[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2024203488A1 - Gel material having four-branched crosslinking points at which strain-induced crystallization is developed - Google Patents

Gel material having four-branched crosslinking points at which strain-induced crystallization is developed Download PDF

Info

Publication number
WO2024203488A1
WO2024203488A1 PCT/JP2024/010379 JP2024010379W WO2024203488A1 WO 2024203488 A1 WO2024203488 A1 WO 2024203488A1 JP 2024010379 W JP2024010379 W JP 2024010379W WO 2024203488 A1 WO2024203488 A1 WO 2024203488A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
polymer
alkylene group
coo
Prior art date
Application number
PCT/JP2024/010379
Other languages
French (fr)
Japanese (ja)
Inventor
皓一 眞弓
崇匡 酒井
シャン リ
慧 橋本
Original Assignee
国立大学法人 東京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 東京大学 filed Critical 国立大学法人 東京大学
Publication of WO2024203488A1 publication Critical patent/WO2024203488A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G85/00General processes for preparing compounds provided for in this subclass

Definitions

  • the present invention relates to a gel material containing a polymer network formed by crosslinking four-branched polymers.
  • polymer gels Materials in which a solvent is trapped in a crosslinked polymer network are called polymer gels, and hydrogels using water as a solvent are expected to be used as biomedical materials such as artificial joints, while ion gels using ionic liquid as a solvent are expected to be used as electrolytes in wearable devices.
  • polymer gels Materials in which a solvent is trapped in a crosslinked polymer network are called polymer gels, and hydrogels using water as a solvent are expected to be used as biomedical materials such as artificial joints, while ion gels using ionic liquid as a solvent are expected to be used as electrolytes in wearable devices.
  • stretch-induced crystallization in which oriented polymers crystallize during stretching to prevent breakage, has attracted attention as a method for toughening polymer gels.
  • Non-Patent Document 1 In a cyclic hydrogel in which polyethylene glycol (PEG) chains are crosslinked with cyclic molecules, it was reported in 2021 that stretch-induced crystallization occurs when the PEG chains are uniformly oriented due to the sliding freedom of the cyclic molecules, resulting in significant toughening (Non-Patent Document 1). We have also found that stretch-induced crystallization occurs in cyclic ion gels in which the solvent is ionic liquid or salt, and have applied for a patent (Patent Document 1).
  • PEG polyethylene glycol
  • Non-Patent Document 2 it was reported that in a PEG hydrogel with three crosslinking branching points, a crosslinked network consisting only of polymer chains without using cyclic molecules, stretch-induced crystallization occurred, leading to excellent extensibility. It is known that crosslinking branching points inhibit the crystallization of polymer chains because polymer chains cannot approach each other. In the case of the three-branched hydrogel, the smallest number of branching points is thought to have led to the efficient occurrence of stretch-induced crystallization.
  • Patent Application No. 2022-113741 National University Corporation, University of Tokyo
  • the problem to be solved by this invention is to provide a gel composition with four branched crosslinking points that exhibits stretch-induced crystallization.
  • a gel composition comprising: A polymer network formed by crosslinking a first polymer, which is a 4-branched or linear polymer having an electrophilic functional group and a polyethylene glycol backbone, with a second polymer, which is a 4-branched or linear polymer having a nucleophilic functional group and a polyethylene glycol backbone, wherein one or both of the first polymer and the second polymer are 4-branched polymers; A solvent, A gel composition, wherein the total amount of the first polymer and the second polymer relative to the amount of the gel composition is 30% by weight or more, and the molecular weight between crosslinking points of the polymer network is 10,000 or more.
  • Item 2. The gel composition according to item 1, wherein the electrophilic functional group of the first polymer is an active ester group, a maleimidyl group, a carboxyl group, an N-hydroxy-succinimidyl group, a sulfosuccinimidyl group, a phthalimidyl group, or a nitrophenyl group.
  • the electrophilic functional group of the first polymer is an active ester group, a maleimidyl group, a carboxyl group, an N-hydroxy-succinimidyl group, a sulfosuccinimidyl group, a phthalimidyl group, or a nitrophenyl group.
  • Item 3 The gel composition according to item 1, wherein the nucleophilic functional group of the second polymer is an amino group, a thiol group, or -CO 2 PhNO 2 (Ph is an o-, m-, or p-phenylene group).
  • Item 4 The gel composition according to item 1, wherein the solvent comprises at least one selected from the group consisting of water, an organic solvent, and an ionic liquid.
  • Item 5 The gel composition according to item 1, wherein crystals of the polyethylene glycol skeleton are formed by uniaxial stretching.
  • Item 6 The gel composition according to Item 1, wherein a gel sheet made of the gel composition according to Item 1 is punched into a dumbbell shape having a thickness of 1 mm according to JIS K 6251 No. 3, and the gel sheet is deformed by uniaxial stretching at an elongation rate of 12.5%/sec, and the breaking stress is measured to be 1 MPa or more.
  • the first polymer is a compound represented by the following formula (I) or a compound represented by the following formula (II): (In formula (I), n 1 to n 4 may be the same or different, and n 1 to n 4 are integers of 5 to 300.
  • A is a maleimidyl group, an N-hydroxy-succinimidyl group, a sulfosuccinimidyl group, a phthalimidyl group, an imidazoyl group, an acryloyl group or a nitrophenyl group;
  • R 1 to R 4 may be the same or different and each represents an alkylene group having 1 to 7 carbon atoms, an alkenylene group having 2 to 7 carbon atoms, -NH-R 5 -, -CO-R 5 -, -R 6 -OR 7 -, -R 6 -NH-R 7 -, -R 6- COO-R 7 -, -R 6 -COO-NH-R 7 -, -R 6 -CO-R 7 -, -R 6 -NH-CO-R 7 -, or -R 6 -CO-NH-R 7 -, where R 5 represents an alkylene group having 1 to 7 carbon atoms, R
  • n 12 is an integer of 1 to 10,000;
  • B is a maleimidyl group, an N-hydroxy-succinimidyl group, a sulfosuccinimidyl group, a phthalimidyl group, an imidazoyl group, an acryloyl group, or a nitrophenyl group;
  • R 11 represents an alkylene group having 1 to 7 carbon atoms, an alkenylene group having 2 to 7 carbon atoms, -NH-R 13 -, -CO-R 13 -, -R 14 -OR 15 -, -R 14 -NH-R 15 -, -R 14 -COO-R 15 -, -R 14 -COO-NH-R 15 -, -R 14 -CO-R 15 -, R 14 -NH-CO-R 15 - or -R 14 -CO-NH-R 15 -, wherein R 13 represents an alkylene group having 1 to 7 carbon
  • Item 2 The gel composition according to item 1, wherein the second polymer is a compound represented by the following formula (III) or a compound represented by formula (IV): (In formula (III), n 21 to n 24 may be the same or different, and n 21 to n 24 are integers of 25 to 250.
  • D is a thiol group, an amino group, or -COOPhNO2 (Ph represents an o-, m-, or p-phenylene group);
  • R 21 to R 24 may be the same or different and each represents an alkylene group having 1 to 7 carbon atoms, an alkenylene group having 2 to 7 carbon atoms, -NH-R 25 -, -CO-R 25 -, -R 26 -OR 27 -, -R 26 -NH-R 27 -, -R 26 -COO-R 27 -, -R 26 -COO-NH-R 27 -, -R 26 -CO-R 27 -, R 26 -NH-CO-R 27 - or -R 26 -CO-NH-R 27 -, where R 25 represents an alkylene group having 1 to 7 carbon atoms, R 26 represents an alkylene group having 1 to 3 carbon atoms, and R 27 represents an alkylene group having 1 to 5 carbon atoms
  • n 32 is an integer from 1 to 10,000; E is a thiol group, an amino group, or -COOPhNO2 (Ph represents an o-, m-, or p-phenylene group); R 31 represents an alkylene group having 1 to 7 carbon atoms, an alkenylene group having 2 to 7 carbon atoms, -NH-R 33 -, -CO-R 33 -, -R 34 -OR 35 -, -R 34 -NH-R 35 -, -R 34 -COO-R 35 -, -R 34 -COO-NH-R 35 -, -R 34 -CO-R 35 -, R 34 -NH-CO-R 35 - or -R 34 -CO-NH-R 35 -, where R 33 represents an alkylene group having 1 to 7 carbon atoms, R 34 represents an alkylene group having 1 to 3 carbon atoms, and R 35 represents an alkylene group having 1 to 5 carbon
  • Item 8 A gel sheet, which is a sheet formed from the gel composition according to any one of Items 1 to 7.
  • (B)-(D) Wide-angle X-ray scattering (WAXS) images at maximum extension ratio: (B) molecular weight between crosslinks of 5k (Tetra 10k + Tetra 10k), (C) molecular weight between crosslinks of 10k (Tetra 20k + Tetra 20k), (D) molecular weight between crosslinks of 30k (Linear 20k + Tetra 20k). Elongation of the WAXS image in Figure 2(C) and the vertical WAXS one-dimensional profile ( ⁇ 10, 11).
  • WAXS images of four-branched hydrogels obtained using four different ionic liquids [C 2 mim][NTf 2 ], Li[NTf 2 ], [Li(G3)][NTf 2 ], and [Li(G4)][NTf 2 ].
  • the upper or lower limit of a certain numerical range can be arbitrarily combined with the upper or lower limit of a numerical range of another stage.
  • the upper or lower limit of the numerical range may be replaced with a value shown in an example or a value that can be unambiguously derived from an example.
  • a numerical value connected with " ⁇ " means a numerical range that includes the numerical values before and after " ⁇ " as the upper and lower limits.
  • a gel composition comprising a polymer network formed by crosslinking a first polymer, which is a four-branched or linear polymer having electrophilic functional groups and a polyethylene glycol backbone, and a second polymer, which is a four-branched or linear polymer having nucleophilic functional groups and a polyethylene glycol backbone, where one or both of the first polymer and the second polymer are four-branched polymers, and a solvent, the total amount of the first polymer and the second polymer relative to the amount of the gel composition being 30% by weight or more, and the molecular weight between crosslinking points of the polymer network being 10,000 or more.
  • a four-branched polymer with a polyethylene glycol backbone is a hydrophilic polymer with a structure in which four polyethylene glycol chains branch out from the center.
  • a gel made of such a four-branched polyethylene glycol backbone is generally known as a Tetra-PEG gel.
  • a polymer network is constructed by an AB type cross-end coupling reaction between two four-branched polymers, the first polymer having electrophilic functional groups and the second polymer having nucleophilic functional groups (Matsunaga et al., Macromolecules, Vol. 42, No., pp. 1344-1361, 2009).
  • Tetra-PEG gel can be easily prepared on-site by simply mixing two polymer solutions, and it is also possible to control the gelation time by adjusting the pH and ionic strength during gel preparation. Furthermore, because the main component of this gel is PEG, it also has excellent biocompatibility.
  • the 4-branched polymer used as the first polymer preferably has one or more electrophilic functional groups at the side chain or at the end.
  • the 4-branched polymer used as the second polymer preferably has one or more nucleophilic functional groups at the side chain or at the end.
  • the electrophilic functional group of the first polymer can be an active ester group.
  • active ester groups include maleimidyl groups, carboxyl groups, N-hydroxy-succinimidyl (NHS) groups, sulfosuccinimidyl groups, phthalimidyl groups, imidazoyl groups, acryloyl groups, and nitrophenyl groups, and those skilled in the art can use any known electrophilic functional group as appropriate.
  • the electrophilic functional group of the first polymer is selected from the group consisting of active ester groups, maleimidyl groups, carboxyl groups, N-hydroxy-succinimidyl groups, sulfosuccinimidyl groups, phthalimidyl groups, and nitrophenyl groups.
  • all of the electrophilic functional groups of the first polymer are active ester groups, maleimidyl groups, carboxyl groups, N-hydroxy-succinimidyl groups, sulfosuccinimidyl groups, phthalimidyl groups, or nitrophenyl groups.
  • the electrophilic functional groups of the first polymer may be the same or different, but it is preferable that they are the same. By having the functional groups be the same, the reactivity with the nucleophilic functional groups that form crosslinks is uniform, and a gel with a uniform three-dimensional structure can be obtained.
  • the nucleophilic functional group of the second polymer may be an amino group, a thiol group (-SH), or -CO2PhNO2 (Ph represents an o-, m-, or p-phenylene group), and a person skilled in the art may appropriately use a known nucleophilic functional group.
  • the nucleophilic functional group of the second polymer is selected from the group consisting of an amino group, a thiol group (-SH), and CO2PhNO2 (Ph represents an o-, m-, or p-phenylene group).
  • all of the nucleophilic functional groups of the second polymer are an amino group, a thiol group ( -SH ), or -CO2PhNO2 (Ph represents an o-, m-, or p-phenylene group).
  • the nucleophilic functional groups of the second polymer may be the same or different, but it is preferable that they are the same. By using the same functional groups, the reactivity with the electrophilic functional groups that form cross-links is uniform, making it easier to obtain a gel with a uniform three-dimensional structure.
  • the first polymer is a compound represented by the following formula (I) or a compound represented by the following formula (II):
  • n 1 to n 4 may be the same or different, and n 1 to n 4 are integers of 5 to 300.
  • A is a maleimidyl group, an N-hydroxy-succinimidyl group, a sulfosuccinimidyl group, a phthalimidyl group, an imidazoyl group, an acryloyl group or a nitrophenyl group;
  • R 1 to R 4 may be the same or different and each represents an alkylene group having 1 to 7 carbon atoms, an alkenylene group having 2 to 7 carbon atoms, -NH-R 5 -, -CO-R 5 -, -R 6 -OR 7 -, -R 6 -NH-R 7 -, -R 6- COO-R 7 -, -R 6 -COO-NH-R 7 -, -R 6 -CO-R 7 -, -R 6 -NH-CO-R 7 -, or
  • n 12 is an integer of 1 to 10,000;
  • B is a maleimidyl group, an N-hydroxy-succinimidyl group, a sulfosuccinimidyl group, a phthalimidyl group, an imidazoyl group, an acryloyl group, or a nitrophenyl group;
  • R 11 represents an alkylene group having 1 to 7 carbon atoms, an alkenylene group having 2 to 7 carbon atoms, -NH-R 13 -, -CO-R 13 -, -R 14 -OR 15 -, -R 14 -NH-R 15 -, -R 14 -COO-R 15 -, -R 14 -COO-NH-R 15 -, -R 14 -CO-R 15 -, R 14 -NH-CO-R 15 - or -R 14 -CO-NH-R 15 -, wherein R 13 represents an alkylene group having 1 to 7 carbon
  • n 1 to n 4 may be the same or different. The closer the values of n 1 to n 4 are, the more uniform the gel can be in a three-dimensional structure and the higher the strength, and it is preferable that they are the same. If the values of n 1 to n 4 are too high, the strength of the gel will be weak, and if the values of n 1 to n 4 are too low, the gel will not be easily formed due to the steric hindrance of the compound. Therefore, n 1 to n 4 may be, for example, an integer value of 5 to 300, preferably 20 to 250, more preferably 30 to 180, and even more preferably 45 to 115. In one embodiment, n 1 to n 4 are integers of 5 to 300.
  • the molecular weight of the compound represented by formula (I) is preferably 5 ⁇ 10 3 to 5 ⁇ 10 4 Da, preferably 7.5 ⁇ 10 3 to 3 ⁇ 10 4 Da, and more preferably 1 ⁇ 10 4 to 2 ⁇ 10 4 Da.
  • R 1 to R 4 are linker moieties that connect the functional group and the core moiety.
  • R 1 to R 4 may be the same or different, but are preferably the same in order to produce a high-strength gel having a uniform three-dimensional structure.
  • n12 can be, for example, an integer value of 1 to 10,000, preferably 25 to 5,000, more preferably 50 to 2,500, and even more preferably 100 to 1,000.
  • the molecular weight of the compound represented by formula (II) is preferably 1.1 ⁇ 10 3 to 2.2 ⁇ 10 5 Da, preferably 2.2 ⁇ 10 3 to 1.1 ⁇ 10 5 Da, and more preferably 4.4 ⁇ 10 3 to 4.4 ⁇ 10 5 Da.
  • examples of the alkylene group having 1 to 7 carbon atoms for each of R 1 to R 4 , R 11 , and R 12 include a methylene group, an ethylene group, a propylene group, and a butylene group.
  • the alkenylene group having 2 to 7 carbon atoms is a linear or branched alkenylene group having 2 to 7 carbon atoms and having one or more double bonds in the chain, and examples thereof include a divalent group having a double bond formed by removing 2 to 5 hydrogen atoms from adjacent carbon atoms of the alkylene group having 1 to 7 carbon atoms.
  • the second polymer is a compound represented by the following formula (III) or a compound represented by the following formula (IV):
  • n 21 to n 24 may be the same or different, and n 21 to n 24 are integers of 25 to 250.
