effect, vinyl coupling agents, methacrylic coupling agents, and acrylic coupling agents that start reacting under high temperature conditions during crosslinking are preferred.

 本発明の一実施形態に係るゴム組成物は、ゴム組成物に含まれシリカ100質量部に対して、シランカップリング剤を0.5~10質量部含むことができる。シランカップリング剤の含有量は、シリカ100質量部に対して、例えば、0.5、1、2、3、4、5、6、7、8、9、10質量部であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。シリカは、1種単独で又は2種以上を組み合わせて用いることができる。上記のシランカップリング剤を含み、また、シランカップリング剤の含有率を上記数値範囲内とすることにより、ゴム中へのシリカフィラーの分散性やゴムとシリカフィラー間の補強効果を向上させ、かつ、スコーチの発生を抑制することができる。 The rubber composition according to one embodiment of the present invention may contain 0.5 to 10 parts by mass of a silane coupling agent per 100 parts by mass of silica contained in the rubber composition. The content of the silane coupling agent may be, for example, 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 parts by mass per 100 parts by mass of silica, and may be within a range between any two of the numerical values exemplified here. Silica may be used alone or in combination of two or more types. By containing the above-mentioned silane coupling agent and setting the content of the silane coupling agent within the above numerical range, it is possible to improve the dispersibility of the silica filler in the rubber and the reinforcing effect between the rubber and the silica filler, and to suppress the occurrence of scorch.

1.8 滑剤、加工助剤
 本発明に係るゴム組成物は、さらに滑剤及び/又は加工助剤を含むこともできる。滑剤及び加工助剤は、主に、ゴム組成物がロールや成形金型、押出機のスクリューなどから剥離しやすくするなど、加工性を向上させるために添加する。滑剤及び加工助剤としては、ステアリン酸等の脂肪酸、ポリエチレン等のパラフィン系加工助剤、脂肪酸アミド、ワセリン、ファクチス等が挙げられる。これらは、1種単独で又は2種以上を組み合わせて用いることができる。本発明に係るゴム組成物は、ゴム成分100質量部に対して、滑剤及び加工助剤を0.1~15質量部含むことができ、1~10質量部とすることもできる。滑剤及び加工助剤の含有量は、例えば、0.1、0.2、0.5、1、2、3、4、5、6、7、8、9、10、11、12、13、14、15質量部であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。
1.8 Lubricant, Processing Aid The rubber composition according to the present invention may further contain a lubricant and/or a processing aid. The lubricant and processing aid are mainly added to improve processability, such as making the rubber composition easier to peel off from rolls, molding dies, extruder screws, etc. Examples of the lubricant and processing aid include fatty acids such as stearic acid, paraffin processing aids such as polyethylene, fatty acid amides, vaseline, factice, etc. These may be used alone or in combination of two or more. The rubber composition according to the present invention may contain 0.1 to 15 parts by mass of the lubricant and processing aid per 100 parts by mass of the rubber component, and may also be 1 to 10 parts by mass. The content of the lubricant and processing aid is, for example, 0.1, 0.2, 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, or 15 parts by mass, and may be within a range between any two of the numerical values exemplified here.

1.9 加硫促進剤
 本発明に係るゴム組成物は、加硫促進剤を含むことができ、組成物に含まれるゴム組成物を100質量部としたとき、加硫促進剤を0~5.0質量部含むことができる。加硫促進剤の含有量は、例えば、0、0.1、0.2.0.3、0.5、1.0、1.5、2.0、2.5、3.0、3.5、4.0、4.5、5.0質量部であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。また、本発明に係るゴム組成物は、加硫促進剤を含まないこともできる。本発明の一実施形態に係るゴム組成物は、加硫促進剤を配合せず、他の成分の種類の及び配合量を調整することで、硬さX及び発熱Y並びに硬さXと発熱Yの関係を調整することもできる。
1.9 Vulcanization Accelerator The rubber composition according to the present invention may contain a vulcanization accelerator, and may contain 0 to 5.0 parts by mass of the vulcanization accelerator when the rubber composition contained in the composition is 100 parts by mass. The content of the vulcanization accelerator is, for example, 0, 0.1, 0.2, 0.3, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0 parts by mass, and may be within a range between any two of the numerical values exemplified here. In addition, the rubber composition according to the present invention may not contain a vulcanization accelerator. The rubber composition according to one embodiment of the present invention does not contain a vulcanization accelerator, and by adjusting the type and amount of other components, it is also possible to adjust the hardness X and heat generation Y, and the relationship between the hardness X and heat generation Y.

 加硫促進剤の種類は、本発明の効果を損なわなければ特に限定されない。加硫促進剤は、クロロプレン系ゴムの加硫に用いることができる加硫促進剤であることが好ましい。加硫促進剤は、1種又は2種以上自由に選択して用いることができる。
 加硫促進剤としては、硫黄、チウラム系加硫促進剤、ジチオカルバミン酸塩系加硫促進剤、チオウレア系加硫促進剤、グアニジン系加硫促進剤、キサントゲン酸塩系加硫促進剤、チアゾール系加硫促進剤等が挙げられる。
The type of vulcanization accelerator is not particularly limited as long as it does not impair the effects of the present invention. The vulcanization accelerator is preferably a vulcanization accelerator that can be used for vulcanization of chloroprene rubber. The vulcanization accelerator can be freely selected and used alone or in combination of two or more kinds.
Examples of the vulcanization accelerator include sulfur, thiuram-based vulcanization accelerators, dithiocarbamate-based vulcanization accelerators, thiourea-based vulcanization accelerators, guanidine-based vulcanization accelerators, xanthogenate-based vulcanization accelerators, and thiazole-based vulcanization accelerators.

 チウラム系加硫促進剤としては、テトラメチルチウラムジスルフィド(TMTD)、テトラエチルチウラムジスルフィド、テトラブチルチウラムジスルフィド、テトラキス(2-エチルヘキシル)チウラムジスルフィド、テトラメチルチウラムモノスルフィド、ジペンタメチレンチウラムテトラスルフィド等が挙げられる。
 ジチオカルバミン酸塩系の加硫促進剤としては、ジブチルジチオカルバミン酸ナトリウム、ジメチルジチオカルバミン酸亜鉛、ジエチルジチオカルバミン酸亜鉛、N-エチル-N-フェニルジチオカルバミン酸亜鉛、N-ペンタメチレンジチオカルバミン酸亜鉛、ジメチルジチオカルバミン酸銅、ジメチルジチオカルバミン酸第二鉄、ジエチルジチオカルバミン酸テルル等が挙げられる。
 チオウレア系加硫促進剤としては、エチレンチオウレア、ジエチルチオウレア(N,N'-ジエチルチオウレア)、トリメチルチオウレア、ジフェニルチオウレア(N,N'-ジフェニルチオウレア)、1、3-トリメチレン-2-チオウレア等のチオウレア化合物が挙げられる。
 グアニジン系加硫促進剤としては、1,3-ジフェニルグアニジン、1,3-ジ-o-トリルグアニジン、1-o-トリルビグアニド、ジカテコールボレートのジ-o-トリルグアニジン塩等が挙げられる。
 キサントゲン酸塩系加硫促進剤としては、ブチルキサントゲン酸亜鉛、イソプロピルキサントゲン酸亜鉛等が挙げられる。
 チアゾール系加硫促進剤としては、2-メルカプトベンゾチアゾール、ジ-2-ベンゾチアゾリルジスルフィド、2-メルカプトベンゾチアゾール亜鉛塩、2-メルカプトベンゾチアゾールのシクロヘキシルアミン塩、2-(4'-モルホリノジチオ)ベンゾチアゾール、N-シクロヘキシルベンゾチアゾール-2-スルフェンアミド等が挙げられる。
これらは、1種単独で又は2種以上を組み合わせて用いることができる。
Examples of the thiuram vulcanization accelerator include tetramethylthiuram disulfide (TMTD), tetraethylthiuram disulfide, tetrabutylthiuram disulfide, tetrakis(2-ethylhexyl)thiuram disulfide, tetramethylthiuram monosulfide, and dipentamethylenethiuram tetrasulfide.
Examples of the dithiocarbamate-based vulcanization accelerator include sodium dibutyldithiocarbamate, zinc dimethyldithiocarbamate, zinc diethyldithiocarbamate, zinc N-ethyl-N-phenyldithiocarbamate, zinc N-pentamethylenedithiocarbamate, copper dimethyldithiocarbamate, ferric dimethyldithiocarbamate, and tellurium diethyldithiocarbamate.
Examples of the thiourea-based vulcanization accelerator include thiourea compounds such as ethylene thiourea, diethyl thiourea (N,N'-diethyl thiourea), trimethyl thiourea, diphenyl thiourea (N,N'-diphenyl thiourea), and 1,3-trimethylene-2-thiourea.
Examples of the guanidine vulcanization accelerator include 1,3-diphenylguanidine, 1,3-di-o-tolylguanidine, 1-o-tolylbiguanide, and di-o-tolylguanidine salts of dicatechol borate.
Examples of the xanthogenate-based vulcanization accelerator include zinc butylxanthogenate and zinc isopropylxanthogenate.
Examples of the thiazole-based vulcanization accelerator include 2-mercaptobenzothiazole, di-2-benzothiazolyl disulfide, 2-mercaptobenzothiazole zinc salt, 2-mercaptobenzothiazole cyclohexylamine salt, 2-(4'-morpholinodithio)benzothiazole, and N-cyclohexylbenzothiazole-2-sulfenamide.
These may be used alone or in combination of two or more.

