WO2024203416A1 - Optical waveguide and optical waveguide module - Google Patents
Optical waveguide and optical waveguide module Download PDFInfo
- Publication number
- WO2024203416A1 WO2024203416A1 PCT/JP2024/010135 JP2024010135W WO2024203416A1 WO 2024203416 A1 WO2024203416 A1 WO 2024203416A1 JP 2024010135 W JP2024010135 W JP 2024010135W WO 2024203416 A1 WO2024203416 A1 WO 2024203416A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cross
- optical waveguide
- core
- section
- coupling
- Prior art date
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 126
- 230000008878 coupling Effects 0.000 claims abstract description 75
- 238000010168 coupling process Methods 0.000 claims abstract description 75
- 238000005859 coupling reaction Methods 0.000 claims abstract description 75
- 238000005253 cladding Methods 0.000 claims abstract description 17
- 230000007423 decrease Effects 0.000 claims description 4
- 238000004088 simulation Methods 0.000 description 9
- 239000000463 material Substances 0.000 description 8
- 239000000758 substrate Substances 0.000 description 8
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 7
- 229920000642 polymer Polymers 0.000 description 7
- 229910052710 silicon Inorganic materials 0.000 description 7
- 239000010703 silicon Substances 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 238000000149 argon plasma sintering Methods 0.000 description 3
- 230000014509 gene expression Effects 0.000 description 3
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 238000005304 joining Methods 0.000 description 2
- 230000000644 propagated effect Effects 0.000 description 2
- 230000003746 surface roughness Effects 0.000 description 2
- 238000005011 time of flight secondary ion mass spectroscopy Methods 0.000 description 2
- 238000002042 time-of-flight secondary ion mass spectrometry Methods 0.000 description 2
- PIGFYZPCRLYGLF-UHFFFAOYSA-N Aluminum nitride Chemical compound [Al]#N PIGFYZPCRLYGLF-UHFFFAOYSA-N 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 229910001845 yogo sapphire Inorganic materials 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/12—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
- G02B6/122—Basic optical elements, e.g. light-guiding paths
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/26—Optical coupling means
Definitions
- the disclosed embodiments relate to optical waveguides and optical waveguide modules.
- optical waveguide modules have been known in which two optical waveguides with different refractive indices are optically coupled to each other.
- the two optical waveguides that are optically coupled are, for example, a silicon optical waveguide and a polymer optical waveguide that has a smaller refractive index than the silicon optical waveguide.
- the polymer optical waveguide is composed of a core made of, for example, a polymer material and a cladding that surrounds the core. A portion of the upper surface of the core of the polymer optical waveguide is exposed from the cladding and forms an optical coupling surface that is optically coupled with the tapered core of the silicon optical waveguide.
- the core of the polymer optical waveguide extends within the cladding in a direction away from the silicon optical waveguide to the end face of the cladding.
- the optical waveguide according to one aspect of the embodiment is an optical waveguide that is optically coupled to another optical waveguide that includes a first core having a first refractive index, and has a core and a clad.
- the core has a refractive index different from the first refractive index.
- the clad is arranged to cover at least a portion of the periphery of the core.
- the core has end faces and side faces, is elongated, and has, in order along the longitudinal direction, a coupling portion and an extension portion adjacent to the coupling portion.
- the coupling portion has an optical coupling surface that is located on the side face and is exposed from the clad and is optically coupled to the first core.
- the second area that is the area of the second cross section is larger than the first area that is the area of the first cross section.
- FIG. 1 is a schematic perspective view of an optical waveguide module according to a first embodiment.
- FIG. 2 is a plan view of the optical waveguide module according to the first embodiment as viewed from the positive direction of the Z axis.
- FIG. 3 is a cross-sectional view taken along line III-III in FIG.
- FIG. 4 is a side view of the optical waveguide module according to the first embodiment, as viewed from the negative direction of the X-axis.
- FIG. 5 is a diagram showing an example of the relationship between the optical coupling loss in the second optical waveguide and the size of the core cross section.
- FIG. 6 is a diagram showing an example of the relationship between the propagation loss of light in the second optical waveguide and the size of the core cross section.
- FIG. 1 is a schematic perspective view of an optical waveguide module according to a first embodiment.
- FIG. 2 is a plan view of the optical waveguide module according to the first embodiment as viewed from the positive direction of the Z axis.
- FIG. 3 is
- FIG. 7 is a diagram showing the effect of the optical waveguide module according to the first embodiment (simulation results of optical loss according to changes in cross-sectional size).
- FIG. 8 is a plan view of the optical waveguide module according to the second embodiment as viewed from the positive direction of the Z axis.
- FIG. 9 is a cross-sectional view taken along line IX-IX in FIG.
- FIG. 10 is a plan view of the optical waveguide module according to the third embodiment as viewed from the positive direction of the Z axis.
- FIG. 11 is a cross-sectional view taken along line XI-XI of FIG.
- drawings referenced below may show an orthogonal coordinate system that defines the X-axis, Y-axis, and Z-axis directions that are mutually perpendicular, with the positive Z-axis direction being the vertically upward direction.
- Fig. 1 is a schematic perspective view of the optical waveguide module 1 according to the first embodiment.
- the optical waveguide module 1 has a first optical waveguide 2 and a second optical waveguide 3.
- the first optical waveguide 2 and the second optical waveguide 3 are joined by a joining material 4 made of, for example, a photocurable resin.
- the first optical waveguide 2 has a substrate 21 and a first core 22.
- the substrate 21 is a rectangular parallelepiped substrate having a thickness in the vertical direction (Z-axis direction).
- the substrate 21 is made of, for example, ceramics.
- the ceramics constituting the substrate 21 are, for example, sintered bodies containing aluminum nitride (AlN), aluminum oxide ( Al2O3 , alumina), silicon carbide (SiC), silicon nitride ( Si3N4 ), or the like as main components.
- the first core 22 is located on the underside of the substrate 21 and extends in one direction (the X-axis direction) along the underside of the substrate 21.
- the first core 22 has a tapered shape (see FIG. 2) that narrows toward the tip.
- the first core 22 is a passage for transmitting light, and is made of a material that contains, for example, silicon.
- the second optical waveguide 3 is an optical waveguide that is optically coupled to the first optical waveguide 2, and has a second core 31 and a cladding 32.
- the second core 31 is located at a position where a part of it overlaps with the first core 22 of the first optical waveguide 2 in a plan view seen from the top-bottom direction (Z-axis direction). One end face of the second core 31 is exposed at the end face (the end face on the positive X-axis side) of the cladding 32 located opposite the first core 22, forming a coupling surface that can be coupled to an optical fiber (not shown).
- the second core 31 is a passage for transmitting light, and is made of a material with a refractive index different from that of the first core 22.
- the material that makes up the second core 31 has a lower refractive index than the material that makes up the first core 22, for example.
- the material that makes up the second core 31 can be, for example, a polymer with a lower refractive index than silicon.
- the cladding 32 is positioned so as to surround the second core 31.
- the cladding 32 is made of a material with a different refractive index than the second core 31, and totally reflects the light inside the second core 31 at the boundary surface with the second core 31.
- Fig. 2 is a plan view of the optical waveguide module 1 according to the first embodiment, as viewed from the positive direction of the Z axis.
- Fig. 3 is a cross-sectional view taken along line III-III in Fig. 2.
- Fig. 4 is a side view of the optical waveguide module 1 according to the first embodiment, as viewed from the negative direction of the X axis.
- the second core 31 has a connecting portion 311 and an extension portion 312.
- the coupling portion 311 has an exposed surface 311a exposed from the clad 32 at a cutout portion 32a formed by cutting out a portion of the upper surface of the clad 32.
- the exposed surface 311a is overlapped and joined to the first core 22 of the first optical waveguide 2, thereby forming an optical coupling surface that is optically coupled to the first core 22.
- the extension section 312 extends from the side surface adjacent to the exposed surface 311a of the coupling section 311 inside the cladding 32 to the end face (the end face on the positive X-axis direction) of the cladding 32 located on the opposite side to the coupling section 311, and propagates light between the coupling section 311 and the end face of the cladding 32.
- a portion of the extension section 312 has a cross-sectional size perpendicular to the longitudinal direction (X-axis direction) larger than that of the coupling section 311.
- the cross-sectional size perpendicular to the longitudinal direction (X-axis direction) is a parameter that defines the cross section, and is at least one parameter selected from a group of parameters including thickness and width (diameter).