  • D is a thiol group, an amino group, or -COOPhNO2 (Ph represents an o-, m-, or p-phenylene group);
  • R 21 to R 24 may be the same or different and each represents an alkylene group having 1 to 7 carbon atoms, an alkenylene group having 2 to 7 carbon atoms, -NH-R 25 -, -CO-R 25 -, -R 26 -OR 27 -, -R 26 -NH-R 27 -, -R 26 -COO-R 27 -, -R 26 -COO-NH-R 27 -, -R 26 -CO-R 27 -, R 26 -NH-CO-R 27 - or -R 26 -CO-NH-R 27 -, where R 25 represents an alkylene group having 1 to 7 carbon atoms, R 25
  • n 32 is an integer of 1 to 10,000; E is a thiol group, an amino group, or -COOPhNO2 (Ph represents an o-, m-, or p-phenylene group); R 31 represents an alkylene group having 1 to 7 carbon atoms, an alkenylene group having 2 to 7 carbon atoms, -NH-R 33 -, -CO-R 33 -, -R 34 -OR 35 -, -R 34 -NH-R 35 -, -R 34 -COO-R 35 -, -R 34 -COO-NH-R 35 -, -R 34 -CO-R 35 -, R 34 -NH-CO-R 35 - or -R 34 -CO-NH-R 35 -, wherein R 33 represents an alkylene group having 1 to 7 carbon atoms, R 34 represents an alkylene group having 1 to 3 carbon atoms, and R 35 represents an alkylene group having 1 to 5
  • n 21 to n 24 may be the same or different. The closer the values of n 21 to n 24 are, the more uniform the three-dimensional structure can be, and the higher the strength. Therefore, in order to obtain a gel with high strength, it is preferable that they are the same. If the values of n 21 to n 24 are too high, the strength of the gel will be weak, and if the values of n 21 to n 24 are too low, the gel will not easily form due to steric hindrance of the compound. Therefore, n 21 to n 24 are preferably 25 to 250, more preferably 35 to 180, and even more preferably 50 to 120.
  • the molecular weight of the compound represented by formula (III) is preferably 5 ⁇ 10 3 to 5 ⁇ 10 4 Da, more preferably 7.5 ⁇ 10 3 to 3 ⁇ 10 4 Da, and more preferably 1 ⁇ 10 4 to 2 ⁇ 10 4 Da.
  • R 21 to R 24 are linker moieties connecting the functional group and the core part.
  • R 21 to R 24 may be the same or different, but are preferably the same in order to produce a high-strength gel having a uniform three-dimensional structure.
  • n 32 can be, for example, an integer value of 1 to 10,000, preferably 25 to 5,000, more preferably 50 to 2,500, and even more preferably 100 to 1,000.
  • the molecular weight of the compound represented by formula (IV) is preferably 5 ⁇ 10 3 to 5 ⁇ 10 4 Da, preferably 7.5 ⁇ 10 3 to 3 ⁇ 10 4 Da, and more preferably 1 ⁇ 10 4 to 2 ⁇ 10 4 Da.
  • examples of the alkylene group having 1 to 7 carbon atoms include a methylene group, an ethylene group, a propylene group, and a butylene group.
  • the alkenylene group having 2 to 7 carbon atoms is a linear or branched alkenylene group having 2 to 7 carbon atoms and having one or more double bonds in the chain, and examples thereof include a divalent group having a double bond formed by removing 2 to 5 hydrogen atoms from adjacent carbon atoms of the alkylene group having 1 to 7 carbon atoms.
  • the first polymer is a compound represented by the following formula (I) or a compound represented by the following formula (II):
  • n 1 to n 4 may be the same or different, and n 1 to n 4 are integers of 5 to 300.
  • A is a maleimidyl group, an N-hydroxy-succinimidyl group, a sulfosuccinimidyl group, a phthalimidyl group, an imidazoyl group, an acryloyl group or a nitrophenyl group;
  • R 1 to R 4 may be the same or different and each represents an alkylene group having 1 to 7 carbon atoms, an alkenylene group having 2 to 7 carbon atoms, -NH-R 5 -, -CO-R 5 -, -R 6 -OR 7 -, -R 6 -NH-R 7 -, -R 6- COO-R 7 -, -R 6 -COO-NH-R 7 -, -R 6 -CO-R 7 -, -R 6 -NH-CO-R 7 -, or
  • n 12 is an integer of 1 to 10,000;
  • B is a maleimidyl group, an N-hydroxy-succinimidyl group, a sulfosuccinimidyl group, a phthalimidyl group, an imidazoyl group, an acryloyl group or a nitrophenyl group;
  • R 11 represents an alkylene group having 1 to 7 carbon atoms, an alkenylene group having 2 to 7 carbon atoms, -NH-R 13 -, -CO-R 13 -, -R 14 -OR 15 -, -R 14 -NH-R 15 -, -R 14 -COO-R 15 -, -R 14 -COO-NH-R 15 -, -R 14 -CO-R 15 -, R 14 -NH-CO-R 15 - or -R 14 -CO-NH-R 15 -, wherein R 13 represents an alkylene group having 1 to 7 carbon
  • n 21 to n 24 may be the same or different, and n 21 to n 24 are integers of 25 to 250.
  • D is a thiol group, an amino group, or -COOPhNO2 (Ph represents an o-, m-, or p-phenylene group);
  • R 21 to R 24 may be the same or different and each represents an alkylene group having 1 to 7 carbon atoms, an alkenylene group having 2 to 7 carbon atoms, -NH-R 25 -, -CO-R 25 -, -R 26 -OR 27 -, -R 26 -NH-R 27 -, -R 26 -COO-R 27 -, -R 26 -COO-NH-R 27 -, -R 26 -CO-R 27 -, R 26 -NH-CO-R 27 - or -R 26 -CO-NH-R 27 -, where R 25 represents an alkylene group having 1 to 7 carbon atoms, R 25
  • n 32 is an integer of 1 to 10,000; E is a thiol group, an amino group, or -COOPhNO2 (Ph represents an o-, m-, or p-phenylene group); R 31 represents an alkylene group having 1 to 7 carbon atoms, an alkenylene group having 2 to 7 carbon atoms, -NH-R 33 -, -CO-R 33 -, -R 34 -OR 35 -, -R 34 -NH-R 35 -, -R 34 -COO-R 35 -, -R 34 -COO-NH-R 35 -, -R 34 -CO-R 35 -, R 34 -NH-CO-R 35 - or -R 34 -CO-NH-R 35 -, wherein R 33 represents an alkylene group having 1 to 7 carbon atoms, R 34 represents an alkylene group having 1 to 3 carbon atoms, and R 35 represents an alkylene group having 1 to 5
  • the first polymer is a compound represented by formula (I) and the second polymer is a compound represented by formula (III), or the first polymer is a compound represented by formula (I) and the second polymer is a compound represented by formula (IV), or the first polymer is a compound represented by formula (II) and the second polymer is a compound represented by formula (III).
  • the gel composition includes a hydrogel formed by gelling a polymer network formed by crosslinking a first polymer and a second polymer.
  • gel generally refers to a dispersion system of polymers that has high viscosity and has lost fluidity, and has a state in which the storage modulus G' and loss modulus G" have a relationship G' ⁇ G".
  • a hydrogel refers to a state in which the gel contains a solvent such as water inside.
  • the type of solvent that constitutes the gel composition is not particularly limited, but preferably the solvent includes at least one selected from the group consisting of water, organic solvents, and ionic liquids.
  • Organic solvents include alcohols such as methanol and ethanol, DMSO, etc.
  • the solvent is water.
  • Ionic liquids are formed by the bonding of cations and anions, and are liquid at room temperature (20°C) or at temperatures around that temperature. Any of a variety of known ionic liquids can be used as the ionic liquid.
  • the cation may be one or more selected from the group consisting of imidazolium ion, pyridinium ion, tetraalkylammonium ion, pyrrolidinium ion, piperidinium ion, tetraalkylphosphonium ion, pyrazolium ion, trialkylsulfonium ion, morpholium ion, guanidinium ion and lithium ion, which may have a substituent.
  • the cation may be a complex cation consisting of a lithium ion and a glyme represented by RO(CH 2 CH 2 O) n -R (R is an alkyl group having 1 to 4 carbon atoms and n is 2 to 6).
  • the lithium ion and the glyme usually form a complex cation in a molar ratio of 1:1.
  • anions include halide ions (fluorine, chlorine, iodine, and bromine), tetrafluoroborate ion (BF 4 - ), BF 3 CF 3 - , BF 3 C 2 F 5 - , BF 3 C 3 F 7 - , BF 3 C 4 F 9 - , hexafluorophosphate ion (PF 6 - ), bis(fluorosulfonyl)amide ion (FSA - ), bis(trifluoromethanesulfonyl)imide ion ((CF 3 SO 2 ) 2 N-, also known as NTf 2 - and TFSA - ), bis(fluoromethanesulfonyl)imide ion ((FSO 2 ) 2 N- ), bis(pentafluoroethanesulfonyl)imide ion ((CF 3 CF 2 SO 2 ) 2 N- ), perchlorate ion
  • preferred ionic liquids include , for example , those having a cation such as 1-ethyl-3-methylimidazolium ion, [N( CH3 )(CH3)( C2H5 ) ( C2H4OC2H4OCH3 )]+, [N( CH3 )( C2H5 )( C2H5 ) ( C2H4OCH3 )]+ and an anion such as a halogen ion, a tetrafluoroborate ion, or a bis(trifluoromethanesulfonyl)imide ion ( ( CF3SO2 ) 2N- ) , with an ionic liquid consisting of a 1-ethyl- 3 -methylimidazolium ion and a bis(trifluoromethanesulfonyl)imide ion (( CF3SO2 ) 2N- ) being particularly preferred.
  • a cation such as 1-
  • Preferred ionic liquids that are in a liquid state at room temperature (20°C) or at temperatures around that temperature include those that consist of one or more cations (preferably imidazolium ions or quaternary ammonium ions) represented by the following general formulas (V) to (VIII) and an anion (X-).
  • cations preferably imidazolium ions or quaternary ammonium ions
  • R represents a linear or branched alkyl group having 1 to 12 carbon atoms or a linear or branched alkyl group containing an ether bond and having a total of 3 to 12 carbon atoms and oxygen atoms.
  • R 1 represents a hydrogen atom or a linear or branched alkyl group having 1 to 4 carbon atoms. In formula (V), it is preferable that R and R 1 are not the same.
  • x is an integer from 1 to 4.
  • the two R groups may be joined together to form an aliphatic saturated cyclic group having 3 to 8 members, preferably a 5- or 6-membered ring.
  • linear or branched alkyl groups having 1 to 12 carbon atoms include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, t-butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, and dodecyl.
  • the number of carbon atoms is preferably 1 to 8, and more preferably 1 to 6.
  • Straight-chain or branched alkyl groups having 1 to 4 carbon atoms include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, and t-butyl.
  • Examples of straight-chain or branched alkyl groups containing an ether bond and having a total of 3 to 12 carbons and oxygens include CH2OCH3 , CH2CH2OCH3, CH2OCH2CH3, CH2CH2OCH2CH3, (CH2)p(OCH2CH2 ) qOR2 (wherein p is an integer from 1 to 4 , q is an integer from 1 to 4 , and R2 represents CH3 or C2H5 ) .
  • Examples of anions (X - ) include tetrafluoroborate ion (BF 4 - ), BF 3 CF 3 - , BF 3 C 2 F 5 - , BF 3 C 3 F 7 - , BF 3 C 4 F 9 - , hexafluorophosphate ion (PF 6 - ), bis(fluorosulfonyl)amide ion (FSA - ), bis(trifluoromethanesulfonyl)imide ion ((CF 3 SO 2 ) 2 N-, NTf 2 - , TFSA - ), bis(fluoromethanesulfonyl)imide ion ((FSO 2 ) 2 N - ), bis(pentafluoroethanesulfonyl)imide ion ((CF 3 CF 2 SO 2 ) 2 N - ), perchlorate ion (ClO 4 - ), and tris(triflu
  • the amount of the solvent in the gel composition is not particularly limited, but from the viewpoint of the extensibility and high toughness of the gel composition, it is more preferable that the amount of the solvent is 1% by mass or more and 80% by mass or less, and more preferably 1% by mass or more and 60% by mass or less.
  • the solvent is an ionic liquid.
  • the solvent is water.
  • the mass ratio of the polymer network to the solvent is not particularly limited, but is preferably 99:1 to 20:80 in terms of the extensibility and high toughness of the gel composition, and more preferably 99:1 to 40:60 in terms of high toughness.
  • the solvent is an ionic liquid.
  • the solvent is water.
  • the amount of water in the gel composition may be adjusted by drying the gel composition after production.
  • the gel composition may further include optional additives.
  • stretch-induced crystallization occurs due to uniaxial stretching, and crystals of the polyethylene glycol skeleton are formed.
  • Such a gel composition is tougher than a gel composition in which stretch-induced crystallization does not occur.
  • the gel composition has a breaking stress of 1 MPa or more, measured by deforming a gel sheet of the gel composition, which has been punched into a dumbbell shape having a thickness of 1 mm in accordance with JIS K 6251 No. 3, by uniaxial stretching at an elongation rate of 12.5%/sec.
  • a gel sheet which is a sheet formed from the gel composition of any of the above embodiments.
  • An embodiment of the gel composition of the present invention is a gel material consisting of a 4-branched polymer network 1 obtained by mixing and reacting a 4-branched polymer having reactive group A at the end and a 4-branched polymer or a linear polymer having reactive group B in a solvent or a solution containing the solvent 2 so that the molar ratio of the ends is the same.
  • reactive group A and reactive group B are electrophilic functional groups and nucleophilic functional groups (in no particular order), and examples of combinations that are applicable include active ester ends and amino ends, maleimide ends and thiol ends, and maleimide ends and amine ends (the order of the front and back functional groups is no particular).
  • the solvent may be a polar solvent or an organic solvent, and examples of polar solvents include water, ionic liquids, and salts.
  • polar solvents include water, ionic liquids, and salts.
  • the molecular weight between crosslinks is calculated as the sum of the molecular weight of the arm of the 4-branched polymer having reactive group A and the molecular weight of the arm of the 4-branched polymer having reactive group B, and the molecular weight of each 4-branched polymer arm is measured by gel permeation chromatography (GPC) or matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOFMS).
  • GPC gel permeation chromatography
  • MALDI-TOFMS matrix-assisted laser desorption ionization time-of-flight mass spectrometry
  • a typical example of a method for producing a gel composition according to an embodiment of the present invention is described below.
  • the present invention is not necessarily limited to this production method.
  • a method for producing a preferred embodiment of a gel composition includes a step of obtaining a gel composition by crosslinking, in a solvent, a first polymer, which is a four-branched or linear polymer having an electrophilic functional group and a polyethylene glycol backbone, and a second polymer, which is a four-branched or linear polymer having a nucleophilic functional group and a polyethylene glycol backbone. This allows a hydrogel to be obtained in one step.
  • the initial concentrations of the first polymer and the second polymer are less than the overlap concentration C * , and preferably less than 1/3C * .
  • overlap concentration also called “overlap concentration”
  • overlap concentration C * is the concentration at which polymers in a solvent begin to spatially contact each other
  • overlap concentration C * is generally expressed by the following formula:
  • Mw is the weight average molecular weight of the polymer
  • is the specific gravity of the solvent
  • N A is the Avogadro constant
  • R g is the radius of gyration of the polymer
  • the overlap concentration C * can be calculated, for example, by referring to Polymer Physics (written by M. Rubinstein and R. Colby). Specifically, for example, the overlap concentration C* can be calculated by measuring the viscosity of a dilute solution using the Flory-Fox equation.
  • critical gelation concentration refers to the minimum concentration of raw polymers required to achieve gelation in a system in which a three-dimensional gel is constructed by crosslinking raw polymers, and is also called the minimum gelation concentration.
  • the term critical gelation concentration includes, for example, in a system in which two or more raw polymers are used, not only a case in which the total concentration of the polymers does not reach a concentration that leads to gelation, but also a case in which only one raw polymer has a low concentration, i.e., a case in which gelation does not occur due to the ratio of the raw polymers being unequal.
  • the critical gelation concentration (minimum gelation concentration) depends on the type of raw polymer used, but such concentrations are either known in the art or can be easily determined experimentally by those skilled in the art. Typically, it is 0.5 to 5% by weight, with the lower limit being about 1/5 of the overlap concentration.
  • the crosslinking reaction of the first and second polymers can be carried out by mixing a solvent containing the first and second polymers or a solution containing the solvent.
  • the addition speed, mixing speed, and mixing ratio of each solution are not particularly limited, and can be adjusted appropriately by a person skilled in the art.
  • a two-liquid mixing syringe such as that disclosed in International Publication WO2007/083522 can be used.
  • the temperature of the two liquids when mixing is not particularly limited, and it is sufficient that the first and second polymers are dissolved and each liquid has fluidity.
  • the temperature of the solutions when mixing can be in the range of 1°C to 100°C.
  • the temperatures of the two liquids may be different, but it is preferable that the temperatures are the same since this makes it easier for the two liquids to mix.