1.10 その他
 本発明に係るゴム組成物は、上記した成分に加え、老化防止剤、酸化防止剤、難燃剤、加硫遅延剤等の成分を、本発明の効果を阻害しない範囲でさらに含むことができる。老化防止剤及び酸化防止剤としては、オゾン老化防止剤、フェノール系老化防止剤、アミン系老化防止剤、アクリレート系老化防止剤、イミダゾール系老化防止剤、カルバミン酸金属塩、ワックス、リン系老化防止剤、硫黄系老化防止剤などを挙げることができる。イミダゾール系老化防止剤としては、2-メルカプトベンゾイミダゾール、2-メルカプトメチルベンゾイミダゾール及び2-メルカプトベンゾイミダゾールの亜鉛塩を挙げることができる。本発明に係るゴム組成物は、ゴム組成物に含まれるゴム成分100質量部に対して、老化防止剤及び酸化防止剤を合計で0.1~10質量部含むことができる。
1.10 Others In addition to the above-mentioned components, the rubber composition according to the present invention may further contain components such as an antiaging agent, an antioxidant, a flame retardant, and a vulcanization retarder, as long as the effects of the present invention are not impaired. Examples of the antiaging agent and the antioxidant include ozone antiaging agents, phenolic antiaging agents, amine antiaging agents, acrylate antiaging agents, imidazole antiaging agents, carbamic acid metal salts, waxes, phosphorus antiaging agents, and sulfur antiaging agents. Examples of the imidazole antiaging agents include 2-mercaptobenzimidazole, 2-mercaptomethylbenzimidazole, and zinc salts of 2-mercaptobenzimidazole. The rubber composition according to the present invention may contain 0.1 to 10 parts by mass of the antiaging agent and the antioxidant in total, relative to 100 parts by mass of the rubber component contained in the rubber composition.

 本発明の一実施形態に係るゴム組成物は、ゴム組成物中の成分の種類及び含有量を上記態様とすることにより、ゴム組成物の試験用加硫成形体1の硬さXと、ゴム組成物の試験用加硫成形体2の発熱Yが式(1)の関係を満たしやすい。 The rubber composition according to one embodiment of the present invention is such that, by setting the types and contents of the components in the rubber composition to the above-mentioned aspects, the hardness X of the test vulcanized molded product 1 of the rubber composition and the heat generation Y of the test vulcanized molded product 2 of the rubber composition tend to satisfy the relationship of formula (1).

2 ゴム組成物の製造方法
 本発明の一実施形態に係るゴム組成物は、ゴム成分及び必要とされるその他の成分を加硫温度以下の温度で混練することで得られる。本発明の一実施形態に係るゴム組成物の製造方法はゴム成分及び必要とされるその他の成分を加硫温度以下の温度で混合する混合工程を含むことができる。
2. Method for Producing Rubber Composition The rubber composition according to one embodiment of the present invention can be obtained by kneading the rubber component and other necessary components at a temperature equal to or lower than the vulcanization temperature. The method for producing the rubber composition according to one embodiment of the present invention can include a mixing step of mixing the rubber component and other necessary components at a temperature equal to or lower than the vulcanization temperature.

 本発明の一実施形態に係る製造方法は、第1混合工程、静置工程及び第2混合工程を含むことができる。
 第1混合工程では、ゴム成分及び第1混合工程用配合成分を含む原料を混合しゴム組成物前駆体を得、静置工程では、ゴム組成物前駆体を23℃以下で12時間以上静置し、第2混合工程では、静置後のゴム組成物前駆体に第2混合工程用配合成分を添加して混合しゴム組成物を得ることができる。
The production method according to one embodiment of the present invention may include a first mixing step, a standing step, and a second mixing step.
In the first mixing step, raw materials including a rubber component and compounding ingredients for the first mixing step are mixed to obtain a rubber composition precursor, and in the standing step, the rubber composition precursor is stood at 23°C or less for 12 hours or more, and in the second mixing step, the compounding ingredients for the second mixing step are added to the rubber composition precursor after standing and mixed to obtain a rubber composition.

 第1混合工程では、ゴム成分及び第1混合工程用配合成分を含む原料を混合しゴム組成物前駆体を得る。第1混合工程用配合成分は、加硫剤、加硫促進剤、有機過酸化物、マレイミド化合物を含まないものとできる。第1混合工程用配合成分は、加硫及び架橋に寄与する成分を含まないことが好ましい。第1混合工程用配合成分は、カーボンブラック、受酸剤、滑剤、加工助剤、可塑剤、老化防止剤のうち少なくとも1種、2種、3種、4種、5種、又は6種を含むことができ、これらすべてを含んでも良い。 In the first mixing step, raw materials including a rubber component and compounding components for the first mixing step are mixed to obtain a rubber composition precursor. The compounding components for the first mixing step may not include a vulcanizing agent, a vulcanization accelerator, an organic peroxide, or a maleimide compound. It is preferable that the compounding components for the first mixing step do not include components that contribute to vulcanization and crosslinking. The compounding components for the first mixing step may include at least one, two, three, four, five, or six of carbon black, acid acceptors, lubricants, processing aids, plasticizers, and antioxidants, or may include all of these.

 静置工程では、ゴム組成物前駆体を、23℃以下で12時間以上静置する。静置温度は、例えば、5~23℃とすることができ、5、8、11、14、17、20、23℃であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。また、静置時間は、例えば、12~24時間とすることができ例えば、12、14、16、18、20、22、24時間であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。
 本発明の一実施形態では、静置工程を経ることにより、硬さXと発熱Yを調整することができる。
In the standing step, the rubber composition precursor is allowed to stand for 12 hours or more at 23° C. or lower. The standing temperature can be, for example, 5 to 23° C., and may be 5, 8, 11, 14, 17, 20, or 23° C., or may be within a range between any two of the numerical values exemplified here. The standing time can be, for example, 12 to 24 hours, and may be, for example, 12, 14, 16, 18, 20, 22, or 24 hours, or may be within a range between any two of the numerical values exemplified here.
In one embodiment of the present invention, the hardness X and heat generation Y can be adjusted by undergoing a standing process.

 第2混合工程では、静置後のゴム組成物前駆体に第2混合工程用配合成分を添加して混合しゴム組成物を得る。第2混合工程用配合成分は、加硫剤、加硫促進剤、有機過酸化物、及びマレイミド化合物を含むことができる。また、第2混合工程用配合成分は、カーボンブラック、滑剤、加工助剤、可塑剤、受酸剤、老化防止剤等を含んでいても良い。 In the second mixing step, the compounding components for the second mixing step are added to the rubber composition precursor after standing and mixed to obtain a rubber composition. The compounding components for the second mixing step may include a vulcanizing agent, a vulcanization accelerator, an organic peroxide, and a maleimide compound. The compounding components for the second mixing step may also include carbon black, a lubricant, a processing aid, a plasticizer, an acid acceptor, an anti-aging agent, etc.

 各混合工程において、原料成分を混練する装置としては、従来公知のミキサー、バンバリーミキサー、ニーダーミキサー、オープンロールなどの混練装置を挙げることができる。 In each mixing step, the raw material components are kneaded using conventional kneading devices such as mixers, Banbury mixers, kneader mixers, and open rolls.

3 ゴム組成物の特性
 本発明の一実施形態に係るゴム組成物は、ゴム組成物の試験用加硫成形体1を、厚み6.0mm 以上になるまで重ねた積層体の、JIS K 6253-3:2023に基づきタイプAデュロメータで測定した硬さをXとし、前記ゴム組成物の試験用加硫成形体2を、JIS K 6265:2018に基づき、40℃、歪み0.175インチ、荷重55ポンド、振動数毎分1,800回の条件で、定ひずみフレクソメーター試験で評価することにより求めた発熱をYとしたとき、
硬さXと発熱Yが、以下の式(1)を満たす。
 1.4X-Y>45.0  (1)
3. Characteristics of Rubber Composition In one embodiment of the rubber composition, when a laminate obtained by stacking test vulcanized molded products 1 of the rubber composition to a thickness of 6.0 mm or more is measured with a type A durometer based on JIS K 6253-3:2023 as X, and a test vulcanized molded product 2 of the rubber composition is evaluated in a constant strain flexometer test based on JIS K 6265:2018 under conditions of 40°C, strain of 0.175 inches, load of 55 pounds, and vibration frequency of 1,800 times per minute as Y,
The hardness X and the heat generation Y satisfy the following formula (1).
1.4X-Y>45.0 (1)

 ここで、試験用加硫成形体1は、ゴム組成物をJIS K 6299:2012に基づき、170℃、20分の条件でプレス加硫して得た、厚さ2mmのシート状の加硫成形体である。
 また、試験用加硫成形体2は、ゴム組成物を170℃、20分の条件でプレス加硫して得た、直径15mm、高さ25mmの円柱状の加硫成形体である。
Here, the test vulcanized molded article 1 is a sheet-like vulcanized molded article having a thickness of 2 mm obtained by press-vulcanizing a rubber composition based on JIS K 6299:2012 under conditions of 170°C and 20 minutes.
The test vulcanized molded article 2 was a cylindrical vulcanized molded article having a diameter of 15 mm and a height of 25 mm, which was obtained by press-vulcanizing the rubber composition at 170° C. for 20 minutes.

 本発明に係るゴム組成物は、ゴム組成物の加硫成形体の硬さXと、発熱Yが式(1)の関係を満たすよう、硬さX及び発熱Yを調整することで、耐水性及び耐アルカリ性に優れる加硫成形体を得ることができるゴム組成物となる。
 硬さXは、後述の製造条件を調整することによって制御することができ、例えば、充填材及び可塑剤の量により、調整可能である。また、発熱Yは、後述の製造条件を調整することによって制御することができ、例えば、充填材の種類及び量と、得られる加硫成形体の架橋密度、可塑剤の種類及び量に関連し、充填材の量を増加させると、発熱Yが増大し、架橋密度が密になると、発熱Yが小さくなり、可塑剤の量を増加されると、発熱Yが増大すると考えられる。ここで、硬さX及び発熱Yの関係を、式(1)を満たすように調整すると、硬度Xにおける充填材量、可塑剤量、架橋密度等が調整され、これにより、耐水性及び耐アルカリ性に優れる加硫成形体を得ることが可能なゴム組成物を得ることができると推測される。
 (1.4X-Y)の値は、45.0より大きく、100.0以下とできる。例えば、45.5、50.0、55.0、60.0、65.0、70.0、75.0、80.0、85.0、90.0、95.0、100.0であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。
The rubber composition according to the present invention is a rubber composition capable of obtaining a vulcanized molded article having excellent water resistance and alkali resistance by adjusting the hardness X and heat generation Y of the vulcanized molded article of the rubber composition so that the hardness X and heat generation Y satisfy the relationship of formula (1).
The hardness X can be controlled by adjusting the manufacturing conditions described later, for example, by the amount of the filler and the plasticizer. The heat generation Y can be controlled by adjusting the manufacturing conditions described later, for example, by the type and amount of the filler, the crosslink density of the obtained vulcanized molded body, and the type and amount of the plasticizer. It is considered that when the amount of the filler is increased, the heat generation Y increases, when the crosslink density becomes dense, the heat generation Y decreases, and when the amount of the plasticizer is increased, the heat generation Y increases. Here, it is presumed that when the relationship between the hardness X and the heat generation Y is adjusted to satisfy the formula (1), the amount of the filler, the amount of the plasticizer, the crosslink density, etc. at the hardness X are adjusted, and thus it is possible to obtain a rubber composition capable of obtaining a vulcanized molded body having excellent water resistance and alkali resistance.
The value of (1.4X-Y) can be greater than 45.0 and less than or equal to 100.0, for example, 45.5, 50.0, 55.0, 60.0, 65.0, 70.0, 75.0, 80.0, 85.0, 90.0, 95.0, 100.0, or within a range between any two of the numerical values exemplified here.