- a portion of the extension section 312 has a thickness and width larger than that of the coupling section 311.
- the second core 31 has an elongated shape.
- elongated does not only refer to a thin, so-called band-like shape, but also includes any shape that is elongated and has a predetermined thickness.
- the shape includes a rectangular shape, including one with a square cross-sectional shape.
- the shape may include portions with different cross-sectional areas at multiple locations in the longitudinal direction of the second core 31.
- the joint portion 311 and the extension portion 312 that constitute the second core 31 are adjacent to each other in the longitudinal direction of the second core 31.
- the surface along the longitudinal direction of the extension portion 312 is called the side surface 312cc.
- the extension portion 312 will be further explained using the symbols shown in Figures 2 and 3.
- the two intersecting planes are two cross sections perpendicular to the longitudinal direction of the second core 31.
- the two cross sections are planes that intersect with the side surface 312cc.
- the two cross sections are planes parallel to the end surface of the extension portion 312. Note that, as shown in Figures 2 and 3, even if the shape of the extension portion 312 is such that the diameter (width) changes in the longitudinal direction with respect to the side surface 312cc, the two cross sections are planes parallel to the end surface of the extension portion 312.
- the two cross sections are located at a predetermined distance in the longitudinal direction of the extension portion 312.
- the two cross sections are first cross section 312aa and second cross section 312bb.
- first cross section 312aa when the cross section of the extension portion 312 located at a predetermined distance in the longitudinal direction on the joining portion 311 side is represented as first cross section 312aa, and the cross section located farther from the joining portion 311 than the first cross section 312aa is represented as second cross section 312bb, the area of second cross section 312bb is larger than the area of first cross section 312aa.
- the areas of the first cross section 312aa and the second cross section 312bb in the extension portion 312 can be determined, for example, by analyzing an image of the cross section taken by an electron microscope.
- the photographs used for image analysis may be general scanning electron microscope photographs (SEM photographs), or may be photographs of reflected electron images obtained by the scanning electron microscope.
- TOF-SIMS time-of-flight secondary ion mass spectrometry
- TOF-SIMS time-of-flight secondary ion mass spectrometry
- the direction along the plane of the first cross section 312aa and the second cross section 312bb is perpendicular to the side surface 312cc (of the second portion 312b).
- the optimal core cross-sectional size for reducing optical coupling loss is different from the optimal core cross-sectional size for reducing optical propagation loss.
- FIG. 6 is a diagram showing an example of the relationship between the propagation loss of light in the second optical waveguide 3 and the size of the core cross section.
- the "core cross section size" on the horizontal axis refers to the size of a cross section perpendicular to the longitudinal direction (X-axis direction) of the extension portion 312 of the second core 31, and indicates the size of the cross section when the thickness and width of the extension portion 312 are equal.
- the surface roughness Rq of the second core 31 is 0.6 ⁇ m.
- the propagation loss of light in the second optical waveguide 3 increases as the core cross-sectional size of the second optical waveguide 3 becomes smaller. This is thought to be because the smaller the core cross-sectional size of the second optical waveguide 3, the greater the effect of the surface roughness Rq of the outer core surface, causing scattering of light on the outer core surface. Therefore, from the perspective of propagation loss, it is clear that it is desirable for the core cross-sectional size of the second optical waveguide 3 to be relatively large.
- the polymer optical waveguide that is optically coupled to the silicon optical waveguide generally has a uniform core cross-sectional size along the longitudinal direction. For this reason, in a typical polymer optical waveguide, if the core cross-sectional size is set to a relatively small size from the perspective of coupling loss, there is a risk of increased propagation loss.
- the cross-sectional size of the coupling portion 311 in the second core 31 is relatively small, and the cross-sectional size of the extension portion 312 is relatively large.
- the cross-sectional size of the coupling portion 311 in the second core 31 relatively small, it is possible to reduce coupling loss compared to when the core cross-sectional size of the second optical waveguide 3 is made uniform in the longitudinal direction.
- the cross-sectional size of the extension portion 312 in the second core 31 relatively large, it is possible to reduce propagation loss compared to when the core cross-sectional size of the second optical waveguide 3 is made uniform in the longitudinal direction.
- the extension portion 312 has a first portion 312a and a second portion 312b.
- the first portion 312a is connected to the connecting portion 311.
- the cross-sectional size (area) of the first portion 312a increases with increasing distance from the connecting portion 311. Specifically, the cross-sectional size (area) of the first portion 312a gradually increases with increasing distance from the connecting portion 311.
- the second portion 312b is connected to the first portion 312a, and has a constant cross-sectional size.
- the cross-sectional size of the first portion 312a may increase in stages with increasing distance from the connecting portion 311.
- the present invention is not limited to this, and the second portion 312b may be omitted.
- the cross-sectional size (area) of the extension portion 312 may increase the farther away from the connecting portion 311 over the entire length of the extension portion 312. This allows light to move more stably from the connecting portion 311 to the extension portion 312, and further reduces scattering of light in the extension portion 312.
- Figure 7 is a diagram showing the effect of the optical waveguide module 1 according to the first embodiment (simulation results of optical loss according to changes in cross-sectional size).
- Example is a simulation result of measuring optical loss when light is propagated from the first optical waveguide 2 to the second optical waveguide 3 in the optical waveguide module 1 according to this embodiment.
- the optical loss is the sum of the coupling loss and the propagation loss.
- “Comparative Example” is a simulation result of measuring optical loss when light is propagated from the first optical waveguide 2 to the second optical waveguide 3 in the optical waveguide module 1 according to the comparative example.
- the optical waveguide module 1 according to the comparative example employs a structure in which the core cross-sectional size of the second optical waveguide 3 is uniform in the longitudinal direction, that is, a structure in which the core cross-sectional sizes of the coupling portion 311 and the extension portion 312 of the second core 31 are the same.
- the simulation conditions used in the comparative example are as follows.
- Fig. 8 is a plan view of the optical waveguide module 1 according to the second embodiment as viewed from the positive direction of the Z axis.
- Fig. 9 is a cross-sectional view taken along line IX-IX in Fig. 8.
- the cross-sectional size of the coupling portion 311 may become smaller as it moves away from the extension portion 312.
- the cross-sectional size of the coupling portion 311 in the second core 31 can be made smaller, and the coupling loss can be further reduced.
- Third Embodiment Fig. 10 is a plan view of the optical waveguide module 1 according to the third embodiment as viewed from the positive direction of the Z axis, and Fig. 11 is a cross-sectional view taken along line XI-XI in Fig. 10.
- the extension portion 312 may be discontinuously connected to the coupling portion 311 via a step. With this configuration, the propagation loss in the second core 31 can be further reduced.
- the core has end faces and side faces, is elongated, and has, in order along the longitudinal direction, a coupling portion (for example, the coupling portion 311) and an extension portion (for example, the extension portion 312) adjacent to the coupling portion.
- the coupling portion has an optical coupling surface (for example, the exposed surface 311a) that is located on the side face and is exposed from the clad to be optically coupled to the first core.
- first cross section for example, first cross section 312aa
- second cross section for example, second cross section 312bb
- the extension portion may have a first portion connected to the coupling portion and a second portion connected to the first portion.
- the first portion may include a first cross section and a second cross section, and the cross-sectional area of the first portion may increase with increasing distance from the coupling portion.
- the cross-sectional area of the first portion may also gradually increase with increasing distance from the coupling portion. This allows the optical waveguide of the embodiment to reduce light scattering in the extension portion.
- the cross-sectional area of the first portion may also increase stepwise as it moves away from the coupling portion. This allows the optical waveguide according to the embodiment to reduce light scattering in the extension portion.
- the cross-sectional area of the extension portion may also increase over the entire length of the extension portion as it moves away from the coupling portion. This allows the optical waveguide according to the embodiment to further reduce light scattering in the extension portion.
- the extension portion may be discontinuously connected to the coupling portion via at least one of a step in the width direction and a step in the thickness direction. This allows the optical waveguide according to the embodiment to further reduce propagation loss in the core.
