[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2024203713A1 - Parking assist system - Google Patents

Parking assist system Download PDF

Info

Publication number
WO2024203713A1
WO2024203713A1 PCT/JP2024/011002 JP2024011002W WO2024203713A1 WO 2024203713 A1 WO2024203713 A1 WO 2024203713A1 JP 2024011002 W JP2024011002 W JP 2024011002W WO 2024203713 A1 WO2024203713 A1 WO 2024203713A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
target
acceleration
speed
actual
Prior art date
Application number
PCT/JP2024/011002
Other languages
French (fr)
Japanese (ja)
Inventor
石川康太
Original Assignee
株式会社アイシン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アイシン filed Critical 株式会社アイシン
Publication of WO2024203713A1 publication Critical patent/WO2024203713A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/06Automatic manoeuvring for parking

Definitions

  • the present invention relates to a parking assistance system that controls a vehicle to move it into a parking space.
  • JP 2021-160476 A discloses a parking assistance system that controls the driving force and braking force acting on the wheels to control the vehicle to move it into a parking space.
  • the parking assistance system performs an automatic driving process to move the vehicle, but even when such an automatic driving process is being performed, it is possible to apply a braking force to the wheels when the driver operates the brakes.
  • the parking assistance system disclosed in the document when an obstacle is detected to be present around the vehicle, the parking assistance system notifies the driver of the presence of the obstacle.
  • the parking assistance system determines whether the brake operation is appropriate, and if appropriate, applies a braking force to the wheels in response to the driver's brake operation, and continues the automatic driving process thereafter.
  • the parking assistance system determines that the driver's brake operation is not appropriate, the parking assistance system stops the automatic driving process so that it cannot be resumed, or suspends the automatic driving process so that it can be resumed, or continues the automatic driving process while issuing a warning, etc., depending on the location of the obstacle recognized by the parking assistance system.
  • the vehicle when control is performed according to the location of an obstacle, the vehicle can be prevented from coming into contact with the obstacle and appropriately controlled.
  • the driver does not necessarily operate the brakes during automatic driving by the parking assistance system only when considering contact with an obstacle. For example, the driver may want to stop in a parking lot to see guidance or the like. In such a case, if the parking assistance system determines that there is no obstacle and the automatic driving process continues without decelerating, this may reduce the driver's convenience. In addition, the driver may feel uneasy if the vehicle continues to move without decelerating against his or her will despite the braking operation. On the other hand, if the driver's braking operation is always prioritized when the driver operates the brakes, the parking assistance may be interrupted or stopped, and the vehicle may not be able to be moved appropriately into a parking space, which may reduce the driver's convenience.
  • the parking assistance system is a parking assistance system equipped with a vehicle control unit that controls the driving force and braking force acting on the wheels to control the vehicle to move the vehicle equipped with the wheels into a parking space, and further includes a brake operation detection unit that detects the brake operation by the driver, a speed detection unit that detects the actual speed of the vehicle, and an acceleration detection unit that detects the actual acceleration of the vehicle, and while the vehicle is moving into the parking space, the vehicle control unit executes a target calculation process to calculate a first target speed and a first target acceleration for moving and stopping the vehicle to the parking target position based on a parking target position set in the parking space and the current position of the vehicle, and A first feedback control is executed to control the driving force and braking force acting on the wheels so as to bring the actual speed closer to the first target speed based on the difference between the actual acceleration and the first target acceleration, and to bring the actual acceleration closer to the first target acceleration based on the difference between the actual acceleration and the first target acceleration.
  • a second feedback control is executed in place of the first feedback control, in which the lower of the first target speed and the actual speed is set as a second target speed, and the driving force and braking force acting on the wheels are controlled based on the difference between the actual speed and the second target speed so as to bring the actual speed closer to the second target speed.
  • the vehicle control unit when the actual speed of the vehicle becomes lower than the target value of the feedback control due to the driver's brake operation while the vehicle is traveling under the vehicle control of the vehicle control unit, the vehicle control unit changes the target value to a lower value in accordance with the actual speed. In other words, the vehicle control unit executes the second feedback control instead of the first feedback control. If the first feedback control is continued even when the actual speed becomes lower than the target value due to the driver's brake operation, the change in speed due to the driver's brake operation may be treated as a disturbance, and the traveling speed may be maintained.
  • the driver's brake operation is recognized as a disturbance, and a driving force in the accelerating direction is not output, so that the feedback control can be appropriately continued, and the vehicle can be prevented from traveling without decelerating against the driver's intention.
  • the vehicle control unit maintains the target value. In other words, the vehicle control unit continues to execute the first feedback control. Therefore, even if the driver brakes while the vehicle is traveling under the vehicle control of the vehicle control unit, the vehicle can be appropriately stopped at the parking target position.
  • this configuration realizes a parking assistance system that can move the vehicle into a parking space while appropriately balancing the automatic control of the driving force and braking force acting on the wheels and the braking force caused by the driver's braking operation.
  • FIG. 1 is an explanatory diagram showing an example of parking assistance
  • FIG. 11 is an explanatory diagram showing another example of parking assistance
  • FIG. 1 is a schematic block diagram showing an example of a system configuration of a vehicle including a parking assistance system
  • FIG. 1 is a block diagram showing an example of a feedback control system that selectively performs a first feedback control and a second feedback control
  • a flowchart showing an example of a procedure for selecting the first feedback control and the second feedback control.
  • the explanatory diagrams of Fig. 1 and Fig. 2 each illustrate one form of parking assistance when parking the vehicle 50.
  • the block diagram of Fig. 3 shows a schematic example of a system configuration of the vehicle 50 including the parking assistance system 100.
  • the parking assistance system 100 of this embodiment controls the driving force and braking force acting on the wheels W, as well as the steering angle, to perform vehicle control for moving the vehicle 50 to the parking space E.
  • the parking assistance system 100 parks the vehicle 50 in the parking space E by automatic driving.
  • the parking assistance system 100 may be configured so that the driver manually steers based on guidance from the parking assistance system 100, and only driving and braking are performed by automatic driving, i.e., semi-automatic driving.
  • the parking assistance system 100 is realized by the cooperation of ECU (Electronic Control Unit) 1 with other systems and various sensors.
  • ECU 1 corresponds to a vehicle control unit that controls the vehicle.
  • ECU 1 is configured with a processor 1P such as a microcomputer, microprocessor, or DSP (Digital Signal Processor), a program memory 1M in which software such as programs and parameters are stored, and various other electronic components.
  • Processor 1P is the hardware that is the core of ECU 1, and the vehicle control unit is realized by the cooperation of various hardware with processor 1P as the core and software such as programs stored in program memory 1M.
  • parking assistance system 100 is realized by the cooperation of ECU 1 with other systems such as drive system 20, brake system 30, steering system 40, and various sensors and peripheral devices indicated by symbols "51" to "58".
  • the various functional units that make up the parking assistance system 100 are described below, but each functional unit may be realized by multiple pieces of hardware, or may be realized by the cooperation of at least one piece of hardware and software, and does not necessarily have to be configured as an independent component.
  • the parking assistance system 100 moves and stops the vehicle 50 to the parking target position Pt based on the parking target position Pt set in the parking space E and the current position Pr of the vehicle 50.
  • the parking target position Pt and the current position Pr correspond to coordinates in a coordinate system (parking assistance coordinate system) when the parking assistance system 100 performs parking assistance (vehicle control).
  • the parking assistance coordinate system may be absolute coordinates (world coordinate system) that cover the entire Earth, or a local coordinate system that covers the area around the vehicle 50 or the parking space E, the entire parking lot including the parking space E, or the area including the parking lot.
  • the symbol "Q" shown in FIG. 1 and FIG. 2 indicates a reference point on the vehicle 50 when identifying the position of the vehicle 50.
  • the current position Pr corresponds to the coordinates where the reference point Q is located in the parking assistance coordinate system.
  • the parking target position Pt indicates the coordinates where the reference point Q of the vehicle 50 is located when the vehicle 50 is appropriately located in the parking space E.
  • the parking assistance system 100 calculates the movement trajectory of the reference point Q when the vehicle 50 moves from the current position Pr to the parking target position Pt based on the current position Pr and the parking target position Pt, and sets this as the movement path K.
  • the parking assistance system 100 controls the vehicle so that the reference point Q moves from the current position Pr along the movement path K.
  • the parking assistance system 100 stops the vehicle 50 because the vehicle 50 is appropriately located in the parking space E.
  • FIG. 1 illustrates so-called garage parking.
  • the driver passes parking space E, steers the vehicle 50 in the opposite direction to parking space E, and stops the vehicle 50 in a slightly turned position.
  • This position can be called the reverse start position where the vehicle 50 starts to reverse toward the parking space E.
  • the vehicle 50 may be stopped in a straight line as in FIG. 2 without turning the steering wheel in this way.
  • the direction of the steering wheels may be changed by so-called stationary steering in cooperation with the steering system 40.
  • FIG. 2 illustrates so-called parallel parking.
  • the driver also stops the vehicle 50 by passing the parking space E, for example.
  • FIG. 2 illustrates an example of stopping the vehicle 50 without turning the steering wheel
  • the vehicle 50 may be stopped with the steering wheel turned in the opposite direction to the parking space E, as in FIG. 1.
  • the parking assistance system 100 guides the driver on the direction of travel and the stopping position (reverse start position). For example, it is preferable that the driver is guided by display on a display in the vehicle cabin or by audio guidance, and the driver operates an accelerator pedal, brake pedal, steering wheel, etc. (not shown) to move the vehicle 50 to the reverse start position. In one embodiment, when the vehicle 50 reaches the reverse start position, the parking assistance system 100 notifies the driver that automatic driving, including automatic steering, is possible.
  • the driving operation of the vehicle 50 is left to the parking assistance system 100, and the parking assistance system 100 moves the vehicle 50 to the parking target position Pt by automatic driving.
  • the vehicle control targeted by this embodiment is control for moving the vehicle 50 from the reverse start position to the parking target position Pt. Therefore, the driving assistance system controls the driving force and braking force acting on the wheels W, and preferably also controls the steering angle, to move the vehicle 50 to the parking target position Pt and stop it based on the parking target position Pt set in the parking space E and the current position Pr of the vehicle 50.
  • the reverse start position can be said to be the initial value of the current position Pr of the vehicle 50.
  • the vehicle control is not limited to a form in which driving, braking, and steering are all performed automatically, but may be semi-automatic driving in which only driving and braking are performed automatically and steering is performed manually by the driver.
  • the vehicle control that is the subject of this embodiment corresponds to control of moving the vehicle 50 from a position where the vehicle 50 temporarily stopped before starting to move to the parking space E to the parking target position Pt when performing vehicle control by automatic driving without stopping the vehicle 50 at the parking target position Pt. And, this position where the vehicle 50 temporarily stopped can be said to be the initial value of the current position Pr of the vehicle 50.
  • the vehicle 50 includes an ECU 1, which is the core of the parking assistance system 100, as well as a drive system 20, a brake system 30, and a steering system 40.
  • the drive system 20 is a system that controls a drive device 25 that drives the wheels W.
  • the drive device 25 includes, for example, an internal combustion engine, a rotating electric machine, a gear mechanism, and an engagement device that connects and disconnects the power transmission between rotating members, all of which are not shown.
  • the brake system 30 is a system that generates a braking force on the wheels W.
  • the steering system 40 is a system that moves the steered wheels among the wheels W to change the traveling direction of the vehicle 50.
  • the vehicle 50 is also equipped with various sensors and peripheral devices such as an accelerator sensor 51, a shift position sensor 52, a brake sensor 53, a speed sensor 54, an acceleration sensor 55, a steering angle sensor 56, a sonar 57, and a camera 58.
  • the accelerator sensor 51 is a sensor that detects the amount of operation of the accelerator pedal by the driver.
  • the shift position sensor 52 is a sensor that detects an instruction input that indicates the operating mode of the drive unit 25, such as a gear shift (including reverse, parking, etc.) indicated by a shift lever (not shown).
  • the brake sensor 53 is a sensor that detects the amount of operation of the brake pedal by the driver.
  • the speed sensor 54 is a sensor that detects the traveling speed of the vehicle 50, that is, the rotation speed of the wheels W.
  • the acceleration sensor 55 is a sensor that detects the acceleration of the vehicle 50, and the acceleration sensor 55 of this embodiment is also capable of detecting, for example, the inclination angle and inclination direction of the ground on which the vehicle 50 is located.
  • the steering angle sensor 56 is a sensor that detects the amount of operation of the steering wheel by the driver, and preferably detects the amount of operation as the steering angle of the vehicle 50.
  • the sonar 57 is installed at multiple locations on the vehicle 50 and detects the presence or absence of obstacles around the vehicle 50. Preferably, the sonar 57 is an active sonar. Also, instead of the sonar 57, a laser radar or the like may be provided as an obstacle sensor.
  • the camera 58 is installed at multiple locations on the vehicle 50 and acquires images of the surroundings of the vehicle 50.
  • the vehicle 50 is preferably equipped with an image processing system that performs image recognition of the presence or absence of obstacles around the vehicle 50 based on the surrounding images, and image recognition of the dividing lines that separate the parking spaces E to identify parking spaces E where no other vehicles are parked and in which the vehicle 50 can be parked.
  • the sensors and peripheral devices indicated by the reference numerals "51" to "58", including the above-mentioned ECU 1 (parking assistance system 100), drive system 20, brake system 30, and steering system 40, are connected to each other so as to be able to communicate with each other via an in-vehicle network 90 such as a CAN (Controller Area Network).
  • the drive system 20 controls the drive device 25 in cooperation with an accelerator sensor 51, a shift position sensor 52, a brake sensor 53, a speed sensor 54, an acceleration sensor 55, a steering angle sensor 56, etc., via the in-vehicle network 90.
  • the brake system 30 controls the brake mechanism 35 in cooperation with the brake sensor 53 via the in-vehicle network 90.
  • the steering system 40 controls the steering mechanism 45, including the steering wheel and steered wheels, in cooperation with the steering angle sensor 56.
  • the brake mechanism 35 and the steering mechanism 45 are driven by actuators and configured in a so-called by-wire manner via the in-vehicle network 90.
  • the drive system 20, brake system 30, and steering system 40 can also cooperate with sonar 57 and camera 58 (image processing system).
  • the ECU 1 also cooperates with the drive system 20, brake system 30, steering system 40, image processing system, and sensors and peripheral devices indicated by reference numbers "51" to "58.”
  • the ECU 1 which is the core of the parking assistance system 100, cooperates with these systems, sensors, and peripheral devices, the cooperating systems, sensors, and peripheral devices are also included in the parking assistance system 100.
  • the position information (current position Pr) of the vehicle 50 is determined by a GPS (Global Positioning System) (not shown), by identifying the relative position between the parking space E and the vehicle 50 through image recognition by an image processing system, or by communication between a transmitter (not shown) in the parking lot and a receiver (not shown) mounted on the vehicle 50.
  • the position information of the vehicle 50 may be determined by combining a number of these.
  • it is preferable that the coordinates of the parking target position Pt in the parking space E, etc. are stored as map information in a database (storage medium) (not shown) mounted on the vehicle 50.
  • the map information may be permanently stored in the database of the vehicle 50, or may be downloaded by communication or the like when parking assistance is received.
  • the parking assistance system 100 performs vehicle control to move the vehicle 50 from the reverse start position (temporary stop position, initial value of the current position Pr) to the parking target position Pt. During this time, the vehicle 50 is driven automatically. Even when the vehicle control by the ECU 1 is executed and the vehicle 50 is traveling by automatic driving, the brake system 30 can apply a braking force to the wheels W when the driver operates the brakes. In this case, if the parking assistance system 100 ignores the driver's brake operation and prioritizes vehicle control, the driver's convenience may be impaired. In addition, even if the driver operates the brakes, the vehicle 50 continues to move without decelerating against the driver's intention, which may cause the driver to feel uneasy. On the other hand, if the parking assistance system 100 prioritizes the driver's brake operation, the parking assistance is interrupted or stopped, and the vehicle 50 cannot be moved appropriately to the parking space E, which may reduce the driver's convenience.
  • the parking assistance system 100 of this embodiment is configured to be able to move the vehicle 50 into the parking space E while appropriately coordinating the automatic control of the driving force and braking force acting on the wheels W with the braking force caused by the driver's brake operation.
  • the following description will also refer to the block diagram in FIG. 4, the block diagrams in FIG. 5 and FIG. 6, and the flowchart in FIG. 7.
  • parking assistance system 100 in which various systems, sensors, peripheral devices and ECU 1 (vehicle control unit) work together, includes a brake operation detection unit (brake sensor 53) that detects the driver's brake operation, a speed detection unit (speed sensor 54) that detects actual speed Vr that is the actual speed of vehicle 50, and an acceleration detection unit (acceleration sensor 55) that detects actual acceleration Ar that is the actual acceleration of vehicle 50.
  • brake operation detection unit brake sensor 53
  • speed detection unit speed sensor 54
  • acceleration detection unit acceleration detection unit
  • ECU 1 executes target calculation processing to calculate a first target speed Vt1 and a first target acceleration At1 for moving and stopping vehicle 50 to parking target position Pt based on parking target position Pt set in parking space E and the current position Pr of vehicle 50.
  • the ECU 1 executes a first feedback control FB1 that controls the driving force and braking force acting on the wheels W so as to bring the actual speed Vr closer to the first target speed Vt1 based on the difference between the actual speed Vr and the first target speed Vt1, and to bring the actual acceleration Ar closer to the first target acceleration At1 based on the difference between the actual acceleration Ar and the first target acceleration At1.
  • a first feedback control FB1 that controls the driving force and braking force acting on the wheels W so as to bring the actual speed Vr closer to the first target speed Vt1 based on the difference between the actual speed Vr and the first target speed Vt1, and to bring the actual acceleration Ar closer to the first target acceleration At1 based on the difference between the actual acceleration Ar and the first target acceleration At1.
  • the driving force is mainly generated by the driving device 25 via the driving system 20, and the braking force is mainly generated by the brake mechanism 35 via the brake system 30.
  • the driving force is output from an internal combustion engine, a rotating electric machine, or a hybrid driving device that combines an internal combustion engine and a rotating electric machine, included in the driving device 25.
  • the brake mechanism 35 includes a wheel brake provided on the wheel W, and the braking force is generated not only by the wheel brake, but also by a brake provided in the drive transmission system of the driving device 25, the negative torque of the rotating electric machine, and the engine brake of the internal combustion engine.
  • the ECU 1 executes the second feedback control FB2 instead of the first feedback control FB1.