  • the final gel composition can be obtained in a reaction time of 2 hours or less, preferably in a reaction time of 1 hour or less.
  • 4-branched polymer gels can be obtained simply by mixing macromers, making them easier to synthesize.
  • stretch-induced crystallization has been reported in 3-branched polymer gels
  • 4-branched cross-linked polymer gels are more common, which is advantageous in expanding the range of applications as a material and reducing manufacturing costs.
  • a network can be obtained even by combining 4-branched macromers with linear polymers, so the proportion of inexpensive linear polymers can be increased, and the manufacturing cost can be brought closer to that of general gels.
  • the gel sheet of Example 1 was manufactured as follows. Amine-terminated Linear PEG (0.8 g) with a molecular weight of 20k was dissolved in a buffer (0.720 mL) with a pH of 3.64. Furthermore, succinimide-terminated Tetra PEG (0.4 g) with a molecular weight of 20k was dissolved in a buffer (1.080 mL) with a pH of 3.64. At this time, the proportion of PEG was 40 wt% of the total. After mixing the two liquids, the mixture was placed in a mold made of Teflon (registered trademark) and left to stand for about a day to create a gel sheet with a thickness of 1 mm.
  • Teflon registered trademark
  • the gel thus produced was punched out into a dumbbell shape (JIS K 6251 No. 3) to prepare a tensile test specimen.
  • the gel sheets of Examples 2-3 and Comparative Examples 1-7 were also manufactured in the same manner, and tensile test specimens were prepared from each gel sheet.
  • the prepared gel was punched into a dumbbell shape (JIS K 6251 No. 3) to prepare a tensile test specimen.
  • Lithium bis(trifluoromethanesulfonyl)imide Li[NTf 2 ]) - Equimolar mixture of lithium bis(trifluoromethanesulfonyl)imide and triglyme ([Li(G3)][NTf 2 ]) - An equimolar mixture of lithium bis(trifluoromethanesulfonyl)imide and tetraglyme ([Li(G4)][NTf 2 ]).
  • ionic liquids are known as solvated ionic liquids, as described in the following literature: Watanabe M et al. (2016). “From Ionic Liquids to Solvate Ionic Liquids: Challenges and Opportunities for Next Generation Battery Electrolytes”. Bull. Chem. Soc. Jpn. 91 (11): 1660-1682.
  • the examples are as follows. [C 2 mim][NTf 2 ] (1.2 g) and DMF (2.1 mL) are added to amine-terminated LinearPEG (0.8 g) with a molecular weight of 20k, and the mixture is heated to 60 degrees to dissolve.
  • Measurements were mainly carried out using NANOPIX (Rigaku, Tokyo, Japan).
  • the wavelength was 1.5 ⁇ , and the camera length was 80 mm.
  • the exposure time for measurements was 5 minutes.
  • the samples used were the same dumbbell-shaped as those used in the uniaxial extension test.
  • the samples were deformed at a strain rate of approximately 0.125/sec, and when the desired degree of extension was reached, the deformation was stopped.
  • X-rays were irradiated while the deformation was stopped to obtain a scattering image. This was repeated while increasing the degree of extension by 100% increments until the sample broke.
  • hydrogels measurements were carried out in a container filled with liquid paraffin oil that encased the entire jig to prevent evaporation of water.
  • For ion gels measurements were carried out in air.
  • WAXS wide-angle X-ray scattering
  • Figure 5 (A) shows the stress-elongation ratio curves when the PEG concentration is changed for a gel sheet made of a 4-branched hydrogel with a molecular weight between crosslinks of 30,000, made from Linear20k and Tetra20k.
  • PEG concentrations 20 wt% or less (Comparative Examples 1 and 2)
  • Figures 5 (B) and (C) no elongation-induced crystallization was observed ( Figures 5 (B) and (C))
  • Figure 5 (D) shows the stress-elongation ratio curves when the PEG concentration is changed for a gel sheet made of a 4-branched hydrogel with a molecular weight between crosslinks of 30,000, made from Linear20k and Tetra20k.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

Provided is a gel composition comprising: a polymer network in which a first polymer that is a four-branched or linear polymer having an electrophilic functional group and a polyethylene glycol framework and a second polymer that is a four-branched or linear polymer having a nucleophilic functional group and a polyethylene glycol framework are crosslinked with each other, wherein the first polymer and/or the second polymer is a four-branched polymer; and a solvent. In the gel composition, the total amount of the first polymer and the second polymer per the amount of the gel composition is 30% by weight or more, and the molecular weight of a moiety between crosslinking points of the polymer networks is 10000 or more.

Description

伸長誘起結晶化を発現する4分岐架橋点を有するゲル材料Gel material with four-branch crosslinks exhibiting elongation-induced crystallization
 本発明は、4分岐ポリマーが架橋されてなる高分子網目を含有するゲル材料に関する。 The present invention relates to a gel material containing a polymer network formed by crosslinking four-branched polymers.
 架橋された高分子ネットワークに溶媒が閉じ込められた材料は高分子ゲルと呼ばれ、水を溶媒とするハイドロゲルは人工関節などの生体医療材料、イオン液体を溶媒とするイオンゲルはウェアラブルデバイスの電解質等への応用が期待されている。これらの応用を実現する上では、高分子ゲルの力学的強靭性を向上させる必要があるが、近年、高分子ゲルを強靭化する手法として、延伸時に配向した高分子が結晶化し、破断を防ぐ伸長誘起結晶化の活用が注目を集めている。ポリエチレングリコール(PEG)鎖を環状分子で架橋した環動ハイドロゲルにおいて、環状分子のスライド自由度によってPEG鎖が均一に配向することで伸長誘起結晶化が起こり、著しい強靭化を実現できることが2021年に報告された (非特許文献1)。溶媒をイオン液体・塩とした環動イオンゲルにおいても、伸長誘起結晶化が起こることを見出し、特許を出願している (特許文献1)。また、環状分子を用いず、高分子鎖のみからなる架橋ネットワークとしては、架橋分岐点数が3分岐のPEGハイドロゲルにおいて、伸長誘起結晶化が起こり、優れた伸長性につながることが2022年に報告された (非特許文献2)。架橋分岐点では高分子鎖が近接できないため、高分子鎖の結晶化を阻害することが知られている。3分岐ハイドロゲルでは、分岐点数が最小であることが、効率的な伸長誘起結晶化の発現につながったと考えられている。 Materials in which a solvent is trapped in a crosslinked polymer network are called polymer gels, and hydrogels using water as a solvent are expected to be used as biomedical materials such as artificial joints, while ion gels using ionic liquid as a solvent are expected to be used as electrolytes in wearable devices. To realize these applications, it is necessary to improve the mechanical toughness of polymer gels. In recent years, the use of stretch-induced crystallization, in which oriented polymers crystallize during stretching to prevent breakage, has attracted attention as a method for toughening polymer gels. In a cyclic hydrogel in which polyethylene glycol (PEG) chains are crosslinked with cyclic molecules, it was reported in 2021 that stretch-induced crystallization occurs when the PEG chains are uniformly oriented due to the sliding freedom of the cyclic molecules, resulting in significant toughening (Non-Patent Document 1). We have also found that stretch-induced crystallization occurs in cyclic ion gels in which the solvent is ionic liquid or salt, and have applied for a patent (Patent Document 1). In addition, in 2022, it was reported that in a PEG hydrogel with three crosslinking branching points, a crosslinked network consisting only of polymer chains without using cyclic molecules, stretch-induced crystallization occurred, leading to excellent extensibility (Non-Patent Document 2). It is known that crosslinking branching points inhibit the crystallization of polymer chains because polymer chains cannot approach each other. In the case of the three-branched hydrogel, the smallest number of branching points is thought to have led to the efficient occurrence of stretch-induced crystallization.
 一方で、4分岐架橋PEGハイドロゲルおよびイオンゲルの開発は先行論文および特許にて報告されているが、いずれにおいても伸長誘起結晶化は観察されておらず、一軸伸長試験時の破断応力は1MPa未満であった (非特許文献3,4)。 On the other hand, the development of 4-branch cross-linked PEG hydrogels and ionic gels has been reported in previous papers and patents, but stretch-induced crystallization was not observed in either, and the breaking stress during uniaxial stretch testing was less than 1 MPa (Non-patent literature 3, 4).
特願2022-113741(国立大学法人東京大学)07.15.2022Patent Application No. 2022-113741 (National University Corporation, University of Tokyo) 07.15.2022
 本発明が解決すべき課題は、伸長誘起結晶化を発現する、4分岐の架橋点を有するゲル組成物を提供することにある。 The problem to be solved by this invention is to provide a gel composition with four branched crosslinking points that exhibits stretch-induced crystallization.
 本発明は、以下に記載の実施形態を包含する。
項1.
 ゲル組成物であって、
 求電子性官能基を有すると共にポリエチレングリコール骨格を有する4分岐又は直鎖のポリマーである第1のポリマーと求核性官能基を有すると共にポリエチレングリコール骨格を有する4分岐又は直鎖のポリマーである第2のポリマーとが架橋されてなる高分子網目であって、ただし第1のポリマーと第2のポリマーの一方又は両方が4分岐のポリマーである高分子網目と、
 溶媒とを含有し、
 前記ゲル組成物の量に対する前記第1のポリマーと前記第2のポリマーの合計量が30重量%以上であり、かつ
 前記高分子網目の架橋点間の分子量が10000以上である、ゲル組成物。
The present invention encompasses the embodiments described below.
Item 1.
1. A gel composition comprising:
A polymer network formed by crosslinking a first polymer, which is a 4-branched or linear polymer having an electrophilic functional group and a polyethylene glycol backbone, with a second polymer, which is a 4-branched or linear polymer having a nucleophilic functional group and a polyethylene glycol backbone, wherein one or both of the first polymer and the second polymer are 4-branched polymers;
A solvent,
A gel composition, wherein the total amount of the first polymer and the second polymer relative to the amount of the gel composition is 30% by weight or more, and the molecular weight between crosslinking points of the polymer network is 10,000 or more.
項2.
 前記第1のポリマーの求電子性官能基が、活性エステル基、マレイミジル基、カルボキシル基、N-ヒドロキシ-スクシンイミジル基、スルホスクシンイミジル基、フタルイミジル基、又はニトロフェニル基である項1に記載のゲル組成物。
Item 2.
Item 2. The gel composition according to item 1, wherein the electrophilic functional group of the first polymer is an active ester group, a maleimidyl group, a carboxyl group, an N-hydroxy-succinimidyl group, a sulfosuccinimidyl group, a phthalimidyl group, or a nitrophenyl group.
項3.
 前記第2のポリマーの求核性官能基が、アミノ基、チオール基、又は-CO2PhNO2(Phはo-、m-、又はp-フェニレン基)である項1に記載のゲル組成物。
Item 3.
Item 2. The gel composition according to item 1, wherein the nucleophilic functional group of the second polymer is an amino group, a thiol group, or -CO 2 PhNO 2 (Ph is an o-, m-, or p-phenylene group).
項4.
 前記溶媒が水、有機溶媒、及びイオン液体から成る群から選択される少なくとも一つを含む項1に記載のゲル組成物。
Item 4.
Item 2. The gel composition according to item 1, wherein the solvent comprises at least one selected from the group consisting of water, an organic solvent, and an ionic liquid.
項5.
 一軸延伸によりポリエチレングリコール骨格の結晶が形成される項1に記載のゲル組成物。 
Item 5.
Item 2. The gel composition according to item 1, wherein crystals of the polyethylene glycol skeleton are formed by uniaxial stretching.
項6.
 厚み1mmのJIS K 6251 3号に従ってダンベル型に打ち抜いた項1に記載のゲル組成物からなるゲルシートを一軸延伸にて12. 5%/秒の伸長速度で変形させることにより測定された破断応力が1MPa以上である項1に記載のゲル組成物。
Item 6.
Item 2. The gel composition according to Item 1, wherein a gel sheet made of the gel composition according to Item 1 is punched into a dumbbell shape having a thickness of 1 mm according to JIS K 6251 No. 3, and the gel sheet is deformed by uniaxial stretching at an elongation rate of 12.5%/sec, and the breaking stress is measured to be 1 MPa or more.
項7.
  第1のポリマーは、下記式(I)で表される化合物であるか、又は式(II)で表される化合物であり、
Figure JPOXMLDOC01-appb-C000005
(式(I)中、n1~n4は、それぞれ同一でも又は異なってもよく、n1~n4は、5~300の整数であり、
 Aは、マレイミジル基、N-ヒドロキシ-スクシンイミジル基、スルホスクシンイミジル基、フタルイミジル基、イミダゾイル基、アクリロイル基又はニトロフェニル基であり、
  R1~R4は、それぞれ同一でも異なってもよく、炭素数1-7のアルキレン基、炭素数2-7のアルケニレン基、-NH-R5-、-CO-R5-、-R6-O-R7-、-R6-NH-R7-、-R6-COO-R7-、-R6-COO-NH-R7-、-R6-CO-R7-、-R6-NH-CO-R7-、又は-R6-CO-NH-R7-を示し、ここで、R5は炭素数1-7のアルキレン基を示し、R6は炭素数1-3のアルキレン基を示し、R7は炭素数1-5のアルキレン基を示す。)
Figure JPOXMLDOC01-appb-C000006
(式(II)中、n 12は1~10000の整数であり、
 Bはマレイミジル基、N-ヒドロキシ-スクシンイミジル基、スルホスクシンイミジル基、フタルイミジル基、イミダゾイル基、アクリロイル基又はニトロフェニル基であり、
 R11は、炭素数1-7のアルキレン基、炭素数2-7のアルケニレン基、-NH-R13-、-CO-R13-、-R14-O-R15-、-R14-NH-R15-、-R14-COO-R15-、-R14-COO-NH-R15-、-R14-CO-R15-、R14-NH-CO-R15-又は-R14-CO-NH-R15-を示し、ここで、R13は炭素数1-7のアルキレン基を示し、R14は炭素数1-3のアルキレン基を示し、R15は炭素数1-5のアルキレン基を示し、
 R12は、炭素数1-7のアルキレン基、炭素数2-7のアルケニレン基、-NH-R16-、-CO-R16-、-R17-O-R18-、-R17-NH-R18-、-R17-COO-R18-、-R17-COO-NH-R18-、-R17-CO-R18-、R17-NH-CO-R18-又は-R17-CO-NH-R18-を示し、ここで、R16は炭素数1-7のアルキレン基を示し、R17は炭素数1-3のアルキレン基を示し、R18は炭素数1-5のアルキレン基を示す。)
 前記第2のポリマーは、下記式(III)で表される化合物であるか、又は式(IV)で表される化合物である、項1に記載のゲル組成物。
Figure JPOXMLDOC01-appb-C000007
(式(III)中、n21~n24は、それぞれ同一でも又は異なってもよく、n21~n24は、25~250の整数であり、
 Dはチオール基、アミノ基、又は-COOPhNO2(Phは、o-、m-、又はp-フェニレン基を示す)であり、
 R21~R24は、それぞれ同一でも異なってもよく、炭素数1-7のアルキレン基、炭素数2-7のアルケニレン基、-NH-R25-、-CO-R25-、-R26-O-R27-、-R26-NH-R27-、-R26-COO-R27-、-R26-COO-NH-R27-、-R26-CO-R27-、R26-NH-CO-R27-又は-R26-CO-NH-R27-を示し、ここで、R25は炭素数1-7のアルキレン基を示し、R26は炭素数1-3のアルキレン基を示し、R27は炭素数1-5のアルキレン基を示す。)
Figure JPOXMLDOC01-appb-C000008
(式(IV)中、n32は1~10000の整数であり、
 Eはチオール基、アミノ基、又は-COOPhNO2(Phは、o-、m-、又はp-フェニレン基を示す)であり、
 R31は、炭素数1-7のアルキレン基、炭素数2-7のアルケニレン基、-NH-R33-、-CO-R33-、-R34-O-R35-、-R34-NH-R35-、-R34-COO-R35-、-R34-COO-NH-R35-、-R34-CO-R35-、R34-NH-CO-R35-又は-R34-CO-NH-R35-を示し、ここで、R33は炭素数1-7のアルキレン基を示し、R34は炭素数1-3のアルキレン基を示し、R35は炭素数1-5のアルキレン基を示し、
 R32は、炭素数1-7のアルキレン基、炭素数2-7のアルケニレン基、-NH-R36-、-CO-R36-、-R37-O-R38-、-R37-NH-R38-、-R37-COO-R38-、-R37-COO-NH-R38-、-R37-CO-R38-、R37-NH-CO-R38-又は-R37-CO-NH-R38-を示し、ここで、R36は炭素数1-7のアルキレン基を示し、R37は炭素数1-3のアルキレン基を示し、R38は炭素数1-5のアルキレン基を示す。)
Item 7.
The first polymer is a compound represented by the following formula (I) or a compound represented by the following formula (II):
Figure JPOXMLDOC01-appb-C000005
(In formula (I), n 1 to n 4 may be the same or different, and n 1 to n 4 are integers of 5 to 300.