 本発明の一実施形態に係るゴム組成物は、ゴム組成物の試験用加硫成形体1を、厚み6.0mm 以上になるまで重ねた積層体の、JIS K 6253-3:2023に基づきタイプAデュロメータで測定した硬さXが、40~98であることが好ましい。硬さXは、例えば、40、45、50、55、60、65、70、75、80、85、90、95、98であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。 In the rubber composition according to one embodiment of the present invention, it is preferable that the hardness X of a laminate obtained by stacking test vulcanized molded bodies 1 of the rubber composition to a thickness of 6.0 mm or more, as measured with a type A durometer according to JIS K 6253-3:2023, is 40 to 98. The hardness X may be, for example, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, or 98, or may be within a range between any two of the numerical values exemplified here.

 硬さXは、ゴム組成物の製造方法、例えば、ゴム組成物中に配合する各成分の有無、種類及び配合量、特には、充填材や可塑剤の種類及び配合量、並びにゴム組成物の製造条件(特には、静置工程の有無、温度、時間)を調整することによって、制御することができる。 Hardness X can be controlled by adjusting the manufacturing method of the rubber composition, for example, the presence or absence, type and amount of each component blended into the rubber composition, particularly the type and amount of filler and plasticizer, as well as the manufacturing conditions of the rubber composition (particularly the presence or absence, temperature and time of a standing process).

 本発明の一実施形態に係るゴム組成物は、ゴム組成物の試験用加硫成形体2を、JIS K 6265:2018に基づき、40℃、歪み0.175インチ、荷重55ポンド、振動数毎分1,800回の条件で、定ひずみフレクソメーター試験で評価することにより求めた発熱Yが、85℃以下であることが好ましい。発熱Yは、例えば、1、2、3、5、10、15、20、25、30、35、40、45、50、55、60、65、70、75、80、85℃であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。 In the rubber composition according to one embodiment of the present invention, the heat generation Y determined by evaluating a test vulcanized molded product 2 of the rubber composition in a constant strain flexometer test based on JIS K 6265:2018 under conditions of 40°C, strain of 0.175 inches, load of 55 pounds, and vibration frequency of 1,800 times per minute is preferably 85°C or less. Heat generation Y may be, for example, 1, 2, 3, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, or 85°C, or may be within a range between any two of the values exemplified here.

 発熱Yは、ゴム組成物の製造方法、特には、ゴム組成物中に配合する各成分の有無、種類及び配合量、例えば、充填材や加硫及び架橋に寄与する成分の有無、種類及び配合量、並びに、ゴム組成物の製造条件(特には、静置工程の有無、温度、時間)を調整することによって、制御することができる。 The heat generation Y can be controlled by adjusting the manufacturing method of the rubber composition, in particular the presence or absence, type and amount of each component blended into the rubber composition, such as the presence or absence, type and amount of fillers and components that contribute to vulcanization and crosslinking, as well as the manufacturing conditions of the rubber composition (in particular the presence or absence, temperature and time of a standing process).

 硬さX及び発熱Yは、具体的には実施例に記載の方法で、評価することができる。 Hardness X and heat generation Y can be specifically evaluated by the method described in the Examples.

 本発明の一実施形態に係るゴム組成物は、ゴム組成物の試験用加硫成形体1及び/又は試験用加硫成形体2を、70℃の水に144時間浸漬した際の、JIS K 6258に基づき算出される体積変化率ΔVが、9%未満であることが好ましく、6%未満であることがより好ましい。70℃の水に144時間浸漬した際の体積変化率ΔVは、例えば、0、1、2、3、4、5、6、7、8%又は9%未満であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。 In the rubber composition according to one embodiment of the present invention, when a test vulcanized molding 1 and/or a test vulcanized molding 2 of the rubber composition is immersed in water at 70°C for 144 hours, the volume change rate ΔV calculated based on JIS K 6258 is preferably less than 9%, and more preferably less than 6%. The volume change rate ΔV when immersed in water at 70°C for 144 hours is, for example, 0, 1, 2, 3, 4, 5, 6, 7, 8% or less than 9%, and may be within a range between any two of the numerical values exemplified here.

 本発明の一実施形態に係るゴム組成物は、ゴム組成物の試験用加硫成形体1及び/又は試験用加硫成形体2を、70℃の10%水酸化ナトリウムに144時間浸漬した際の、JIS K 6258に基づき算出される体積変化率ΔVが、10%未満であることが好ましく、7%未満であることがより好ましい。70℃の水に144時間浸漬した際の体積変化率ΔVは、例えば、0、1、2、3、4、5、6、7、8、9%又は10%未満であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。 In the rubber composition according to one embodiment of the present invention, when a test vulcanized molding 1 and/or a test vulcanized molding 2 of the rubber composition is immersed in 10% sodium hydroxide at 70°C for 144 hours, the volume change rate ΔV calculated based on JIS K 6258 is preferably less than 10%, and more preferably less than 7%. When immersed in water at 70°C for 144 hours, the volume change rate ΔV is, for example, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9%, or less than 10%, and may be within a range between any two of the numerical values exemplified here.

 ゴム組成物の加硫成形体の耐水性及び耐アルカリ性は、具体的には実施例に記載の方法で測定できる。 The water resistance and alkali resistance of the vulcanized molded product of the rubber composition can be measured specifically by the method described in the Examples.

6.未加硫成形体、加硫物及び加硫成形体
 本発明の一実施形態に係る未加硫成形体は、本発明の一実施形態に係るゴム組成物を用いており、本発明の一実施形態に係るゴム組成物(未加硫状態)の成形体(成形品)である。本発明の一実施形態に係る未加硫成形体の製造方法は、本発明の一実施形態に係るゴム組成物(未加硫状態)を成形する工程を備える。本発明の一実施形態に係る未加硫成形体は、本発明の一実施形態に係るゴム組成物(未加硫状態)からなる。
6. Unvulcanized molded body, vulcanized product, and vulcanized molded body The unvulcanized molded body according to one embodiment of the present invention uses the rubber composition according to one embodiment of the present invention, and is a molded body (molded product) of the rubber composition (unvulcanized state) according to one embodiment of the present invention. The manufacturing method of the unvulcanized molded body according to one embodiment of the present invention includes a step of molding the rubber composition (unvulcanized state) according to one embodiment of the present invention. The unvulcanized molded body according to one embodiment of the present invention is made of the rubber composition (unvulcanized state) according to one embodiment of the present invention.

 本発明の一実施形態に係る加硫物は、本発明の一実施形態に係るゴム組成物の加硫物である。本発明の一実施形態に係る加硫物の製造方法は、本発明の一実施形態に係るゴム組成物を加硫する工程を備える。 The vulcanizate according to one embodiment of the present invention is a vulcanizate of the rubber composition according to one embodiment of the present invention. The method for producing the vulcanizate according to one embodiment of the present invention includes a step of vulcanizing the rubber composition according to one embodiment of the present invention.

 本発明の一実施形態に係る加硫成形体は、本発明の一実施形態に係るゴム組成物の加硫成形体である。本発明の一実施形態に係る加硫成形体は、本発明の一実施形態に係る加硫物を用いており、本発明の一実施形態に係る加硫物の成形体(成形品)である。本発明の一実施形態に係る加硫成形体は、本発明の一実施形態に係る加硫物からなる。 The vulcanized molded product according to one embodiment of the present invention is a vulcanized molded product of a rubber composition according to one embodiment of the present invention. The vulcanized molded product according to one embodiment of the present invention uses a vulcanizate according to one embodiment of the present invention, and is a molded product (molded article) of the vulcanizate according to one embodiment of the present invention. The vulcanized molded product according to one embodiment of the present invention is made of a vulcanizate according to one embodiment of the present invention.

 本発明の一実施形態に係る加硫成形体は、本発明の一実施形態に係るゴム組成物(未加硫状態)を加硫して得られる加硫物を成形することにより得ることが可能であり、本発明の一実施形態に係るゴム組成物(未加硫状態)を成形して得られる成形体を加硫することにより得ることもできる。本発明の一実施形態に係る加硫成形体は、本発明の一実施形態に係るゴム組成物を成形後又は成形時に加硫することにより得ることができる。本発明の一実施形態に係る加硫成形体の製造方法は、本発明の一実施形態に係る加硫物を成形する工程、又は、本発明の一実施形態に係る未加硫成形体を加硫する工程を備える。 The vulcanized molded product according to one embodiment of the present invention can be obtained by molding a vulcanized product obtained by vulcanizing a rubber composition (unvulcanized state) according to one embodiment of the present invention, and can also be obtained by vulcanizing a molded product obtained by molding a rubber composition (unvulcanized state) according to one embodiment of the present invention. The vulcanized molded product according to one embodiment of the present invention can be obtained by vulcanizing a rubber composition according to one embodiment of the present invention after or during molding. The method for producing a vulcanized molded product according to one embodiment of the present invention includes a step of molding a vulcanized product according to one embodiment of the present invention, or a step of vulcanizing an unvulcanized molded product according to one embodiment of the present invention.