- Optical waveguide module 2 First optical waveguide 3
- Second optical waveguide 4 Bonding material 21
- Substrate 22 First core 31
- Second core 32 Clad 311 Coupling portion 311a Exposed surface 312 Extended portion 312a First portion 312aa First cross section 312bb Second cross section 312b Second part 312cc Side
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Optical Integrated Circuits (AREA)
Abstract
This optical waveguide is optically coupled to another optical waveguide including a first core having a first refractive index, and comprises a core and a cladding. The core has a refractive index different from the first refractive index. The cladding is disposed so as to cover at least part of the periphery of the core. The core is provided with an end surface and a side surface, has an elongated shape, and has, in order, a coupling part and an extension part adjacent to the coupling part along the longitudinal direction. The coupling part has an optical coupling surface located on the side surface, exposed from the cladding, and optically coupled to the first core. In the extension part, when two cross sections located with a predetermined space in the longitudinal direction therebetween are defined as a first cross section and a second cross section, in order from the one closer to the coupling part, a second area that is the area of the second cross section is larger than a first area that is the area of the first cross section.
Description
開示の実施形態は、光導波路および光導波路モジュールに関する。
The disclosed embodiments relate to optical waveguides and optical waveguide modules.
従来、屈折率が異なる2つの光導波路同士を光結合した光導波路モジュールが知られている。光結合される2つの光導波路は、例えばシリコン光導波路およびシリコン光導波路よりも屈折率が小さいポリマ光導波路である。
Conventionally, optical waveguide modules have been known in which two optical waveguides with different refractive indices are optically coupled to each other. The two optical waveguides that are optically coupled are, for example, a silicon optical waveguide and a polymer optical waveguide that has a smaller refractive index than the silicon optical waveguide.
ポリマ光導波路は、例えばポリマ材からなるコア及びコアの周囲を覆うクラッドから構成される。ポリマ光導波路のコアの上面の一部は、クラッドから露出しており、シリコン光導波路のテーパ状コアと光結合される光結合面を形成する。そして、ポリマ光導波路のコアは、クラッドの内部においてシリコン光導波路から離れる方向にクラッドの端面まで延伸している。
The polymer optical waveguide is composed of a core made of, for example, a polymer material and a cladding that surrounds the core. A portion of the upper surface of the core of the polymer optical waveguide is exposed from the cladding and forms an optical coupling surface that is optically coupled with the tapered core of the silicon optical waveguide. The core of the polymer optical waveguide extends within the cladding in a direction away from the silicon optical waveguide to the end face of the cladding.
実施形態の一態様による光導波路は、第1屈折率を有する第1コアを含む他の光導波路と光結合される光導波路であって、コアと、クラッドとを有する。コアは、第1屈折率とは異なる屈折率を有する。クラッドは、コアの周囲の少なくとも一部を覆うように配置される。コアは、端面および側面を備え、長尺状を成し、長手方向に沿って、順に、結合部と、該結合部に隣接する延伸部と、を有している。結合部は、側面に位置するとともにクラッドから露出して第1コアと光結合される光結合面を有している。延伸部において、長手方向に所定の間隔をおいて位置する2つの断面を、結合部に近いものから順に、第1断面および第2断面としたとき、第2断面の面積である第2面積は、第1断面の面積である第1面積よりも大きい。
The optical waveguide according to one aspect of the embodiment is an optical waveguide that is optically coupled to another optical waveguide that includes a first core having a first refractive index, and has a core and a clad. The core has a refractive index different from the first refractive index. The clad is arranged to cover at least a portion of the periphery of the core. The core has end faces and side faces, is elongated, and has, in order along the longitudinal direction, a coupling portion and an extension portion adjacent to the coupling portion. The coupling portion has an optical coupling surface that is located on the side face and is exposed from the clad and is optically coupled to the first core. When two cross sections located at a predetermined distance in the longitudinal direction in the extension portion are referred to as a first cross section and a second cross section in order from the one closest to the coupling portion, the second area that is the area of the second cross section is larger than the first area that is the area of the first cross section.
以下、添付図面を参照して、本願の開示する光導波路および光導波路モジュールの実施形態について説明する。なお、以下に示す実施形態により本開示が限定されるものではない。また、各実施形態は、処理内容を矛盾させない範囲で適宜組み合わせることが可能である。また、以下の各実施形態において同一の部位には同一の符号を付し、重複する説明は省略される。
Below, with reference to the attached drawings, an embodiment of the optical waveguide and optical waveguide module disclosed in the present application will be described. Note that the present disclosure is not limited to the embodiments described below. Furthermore, each embodiment can be appropriately combined to the extent that there is no contradiction in the processing content. Furthermore, the same parts in each of the following embodiments are given the same reference numerals, and duplicate explanations will be omitted.
また、以下に示す実施形態では、「一定」、「直交」、「垂直」あるいは「平行」といった表現が用いられる場合があるが、これらの表現は、厳密に「一定」、「直交」、「垂直」あるいは「平行」であることを要しない。すなわち、上記した各表現は、たとえば製造精度、設置精度などのずれを許容するものとする。
In addition, in the embodiments described below, expressions such as "constant," "orthogonal," "vertical," and "parallel" may be used, but these expressions do not necessarily mean "constant," "orthogonal," "vertical," or "parallel" in the strict sense. In other words, each of the above expressions allows for deviations due to, for example, manufacturing precision, installation precision, and the like.
また、以下で参照する各図は、説明の便宜上の模式的なものである。したがって、細部は省略されることがあり、また、寸法比率は必ずしも現実のものとは一致していない。
The figures referenced below are schematic for the sake of convenience. Therefore, details may be omitted and the dimensional proportions may not necessarily correspond to the actual ones.
また、以下参照する各図面では、説明を分かりやすくするために、互いに直交するX軸方向、Y軸方向およびZ軸方向を規定し、Z軸正方向を鉛直上向き方向とする直交座標系を示す場合がある。
In addition, in order to make the explanation easier to understand, the drawings referenced below may show an orthogonal coordinate system that defines the X-axis, Y-axis, and Z-axis directions that are mutually perpendicular, with the positive Z-axis direction being the vertically upward direction.
(第1実施形態)
まず、第1実施形態に係る光導波路モジュール1の構成について図1を参照して説明する。図1は、第1実施形態に係る光導波路モジュール1の模式的な斜視図である。 First Embodiment
First, the configuration of anoptical waveguide module 1 according to the first embodiment will be described with reference to Fig. 1. Fig. 1 is a schematic perspective view of the optical waveguide module 1 according to the first embodiment.
まず、第1実施形態に係る光導波路モジュール1の構成について図1を参照して説明する。図1は、第1実施形態に係る光導波路モジュール1の模式的な斜視図である。 First Embodiment
First, the configuration of an
図1に示すように、光導波路モジュール1は、第1光導波路2と、第2光導波路3とを有する。第1光導波路2と前記第2光導波路3とは、たとえば光硬化樹脂などからなる接合材4によって接合されている。
As shown in FIG. 1, the optical waveguide module 1 has a first optical waveguide 2 and a second optical waveguide 3. The first optical waveguide 2 and the second optical waveguide 3 are joined by a joining material 4 made of, for example, a photocurable resin.
第1光導波路2は、基板21と、第1コア22とを有する。
The first optical waveguide 2 has a substrate 21 and a first core 22.
基板21は、上下方向(Z軸方向)に厚みがある直方体形状の基板である。基板21は、たとえばセラミックスからなる。基板21を構成するセラミックスは、たとえば、窒化アルミニウム(AlN)、酸化アルミニウム(Al2O3、アルミナ)、炭化珪素(SiC)、窒化珪素(Si3N4)等を主成分とする焼結体である。
The substrate 21 is a rectangular parallelepiped substrate having a thickness in the vertical direction (Z-axis direction). The substrate 21 is made of, for example, ceramics. The ceramics constituting the substrate 21 are, for example, sintered bodies containing aluminum nitride (AlN), aluminum oxide ( Al2O3 , alumina), silicon carbide (SiC), silicon nitride ( Si3N4 ), or the like as main components.
第1コア22は、基板21の下面に位置しており、基板21の下面に沿って一方向(X軸方向)に延伸している。第1コア22は、先端に向かうにつれて幅が狭くなるテーパ状(図2参照)をなしている。第1コア22は、光を伝達する通路であり、たとえばシリコンを含有する材料からなる。
The first core 22 is located on the underside of the substrate 21 and extends in one direction (the X-axis direction) along the underside of the substrate 21. The first core 22 has a tapered shape (see FIG. 2) that narrows toward the tip. The first core 22 is a passage for transmitting light, and is made of a material that contains, for example, silicon.
第2光導波路3は、第1光導波路2と光結合される光導波路であり、第2コア31と、クラッド32とを有する。
The second optical waveguide 3 is an optical waveguide that is optically coupled to the first optical waveguide 2, and has a second core 31 and a cladding 32.