A is a maleimidyl group, an N-hydroxy-succinimidyl group, a sulfosuccinimidyl group, a phthalimidyl group, an imidazoyl group, an acryloyl group or a nitrophenyl group;
R 1 to R 4 may be the same or different and each represents an alkylene group having 1 to 7 carbon atoms, an alkenylene group having 2 to 7 carbon atoms, -NH-R 5 -, -CO-R 5 -, -R 6 -OR 7 -, -R 6 -NH-R 7 -, -R 6- COO-R 7 -, -R 6 -COO-NH-R 7 -, -R 6 -CO-R 7 -, -R 6 -NH-CO-R 7 -, or -R 6 -CO-NH-R 7 -, where R 5 represents an alkylene group having 1 to 7 carbon atoms, R 6 represents an alkylene group having 1 to 3 carbon atoms, and R 7 represents an alkylene group having 1 to 5 carbon atoms.
Figure JPOXMLDOC01-appb-C000006
(In formula (II), n 12 is an integer of 1 to 10,000;
B is a maleimidyl group, an N-hydroxy-succinimidyl group, a sulfosuccinimidyl group, a phthalimidyl group, an imidazoyl group, an acryloyl group, or a nitrophenyl group;
R 11 represents an alkylene group having 1 to 7 carbon atoms, an alkenylene group having 2 to 7 carbon atoms, -NH-R 13 -, -CO-R 13 -, -R 14 -OR 15 -, -R 14 -NH-R 15 -, -R 14 -COO-R 15 -, -R 14 -COO-NH-R 15 -, -R 14 -CO-R 15 -, R 14 -NH-CO-R 15 - or -R 14 -CO-NH-R 15 -, wherein R 13 represents an alkylene group having 1 to 7 carbon atoms, R 14 represents an alkylene group having 1 to 3 carbon atoms, and R 15 represents an alkylene group having 1 to 5 carbon atoms;
R 12 represents an alkylene group having 1 to 7 carbon atoms, an alkenylene group having 2 to 7 carbon atoms, -NH-R 16 -, -CO-R 16 -, -R 17 -OR 18 -, -R 17 -NH-R 18 -, -R 17 -COO-R 18 -, -R 17 -COO-NH-R 18 -, -R 17 -CO-R 18 -, R 17 -NH-CO-R 18 - or -R 17 -CO-NH-R 18 -, where R 16 represents an alkylene group having 1 to 7 carbon atoms, R 17 represents an alkylene group having 1 to 3 carbon atoms, and R 18 represents an alkylene group having 1 to 5 carbon atoms.
Item 2. The gel composition according to item 1, wherein the second polymer is a compound represented by the following formula (III) or a compound represented by formula (IV):
Figure JPOXMLDOC01-appb-C000007
(In formula (III), n 21 to n 24 may be the same or different, and n 21 to n 24 are integers of 25 to 250.
D is a thiol group, an amino group, or -COOPhNO2 (Ph represents an o-, m-, or p-phenylene group);
R 21 to R 24 may be the same or different and each represents an alkylene group having 1 to 7 carbon atoms, an alkenylene group having 2 to 7 carbon atoms, -NH-R 25 -, -CO-R 25 -, -R 26 -OR 27 -, -R 26 -NH-R 27 -, -R 26 -COO-R 27 -, -R 26 -COO-NH-R 27 -, -R 26 -CO-R 27 -, R 26 -NH-CO-R 27 - or -R 26 -CO-NH-R 27 -, where R 25 represents an alkylene group having 1 to 7 carbon atoms, R 26 represents an alkylene group having 1 to 3 carbon atoms, and R 27 represents an alkylene group having 1 to 5 carbon atoms.
Figure JPOXMLDOC01-appb-C000008
(In formula (IV), n 32 is an integer from 1 to 10,000;
E is a thiol group, an amino group, or -COOPhNO2 (Ph represents an o-, m-, or p-phenylene group);
R 31 represents an alkylene group having 1 to 7 carbon atoms, an alkenylene group having 2 to 7 carbon atoms, -NH-R 33 -, -CO-R 33 -, -R 34 -OR 35 -, -R 34 -NH-R 35 -, -R 34 -COO-R 35 -, -R 34 -COO-NH-R 35 -, -R 34 -CO-R 35 -, R 34 -NH-CO-R 35 - or -R 34 -CO-NH-R 35 -, where R 33 represents an alkylene group having 1 to 7 carbon atoms, R 34 represents an alkylene group having 1 to 3 carbon atoms, and R 35 represents an alkylene group having 1 to 5 carbon atoms;
R 32 represents an alkylene group having 1 to 7 carbon atoms, an alkenylene group having 2 to 7 carbon atoms, -NH-R 36 -, -CO-R 36 -, -R 37 -OR 38 -, -R 37 -NH-R 38 -, -R 37 -COO-R 38 -, -R 37 -COO-NH-R 38 -, -R 37 -CO-R 38 -, R 37 -NH-CO-R 38 - or -R 37 -CO-NH-R 38 -, where R 36 represents an alkylene group having 1 to 7 carbon atoms, R 37 represents an alkylene group having 1 to 3 carbon atoms, and R 38 represents an alkylene group having 1 to 5 carbon atoms.
項8.
 項1~7のいずれかに記載のゲル組成物を成形したシートであるゲルシート。
Item 8.
Item 8. A gel sheet, which is a sheet formed from the gel composition according to any one of Items 1 to 7.
本発明の実施形態のゲル組成物の概要。Overview of gel compositions of the present embodiments. (A)架橋点間分子量の異なる3種の4分岐ハイドロゲル(PEG濃度は全て40 wt%)における応力・伸長比曲線。(B)-(D)最大伸長比における広角X線散乱(WAXS)像:(B)架橋点間分子量5k (Tetra 10k + Tetra 10k)、(C)架橋点間分子量10k(Tetra 20k + Tetra 20k)、(D)架橋点間分子量30k(Linear 20k + Tetra 20k)。(A) Stress-extension curves for three types of 4-branched hydrogels with different molecular weights between crosslinks (all PEG concentrations are 40 wt%). (B)-(D) Wide-angle X-ray scattering (WAXS) images at maximum extension ratio: (B) molecular weight between crosslinks of 5k (Tetra 10k + Tetra 10k), (C) molecular weight between crosslinks of 10k (Tetra 20k + Tetra 20k), (D) molecular weight between crosslinks of 30k (Linear 20k + Tetra 20k). 図2(C)のWAXS像の伸長と垂直方向のWAXS一次元化プロファイル(λ=10, 11)。Elongation of the WAXS image in Figure 2(C) and the vertical WAXS one-dimensional profile (λ = 10, 11). 図2(D)のWAXS像の伸長と垂直方向のWAXS一次元化プロファイル。The elongation of the WAXS image in Figure 2(D) and the vertical WAXS one-dimensional profile. (A)PEG濃度の異なる3種の4分岐ハイドロゲル(Linear 20k+Tetra20k、架橋点間分子量は全て30k)における応力・伸長比曲線。(B)-(D)最大伸長比における広角X線散乱。(B)PEG濃度10 wt%、(C)PEG濃度20 wt%、(D)PEG濃度40 wt%。(A) Stress-elongation ratio curves for three types of 4-branched hydrogels with different PEG concentrations (Linear 20k + Tetra 20k, all with molecular weight between crosslinks of 30k). (B)-(D) Wide-angle X-ray scattering at maximum elongation ratio. (B) PEG concentration 10 wt%, (C) PEG concentration 20 wt%, (D) PEG concentration 40 wt%. (A)4分岐イオンゲルの伸長下におけるWAXS像、(B)イオン液体、及び(C)伸長と垂直方向のWAXS一次元化プロファイル。(A) WAXS image of a four-branched ion gel under stretching, (B) ionic liquid, and (C) one-dimensional WAXS profile perpendicular to the stretching direction. 異なる4種のイオン液体[C2mim][NTf2]、Li[NTf2]、[Li(G3)][NTf2]、[Li(G4)][NTf2]のそれぞれを用いて得られた4分岐ハイドロゲルのWAXS像。WAXS images of four-branched hydrogels obtained using four different ionic liquids: [C 2 mim][NTf 2 ], Li[NTf 2 ], [Li(G3)][NTf 2 ], and [Li(G4)][NTf 2 ].
 本明細書において、単数形(a, an, the)は、本明細書で別途明示がある場合または文脈上明らかに矛盾する場合を除き、単数と複数を含むものとする。 In this specification, the singular forms (a, an, the) include both the singular and the plural, unless otherwise expressly stated in the specification or clearly contradictory in the context.
 本明細書において、「含有する(comprise)」は、「実質的にのみからなる(consist essentially of)」、及び「のみからなる(consist of)」も包含する概念である。 In this specification, "comprise" is a concept that also encompasses "consist essentially of" and "consist of."
 本明細書に段階的に記載されている数値範囲において、ある段階の数値範囲の上限値又は下限値は、他の段階の数値範囲の上限値又は下限値と任意に組み合わせることができる。また、本明細書に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値又は実施例から一義的に導き出せる値に置き換えてもよい。更に、本明細書において、「~」で結ばれた数値は、「~」の前後の数値を下限値及び上限値として含む数値範囲を意味する。 In the numerical ranges described in this specification in stages, the upper or lower limit of a certain numerical range can be arbitrarily combined with the upper or lower limit of a numerical range of another stage. Furthermore, in the numerical ranges described in this specification, the upper or lower limit of the numerical range may be replaced with a value shown in an example or a value that can be unambiguously derived from an example. Furthermore, in this specification, a numerical value connected with "~" means a numerical range that includes the numerical values before and after "~" as the upper and lower limits.
 本発明では、より一般的な架橋構造である4分岐架橋高分子ゲルにおいて伸長誘起結晶化が起こることを発見し、優れた強靭化を実現できることを見出した。 In this invention, we discovered that stretch-induced crystallization occurs in a four-branch cross-linked polymer gel, which has a more common cross-linked structure, and found that excellent toughness can be achieved.
 本発明の一態様によれば、ゲル組成物であって、求電子性官能基を有すると共にポリエチレングリコール骨格を有する4分岐又は直鎖のポリマーである第1のポリマーと求核性官能基を有すると共にポリエチレングリコール骨格を有する4分岐又は直鎖のポリマーである第2のポリマーとが架橋されてなる高分子網目であって、ただし第1のポリマーと第2のポリマーの一方又は両方が4分岐のポリマーである高分子網目と、溶媒とを含有し、前記ゲル組成物の量に対する前記第1のポリマーと前記第2のポリマーの合計量が30重量%以上であり、かつ前記高分子網目の架橋点間の分子量が10000以上である、ゲル組成物が提供される。 According to one aspect of the present invention, there is provided a gel composition comprising a polymer network formed by crosslinking a first polymer, which is a four-branched or linear polymer having electrophilic functional groups and a polyethylene glycol backbone, and a second polymer, which is a four-branched or linear polymer having nucleophilic functional groups and a polyethylene glycol backbone, where one or both of the first polymer and the second polymer are four-branched polymers, and a solvent, the total amount of the first polymer and the second polymer relative to the amount of the gel composition being 30% by weight or more, and the molecular weight between crosslinking points of the polymer network being 10,000 or more.
 「ポリエチレングリコールを骨格とする4分岐型ポリマー」とは、4つのポリエチレングリコール鎖が中心から分岐した構造を有する親水性のポリマーである。かかる4分岐型のポリエチレングリコール骨格よりなるゲルは、一般に、Tetra-PEGゲルとして知られている。 "A four-branched polymer with a polyethylene glycol backbone" is a hydrophilic polymer with a structure in which four polyethylene glycol chains branch out from the center. A gel made of such a four-branched polyethylene glycol backbone is generally known as a Tetra-PEG gel.
 それぞれ求電子性官能基を有する第1のポリマーと求核性官能基を有する第2のポリマーの2種の4分岐高分子間のAB型クロスエンドカップリング反応によって高分子網目(高分子ネットワーク)が構築される(Matsunagaら、Macromolecules, Vol.42, No., pp. 1344-1361, 2009)。 A polymer network is constructed by an AB type cross-end coupling reaction between two four-branched polymers, the first polymer having electrophilic functional groups and the second polymer having nucleophilic functional groups (Matsunaga et al., Macromolecules, Vol. 42, No., pp. 1344-1361, 2009).
 Tetra-PEGゲルは各高分子溶液の単純な二液混合で簡便にその場で作製可能であり、ゲル調製時のpHやイオン強度を調節することでゲル化時間を制御することも可能である。そして、このゲルはPEGを主成分としているため、生体適合性にも優れている。 Tetra-PEG gel can be easily prepared on-site by simply mixing two polymer solutions, and it is also possible to control the gelation time by adjusting the pH and ionic strength during gel preparation. Furthermore, because the main component of this gel is PEG, it also has excellent biocompatibility.
 ゲル組成物の量に対する第1のポリマーと第2のポリマーの合計量が30重量%以上であり、かつ高分子網目の架橋点間の分子量が10000以上であると、伸長誘起結晶化が起こり、強靭化されたゲル組成物が得られる。ゲル組成物の量に対する第1のポリマーと第2のポリマーの合計量が30重量%未満の場合や、高分子網目の架橋点間の分子量が10000未満の場合には、破断までゲル組成物を延伸しても伸長誘起結晶化が起こらない。 When the total amount of the first polymer and the second polymer relative to the amount of the gel composition is 30% by weight or more, and the molecular weight between the crosslinking points of the polymer network is 10,000 or more, stretch-induced crystallization occurs, resulting in a toughened gel composition. When the total amount of the first polymer and the second polymer relative to the amount of the gel composition is less than 30% by weight, or when the molecular weight between the crosslinking points of the polymer network is less than 10,000, stretch-induced crystallization does not occur even when the gel composition is stretched to breakage.
 第1のポリマーとして使用される4分岐のポリマーは、好ましくは、側鎖又は末端に1以上の求電子性官能基を有する。第2のポリマーとして使用される4分岐のポリマーは、好ましくは、側鎖又は末端に1以上の求核性官能基を有する。 The 4-branched polymer used as the first polymer preferably has one or more electrophilic functional groups at the side chain or at the end. The 4-branched polymer used as the second polymer preferably has one or more nucleophilic functional groups at the side chain or at the end.
 第1のポリマーの求電子性官能基としては、活性エステル基を用いることができる。このような活性エステル基としては、マレイミジル基、カルボキシル基、N-ヒドロキシ-スクシンイミジル(NHS)基、スルホスクシンイミジル基、フタルイミジル基、イミダゾイル 基、アクリロイル基、又はニトロフェニル基などを挙げることができ、当業者であれば公知の求電子性官能基を適宜用いることができる。好ましい実施形態では、第1のポリマーの求電子性官能基は、活性エステル基、マレイミジル基、カルボキシル基、N-ヒドロキシ-スクシンイミジル基、スルホスクシンイミジル基、フタルイミジル基、及びニトロフェニル基からなる群から選択される。さらに好ましい実施形態では、第1のポリマーの求電子性官能基はすべて、活性エステル基、マレイミジル基、カルボキシル基、N-ヒドロキシ-スクシンイミジル基、スルホスクシンイミジル基、フタルイミジル基、又はニトロフェニル基である。 The electrophilic functional group of the first polymer can be an active ester group. Examples of such active ester groups include maleimidyl groups, carboxyl groups, N-hydroxy-succinimidyl (NHS) groups, sulfosuccinimidyl groups, phthalimidyl groups, imidazoyl groups, acryloyl groups, and nitrophenyl groups, and those skilled in the art can use any known electrophilic functional group as appropriate. In a preferred embodiment, the electrophilic functional group of the first polymer is selected from the group consisting of active ester groups, maleimidyl groups, carboxyl groups, N-hydroxy-succinimidyl groups, sulfosuccinimidyl groups, phthalimidyl groups, and nitrophenyl groups. In a further preferred embodiment, all of the electrophilic functional groups of the first polymer are active ester groups, maleimidyl groups, carboxyl groups, N-hydroxy-succinimidyl groups, sulfosuccinimidyl groups, phthalimidyl groups, or nitrophenyl groups.
 第1のポリマーの求電子性官能基は、それぞれ同一であっても、異なってもよいが、 同一である方が好ましい。官能基が同一であることによって、架橋結合を形成することとなる求核性官能基との反応性が均一になり、均一な立体構造を有するゲルを得ることができる。 The electrophilic functional groups of the first polymer may be the same or different, but it is preferable that they are the same. By having the functional groups be the same, the reactivity with the nucleophilic functional groups that form crosslinks is uniform, and a gel with a uniform three-dimensional structure can be obtained.