 本発明の一実施形態に係る加硫成形体は、該加硫成形体を厚み6.0mm以上の試験用加硫成形体1'とした際の、JIS K 6253-3:2023に基づきタイプAデュロメータで測定した硬さをX'とし、該加硫成形体を直径15mm、高さ25mmの円柱状の試験用加硫成形体2'とした際の、JIS K 6265:2018に基づき、40℃、歪み0.175インチ、荷重55ポンド、振動数毎分1,800回の条件で、定ひずみフレクソメーター試験で評価することにより求めた発熱をY'としたとき、
硬さX'と発熱Y'が、以下の式(2)を満たすことが好ましい。
 1.4X'-Y'>45.0  (2)
 なお、厚み6.0mm以上の試験用加硫成形体1'は、厚み6.0mm未満の加硫成形体を複数枚積層した積層体であってもよい。試験用加硫成形体1'は厚み6.0mm以上であり、7.0mm以下とできる。
In one embodiment of the present invention, the vulcanized molded product has a hardness of X', measured with a type A durometer in accordance with JIS K 6253-3:2023 when the vulcanized molded product is made into a test vulcanized molded product 1' having a thickness of 6.0 mm or more, and Y', measured with a constant strain flexometer test under conditions of 40°C, strain of 0.175 inches, load of 55 pounds, and vibration frequency of 1,800 times per minute when the vulcanized molded product is made into a cylindrical test vulcanized molded product 2' having a diameter of 15 mm and a height of 25 mm, in accordance with JIS K 6265:2018,
It is preferable that the hardness X′ and the heat generation Y′ satisfy the following formula (2).
1.4X'-Y'>45.0 (2)
The test vulcanization molded article 1' having a thickness of 6.0 mm or more may be a laminate of a plurality of vulcanization molded articles having a thickness of less than 6.0 mm. The test vulcanization molded article 1' may have a thickness of 6.0 mm or more and 7.0 mm or less.

 (1.4X-Y)の値は、45.0より大きく、例えば、45.5、50.0、55.0、60.0、65.0、70.0、75.0、80.0、85.0、90.0、95.0、100.0であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。 The value of (1.4X-Y) is greater than 45.0, for example, 45.5, 50.0, 55.0, 60.0, 65.0, 70.0, 75.0, 80.0, 85.0, 90.0, 95.0, 100.0, and may be within a range between any two of the values given here as examples.

 本発明の一実施形態に係る試験用加硫成形体1'の硬さX'は、例えば、40、45、50、55、60、65、70、75、80、85、90、95、98であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。 The hardness X' of the test vulcanized molded body 1' according to one embodiment of the present invention may be, for example, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, or 98, and may be within a range between any two of the numerical values exemplified here.

 本発明の一実施形態に係る試験用加硫成形体2'の発熱Y'は、例えば、1、2、3、5、10、15、20、25、30、35、40、45、50、55、60、65、70、75、80、85℃であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。 The heat generation Y' of the test vulcanized molded body 2' according to one embodiment of the present invention may be, for example, 1, 2, 3, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, or 85°C, or may be within a range between any two of the values exemplified here.

 本発明の一実施形態に係る加硫成形体は、70℃の水に144時間浸漬した際の、JIS K 6258に基づき算出される体積変化率ΔVが、9%未満であることが好ましく、6%未満であることがより好ましい。70℃の水に144時間浸漬した際の体積変化率ΔVは、例えば、0、1、2、3、4、5、6、7、8%又は9%未満であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。 The vulcanized molded product according to one embodiment of the present invention has a volume change rate ΔV calculated based on JIS K 6258 when immersed in water at 70°C for 144 hours of preferably less than 9%, more preferably less than 6%. The volume change rate ΔV when immersed in water at 70°C for 144 hours of may be, for example, 0, 1, 2, 3, 4, 5, 6, 7, 8% or less than 9%, and may be within a range between any two of the numerical values exemplified here.

 本発明の一実施形態に係る加硫成形体は、70℃の10%水酸化ナトリウムに144時間浸漬した際の、JIS K 6258に基づき算出される体積変化率ΔVが、10%未満であることが好ましく、7%未満であることがより好ましい。70℃の水に144時間浸漬した際の体積変化率ΔVは、例えば、0、1、2、3、4、5、6、7、8、9%又は10%未満であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。 The vulcanized molded product according to one embodiment of the present invention has a volume change rate ΔV calculated based on JIS K 6258 when immersed in 10% sodium hydroxide at 70°C for 144 hours, which is preferably less than 10%, and more preferably less than 7%. The volume change rate ΔV when immersed in water at 70°C for 144 hours may be, for example, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9% or less than 10%, and may be within a range between any two of the numerical values exemplified here.

 加硫成形体の硬さ、発熱、耐水性、及び耐アルカリ性は、具体的には実施例に記載の方法で測定することができる。また、加硫成形体の硬さ、発熱、耐水性、及び耐アルカリ性は、ゴム組成物の製造方法、例えば、ゴム組成物中に配合する各成分の有無、種類及び配合量、特には、充填材や加硫及び架橋に寄与する成分の有無、種類及び配合量、並びに、ゴム組成物の製造条件(特には、静置工程の有無、温度、時間)を調整することによって、制御することができる。 The hardness, heat generation, water resistance, and alkali resistance of the vulcanized molded body can be specifically measured by the method described in the Examples. The hardness, heat generation, water resistance, and alkali resistance of the vulcanized molded body can also be controlled by adjusting the manufacturing method of the rubber composition, for example, the presence, type, and amount of each component blended into the rubber composition, particularly the presence, type, and amount of fillers and components that contribute to vulcanization and crosslinking, as well as the manufacturing conditions of the rubber composition (particularly the presence, temperature, and time of a standing process).

 本発明の一実施形態に係る未加硫成形体、加硫物及び加硫成形体は、建築物、構築物、船舶、鉄道、炭鉱、自動車等の各種工業分野のゴム部品として利用可能である。本発明に係るゴム組成物は、耐水性及び耐アルカリ性に優れるため、これらの特性が必要とされる様々な部材として用いることができる。本発明の一実施形態に係るゴム組成物、加硫物及び加硫成形体は、建築物、構築物、船舶、鉄道、炭鉱、自動車等の各種工業分野のゴム部品として利用可能であり、自動車用ゴム部材(例えば自動車用シール材)、ホース材、ゴム型物、ガスケット、ゴムロール、産業用ケーブル、産業用コンベアベルト、スポンジ等のゴム部品用として利用することができる。特には、伝動ベルト、コンベアベルト、ホース、ワイパー、浸漬製品、シール部品、接着剤、ブーツ、ゴム引布、ゴムロール、防振ゴムまたはスポンジ製品として用いることができる。 The unvulcanized molded product, vulcanized product, and vulcanized molded product according to one embodiment of the present invention can be used as rubber parts in various industrial fields such as buildings, structures, ships, railways, coal mines, and automobiles. The rubber composition according to the present invention has excellent water resistance and alkali resistance, so it can be used as various components where these properties are required. The rubber composition, vulcanized product, and vulcanized molded product according to one embodiment of the present invention can be used as rubber parts in various industrial fields such as buildings, structures, ships, railways, coal mines, and automobiles, and can be used for rubber parts such as automotive rubber parts (e.g., automotive seal materials), hose materials, rubber molded products, gaskets, rubber rolls, industrial cables, industrial conveyor belts, and sponges. In particular, it can be used as transmission belts, conveyor belts, hoses, wipers, immersion products, seal parts, adhesives, boots, rubber-coated cloth, rubber rolls, vibration-proof rubber, or sponge products.

(自動車用ゴム部材)
 自動車用ゴム部材は、ガスケット、オイルシール及びパッキンなどがあり、機械や装置において、液体や気体の漏れや雨水や埃などのごみや異物が内部に侵入するのを防ぐ部品である。具体的には、固定用途に使われるガスケットと、運動部分・可動部分に使用されるオイルシール及びパッキンがある。シール部分がボルトなどで固定されているガスケットでは、Oリングやゴムシートなどのソフトガスケットに対して、目的に応じた各種材料が使用されている。また、パッキンは、ポンプやモーターの軸、バルブの可動部のような回転部分、ピストンのような往復運動部分、カプラーの接続部、水道蛇口の止水部などに使われる。本発明のゴム組成物は、耐水性及び耐アルカリ性を高めることができる。これにより、従来のゴム組成物では困難であった、耐油性に優れる自動車部品を製造することが可能である。
(Rubber parts for automobiles)
Rubber components for automobiles include gaskets, oil seals, and packings, which are components that prevent leakage of liquids and gases and intrusion of garbage and foreign objects such as rainwater and dust into machines and devices. Specifically, there are gaskets used for fixed applications and oil seals and packings used for moving parts and movable parts. For gaskets in which the sealing part is fixed by bolts or the like, various materials are used according to the purpose, as opposed to soft gaskets such as O-rings and rubber sheets. In addition, packings are used for rotating parts such as the shafts of pumps and motors, moving parts of valves, reciprocating parts such as pistons, connecting parts of couplers, water stop parts of water faucets, etc. The rubber composition of the present invention can improve water resistance and alkali resistance. This makes it possible to manufacture automobile parts with excellent oil resistance, which was difficult to do with conventional rubber compositions.

(ホース材)
 ホース材は、屈曲可能な管であり、具体的には、送水用、送油用、送気用、蒸気用、油圧用高・低圧ホースなどがある。本発明のゴム組成物は、未加硫物の加工性を維持しつつ、ホース材の耐水性及び耐アルカリ性を高めることが可能である。これにより、例えば、従来のゴム組成物では困難であった、耐水性及び耐アルカリ性に優れるホース材を製造することができる。
(Hose material)
Hose materials are flexible pipes, and specific examples include high- and low-pressure hoses for water supply, oil supply, air supply, steam, and hydraulic use. The rubber composition of the present invention can enhance the water resistance and alkali resistance of the hose material while maintaining the processability of the unvulcanized product. This makes it possible to manufacture, for example, a hose material with excellent water resistance and alkali resistance, which was difficult to achieve with conventional rubber compositions.