  • the ECU 1 executes the second feedback control FB2, which controls the driving force and the braking force acting on the wheels W so that the lower of the first target speed Vt1 and the actual speed Vr is set as the second target speed Vt2, the lower of the first target acceleration At1 and the actual acceleration Ar is set as the second target acceleration At2, and the actual speed Vr approaches the second target speed Vt2 based on the difference between the actual speed Vr and the second target speed Vt2, and the actual acceleration Ar approaches the second target acceleration At2 based on the difference between the actual acceleration Ar and the second target acceleration At2.
  • the acceleration caused by the brake operation is a negative value because it is an acceleration that decelerates the vehicle 50. Therefore, the "acceleration" compared here is not an absolute value comparison, but a value taking into account positive and negative.
  • the parking assistance system 100 includes a position feedback controller 11 (position FB), a speed feedback controller 12 (speed FB), and an acceleration feedback controller 13 (acceleration FB) as feedback controllers.
  • the position feedback controller 11 calculates a target speed Vt according to a moving distance from the current position Pr to the parking target position Pt through a moving path K, for example, based on the parking target position Pt and the current position Pr of the vehicle 50.
  • the speed feedback controller 12 calculates a target acceleration At for moving at the target speed Vt based on the target speed Vt and the actual speed Vr.
  • the acceleration feedback controller 13 calculates a power F for accelerating or decelerating the vehicle 50 at the target acceleration At based on the target acceleration At and the actual acceleration Ar.
  • the power F is a driving force and a braking force acting on the wheels W. In general, when accelerating the vehicle 50, the power F is a driving force, and when decelerating the vehicle 50, the power F is a braking force.
  • FIGS. 5 and 6 show block diagrams of the feedback controller.
  • the position feedback controller 11, the velocity feedback controller 12, and the acceleration feedback controller 13 are all configured as PI controllers that perform proportional-integral control.
  • the feedback controller includes a proportional gain 15 (Kp), an integral controller 16 (1/s), and an integral gain 17 (Ki).
  • Kp proportional gain 15
  • an integral controller 16 (1/s)
  • Ki integral gain 17
  • one or more of these controllers may be configured as a PID controller that performs proportional-integral-derivative control.
  • the block diagram in FIG. 5 illustrates an example of a controller that executes common control regardless of whether or not the driver operates the brakes.
  • it corresponds to the position feedback controller 11.
  • the position feedback controller 11 executes proportional control and integral control on the difference between the parking target position Pt and the current position Pr to calculate the target speed Vt.
  • the speed feedback controller 12 that uses the target speed Vt executes different controls, specifically the first feedback control FB1 or the second feedback control FB2, depending on whether or not the driver operates the brakes.
  • the target speed Vt calculated by the position feedback controller 11 corresponds to the first target speed Vt1, which is the target speed Vt in the first feedback control FB1.
  • the block diagram in FIG. 6 illustrates an example of a controller that executes different controls depending on whether or not the driver operates the brakes.
  • it corresponds to the speed feedback controller 12 and the acceleration feedback controller 13.
  • the speed feedback controller 12 executes proportional control and integral control on the difference between the target speed Vt and the actual speed Vr to calculate the target acceleration At.
  • the acceleration feedback controller 13 that uses the target acceleration At executes different controls, specifically the first feedback control FB1 or the second feedback control FB2, depending on whether or not the driver operates the brakes.
  • the target acceleration At calculated by the speed feedback controller 12 corresponds to the first target acceleration At1, which is the target acceleration At in the first feedback control FB1.
  • the acceleration feedback controller 13 also executes proportional control and integral control on the difference between the target acceleration At and the actual acceleration Ar to calculate the power F.
  • the speed feedback controller 12 and the acceleration feedback controller 13 execute different controls, specifically the first feedback control FB1 or the second feedback control FB2, depending on whether or not the driver operates the brakes. For this reason, in contrast to the feedback controller illustrated in FIG. 5, the feedback controller illustrated in FIG. 6 includes a selector 18 that selects the target value before the difference calculator between the target value (target speed Vt, target acceleration At) and the actual value (actual speed Vr, actual acceleration Ar) that is fed back.
  • the selector 18 selects either the first target speed Vt1 or the actual speed Vr as the second target speed Vt2. Specifically, when the brake sensor 53 detects a brake operation by the driver, the selector 18 selects the lower of the target speed Vt (first target speed Vt1) and the actual speed Vr as the target speed Vt (second target speed Vt2). When the brake sensor 53 does not detect a brake operation by the driver, the selector 18 selects the first target speed Vt1 as the target speed Vt, regardless of the magnitude relationship between the target speed Vt (first target speed Vt1) and the actual speed Vr.
  • the speed feedback controller 12 executes the first feedback control FB1 based on the first target speed Vt1 and the actual speed Vr.
  • the speed feedback controller 12 executes the second feedback control FB2 based on the second target speed Vt2 and the actual speed Vr.
  • the selector 18 selects either the first target acceleration At1 or the actual acceleration Ar as the second target acceleration At2. Specifically, when the brake sensor 53 detects a brake operation by the driver, the selector 18 selects the lower of the target acceleration At (first target acceleration At1) and the actual acceleration Ar as the target acceleration At (second target acceleration At2). When the brake sensor 53 does not detect a brake operation by the driver, the selector 18 selects the first target acceleration At1 as the target acceleration At, regardless of the magnitude relationship between the target acceleration At (first target acceleration At1) and the actual acceleration Ar. When the target acceleration At is set to the first target acceleration At1, the acceleration feedback controller 13 executes the first feedback control FB1 based on the first target acceleration At1 and the actual acceleration Ar.
  • the acceleration feedback controller 13 executes the second feedback control FB2 based on the second target acceleration At2 and the actual acceleration Ar.
  • the second feedback control FB2 when actual values (actual speed Vr, actual acceleration Ar) are selected as the target values (target speed Vt, target acceleration At), the difference between the target value and the actual value is zero. Therefore, regardless of the proportional gain 15 (Kp), the output from the proportional control is zero. Also, in the integral control, the accumulated value is zero regardless of the integral gain 17 (Ki), so the speed change and acceleration change due to the driver's brake operation are prevented from being accumulated and becoming a disturbance.
  • the first feedback control FB1 and the second feedback control FB2 have the same control block configuration, but only the target values are different. However, this does not prevent the control block configurations of the first feedback control FB1 and the second feedback control FB2 from being different.
  • the procedure for selecting the first feedback control FB1 and the second feedback control FB2 will be described below with reference to the flowchart in FIG. 7.
  • the termination condition of the vehicle control for moving the vehicle 50 to the parking space E is met (#1). For example, if the vehicle 50 has completed moving to the parking space E, it is determined that the termination condition is met. In addition, it is also determined that the termination condition is met if an obstacle is detected, it is determined that the vehicle 50 cannot move along the movement path K to the parking target position Pt, and the vehicle 50 stops moving and stops. If it is determined that the termination condition is met, the ECU 1 ends the vehicle control.
  • step #1 it is determined whether or not the driver has operated the brakes (#2). In this embodiment, whether or not the brakes have been operated is determined based on the detection result of the brake sensor 53 serving as a brake operation detection unit. As described above, the brake mechanism 35 is driven and controlled by the by-wire via the brake system 30. Therefore, the physical quantity for determining whether or not the brakes have been operated is not limited to the amount of operation of the brake pedal by the driver, but may be a braking command value given to the brake mechanism 35 by the brake system 30 based on the amount of operation. In this case, the brake system 30 also corresponds to the brake operation detection unit.
  • the ECU 1 determines whether or not the brakes have been operated based on these physical quantities and a preset reference value. It is also possible to determine whether or not the brakes have been operated, without relying on such physical quantities, simply based on whether or not the driver has operated the brake pedal.
  • step #2 if the brake sensor 53 does not detect a brake operation by the driver, it is determined that no brake operation is being performed, the first target speed Vt1 is maintained as the target speed Vt, and the first target acceleration At1 is maintained as the target acceleration At (#20), and the first feedback control FB1 is executed.
  • step #2 If the brake sensor 53 detects a brake operation by the driver, it is determined in step #2 that the driver has applied the brakes, and then the magnitudes of the target speed Vt and the actual speed Vr are compared (#3).
  • This target speed Vt is the first target speed Vt1 in the first feedback control FB1, so in step #3, the magnitudes of the first target speed Vt1 and the actual speed Vr are compared. If it is determined in step #3 that the actual speed Vr is less than the first target speed Vt1, the actual speed Vr is set as the target speed Vt (#4). When the actual speed Vr is set, the target speed Vt is the second target speed Vt2. Therefore, in step #4, the actual speed Vr is set as the second target speed Vt2.
  • step #3 If it is determined in step #3 that the target speed Vt (first target speed Vt1) is equal to or lower than the actual speed Vr, the current target speed Vt is maintained. This is equivalent to setting the target speed Vt (first target speed Vt1) as the target speed Vt (#4B). Since the value is maintained, step #4B does not need to be executed as shown by the dashed line in FIG. 7, but in step #4B, the first target speed Vt1 is set as the second target speed Vt2. The second target speed Vt2 is set through steps #3, #4, and #4B, and the speed feedback controller 12 executes the second feedback control FB2.
  • step #5 the magnitudes of the target acceleration At and the actual acceleration Ar are then compared.
  • This target acceleration At is the first target acceleration At1 in the first feedback control FB1, so in step #5, the magnitudes of the first target acceleration At1 and the actual acceleration Ar are compared. If it is determined in step #5 that the actual acceleration Ar is less than the first target acceleration At1, the actual acceleration Ar is set as the target acceleration At (#6).
  • the target acceleration At when the actual acceleration Ar is set is the second target acceleration At2. Therefore, in step #6, the actual acceleration Ar is set as the second target acceleration At2.
  • step #5 If it is determined in step #5 that the target acceleration At (first target acceleration At1) is equal to or less than the actual acceleration Ar, the current target acceleration At is maintained. This is equivalent to setting the target acceleration At (first target acceleration At1) as the target acceleration At (#6B). Since the value is maintained, step #6B does not need to be executed as shown by the dashed line in FIG. 7, but in step #6B, the first target acceleration At1 is set as the second target acceleration At2.
  • the second target acceleration At2 is set through steps #5, #6, and #6B, and the acceleration feedback controller 13 executes the second feedback control FB2.
  • step #1 After the second target speed Vt2 and the second target acceleration At2 are set and the second feedback control FB2 is executed, the target speed Vt and the target acceleration At are reset to the first target speed Vt1 and the first target acceleration At1, respectively (#20), and the above-mentioned series of processes from step #1 are preferably repeated.
  • step #2 If it is determined in step #2 after the second feedback control FB2 is executed instead of the first feedback control FB1 that there is no brake operation, the process proceeds to step #20, where the first feedback control FB1 is resumed instead of the second feedback control FB2. That is, if the brake sensor 53 no longer detects a brake operation while the second feedback control FB2 is being executed, the ECU 1 executes the first feedback control FB1 instead of the second feedback control FB2.
  • the first feedback control FB1 which is the normal feedback control. Therefore, even if the driver intermittently operates the brakes while the vehicle 50 is running under vehicle control by the vehicle control unit (ECU1), the first feedback control FB1 and the second feedback control FB2 can be appropriately executed, and parking assistance by the vehicle control unit (ECU1) can be appropriately continued.
  • the acceleration may not be included in the control target, and only the speed may be the control target. That is, when the brake system 30 detects the brake operation by the driver while the ECU 1 is executing the first feedback control FB1, the ECU 1 may execute the second feedback control FB2, instead of the first feedback control FB1, in which the lower of the first target speed Vt1 and the actual speed Vr is set as the second target speed Vt2, and the power F (driving force and braking force) acting on the wheels W is controlled so as to bring the actual speed Vr closer to the second target speed Vt2 based on the difference between the actual speed Vr and the second target speed Vt2.
  • the control targeting the speed is executed, and in FIG. 7, steps #5, #6, and #6B may be omitted, and detailed explanation will be omitted since it can be easily understood by those skilled in the art.
  • the vehicle 50 is equipped with sonars 57 that are installed at multiple locations on the vehicle 50 and detect the presence or absence of obstacles around the vehicle 50. These sonars 57 correspond to the obstacle detection unit in the parking assistance system 100 that detects obstacles that may come into contact with the vehicle 50. In addition, if a laser radar or the like is provided, the laser radar also corresponds to the obstacle detection unit. As described above, the vehicle 50 may also be equipped with an image processing system that is installed at multiple locations on the vehicle 50 and performs image recognition to determine the presence or absence of obstacles around the vehicle 50 based on images captured by a camera 58 that captures images of the vehicle 50. Such an image processing system can also cooperate with the parking assistance system 100, in which case the image processing system corresponds to the obstacle detection unit in the parking assistance system 100.
  • the parking assistance system 100 can further include an obstacle detection unit that detects an obstacle that may come into contact with the vehicle 50. Then, when the obstacle detection unit detects an obstacle while the vehicle 50 is moving to the parking space E, the ECU 1 preferably calculates the first target speed Vt1 and the first target acceleration At1 in the target calculation process so that the vehicle 50 stops without coming into contact with the obstacle.
  • the first feedback control FB1 and the second feedback control can be selectively executed appropriately, and parking assistance can be performed to prevent the vehicle 50 from coming into contact with the obstacle.
  • the parking assistance system 100 of this embodiment can move the vehicle 50 into the parking space E while appropriately balancing the automatic control of the driving force and braking force acting on the wheels W and the braking force caused by the driver's brake operation.
  • the parking assistance system (100) is a parking assistance system (100) equipped with a vehicle control unit (1) that controls the driving force and braking force acting on the wheels (W) to control the vehicle (50) equipped with the wheels (W) to move the vehicle (50) to a parking space (E), and includes a brake operation detection unit (30) that detects the driver's brake operation, a speed detection unit (54) that detects the actual speed (Vr) of the vehicle (50), and an actual acceleration detection unit (55) that detects the actual acceleration of the vehicle (50). and an acceleration detection unit (55) for detecting an actual acceleration (Ar) which is equal to or greater than the actual acceleration (Ar) of the vehicle (50).
  • the vehicle control unit (1) executes a target calculation process for calculating a first target speed (Vt1) and a first target acceleration (At1) for moving the vehicle (50) to the parking target position (Pt) and stopping the vehicle (50) based on a parking target position (Pt) set in the parking space (E) and a current position (Pr) of the vehicle (50), and a first feedback control (FB1) for controlling a driving force and a braking force acting on the wheels (W) so as to bring the actual speed (Vr) closer to the first target speed (Vt1) based on a difference between the actual speed (Vr) and the first target speed (Vt1), and so as to bring the actual acceleration (Ar) closer to the first target acceleration (At1) based on a difference between the actual acceleration (Ar) and the first target acceleration (At1); and during the execution of the first feedback control (FB1), the brake operation detection unit (30) When the brake operation by the driver
  • the vehicle control unit (1) changes the target value to a lower value in accordance with the actual speed (Vr).
  • the vehicle control unit (1) executes the second feedback control (FB2) instead of the first feedback control (FB1). If the first feedback control (FB1) is continued even if the actual speed (Vr) becomes lower than the target value due to the brake operation of the driver, the change in speed due to the brake operation of the driver may be treated as a disturbance, and the traveling speed may be maintained.
  • the feedback control can be appropriately continued by avoiding the output of a driving force in the accelerating direction by recognizing the brake operation of the driver as a disturbance, and the vehicle (50) can be prevented from traveling without decelerating against the driver's intention.
  • the vehicle control unit (1) maintains the target value. That is, the vehicle control unit (1) continues to execute the first feedback control (FB1). Therefore, even if the driver brakes while the vehicle (50) is traveling under the vehicle control of the vehicle control unit (1), the vehicle (50) can be appropriately stopped at the parking target position (Pt).
  • a parking assistance system (100) can be realized that can move the vehicle (50) to the parking space (E) while appropriately adjusting the automatic control of the driving force (F) and braking force (F) acting on the wheels (W) and the braking force due to the driver's brake operation.
  • the second feedback control (FB2) includes a process of controlling the driving force (F) and the braking force (F) acting on the wheels (W) so as to bring the actual acceleration (Ar) closer to the second target acceleration (At2), based on the difference between the actual acceleration (Ar) and the second target acceleration (At2), by setting the lower of the first target acceleration (At1) and the actual acceleration (Ar) as the second target acceleration (At2).
  • the vehicle control unit (1) changes the target values to lower values in accordance with the actual speed (Vr) and actual acceleration (Ar). In other words, the vehicle control unit (1) executes the second feedback control (FB2) instead of the first feedback control (FB1). If the first feedback control (FB1) is continued even if the actual speed (Vr) and actual acceleration (Ar) become lower than the target values due to the driver's brake operation, the change in speed and acceleration due to the driver's brake operation may be treated as a disturbance, and the traveling speed and acceleration may be maintained.
  • FB2 second feedback control
  • the driver's brake operation is recognized as a disturbance, and a driving force in the accelerating direction is not output, so that the feedback control can be appropriately continued, and the vehicle can be prevented from traveling without decelerating against the driver's intention.
  • the vehicle control unit (1) maintains the target values. In other words, the vehicle control unit (1) continues to execute the first feedback control (FB1). Therefore, even if the driver applies the brakes while the vehicle (50) is traveling under vehicle control by the vehicle control unit (1), the vehicle (50) can be appropriately stopped at the parking target position (Pt). In this case, too, the vehicle is decelerated by more than the driver's brake operation, so deceleration in line with the driver's intention is also achieved.
  • the parking assistance system (100) is preferably configured such that, when the brake operation detection unit (30) no longer detects the brake operation while the vehicle control unit (1) is executing the second feedback control (FB2), the parking assistance system (100) executes the first feedback control (FB1) instead of the second feedback control (FB2).
  • the first feedback control (FB1) which is normal feedback control. Therefore, even if the driver intermittently operates the brakes while the vehicle (50) is traveling under vehicle control by the vehicle control unit (1), the first feedback control (FB1) and the second feedback control (FB2) can be appropriately executed, and parking assistance by the vehicle control unit (1) can be appropriately continued.
  • ECU vehicle control unit
  • 30 Brake system (brake operation detection unit), 50: vehicle
  • 53 Brake sensor (brake operation detection unit)
  • 54 Speed sensor (speed detection unit)
  • 55 Acceleration sensor (acceleration detection unit)
  • 100 Parking assistance system
  • Ar Actual acceleration, At: Target acceleration, At1: First target acceleration, At2: Second target acceleration
  • E Parking space
  • F Power (driving force, braking force)
  • FB Acceleration
  • FB Speed
  • FB1 First feedback control
  • FB2 Second feedback control
  • Pr Current position
  • Pt Parking target position
  • Vr Actual speed
  • Vt Target speed
  • Vt1 First target speed
  • Vt2 Second target speed
  • W Wheels