 第2のポリマーの求核性官能基としては、アミノ基 、チオール基(-SH)、又は-CO2PhNO2(Phはo-、m-、又はp-フェニレン基を示す)などを挙げることができ、当業者であれば公知の求核性官能基を適宜用いることができる。好ましい実施形態では、第2のポリマーの求核性官能基は、アミノ基 、チオール基(-SH)、及びCO2PhNO2(Phはo-、m-、又はp-フェニレン基を示す)からなる群から選択される。さらに好ましい実施形態では、第2のポリマーの求核性官能基はすべて、アミノ基 、チオール基(-SH)、又は-CO2PhNO2(Phはo-、m-、又はp-フェニレン基を示す)である。 The nucleophilic functional group of the second polymer may be an amino group, a thiol group (-SH), or -CO2PhNO2 (Ph represents an o-, m-, or p-phenylene group), and a person skilled in the art may appropriately use a known nucleophilic functional group. In a preferred embodiment, the nucleophilic functional group of the second polymer is selected from the group consisting of an amino group, a thiol group (-SH), and CO2PhNO2 (Ph represents an o-, m-, or p-phenylene group). In a more preferred embodiment, all of the nucleophilic functional groups of the second polymer are an amino group, a thiol group ( -SH ), or -CO2PhNO2 (Ph represents an o-, m-, or p-phenylene group).
 第2のポリマーの求核性官能基は、それぞれ同一であっても、異なってもよいが、同一である方が好ましい。官能基が同一であることによって、架橋結合を形成することとなる求電子性官能基との反応性が均一になり、均一な立体構造を有するゲルを得やすくなる。 The nucleophilic functional groups of the second polymer may be the same or different, but it is preferable that they are the same. By using the same functional groups, the reactivity with the electrophilic functional groups that form cross-links is uniform, making it easier to obtain a gel with a uniform three-dimensional structure.
 好ましい実施形態では、第1のポリマーは、下記式(I)で表される化合物であるか、又は式(II)で表される化合物である。 In a preferred embodiment, the first polymer is a compound represented by the following formula (I) or a compound represented by the following formula (II):
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
(式(I)中、n1~n4は、それぞれ同一でも又は異なってもよく、n1~n4は、5~300の整数であり、
 Aは、マレイミジル基、N-ヒドロキシ-スクシンイミジル基、スルホスクシンイミジル基、フタルイミジル基、イミダゾイル基、アクリロイル基又はニトロフェニル基であり、
  R1~R4は、それぞれ同一でも異なってもよく、炭素数1-7のアルキレン基、炭素数2-7のアルケニレン基、-NH-R5-、-CO-R5-、-R6-O-R7-、-R6-NH-R7-、-R6-COO-R7-、-R6-COO-NH-R7-、-R6-CO-R7-、-R6-NH-CO-R7-、又は-R6-CO-NH-R7-を示し、ここで、R5は炭素数1-7のアルキレン基を示し、R6は炭素数1-3のアルキレン基を示し、R7は炭素数1-5のアルキレン基を示す。)
(In formula (I), n 1 to n 4 may be the same or different, and n 1 to n 4 are integers of 5 to 300.
A is a maleimidyl group, an N-hydroxy-succinimidyl group, a sulfosuccinimidyl group, a phthalimidyl group, an imidazoyl group, an acryloyl group or a nitrophenyl group;
R 1 to R 4 may be the same or different and each represents an alkylene group having 1 to 7 carbon atoms, an alkenylene group having 2 to 7 carbon atoms, -NH-R 5 -, -CO-R 5 -, -R 6 -OR 7 -, -R 6 -NH-R 7 -, -R 6- COO-R 7 -, -R 6 -COO-NH-R 7 -, -R 6 -CO-R 7 -, -R 6 -NH-CO-R 7 -, or -R 6 -CO-NH-R 7 -, where R 5 represents an alkylene group having 1 to 7 carbon atoms, R 6 represents an alkylene group having 1 to 3 carbon atoms, and R 7 represents an alkylene group having 1 to 5 carbon atoms.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
(式(II)中、n 12は1~10000の整数であり、
 Bはマレイミジル基、N-ヒドロキシ-スクシンイミジル基、スルホスクシンイミジル基、フタルイミジル基、イミダゾイル基、アクリロイル基又はニトロフェニル基であり、
 R11は、炭素数1-7のアルキレン基、炭素数2-7のアルケニレン基、-NH-R13-、-CO-R13-、-R14-O-R15-、-R14-NH-R15-、-R14-COO-R15-、-R14-COO-NH-R15-、-R14-CO-R15-、R14-NH-CO-R15-又は-R14-CO-NH-R15-を示し、ここで、R13は炭素数1-7のアルキレン基を示し、R14は炭素数1-3のアルキレン基を示し、R15は炭素数1-5のアルキレン基を示し、
 R12は、炭素数1-7のアルキレン基、炭素数2-7のアルケニレン基、-NH-R16-、-CO-R16-、-R17-O-R18-、-R17-NH-R18-、-R17-COO-R18-、-R17-COO-NH-R18-、-R17-CO-R18-、R17-NH-CO-R18-又は-R17-CO-NH-R18-を示し、ここで、R16は炭素数1-7のアルキレン基を示し、R17は炭素数1-3のアルキレン基を示し、R18は炭素数1-5のアルキレン基を示す。)、
(In formula (II), n 12 is an integer of 1 to 10,000;
B is a maleimidyl group, an N-hydroxy-succinimidyl group, a sulfosuccinimidyl group, a phthalimidyl group, an imidazoyl group, an acryloyl group, or a nitrophenyl group;
R 11 represents an alkylene group having 1 to 7 carbon atoms, an alkenylene group having 2 to 7 carbon atoms, -NH-R 13 -, -CO-R 13 -, -R 14 -OR 15 -, -R 14 -NH-R 15 -, -R 14 -COO-R 15 -, -R 14 -COO-NH-R 15 -, -R 14 -CO-R 15 -, R 14 -NH-CO-R 15 - or -R 14 -CO-NH-R 15 -, wherein R 13 represents an alkylene group having 1 to 7 carbon atoms, R 14 represents an alkylene group having 1 to 3 carbon atoms, and R 15 represents an alkylene group having 1 to 5 carbon atoms;
R 12 represents an alkylene group having 1 to 7 carbon atoms, an alkenylene group having 2 to 7 carbon atoms, -NH-R 16 -, -CO-R 16 -, -R 17 -OR 18 -, -R 17 -NH-R 18 -, -R 17 -COO-R 18 -, -R 17 -COO-NH-R 18 -, -R 17 -CO-R 18 -, R 17 -NH-CO-R 18 - or -R 17 -CO-NH-R 18 -, where R 16 represents an alkylene group having 1 to 7 carbon atoms, R 17 represents an alkylene group having 1 to 3 carbon atoms, and R 18 represents an alkylene group having 1 to 5 carbon atoms.
 上記式(I)中、n1~n4は、それぞれ同一でも又は異なってもよい。n1~n4の値は近いほど、ゲルは均一な立体構造をとることができ、高強度となるので好ましく、同一である方が好ましい。n1~n4の値が高すぎるとゲルの強度が弱くなり、n1~n4の値が低すぎると化合物の立体障害によりゲルが形成されにくい。そのため、n1~n4は、例えば5~300の整数値が挙げられ、20~250が好ましく、 30~180がより好ましく、45~115がさらに好ましい。一実施形態では、n1~n4は、5~300の整数である。式(I)で表される化合物の分子量としては、5×103~5×104Daが好ましく、7.5×103~3×104Daが好ましく、1×104~2×104Daがより好ましい。 In the above formula (I), n 1 to n 4 may be the same or different. The closer the values of n 1 to n 4 are, the more uniform the gel can be in a three-dimensional structure and the higher the strength, and it is preferable that they are the same. If the values of n 1 to n 4 are too high, the strength of the gel will be weak, and if the values of n 1 to n 4 are too low, the gel will not be easily formed due to the steric hindrance of the compound. Therefore, n 1 to n 4 may be, for example, an integer value of 5 to 300, preferably 20 to 250, more preferably 30 to 180, and even more preferably 45 to 115. In one embodiment, n 1 to n 4 are integers of 5 to 300. The molecular weight of the compound represented by formula (I) is preferably 5×10 3 to 5×10 4 Da, preferably 7.5×10 3 to 3×10 4 Da, and more preferably 1×10 4 to 2×10 4 Da.
  上記式(I)中、R1~R4は、官能基とコア部分をつなぐリンカー部位である 。R1~R4は、それぞれ同一でも異なってもよいが、均一な立体構造を有する高強度なゲルを製造するためには同一であることが好ましい。 In the above formula (I), R 1 to R 4 are linker moieties that connect the functional group and the core moiety. R 1 to R 4 may be the same or different, but are preferably the same in order to produce a high-strength gel having a uniform three-dimensional structure.
 上記式(II)中、n12は、例えば1~10000の整数値が挙げられ、25~5000が好ましく、 50~2500がより好ましく、100~1000がさらに好ましい。式(II)で表される化合物の分子量としては、1.1×103~2.2×105Daが好ましく、2.2×103~1.1×105Daが好ましく、4.4×103~4.4×105Daがより好ましい。 In the above formula (II), n12 can be, for example, an integer value of 1 to 10,000, preferably 25 to 5,000, more preferably 50 to 2,500, and even more preferably 100 to 1,000. The molecular weight of the compound represented by formula (II) is preferably 1.1×10 3 to 2.2×10 5 Da, preferably 2.2×10 3 to 1.1×10 5 Da, and more preferably 4.4×10 3 to 4.4×10 5 Da.
 ここで、R1~R4、R11、及びR12の各々に関し、炭素数1-7のアルキレン基の例としては、メチレン基、エチレン基、プロピレン基、ブチレン基が挙げられる。炭素数2-7のアルケニレン基とは、鎖中に1個若しくは2個以上の二重結合を有する直鎖状又は分枝鎖状の炭素原子数2~7個のアルケニレン基であり、例えば、前記炭素数1-7のアルキレン基から隣り合った炭素原子の水素原子の2~5個を除いてできる二重結合を有する2価基が挙げられる。 Here, examples of the alkylene group having 1 to 7 carbon atoms for each of R 1 to R 4 , R 11 , and R 12 include a methylene group, an ethylene group, a propylene group, and a butylene group. The alkenylene group having 2 to 7 carbon atoms is a linear or branched alkenylene group having 2 to 7 carbon atoms and having one or more double bonds in the chain, and examples thereof include a divalent group having a double bond formed by removing 2 to 5 hydrogen atoms from adjacent carbon atoms of the alkylene group having 1 to 7 carbon atoms.
 好ましい実施形態では、第2のポリマーは、下記式(III)で表される化合物であるか、又は式(IV)で表される化合物である。 In a preferred embodiment, the second polymer is a compound represented by the following formula (III) or a compound represented by the following formula (IV):
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
(式(III)中、n21~n24は、それぞれ同一でも又は異なってもよく、n21~n24は、25~250の整数であり、
 Dはチオール基、アミノ基、又は-COOPhNO2 (Phは、o-、m-、又はp-フェニレン基を示す)であり、
 R21~R24は、それぞれ同一でも異なってもよく、炭素数1-7のアルキレン基、炭素数2-7のアルケニレン基、-NH-R25-、-CO-R25-、-R26-O-R27-、-R26-NH-R27-、-R26-COO-R27-、-R26-COO-NH-R27-、-R26-CO-R27-、R26-NH-CO-R27-又は-R26-CO-NH-R27-を示し、ここで、R25は炭素数1-7のアルキレン基を示し、R26は炭素数1-3のアルキレン基を示し、R27は炭素数1-5のアルキレン基を示す。)
(In formula (III), n 21 to n 24 may be the same or different, and n 21 to n 24 are integers of 25 to 250.
D is a thiol group, an amino group, or -COOPhNO2 (Ph represents an o-, m-, or p-phenylene group);
R 21 to R 24 may be the same or different and each represents an alkylene group having 1 to 7 carbon atoms, an alkenylene group having 2 to 7 carbon atoms, -NH-R 25 -, -CO-R 25 -, -R 26 -OR 27 -, -R 26 -NH-R 27 -, -R 26 -COO-R 27 -, -R 26 -COO-NH-R 27 -, -R 26 -CO-R 27 -, R 26 -NH-CO-R 27 - or -R 26 -CO-NH-R 27 -, where R 25 represents an alkylene group having 1 to 7 carbon atoms, R 26 represents an alkylene group having 1 to 3 carbon atoms, and R 27 represents an alkylene group having 1 to 5 carbon atoms.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
(式(IV)中、n32は1~10000の整数であり、
 Eはチオール基、アミノ基、又は-COOPhNO2 (Phは、o-、m-、又はp-フェニレン基を示す)であり、
 R31は、炭素数1-7のアルキレン基、炭素数2-7のアルケニレン基、-NH-R33-、-CO-R33-、-R34-O-R35-、-R34-NH-R35-、-R34-COO-R35-、-R34-COO-NH-R35-、-R34-CO-R35-、R34-NH-CO-R35-又は-R34-CO-NH-R35-を示し、ここで、R33は炭素数1-7のアルキレン基を示し、R34は炭素数1-3のアルキレン基を示し、R35は炭素数1-5のアルキレン基を示し、
 R32は、炭素数1-7のアルキレン基、炭素数2-7のアルケニレン基、-NH-R36-、-CO-R36-、-R37-O-R38-、-R37-NH-R38-、-R37-COO-R38-、-R37-COO-NH-R38-、-R37-CO-R38-、R37-NH-CO-R38-又は-R37-CO-NH-R38-を示し、ここで、R36は炭素数1-7のアルキレン基を示し、R37は炭素数1-3のアルキレン基を示し、R38は炭素数1-5のアルキレン基を示す。)
(In formula (IV), n 32 is an integer of 1 to 10,000;
E is a thiol group, an amino group, or -COOPhNO2 (Ph represents an o-, m-, or p-phenylene group);
R 31 represents an alkylene group having 1 to 7 carbon atoms, an alkenylene group having 2 to 7 carbon atoms, -NH-R 33 -, -CO-R 33 -, -R 34 -OR 35 -, -R 34 -NH-R 35 -, -R 34 -COO-R 35 -, -R 34 -COO-NH-R 35 -, -R 34 -CO-R 35 -, R 34 -NH-CO-R 35 - or -R 34 -CO-NH-R 35 -, wherein R 33 represents an alkylene group having 1 to 7 carbon atoms, R 34 represents an alkylene group having 1 to 3 carbon atoms, and R 35 represents an alkylene group having 1 to 5 carbon atoms;
R 32 represents an alkylene group having 1 to 7 carbon atoms, an alkenylene group having 2 to 7 carbon atoms, -NH-R 36 -, -CO-R 36 -, -R 37 -OR 38 -, -R 37 -NH-R 38 -, -R 37 -COO-R 38 -, -R 37 -COO-NH-R 38 -, -R 37 -CO-R 38 -, R 37 -NH-CO-R 38 - or -R 37 -CO-NH-R 38 -, where R 36 represents an alkylene group having 1 to 7 carbon atoms, R 37 represents an alkylene group having 1 to 3 carbon atoms, and R 38 represents an alkylene group having 1 to 5 carbon atoms.
 式(III)中、n21~n24は、それぞれ同一でも又は異なってもよい。n21~n24の値が近いほど、均一な立体構造をとることができ、高強度となる。このため、高強度のゲルを得るためには、同一であることが好ましい。n21~n24の値が高すぎるとゲルの強度が弱くなり、n21~n24の値が低すぎると化合物の立体障害によりゲルが形成されにくい 。そのため、n21~n24は、25~250が好ましく、35~180がより好ましく、50~120がさらに好ましい。式(III)で表される化合物の分子量としては、5×103~5×104Daが好ましく、7.5×103~3×104Daが好ましく、1×104~2×104Daがより好ましい。 In formula (III), n 21 to n 24 may be the same or different. The closer the values of n 21 to n 24 are, the more uniform the three-dimensional structure can be, and the higher the strength. Therefore, in order to obtain a gel with high strength, it is preferable that they are the same. If the values of n 21 to n 24 are too high, the strength of the gel will be weak, and if the values of n 21 to n 24 are too low, the gel will not easily form due to steric hindrance of the compound. Therefore, n 21 to n 24 are preferably 25 to 250, more preferably 35 to 180, and even more preferably 50 to 120. The molecular weight of the compound represented by formula (III) is preferably 5×10 3 to 5×10 4 Da, more preferably 7.5×10 3 to 3×10 4 Da, and more preferably 1×10 4 to 2×10 4 Da.
 上記式(III)中、R21~R24は、官能基とコア部分をつなぐリンカー部位である。R21~R24は、それぞれ同一でも異なってもよいが、均一な立体構造を有する高強度なゲルを製造するためには同一であることが好ましい。 In the above formula (III), R 21 to R 24 are linker moieties connecting the functional group and the core part. R 21 to R 24 may be the same or different, but are preferably the same in order to produce a high-strength gel having a uniform three-dimensional structure.
 上記式(IV)中、n32は、例えば1~10000の整数値が挙げられ、25~5000が好ましく、50~2500がより好ましく、100~1000がさらに好ましい。式(IV)で表される化合物の分子量としては、5×103~5×104Daが好ましく、7.5×103~3×104Daが好ましく、1×104~2×104Daがより好ましい。 In the above formula (IV), n 32 can be, for example, an integer value of 1 to 10,000, preferably 25 to 5,000, more preferably 50 to 2,500, and even more preferably 100 to 1,000. The molecular weight of the compound represented by formula (IV) is preferably 5×10 3 to 5×10 4 Da, preferably 7.5×10 3 to 3×10 4 Da, and more preferably 1×10 4 to 2×10 4 Da.