(ゴム型物)
 ゴム型物は、防振ゴム、制振材、ブーツなどがある。防振ゴム及び制振材は、振動の伝達波及を防止するゴムのことであり、具体的には、自動車や各種車両用のエンジン駆動時の振動を吸収して騒音を防止するためのトーショナルダンパー、エンジンマウント、マフラーハンガーなどがある。本発明のゴム組成物は、防振ゴム及び制振材の耐水性及び耐アルカリ性を高めることが可能である。これにより、従来のゴム組成物では困難であった、耐水性及び耐アルカリ性に優れる防振ゴム及び制振材を製造することができる。
 また、ブーツは、一端から他端に向けて外径が次第に大きくなる蛇腹状をなす部材であり、具体的には、自動車駆動系などの駆動部を保護するための等速ジョイントカバー用ブーツ、ボールジョイントカバー用ブーツ(ダストカバーブーツ)、ラックアンドピニオンギア用ブーツなどがある。本発明のゴム組成物は、耐水性及び耐アルカリ性を高めることが可能である。これにより、従来のゴム組成物よりも過酷な環境下で使用されるブーツを製造することが可能である。
(Rubber mold)
The rubber molded products include anti-vibration rubber, vibration-damping materials, boots, etc. Anti-vibration rubber and vibration-damping materials are rubbers that prevent the transmission and spread of vibrations, and specifically include torsional dampers, engine mounts, muffler hangers, etc. for automobiles and various vehicles that absorb vibrations during engine operation to prevent noise. The rubber composition of the present invention can improve the water resistance and alkali resistance of anti-vibration rubber and vibration-damping materials. This makes it possible to produce anti-vibration rubber and vibration-damping materials with excellent water resistance and alkali resistance, which was difficult to achieve with conventional rubber compositions.
A boot is a bellows-shaped member whose outer diameter gradually increases from one end to the other end, and specific examples include constant velocity joint cover boots for protecting drive parts such as automobile drive systems, ball joint cover boots (dust cover boots), rack and pinion gear boots, etc. The rubber composition of the present invention can improve water resistance and alkali resistance. This makes it possible to manufacture boots that can be used in harsher environments than conventional rubber compositions.

(ガスケットなど)
 ガスケットや、オイルシール及びパッキンは、機械や装置において、液体や気体の漏れや雨水や埃などのごみや異物が内部に侵入するのを防ぐ部品であり、具体的には、固定用途に使われるガスケットと、運動部分・可動部分に使用されるオイルシール及びパッキンがある。シール部分がボルトなどで固定されているガスケットでは、Oリングやゴムシートなどのソフトガスケットに対して、目的に応じた各種材料が使用されている。また、パッキンは、ポンプやモーターの軸、バルブの可動部のような回転部分、ピストンのような往復運動部分、カプラーの接続部、水道蛇口の止水部などに使われる。本発明のゴム組成物は、これら部材の耐水性及び耐アルカリ性を高めることができる。これにより、従来のゴム組成物では困難であった耐水性及び耐アルカリ性に優れるシール部材を製造することが可能である。
(Gaskets, etc.)
Gaskets, oil seals and packings are components that prevent leakage of liquids or gases and intrusion of garbage or foreign objects such as rainwater or dust into machines or equipment. Specifically, there are gaskets used for fixed applications and oil seals and packings used for moving parts. For gaskets where the sealing part is fixed with bolts or the like, various materials are used according to the purpose, as opposed to soft gaskets such as O-rings and rubber sheets. Packings are also used for rotating parts such as the shafts of pumps and motors, the movable parts of valves, reciprocating parts such as pistons, the connection parts of couplers, the water stop parts of water faucets, etc. The rubber composition of the present invention can improve the water resistance and alkali resistance of these members. This makes it possible to manufacture sealing members with excellent water resistance and alkali resistance, which was difficult to achieve with conventional rubber compositions.

(ゴムロール)
 ゴムロールは、鉄芯などの金属製の芯をゴムで接着被覆することによって製造されるものであり、一般に金属鉄芯にゴムシートを渦巻き状に巻き付けて製造される。ゴムロールには、製紙、各種金属製造、フィルム製造、印刷、一般産業用、籾摺りなどの農機具用、食品加工用などの種々の用途の要求特性に応じて、NBRやEPDM、CRなどのゴム材料が用いられている。CRは搬送する物体の摩擦に耐え得る良好な機械強度を有していることから、幅広いゴムロール用途に使用されている。さらに、重量物を搬送するゴムロールは荷重により変形するという課題があり、改良を求められている。本発明のゴム組成物は、ゴムロールの耐水性及び耐アルカリ性を高めることが可能である。これにより、従来のゴム組成物では困難であった、耐水性及び耐アルカリ性に優れるエンボス加工用ゴムロールを製造することが可能である。本発明の一実施形態に係るゴム組成物は、酸洗浄ライン及びアルカリ洗浄ラインのうち少なくとも1つで用いるゴムロールように用いることができる。
(Rubber roll)
A rubber roll is manufactured by adhesively covering a metal core such as an iron core with rubber, and is generally manufactured by winding a rubber sheet around a metal iron core in a spiral shape. Rubber materials such as NBR, EPDM, and CR are used for rubber rolls according to the required characteristics of various applications such as papermaking, various metal manufacturing, film manufacturing, printing, general industrial use, agricultural equipment such as rice hullers, and food processing. CR has good mechanical strength that can withstand the friction of the object being conveyed, so it is used in a wide range of rubber roll applications. Furthermore, there is a problem that rubber rolls that convey heavy objects are deformed by load, and improvements are required. The rubber composition of the present invention can increase the water resistance and alkali resistance of the rubber roll. This makes it possible to manufacture an embossing rubber roll that is excellent in water resistance and alkali resistance, which was difficult to achieve with conventional rubber compositions. The rubber composition according to one embodiment of the present invention can be used as a rubber roll used in at least one of an acid washing line and an alkali washing line.

 本発明の一実施形態に係るゴムロールは、芯金と、前記芯金の周面に設けられた表面層を具備し、前記表面層が上記に記載の加硫成形体を含み、ゴムロールは、酸洗浄ライン及びアルカリ洗浄ラインのうち少なくとも1つで用いられる。 A rubber roll according to one embodiment of the present invention comprises a core and a surface layer provided on the peripheral surface of the core, the surface layer including the vulcanized molded body described above, and the rubber roll is used in at least one of an acid washing line and an alkali washing line.

(産業用ケーブル)
 産業用ケーブルは、電気や光信号を伝送するための線状の部材である。銅や銅合金などの良導体や光ファイバなどを絶縁性の被覆層で被覆したものであり、その構造や設置個所によって、多岐にわたる産業用ケーブルが製造されている。本発明のゴム組成物は、産業用ケーブルの耐水性及び耐アルカリ性を高めることが可能である。これにより、従来のゴム組成物では困難であった耐水性及び耐アルカリ性に優れる産業用ケーブルを製造することができる。
(Industrial cables)
An industrial cable is a linear member for transmitting electrical or optical signals. It is made by covering a good conductor such as copper or a copper alloy, or an optical fiber, with an insulating covering layer, and a wide variety of industrial cables are manufactured depending on their structure and installation location. The rubber composition of the present invention can improve the water resistance and alkali resistance of industrial cables. This makes it possible to manufacture industrial cables with excellent water resistance and alkali resistance, which was difficult to achieve with conventional rubber compositions.

(産業用コンベアベルト)
 産業用コンベアベルトは、ゴム製、樹脂製、金属製のベルトがあり、多種多様な使用方法に合わせて選定されている。これらの中でもゴム製のコンベアベルトは、安価で多用されているが、特に搬送物との摩擦や衝突の多い環境下で使用すると、劣化による破損などが発生していた。本発明のゴム組成物は、産業用コンベアベルトの耐水性及び耐アルカリ性を高めることが可能である。これにより、従来のゴム組成物では困難であった過酷な環境下で用いられる耐水性及び耐アルカリ性に優れる産業用コンベアベルトを製造することができる。
(Industrial conveyor belts)
Industrial conveyor belts are available in rubber, resin, and metal, and are selected according to a wide variety of usage methods. Among these, rubber conveyor belts are inexpensive and widely used, but when used in an environment where there is a lot of friction and collision with the transported goods, they tend to deteriorate and break. The rubber composition of the present invention can improve the water resistance and alkali resistance of industrial conveyor belts. This makes it possible to manufacture industrial conveyor belts with excellent water resistance and alkali resistance that can be used in harsh environments, which was difficult with conventional rubber compositions.

(スポンジ)
 スポンジは、内部に細かい孔が無数に空いた多孔質の物質であり、具体的には、防振部材、スポンジシール部品、ウェットスーツ、靴などに利用されている。本発明のゴム組成物は、スポンジの耐酸性、耐水性を高めることが可能である。また、クロロプレン-不飽和ニトリル共重合体ゴムを用いているためスポンジの難燃性を高めることも可能である。これにより、従来のゴム組成物では困難であった過酷な環境下で使用される耐水性及び耐アルカリ性に優れるスポンジや、難燃性に優れたスポンジを製造することができる。さらに、発泡剤の含有量などの調整により得られるスポンジの硬度も適宜調整可能である。
(sponge)
A sponge is a porous material with numerous fine holes inside, and is specifically used in vibration-proofing members, sponge seal parts, wet suits, shoes, etc. The rubber composition of the present invention can improve the acid resistance and water resistance of the sponge. In addition, since a chloroprene-unsaturated nitrile copolymer rubber is used, it is also possible to improve the flame retardancy of the sponge. This makes it possible to produce a sponge with excellent water resistance and alkali resistance that can be used in harsh environments, which was difficult with conventional rubber compositions, and a sponge with excellent flame retardancy. Furthermore, the hardness of the resulting sponge can be appropriately adjusted by adjusting the content of the foaming agent, etc.

 本発明の一実施形態に係るゴム組成物(未加硫状態)及び加硫物を成形する方法としては、プレス成形、押出成形、カレンダー成形等が挙げられる。ゴム組成物を加硫する温度は、ゴム組成物の組成に合わせて適宜設定すればよく、140~220℃とできる。加硫温度は、例えば、140、150、160、170、180、190、200、210、220℃であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。ゴム組成物を加硫する加硫時間は、ゴム組成物の組成、未加硫成形体の形状等によって適宜設定すればよく、10~300分とすることができる。例えば、10、20、30、40、50、60、70、80、90、100、110、120、130、140、150、160、170、180、190、200、210、220、230、240、250、260、270、280、290、300分であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。 Methods for molding the rubber composition (unvulcanized state) and vulcanized product according to one embodiment of the present invention include press molding, extrusion molding, calendar molding, etc. The temperature for vulcanizing the rubber composition may be set appropriately according to the composition of the rubber composition, and may be 140 to 220°C. The vulcanization temperature may be, for example, 140, 150, 160, 170, 180, 190, 200, 210, or 220°C, and may be within a range between any two of the numerical values exemplified here. The vulcanization time for vulcanizing the rubber composition may be set appropriately according to the composition of the rubber composition, the shape of the unvulcanized molded body, etc., and may be 10 to 300 minutes. For example, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 210, 220, 230, 240, 250, 260, 270, 280, 290, 300 minutes, or within a range between any two of the values exemplified here.