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Regulating Braking Force (AREA)

Abstract

According to the present invention, during execution of a first feedback control (FB1) in which a driving force (F) and a braking force (F) acting on a wheel are controlled to bring an actual speed (Vr) closer to a first target speed (Vt1) on the basis of a difference between the actual speed (Vr) and the first target speed (Vt1), and to bring an actual acceleration (Ar) closer to a first target acceleration (At1) on the basis of a difference between the actual acceleration (Ar) and the first target acceleration (At1), if a brake operation by a driver is detected, a second feedback control (FB2) in which the driving force (F) and the braking force (F) acting on the wheel are controlled using the lower of the first target speed (Vt1) and the actual speed (Vr) as a second target speed Vt2 is executed instead of the first feedback control (FB1).

Description

駐車支援システムParking Assistance System

 本発明は、車両を駐車スペースへ移動させるための車両制御を行う駐車支援システムに関する。 The present invention relates to a parking assistance system that controls a vehicle to move it into a parking space.

 特開2021-160476号公報には、車輪に作用する駆動力及び制動力を制御して車両を駐車スペースへ移動させるための車両制御を行う駐車支援システムが開示されている。駐車支援システムは、自動運転処理を行って車両を移動させるが、そのような自動運転処理が行われている場合であっても、運転者によるブレーキ操作が行われた場合には、車輪に制動力を作用させることが可能である。当該文献に開示された駐車支援システムでは、車両の周辺に障害物が存在することを検出した場合に、障害物の存在を運転者に報知する。そして、駐車支援システムは、運転者によるブレーキ操作が行われた場合、当該ブレーキ操作が適切であるか否かを判定し、適切な場合には運転者のブレーキ操作に応じて車輪に制動力を作用させると共に、その後も自動運転処理を継続する。一方、駐車支援システムは、運転者によるブレーキ操作が適切ではないと判定すると、駐車支援システムが認識した障害物の存在位置に応じて、自動運転処理を再開不能に中止する、又は自動運転処理を再開可能に中断する、又は警告等を行いつつ自動運転処理を継続する。 JP 2021-160476 A discloses a parking assistance system that controls the driving force and braking force acting on the wheels to control the vehicle to move it into a parking space. The parking assistance system performs an automatic driving process to move the vehicle, but even when such an automatic driving process is being performed, it is possible to apply a braking force to the wheels when the driver operates the brakes. In the parking assistance system disclosed in the document, when an obstacle is detected to be present around the vehicle, the parking assistance system notifies the driver of the presence of the obstacle. When the driver operates the brakes, the parking assistance system determines whether the brake operation is appropriate, and if appropriate, applies a braking force to the wheels in response to the driver's brake operation, and continues the automatic driving process thereafter. On the other hand, when the parking assistance system determines that the driver's brake operation is not appropriate, the parking assistance system stops the automatic driving process so that it cannot be resumed, or suspends the automatic driving process so that it can be resumed, or continues the automatic driving process while issuing a warning, etc., depending on the location of the obstacle recognized by the parking assistance system.

特開2021-160476号公報JP 2021-160476 A

 上記のように、障害物の存在位置に応じた制御が実施されると、車両と障害物とが接触することを防止して、適切に車両を制御することができる。しかし、駐車支援システムによる自動運転中に運転者がブレーキを操作するのは、障害物との接触を考慮した場合のみには限らない。例えば、運転者は、駐車場内で案内等を視認するために停止したいような場合もある。そのような場合に、障害物が存在しないために駐車支援システムの判定によって減速することなく自動運転処理が継続されると運転者の利便性を損なうおそれがある。また、運転者にとってはブレーキ操作を行ったにも拘わらず、その意図に反して車両が減速することなく移動を続けることで、不安感を覚えるおそれもある。一方、運転者によるブレーキ操作があった場合に、常に運転者のブレーキ操作を優先すると、駐車支援が中断或いは中止されてしまって、車両を適切に駐車スペースに移動できず、運転者の利便性を低下させるおそれがある。 As described above, when control is performed according to the location of an obstacle, the vehicle can be prevented from coming into contact with the obstacle and appropriately controlled. However, the driver does not necessarily operate the brakes during automatic driving by the parking assistance system only when considering contact with an obstacle. For example, the driver may want to stop in a parking lot to see guidance or the like. In such a case, if the parking assistance system determines that there is no obstacle and the automatic driving process continues without decelerating, this may reduce the driver's convenience. In addition, the driver may feel uneasy if the vehicle continues to move without decelerating against his or her will despite the braking operation. On the other hand, if the driver's braking operation is always prioritized when the driver operates the brakes, the parking assistance may be interrupted or stopped, and the vehicle may not be able to be moved appropriately into a parking space, which may reduce the driver's convenience.

 上記背景に鑑みて、車輪に作用する駆動力及び制動力の自動制御と、運転者によるブレーキ操作による制動力とを適切に調停しつつ、車両を駐車スペースに移動させることができる駐車支援システムの実現が望まれる。 In light of the above background, it is desirable to realize a parking assistance system that can move a vehicle into a parking space while appropriately balancing the automatic control of the driving force and braking force acting on the wheels with the braking force exerted by the driver.

 上記に鑑みた駐車支援システムは、車輪に作用する駆動力と制動力とを制御して、前記車輪を備えた車両を駐車スペースへ移動させるための車両制御を行う車両制御部を備えた駐車支援システムであって、運転者のブレーキ操作を検出するブレーキ操作検出部と、前記車両の実際の速度である実速度を検出する速度検出部と、前記車両の実際の加速度である実加速度を検出する加速度検出部と、をさらに備え、前記車両制御部は、前記車両の前記駐車スペースへの移動中に、前記駐車スペースに設定した駐車目標位置と前記車両の現在位置とに基づいて、前記車両を前記駐車目標位置まで移動させて停止させるための第1目標速度と第1目標加速度とを演算する目標演算処理を実行すると共に、前記実速度と前記第1目標速度との差に基づいて前記実速度を前記第1目標速度に近づけると共に、前記実加速度と前記第1目標加速度との差に基づいて前記実加速度を前記第1目標加速度に近づけるように、前記車輪に作用する駆動力及び制動力を制御する第1フィードバック制御を実行し、前記第1フィードバック制御の実行中に、前記ブレーキ操作検出部が前記運転者による前記ブレーキ操作を検出した場合には、前記第1フィードバック制御に代えて、前記第1目標速度と前記実速度との内の低い方の速度を第2目標速度とし、前記実速度と前記第2目標速度との差に基づいて前記実速度を前記第2目標速度に近づけるように、前記車輪に作用する駆動力及び制動力を制御する第2フィードバック制御を実行する。 In view of the above, the parking assistance system is a parking assistance system equipped with a vehicle control unit that controls the driving force and braking force acting on the wheels to control the vehicle to move the vehicle equipped with the wheels into a parking space, and further includes a brake operation detection unit that detects the brake operation by the driver, a speed detection unit that detects the actual speed of the vehicle, and an acceleration detection unit that detects the actual acceleration of the vehicle, and while the vehicle is moving into the parking space, the vehicle control unit executes a target calculation process to calculate a first target speed and a first target acceleration for moving and stopping the vehicle to the parking target position based on a parking target position set in the parking space and the current position of the vehicle, and A first feedback control is executed to control the driving force and braking force acting on the wheels so as to bring the actual speed closer to the first target speed based on the difference between the actual acceleration and the first target acceleration, and to bring the actual acceleration closer to the first target acceleration based on the difference between the actual acceleration and the first target acceleration. When the brake operation detection unit detects the brake operation by the driver during the execution of the first feedback control, a second feedback control is executed in place of the first feedback control, in which the lower of the first target speed and the actual speed is set as a second target speed, and the driving force and braking force acting on the wheels are controlled based on the difference between the actual speed and the second target speed so as to bring the actual speed closer to the second target speed.

 本構成によれば、車両制御部の車両制御による車両の走行中に、運転者のブレーキ操作によって、車両の実速度がフィードバック制御の目標値よりも低くなった場合には、車両制御部は、当該目標値を実速度に合わせて低い値に変更する。つまり、車両制御部は、第1フィードバック制御に代えて第2フィードバック制御を実行する。運転者のブレーキ操作によって、実速度が目標値より低くなっても第1フィードバック制御が継続された場合には、運転者のブレーキ操作に伴う速度の変化が外乱として扱われ、走行速度が維持されることもある。しかし、本構成によれば、運転者のブレーキ操作を外乱と認識して加速方向の駆動力が出力されることを回避してフィードバック制御を適切に継続することができると共に、運転者の意図に反して車両が減速せずに走行することを抑制することができる。一方、運転者のブレーキ操作があった場合であっても、車両の実速度がフィードバック制御の目標値よりも高い場合には、車両制御部は当該目標値を維持する。つまり、車両制御部は、第1フィードバック制御の実行を継続する。そのため、車両制御部の車両制御による車両の走行中に運転者のブレーキ操作があっても、車両を駐車目標位置に適切に停止させることができる。また、この場合、運転者のブレーキ操作相当以上減速されているため、運転者の意図に沿った減速も実現されている。このように、本構成によれば、車輪に作用する駆動力及び制動力の自動制御と、運転者によるブレーキ操作による制動力とを適切に調停しつつ、車両を駐車スペースに移動させることができる駐車支援システムを実現することができる。 According to this configuration, when the actual speed of the vehicle becomes lower than the target value of the feedback control due to the driver's brake operation while the vehicle is traveling under the vehicle control of the vehicle control unit, the vehicle control unit changes the target value to a lower value in accordance with the actual speed. In other words, the vehicle control unit executes the second feedback control instead of the first feedback control. If the first feedback control is continued even when the actual speed becomes lower than the target value due to the driver's brake operation, the change in speed due to the driver's brake operation may be treated as a disturbance, and the traveling speed may be maintained. However, according to this configuration, the driver's brake operation is recognized as a disturbance, and a driving force in the accelerating direction is not output, so that the feedback control can be appropriately continued, and the vehicle can be prevented from traveling without decelerating against the driver's intention. On the other hand, even if the driver brakes, if the actual speed of the vehicle is higher than the target value of the feedback control, the vehicle control unit maintains the target value. In other words, the vehicle control unit continues to execute the first feedback control. Therefore, even if the driver brakes while the vehicle is traveling under the vehicle control of the vehicle control unit, the vehicle can be appropriately stopped at the parking target position. In this case, the vehicle is decelerated by more than the amount of braking by the driver, so deceleration is achieved in line with the driver's intention. In this way, this configuration realizes a parking assistance system that can move the vehicle into a parking space while appropriately balancing the automatic control of the driving force and braking force acting on the wheels and the braking force caused by the driver's braking operation.

 駐車支援システムのさらなる特徴と利点は、図面を参照して説明する例示的且つ非限定的な実施形態についての以下の記載から明確となる。 Further features and advantages of the parking assistance system will become apparent from the following description of exemplary, non-limiting embodiments illustrated with reference to the drawings.