第2コア31は、上下方向(Z軸方向)から見た平面視において一部が第1光導波路2の第1コア22と重なる位置に位置している。第2コア31の一方の端面は、クラッド32の第1コア22とは反対側に位置する端面(X軸正方向側の端面)において露出し、不図示の光ファイバと結合可能な結合面を形成する。第2コア31は、光を伝達する通路であり、第1コア22とは異なる屈折率の材料から構成されている。第2コア31を構成する材料は、たとえば第1コア22を構成する材料よりも屈折率が低い。かかる第2コア31を構成する材料としては、たとえばシリコンよりも屈折率が低いポリマ等を用いることができる。
The second core 31 is located at a position where a part of it overlaps with the first core 22 of the first optical waveguide 2 in a plan view seen from the top-bottom direction (Z-axis direction). One end face of the second core 31 is exposed at the end face (the end face on the positive X-axis side) of the cladding 32 located opposite the first core 22, forming a coupling surface that can be coupled to an optical fiber (not shown). The second core 31 is a passage for transmitting light, and is made of a material with a refractive index different from that of the first core 22. The material that makes up the second core 31 has a lower refractive index than the material that makes up the first core 22, for example. The material that makes up the second core 31 can be, for example, a polymer with a lower refractive index than silicon.
クラッド32は、第2コア31の周囲を覆って位置している。クラッド32は、第2コア31とは異なる屈折率の材料から構成されており、第2コア31との境界面において第2コア31内の光を全反射する。
The cladding 32 is positioned so as to surround the second core 31. The cladding 32 is made of a material with a different refractive index than the second core 31, and totally reflects the light inside the second core 31 at the boundary surface with the second core 31.
次に、第2コア31の構成の詳細について図2~図4を参照して説明する。図2は、第1実施形態に係る光導波路モジュール1をZ軸正方向から見た平面図である。図3は、図2のIII-III線における断面図である。図4は、第1実施形態に係る光導波路モジュール1をX軸負方向から見た側面図である。
Next, the details of the configuration of the second core 31 will be described with reference to Figs. 2 to 4. Fig. 2 is a plan view of the optical waveguide module 1 according to the first embodiment, as viewed from the positive direction of the Z axis. Fig. 3 is a cross-sectional view taken along line III-III in Fig. 2. Fig. 4 is a side view of the optical waveguide module 1 according to the first embodiment, as viewed from the negative direction of the X axis.
図2~図4に示すように、第2コア31は、結合部311と、延伸部312とを有する。
As shown in Figures 2 to 4, the second core 31 has a connecting portion 311 and an extension portion 312.
結合部311は、クラッド32の上面の一部を切り欠いて形成された切欠き部32aにおいてクラッド32から露出する露出面311aを有する。露出面311aは、第1光導波路2の第1コア22と重ねて接合されることにより、第1コア22と光結合される光結合面を形成している。
The coupling portion 311 has an exposed surface 311a exposed from the clad 32 at a cutout portion 32a formed by cutting out a portion of the upper surface of the clad 32. The exposed surface 311a is overlapped and joined to the first core 22 of the first optical waveguide 2, thereby forming an optical coupling surface that is optically coupled to the first core 22.
延伸部312は、クラッド32の内部において結合部311の露出面311aと隣接する側面からクラッド32の結合部311とは反対側に位置する端面(X軸正方向側の端面)まで延伸しており、結合部311とクラッド32の端面との間で光を伝搬する。延伸部312の一部は、長手方向(X軸方向)に垂直な断面のサイズが結合部311よりも大きい。ここで、長手方向(X軸方向)に垂直な断面のサイズとは、断面を規定するパラメータであり、厚さおよび幅(径)を含むパラメータ群から選択される少なくとも一つのパラメータである。図2~図4の例において、延伸部312の一部は、厚さおよび幅が結合部311よりも大きい。
The extension section 312 extends from the side surface adjacent to the exposed surface 311a of the coupling section 311 inside the cladding 32 to the end face (the end face on the positive X-axis direction) of the cladding 32 located on the opposite side to the coupling section 311, and propagates light between the coupling section 311 and the end face of the cladding 32. A portion of the extension section 312 has a cross-sectional size perpendicular to the longitudinal direction (X-axis direction) larger than that of the coupling section 311. Here, the cross-sectional size perpendicular to the longitudinal direction (X-axis direction) is a parameter that defines the cross section, and is at least one parameter selected from a group of parameters including thickness and width (diameter). In the examples of Figures 2 to 4, a portion of the extension section 312 has a thickness and width larger than that of the coupling section 311.
延伸部312について、言い換えると、まず、第2コア31は形状が長尺状である。ここで、長尺状とは、厚みの薄い、いわゆる帯状の形状だけを指すのではなく、細長い形状であれば、所定の厚みを有する形状まで含む意である。その形状とは、断面の形状が正方形であるものも含めた矩形状のものまで含む。さらには、その形状としては、第2コア31の長手方向の複数の箇所に断面積が異なる部分が含まれていてもよい。この場合、第2コア31を構成する結合部311と延伸部312とは、当該第2コア31の長手方向に、順に隣接している。延伸部312の長手方向に沿う面を側面312ccとする。
Regarding the extension portion 312, in other words, first, the second core 31 has an elongated shape. Here, elongated does not only refer to a thin, so-called band-like shape, but also includes any shape that is elongated and has a predetermined thickness. The shape includes a rectangular shape, including one with a square cross-sectional shape. Furthermore, the shape may include portions with different cross-sectional areas at multiple locations in the longitudinal direction of the second core 31. In this case, the joint portion 311 and the extension portion 312 that constitute the second core 31 are adjacent to each other in the longitudinal direction of the second core 31. The surface along the longitudinal direction of the extension portion 312 is called the side surface 312cc.
ここで、延伸部312について、図2および図3に示した符号を用いてさらに説明する。延伸部312の長手方向に対して交差する2つの面について考察する。交差する2つの面とは、言い換えると、第2コア31の長手方向に対して垂直な2つの断面である。2つの断面は、側面312ccに交差する方向の面になる。特に、2つの断面は、延伸部312の端面に平行な面である。なお、図2、図3に示すように、延伸部312の形状が側面312ccに対して長手方向に径(幅)が変化する形状である場合も、2つの断面は、延伸部312の端面に平行な面である。
Here, the extension portion 312 will be further explained using the symbols shown in Figures 2 and 3. Consider the two planes that intersect with the longitudinal direction of the extension portion 312. In other words, the two intersecting planes are two cross sections perpendicular to the longitudinal direction of the second core 31. The two cross sections are planes that intersect with the side surface 312cc. In particular, the two cross sections are planes parallel to the end surface of the extension portion 312. Note that, as shown in Figures 2 and 3, even if the shape of the extension portion 312 is such that the diameter (width) changes in the longitudinal direction with respect to the side surface 312cc, the two cross sections are planes parallel to the end surface of the extension portion 312.
2つの断面は、延伸部312の長手方向に、所定の間隔をおいて位置している。図2、図3では、2つの断面は、第1断面312aaおよび第2断面312bbである。つまり、延伸部312について、その長手方向に所定の間隔をおいて、結合部311側に位置する断面を第1断面312aaと表し、この第1断面312aaよりも結合部311から離れた位置にある断面を第2断面312bbと表したときに、第2断面312bbの面積は、第1断面312aaの面積よりも大きい。
The two cross sections are located at a predetermined distance in the longitudinal direction of the extension portion 312. In Figures 2 and 3, the two cross sections are first cross section 312aa and second cross section 312bb. In other words, when the cross section of the extension portion 312 located at a predetermined distance in the longitudinal direction on the joining portion 311 side is represented as first cross section 312aa, and the cross section located farther from the joining portion 311 than the first cross section 312aa is represented as second cross section 312bb, the area of second cross section 312bb is larger than the area of first cross section 312aa.
なお、延伸部312における第1断面312aaおよび第2断面312bbの各面積は、例えば、電子顕微鏡によって撮影した断面の画像を解析することによって求めることができる。画像解析に用いる写真は、一般的な走査型電子顕微鏡写真(SEM写真)の他、当該走査型電子顕微鏡により得られる反射電子像の写真を用いても良い。さらには、第1コア22を含めて、第2コア31とクラッド32とを見分けるのにTOF-SIMS(飛行時間型二次イオン質量分析法)を用いても良い。
The areas of the first cross section 312aa and the second cross section 312bb in the extension portion 312 can be determined, for example, by analyzing an image of the cross section taken by an electron microscope. The photographs used for image analysis may be general scanning electron microscope photographs (SEM photographs), or may be photographs of reflected electron images obtained by the scanning electron microscope. Furthermore, TOF-SIMS (time-of-flight secondary ion mass spectrometry) may be used to distinguish the second core 31 and the cladding 32, including the first core 22.