 以下、実施例に基づいて本発明を更に詳細に説明するが、本発明はこれらに限定して解釈されるものではない。 The present invention will be explained in more detail below based on examples, but the present invention should not be interpreted as being limited to these.

<クロロプレン系ゴム(A-2)の製造方法>
 加熱冷却ジャケット及び攪拌機を備えた内容積3Lの重合缶に、クロロプレン(単量体)24質量部、アクリロニトリル(単量体)24質量部、ジエチルキサントゲンジスルフィド0.5質量部、純水200質量部、ロジン酸カリウム(ハリマ化成株式会社製)5.00質量部、水酸化ナトリウム0.40質量部、及び、β-ナフタレンスルホン酸ホルマリン縮合物のナトリウム塩(花王株式会社製)2.0質量部を添加した。次に、重合開始剤として過硫酸カリウム0.1質量部を添加した後、重合温度40℃にて窒素気流下で乳化重合を行った。上述のクロロプレンは、重合開始20秒後から分添し、重合開始からの10秒間の冷媒の熱量変化を元に分添流量を電磁弁で調整し、以降10秒毎に流量を再調節することで連続的に行った。クロロプレン及びアクリロニトリルの合計量に対する重合率が50%となった時点で、重合停止剤であるフェノチアジン0.02質量部を加えて重合を停止させた。その後、減圧下で反応溶液中の未反応の単量体を除去することでクロロプレン-アクリロニトリル共重合体を含む、クロロプレン系ラテックスを得た。
<Production method of chloroprene rubber (A-2)>
Into a polymerization vessel having an internal volume of 3 L equipped with a heating/cooling jacket and a stirrer, 24 parts by mass of chloroprene (monomer), 24 parts by mass of acrylonitrile (monomer), 0.5 parts by mass of diethylxanthogen disulfide, 200 parts by mass of pure water, 5.00 parts by mass of potassium rosinate (manufactured by Harima Chemicals Co., Ltd.), 0.40 parts by mass of sodium hydroxide, and 2.0 parts by mass of sodium salt of β-naphthalenesulfonic acid formalin condensate (manufactured by Kao Corporation) were added. Next, 0.1 parts by mass of potassium persulfate was added as a polymerization initiator, and emulsion polymerization was carried out under a nitrogen gas flow at a polymerization temperature of 40° C. The above-mentioned chloroprene was added in portions starting 20 seconds after the start of polymerization, and the portion-by-portion addition flow rate was adjusted with a solenoid valve based on the change in the heat quantity of the refrigerant for 10 seconds from the start of polymerization, and the flow rate was readjusted every 10 seconds thereafter, so that the polymerization was carried out continuously. When the polymerization rate relative to the total amount of chloroprene and acrylonitrile reached 50%, 0.02 parts by mass of phenothiazine, a polymerization terminator, was added to terminate the polymerization. Thereafter, unreacted monomers in the reaction solution were removed under reduced pressure to obtain a chloroprene-based latex containing a chloroprene-acrylonitrile copolymer.

 クロロプレン系ラテックスの上述の重合率[%]は、クロロプレン系ラテックスを風乾したときの乾燥質量から算出した。具体的には、下記式(A)より計算した。式中、「固形分濃度」とは、サンプリングしたクロロプレン系ラテックス2gを130℃で加熱して、溶媒(水)、揮発性薬品、原料等の揮発成分を除いた固形分の濃度[質量%]である。「総仕込み量」とは、重合開始からある時刻までに重合缶に仕込んだ原料、試薬及び溶媒(水)の総量[g]である。「蒸発残分」とは、重合開始からある時刻までに仕込んだ薬品及び原料のうち、130℃の条件下で揮発せずにポリマーと共に固形分として残留する薬品の質量[g]である。「単量体の仕込み量」とは、重合缶に初期に仕込んだ単量体、及び、重合開始からある時刻までに分添した単量体の量の合計[g]である。なお、ここでいう「単量体」とは、クロロプレン及びアクリロニトリルの合計量である。
 重合率={[(総仕込み量×固形分濃度/100)-蒸発残分]/単量体の仕込み量}×100   ・・・(A)
The above-mentioned polymerization rate [%] of the chloroprene-based latex was calculated from the dry mass when the chloroprene-based latex was air-dried. Specifically, it was calculated from the following formula (A). In the formula, the "solid content concentration" is the concentration [mass %] of the solid content obtained by heating 2 g of the sampled chloroprene-based latex at 130°C and removing volatile components such as the solvent (water), volatile chemicals, and raw materials. The "total charge amount" is the total amount [g] of the raw materials, reagents, and solvent (water) charged in the polymerization vessel from the start of polymerization to a certain time. The "evaporation residue" is the mass [g] of the chemicals and raw materials charged from the start of polymerization to a certain time that do not volatilize under the condition of 130°C and remain as solids together with the polymer. The "charge amount of monomer" is the total [g] of the monomer charged in the polymerization vessel at the beginning and the amount of the monomer added in portions from the start of polymerization to a certain time. The "monomer" here is the total amount of chloroprene and acrylonitrile.
Conversion rate={[(total charge amount×solid concentration/100)−evaporation residue]/charge amount of monomer}×100 (A)

 上述のクロロプレン系ラテックス(R-2)のpHを、酢酸又は水酸化ナトリウムを用いて7.0に調整した後、-20℃に冷やした金属板上でクロロプレン系ラテックスを凍結凝固させることで乳化破壊することによりシートを得た。このシートを水洗した後、130℃で15分間乾燥させることにより固形状のクロロプレン系ゴム(A-2)を得た。 The pH of the above-mentioned chloroprene-based latex (R-2) was adjusted to 7.0 using acetic acid or sodium hydroxide, and the chloroprene-based latex was frozen and coagulated on a metal plate cooled to -20°C to break the emulsion, yielding a sheet. The sheet was washed with water and then dried at 130°C for 15 minutes to obtain solid chloroprene-based rubber (A-2).

 クロロプレン系ゴム(A-2)に含まれるアクリロニトリルの単量体単位の含有量を、クロロプレン-アクリロニトリル共重合ゴム中の窒素原子の含有量から算出した。具体的には、元素分析装置(スミグラフ220F:株式会社住化分析センター製)を用いて、100mgのクロロプレン系ゴム(A-2)中における窒素原子の含有量を測定し、アクリロニトリルの単量体単位の含有量を算出した。アクリロニトリルの単量体単位の含有量は10.0質量%であった。 The content of acrylonitrile monomer units contained in the chloroprene rubber (A-2) was calculated from the content of nitrogen atoms in the chloroprene-acrylonitrile copolymer rubber. Specifically, an elemental analyzer (Sumigraph 220F: manufactured by Sumika Chemical Analysis Center Co., Ltd.) was used to measure the content of nitrogen atoms in 100 mg of chloroprene rubber (A-2), and the content of acrylonitrile monomer units was calculated. The content of acrylonitrile monomer units was 10.0% by mass.

 上述の元素分析は次のとおり行った。電気炉温度として反応炉900℃、還元炉600℃、カラム温度70℃、検出器温度100℃に設定し、燃焼用ガスとして酸素ガスを0.2mL/min、キャリアーガスとしてヘリウムガスを80mL/minフローした。検量線は、窒素含有量が既知のアスパラギン酸(10.52%)を標準物質として用いて作成した。
以上の製造方法で得られた、クロロプレン系ゴム(A-2)のアクリロニトリルの単量体単位の含有量は10.0質量%であった。
The above elemental analysis was carried out as follows. The electric furnace temperatures were set to 900°C for the reactor, 600°C for the reduction furnace, 70°C for the column, and 100°C for the detector. Oxygen gas was flowed at 0.2 mL/min as the combustion gas, and helium gas was flowed at 80 mL/min as the carrier gas. The calibration curve was created using aspartic acid (10.52%) with a known nitrogen content as the standard substance.
The chloroprene rubber (A-2) obtained by the above-mentioned production method had an acrylonitrile monomer unit content of 10.0 mass %.

<クロロプレン系ゴム(A-1)の製造方法>
 重合工程におけるアクリロニトリル単量体の添加量を変更し、クロロプレン系ゴムに含まれるアクリロニトリル単量体単位の含有量が5.0質量%であるクロロプレン系ゴム(A-1)を得た。
<Production method of chloroprene rubber (A-1)>
The amount of acrylonitrile monomer added in the polymerization step was changed to obtain a chloroprene rubber (A-1) having an acrylonitrile monomer unit content of 5.0 mass % in the chloroprene rubber.

(実施例1~19、比較例1~13)
<ゴム組成物の作製>
 表1~4に記載の各成分のうち、有機過酸化物、加硫促進剤、マレイミド化合物及び加硫剤を除く成分を8インチオープンロールで混合し、加硫剤等を含有しないゴム組成物前駆体を得た(第1混合工程)。続いて、得られたゴム組成物前駆体を、23℃で12時間静置した。その後、ゴム組成物前駆体と、有機過酸化物、加硫促進剤、マレイミド化合物及び加硫剤を8インチオープンロールで混練することにより(第2混合工程)、実施例及び比較例のゴム組成物を得た。
(Examples 1 to 19, Comparative Examples 1 to 13)
<Preparation of Rubber Composition>
Of the components shown in Tables 1 to 4, the components excluding the organic peroxide, vulcanization accelerator, maleimide compound, and vulcanizing agent were mixed on an 8-inch open roll to obtain a rubber composition precursor not containing a vulcanizing agent or the like (first mixing step). The obtained rubber composition precursor was then allowed to stand at 23°C for 12 hours. Thereafter, the rubber composition precursor, the organic peroxide, the vulcanization accelerator, the maleimide compound, and the vulcanizing agent were kneaded on an 8-inch open roll (second mixing step) to obtain rubber compositions of the examples and comparative examples.