 ここで、R21~R24、R31、及びR32の各々に関し、炭素数1-7のアルキレン基の例としては、メチレン基、エチレン基、プロピレン基、ブチレン基が挙げられる。炭素数2-7のアルケニレン基とは、鎖中に1個若しくは2個以上の二重結合を有する直鎖状又は分枝鎖状の炭素原子数2~7個のアルケニレン基であり、例えば、前記炭素数1-7のアルキレン基から隣り合った炭素原子の水素原子の2~5個を除いてできる二重結合を有する2価基が挙げられる。 Here, with respect to each of R 21 to R 24 , R 31 , and R 32 , examples of the alkylene group having 1 to 7 carbon atoms include a methylene group, an ethylene group, a propylene group, and a butylene group. The alkenylene group having 2 to 7 carbon atoms is a linear or branched alkenylene group having 2 to 7 carbon atoms and having one or more double bonds in the chain, and examples thereof include a divalent group having a double bond formed by removing 2 to 5 hydrogen atoms from adjacent carbon atoms of the alkylene group having 1 to 7 carbon atoms.
 別の好ましい実施形態では、第1のポリマーは、下記式(I)で表される化合物であるか、又は式(II)で表される化合物であり、 In another preferred embodiment, the first polymer is a compound represented by the following formula (I) or a compound represented by the following formula (II):
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
(式(I)中、n1~n4は、それぞれ同一でも又は異なってもよく、n1~n4は、5~300の整数であり、
 Aは、マレイミジル基、N-ヒドロキシ-スクシンイミジル基、スルホスクシンイミジル基、フタルイミジル基、イミダゾイル基、アクリロイル基又はニトロフェニル基であり、
  R1~R4は、それぞれ同一でも異なってもよく、炭素数1-7のアルキレン基、炭素数2-7のアルケニレン基、-NH-R5-、-CO-R5-、-R6-O-R7-、-R6-NH-R7-、-R6-COO-R7-、-R6-COO-NH-R7-、-R6-CO-R7-、-R6-NH-CO-R7-、又は-R6-CO-NH-R7-を示し、ここで、R2は炭素数1-7のアルキレン基を示し、R6は炭素数1-3のアルキレン基を示し、R7は炭素数1-5のアルキレン基を示す。)
(In formula (I), n 1 to n 4 may be the same or different, and n 1 to n 4 are integers of 5 to 300.
A is a maleimidyl group, an N-hydroxy-succinimidyl group, a sulfosuccinimidyl group, a phthalimidyl group, an imidazoyl group, an acryloyl group or a nitrophenyl group;
R 1 to R 4 may be the same or different and each represents an alkylene group having 1 to 7 carbon atoms, an alkenylene group having 2 to 7 carbon atoms, -NH-R 5 -, -CO-R 5 -, -R 6 -OR 7 -, -R 6 -NH-R 7 -, -R 6- COO-R 7 -, -R 6 -COO-NH-R 7 -, -R 6 -CO-R 7 -, -R 6 -NH-CO-R 7 -, or -R 6 -CO-NH-R 7 -, where R 2 represents an alkylene group having 1 to 7 carbon atoms, R 6 represents an alkylene group having 1 to 3 carbon atoms, and R 7 represents an alkylene group having 1 to 5 carbon atoms.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
(式(II)中、n12は1~10000の整数であり、
 Bはマレイミジル基、N-ヒドロキシ-スクシンイミジル基、スルホスクシンイミジル基、フタルイミジル基、イミダゾイル基、アクリロイル基又はニトロフェニル基であり、
 R11は、炭素数1-7のアルキレン基、炭素数2-7のアルケニレン基、-NH-R13-、-CO-R13-、-R14-O-R15-、-R14-NH-R15-、-R14-COO-R15-、-R14-COO-NH-R15-、-R14-CO-R15-、R14-NH-CO-R15-又は-R14-CO-NH-R15-を示し、ここで、R13は炭素数1-7のアルキレン基を示し、R14は炭素数1-3のアルキレン基を示し、R15は炭素数1-5のアルキレン基を示し、
 R12は、炭素数1-7のアルキレン基、炭素数2-7のアルケニレン基、-NH-R16-、-CO-R16-、-R17-O-R18-、-R17-NH-R18-、-R17-COO-R18-、-R17-COO-NH-R18-、-R17-CO-R18-、R17-NH-CO-R18-又は-R17-CO-NH-R18-を示し、ここで、R16は炭素数1-7のアルキレン基を示し、R17は炭素数1-3のアルキレン基を示し、R18は炭素数1-5のアルキレン基を示す。)、
第2のポリマーは、下記式(III)で表される化合物であるか、又は式(IV)で表される化合物であり、
(In formula (II), n 12 is an integer of 1 to 10,000;
B is a maleimidyl group, an N-hydroxy-succinimidyl group, a sulfosuccinimidyl group, a phthalimidyl group, an imidazoyl group, an acryloyl group or a nitrophenyl group;
R 11 represents an alkylene group having 1 to 7 carbon atoms, an alkenylene group having 2 to 7 carbon atoms, -NH-R 13 -, -CO-R 13 -, -R 14 -OR 15 -, -R 14 -NH-R 15 -, -R 14 -COO-R 15 -, -R 14 -COO-NH-R 15 -, -R 14 -CO-R 15 -, R 14 -NH-CO-R 15 - or -R 14 -CO-NH-R 15 -, wherein R 13 represents an alkylene group having 1 to 7 carbon atoms, R 14 represents an alkylene group having 1 to 3 carbon atoms, and R 15 represents an alkylene group having 1 to 5 carbon atoms;
R 12 represents an alkylene group having 1 to 7 carbon atoms, an alkenylene group having 2 to 7 carbon atoms, -NH-R 16 -, -CO-R 16 -, -R 17 -OR 18 -, -R 17 -NH-R 18 -, -R 17 -COO-R 18 -, -R 17 -COO-NH-R 18 -, -R 17 -CO-R 18 -, R 17 -NH-CO-R 18 - or -R 17 -CO-NH-R 18 -, where R 16 represents an alkylene group having 1 to 7 carbon atoms, R 17 represents an alkylene group having 1 to 3 carbon atoms, and R 18 represents an alkylene group having 1 to 5 carbon atoms.
The second polymer is a compound represented by the following formula (III) or a compound represented by the following formula (IV):
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
(式(III)中、n21~n24は、それぞれ同一でも又は異なってもよく、n21~n24は、25~250の整数であり、
 Dはチオール基、アミノ基、又は-COOPhNO2(Phは、o-、m-、又はp-フェニレン基を示す)であり、
 R21~R24は、それぞれ同一でも異なってもよく、炭素数1-7のアルキレン基、炭素数2-7のアルケニレン基、-NH-R25-、-CO-R25-、-R26-O-R27-、-R26-NH-R27-、-R26-COO-R27-、-R26-COO-NH-R27-、-R26-CO-R27-、R26-NH-CO-R27-又は-R26-CO-NH-R27-を示し、ここで、R25は炭素数1-7のアルキレン基を示し、R26は炭素数1-3のアルキレン基を示し、R27は炭素数1-5のアルキレン基を示す。)
(In formula (III), n 21 to n 24 may be the same or different, and n 21 to n 24 are integers of 25 to 250.
D is a thiol group, an amino group, or -COOPhNO2 (Ph represents an o-, m-, or p-phenylene group);
R 21 to R 24 may be the same or different and each represents an alkylene group having 1 to 7 carbon atoms, an alkenylene group having 2 to 7 carbon atoms, -NH-R 25 -, -CO-R 25 -, -R 26 -OR 27 -, -R 26 -NH-R 27 -, -R 26 -COO-R 27 -, -R 26 -COO-NH-R 27 -, -R 26 -CO-R 27 -, R 26 -NH-CO-R 27 - or -R 26 -CO-NH-R 27 -, where R 25 represents an alkylene group having 1 to 7 carbon atoms, R 26 represents an alkylene group having 1 to 3 carbon atoms, and R 27 represents an alkylene group having 1 to 5 carbon atoms.
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
(式(IV)中、n32は1~10000の整数であり、
 Eはチオール基、アミノ基、又は-COOPhNO2(Phは、o-、m-、又はp-フェニレン基を示す)であり、
 R31は、炭素数1-7のアルキレン基、炭素数2-7のアルケニレン基、-NH-R33-、-CO-R33-、-R34-O-R35-、-R34-NH-R35-、-R34-COO-R35-、-R34-COO-NH-R35-、-R34-CO-R35-、R34-NH-CO-R35-又は-R34-CO-NH-R35-を示し、ここで、R33は炭素数1-7のアルキレン基を示し、R34は炭素数1-3のアルキレン基を示し、R35は炭素数1-5のアルキレン基を示し、
 R32は、炭素数1-7のアルキレン基、炭素数2-7のアルケニレン基、-NH-R36-、-CO-R36-、-R37-O-R38-、-R37-NH-R38-、-R37-COO-R38-、-R37-COO-NH-R38-、-R37-CO-R38-、R37-NH-CO-R38-又は-R37-CO-NH-R38-を示し、ここで、R36は炭素数1-7のアルキレン基を示し、R37は炭素数1-3のアルキレン基を示し、R38は炭素数1-5のアルキレン基を示す。)
かつ第1のポリマーと第2のポリマーの一方又は両方が4分岐のポリマーである。
(In formula (IV), n 32 is an integer of 1 to 10,000;
E is a thiol group, an amino group, or -COOPhNO2 (Ph represents an o-, m-, or p-phenylene group);
R 31 represents an alkylene group having 1 to 7 carbon atoms, an alkenylene group having 2 to 7 carbon atoms, -NH-R 33 -, -CO-R 33 -, -R 34 -OR 35 -, -R 34 -NH-R 35 -, -R 34 -COO-R 35 -, -R 34 -COO-NH-R 35 -, -R 34 -CO-R 35 -, R 34 -NH-CO-R 35 - or -R 34 -CO-NH-R 35 -, wherein R 33 represents an alkylene group having 1 to 7 carbon atoms, R 34 represents an alkylene group having 1 to 3 carbon atoms, and R 35 represents an alkylene group having 1 to 5 carbon atoms;
R 32 represents an alkylene group having 1 to 7 carbon atoms, an alkenylene group having 2 to 7 carbon atoms, -NH-R 36 -, -CO-R 36 -, -R 37 -OR 38 -, -R 37 -NH-R 38 -, -R 37 -COO-R 38 -, -R 37 -COO-NH-R 38 -, -R 37 -CO-R 38 -, R 37 -NH-CO-R 38 - or -R 37 -CO-NH-R 38 -, where R 36 represents an alkylene group having 1 to 7 carbon atoms, R 37 represents an alkylene group having 1 to 3 carbon atoms, and R 38 represents an alkylene group having 1 to 5 carbon atoms.
And, one or both of the first polymer and the second polymer are 4-branched polymers.
 つまり、第1のポリマーが式(I)で表される化合物であり、かつ第2のポリマーが式(III)で表される化合物であるか、第1のポリマーが式(I)で表される化合物であり、かつ第2のポリマーが式(IV)で表される化合物であるか、又は第1のポリマーが式(II)で表される化合物であり、かつ第2のポリマーが式(III)で表される化合物である。 In other words, the first polymer is a compound represented by formula (I) and the second polymer is a compound represented by formula (III), or the first polymer is a compound represented by formula (I) and the second polymer is a compound represented by formula (IV), or the first polymer is a compound represented by formula (II) and the second polymer is a compound represented by formula (III).
 好ましい実施形態では、ゲル組成物は、第1ポリマーと第2のポリマーとが架橋されてなる高分子網目がゲル化してなるハイドロゲルを含む。本明細書中において、「ゲル」とは、一般に、高粘度で流動性を失った高分子の分散系であり、貯蔵弾性率G’と損失弾性率G”においてG’≧G”の関係性を有する状態を指す。ハイドロゲルは、当該ゲルが水等の溶媒を内部に含んだ状態をいう。 In a preferred embodiment, the gel composition includes a hydrogel formed by gelling a polymer network formed by crosslinking a first polymer and a second polymer. In this specification, "gel" generally refers to a dispersion system of polymers that has high viscosity and has lost fluidity, and has a state in which the storage modulus G' and loss modulus G" have a relationship G' ≧ G". A hydrogel refers to a state in which the gel contains a solvent such as water inside.
  ゲル組成物を構成する溶媒の種類は特に限定されないが、好ましくは溶媒が水、有機溶媒、及びイオン液体から成る群から選択される少なくとも一つを含む。 The type of solvent that constitutes the gel composition is not particularly limited, but preferably the solvent includes at least one selected from the group consisting of water, organic solvents, and ionic liquids.
 有機溶媒としては、メタノール及びエタノールなどのアルコール、DMSOなどが挙げられる。好ましくは、溶媒は水である。 Organic solvents include alcohols such as methanol and ethanol, DMSO, etc. Preferably, the solvent is water.
 イオン液体は、カチオンとアニオンとの結合によって形成され、常温(20℃)またはその付近の温度で液状であるイオン液体である。イオン液体としては、各種公知のイオン液体を使用することができる。 Ionic liquids are formed by the bonding of cations and anions, and are liquid at room temperature (20°C) or at temperatures around that temperature. Any of a variety of known ionic liquids can be used as the ionic liquid.
 カチオンは、例えば、置換基を有してもよい、イミダゾリウムイオン、ピリジニウムイオン、テトラアルキルアンモニウムイオン、ピロリジニウムイオン、ピペリジニウムイオン、テトラアルキルホスニウムイオン、ピラゾリウムイオン、トリアルキルスルホニウムイオン、モルホリウムイオン、グアジニウムイオン及びリチウムイオンからなる群から選択される、1種または2種以上が挙げられる。代わりに、カチオンは、リチウムイオンとR-O(CH2CH2O)n-R(Rは炭素数1~4個のアルキル基であり、nは2~6である)で表されるグライムからなる錯カチオンであってもよい。リチウムイオンとグライムは通常1:1のモル比で錯カチオンを形成する。 The cation may be one or more selected from the group consisting of imidazolium ion, pyridinium ion, tetraalkylammonium ion, pyrrolidinium ion, piperidinium ion, tetraalkylphosphonium ion, pyrazolium ion, trialkylsulfonium ion, morpholium ion, guanidinium ion and lithium ion, which may have a substituent. Alternatively, the cation may be a complex cation consisting of a lithium ion and a glyme represented by RO(CH 2 CH 2 O) n -R (R is an alkyl group having 1 to 4 carbon atoms and n is 2 to 6). The lithium ion and the glyme usually form a complex cation in a molar ratio of 1:1.
 アニオンは、例えば、ハロゲン化物イオン(フッ素、塩素、ヨウ素、臭素)、テトラフルオロホウ酸イオン(BF4 -)、BF3CF3-、BF3C2F5-、BF3C3F7-、BF3C4F9-、ヘキサフルオロリン酸イオン(PF6 -)、ビス(フルオロスルホニル)アミドイオン(FSA-)、ビス(トリフルオロメタンスルホニル)イミドイオン((CF3SO2)2N-,NTf2-,TFSA-とも)、ビス(フルオロメタンスルホニル)イミドイオン((FSO2)2N-)、ビス(ペンタフルオロエタンスルホニル)イミドイオン((CF3CF2SO2)2N-)、過塩素酸イオン(ClO4-)、トリス(トリフルオロメタンスルホニル)炭素酸イオン(CF3SO2)3C-)、トリフルオロメタンスルホン酸イオン(CF3SO3-)、ジシアンアミドイオン((CN)2N-)、チオシアン酸イオン(SCN-)、硝酸イオン(NO3 -)、硫酸イオン(SO4 2-)、チオ硫酸イオン(S2O3 2-)、炭酸イオン(CO3 2-)、炭酸水素イオン(HCO3 -)、リン酸イオン、亜リン酸イオン、次亜リン酸イオン、ハロゲン酸化物酸イオン(XO4 -、XO3 -、XO2 -またはXO-、ここで、Xは、フッ素、塩素、臭素またはヨウ素である)、ハロゲン化酢酸イオン((CXH3-n)COO-、ここで、Xは、フッ素、塩素、臭素またはヨウ素であり、nは、1~3である)、テトラフェニルホウ酸イオン(BPh4 -)およびその誘導体(B(Aryl)4 -)であり、ここで、Aryl=置換基を有するフェニル基)からなる群から選択される、1種または2種以上が挙げられる。 Examples of anions include halide ions (fluorine, chlorine, iodine, and bromine), tetrafluoroborate ion (BF 4 - ), BF 3 CF 3 - , BF 3 C 2 F 5 - , BF 3 C 3 F 7 - , BF 3 C 4 F 9 - , hexafluorophosphate ion (PF 6 - ), bis(fluorosulfonyl)amide ion (FSA - ), bis(trifluoromethanesulfonyl)imide ion ((CF 3 SO 2 ) 2 N-, also known as NTf 2 - and TFSA - ), bis(fluoromethanesulfonyl)imide ion ((FSO 2 ) 2 N- ), bis(pentafluoroethanesulfonyl)imide ion ((CF 3 CF 2 SO 2 ) 2 N- ), perchlorate ion (ClO 4 - ), and tris(trifluoromethanesulfonyl)carbonate ion (CF 3 SO 2 ) 3 C-), trifluoromethanesulfonate (CF 3 SO 3 -), dicyanamide ((CN) 2 N-), thiocyanate (SCN - ), nitrate (NO 3 - ), sulfate (SO 4 2- ), thiosulfate (S 2 O 3 2- ), carbonate (CO 3 2- ), bicarbonate (HCO 3 - ), phosphate, phosphite, hypophosphite, halogen oxide acetates (XO 4 - , XO 3 - , XO 2 - or XO - , where X is fluorine, chlorine, bromine or iodine), halogen acetates ((CX n H 3-n )COO - , where X is fluorine, chlorine, bromine or iodine and n is 1 to 3), tetraphenylborate (BPh 4 - ) and its derivatives (B(Aryl) 4 - ) wherein Aryl=a phenyl group having a substituent.