駐車支援の一例を示す説明図FIG. 1 is an explanatory diagram showing an example of parking assistance; 駐車支援の他の例を示す説明図FIG. 11 is an explanatory diagram showing another example of parking assistance; 駐車支援システムを含む車両のシステム構成の一例を示す模式的ブロック図FIG. 1 is a schematic block diagram showing an example of a system configuration of a vehicle including a parking assistance system; 車両制御部による車両制御の模式的制御ブロック図Schematic control block diagram of vehicle control by a vehicle control unit フィードバック制御の一例を示すブロック線図Block diagram showing an example of feedback control 選択的に第1フィードバック制御及び第2フィードバック制御を行うフィードバックの一例を示すブロック線図FIG. 1 is a block diagram showing an example of a feedback control system that selectively performs a first feedback control and a second feedback control; 第1フィードバック制御及び第2フィードバック制御を選択する手順の一例を示すフローチャートA flowchart showing an example of a procedure for selecting the first feedback control and the second feedback control.

 以下、駐車支援システムの実施形態を図面も参照して説明する。図1及び図2の説明図は、それぞれ車両50を駐車させる際の駐車支援の一形態を例示している。また、図3のブロック図は、駐車支援システム100を含む車両50のシステム構成の一例を模式的に示している。本実施形態の駐車支援システム100は、車輪Wに作用する駆動力と制動力とを制御すると共に操舵角を制御して、車両50を駐車スペースEへ移動させるための車両制御を行う。本実施形態では、駐車支援システム100は、自動運転により車両50を駐車スペースEに駐車させる。尚、駐車支援システム100による案内に基づいて操舵は運転者が手動で行い、駆動、制動のみが自動運転で行われる形態、即ち半自動運転であってもよい。 Below, an embodiment of the parking assistance system will be described with reference to the drawings. The explanatory diagrams of Fig. 1 and Fig. 2 each illustrate one form of parking assistance when parking the vehicle 50. The block diagram of Fig. 3 shows a schematic example of a system configuration of the vehicle 50 including the parking assistance system 100. The parking assistance system 100 of this embodiment controls the driving force and braking force acting on the wheels W, as well as the steering angle, to perform vehicle control for moving the vehicle 50 to the parking space E. In this embodiment, the parking assistance system 100 parks the vehicle 50 in the parking space E by automatic driving. Note that the parking assistance system 100 may be configured so that the driver manually steers based on guidance from the parking assistance system 100, and only driving and braking are performed by automatic driving, i.e., semi-automatic driving.

 駐車支援システム100は、図3に示すように、ECU(Electronic Control Unit)1を中核として他のシステムや各種のセンサとの協働により実現される。ECU1は、車両制御を行う車両制御部に相当する。ECU1は、マイクロコンピュータ、マイクロプロセッサ、DSP(Digital Signal Processor)などのプロセッサ1P、プログラムやパラメータなどのソフトウェアが記憶されたプログラムメモリ1M、その他の各種電子部品を備えて構成される。プロセッサ1Pは、ECU1の中核となるハードウェアであり、プロセッサ1Pを中核とする各種のハードウェアと、プログラムメモリ1Mに記憶されたプログラムなどのソフトウェアとの協働により、車両制御部が実現される。そして、ECU1を中核として、駆動システム20、ブレーキシステム30、ステアリングシステム40などの他のシステム、及び、符号「51」から「58」で示す各種センサや周辺デバイスと、ECU1との協働により、駐車支援システム100が実現される。下記において、駐車支援システム100を構成する種々の機能部について説明するが、それぞれの機能部は、複数のハードウェアにより実現される、或いは、少なくとも1つのハードウェアとソフトウェアとの協働によって実現される場合があり、必ずしも独立した部品として構成される必要はない。 As shown in FIG. 3, the parking assistance system 100 is realized by the cooperation of ECU (Electronic Control Unit) 1 with other systems and various sensors. ECU 1 corresponds to a vehicle control unit that controls the vehicle. ECU 1 is configured with a processor 1P such as a microcomputer, microprocessor, or DSP (Digital Signal Processor), a program memory 1M in which software such as programs and parameters are stored, and various other electronic components. Processor 1P is the hardware that is the core of ECU 1, and the vehicle control unit is realized by the cooperation of various hardware with processor 1P as the core and software such as programs stored in program memory 1M. Then, parking assistance system 100 is realized by the cooperation of ECU 1 with other systems such as drive system 20, brake system 30, steering system 40, and various sensors and peripheral devices indicated by symbols "51" to "58". The various functional units that make up the parking assistance system 100 are described below, but each functional unit may be realized by multiple pieces of hardware, or may be realized by the cooperation of at least one piece of hardware and software, and does not necessarily have to be configured as an independent component.

 図1及び図2に示すように、駐車支援システム100は、駐車スペースEに設定した駐車目標位置Ptと車両50の現在位置Prとに基づいて、車両50を駐車目標位置Ptまで移動させて停止させる。駐車目標位置Pt及び現在位置Prは、駐車支援システム100が駐車支援(車両制御)を行う際の座標系(駐車支援座標系)における座標に対応している。尚、駐車支援座標系は、全地球を対象とした絶対座標(ワールド座標系)であってもよいし、車両50又は駐車スペースEの周辺の領域や、駐車スペースEを含む駐車場の全体や、当該駐車場を含む領域などを対象としたローカル座標系であってもよい。 As shown in Figures 1 and 2, the parking assistance system 100 moves and stops the vehicle 50 to the parking target position Pt based on the parking target position Pt set in the parking space E and the current position Pr of the vehicle 50. The parking target position Pt and the current position Pr correspond to coordinates in a coordinate system (parking assistance coordinate system) when the parking assistance system 100 performs parking assistance (vehicle control). The parking assistance coordinate system may be absolute coordinates (world coordinate system) that cover the entire Earth, or a local coordinate system that covers the area around the vehicle 50 or the parking space E, the entire parking lot including the parking space E, or the area including the parking lot.

 図1及び図2に示す符号「Q」は、車両50の位置を特定する際の車両50における基準点を示している。また、現在位置Prは、駐車支援座標系において基準点Qが位置する座標に相当する。駐車目標位置Ptは、車両50が駐車スペースEに適切に位置している際に車両50の基準点Qが位置する座標を示している。駐車支援システム100は、現在位置Prと、駐車目標位置Ptとに基づいて、現在位置Prから駐車目標位置Ptまで車両50が移動する際の基準点Qの移動軌跡を演算し、これを移動経路Kとする。駐車支援システム100は、現在位置Prから移動経路Kに沿って基準点Qが移動するように車両制御を行う。駐車支援システム100は、基準点Qが駐車目標位置Ptに到達すると、つまり現在位置Prと駐車目標位置Ptとが一致すると、車両50が駐車スペースE内に適切に位置することになるので車両50を停止させる。 The symbol "Q" shown in FIG. 1 and FIG. 2 indicates a reference point on the vehicle 50 when identifying the position of the vehicle 50. The current position Pr corresponds to the coordinates where the reference point Q is located in the parking assistance coordinate system. The parking target position Pt indicates the coordinates where the reference point Q of the vehicle 50 is located when the vehicle 50 is appropriately located in the parking space E. The parking assistance system 100 calculates the movement trajectory of the reference point Q when the vehicle 50 moves from the current position Pr to the parking target position Pt based on the current position Pr and the parking target position Pt, and sets this as the movement path K. The parking assistance system 100 controls the vehicle so that the reference point Q moves from the current position Pr along the movement path K. When the reference point Q reaches the parking target position Pt, that is, when the current position Pr and the parking target position Pt coincide with each other, the parking assistance system 100 stops the vehicle 50 because the vehicle 50 is appropriately located in the parking space E.

 図1は、いわゆる車庫入れ駐車を例示している。例えば、運転者は、駐車スペースEを通り過ぎ、駐車スペースEとは逆方向に舵を切って車両50を少し旋回させた状態で車両50を停止させる。この位置は、駐車スペースEに向かって車両50が後退を開始する後退開始位置ということができる。尚、駐車目標位置Ptへの移動の際に必要な操舵量は大きくなるが、このように舵を切ることなく、図2と同様に、直進した状態で車両50を停車させてもよい。また、停止位置から駐車目標位置Ptへの移動を開始する前に、ステアリングシステム40との協働によって、いわゆる据え切りによって操舵輪の向きを変更しておいてもよい。 FIG. 1 illustrates so-called garage parking. For example, the driver passes parking space E, steers the vehicle 50 in the opposite direction to parking space E, and stops the vehicle 50 in a slightly turned position. This position can be called the reverse start position where the vehicle 50 starts to reverse toward the parking space E. Note that, although a large amount of steering is required when moving to the parking target position Pt, the vehicle 50 may be stopped in a straight line as in FIG. 2 without turning the steering wheel in this way. Also, before starting to move from the stop position to the parking target position Pt, the direction of the steering wheels may be changed by so-called stationary steering in cooperation with the steering system 40.

 図2は、いわゆる縦列駐車を例示している。この場合も、例えば、運転者は、駐車スペースEを通り過ぎて車両50を停止させる。図2では、舵を切らない状態で車両50を停車させる形態を例示しているが、図1と同様に駐車スペースEとは逆方向に舵を切った状態で車両50を停止させてもよい。 FIG. 2 illustrates so-called parallel parking. In this case, the driver also stops the vehicle 50 by passing the parking space E, for example. Although FIG. 2 illustrates an example of stopping the vehicle 50 without turning the steering wheel, the vehicle 50 may be stopped with the steering wheel turned in the opposite direction to the parking space E, as in FIG. 1.

 尚、運転者が車両50を前進させる場合、進行方向や停止位置(後退開始位置)について駐車支援システム100が案内すると好適である。例えば、車室内のディスプレイへの表示や音声案内によって、運転者を案内し、運転者が何れも不図示のアクセルペダル、ブレーキペダル、ステアリングホイール等を操作して、後退開始位置まで車両50を移動させると好適である。1つの形態として、車両50が後退開始位置に到達すると、駐車支援システム100は自動操舵を含む自動運転が可能であることを運転者に報知する。運転者が、例えば車室内のディスプレイのタッチパネル等に設けられた開始ボタンに触れることで車両制御の開始を指示すると、操舵を含む車両50の運転操作が駐車支援システム100に委ねられ、駐車支援システム100は、自動運転によって車両50を駐車目標位置Ptまで移動させる。 When the driver drives the vehicle 50 forward, it is preferable that the parking assistance system 100 guides the driver on the direction of travel and the stopping position (reverse start position). For example, it is preferable that the driver is guided by display on a display in the vehicle cabin or by audio guidance, and the driver operates an accelerator pedal, brake pedal, steering wheel, etc. (not shown) to move the vehicle 50 to the reverse start position. In one embodiment, when the vehicle 50 reaches the reverse start position, the parking assistance system 100 notifies the driver that automatic driving, including automatic steering, is possible. When the driver instructs the start of vehicle control, for example by touching a start button provided on a touch panel of a display in the vehicle cabin, the driving operation of the vehicle 50, including steering, is left to the parking assistance system 100, and the parking assistance system 100 moves the vehicle 50 to the parking target position Pt by automatic driving.

 ここでは、後退開始位置まで、運転者が車両50を前進させる形態を例示したが、車両50が後退開始位置に達するよりも前、即ち、車両50が後退開始位置に向かって前進しているとき以前から駐車支援システム100が車両制御(駐車支援)を実行して、車両50を自動運転によって走行させることを妨げるものではない。 Here, an example is shown in which the driver drives the vehicle 50 forward to the reverse start position, but this does not prevent the parking assistance system 100 from executing vehicle control (parking assistance) and driving the vehicle 50 by automatic driving before the vehicle 50 reaches the reverse start position, i.e., before the vehicle 50 starts moving forward toward the reverse start position.

 本実施形態の対象となる車両制御は、後退開始位置から駐車目標位置Ptまでの車両50を移動させる制御である。従って、運転支援システムは、車輪Wに作用する駆動力と制動力とを制御して、好ましくはさらに操舵角も制御して、駐車スペースEに設定した駐車目標位置Ptと車両50の現在位置Prとに基づいて、車両50を駐車目標位置Ptまで移動させて停止させる。後退開始位置は、車両50の現在位置Prの初期値ということができる。上述したように、車両制御は、駆動、制動、操舵の全てを自動的に行う形態に限らず、駆動、制動のみを自動運転で行い、操舵は運転者が手動で実施する半自動運転であってもよい。 The vehicle control targeted by this embodiment is control for moving the vehicle 50 from the reverse start position to the parking target position Pt. Therefore, the driving assistance system controls the driving force and braking force acting on the wheels W, and preferably also controls the steering angle, to move the vehicle 50 to the parking target position Pt and stop it based on the parking target position Pt set in the parking space E and the current position Pr of the vehicle 50. The reverse start position can be said to be the initial value of the current position Pr of the vehicle 50. As described above, the vehicle control is not limited to a form in which driving, braking, and steering are all performed automatically, but may be semi-automatic driving in which only driving and braking are performed automatically and steering is performed manually by the driver.

 また、ここでは、後退によって車両50を駐車スペースEに移動させる形態を例示しているが、前進によって車両50を駐車スペースEに移動させる形態を妨げるものではない。従って、本実施形態の対象となる車両制御は、駐車目標位置Ptまで車両50を停止させることなく自動運転により車両制御を実行するに際して、駐車スペースEへの移動を開始する前に車両50が一時的に停止した位置から、駐車目標位置Ptまで車両50を移動させる制御に相当する。そして、この車両50が一時的に停止した位置が、車両50の現在位置Prの初期値ということができる。 In addition, although an example is shown here of moving the vehicle 50 to the parking space E by reversing, this does not preclude moving the vehicle 50 to the parking space E by moving forward. Therefore, the vehicle control that is the subject of this embodiment corresponds to control of moving the vehicle 50 from a position where the vehicle 50 temporarily stopped before starting to move to the parking space E to the parking target position Pt when performing vehicle control by automatic driving without stopping the vehicle 50 at the parking target position Pt. And, this position where the vehicle 50 temporarily stopped can be said to be the initial value of the current position Pr of the vehicle 50.

 図3の模式的なブロック図に示すように、車両50は、駐車支援システム100の中核となるECU1の他、駆動システム20、ブレーキシステム30、ステアリングシステム40を備えている。駆動システム20は、車輪Wを駆動する駆動装置25を制御するシステムである。駆動装置25には、例えば何れも不図示の内燃機関、回転電機、ギヤ機構、回転部材間での動力伝達を断接する係合装置等を含む。ブレーキシステム30は、車輪Wに制動力を発生させるシステムである。ステアリングシステム40は、車輪Wの内の操舵輪を動かして車両50の進行方向を変化させるシステムである。 As shown in the schematic block diagram of FIG. 3, the vehicle 50 includes an ECU 1, which is the core of the parking assistance system 100, as well as a drive system 20, a brake system 30, and a steering system 40. The drive system 20 is a system that controls a drive device 25 that drives the wheels W. The drive device 25 includes, for example, an internal combustion engine, a rotating electric machine, a gear mechanism, and an engagement device that connects and disconnects the power transmission between rotating members, all of which are not shown. The brake system 30 is a system that generates a braking force on the wheels W. The steering system 40 is a system that moves the steered wheels among the wheels W to change the traveling direction of the vehicle 50.