また、第1断面312aa、第2断面312bbの面内に沿う向き(言い換えると、面内において広がる方向)は、(第2部分312b)の側面312ccに対して垂直な方向となる。
Furthermore, the direction along the plane of the first cross section 312aa and the second cross section 312bb (in other words, the direction of expansion within the plane) is perpendicular to the side surface 312cc (of the second portion 312b).
ところで、第1光導波路2と光結合される第2光導波路3において、光の結合損失を低減するための最適なコア断面のサイズと、光の伝搬損失を低減するための最適なコア断面のサイズとは異なる。
Incidentally, in the second optical waveguide 3 that is optically coupled to the first optical waveguide 2, the optimal core cross-sectional size for reducing optical coupling loss is different from the optimal core cross-sectional size for reducing optical propagation loss.
図5は、第2光導波路3における光の結合損失とコア断面のサイズとの関係の一例を示す図である。なお、図5において、横軸の「コア断面サイズ」は、第2コア31の結合部311の長手方向(X軸方向)に垂直な断面のサイズであって、結合部311の厚さおよび幅が等しい場合の断面のサイズを指す。
Figure 5 is a diagram showing an example of the relationship between the optical coupling loss in the second optical waveguide 3 and the size of the core cross section. Note that in Figure 5, the "core cross section size" on the horizontal axis refers to the size of the cross section perpendicular to the longitudinal direction (X-axis direction) of the coupling part 311 of the second core 31, and refers to the size of the cross section when the thickness and width of the coupling part 311 are equal.
図5に示すように、第2光導波路3における光の結合損失は、第2光導波路3のコア断面サイズが小さくなるほど、低下する。これは、第2光導波路3のコア断面サイズが小さくなるほど、光のモードフィールド径が広がり、第1コア22と第2コア31の結合部311との間での光の移動が円滑化するためであると考えられる。したがって、結合損失の観点から第2光導波路3のコア断面サイズは比較的に小さいことが望ましいことが分かる。
As shown in FIG. 5, the smaller the core cross-sectional size of the second optical waveguide 3, the lower the optical coupling loss in the second optical waveguide 3. This is thought to be because the smaller the core cross-sectional size of the second optical waveguide 3, the wider the mode field diameter of the light, facilitating the movement of light between the coupling portion 311 of the first core 22 and the second core 31. Therefore, from the viewpoint of coupling loss, it is desirable for the core cross-sectional size of the second optical waveguide 3 to be relatively small.
図6は、第2光導波路3における光の伝搬損失とコア断面のサイズとの関係の一例を示す図である。なお、図6において、横軸の「コア断面サイズ」は、第2コア31の延伸部312の長手方向(X軸方向)に垂直な断面のサイズであって、延伸部312の厚さおよび幅が等しい場合の断面のサイズを指す。また、図6の例では、第2コア31の表面粗さRqは、0.6μmであるものとする。
FIG. 6 is a diagram showing an example of the relationship between the propagation loss of light in the second optical waveguide 3 and the size of the core cross section. In FIG. 6, the "core cross section size" on the horizontal axis refers to the size of a cross section perpendicular to the longitudinal direction (X-axis direction) of the extension portion 312 of the second core 31, and indicates the size of the cross section when the thickness and width of the extension portion 312 are equal. In the example of FIG. 6, the surface roughness Rq of the second core 31 is 0.6 μm.
図6に示すように、第2光導波路3における光の伝搬損失は、第2光導波路3のコア断面サイズが小さくなるほど、増大する。これは、第2光導波路3のコア断面サイズが小さくなるほど、コア外面の表面粗さRqの影響が大きくなり、コア外面での光の散乱が発生するためであると考えられる。したがって、伝搬損失の観点から第2光導波路3のコア断面サイズは比較的に大きいことが望ましいことが分かる。
As shown in Figure 6, the propagation loss of light in the second optical waveguide 3 increases as the core cross-sectional size of the second optical waveguide 3 becomes smaller. This is thought to be because the smaller the core cross-sectional size of the second optical waveguide 3, the greater the effect of the surface roughness Rq of the outer core surface, causing scattering of light on the outer core surface. Therefore, from the perspective of propagation loss, it is clear that it is desirable for the core cross-sectional size of the second optical waveguide 3 to be relatively large.
ここで、シリコン光導波路と光結合されるポリマ光導波路は、一般に長手方向に沿って均一なコア断面サイズを有している。このため、一般のポリマ光導波路では、結合損失の観点からコア断面サイズが比較的に小さいサイズに設定されると、伝搬損失が増大するおそれがある。
Here, the polymer optical waveguide that is optically coupled to the silicon optical waveguide generally has a uniform core cross-sectional size along the longitudinal direction. For this reason, in a typical polymer optical waveguide, if the core cross-sectional size is set to a relatively small size from the perspective of coupling loss, there is a risk of increased propagation loss.
これに対し、本実施形態に係る第2光導波路3は、第2コア31において、結合部311の断面のサイズを相対的に小さくし、延伸部312の断面のサイズを相対的に大きくしている。第2コア31において結合部311の断面のサイズを相対的に小さくすることで、第2光導波路3のコア断面サイズを長手方向に均一にする場合と比較して、結合損失を低減することができる。また、第2コア31において延伸部312の断面のサイズを相対的に大きくすることで、第2光導波路3のコア断面サイズを長手方向に均一にする場合と比較して、伝搬損失を低減することができる。
In contrast, in the second optical waveguide 3 according to this embodiment, the cross-sectional size of the coupling portion 311 in the second core 31 is relatively small, and the cross-sectional size of the extension portion 312 is relatively large. By making the cross-sectional size of the coupling portion 311 in the second core 31 relatively small, it is possible to reduce coupling loss compared to when the core cross-sectional size of the second optical waveguide 3 is made uniform in the longitudinal direction. In addition, by making the cross-sectional size of the extension portion 312 in the second core 31 relatively large, it is possible to reduce propagation loss compared to when the core cross-sectional size of the second optical waveguide 3 is made uniform in the longitudinal direction.
図2~図4の説明に戻る。延伸部312は、第1部分312aと、第2部分312bとを有する。第1部分312aは、結合部311に接続されている。第1部分312aの断面のサイズ(面積)は、結合部311から離れるにつれて大きくなっている。具体的には、第1部分312aの断面のサイズ(面積)は、結合部311から離れるにつれて徐々に大きくなっている。第2部分312bは、第1部分312aに接続され、断面のサイズが一定である。
Returning to the explanation of Figures 2 to 4, the extension portion 312 has a first portion 312a and a second portion 312b. The first portion 312a is connected to the connecting portion 311. The cross-sectional size (area) of the first portion 312a increases with increasing distance from the connecting portion 311. Specifically, the cross-sectional size (area) of the first portion 312a gradually increases with increasing distance from the connecting portion 311. The second portion 312b is connected to the first portion 312a, and has a constant cross-sectional size.
このように、延伸部312に第1部分312aを設けることで、結合部311から延伸部312へ光を安定的に移動させることができ、延伸部312における光の散乱を低減することができる。また、第1部分312aに第2部分312bが接続されることで、延伸部312での光の伝搬を円滑化することができ、延伸部312における光の散乱を低減することができる。
In this way, by providing the first portion 312a in the extension portion 312, light can be transferred stably from the joint portion 311 to the extension portion 312, and scattering of light in the extension portion 312 can be reduced. Furthermore, by connecting the second portion 312b to the first portion 312a, light propagation in the extension portion 312 can be made smoother, and scattering of light in the extension portion 312 can be reduced.
なお、ここでは、第1部分312aの断面のサイズが結合部311から離れるにつれて徐々に大きくなる場合の例を示したが、これに限らず、第1部分312aの断面のサイズが結合部311から離れるにつれて段階的に大きくなってもよい。
Note that, although an example has been shown here in which the cross-sectional size of the first portion 312a gradually increases with increasing distance from the connecting portion 311, this is not limiting, and the cross-sectional size of the first portion 312a may increase in stages with increasing distance from the connecting portion 311.