(比較例14~17)
<ゴム組成物の作製>
 表4に記載の各成分のうち、有機過酸化物、加硫促進剤、マレイミド化合物及び加硫剤を除く成分を8インチオープンロールで混合し、加硫剤等を含有しないゴム組成物前駆体を得た(第1混合工程)。続いて、静置工程を経ずに、ゴム組成物前駆体と、有機過酸化物、加硫促進剤、マレイミド化合物及び加硫剤を8インチオープンロールで混練することにより(第2混合工程)、比較例のゴム組成物を得た。
(Comparative Examples 14 to 17)
<Preparation of Rubber Composition>
Of the components shown in Table 4, the components excluding the organic peroxide, vulcanization accelerator, maleimide compound, and vulcanizing agent were mixed with an 8-inch open roll to obtain a rubber composition precursor not containing a vulcanizing agent, etc. (first mixing step). Next, without a standing step, the rubber composition precursor, the organic peroxide, the vulcanization accelerator, the maleimide compound, and the vulcanizing agent were kneaded with an 8-inch open roll (second mixing step) to obtain a rubber composition of the comparative example.

 組成物を得るために用いた各成分は以下のとおりである。
ゴム成分:
・クロロプレン系ゴムA-1:クロロプレン・アクリロニトリル共重合体 AN(アクリロニトリル単量体単位)含有量5質量%
・クロロプレン系ゴムA-2:クロロプレン・アクリロニトリル共重合体 AN(アクリロニトリル単量体単位)含有量10質量%、
・クロロプレン系ゴムA-5:メルカプタン変性クロロプレンゴム(クロロプレンの単独重合体)、デンカ株式会社製、S-40V
・天然ゴム HB Chemical社製、SMR-CV60
The components used to obtain the composition are as follows:
Rubber component:
Chloroprene rubber A-1: Chloroprene-acrylonitrile copolymer AN (acrylonitrile monomer unit) content: 5% by mass
Chloroprene rubber A-2: Chloroprene-acrylonitrile copolymer AN (acrylonitrile monomer unit) content 10% by mass,
Chloroprene rubber A-5: mercaptan-modified chloroprene rubber (chloroprene homopolymer), manufactured by Denka Co., Ltd., S-40V
・Natural rubber: HB Chemical Company, SMR-CV60

カーボンブラック:旭カーボン株式会社製「旭#70」、HAF
有機過酸化物:1,4-ビス[(t-ブチルパーオキシ)イソプロピル]ベンゼン、日本油脂株式会社、パーブチルP-40
Carbon black: Asahi #70, HAF, manufactured by Asahi Carbon Co., Ltd.
Organic peroxide: 1,4-bis[(t-butylperoxy)isopropyl]benzene, NOF Corporation, Perbutyl P-40

加硫促進剤:
・ノクセラーTMU:トリメチルチオ尿素、大内新興化学工業株式会社製、ノクセラーTMU
・硫黄:硫黄、細井化学工業株式会社製、微粉硫黄200メッシュ
・ノクセラーTT:テトラメチルチウラムジスルフィド、大内新興化学工業株式会社製、ノクセラーTT
・ノクセラーCZ:N-シクロヘキシル-2-ベンゾチアゾリルスルフェンアミド、大内新興化学工業株式会社製、ノクセラーCZ
Vulcanization accelerator:
Noccela TMU: Trimethylthiourea, manufactured by Ouchi Shinko Chemical Industry Co., Ltd., Noccela TMU
Sulfur: Sulfur, manufactured by Hosoi Chemical Industry Co., Ltd., fine sulfur 200 mesh Noccela TT: Tetramethylthiuram disulfide, manufactured by Ouchi Shinko Chemical Industry Co., Ltd., Noccela TT
Noccela CZ: N-cyclohexyl-2-benzothiazolyl sulfenamide, manufactured by Ouchi Shinko Chemical Industry Co., Ltd., Noccela CZ

マレイミド化合物:m-フェニレンジマレイミド、大内新興化学工業株式会社製、バルノックPM
可塑剤:エーテルエステル系化合物、株式会社ADEKA製、アデカサイザーRS-700
加硫剤:酸化亜鉛、堺化学工業株式会社製、酸化亜鉛2種
受酸剤:酸化マグネシウム、協和化学工業株式会社製、キョーワマグ150
老化防止剤:
・ノクラックCD:4,4'-ビス(α、α-ジメチルベンジル)ジフェニルアミン、大内新興化学工業株式会社製、ノクラックCD
・ノクラック6C:N-フェニル-N'-(1,3-ジメチルブチル)-p-フェニレンジアミン、大内新興化学工業株式会社製、ノクラック6C
加工助剤:ステアリン酸、新日本理化株式会社製、ステアリン酸50S
Maleimide compound: m-phenylenedimaleimide, manufactured by Ouchi Shinko Chemical Industry Co., Ltd., Valnoc PM
Plasticizer: Ether ester compound, manufactured by ADEKA Corporation, Adeka Cizer RS-700
Vulcanizing agent: zinc oxide, manufactured by Sakai Chemical Industry Co., Ltd., zinc oxide type 2 Acid acceptor: magnesium oxide, manufactured by Kyowa Chemical Industry Co., Ltd., Kyowamag 150
Anti-aging agents:
Nocrac CD: 4,4'-bis(α,α-dimethylbenzyl)diphenylamine, manufactured by Ouchi Shinko Chemical Industry Co., Ltd., Nocrac CD
Nocrac 6C: N-phenyl-N'-(1,3-dimethylbutyl)-p-phenylenediamine, manufactured by Ouchi Shinko Chemical Industry Co., Ltd., Nocrac 6C
Processing aid: stearic acid, New Japan Chemical Co., Ltd., stearic acid 50S

<試験用加硫成形体1の作製>
 得られたゴム組成物をJIS K 6299:2012に基づき、170℃、20分の条件でプレス加硫して厚さ2mmのシート状の加硫成形体(試験用加硫成形体1)を作製した。
<Preparation of test vulcanized molded body 1>
The obtained rubber composition was press-vulcanized at 170°C for 20 minutes in accordance with JIS K 6299:2012 to produce a sheet-like vulcanized molded product having a thickness of 2 mm (test vulcanized molded product 1).

(硬さ)
 試験用加硫成形体1を、厚み6.0mm以上となるまで重ねて積層体とした。JIS K 6253-3:2023に基づき、該積層体の硬さをタイプAデュロメータで測定した。なお、積層体の厚みは、6.0~7.0mmとした。
(Hardness)
The test vulcanized molded articles 1 were stacked to a thickness of 6.0 mm or more to form a laminate. The hardness of the laminate was measured with a type A durometer in accordance with JIS K 6253-3:2023. The thickness of the laminate was 6.0 to 7.0 mm.

(耐水性(70℃の水に144時間浸漬後の体積変化率))
 上述の試験用加硫成形体1から縦25mm、横20mmの試験片を打ち抜き、試験片を得た。得られた試験片を、70℃の水に144時間浸漬した。JIS K 6258に基づき体積変化率ΔVを算出した。得られた体積変化率ΔVを以下の基準で評価した。
 A:3%未満
 B:3%以上、6%未満
 C:6%以上、9%未満
 D:9%以上
(Water resistance (volume change rate after immersion in 70°C water for 144 hours))
A test piece having a length of 25 mm and a width of 20 mm was punched out from the above-mentioned test vulcanized molded body 1. The test piece obtained was immersed in water at 70° C. for 144 hours. The volume change rate ΔV was calculated based on JIS K 6258. The obtained volume change rate ΔV was evaluated according to the following criteria.
A: Less than 3% B: 3% or more, less than 6% C: 6% or more, less than 9% D: 9% or more

(耐アルカリ性(70℃の10%水酸化ナトリウムに144時間浸漬後の体積変化率))
 上述の試験用加硫成形体1から縦25mm、横20mmの試験片を打ち抜き、試験片を得た。得られた試験片を、70℃の10%水酸化ナトリウムに144時間浸漬した。JIS K 6258に基づき体積変化率ΔVを算出した。得られた体積変化率ΔVを以下の基準で評価した。
 A:4%未満
 B:4%以上、7%未満
 C:7%以上、10%未満
 D:10%以上
(Alkaline resistance (volume change rate after immersion in 10% sodium hydroxide at 70°C for 144 hours))
A test piece measuring 25 mm in length and 20 mm in width was punched out from the above-mentioned test vulcanized molded body 1. The test piece obtained was immersed in 10% sodium hydroxide at 70° C. for 144 hours. The volume change rate ΔV was calculated based on JIS K 6258. The obtained volume change rate ΔV was evaluated according to the following criteria.
A: Less than 4% B: 4% or more, less than 7% C: 7% or more, less than 10% D: 10% or more

(発熱)
 ゴム組成物を170℃、20分の条件でプレス加硫して、直径15mm、高さ25mmの円柱状の加硫成形体(試験用加硫成形体2)を得た。JIS K 6265:2018に基づき、グッドリッチフレクソメーター(Goodrich Flexometer)を用い定ひずみフレクソメーター試験により発熱の評価を行った。定ひずみフレクソメーター試験は、加硫ゴム等の試験片に動的繰り返し負荷を加えて、試験片内部の発熱による疲労特性を評価する試験方法であって、詳しくは、一定の温度条件で試験片に静的初期荷重を加え、更に一定振幅の正弦振動を加え、時間の経過と共に変化する試験片の発熱やクリープ量を測定するものである。試験方法はJIS K 6265:2018に基づき40℃、歪み0.175インチ、荷重55ポンド、振動数毎分1,800回の条件で実施し、発熱(℃)を測定した。
(Fever)
The rubber composition was press-vulcanized at 170°C for 20 minutes to obtain a cylindrical vulcanized molded body (test vulcanized molded body 2) having a diameter of 15 mm and a height of 25 mm. Based on JIS K 6265:2018, a Goodrich Flexometer was used to evaluate heat generation by a constant strain flexometer test. The constant strain flexometer test is a test method for evaluating fatigue characteristics due to heat generation inside a test piece by applying a dynamic repeated load to a test piece such as vulcanized rubber. In detail, a static initial load is applied to the test piece under a constant temperature condition, and a sine vibration of a constant amplitude is further applied to measure the heat generation and creep amount of the test piece that change over time. The test method was performed based on JIS K 6265:2018 under conditions of 40°C, strain of 0.175 inches, load of 55 pounds, and vibration frequency of 1,800 times per minute, and heat generation (°C) was measured.