 車両50は、アクセルセンサ51、シフトポジションセンサ52、ブレーキセンサ53、速度センサ54、加速度センサ55、舵角センサ56、ソナー57、カメラ58等の各種センサ及び周辺機器も備えている。アクセルセンサ51は、運転者によるアクセルペダルの操作量を検出するセンサである。シフトポジションセンサ52は、不図示のシフトレバーにより指示された変速段(後退やパーキング等も含む)など、駆動装置25の動作モードを指示する指示入力を検出するセンサである。ブレーキセンサ53は、運転者によるブレーキペダルの操作量を検出するセンサである。速度センサ54は、車両50の走行速度、即ち車輪Wの回転速度を検出するセンサである。加速度センサ55は、車両50の加速度を検出するセンサであり、本実施形態の加速度センサ55は例えば車両50が位置する地面の傾斜角度や傾斜方向も検出することが可能である。舵角センサ56は、運転者によるステアリングホイールの操作量を検出するセンサであり、好ましくは操作量を車両50の舵角として検出する。ソナー57は、車両50の複数箇所に設置され、車両50の周辺に存在する障害物の存否を検出する。好適には、ソナー57はアクティブソナーである。また、ソナー57に限らず、障害物センサとしてレーザーレーダー等を備えていてもよい。カメラ58は、車両50の複数箇所に設置され、車両50の周辺画像を取得する。図3には不図示であるが、周辺画像に基づいて、車両50の周辺の障害物の存否を画像認識したり、駐車スペースEを区分する区画線等を画像認識して、他の車両が停車しておらず、車両50を駐車することが可能な駐車スペースEを特定したりする画像処理システムも車両50に備えられていると好適である。 The vehicle 50 is also equipped with various sensors and peripheral devices such as an accelerator sensor 51, a shift position sensor 52, a brake sensor 53, a speed sensor 54, an acceleration sensor 55, a steering angle sensor 56, a sonar 57, and a camera 58. The accelerator sensor 51 is a sensor that detects the amount of operation of the accelerator pedal by the driver. The shift position sensor 52 is a sensor that detects an instruction input that indicates the operating mode of the drive unit 25, such as a gear shift (including reverse, parking, etc.) indicated by a shift lever (not shown). The brake sensor 53 is a sensor that detects the amount of operation of the brake pedal by the driver. The speed sensor 54 is a sensor that detects the traveling speed of the vehicle 50, that is, the rotation speed of the wheels W. The acceleration sensor 55 is a sensor that detects the acceleration of the vehicle 50, and the acceleration sensor 55 of this embodiment is also capable of detecting, for example, the inclination angle and inclination direction of the ground on which the vehicle 50 is located. The steering angle sensor 56 is a sensor that detects the amount of operation of the steering wheel by the driver, and preferably detects the amount of operation as the steering angle of the vehicle 50. The sonar 57 is installed at multiple locations on the vehicle 50 and detects the presence or absence of obstacles around the vehicle 50. Preferably, the sonar 57 is an active sonar. Also, instead of the sonar 57, a laser radar or the like may be provided as an obstacle sensor. The camera 58 is installed at multiple locations on the vehicle 50 and acquires images of the surroundings of the vehicle 50. Although not shown in FIG. 3, the vehicle 50 is preferably equipped with an image processing system that performs image recognition of the presence or absence of obstacles around the vehicle 50 based on the surrounding images, and image recognition of the dividing lines that separate the parking spaces E to identify parking spaces E where no other vehicles are parked and in which the vehicle 50 can be parked.

 上述したECU1(駐車支援システム100)、駆動システム20、ブレーキシステム30、ステアリングシステム40を含めて、符号「51」から「58」で示すセンサ及び周辺機器は、例えばCAN(Controller Area Network)などの車内ネットワーク90を介して相互に通信可能に接続されている。例えば、駆動システム20は、車内ネットワーク90を介して、アクセルセンサ51、シフトポジションセンサ52、ブレーキセンサ53、速度センサ54、加速度センサ55、舵角センサ56等と協働して駆動装置25を制御する。ブレーキシステム30は、車内ネットワーク90を介して、ブレーキセンサ53と協働してブレーキ機構35を制御する。ステアリングシステム40は、舵角センサ56と協働してステアリングホイールや操舵輪などを含むステアリング機構45を制御する。本実施形態では、ブレーキ機構35、ステアリング機構45がアクチュエータによって駆動されており、車内ネットワーク90を介したいわゆるバイワイヤー(by wire)により構成されている。 The sensors and peripheral devices indicated by the reference numerals "51" to "58", including the above-mentioned ECU 1 (parking assistance system 100), drive system 20, brake system 30, and steering system 40, are connected to each other so as to be able to communicate with each other via an in-vehicle network 90 such as a CAN (Controller Area Network). For example, the drive system 20 controls the drive device 25 in cooperation with an accelerator sensor 51, a shift position sensor 52, a brake sensor 53, a speed sensor 54, an acceleration sensor 55, a steering angle sensor 56, etc., via the in-vehicle network 90. The brake system 30 controls the brake mechanism 35 in cooperation with the brake sensor 53 via the in-vehicle network 90. The steering system 40 controls the steering mechanism 45, including the steering wheel and steered wheels, in cooperation with the steering angle sensor 56. In this embodiment, the brake mechanism 35 and the steering mechanism 45 are driven by actuators and configured in a so-called by-wire manner via the in-vehicle network 90.

 また、駆動システム20、ブレーキシステム30、ステアリングシステム40は、ソナー57やカメラ58(画像処理システム)と協働することもできる。また、ECU1は、駆動システム20、ブレーキシステム30、ステアリングシステム40、画像処理システム、及び、符号「51」から「58」で示すセンサ及び周辺機器と協働する。駐車支援システム100の中核であるECU1が、これらのシステム、センサ、及び周辺機器と協働する場合、協働するシステム、センサ、及び周辺機器も駐車支援システム100に含まれる。 The drive system 20, brake system 30, and steering system 40 can also cooperate with sonar 57 and camera 58 (image processing system). The ECU 1 also cooperates with the drive system 20, brake system 30, steering system 40, image processing system, and sensors and peripheral devices indicated by reference numbers "51" to "58." When the ECU 1, which is the core of the parking assistance system 100, cooperates with these systems, sensors, and peripheral devices, the cooperating systems, sensors, and peripheral devices are also included in the parking assistance system 100.

 また、車両50の位置情報(現在位置Pr)は、不図示のGPS(Global Positioning System)や、画像処理システムによる画像認識による駐車スペースEと車両50との間の相対位置の特定や、駐車場内の不図示の送信機と車両50に搭載された不図示の受信機との間の通信等によって特定される。当然ながら、これらの複数を組み合わせて車両50の位置情報が特定されてもよい。また、駐車スペースEにおける駐車目標位置Ptの座標等は、車両50に搭載された不図示のデータベース(記憶媒体)に地図情報として記憶されていると好適である。尚、地図情報は固定的に車両50のデータベースに記憶されていてもよいし、駐車支援を受ける際に通信等によってダウンロードされるものであってもよい。 Furthermore, the position information (current position Pr) of the vehicle 50 is determined by a GPS (Global Positioning System) (not shown), by identifying the relative position between the parking space E and the vehicle 50 through image recognition by an image processing system, or by communication between a transmitter (not shown) in the parking lot and a receiver (not shown) mounted on the vehicle 50. Naturally, the position information of the vehicle 50 may be determined by combining a number of these. Furthermore, it is preferable that the coordinates of the parking target position Pt in the parking space E, etc., are stored as map information in a database (storage medium) (not shown) mounted on the vehicle 50. The map information may be permanently stored in the database of the vehicle 50, or may be downloaded by communication or the like when parking assistance is received.

 上述したように本実施形態では、駐車支援システム100は、後退開始位置(一時停止位置、現在位置Prの初期値)から駐車目標位置Ptまで、車両50を移動させるための車両制御を行う。この間、車両50は、自動運転される。ECU1による車両制御が実行され、車両50が自動運転により走行している場合においても、ブレーキシステム30は、運転者によるブレーキ操作が行われた場合には、車輪Wに制動力を作用させることが可能である。この場合に、駐車支援システム100が運転者によるブレーキ操作を無視して、車両制御を優先すると、運転者の利便性を損なうおそれがある。また、運転者がブレーキ操作を行っているにも拘わらず、その意図に反して車両50が減速することなく移動を続けることで、運転者が不安感を覚えるおそれもある。一方、駐車支援システム100が運転者のブレーキ操作を優先すると、駐車支援が中断或いは中止されてしまって、車両50を適切に駐車スペースEに移動できず、運転者の利便性を低下させるおそれがある。 As described above, in this embodiment, the parking assistance system 100 performs vehicle control to move the vehicle 50 from the reverse start position (temporary stop position, initial value of the current position Pr) to the parking target position Pt. During this time, the vehicle 50 is driven automatically. Even when the vehicle control by the ECU 1 is executed and the vehicle 50 is traveling by automatic driving, the brake system 30 can apply a braking force to the wheels W when the driver operates the brakes. In this case, if the parking assistance system 100 ignores the driver's brake operation and prioritizes vehicle control, the driver's convenience may be impaired. In addition, even if the driver operates the brakes, the vehicle 50 continues to move without decelerating against the driver's intention, which may cause the driver to feel uneasy. On the other hand, if the parking assistance system 100 prioritizes the driver's brake operation, the parking assistance is interrupted or stopped, and the vehicle 50 cannot be moved appropriately to the parking space E, which may reduce the driver's convenience.

 このため、本実施形態の駐車支援システム100は、車輪Wに作用する駆動力及び制動力の自動制御と、運転者によるブレーキ操作による制動力とを適切に調停しつつ、車両50を駐車スペースEに移動させることができるように構成されている。以下、図4のブロック図、図5及び図6のブロック線図、図7のフローチャートも参照して説明する。 For this reason, the parking assistance system 100 of this embodiment is configured to be able to move the vehicle 50 into the parking space E while appropriately coordinating the automatic control of the driving force and braking force acting on the wheels W with the braking force caused by the driver's brake operation. The following description will also refer to the block diagram in FIG. 4, the block diagrams in FIG. 5 and FIG. 6, and the flowchart in FIG. 7.

 上述したように、種々のシステム、センサ、周辺機器とECU1(車両制御部)とが協働する駐車支援システム100は、運転者のブレーキ操作を検出するブレーキ操作検出部(ブレーキセンサ53)と、車両50の実際の速度である実速度Vrを検出する速度検出部(速度センサ54)と、車両50の実際の加速度である実加速度Arを検出する加速度検出部(加速度センサ55)とを備えている。ECU1は、車両50の駐車スペースEへの移動中に、駐車スペースEに設定した駐車目標位置Ptと車両50の現在位置Prとに基づいて、車両50を駐車目標位置Ptまで移動させて停止させるための第1目標速度Vt1と第1目標加速度At1とを演算する目標演算処理を実行する。また、ECU1は、実速度Vrと第1目標速度Vt1との差に基づいて実速度Vrを第1目標速度Vt1に近づけると共に、実加速度Arと第1目標加速度At1との差に基づいて実加速度Arを第1目標加速度At1に近づけるように、車輪Wに作用する駆動力及び制動力を制御する第1フィードバック制御FB1を実行する。 As described above, parking assistance system 100, in which various systems, sensors, peripheral devices and ECU 1 (vehicle control unit) work together, includes a brake operation detection unit (brake sensor 53) that detects the driver's brake operation, a speed detection unit (speed sensor 54) that detects actual speed Vr that is the actual speed of vehicle 50, and an acceleration detection unit (acceleration sensor 55) that detects actual acceleration Ar that is the actual acceleration of vehicle 50. While vehicle 50 is moving to parking space E, ECU 1 executes target calculation processing to calculate a first target speed Vt1 and a first target acceleration At1 for moving and stopping vehicle 50 to parking target position Pt based on parking target position Pt set in parking space E and the current position Pr of vehicle 50. Furthermore, the ECU 1 executes a first feedback control FB1 that controls the driving force and braking force acting on the wheels W so as to bring the actual speed Vr closer to the first target speed Vt1 based on the difference between the actual speed Vr and the first target speed Vt1, and to bring the actual acceleration Ar closer to the first target acceleration At1 based on the difference between the actual acceleration Ar and the first target acceleration At1.

 尚、駆動力は、主に駆動システム20を介して駆動装置25により実現され、制動力は、主にブレーキシステム30を介してブレーキ機構35により実現される。例えば、駆動力は、駆動装置25に含まれる内燃機関、回転電機、或いは内燃機関及び回転電機を複合したハイブリッド駆動装置から出力される。ブレーキ機構35には、車輪Wに設けられたホイールブレーキを含み、制動力は、当該ホイールブレーキの他、駆動装置25の駆動伝達系に設けられたブレーキ、回転電機の負トルク、内燃機関のエンジンブレーキによっても実現される。 The driving force is mainly generated by the driving device 25 via the driving system 20, and the braking force is mainly generated by the brake mechanism 35 via the brake system 30. For example, the driving force is output from an internal combustion engine, a rotating electric machine, or a hybrid driving device that combines an internal combustion engine and a rotating electric machine, included in the driving device 25. The brake mechanism 35 includes a wheel brake provided on the wheel W, and the braking force is generated not only by the wheel brake, but also by a brake provided in the drive transmission system of the driving device 25, the negative torque of the rotating electric machine, and the engine brake of the internal combustion engine.

 ECU1は、第1フィードバック制御FB1の実行中に、ブレーキ操作検出部(ブレーキセンサ53)が運転者によるブレーキ操作を検出した場合には、第1フィードバック制御FB1に代えて第2フィードバック制御FB2を実行する。具体的には、第1目標速度Vt1と実速度Vrとの内の低い方の速度を第2目標速度Vt2とし、第1目標加速度At1と実加速度Arとの内の低い方の加速度を第2目標加速度At2として、実速度Vrと第2目標速度Vt2との差に基づいて実速度Vrを第2目標速度Vt2に近づけると共に、実加速度Arと第2目標加速度At2との差に基づいて実加速度Arを第2目標加速度At2に近づけるように、車輪Wに作用する駆動力及び制動力を制御する第2フィードバック制御FB2を実行する。尚、ブレーキ操作によって生じる加速度は、車両50を減速させる加速度であるから負の値である。従って、ここで比較する「加速度」は、絶対値による比較ではなく、正負を考慮した値である。 When the brake operation detection unit (brake sensor 53) detects the brake operation by the driver while the first feedback control FB1 is being executed, the ECU 1 executes the second feedback control FB2 instead of the first feedback control FB1. Specifically, the ECU 1 executes the second feedback control FB2, which controls the driving force and the braking force acting on the wheels W so that the lower of the first target speed Vt1 and the actual speed Vr is set as the second target speed Vt2, the lower of the first target acceleration At1 and the actual acceleration Ar is set as the second target acceleration At2, and the actual speed Vr approaches the second target speed Vt2 based on the difference between the actual speed Vr and the second target speed Vt2, and the actual acceleration Ar approaches the second target acceleration At2 based on the difference between the actual acceleration Ar and the second target acceleration At2. Note that the acceleration caused by the brake operation is a negative value because it is an acceleration that decelerates the vehicle 50. Therefore, the "acceleration" compared here is not an absolute value comparison, but a value taking into account positive and negative.

 図4に示すように、駐車支援システム100は、フィードバックコントローラとして、位置フィードバックコントローラ11(位置FB)と、速度フィードバックコントローラ12(速度FB)と、加速度フィードバックコントローラ13(加速度FB)とを備えている。位置フィードバックコントローラ11は、駐車目標位置Ptと車両50の現在位置Prとに基づいて、例えば移動経路Kを通って現在位置Prから駐車目標位置Ptへ至る移動距離に応じた目標速度Vtを演算する。速度フィードバックコントローラ12は、目標速度Vtと実速度Vrとに基づいて、目標速度Vtで移動するための目標加速度Atを演算する。加速度フィードバックコントローラ13は、目標加速度Atと実加速度Arとに基づいて、目標加速度Atで車両50を加速又は減速するための動力Fを演算する。動力Fは、車輪Wに作用する駆動力及び制動力である。概ね、車両50を加速させる場合、動力Fは駆動力であり、車両50を減速させる場合、動力Fは制動力である。 As shown in FIG. 4, the parking assistance system 100 includes a position feedback controller 11 (position FB), a speed feedback controller 12 (speed FB), and an acceleration feedback controller 13 (acceleration FB) as feedback controllers. The position feedback controller 11 calculates a target speed Vt according to a moving distance from the current position Pr to the parking target position Pt through a moving path K, for example, based on the parking target position Pt and the current position Pr of the vehicle 50. The speed feedback controller 12 calculates a target acceleration At for moving at the target speed Vt based on the target speed Vt and the actual speed Vr. The acceleration feedback controller 13 calculates a power F for accelerating or decelerating the vehicle 50 at the target acceleration At based on the target acceleration At and the actual acceleration Ar. The power F is a driving force and a braking force acting on the wheels W. In general, when accelerating the vehicle 50, the power F is a driving force, and when decelerating the vehicle 50, the power F is a braking force.