また、ここでは、第1部分312aに第2部分312bが接続される場合の例を示したが、これに限らず、第2部分312bが省略されてもよい。すなわち、延伸部312の断面のサイズ(面積)が、延伸部312の全長に亘って結合部311から離れるにつれて大きくなってもよい。これにより、結合部311から延伸部312へ光をより安定的に移動させることができ、延伸部312における光の散乱をより低減することができる。
In addition, while an example in which the second portion 312b is connected to the first portion 312a has been shown here, the present invention is not limited to this, and the second portion 312b may be omitted. In other words, the cross-sectional size (area) of the extension portion 312 may increase the farther away from the connecting portion 311 over the entire length of the extension portion 312. This allows light to move more stably from the connecting portion 311 to the extension portion 312, and further reduces scattering of light in the extension portion 312.
次に、第1実施形態に係る光導波路モジュール1による効果(断面のサイズの変化に応じた光損失のシミュレーション結果)について図7を参照して説明する。図7は、第1実施形態に係る光導波路モジュール1による効果(断面のサイズの変化に応じた光損失のシミュレーション結果)を示す図である。
Next, the effect of the optical waveguide module 1 according to the first embodiment (simulation results of optical loss according to changes in cross-sectional size) will be described with reference to Figure 7. Figure 7 is a diagram showing the effect of the optical waveguide module 1 according to the first embodiment (simulation results of optical loss according to changes in cross-sectional size).
図7において、「実施例」は、本実施形態に係る光導波路モジュール1において第1光導波路2から第2光導波路3へ光を伝搬させた場合の光損失を測定したシミュレーション結果である。光損失とは、結合損失と伝搬損失との総和である。実施例で用いたシミュレーション条件は、以下の通りである。
延伸部312の始端の幅:5μm
延伸部312の終端の幅:9μm
延伸部312の始端の厚さ:5μm
延伸部312の終端の厚さ:9μm
第2コア31の長さ(=結合部311の長さ+延伸部312の長さ):6000μm
延伸部312の長さ:3000μm 7, "Example" is a simulation result of measuring optical loss when light is propagated from the firstoptical waveguide 2 to the second optical waveguide 3 in the optical waveguide module 1 according to this embodiment. The optical loss is the sum of the coupling loss and the propagation loss. The simulation conditions used in the example are as follows:
Width of the start end of the extension part 312: 5 μm
Width of the end of the extension 312: 9 μm
Thickness of the start end of the extension part 312: 5 μm
Thickness of the end of the extension 312: 9 μm
Length of second core 31 (=length ofjoint portion 311 + length of extension portion 312): 6000 μm
Length of extension portion 312: 3000 μm
延伸部312の始端の幅:5μm
延伸部312の終端の幅:9μm
延伸部312の始端の厚さ:5μm
延伸部312の終端の厚さ:9μm
第2コア31の長さ(=結合部311の長さ+延伸部312の長さ):6000μm
延伸部312の長さ:3000μm 7, "Example" is a simulation result of measuring optical loss when light is propagated from the first
Width of the start end of the extension part 312: 5 μm
Width of the end of the extension 312: 9 μm
Thickness of the start end of the extension part 312: 5 μm
Thickness of the end of the extension 312: 9 μm
Length of second core 31 (=length of
Length of extension portion 312: 3000 μm
また、図7において、「比較例」は、比較例に係る光導波路モジュール1において第1光導波路2から第2光導波路3へ光を伝搬させた場合の光損失を測定したシミュレーション結果である。比較例に係る光導波路モジュール1では、第2光導波路3のコア断面サイズが長手方向に均一である構造、すなわち、第2コア31の結合部311および延伸部312のコア断面サイズが同一である構造を採用した。比較例で用いたシミュレーション条件は、以下の通りである。
延伸部312の始端の幅:5μm
延伸部312の終端の幅:5μm
延伸部312の始端の厚さ:5μm
延伸部312の終端の厚さ:5μm
第2コア31の長さ(=結合部311の長さ+延伸部312の長さ):6000μm
延伸部312の長さ:3000μm 7, "Comparative Example" is a simulation result of measuring optical loss when light is propagated from the firstoptical waveguide 2 to the second optical waveguide 3 in the optical waveguide module 1 according to the comparative example. The optical waveguide module 1 according to the comparative example employs a structure in which the core cross-sectional size of the second optical waveguide 3 is uniform in the longitudinal direction, that is, a structure in which the core cross-sectional sizes of the coupling portion 311 and the extension portion 312 of the second core 31 are the same. The simulation conditions used in the comparative example are as follows.
Width of the start end of the extension part 312: 5 μm
Width of the end of the extension 312: 5 μm
Thickness of the start end of the extension part 312: 5 μm
Thickness of the end of the extension 312: 5 μm
Length of second core 31 (=length ofjoint portion 311 + length of extension portion 312): 6000 μm
Length of extension portion 312: 3000 μm
延伸部312の始端の幅:5μm
延伸部312の終端の幅:5μm
延伸部312の始端の厚さ:5μm
延伸部312の終端の厚さ:5μm
第2コア31の長さ(=結合部311の長さ+延伸部312の長さ):6000μm
延伸部312の長さ:3000μm 7, "Comparative Example" is a simulation result of measuring optical loss when light is propagated from the first
Width of the start end of the extension part 312: 5 μm
Width of the end of the extension 312: 5 μm
Thickness of the start end of the extension part 312: 5 μm
Thickness of the end of the extension 312: 5 μm
Length of second core 31 (=length of
Length of extension portion 312: 3000 μm
図7のシミュレーション結果から明らかなように、実施例では、比較例と比較して、光損失を低減することができた。このシミュレーション結果から、第2コア31において、結合部311の断面のサイズを相対的に小さくし、延伸部312の断面のサイズを相対的に大きくすることで、結合損失および伝搬損失を共に低減することができると結論付けられる。
As is clear from the simulation results in Figure 7, the embodiment was able to reduce optical loss compared to the comparative example. From these simulation results, it can be concluded that by making the cross-sectional size of the coupling portion 311 relatively small and the cross-sectional size of the extension portion 312 relatively large in the second core 31, both the coupling loss and the propagation loss can be reduced.
(第2実施形態)
図8は、第2実施形態に係る光導波路モジュール1をZ軸正方向から見た平面図である。図9は、図8のIX-IX線における断面図である。 Second Embodiment
Fig. 8 is a plan view of theoptical waveguide module 1 according to the second embodiment as viewed from the positive direction of the Z axis. Fig. 9 is a cross-sectional view taken along line IX-IX in Fig. 8.
図8は、第2実施形態に係る光導波路モジュール1をZ軸正方向から見た平面図である。図9は、図8のIX-IX線における断面図である。 Second Embodiment
Fig. 8 is a plan view of the
図8および図9に示すように、第2実施形態に係る光導波路モジュール1において、第2コア31の結合部311は、長手方向(X軸方向)に垂直な断面のサイズが延伸部312から離れるにつれて小さくなっている。具体的には、結合部311は、断面のサイズが延伸部312から離れるにつれて徐々に小さくなっている。
As shown in Figures 8 and 9, in the optical waveguide module 1 according to the second embodiment, the size of the cross section of the coupling portion 311 of the second core 31 perpendicular to the longitudinal direction (X-axis direction) decreases with increasing distance from the extension portion 312. Specifically, the cross section of the coupling portion 311 gradually decreases with increasing distance from the extension portion 312.
このように、結合部311は、断面のサイズが延伸部312から離れるにつれて小さくなっていてもよい。かかる構成とすることにより、第2コア31において、結合部311の断面のサイズをより小さくすることができ、結合損失をより低減することができる。
In this way, the cross-sectional size of the coupling portion 311 may become smaller as it moves away from the extension portion 312. By adopting such a configuration, the cross-sectional size of the coupling portion 311 in the second core 31 can be made smaller, and the coupling loss can be further reduced.
(第3実施形態)
図10は、第3実施形態に係る光導波路モジュール1をZ軸正方向から見た平面図である。図11は、図10のXI-XI線における断面図である。 Third Embodiment
Fig. 10 is a plan view of theoptical waveguide module 1 according to the third embodiment as viewed from the positive direction of the Z axis, and Fig. 11 is a cross-sectional view taken along line XI-XI in Fig. 10.