 これらのうち、好ましいイオン液体としては、例えば、カチオンが1-エチル-3-メチルイミダゾリウムイオン、[N(CH3)(CH3)(C2H5)(C2H4OC2H4OCH3)]+、[N(CH3)(C2H5)(C2H5)(C2H4OCH3)]+、アニオンがハロゲンイオン、テトラフルオロホウ酸イオン、ビス(トリフルオロメタンスルホニル)イミドイオン((CF3SO2)2N-)のものが、具体的に例示でき、1-エチル-3-メチルイミダゾリウムイオンとビス(トリフルオロメタンスルホニル)イミドイオン((CF3SO2)2N-)からなるイオン液体が特に好ましい。 Of these , preferred ionic liquids include , for example , those having a cation such as 1-ethyl-3-methylimidazolium ion, [N( CH3 )(CH3)( C2H5 ) ( C2H4OC2H4OCH3 )]+, [N( CH3 )( C2H5 )( C2H5 ) ( C2H4OCH3 )]+ and an anion such as a halogen ion, a tetrafluoroborate ion, or a bis(trifluoromethanesulfonyl)imide ion ( ( CF3SO2 ) 2N- ) , with an ionic liquid consisting of a 1-ethyl- 3 -methylimidazolium ion and a bis(trifluoromethanesulfonyl)imide ion (( CF3SO2 ) 2N- ) being particularly preferred.
 常温(20℃)またはその付近の温度において液体状態を呈する好ましいイオン液体としては、下記の一般式(V)~(VIII)で表わされる1種又は複数のカチオン(好ましくは、イミダゾリウムイオン、第4級アンモニウムイオン)と、アニオン(X-)より成るものが挙げられる。 Preferred ionic liquids that are in a liquid state at room temperature (20°C) or at temperatures around that temperature include those that consist of one or more cations (preferably imidazolium ions or quaternary ammonium ions) represented by the following general formulas (V) to (VIII) and an anion (X-).
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 式(V)~(VIII)において、Rは炭素数1~12の直鎖又は分枝を有するアルキル基またはエーテル結合を含み炭素と酸素の合計数が3~12の直鎖又は分枝を有するアルキル基を示す。 In formulas (V) to (VIII), R represents a linear or branched alkyl group having 1 to 12 carbon atoms or a linear or branched alkyl group containing an ether bond and having a total of 3 to 12 carbon atoms and oxygen atoms.
 式(V)においてR1は炭素数1~4の直鎖又は分枝を有するアルキル基または水素原子を示す。式(V)において、RとR1は同一ではないことが好ましい。 In formula (V), R 1 represents a hydrogen atom or a linear or branched alkyl group having 1 to 4 carbon atoms. In formula (V), it is preferable that R and R 1 are not the same.
 式(VII)および(VIII)において、xはそれぞれ1~4の整数である。式(VIII)および(VIII)において、2つのR基は一緒になって3~8員環、好ましくは5員環又は6員環の脂肪族飽和環式基を形成してもよい。 In formulas (VII) and (VIII), x is an integer from 1 to 4. In formulas (VIII) and (VIII), the two R groups may be joined together to form an aliphatic saturated cyclic group having 3 to 8 members, preferably a 5- or 6-membered ring.
 炭素数1~12の直鎖又は分枝を有するアルキル基としては、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、イソブチル、sec-ブチル、t-ブチル、ペンチル、ヘキシル、ヘプチル、オクチル、ノニル、デシル、ウンデシル、ドデシルなどの基が挙げられる。炭素数は好ましくは1~8、より好ましくは1~6である。 Examples of linear or branched alkyl groups having 1 to 12 carbon atoms include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, t-butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, and dodecyl. The number of carbon atoms is preferably 1 to 8, and more preferably 1 to 6.
 炭素数1~4の直鎖又は分枝を有するアルキル基としては、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、イソブチル、sec-ブチル、t-ブチルが挙げられる。 Straight-chain or branched alkyl groups having 1 to 4 carbon atoms include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, and t-butyl.
 エーテル結合を含み炭素と酸素の合計数が3~12の直鎖又は分枝を有するアルキル基としては、CH2OCH3、CH2CH2OCH3、CH2OCH2CH3、CH2CH2OCH2CH3、(CH2)p(OCH2CH2)qOR2(ここで、pは1~4の整数、qは1~4の整数、R2はCH3又はC2H5を表す)が挙げられる。 Examples of straight-chain or branched alkyl groups containing an ether bond and having a total of 3 to 12 carbons and oxygens include CH2OCH3 , CH2CH2OCH3, CH2OCH2CH3, CH2CH2OCH2CH3, (CH2)p(OCH2CH2 ) qOR2 ( wherein p is an integer from 1 to 4 , q is an integer from 1 to 4 , and R2 represents CH3 or C2H5 ) .
 アニオン(X-)としては、テトラフルオロホウ酸イオン(BF4 -)、BF3CF3 -、BF3C2F5 -、BF3C3F7 -、BF3C4F9 -、ヘキサフルオロリン酸イオン(PF6 -)、ビス(フルオロスルホニル)アミドイオン(FSA-)、ビス(トリフルオロメタンスルホニル)イミドイオン((CF3SO2)2N-,NTf2-,TFSA-とも)、ビス(フルオロメタンスルホニル)イミドイオン((FSO2)2N-)、ビス(ペンタフルオロエタンスルホニル)イミドイオン((CF3CF2SO2)2N-)、過塩素酸イオン(ClO4 -)、トリス(トリフルオロメタンスルホニル)炭素酸イオン(CF3SO2)3C-)、トリフルオロメタンスルホン酸イオン(CF3SO3 -)、ジシアンアミドイオン((CN)2N-)、トリフルオロ酢酸イオン(CF3COO-)、有機カルボン酸イオンおよびハロゲンイオンが例示できる。  Examples of anions (X - ) include tetrafluoroborate ion (BF 4 - ), BF 3 CF 3 - , BF 3 C 2 F 5 - , BF 3 C 3 F 7 - , BF 3 C 4 F 9 - , hexafluorophosphate ion (PF 6 - ), bis(fluorosulfonyl)amide ion (FSA - ), bis(trifluoromethanesulfonyl)imide ion ((CF 3 SO 2 ) 2 N-, NTf 2 - , TFSA - ), bis(fluoromethanesulfonyl)imide ion ((FSO 2 ) 2 N - ), bis(pentafluoroethanesulfonyl)imide ion ((CF 3 CF 2 SO 2 ) 2 N - ), perchlorate ion (ClO 4 - ), and tris(trifluoromethanesulfonyl)carbonate ion (CF 3 SO 2 ) 3 C - ), trifluoromethanesulfonate ion (CF 3 SO 3 ), dicyanamide ion ((CN) 2 N ), trifluoroacetate ion (CF 3 COO ), organic carboxylate ions and halogen ions can be mentioned as examples.
 ゲル組成物が溶媒を含有する場合、ゲル組成物中の溶媒の量は、特に限定されないが、ゲル組成物の延伸性及び高い靭性の点から、1質量%以上80質量%以下であることがより好ましく、1質量%以上60質量%以下であることがより好ましい。好ましい実施形態では、溶媒はイオン液体である。別の好ましい実施形態では、溶媒は水である。 When the gel composition contains a solvent, the amount of the solvent in the gel composition is not particularly limited, but from the viewpoint of the extensibility and high toughness of the gel composition, it is more preferable that the amount of the solvent is 1% by mass or more and 80% by mass or less, and more preferably 1% by mass or more and 60% by mass or less. In a preferred embodiment, the solvent is an ionic liquid. In another preferred embodiment, the solvent is water.
 ゲル組成物において、高分子網目と溶媒の質量比(高分子網目:溶媒)は、特に限定されないが、ゲル組成物延伸性及び高い靭性の点から、99 : 1~20:80であることが好ましく、高い靭性の点から、99:1~40:60 であることがより好ましい。好ましい実施形態では、溶媒はイオン液体である。別の好ましい実施形態では、溶媒は水である。 In the gel composition, the mass ratio of the polymer network to the solvent (polymer network:solvent) is not particularly limited, but is preferably 99:1 to 20:80 in terms of the extensibility and high toughness of the gel composition, and more preferably 99:1 to 40:60 in terms of high toughness. In a preferred embodiment, the solvent is an ionic liquid. In another preferred embodiment, the solvent is water.
 ゲル組成物が水を含有する場合、ゲル組成物の水の量は、ゲル組成物を製造した後に、乾燥させることにより調整してもよい。 If the gel composition contains water, the amount of water in the gel composition may be adjusted by drying the gel composition after production.
 ゲル組成物は、任意選択の添加剤をさらに含んでもよい。 The gel composition may further include optional additives.
 本発明の実施形態のゲル組成物は、一軸延伸により伸長誘起結晶化が起こり、ポリエチレングリコール骨格の結晶が形成される。このようなゲル組成物は伸長誘起結晶化が起こらないゲル組成物と比較して、強靭化される。 In the gel composition of the embodiment of the present invention, stretch-induced crystallization occurs due to uniaxial stretching, and crystals of the polyethylene glycol skeleton are formed. Such a gel composition is tougher than a gel composition in which stretch-induced crystallization does not occur.
 好ましい実施形態において、ゲル組成物は、厚み1mmのJIS K 6251 3号に従ってダンベル型に打ち抜いた当該ゲル組成物からなるゲルシートを一軸延伸にて12.5%/秒の伸長速度で変形させることにより測定された破断応力が1MPa以上である。 In a preferred embodiment, the gel composition has a breaking stress of 1 MPa or more, measured by deforming a gel sheet of the gel composition, which has been punched into a dumbbell shape having a thickness of 1 mm in accordance with JIS K 6251 No. 3, by uniaxial stretching at an elongation rate of 12.5%/sec.
 本発明の別の態様によれば、上記いずれかの実施形態のゲル組成物を成形したシートであるゲルシートも提供される。 According to another aspect of the present invention, there is also provided a gel sheet, which is a sheet formed from the gel composition of any of the above embodiments.
 本発明の実施形態のゲル組成物の概要を図1に示す。本発明のゲル組成物の実施形態は、末端に反応基Aを有するそれぞれのアームの分子量の揃った4分岐高分子と、反応基Bを有する4分岐高分子又は直鎖の高分子を末端のモル比が同じになるように溶媒又は該溶媒を含む溶液2中で混合し、反応させることで得られる4分岐高分子網目1からなるゲル材料である。この時、反応基Aと反応基Bは、求電子性官能基と求核性官能基(順不同)であり、例えば活性エステル末端とアミノ末端、マレイミド末端とチオール末端、マレイミド末端とアミン末端などの組み合わせが該当する(以上、前の官能基と後ろの官能基は順不同)。高分子としてはPEGを用いる。溶媒は極性溶媒又は有機溶媒であってよく、極性溶媒は例えば、水、イオン液体、塩が該当する。ゲル中におけるPEG濃度が40 wt%以上、架橋点間のPEG分子量が10,000 g/mol 以上で、例えば図1に矢印で示すようにゲル組成物を一軸延伸したときに、伸長誘起結晶化が起こり、1 MPa以上の大きな破断応力を発現するようになる。本明細書において、架橋点間分子量は、反応基Aを有する4分岐高分子のアームの分子量と反応基Bを有する4分岐高分子のアームの分子量の和によって計算され、それぞれの4分岐高分子のアームの分子量はゲル浸透クロマトグラフィー(GPC)もしくはマトリックス支援レーザー脱離イオン化飛行時間質量分析計(MALDI-TOFMS)により測定される。  An overview of the gel composition of an embodiment of the present invention is shown in Figure 1. An embodiment of the gel composition of the present invention is a gel material consisting of a 4-branched polymer network 1 obtained by mixing and reacting a 4-branched polymer having reactive group A at the end and a 4-branched polymer or a linear polymer having reactive group B in a solvent or a solution containing the solvent 2 so that the molar ratio of the ends is the same. At this time, reactive group A and reactive group B are electrophilic functional groups and nucleophilic functional groups (in no particular order), and examples of combinations that are applicable include active ester ends and amino ends, maleimide ends and thiol ends, and maleimide ends and amine ends (the order of the front and back functional groups is no particular). PEG is used as the polymer. The solvent may be a polar solvent or an organic solvent, and examples of polar solvents include water, ionic liquids, and salts. When the PEG concentration in the gel is 40 wt% or more, the PEG molecular weight between crosslinks is 10,000 g/mol or more, and the gel composition is stretched uniaxially, for example as shown by the arrow in Figure 1, stretch-induced crystallization occurs, resulting in a large breaking stress of 1 MPa or more. In this specification, the molecular weight between crosslinks is calculated as the sum of the molecular weight of the arm of the 4-branched polymer having reactive group A and the molecular weight of the arm of the 4-branched polymer having reactive group B, and the molecular weight of each 4-branched polymer arm is measured by gel permeation chromatography (GPC) or matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOFMS).
 本発明の実施形態のゲル組成物の製造方法の典型例を以下に説明する。ただし、必ずしもかかる製造方法に限定されるものではない。 A typical example of a method for producing a gel composition according to an embodiment of the present invention is described below. However, the present invention is not necessarily limited to this production method.
 ゲル組成物の好ましい実施形態の製造方法は、求電子性官能基を有すると共にポリエチレングリコール骨格を有する4分岐又は直鎖のポリマーである第1のポリマーと、求核性官能基を有すると共にポリエチレングリコール骨格を有する4分岐又は直鎖のポリマーである第2のポリマーとを、溶媒中で架橋させることによってゲル組成物を得る工程を含む。これにより、ハイドロゲルを1ステップで得ることができる。 A method for producing a preferred embodiment of a gel composition includes a step of obtaining a gel composition by crosslinking, in a solvent, a first polymer, which is a four-branched or linear polymer having an electrophilic functional group and a polyethylene glycol backbone, and a second polymer, which is a four-branched or linear polymer having a nucleophilic functional group and a polyethylene glycol backbone. This allows a hydrogel to be obtained in one step.
 第1のポリマーと第2のポリマーの初期濃度は、重なり濃度C未満であり、好ましくは1/3C未満である。ここで、「重なり濃度」(「重なり合い濃度」とも呼ばれる。)とは、溶媒中の高分子が空間的に互いに接触し始める濃度のことであり、一般に、重なり濃度Cは、以下の式で表される。 The initial concentrations of the first polymer and the second polymer are less than the overlap concentration C * , and preferably less than 1/3C * . Here, the "overlap concentration" (also called "overlap concentration") is the concentration at which polymers in a solvent begin to spatially contact each other, and the overlap concentration C * is generally expressed by the following formula:
Figure JPOXMLDOC01-appb-M000018
Figure JPOXMLDOC01-appb-M000018
(式中、Mは、高分子の重量平均分子量であり;αは、溶媒の比重;Nは、アボガドロ定数;Rは、高分子の慣性半径である。)。 (wherein Mw is the weight average molecular weight of the polymer; α is the specific gravity of the solvent; N A is the Avogadro constant; and R g is the radius of gyration of the polymer).
 重なり濃度Cの算出方法は、例えば、Polymer Physics(M. Rubinstein, R.Colby著 )を参照することができる。具体的には、例えば、希薄溶液の粘度測定より、フローリー フォックスの式を用いて求めることができる。 The overlap concentration C * can be calculated, for example, by referring to Polymer Physics (written by M. Rubinstein and R. Colby). Specifically, for example, the overlap concentration C* can be calculated by measuring the viscosity of a dilute solution using the Flory-Fox equation.