 図5及び図6は、フィードバックコントローラのブロック線図を示している。本実施形態では、位置フィードバックコントローラ11と、速度フィードバックコントローラ12と、加速度フィードバックコントローラ13の何れもが、比例積分制御を実行するPI制御器として構成されている。図5及び図6に示すように、フィードバックコントローラは、比例ゲイン15(Kp)と、積分制御器16(1/s)と、積分ゲイン17(Ki)とを備えている。勿論、これらのコントローラの内の1つ以上が、比例積分微分制御を実行するPID制御器により、構成されていてもよい。 FIGS. 5 and 6 show block diagrams of the feedback controller. In this embodiment, the position feedback controller 11, the velocity feedback controller 12, and the acceleration feedback controller 13 are all configured as PI controllers that perform proportional-integral control. As shown in FIG. 5 and FIG. 6, the feedback controller includes a proportional gain 15 (Kp), an integral controller 16 (1/s), and an integral gain 17 (Ki). Of course, one or more of these controllers may be configured as a PID controller that performs proportional-integral-derivative control.

 図5のブロック線図は、運転者によるブレーキ操作の有無に拘わらず共通の制御を実行するコントローラを例示している。本実施形態では、位置フィードバックコントローラ11に相当する。位置フィードバックコントローラ11は、駐車目標位置Ptと現在位置Prとの差に対して比例制御及び積分制御を実行して、目標速度Vtを演算する。上述したように、目標速度Vtを用いる速度フィードバックコントローラ12は、運転者によるブレーキ操作の有無に応じて異なる制御、具体的には第1フィードバック制御FB1又は第2フィードバック制御FB2を実行する。位置フィードバックコントローラ11により演算される目標速度Vtは、第1フィードバック制御FB1における目標速度Vtである第1目標速度Vt1に相当する。 The block diagram in FIG. 5 illustrates an example of a controller that executes common control regardless of whether or not the driver operates the brakes. In this embodiment, it corresponds to the position feedback controller 11. The position feedback controller 11 executes proportional control and integral control on the difference between the parking target position Pt and the current position Pr to calculate the target speed Vt. As described above, the speed feedback controller 12 that uses the target speed Vt executes different controls, specifically the first feedback control FB1 or the second feedback control FB2, depending on whether or not the driver operates the brakes. The target speed Vt calculated by the position feedback controller 11 corresponds to the first target speed Vt1, which is the target speed Vt in the first feedback control FB1.

 図6のブロック線図は、運転者によるブレーキ操作の有無に応じて異なる制御を実行するコントローラを例示している。本実施形態では、速度フィードバックコントローラ12及び加速度フィードバックコントローラ13に相当する。速度フィードバックコントローラ12は、目標速度Vtと実速度Vrとの差に対して比例制御及び積分制御を実行して、目標加速度Atを演算する。上述したように、目標加速度Atを用いる加速度フィードバックコントローラ13は、運転者によるブレーキ操作の有無に応じて異なる制御、具体的には第1フィードバック制御FB1又は第2フィードバック制御FB2を実行する。速度フィードバックコントローラ12により演算される目標加速度Atは、第1フィードバック制御FB1における目標加速度Atである第1目標加速度At1に相当する。また、加速度フィードバックコントローラ13は、目標加速度Atと実加速度Arとの差に対して比例制御及び積分制御を実行して、動力Fを演算する。 The block diagram in FIG. 6 illustrates an example of a controller that executes different controls depending on whether or not the driver operates the brakes. In this embodiment, it corresponds to the speed feedback controller 12 and the acceleration feedback controller 13. The speed feedback controller 12 executes proportional control and integral control on the difference between the target speed Vt and the actual speed Vr to calculate the target acceleration At. As described above, the acceleration feedback controller 13 that uses the target acceleration At executes different controls, specifically the first feedback control FB1 or the second feedback control FB2, depending on whether or not the driver operates the brakes. The target acceleration At calculated by the speed feedback controller 12 corresponds to the first target acceleration At1, which is the target acceleration At in the first feedback control FB1. The acceleration feedback controller 13 also executes proportional control and integral control on the difference between the target acceleration At and the actual acceleration Ar to calculate the power F.

 速度フィードバックコントローラ12及び加速度フィードバックコントローラ13は、運転者によるブレーキ操作の有無に応じて異なる制御、具体的には第1フィードバック制御FB1又は第2フィードバック制御FB2を実行する。このため、図5に例示したフィードバックコントローラに対して、図6に例示するフィードバックコントローラは、目標値(目標速度Vt、目標加速度At)と、フィードバックされる実値(実速度Vr、実加速度Ar)との差分演算器の前に、目標値を選択するセレクタ18を備えている。 The speed feedback controller 12 and the acceleration feedback controller 13 execute different controls, specifically the first feedback control FB1 or the second feedback control FB2, depending on whether or not the driver operates the brakes. For this reason, in contrast to the feedback controller illustrated in FIG. 5, the feedback controller illustrated in FIG. 6 includes a selector 18 that selects the target value before the difference calculator between the target value (target speed Vt, target acceleration At) and the actual value (actual speed Vr, actual acceleration Ar) that is fed back.

 速度フィードバックコントローラ12においてセレクタ18は、第1目標速度Vt1と実速度Vrとの何れかを第2目標速度Vt2として選択する。具体的には、セレクタ18は、ブレーキセンサ53が運転者によるブレーキ操作を検出している場合には、目標速度Vt(第1目標速度Vt1)と実速度Vrとの内の低い方の速度を目標速度Vt(第2目標速度Vt2)として選択する。ブレーキセンサ53が運転者によるブレーキ操作を検出していないとき、セレクタ18は、目標速度Vt(第1目標速度Vt1)及び実速度Vrの大小関係に拘わらず、第1目標速度Vt1を目標速度Vtとして選択する。目標速度Vtが第1目標速度Vt1に設定される場合、速度フィードバックコントローラ12は、第1目標速度Vt1及び実速度Vrに基づいて第1フィードバック制御FB1を実行する。目標速度Vtが第2目標速度Vt2に設定される場合、即ち目標速度Vtが第1目標速度Vt1と実速度Vrとから選択的に設定される場合、速度フィードバックコントローラ12は第2目標速度Vt2及び実速度Vrに基づいて第2フィードバック制御FB2を実行する。 In the speed feedback controller 12, the selector 18 selects either the first target speed Vt1 or the actual speed Vr as the second target speed Vt2. Specifically, when the brake sensor 53 detects a brake operation by the driver, the selector 18 selects the lower of the target speed Vt (first target speed Vt1) and the actual speed Vr as the target speed Vt (second target speed Vt2). When the brake sensor 53 does not detect a brake operation by the driver, the selector 18 selects the first target speed Vt1 as the target speed Vt, regardless of the magnitude relationship between the target speed Vt (first target speed Vt1) and the actual speed Vr. When the target speed Vt is set to the first target speed Vt1, the speed feedback controller 12 executes the first feedback control FB1 based on the first target speed Vt1 and the actual speed Vr. When the target speed Vt is set to the second target speed Vt2, that is, when the target speed Vt is selectively set from the first target speed Vt1 and the actual speed Vr, the speed feedback controller 12 executes the second feedback control FB2 based on the second target speed Vt2 and the actual speed Vr.

 加速度フィードバックコントローラ13においてセレクタ18は、第1目標加速度At1と実加速度Arとの何れかを第2目標加速度At2として選択する。具体的には、セレクタ18は、ブレーキセンサ53が運転者によるブレーキ操作を検出している場合には、目標加速度At(第1目標加速度At1)と実加速度Arとの内の低い方の速度を目標加速度At(第2目標加速度At2)として選択する。ブレーキセンサ53が運転者によるブレーキ操作を検出していないとき、セレクタ18は、目標加速度At(第1目標加速度At1)及び実加速度Arの大小関係に拘わらず、第1目標加速度At1を目標加速度Atとして選択する。目標加速度Atが第1目標加速度At1に設定される場合、加速度フィードバックコントローラ13は、第1目標加速度At1及び実加速度Arに基づいて第1フィードバック制御FB1を実行する。目標加速度Atが第2目標加速度At2に設定される場合、即ち目標加速度Atが第1目標加速度At1と実加速度Arとから選択的に設定される場合、加速度フィードバックコントローラ13は第2目標加速度At2及び実加速度Arに基づいて第2フィードバック制御FB2を実行する。 In the acceleration feedback controller 13, the selector 18 selects either the first target acceleration At1 or the actual acceleration Ar as the second target acceleration At2. Specifically, when the brake sensor 53 detects a brake operation by the driver, the selector 18 selects the lower of the target acceleration At (first target acceleration At1) and the actual acceleration Ar as the target acceleration At (second target acceleration At2). When the brake sensor 53 does not detect a brake operation by the driver, the selector 18 selects the first target acceleration At1 as the target acceleration At, regardless of the magnitude relationship between the target acceleration At (first target acceleration At1) and the actual acceleration Ar. When the target acceleration At is set to the first target acceleration At1, the acceleration feedback controller 13 executes the first feedback control FB1 based on the first target acceleration At1 and the actual acceleration Ar. When the target acceleration At is set to the second target acceleration At2, that is, when the target acceleration At is selectively set from the first target acceleration At1 and the actual acceleration Ar, the acceleration feedback controller 13 executes the second feedback control FB2 based on the second target acceleration At2 and the actual acceleration Ar.

 第2フィードバック制御FB2において、目標値(目標速度Vt、目標加速度At)に実値(実速度Vr、実加速度Ar)が選択された場合、目標値と実値との差はゼロである。従って、比例ゲイン15(Kp)に拘わらず、比例制御による出力はゼロとなる。また、積分制御においても積分ゲイン17(Ki)に拘わらず積算される値はゼロとなるから、運転者のブレーキ操作による速度変化、及び加速度変化が積算されて外乱となることが抑制される。 In the second feedback control FB2, when actual values (actual speed Vr, actual acceleration Ar) are selected as the target values (target speed Vt, target acceleration At), the difference between the target value and the actual value is zero. Therefore, regardless of the proportional gain 15 (Kp), the output from the proportional control is zero. Also, in the integral control, the accumulated value is zero regardless of the integral gain 17 (Ki), so the speed change and acceleration change due to the driver's brake operation are prevented from being accumulated and becoming a disturbance.

 尚、本実施形態では、第1フィードバック制御FB1と第2フィードバック制御FB2とで、目標値が異なるのみで制御ブロックの構成は同一である。しかし、第1フィードバック制御FB1と第2フィードバック制御FB2との制御ブロックの構成が異なることを妨げるものではない。 In this embodiment, the first feedback control FB1 and the second feedback control FB2 have the same control block configuration, but only the target values are different. However, this does not prevent the control block configurations of the first feedback control FB1 and the second feedback control FB2 from being different.

 以下、第1フィードバック制御FB1と第2フィードバック制御FB2とを選択する手順を図7のフローチャートを参照して説明する。はじめに、車両50を駐車スペースEへ移動させるための車両制御の終了条件を満たしているか否かが判定される(#1)。例えば、車両50が駐車スペースEへの移動を完了した場合、終了条件を満たしていると判定される。その他、障害物が検出され、移動経路Kに沿って駐車目標位置Ptまで移動することができないと判定されて車両50が移動を中止して停止した場合も終了条件を満たしていると判定される。終了条件を満たしていると判定された場合には、ECU1は、車両制御を終了する。 The procedure for selecting the first feedback control FB1 and the second feedback control FB2 will be described below with reference to the flowchart in FIG. 7. First, it is determined whether or not the termination condition of the vehicle control for moving the vehicle 50 to the parking space E is met (#1). For example, if the vehicle 50 has completed moving to the parking space E, it is determined that the termination condition is met. In addition, it is also determined that the termination condition is met if an obstacle is detected, it is determined that the vehicle 50 cannot move along the movement path K to the parking target position Pt, and the vehicle 50 stops moving and stops. If it is determined that the termination condition is met, the ECU 1 ends the vehicle control.

 ステップ#1において終了条件を満たしていないと判定された場合は、次に運転者によるブレーキ操作の有無が判定される(#2)。本実施形態では、ブレーキ操作検出部としてのブレーキセンサ53の検出結果に基づいて、ブレーキ操作の有無が判定される。上述したように、ブレーキ機構35は、ブレーキシステム30を介してバイワイヤーにより駆動制御されている。従って、ブレーキ操作の有無を判定するための物理量は、運転者によるブレーキペダルの操作量に限らず、当該操作量に基づきブレーキシステム30からブレーキ機構35に与えられる制動指令値であってもよい。この場合、ブレーキシステム30もブレーキ操作検出部に相当する。ECU1は、これらの物理量と予め設定された基準値とに基づいてブレーキ操作の有無を判定すると好適である。尚、そのような物理量には依存せず、単純に運転者によるブレーキペダルに対する操作があったか否かにより、ブレーキ操作の有無が判定されてもよい。 If it is determined in step #1 that the termination condition is not satisfied, then it is determined whether or not the driver has operated the brakes (#2). In this embodiment, whether or not the brakes have been operated is determined based on the detection result of the brake sensor 53 serving as a brake operation detection unit. As described above, the brake mechanism 35 is driven and controlled by the by-wire via the brake system 30. Therefore, the physical quantity for determining whether or not the brakes have been operated is not limited to the amount of operation of the brake pedal by the driver, but may be a braking command value given to the brake mechanism 35 by the brake system 30 based on the amount of operation. In this case, the brake system 30 also corresponds to the brake operation detection unit. It is preferable that the ECU 1 determines whether or not the brakes have been operated based on these physical quantities and a preset reference value. It is also possible to determine whether or not the brakes have been operated, without relying on such physical quantities, simply based on whether or not the driver has operated the brake pedal.

 ステップ#2において、ブレーキセンサ53が運転者によるブレーキ操作を検出していない場合には、ブレーキ操作がないと判定され、目標速度Vtとして第1目標速度Vt1が維持されると共に、目標加速度Atとして第1目標加速度At1が維持され(#20)、第1フィードバック制御FB1が実行される。 In step #2, if the brake sensor 53 does not detect a brake operation by the driver, it is determined that no brake operation is being performed, the first target speed Vt1 is maintained as the target speed Vt, and the first target acceleration At1 is maintained as the target acceleration At (#20), and the first feedback control FB1 is executed.

 ブレーキセンサ53が運転者によるブレーキ操作を検出している場合には、ステップ#2において運転者によるブレーキ操作があると判定され、次に目標速度Vtと実速度Vrとの大きさが比較される(#3)。この目標速度Vtは、第1フィードバック制御FB1における第1目標速度Vt1であるから、ステップ#3では、第1目標速度Vt1と実速度Vrとの大きさが比較される。ステップ#3において実速度Vrが第1目標速度Vt1未満であると判定されると、目標速度Vtとして実速度Vrが設定される(#4)。実速度Vrが設定された場合の目標速度Vtは第2目標速度Vt2である。従って、ステップ#4では、第2目標速度Vt2として実速度Vrが設定される。 If the brake sensor 53 detects a brake operation by the driver, it is determined in step #2 that the driver has applied the brakes, and then the magnitudes of the target speed Vt and the actual speed Vr are compared (#3). This target speed Vt is the first target speed Vt1 in the first feedback control FB1, so in step #3, the magnitudes of the first target speed Vt1 and the actual speed Vr are compared. If it is determined in step #3 that the actual speed Vr is less than the first target speed Vt1, the actual speed Vr is set as the target speed Vt (#4). When the actual speed Vr is set, the target speed Vt is the second target speed Vt2. Therefore, in step #4, the actual speed Vr is set as the second target speed Vt2.