図10は、第3実施形態に係る光導波路モジュール1をZ軸正方向から見た平面図である。図11は、図10のXI-XI線における断面図である。 Third Embodiment
Fig. 10 is a plan view of the
図10および図11に示すように、第3実施形態に係る光導波路モジュール1において、第2コア31の延伸部312は、長手方向(X軸方向)に垂直な断面のサイズが全体的に結合部311よりも大きい。図10及び図11の例では、延伸部312の幅は、結合部311の幅よりも全体的に大きく、且つ延伸部312の厚さは、結合部311の厚さよりも全体的に大きい。すなわち、延伸部312は、結合部311と幅方向(Y軸方向)の段差および厚さ方向(Z軸方向)の段差を介して不連続に接続されている。
As shown in Figures 10 and 11, in the optical waveguide module 1 according to the third embodiment, the extension portion 312 of the second core 31 has a cross-sectional size perpendicular to the longitudinal direction (X-axis direction) that is generally larger than that of the coupling portion 311. In the example of Figures 10 and 11, the width of the extension portion 312 is generally larger than that of the coupling portion 311, and the thickness of the extension portion 312 is generally larger than that of the coupling portion 311. In other words, the extension portion 312 is discontinuously connected to the coupling portion 311 via a step in the width direction (Y-axis direction) and a step in the thickness direction (Z-axis direction).
このように、延伸部312は、結合部311と段差を介して不連続に接続されていてもよい。かかる構成とすることにより、第2コア31における伝搬損失をより低減することができる。
In this way, the extension portion 312 may be discontinuously connected to the coupling portion 311 via a step. With this configuration, the propagation loss in the second core 31 can be further reduced.
以上のように、実施形態に係る光導波路(一例として、第2光導波路3)は、第1の屈折率を有する第1コア(一例として、第1コア22)を含む他の光導波路(一例として、第1光導波路2)と光結合される光導波路であって、コア(一例として、第2コア31)と、クラッド(一例として、クラッド32)とを有する。コアは、第1屈折率とは異なる屈折率を有する。クラッドは、コアの周囲の少なくとも一部を覆うように配置される。コアは、端面および側面を備え、長尺状を成し、長手方向に沿って、順に、結合部(一例として、結合部311)と、該結合部に隣接する延伸部(一例として、延伸部312)と、を有している。結合部は、側面に位置するとともにクラッドから露出して第1コアと光結合される光結合面(一例として、露出面311a)を有している。延伸部において、長手方向に所定の間隔をおいて位置する2つの断面を、結合部に近いものから順に、第1断面(一例として、第1断面312aa)および第2断面(一例として、第2断面312bb)としたとき、第2断面の面積である第2面積は、第1断面の面積である第1面積よりも大きい。これにより、実施形態に係る光導波路によれば、結合損失および伝搬損失を共に低減することができる。
As described above, the optical waveguide (for example, the second optical waveguide 3) according to the embodiment is an optical waveguide that is optically coupled to another optical waveguide (for example, the first optical waveguide 2) that includes a first core (for example, the first core 22) having a first refractive index, and has a core (for example, the second core 31) and a clad (for example, the clad 32). The core has a refractive index different from the first refractive index. The clad is arranged so as to cover at least a portion of the periphery of the core. The core has end faces and side faces, is elongated, and has, in order along the longitudinal direction, a coupling portion (for example, the coupling portion 311) and an extension portion (for example, the extension portion 312) adjacent to the coupling portion. The coupling portion has an optical coupling surface (for example, the exposed surface 311a) that is located on the side face and is exposed from the clad to be optically coupled to the first core. In the extension section, when two cross sections positioned at a predetermined distance in the longitudinal direction are designated, in order from the one closest to the coupling section, as a first cross section (for example, first cross section 312aa) and a second cross section (for example, second cross section 312bb), the second area, which is the area of the second cross section, is larger than the first area, which is the area of the first cross section. As a result, according to the optical waveguide of the embodiment, it is possible to reduce both coupling loss and propagation loss.
また、延伸部は、結合部に接続される第1部分と、第1部分に接続される第2部分とを有してもよい。第1部分は、第1断面および第2断面を含み、第1部分の断面の面積は、結合部から離れるにつれて大きくなってもよい。これにより、実施形態に係る光導波路によれば、延伸部における光の散乱を低減することができる。
The extension portion may have a first portion connected to the coupling portion and a second portion connected to the first portion. The first portion may include a first cross section and a second cross section, and the cross-sectional area of the first portion may increase with increasing distance from the coupling portion. As a result, the optical waveguide according to the embodiment can reduce scattering of light in the extension portion.
また、第1部分の断面の面積は、結合部から離れるにつれて徐々に大きくなってもよい。これにより、実施形態に係る光導波路によれば、延伸部における光の散乱を低減することができる。
The cross-sectional area of the first portion may also gradually increase with increasing distance from the coupling portion. This allows the optical waveguide of the embodiment to reduce light scattering in the extension portion.
また、第1部分の断面の面積は、結合部から離れるにつれて段階的に大きくなってもよい。これにより、実施形態に係る光導波路によれば、延伸部における光の散乱を低減することができる。
The cross-sectional area of the first portion may also increase stepwise as it moves away from the coupling portion. This allows the optical waveguide according to the embodiment to reduce light scattering in the extension portion.
また、延伸部の断面の面積は、延伸部の全長に亘って結合部から離れるにつれて大きくなってもよい。これにより、実施形態に係る光導波路によれば、延伸部における光の散乱をより低減することができる。
The cross-sectional area of the extension portion may also increase over the entire length of the extension portion as it moves away from the coupling portion. This allows the optical waveguide according to the embodiment to further reduce light scattering in the extension portion.
また、結合部の断面の面積は、延伸部から離れるにつれて小さくなってもよい。これにより、実施形態に係る光導波路によれば、結合損失をより低減することができる。
The cross-sectional area of the coupling portion may also decrease with increasing distance from the extension portion. This allows the optical waveguide according to the embodiment to further reduce coupling loss.
また、延伸部は、結合部と幅方向の段差および厚さ方向の段差のうちの少なくとも一方を介して不連続に接続されていてもよい。これにより、実施形態に係る光導波路によれば、コアにおける伝搬損失をより低減することができる。
The extension portion may be discontinuously connected to the coupling portion via at least one of a step in the width direction and a step in the thickness direction. This allows the optical waveguide according to the embodiment to further reduce propagation loss in the core.
さらなる効果や別の実施形態は、当業者によって容易に導き出すことができる。このため、本発明のより広範な態様は、以上のように表しかつ記述した特定の詳細および代表的な実施形態に限定されるものではない。したがって、添付の請求の範囲およびその均等物によって定義される総括的な発明の概念の精神又は範囲から逸脱することなく、様々な変更が可能である。
Further advantages and alternative embodiments may be readily derived by those skilled in the art. Therefore, the invention in its broader aspects is not limited to the specific details and representative embodiments shown and described above. Accordingly, various modifications may be made without departing from the spirit or scope of the general inventive concept as defined by the appended claims and equivalents thereof.
1 光導波路モジュール
2 第1光導波路
3 第2光導波路
4 接合材
21 基板
22 第1コア
31 第2コア
32 クラッド
311 結合部
311a 露出面
312 延伸部
312a 第1部分
312aa 第1断面
312bb 第2断面
312b 第2部分
312cc 側面 1Optical waveguide module 2 First optical waveguide 3 Second optical waveguide 4 Bonding material 21 Substrate 22 First core 31 Second core 32 Clad 311 Coupling portion 311a Exposed surface 312 Extended portion 312a First portion 312aa First cross section 312bb Second cross section 312b Second part 312cc Side
2 第1光導波路
3 第2光導波路
4 接合材
21 基板
22 第1コア
31 第2コア
32 クラッド
311 結合部
311a 露出面
312 延伸部
312a 第1部分
312aa 第1断面
312bb 第2断面
312b 第2部分
312cc 側面 1
Claims (9)
- 第1屈折率を有する第1コアを含む他の光導波路と光結合される光導波路であって、 前記第1屈折率とは異なる屈折率を有するコアと、
前記コアの周囲の少なくとも一部を覆うように配置されたクラッドと
を有し、
前記コアは、端面および側面を備え、長尺状を成し、長手方向に沿って、順に、結合部と、該結合部に隣接する延伸部と、を有しており、
前記結合部は、前記側面に位置するとともに前記クラッドから露出して前記第1コアと光結合される光結合面を有しており、
前記延伸部において、前記長手方向に所定の間隔をおいて位置する2つの断面を、前記結合部に近いものから順に、第1断面および第2断面としたとき、前記第2断面の面積である第2面積は、前記第1断面の面積である第1面積よりも大きい、光導波路。 An optical waveguide optically coupled to another optical waveguide including a first core having a first refractive index, the core having a refractive index different from the first refractive index;
and a cladding disposed so as to cover at least a portion of the periphery of the core,
The core has an end surface and a side surface, is elongated, and has, in order along a longitudinal direction, a joint portion and an extension portion adjacent to the joint portion,
the coupling portion has an optical coupling surface that is located on the side surface, is exposed from the clad, and is optically coupled to the first core,
An optical waveguide, in which when two cross sections located at a predetermined distance in the longitudinal direction in the extension portion are referred to as a first cross section and a second cross section, in order from the one closest to the coupling portion, a second area that is the area of the second cross section is larger than a first area that is the area of the first cross section. - 前記延伸部は、
前記結合部に接続される第1部分と、
前記第1部分に接続される第2部分と
を有し、
前記第1部分は、前記第1断面および前記第2断面を含み、
前記第1部分の断面の面積は、前記結合部から離れるにつれて大きくなる、請求項1に記載の光導波路。 The extension portion is
A first portion connected to the coupling portion;
a second portion connected to the first portion,
the first portion includes the first cross section and the second cross section;
The optical waveguide of claim 1 , wherein a cross-sectional area of the first portion increases with distance from the coupling portion. - 前記第1部分の断面の面積は、前記結合部から離れるにつれて徐々に大きくなる、請求項2に記載の光導波路。 The optical waveguide of claim 2, wherein the cross-sectional area of the first portion gradually increases with increasing distance from the coupling portion.