Claims (7)

 ゴム成分を含むゴム組成物であって、
 前記ゴム組成物の試験用加硫成形体1を、厚み6.0mm以上になるまで重ねた積層体の、JIS K 6253-3:2023に基づきタイプAデュロメータで測定した硬さをXとし、
 前記ゴム組成物の試験用加硫成形体2を、JIS K 6265:2018に基づき、40℃、歪み0.175インチ、荷重55ポンド、振動数毎分1,800回の条件で、定ひずみフレクソメーター試験で評価することにより求めた発熱をYとしたとき、
硬さXと発熱Yが、以下の式(1)を満たし、
 前記試験用加硫成形体1は、前記ゴム組成物をJIS K 6299:2012に基づき、170℃、20分の条件でプレス加硫して得た、厚さ2mmのシート状の加硫成形体であり、
 前記試験用加硫成形体2は、前記ゴム組成物を170℃、20分の条件でプレス加硫して得た、直径15mm、高さ25mmの円柱状の加硫成形体である、
ゴム組成物。
 1.4X-Y>45.0  (1)
A rubber composition comprising a rubber component,
The vulcanized molded test pieces 1 of the rubber composition are stacked to a thickness of 6.0 mm or more to form a laminate, the hardness of which is measured with a type A durometer according to JIS K 6253-3:2023 and designated as X;
The test vulcanized molded product 2 of the rubber composition is evaluated in a constant strain flexometer test based on JIS K 6265:2018 under conditions of 40°C, strain of 0.175 inches, load of 55 pounds, and vibration frequency of 1,800 times per minute, where the heat generation is defined as Y.
The hardness X and heat generation Y satisfy the following formula (1),
The test vulcanized molded article 1 is a sheet-like vulcanized molded article having a thickness of 2 mm obtained by press-vulcanizing the rubber composition at 170° C. for 20 minutes in accordance with JIS K 6299:2012.
The test vulcanized molded body 2 is a cylindrical vulcanized molded body having a diameter of 15 mm and a height of 25 mm, obtained by press-vulcanizing the rubber composition at 170° C. for 20 minutes.
Rubber composition.
1.4X-Y>45.0 (1)
 前記硬さXが、40以上、98以下である、請求項1に記載のゴム組成物。 The rubber composition according to claim 1, wherein the hardness X is 40 or more and 98 or less.  前記ゴム成分は、クロロプレン系重合体を含む、請求項1又は請求項2記載の、ゴム組成物。 The rubber composition according to claim 1 or 2, wherein the rubber component includes a chloroprene-based polymer.  前記クロロプレン系重合体は、前記クロロプレン系重合体100質量%に対して、クロロプレン単量体単位を80~100質量%含む、請求項3に記載の、ゴム組成物。 The rubber composition according to claim 3, wherein the chloroprene polymer contains 80 to 100 mass% of chloroprene monomer units relative to 100 mass% of the chloroprene polymer.  請求項1又は請求項2に記載のゴム組成物の、加硫成形体。 A vulcanized molded article of the rubber composition according to claim 1 or claim 2.  ゴムロールであって、
 芯金と、前記芯金の周面に設けられた表面層を具備し、
  前記表面層が請求項5に記載の加硫成形体を含み、
  前記ゴムロールは、酸洗浄ライン及びアルカリ洗浄ラインのうち少なくとも1つで用いられる、ゴムロール。
A rubber roll,
The present invention comprises a core bar and a surface layer provided on a peripheral surface of the core bar,
The surface layer comprises the vulcanized molded article according to claim 5,
The rubber roll is used in at least one of an acid washing line and an alkali washing line.
 ゴム成分を含む加硫成形体であって、
 前記加硫成形体を厚み6.0mm以上の試験用加硫成形体1'とした際、JIS K 6253-3:2023に基づきタイプAデュロメータで測定した硬さをX'とし、
 前記加硫成形体を直径15mm、高さ25mmの円柱状の試験用加硫成形体2'とした際、JIS K 6265:2018に基づき、40℃、歪み0.175インチ、荷重55ポンド、振動数毎分1,800回の条件で、定ひずみフレクソメーター試験で評価することにより求めた発熱をY'としたとき、
硬さX'と発熱Y'が、以下の式(2)を満たす、加硫成形体。
 1.4X'-Y'>45.0  (2)
A vulcanized molded article containing a rubber component,
When the vulcanized molded article is a test vulcanized molded article 1' having a thickness of 6.0 mm or more, the hardness measured with a type A durometer based on JIS K 6253-3:2023 is defined as X',
When the vulcanized molded body is a cylindrical test vulcanized molded body 2' having a diameter of 15 mm and a height of 25 mm, the heat generation determined by evaluation in a constant strain flexometer test based on JIS K 6265:2018 under conditions of 40°C, strain of 0.175 inches, load of 55 pounds, and vibration frequency of 1,800 times per minute is defined as Y'.
A vulcanized molded product, in which hardness X' and heat generation Y' satisfy the following formula (2).
1.4X'-Y'>45.0 (2)
PCT/JP2024/011249 2023-03-29 2024-03-22 Rubber composition, vulcanization molded body, and rubber roll WO2024203824A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2023053593 2023-03-29
JP2023-053593 2023-03-29

Publications (1)

Publication Number Publication Date
WO2024203824A1 true WO2024203824A1 (en) 2024-10-03

Family

ID=92906327

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2024/011249 WO2024203824A1 (en) 2023-03-29 2024-03-22 Rubber composition, vulcanization molded body, and rubber roll

Country Status (1)

Country Link
WO (1) WO2024203824A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001342299A (en) * 2000-06-01 2001-12-11 Denki Kagaku Kogyo Kk Chloroprene rubber composition
WO2009093695A1 (en) * 2008-01-23 2009-07-30 Ube Industries, Ltd. Rubber composition, rubber composition for base tread, rubber composition for chafer, rubber composition for sidewall, and tire using the rubber compositions
JP2011042774A (en) * 2008-10-16 2011-03-03 Ube Industries Ltd Rubber composition and method for producing the same
JP2012207052A (en) * 2011-03-29 2012-10-25 Ube Industries Ltd Method of producing vinyl-cis-polybutadiene rubber and vinyl-cis-polybutadiene rubber
JP2020196786A (en) * 2019-05-31 2020-12-10 デンカ株式会社 Rubber composition, vulcanizate thereof, and molded article
JP2021095493A (en) * 2019-12-17 2021-06-24 デンカ株式会社 Rubber composition and vulcanized molding of the rubber composition
JP2022013964A (en) * 2018-11-09 2022-01-19 デンカ株式会社 Rubber composition, vulcanized product and vulcanized molded product of the rubber composition
WO2023136318A1 (en) * 2022-01-14 2023-07-20 デンカ株式会社 Composition, vulcanizate, and vulcanized molded body

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001342299A (en) * 2000-06-01 2001-12-11 Denki Kagaku Kogyo Kk Chloroprene rubber composition
WO2009093695A1 (en) * 2008-01-23 2009-07-30 Ube Industries, Ltd. Rubber composition, rubber composition for base tread, rubber composition for chafer, rubber composition for sidewall, and tire using the rubber compositions
JP2011042774A (en) * 2008-10-16 2011-03-03 Ube Industries Ltd Rubber composition and method for producing the same
JP2012207052A (en) * 2011-03-29 2012-10-25 Ube Industries Ltd Method of producing vinyl-cis-polybutadiene rubber and vinyl-cis-polybutadiene rubber
JP2022013964A (en) * 2018-11-09 2022-01-19 デンカ株式会社 Rubber composition, vulcanized product and vulcanized molded product of the rubber composition
JP2020196786A (en) * 2019-05-31 2020-12-10 デンカ株式会社 Rubber composition, vulcanizate thereof, and molded article
JP2021095493A (en) * 2019-12-17 2021-06-24 デンカ株式会社 Rubber composition and vulcanized molding of the rubber composition
WO2023136318A1 (en) * 2022-01-14 2023-07-20 デンカ株式会社 Composition, vulcanizate, and vulcanized molded body

Similar Documents

Publication Publication Date Title
JP5525817B2 (en) Chloroprene rubber composition and use thereof
KR102574679B1 (en) Method for producing statistical copolymer containing chloroprene monomer unit and unsaturated nitrile monomer unit, statistical copolymer, latex and use thereof
WO2012124442A1 (en) Chloroprene rubber composition and vulcanized rubber thereof, and rubber molded product, vibration-damping rubber member, engine mount, and hose using vulcanized rubber
JP7698742B2 (en) Composition, vulcanizate, and vulcanized molded article
EP1148094A1 (en) Chloroprene-based rubber composition
JP6765629B2 (en) Acrylic rubber and its cross-linked rubber
JP5465387B2 (en) Anti-vibration rubber material and automotive engine mount using the same
EP3689927B1 (en) Method for producing nitrile group-containing copolymer rubber
CN117881734A (en) Rubber composition, sulfide, and vulcanized molded article
JP7543428B2 (en) Rubber composition, vulcanizate, and vulcanized molded article
JP7422266B1 (en) Rubber composition and tire bladder
WO2023210519A1 (en) Rubber composition, vulcanized molded body, and vulcanizate
WO2024203824A1 (en) Rubber composition, vulcanization molded body, and rubber roll
JP2024141772A (en) Rubber composition, vulcanized molded product, and rubber roll
JP2024141770A (en) Rubber composition, vulcanized molded product, and rubber roll
JP7543426B2 (en) Rubber composition, vulcanizate, and vulcanized molded article
JP5180996B2 (en) Chloroprene rubber composition
WO2024203716A1 (en) Chloroprene/unsaturated nitrile copolymer latex, rubber component, rubber composition, vulcanized molded body, and production method for chloroprene/unsaturated nitrile copolymer latex
WO2024203715A1 (en) Chloroprene-unsaturated nitrile copolymer latex, rubber component, rubber composition, vulcanized molding, and method for producing chloroprene-unsaturated nitrile copolymer latex
JP2024101958A (en) Rubber composition, vulcanized material, and vulcanized molded body
WO2023189908A1 (en) Rubber composition, vulcanizate, and vulcanized molded object
JP2024100049A (en) Rubber composition, vulcanized material, and vulcanized molded body
WO2023153405A1 (en) Rubber composition, vulcanizate, and vulcanized molded body
WO2023042727A1 (en) Rubber composition, vulcanizate, and vulcanized molded object
WO2024101276A1 (en) Rubber composition, vulcanized product, and vulcanized molded body

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 24779942

Country of ref document: EP

Kind code of ref document: A1