 ステップ#3において目標速度Vt(第1目標速度Vt1)が実速度Vr以下であると判定されると、現在の目標速度Vtが維持される。これは、目標速度Vtとして目標速度Vt(第1目標速度Vt1)が設定されることと等価である(#4B)。値が維持されるため、図7に破線で示すようにステップ#4Bは実行されなくてもよいが、ステップ#4Bでは、第2目標速度Vt2として第1目標速度Vt1が設定される。ステップ#3、ステップ#4、ステップ#4Bを経て第2目標速度Vt2が設定され、速度フィードバックコントローラ12は第2フィードバック制御FB2を実行する。 If it is determined in step #3 that the target speed Vt (first target speed Vt1) is equal to or lower than the actual speed Vr, the current target speed Vt is maintained. This is equivalent to setting the target speed Vt (first target speed Vt1) as the target speed Vt (#4B). Since the value is maintained, step #4B does not need to be executed as shown by the dashed line in FIG. 7, but in step #4B, the first target speed Vt1 is set as the second target speed Vt2. The second target speed Vt2 is set through steps #3, #4, and #4B, and the speed feedback controller 12 executes the second feedback control FB2.

 第2目標速度Vt2が設定されると、次に目標加速度Atと実加速度Arとの大きさが比較される(#5)。この目標加速度Atは、第1フィードバック制御FB1における第1目標加速度At1であるから、ステップ#5では、第1目標加速度At1と実加速度Arとの大きさが比較される。ステップ#5において実加速度Arが第1目標加速度At1未満であると判定されると、目標加速度Atとして実加速度Arが設定される(#6)。実加速度Arが設定された場合の目標加速度Atは第2目標加速度At2である。従って、ステップ#6では、第2目標加速度At2として実加速度Arが設定される。 Once the second target speed Vt2 is set, the magnitudes of the target acceleration At and the actual acceleration Ar are then compared (#5). This target acceleration At is the first target acceleration At1 in the first feedback control FB1, so in step #5, the magnitudes of the first target acceleration At1 and the actual acceleration Ar are compared. If it is determined in step #5 that the actual acceleration Ar is less than the first target acceleration At1, the actual acceleration Ar is set as the target acceleration At (#6). The target acceleration At when the actual acceleration Ar is set is the second target acceleration At2. Therefore, in step #6, the actual acceleration Ar is set as the second target acceleration At2.

 ステップ#5において目標加速度At(第1目標加速度At1)が実加速度Ar以下であると判定されると、現在の目標加速度Atが維持される。これは、目標加速度Atとして目標加速度At(第1目標加速度At1)が設定されることと等価である(#6B)。値が維持されるため、図7に破線で示すようにステップ#6Bは実行されなくてもよいが、ステップ#6Bでは、第2目標加速度At2として第1目標加速度At1が設定される。ステップ#5、ステップ#6、ステップ#6Bを経て第2目標加速度At2が設定され、加速度フィードバックコントローラ13は第2フィードバック制御FB2を実行する。 If it is determined in step #5 that the target acceleration At (first target acceleration At1) is equal to or less than the actual acceleration Ar, the current target acceleration At is maintained. This is equivalent to setting the target acceleration At (first target acceleration At1) as the target acceleration At (#6B). Since the value is maintained, step #6B does not need to be executed as shown by the dashed line in FIG. 7, but in step #6B, the first target acceleration At1 is set as the second target acceleration At2. The second target acceleration At2 is set through steps #5, #6, and #6B, and the acceleration feedback controller 13 executes the second feedback control FB2.

 第2目標速度Vt2、第2目標加速度At2が設定され、第2フィードバック制御FB2が実行された後、目標速度Vt、目標加速度Atがそれぞれ第1目標速度Vt1、第1目標加速度At1に再設定され(#20)、ステップ#1からの上述した一連の処理が繰り返されると好適である。 After the second target speed Vt2 and the second target acceleration At2 are set and the second feedback control FB2 is executed, the target speed Vt and the target acceleration At are reset to the first target speed Vt1 and the first target acceleration At1, respectively (#20), and the above-mentioned series of processes from step #1 are preferably repeated.

 第1フィードバック制御FB1に代えて第2フィードバック制御FB2が実行された後のステップ#2において、ブレーキ操作がないと判定されるとステップ#20に進み、第2フィードバック制御FB2に代えて第1フィードバック制御FB1が再開される。即ち、ECU1は、第2フィードバック制御FB2の実行中に、ブレーキセンサ53がブレーキ操作を検出しなくなった場合には、第2フィードバック制御FB2に代えて、第1フィードバック制御FB1を実行する。 If it is determined in step #2 after the second feedback control FB2 is executed instead of the first feedback control FB1 that there is no brake operation, the process proceeds to step #20, where the first feedback control FB1 is resumed instead of the second feedback control FB2. That is, if the brake sensor 53 no longer detects a brake operation while the second feedback control FB2 is being executed, the ECU 1 executes the first feedback control FB1 instead of the second feedback control FB2.

 このように、本実施形態によれば、運転者のブレーキ操作がなくなった場合に、通常のフィードバック制御である第1フィードバック制御FB1に戻ることができる。従って、車両制御部(ECU1)の車両制御による車両50の走行中に、運転者のブレーキ操作が断続的に行われた場合であっても、第1フィードバック制御FB1及び第2フィードバック制御FB2を適切に実行して車両制御部(ECU1)による駐車支援を適切に継続することができる。 In this way, according to this embodiment, when the driver no longer operates the brakes, it is possible to return to the first feedback control FB1, which is the normal feedback control. Therefore, even if the driver intermittently operates the brakes while the vehicle 50 is running under vehicle control by the vehicle control unit (ECU1), the first feedback control FB1 and the second feedback control FB2 can be appropriately executed, and parking assistance by the vehicle control unit (ECU1) can be appropriately continued.

 尚、上記においては、図6、図7等を参照して、ECU1が第1フィードバック制御FB1を実行中に、ブレーキシステム30が運転者によるブレーキ操作を検出した場合に、ECU1が、第1フィードバック制御FB1に代えて、第1目標速度Vt1と実速度Vrとの内の低い方の速度を第2目標速度Vt2とし、第1目標加速度At1と実加速度Arとの内の低い方の加速度を第2目標加速度At2として、実速度Vrと第2目標速度Vt2との差に基づいて実速度Vrを第2目標速度Vt2に近づけると共に、実加速度Arと第2目標加速度At2との差に基づいて実加速度Arを第2目標加速度At2に近づけるように、車輪Wに作用する動力F(駆動力及び制動力)を制御する第2フィードバック制御FB2を実行する形態を例示して説明した。 Note that, in the above, with reference to Figures 6, 7, etc., an example has been described in which, when the brake system 30 detects a brake operation by the driver while the ECU 1 is executing the first feedback control FB1, the ECU 1 executes the second feedback control FB2 in place of the first feedback control FB1, which controls the power F (driving force and braking force) acting on the wheels W so that the lower of the first target speed Vt1 and the actual speed Vr is set as the second target speed Vt2, the lower of the first target acceleration At1 and the actual acceleration Ar is set as the second target acceleration At2, and the actual speed Vr approaches the second target speed Vt2 based on the difference between the actual speed Vr and the second target speed Vt2, and the actual acceleration Ar approaches the second target acceleration At2 based on the difference between the actual acceleration Ar and the second target acceleration At2.

 しかし、第2フィードバック制御FB2では、制御対象に加速度を含まず、速度のみを制御対象としてもよい。即ち、ECU1が第1フィードバック制御FB1を実行中に、ブレーキシステム30が運転者によるブレーキ操作を検出した場合に、ECU1は、第1フィードバック制御FB1に代えて、第1目標速度Vt1と実速度Vrとの内の低い方の速度を第2目標速度Vt2として、実速度Vrと第2目標速度Vt2との差に基づいて実速度Vrを第2目標速度Vt2に近づけるように、車輪Wに作用する動力F(駆動力及び制動力)を制御する第2フィードバック制御FB2を実行してもよい。図6において、速度を対象とする制御が実施され、図7においてステップ#5、ステップ#6、ステップ#6Bを省略すればよく、当業者であれば容易に理解可能であるから詳細な説明は省略する。 However, in the second feedback control FB2, the acceleration may not be included in the control target, and only the speed may be the control target. That is, when the brake system 30 detects the brake operation by the driver while the ECU 1 is executing the first feedback control FB1, the ECU 1 may execute the second feedback control FB2, instead of the first feedback control FB1, in which the lower of the first target speed Vt1 and the actual speed Vr is set as the second target speed Vt2, and the power F (driving force and braking force) acting on the wheels W is controlled so as to bring the actual speed Vr closer to the second target speed Vt2 based on the difference between the actual speed Vr and the second target speed Vt2. In FIG. 6, the control targeting the speed is executed, and in FIG. 7, steps #5, #6, and #6B may be omitted, and detailed explanation will be omitted since it can be easily understood by those skilled in the art.

 また、上述したように、車両50は、車両50の複数箇所に設置され、車両50の周辺に存在する障害物の存否を検出するソナー57を備えている。これらのソナー57は、駐車支援システム100において、車両50と接触する可能性がある障害物を検出する障害物検出部に相当する。また、レーザーレーダー等を備えている場合には、当該レーザーレーダーも障害物検出部に相当する。また、上述したように、車両50の複数箇所に設置され、車両50の周辺画像を取得するカメラ58により撮影された撮影画像に基づいて車両50の周辺の障害物の存否を画像認識する画像処理システムも車両50に備えられている場合がある。そのような画像処理システムも駐車支援システム100と協働することができ、この場合、画像処理システムは、駐車支援システム100における障害物検出部に相当する。 As described above, the vehicle 50 is equipped with sonars 57 that are installed at multiple locations on the vehicle 50 and detect the presence or absence of obstacles around the vehicle 50. These sonars 57 correspond to the obstacle detection unit in the parking assistance system 100 that detects obstacles that may come into contact with the vehicle 50. In addition, if a laser radar or the like is provided, the laser radar also corresponds to the obstacle detection unit. As described above, the vehicle 50 may also be equipped with an image processing system that is installed at multiple locations on the vehicle 50 and performs image recognition to determine the presence or absence of obstacles around the vehicle 50 based on images captured by a camera 58 that captures images of the vehicle 50. Such an image processing system can also cooperate with the parking assistance system 100, in which case the image processing system corresponds to the obstacle detection unit in the parking assistance system 100.

 このように、駐車支援システム100は、車両50と接触する可能性がある障害物を検出する障害物検出部をさらに備えることができる。そして、ECU1は、車両50の駐車スペースEへの移動中に、障害物検出部が障害物を検出した場合には、目標演算処理において、車両50が障害物に接触することなく停止するように、第1目標速度Vt1及び第1目標加速度At1を演算すると好適である。 In this way, the parking assistance system 100 can further include an obstacle detection unit that detects an obstacle that may come into contact with the vehicle 50. Then, when the obstacle detection unit detects an obstacle while the vehicle 50 is moving to the parking space E, the ECU 1 preferably calculates the first target speed Vt1 and the first target acceleration At1 in the target calculation process so that the vehicle 50 stops without coming into contact with the obstacle.

 これにより、車両50と接触するおそれがある障害物が存在した場合であっても、適切に第1フィードバック制御FB1及び第2フィードバック制御を選択的に実行し、車両50を障害物に接触させることがないように駐車支援を実行することができる。 As a result, even if there is an obstacle that may come into contact with the vehicle 50, the first feedback control FB1 and the second feedback control can be selectively executed appropriately, and parking assistance can be performed to prevent the vehicle 50 from coming into contact with the obstacle.

 以上説明したように、本実施形態の駐車支援システム100は、車輪Wに作用する駆動力及び制動力の自動制御と、運転者によるブレーキ操作による制動力とを適切に調停しつつ、車両50を駐車スペースEに移動させることができる。 As described above, the parking assistance system 100 of this embodiment can move the vehicle 50 into the parking space E while appropriately balancing the automatic control of the driving force and braking force acting on the wheels W and the braking force caused by the driver's brake operation.

(実施形態のまとめ)
 以下、上記において説明した駐車支援システム(100)について簡単にまとめる。
(Summary of the embodiment)
The parking assistance system (100) described above will be briefly summarized below.

 1つの態様として、駐車支援システム(100)は、車輪(W)に作用する駆動力と制動力とを制御して、前記車輪(W)を備えた車両(50)を駐車スペース(E)へ移動させるための車両(50)制御を行う車両制御部(1)を備えた駐車支援システム(100)であって、運転者のブレーキ操作を検出するブレーキ操作検出部(30)と、前記車両(50)の実際の速度である実速度(Vr)を検出する速度検出部(54)と、前記車両(50)の実際の加速度である実加速度(Ar)を検出する加速度検出部(55)と、をさらに備え、前記車両制御部(1)は、前記車両(50)の前記駐車スペース(E)への移動中に、前記駐車スペース(E)に設定した駐車目標位置(Pt)と前記車両(50)の現在位置(Pr)とに基づいて、前記車両(50)を前記駐車目標位置(Pt)まで移動させて停止させるための第1目標速度(Vt1)と第1目標加速度(At1)とを演算する目標演算処理を実行すると共に、前記実速度(Vr)と前記第1目標速度(Vt1)との差に基づいて前記実速度(Vr)を前記第1目標速度(Vt1)に近づけると共に、前記実加速度(Ar)と前記第1目標加速度(At1)との差に基づいて前記実加速度(Ar)を前記第1目標加速度(At1)に近づけるように、前記車輪(W)に作用する駆動力及び制動力を制御する第1フィードバック制御(FB1)を実行し、前記第1フィードバック制御(FB1)の実行中に、前記ブレーキ操作検出部(30)が前記運転者による前記ブレーキ操作を検出した場合には、前記第1フィードバック制御(FB1)に代えて、前記第1目標速度(Vt1)と前記実速度(Vr)との内の低い方の速度を第2目標速度(Vt2)とし、前記実速度(Vr)と前記第2目標速度(Vt2)との差に基づいて前記実速度(Vr)を前記第2目標速度(Vt2)に近づけるように、前記車輪(W)に作用する駆動力(F)及び制動力(F)を制御する第2フィードバック制御(FB2)を実行する。 In one embodiment, the parking assistance system (100) is a parking assistance system (100) equipped with a vehicle control unit (1) that controls the driving force and braking force acting on the wheels (W) to control the vehicle (50) equipped with the wheels (W) to move the vehicle (50) to a parking space (E), and includes a brake operation detection unit (30) that detects the driver's brake operation, a speed detection unit (54) that detects the actual speed (Vr) of the vehicle (50), and an actual acceleration detection unit (55) that detects the actual acceleration of the vehicle (50). and an acceleration detection unit (55) for detecting an actual acceleration (Ar) which is equal to or greater than the actual acceleration (Ar) of the vehicle (50). During the movement of the vehicle (50) to the parking space (E), the vehicle control unit (1) executes a target calculation process for calculating a first target speed (Vt1) and a first target acceleration (At1) for moving the vehicle (50) to the parking target position (Pt) and stopping the vehicle (50) based on a parking target position (Pt) set in the parking space (E) and a current position (Pr) of the vehicle (50), and a first feedback control (FB1) for controlling a driving force and a braking force acting on the wheels (W) so as to bring the actual speed (Vr) closer to the first target speed (Vt1) based on a difference between the actual speed (Vr) and the first target speed (Vt1), and so as to bring the actual acceleration (Ar) closer to the first target acceleration (At1) based on a difference between the actual acceleration (Ar) and the first target acceleration (At1); and during the execution of the first feedback control (FB1), the brake operation detection unit (30) When the brake operation by the driver is detected, instead of the first feedback control (FB1), a second feedback control (FB2) is executed in which the lower of the first target speed (Vt1) and the actual speed (Vr) is set as a second target speed (Vt2), and the driving force (F) and braking force (F) acting on the wheels (W) are controlled so that the actual speed (Vr) approaches the second target speed (Vt2) based on the difference between the actual speed (Vr) and the second target speed (Vt2).