- 前記第1部分の断面の面積は、前記結合部から離れるにつれて段階的に大きくなる、請求項2に記載の光導波路。 The optical waveguide of claim 2, wherein the cross-sectional area of the first portion increases stepwise with increasing distance from the coupling portion.
- 前記延伸部の断面の面積は、前記延伸部の全長に亘って前記結合部から離れるにつれて大きくなる、請求項1に記載の光導波路。 The optical waveguide of claim 1, wherein the cross-sectional area of the extension increases with increasing distance from the coupling portion over the entire length of the extension.
- 前記結合部の断面の面積は、前記延伸部から離れるにつれて小さくなる、請求項1に記載の光導波路。 The optical waveguide of claim 1, wherein the cross-sectional area of the coupling portion decreases with increasing distance from the extension portion.
- 前記延伸部は、前記結合部と幅方向の段差および厚さ方向の段差のうちの少なくとも一方を介して不連続に接続されている、請求項1に記載の光導波路。 The optical waveguide of claim 1, wherein the extension portion is discontinuously connected to the coupling portion via at least one of a step in the width direction and a step in the thickness direction.
- 前記延伸部は、前記結合部と幅方向の段差および厚さ方向の段差を介して不連続に接続されている、請求項1に記載の光導波路。 The optical waveguide of claim 1, wherein the extension portion is discontinuously connected to the coupling portion via a step in the width direction and a step in the thickness direction.
- 第1屈折率を有する第1コアを含む第1光導波路と、
前記第1光導波路と光結合される第2光導波路と
を有し、
前記第2光導波路は、
前記第1屈折率とは異なる屈折率を有する第2コアと、
前記第2コアの周囲の少なくとも一部を覆うように配置されたクラッドと
を有し、
前記第2コアは、端面および側面を備え、長尺状を成し、長手方向に沿って、順に、結合部と、該結合部に隣接する延伸部と、を有しており、
前記結合部は、前記側面に位置するとともに前記クラッドから露出して前記第1コアと光結合される光結合面を有しており、
前記延伸部において、前記長手方向に所定の間隔をおいて位置する2つの断面を、前記結合部に近いものから順に、第1断面および第2断面としたとき、前記第2断面の面積である第2面積は、前記第1断面の面積である第1面積よりも大きい、光導波路モジュール。 a first optical waveguide including a first core having a first refractive index;
a second optical waveguide optically coupled to the first optical waveguide;
The second optical waveguide is
A second core having a refractive index different from the first refractive index;
and a cladding disposed so as to cover at least a portion of the periphery of the second core,
the second core has an end surface and a side surface, is elongated, and has, in order along a longitudinal direction, a joint portion and an extension portion adjacent to the joint portion;
the coupling portion has an optical coupling surface that is located on the side surface, is exposed from the clad, and is optically coupled to the first core,
an optical waveguide module, wherein when two cross sections located at a predetermined distance in the longitudinal direction in the extension section are referred to as a first cross section and a second cross section, in order from the one closest to the coupling section, a second area which is the area of the second cross section is larger than a first area which is the area of the first cross section.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023-048977 | 2023-03-24 | ||
JP2023048977 | 2023-03-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024203416A1 true WO2024203416A1 (en) | 2024-10-03 |
Family
ID=92906037
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2024/010135 WO2024203416A1 (en) | 2023-03-24 | 2024-03-14 | Optical waveguide and optical waveguide module |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2024203416A1 (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0312612A (en) * | 1989-06-09 | 1991-01-21 | Fujitsu Ltd | Connecting element between optical elements |
US20150023631A1 (en) * | 2013-07-18 | 2015-01-22 | Cisco Technology, Inc | Coupling system for optical fibers and optical waveguides |
JP2015084081A (en) * | 2013-09-20 | 2015-04-30 | 沖電気工業株式会社 | Manufacturing method of optical element, and optical element |
WO2018047683A1 (en) * | 2016-09-06 | 2018-03-15 | 旭硝子株式会社 | Resin optical waveguide and composite optical waveguide |
JP2018185491A (en) * | 2017-04-27 | 2018-11-22 | 株式会社豊田中央研究所 | Optical circuit and method for manufacturing the same |
US20200183201A1 (en) * | 2017-08-31 | 2020-06-11 | Lightwave Logic Inc. | Active region-less polymer modulator integrated on a common pic platform and method |
-
2024
- 2024-03-14 WO PCT/JP2024/010135 patent/WO2024203416A1/en unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0312612A (en) * | 1989-06-09 | 1991-01-21 | Fujitsu Ltd | Connecting element between optical elements |
US20150023631A1 (en) * | 2013-07-18 | 2015-01-22 | Cisco Technology, Inc | Coupling system for optical fibers and optical waveguides |
JP2015084081A (en) * | 2013-09-20 | 2015-04-30 | 沖電気工業株式会社 | Manufacturing method of optical element, and optical element |
WO2018047683A1 (en) * | 2016-09-06 | 2018-03-15 | 旭硝子株式会社 | Resin optical waveguide and composite optical waveguide |
JP2018185491A (en) * | 2017-04-27 | 2018-11-22 | 株式会社豊田中央研究所 | Optical circuit and method for manufacturing the same |
US20200183201A1 (en) * | 2017-08-31 | 2020-06-11 | Lightwave Logic Inc. | Active region-less polymer modulator integrated on a common pic platform and method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8170383B2 (en) | Optical converter | |
US9025920B2 (en) | Optical coupling devices and silicon photonics chips having the same | |
US6621972B2 (en) | Optical waveguides with trench structures | |
US8520991B2 (en) | Optical coupling method | |
WO2018083966A1 (en) | Optical circuit and optical device | |
WO1999057591A1 (en) | Coupling optical fibre to waveguide | |
US10768372B2 (en) | Resin optical waveguide and composite optical waveguide | |
CN114690310B (en) | Edge coupler including fluted film | |
JPH07110415A (en) | Optical waveguide, connecting device for optical waveguide and optical fiber | |
CN112904481A (en) | End-face coupler and semiconductor device | |
US8150224B2 (en) | Spot-size converter | |
JP4377195B2 (en) | Manufacturing method of optical module | |
JP2018045071A (en) | Grating coupler | |
WO2024203416A1 (en) | Optical waveguide and optical waveguide module | |
CN112470047B (en) | Silicon dioxide to silicon nitride PLC wave mode converter for hybrid device | |
JP2011075645A (en) | Optical wave guide and method of manufacturing of optical waveguide | |
US20060182399A1 (en) | System and method for low loss waveguide bends | |
JP2007025382A (en) | Optical waveguide, method of manufacturing optical waveguide and optical waveguide module | |
CN115933051A (en) | Edge coupler with confinement feature | |
KR20220065633A (en) | Multi-tip optical coupling devices | |
CN114041076A (en) | Mode expansion waveguide and spot size converter including the same for guiding coupling with optical fiber | |
WO2018235381A1 (en) | Optical module and method for manufacturing same | |
US20210231888A1 (en) | Optical Connection Structure | |
WO2023171581A1 (en) | Optical waveguide and method for manufacturing optical waveguide | |
WO2020242812A1 (en) | Optical spot size converter and a method of making such |