 本構成によれば、車両制御部(1)の車両制御による車両(50)の走行中に、運転者のブレーキ操作によって、車両(50)の実速度(Vr)がフィードバック制御の目標値よりも低くなった場合には、車両制御部(1)は、当該目標値を実速度(Vr)に合わせて低い値に変更する。つまり、車両制御部(1)は、第1フィードバック制御(FB1)に代えて第2フィードバック制御(FB2)を実行する。運転者のブレーキ操作によって、実速度(Vr)が目標値より低くなっても第1フィードバック制御(FB1)が継続された場合には、運転者のブレーキ操作に伴う速度の変化が外乱として扱われ、走行速度が維持されることもある。しかし、本構成によれば、運転者のブレーキ操作を外乱と認識して加速方向の駆動力が出力されることを回避してフィードバック制御を適切に継続することができると共に、運転者の意図に反して車両(50)が減速せずに走行することを抑制することができる。一方、運転者のブレーキ操作があった場合であっても、車両(50)の実速度が(Vr)フィードバック制御の目標値よりも高い場合には、車両制御部(1)は当該目標値を維持する。つまり、車両制御部(1)は、第1フィードバック制御(FB1)の実行を継続する。そのため、車両制御部(1)の車両制御による車両(50)の走行中に運転者のブレーキ操作があっても、車両(50)を駐車目標位置(Pt)に適切に停止させることができる。また、この場合、運転者のブレーキ操作相当以上減速されているため、運転者の意図に沿った減速も実現されている。このように、本構成によれば、車輪(W)に作用する駆動力(F)及び制動力(F)の自動制御と、運転者によるブレーキ操作による制動力とを適切に調停しつつ、車両(50)を駐車スペース(E)に移動させることができる駐車支援システム(100)を実現することができる。 According to this configuration, when the actual speed (Vr) of the vehicle (50) becomes lower than the target value of the feedback control due to the brake operation of the driver while the vehicle (50) is traveling under the vehicle control of the vehicle control unit (1), the vehicle control unit (1) changes the target value to a lower value in accordance with the actual speed (Vr). In other words, the vehicle control unit (1) executes the second feedback control (FB2) instead of the first feedback control (FB1). If the first feedback control (FB1) is continued even if the actual speed (Vr) becomes lower than the target value due to the brake operation of the driver, the change in speed due to the brake operation of the driver may be treated as a disturbance, and the traveling speed may be maintained. However, according to this configuration, the feedback control can be appropriately continued by avoiding the output of a driving force in the accelerating direction by recognizing the brake operation of the driver as a disturbance, and the vehicle (50) can be prevented from traveling without decelerating against the driver's intention. On the other hand, even if the driver brakes, if the actual speed of the vehicle (50) is higher than the target value of the (Vr) feedback control, the vehicle control unit (1) maintains the target value. That is, the vehicle control unit (1) continues to execute the first feedback control (FB1). Therefore, even if the driver brakes while the vehicle (50) is traveling under the vehicle control of the vehicle control unit (1), the vehicle (50) can be appropriately stopped at the parking target position (Pt). In addition, in this case, the vehicle is decelerated to a degree equivalent to or greater than the driver's brake operation, so that deceleration according to the driver's intention is also realized. In this way, according to this configuration, a parking assistance system (100) can be realized that can move the vehicle (50) to the parking space (E) while appropriately adjusting the automatic control of the driving force (F) and braking force (F) acting on the wheels (W) and the braking force due to the driver's brake operation.

 ここで、前記第2フィードバック制御(FB2)は、前記第1目標加速度(At1)と前記実加速度(Ar)との内の低い方の加速度を第2目標加速度(At2)として、前記実加速度(Ar)と前記第2目標加速度(At2)との差に基づいて前記実加速度(Ar)を前記第2目標加速度(At2)に近づけるように、前記車輪(W)に作用する駆動力(F)及び制動力(F)を制御する処理を含むと好適である。 Here, it is preferable that the second feedback control (FB2) includes a process of controlling the driving force (F) and the braking force (F) acting on the wheels (W) so as to bring the actual acceleration (Ar) closer to the second target acceleration (At2), based on the difference between the actual acceleration (Ar) and the second target acceleration (At2), by setting the lower of the first target acceleration (At1) and the actual acceleration (Ar) as the second target acceleration (At2).

 この構成によれば、車両制御部(1)の車両制御による車両の走行中に、運転者のブレーキ操作によって、車両(50)の実速度(Vr)及び実加速度(Ar)がフィードバック制御の目標値よりも低くなった場合に、車両制御部(1)が、当該目標値を実速度(Vr)及び実加速度(Ar)に合わせて低い値に変更する。つまり、車両制御部(1)は、第1フィードバック制御(FB1)に代えて第2フィードバック制御(FB2)を実行する。運転者のブレーキ操作によって、実速度(Vr)及び実加速度(Ar)が目標値より低くなっても第1フィードバック制御(FB1)が継続された場合には、運転者のブレーキ操作に伴う速度や加速度の変化が外乱として扱われ、走行速度や加速度が維持されることもある。しかし、この構成によれば、運転者のブレーキ操作を外乱と認識して加速方向の駆動力が出力されることを回避してフィードバック制御を適切に継続することができると共に、運転者の意図に反して車両が減速せずに走行することを抑制することができる。一方、運転者のブレーキ操作があった場合であっても、車両(50)の実速度(Vr)及び実加速度(Ar)がフィードバック制御の目標値よりも高い場合には、車両制御部(1)は当該目標値を維持する。つまり、車両制御部(1)は、第1フィードバック制御(FB1)の実行を継続する。そのため、車両制御部(1)の車両制御による車両(50)の走行中に運転者のブレーキ操作があっても、車両(50)を駐車目標位置(Pt)に適切に停止させることができる。この場合も、運転者のブレーキ操作相当以上減速されているため、運転者の意図に沿った減速も実現されている。 According to this configuration, when the actual speed (Vr) and actual acceleration (Ar) of the vehicle (50) become lower than the target values of the feedback control due to the driver's brake operation while the vehicle is traveling under the vehicle control of the vehicle control unit (1), the vehicle control unit (1) changes the target values to lower values in accordance with the actual speed (Vr) and actual acceleration (Ar). In other words, the vehicle control unit (1) executes the second feedback control (FB2) instead of the first feedback control (FB1). If the first feedback control (FB1) is continued even if the actual speed (Vr) and actual acceleration (Ar) become lower than the target values due to the driver's brake operation, the change in speed and acceleration due to the driver's brake operation may be treated as a disturbance, and the traveling speed and acceleration may be maintained. However, according to this configuration, the driver's brake operation is recognized as a disturbance, and a driving force in the accelerating direction is not output, so that the feedback control can be appropriately continued, and the vehicle can be prevented from traveling without decelerating against the driver's intention. On the other hand, even if the driver applies the brakes, if the actual speed (Vr) and actual acceleration (Ar) of the vehicle (50) are higher than the target values of the feedback control, the vehicle control unit (1) maintains the target values. In other words, the vehicle control unit (1) continues to execute the first feedback control (FB1). Therefore, even if the driver applies the brakes while the vehicle (50) is traveling under vehicle control by the vehicle control unit (1), the vehicle (50) can be appropriately stopped at the parking target position (Pt). In this case, too, the vehicle is decelerated by more than the driver's brake operation, so deceleration in line with the driver's intention is also achieved.

 また、駐車支援システム(100)は、前記車両制御部(1)が、前記第2フィードバック制御(FB2)の実行中に、前記ブレーキ操作検出部(30)が前記ブレーキ操作を検出しなくなった場合には、前記第2フィードバック制御(FB2)に代えて、前記第1フィードバック制御(FB1)を実行すると好適である。 Furthermore, the parking assistance system (100) is preferably configured such that, when the brake operation detection unit (30) no longer detects the brake operation while the vehicle control unit (1) is executing the second feedback control (FB2), the parking assistance system (100) executes the first feedback control (FB1) instead of the second feedback control (FB2).

 このように、本実施形態によれば、運転者のブレーキ操作がなくなった場合に、通常のフィードバック制御である第1フィードバック制御(FB1)に戻ることができる。従って、車両制御部(1)の車両制御による車両(50)の走行中に、運転者のブレーキ操作が断続的に行われた場合であっても、第1フィードバック制御(FB1)及び第2フィードバック制御(FB2)を適切に実行して車両制御部(1)による駐車支援を適切に継続することができる。 In this way, according to this embodiment, when the driver no longer operates the brakes, it is possible to return to the first feedback control (FB1), which is normal feedback control. Therefore, even if the driver intermittently operates the brakes while the vehicle (50) is traveling under vehicle control by the vehicle control unit (1), the first feedback control (FB1) and the second feedback control (FB2) can be appropriately executed, and parking assistance by the vehicle control unit (1) can be appropriately continued.

1:ECU(車両制御部)、30:ブレーキシステム(ブレーキ操作検出部)、50:車両、53:ブレーキセンサ(ブレーキ操作検出部)、54:速度センサ(速度検出部)、55:加速度センサ(加速度検出部)、100:駐車支援システム、Ar:実加速度、At:目標加速度、At1:第1目標加速度、At2:第2目標加速度、E:駐車スペース、F:動力(駆動力、制動力)、FB:加速度、FB:速度、FB1:第1フィードバック制御、FB2:第2フィードバック制御、Pr:現在位置、Pt:駐車目標位置、Vr:実速度、Vt:目標速度、Vt1:第1目標速度、Vt2:第2目標速度、W:車輪 1: ECU (vehicle control unit), 30: Brake system (brake operation detection unit), 50: vehicle, 53: Brake sensor (brake operation detection unit), 54: Speed sensor (speed detection unit), 55: Acceleration sensor (acceleration detection unit), 100: Parking assistance system, Ar: Actual acceleration, At: Target acceleration, At1: First target acceleration, At2: Second target acceleration, E: Parking space, F: Power (driving force, braking force), FB: Acceleration, FB: Speed, FB1: First feedback control, FB2: Second feedback control, Pr: Current position, Pt: Parking target position, Vr: Actual speed, Vt: Target speed, Vt1: First target speed, Vt2: Second target speed, W: Wheels

Claims (3)

 車輪に作用する駆動力と制動力とを制御して、前記車輪を備えた車両を駐車スペースへ移動させるための車両制御を行う車両制御部を備えた駐車支援システムであって、
 運転者のブレーキ操作を検出するブレーキ操作検出部と、
 前記車両の実際の速度である実速度を検出する速度検出部と、
 前記車両の実際の加速度である実加速度を検出する加速度検出部と、をさらに備え、
 前記車両制御部は、前記車両の前記駐車スペースへの移動中に、
  前記駐車スペースに設定した駐車目標位置と前記車両の現在位置とに基づいて、前記車両を前記駐車目標位置まで移動させて停止させるための第1目標速度と第1目標加速度とを演算する目標演算処理を実行すると共に、
  前記実速度と前記第1目標速度との差に基づいて前記実速度を前記第1目標速度に近づけると共に、前記実加速度と前記第1目標加速度との差に基づいて前記実加速度を前記第1目標加速度に近づけるように、前記車輪に作用する駆動力及び制動力を制御する第1フィードバック制御を実行し、
  前記第1フィードバック制御の実行中に、前記ブレーキ操作検出部が前記運転者による前記ブレーキ操作を検出した場合には、前記第1フィードバック制御に代えて、前記第1目標速度と前記実速度との内の低い方の速度を第2目標速度とし、前記実速度と前記第2目標速度との差に基づいて前記実速度を前記第2目標速度に近づけるように、前記車輪に作用する駆動力及び制動力を制御する第2フィードバック制御を実行する、駐車支援システム。
A parking assistance system including a vehicle control unit that controls a driving force and a braking force acting on a wheel to perform vehicle control for moving a vehicle having the wheel into a parking space,
A brake operation detection unit that detects a brake operation by a driver;
a speed detection unit for detecting an actual speed of the vehicle;
An acceleration detection unit that detects an actual acceleration of the vehicle,
The vehicle control unit, while the vehicle is moving to the parking space,
A target calculation process is executed to calculate a first target speed and a first target acceleration for moving the vehicle to the parking target position and stopping the vehicle based on a parking target position set for the parking space and a current position of the vehicle, and
execute a first feedback control for controlling a driving force and a braking force acting on the wheels so as to bring the actual speed closer to the first target speed based on a difference between the actual speed and the first target speed, and to bring the actual acceleration closer to the first target acceleration based on a difference between the actual acceleration and the first target acceleration;
a brake operation detection unit that detects the brake operation by the driver while the first feedback control is being executed, and then, instead of the first feedback control, a second feedback control is executed in which the lower of the first target speed and the actual speed is set as a second target speed, and the driving force and braking force acting on the wheels are controlled so as to bring the actual speed closer to the second target speed based on a difference between the actual speed and the second target speed.
 前記第2フィードバック制御は、前記第1目標加速度と前記実加速度との内の低い方の加速度を第2目標加速度として、前記実加速度と前記第2目標加速度との差に基づいて前記実加速度を前記第2目標加速度に近づけるように、前記車輪に作用する駆動力及び制動力を制御する処理を含む、請求項1に記載の駐車支援システム。 The parking assistance system of claim 1, wherein the second feedback control includes a process of controlling the driving force and braking force acting on the wheels so as to bring the actual acceleration closer to the second target acceleration based on the difference between the first target acceleration and the actual acceleration, the lower of which is set as a second target acceleration.  前記車両制御部は、前記第2フィードバック制御の実行中に、前記ブレーキ操作検出部が前記ブレーキ操作を検出しなくなった場合には、前記第2フィードバック制御に代えて、前記第1フィードバック制御を実行する、請求項1又は2に記載の駐車支援システム。
 
3. The parking assistance system according to claim 1, wherein the vehicle control unit executes the first feedback control instead of the second feedback control when the brake operation detection unit no longer detects the brake operation while the second feedback control is being executed.
PCT/JP2024/011002 2023-03-27 2024-03-21 Parking assist system WO2024203713A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2023-050046 2023-03-27
JP2023050046 2023-03-27

Publications (1)

Publication Number Publication Date
WO2024203713A1 true WO2024203713A1 (en) 2024-10-03

Family

ID=92906100

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2024/011002 WO2024203713A1 (en) 2023-03-27 2024-03-21 Parking assist system

Country Status (1)

Country Link
WO (1) WO2024203713A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017065327A (en) * 2015-09-29 2017-04-06 日立オートモティブシステムズ株式会社 Vehicle control device
JP2021062727A (en) * 2019-10-11 2021-04-22 アイシン精機株式会社 Parking supporting device, parking supporting method, and parking supporting program
JP2021160476A (en) * 2020-03-31 2021-10-11 本田技研工業株式会社 Parking support system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017065327A (en) * 2015-09-29 2017-04-06 日立オートモティブシステムズ株式会社 Vehicle control device
JP2021062727A (en) * 2019-10-11 2021-04-22 アイシン精機株式会社 Parking supporting device, parking supporting method, and parking supporting program
JP2021160476A (en) * 2020-03-31 2021-10-11 本田技研工業株式会社 Parking support system

Similar Documents

Publication Publication Date Title
US11572062B2 (en) Driving assistance control device
US6929082B2 (en) Parking assist apparatus for vehicle and control method of same
JP6872025B2 (en) Vehicles and their control devices and control methods
JP4282858B2 (en) Vehicle travel control device
JP4488012B2 (en) Vehicle travel support device
JP5224918B2 (en) Driving assistance device
JP2019043209A (en) Steering assist device
JP2019137283A (en) Operation support device, operation support method and operation support system
JP3866223B2 (en) Vehicle travel support device
CN114348111A (en) Vehicle control device, computer-readable medium storing vehicle control program, and vehicle control method
JPWO2020022075A1 (en) Vehicle control device and automatic driving system using it
JP2014024462A (en) Parking support device
JP3934082B2 (en) Driving support device
WO2024203713A1 (en) Parking assist system
US20220314985A1 (en) Vehicle control device, vehicle, method of controlling vehicle control device, and non-transitory computer-readable storage medium
WO2024203695A1 (en) Parking assist system
WO2024203805A1 (en) Parking support system
JP2022141997A (en) vehicle controller
JP7494830B2 (en) Vehicle driving support device, vehicle driving support method, vehicle driving support program, and vehicle equipped with vehicle driving support device
US20220314978A1 (en) Vehicle control device and vehicle control method, and storage medium
US11735049B2 (en) Park assist system
WO2024204017A1 (en) Parking assistance system
WO2024204300A1 (en) Parking assistance system
US6975930B2 (en) Rate limiting control system
WO2024204297A1 (en) Parking assistance system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 24779833

Country of ref document: EP

Kind code of ref document: A1