 また、当該製造方法は、1ステップでゲル化を行うものであるため、4分岐型ポリマーの初期濃度は、臨界ゲル化濃度以上である必要がある。ここで、「臨界ゲル化濃度と」は、原料ポリマーの架橋によって3次元構造のゲルを構築する系において、当該ゲル化を達成するために必要な原料ポリマーの最低濃度を意味し、最低ゲル化濃度とも呼ばれる。本発明において、臨界ゲル化濃度という語には、例えば、2種以上の原料ポリマーが用いられる系では、それら全体の濃度がゲル化に至る濃度に達しない場合に加えて、1種の原料ポリマーの濃度だけが低い場合、すなわち各原料ポリマーの比率が非当量であることによってゲル化を生じさせない場合も含まれる。 In addition, since this manufacturing method involves gelation in one step, the initial concentration of the 4-branched polymer must be equal to or higher than the critical gelation concentration. Here, "critical gelation concentration" refers to the minimum concentration of raw polymers required to achieve gelation in a system in which a three-dimensional gel is constructed by crosslinking raw polymers, and is also called the minimum gelation concentration. In the present invention, the term critical gelation concentration includes, for example, in a system in which two or more raw polymers are used, not only a case in which the total concentration of the polymers does not reach a concentration that leads to gelation, but also a case in which only one raw polymer has a low concentration, i.e., a case in which gelation does not occur due to the ratio of the raw polymers being unequal.
 一般に、臨界ゲル化濃度(最低ゲル化濃度)は、用いる原料ポリマーの種類に依存するが、かかる濃度は当該技術分野において公知であるか、或いは当業者であれば実験的に容易に把握することができる。典型的には、0.5~5重量%であり、下限は重なり濃度の1/5程度の濃度である。 Generally, the critical gelation concentration (minimum gelation concentration) depends on the type of raw polymer used, but such concentrations are either known in the art or can be easily determined experimentally by those skilled in the art. Typically, it is 0.5 to 5% by weight, with the lower limit being about 1/5 of the overlap concentration.
 第1及び第2のポリマーの架橋反応は、第1及び第2のポリマーを含む溶媒又は該溶媒を含む溶液を混合することによって行うことができる。各溶液添加速度、混合速度、混合割合は特に限定されず、当業者であれば適宜調整することができる。 The crosslinking reaction of the first and second polymers can be carried out by mixing a solvent containing the first and second polymers or a solution containing the solvent. The addition speed, mixing speed, and mixing ratio of each solution are not particularly limited, and can be adjusted appropriately by a person skilled in the art.
 第1及び第2のポリマー溶液を混合する手段としては、例えば、国際公開WO2007/083522号公報に開示されたような二液混合シリンジを用いて行うことができる。混合時の二液の温度は、特に限定されず、第1及び第2のポリマーがそれぞれ溶解され、それぞれの液が流動性を有する状態の温度であればよい。例えば、混合するときの溶液の温度としては、1℃~100℃の範囲が挙げられる。二液の温度は異なってもよいが、温度が同じである方が、二液が混合されやすいので好ましい。 As a means for mixing the first and second polymer solutions, for example, a two-liquid mixing syringe such as that disclosed in International Publication WO2007/083522 can be used. The temperature of the two liquids when mixing is not particularly limited, and it is sufficient that the first and second polymers are dissolved and each liquid has fluidity. For example, the temperature of the solutions when mixing can be in the range of 1°C to 100°C. The temperatures of the two liquids may be different, but it is preferable that the temperatures are the same since this makes it easier for the two liquids to mix.
 好ましくは、本発明のゲル組成物の製造方法における第1態様では、2時間以内の反応時間、好ましくは1時間以内の反応時間で、最終的なゲル組成物を得ることができる。 Preferably, in the first embodiment of the method for producing a gel composition of the present invention, the final gel composition can be obtained in a reaction time of 2 hours or less, preferably in a reaction time of 1 hour or less.
本発明の産業的利用価値
 伸長誘起結晶化を示す既報の環動ゲルと比較すると、4分岐高分子ゲルは、マクロマーを混合するだけでゲルを得られることができ、合成が簡便である。また、3分岐高分子ゲルでの伸長誘起結晶化は報告されているが、4分岐架橋高分子ゲルの方がより一般的であり、材料としての適用範囲を広げ、および製造コスト下げる上で有利である。上記にも示した通り、4分岐ゲルにおいては、4分岐マクロマーと直鎖の高分子の組み合わせでも網目を得ることができるため、安価な直鎖の高分子の割合を増やすことができ、作製コストを一般的なゲルにおけるコストに近づけることが出来る。
Industrial Use of the Invention Compared with previously reported sliding-ring gels that show stretch-induced crystallization, 4-branched polymer gels can be obtained simply by mixing macromers, making them easier to synthesize. Although stretch-induced crystallization has been reported in 3-branched polymer gels, 4-branched cross-linked polymer gels are more common, which is advantageous in expanding the range of applications as a material and reducing manufacturing costs. As shown above, in 4-branched gels, a network can be obtained even by combining 4-branched macromers with linear polymers, so the proportion of inexpensive linear polymers can be increased, and the manufacturing cost can be brought closer to that of general gels.
 また、本発明においては、水、イオン液体などの幅広い極性溶媒を用いて伸長誘起結晶化を見出した点も重要である。溶媒が水であるハイドロゲルは生体医療材料、塩やイオン液体を用いたイオンゲルはウェアラブルデバイス、ソフトアクチュエータといった電気化学材料への応用が期待される。これらの応用においては繰り返し変形に対する耐久性が求められるが、本ゲルは伸長誘起結晶化による強靭化によって高い機械的信頼性を実現することができる。  Another important point about this invention is that it has discovered stretch-induced crystallization using a wide range of polar solvents, including water and ionic liquids. Hydrogels using water as a solvent are expected to be used as biomedical materials, while ionic gels using salts or ionic liquids are expected to be used as electrochemical materials such as wearable devices and soft actuators. These applications require durability against repeated deformation, and this gel can achieve high mechanical reliability by being toughened by stretch-induced crystallization.
1. 4分岐ハイドロゲルの作製
 4分岐のPEG(TetraPEG)同士、あるいはTetraPEGと直鎖のPEG(LinearPEG)の末端を水中で反応させることで高分子網目を得た。スクシンイミドを反応末端として持つTetraPEGと、アミンを反応末端として持つTetraPEGもしくはLinearPEGをバッファーに溶解させた。スクシンイミド末端PEG溶液とアミン末端PEG溶液を用意し、溶液を2液混合することでゲル化反応を開始させた。このとき、末端同士が等モル比になるように混合する。バッファーとしてはマッキルベイン緩衝液を用いた。所定の濃度のクエン酸水溶液(0.2 M)とリン酸水素二ナトリウム水溶液(0.4 M)を調整した。これをMcIlvaine TC (1921). “A buffer solution for colorimetric comparison”. J. Biol. Chem. 49 (1): 183-186.に従って混合し、目的のpHのバッファーを得るた最終的に、純水で薄めることでバッファー濃度を調節する。表1で示す通り、用いる高分子の分子量・濃度に合わせて適切なバッファーを用いて、ゲル化時間(2液混合から流動性を失う時間)が10分ほどになるように反応を進行させた。
※反応末端の組み合わせは(アミンとマレイミド、チオールとマレイミド、スクシンイミドとアミン)などが考えられる。
1. Preparation of 4-branched hydrogels Polymer networks were obtained by reacting the ends of 4-branched PEG (TetraPEG) with each other or TetraPEG with linear PEG (LinearPEG) in water. TetraPEG with succinimide as the reactive end and TetraPEG or LinearPEG with amine as the reactive end were dissolved in a buffer. A succinimide-terminated PEG solution and an amine-terminated PEG solution were prepared, and the gelation reaction was initiated by mixing the two solutions. The ends were mixed in an equimolar ratio. McIlvaine buffer solution was used as the buffer. A citric acid solution (0.2 M) and a disodium hydrogen phosphate solution (0.4 M) of the specified concentration were prepared. These were mixed according to McIlvaine TC (1921). “A buffer solution for colorimetric comparison”. J. Biol. Chem. 49 (1): 183-186. to obtain a buffer of the desired pH. Finally, the buffer concentration was adjusted by diluting with pure water. As shown in Table 1, an appropriate buffer was used according to the molecular weight and concentration of the polymer used, and the reaction was allowed to proceed so that the gelation time (the time it takes for the two liquids to lose fluidity after mixing) was approximately 10 minutes.
*Possible combinations of reactive ends include (amine and maleimide, thiol and maleimide, succinimide and amine, etc.)
 例えば、実施例1のゲルシートの製造方法は以下となる。分子量20kのアミン末端LinearPEG(0.8 g)をpH 3.64のバッファー(0.720 mL)に溶解させる。また、分子量20kのスクシンイミド末端TetraPEG(0.4 g)をpH 3.64のバッファー(1.080 mL)に溶解させる。この時、PEGの割合は全体の40 wt%となる。2液を混合したのちに、テフロン(登録商標)からなるモールドに入れ、1日程度静置することで、厚み1 mmのゲルシートを作成する。作製したゲルはダンベル型(JIS K 6251 3号)に打ち抜き、引張試験片とした。実施例2-3及び比較例1-7のゲルシートも同様に作成し、各ゲルシートから引張試験片を作成した。 For example, the gel sheet of Example 1 was manufactured as follows. Amine-terminated Linear PEG (0.8 g) with a molecular weight of 20k was dissolved in a buffer (0.720 mL) with a pH of 3.64. Furthermore, succinimide-terminated Tetra PEG (0.4 g) with a molecular weight of 20k was dissolved in a buffer (1.080 mL) with a pH of 3.64. At this time, the proportion of PEG was 40 wt% of the total. After mixing the two liquids, the mixture was placed in a mold made of Teflon (registered trademark) and left to stand for about a day to create a gel sheet with a thickness of 1 mm. The gel thus produced was punched out into a dumbbell shape (JIS K 6251 No. 3) to prepare a tensile test specimen. The gel sheets of Examples 2-3 and Comparative Examples 1-7 were also manufactured in the same manner, and tensile test specimens were prepared from each gel sheet.
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
2. 4分岐イオンゲルの作製
 上記で作成した実施例1のハイドロゲルのゲルシート(Linear 20k + Tetra 20k)に対し、水を数回変えながら1日純水に浸漬させ、バッファーを純水に置換した。100度、減圧下で乾燥させ、水分を飛ばした。水分を飛ばしたシートに対し、固形重量分率が40 wt%になるようにイオン液体(1-エチル-3-メチルイミダゾリウムビス(トリフルオロメタンスルホニル)イミド, [C2mim][NTf2])を加え、100度、減圧下で1日放置した。すべてのイオン液体がシートに吸収されていることを目視および重量測定で確認し、最終的な高分子の割合が40 wt%になっていることを確認した。作製したゲルはダンベル型(JIS K 6251 3号)に打ち抜き、引張試験片とした。
2. Preparation of 4-branched ion gel The gel sheet (Linear 20k + Tetra 20k) of the hydrogel of Example 1 prepared above was immersed in pure water for one day while changing the water several times, and the buffer was replaced with pure water. The sheet was dried at 100 degrees under reduced pressure to remove moisture. An ionic liquid (1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide, [ C2mim ][ NTf2 ]) was added to the sheet from which moisture had been removed so that the solid weight fraction was 40 wt%, and the sheet was left at 100 degrees under reduced pressure for one day. It was confirmed by visual inspection and weight measurement that all the ionic liquid had been absorbed into the sheet, and it was confirmed that the final polymer ratio was 40 wt%. The prepared gel was punched into a dumbbell shape (JIS K 6251 No. 3) to prepare a tensile test specimen.
 また、4分岐ハイドロゲルを経由せずに直接イオンゲルを作製する実験も行った。マレイミドを反応末端として持つTetraPEGと、アミンを反応末端として持つTetraPEGもしくは直鎖のLinearPEGとを用いて、N, N -ジメチルホルムアミド(DMF)とイオン液体(1-エチル-3-メチルイミダゾリウムビス(トリフルオロメタンスルホニル)イミド, [C2mim][NTf2])の混合溶媒中でゲルを作製し、DMFを加熱・減圧によって除くことでイオンゲルを得た。 We also performed an experiment to directly prepare an ion gel without going through a four-arm hydrogel. Using TetraPEG, which has maleimide as the reactive end, and either TetraPEG or linear PEG, which has amine as the reactive end, we prepared a gel in a mixed solvent of N,N-dimethylformamide (DMF) and an ionic liquid (1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide, [C 2 mim][NTf 2 ]), and then removed the DMF by heating and reducing the pressure to obtain an ion gel.
 同様に、以下のイオン液体を用いてイオンゲルを得た。
・リチウムビス(トリフルオロメタンスルホニル)イミド (Li[NTf2])
・リチウムビス(トリフルオロメタンスルホニル)イミドとトリグライムの等モル比混合物  ([Li(G3)][NTf2])
・リチウムビス(トリフルオロメタンスルホニル)イミドとテトラグライムの等モル比混合物  ([Li(G4)][NTf2])。
Similarly, ion gels were obtained using the following ionic liquids.
Lithium bis(trifluoromethanesulfonyl)imide (Li[NTf 2 ])
- Equimolar mixture of lithium bis(trifluoromethanesulfonyl)imide and triglyme ([Li(G3)][NTf 2 ])
- An equimolar mixture of lithium bis(trifluoromethanesulfonyl)imide and tetraglyme ([Li(G4)][NTf 2 ]).
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
 これらのイオン液体は、以下の文献に記載されているように溶媒和イオン液体として知られる。Watanabe M et al. (2018). “From Ionic Liquids to Solvate Ionic Liquids: Challenges and Opportunities for Next Generation Battery Electrolytes”. Bull. Chem. Soc. Jpn. 91 (11): 1660-1682.
 例えば、実施例は以下となる。分子量20kのアミン末端LinearPEG(0.8 g)に[C2mim][NTf2](1.2 g)とDMF(2.1 mL)を加え、60度で加熱し、溶解させる。また、分子量10kのマレイミド末端TetraPEG(0.2 g)に[C2mim][NTf2](0.3g)とDMF(0.530 mL)を加え、60度で加熱し、溶解させる。2液を混合したのちに、テフロン(登録商標)からなるモールドに入れ、60度で1日程度静置することで、厚み1 mmのゲルシートを作成する。作製したゲルシートを100度で1日減圧することでDMFを除き、目的のイオンゲルシートを得た。この時、PEGの割合は全体の40 wt%となる。作製したゲルはダンベル型(JIS K 6251 3号)に打ち抜き、引張試験片とした。2種のポリマーの種類がこの実施例と異なる場合も、同様に製造した。
These ionic liquids are known as solvated ionic liquids, as described in the following literature: Watanabe M et al. (2018). “From Ionic Liquids to Solvate Ionic Liquids: Challenges and Opportunities for Next Generation Battery Electrolytes”. Bull. Chem. Soc. Jpn. 91 (11): 1660-1682.
For example, the examples are as follows. [C 2 mim][NTf 2 ] (1.2 g) and DMF (2.1 mL) are added to amine-terminated LinearPEG (0.8 g) with a molecular weight of 20k, and the mixture is heated to 60 degrees to dissolve. In addition, [C 2 mim][NTf 2 ] (0.3 g) and DMF (0.530 mL) are added to maleimide-terminated TetraPEG (0.2 g) with a molecular weight of 10k, and the mixture is heated to 60 degrees to dissolve. After mixing the two liquids, the mixture is placed in a mold made of Teflon (registered trademark) and left to stand at 60 degrees for about a day to create a gel sheet with a thickness of 1 mm. The prepared gel sheet is depressurized at 100 degrees for a day to remove DMF, and the desired ion gel sheet is obtained. At this time, the proportion of PEG is 40 wt% of the total. The prepared gel is punched into a dumbbell shape (JIS K 6251 No. 3) to prepare a tensile test piece. When the types of the two polymers were different from those in this example, they were produced in the same manner.
3. ゲルシートの評価
[測定・引張試験]
 測定は精密万能試験機(島津製作所製、型番: AG-10kNXPlus)を用いて行った。掴み具には挟み込み式の掴み具を用いた。掴み具の一対をネジで締め付けることで試験片を把持し、上側の掴み具を垂直上方に移動させ、試験片を一軸延伸する。伸長速度は0.125/sとし、破断までの応力ひずみ曲線を得た。ハイドロゲルでは水分の揮発を防ぐため、治具全体を包み込む容器に流動パラフィンオイルを満たした状態で測定を行った。イオンゲルについては空気中で測定を行った。
3. Evaluation of gel sheets
[Measurement/Tensile test]
The measurements were carried out using a precision universal testing machine (Shimadzu Corporation, model number: AG-10kNXPlus). Clamp-type grippers were used. The test specimen was held by tightening a pair of grippers with a screw, and the upper gripper was moved vertically upward to uniaxially stretch the test specimen. The extension speed was 0.125/s, and a stress-strain curve was obtained up to breakage. For the hydrogel, measurements were carried out in a container that encased the entire jig and was filled with liquid paraffin oil to prevent evaporation of water. For the ion gel, measurements were carried out in air.
[測定・広角散乱実験]
 一軸伸長試験の最中の構造変化を広角X線散乱(WAXS)を用いて解析した。サンプルにX線を照射すると、サンプル中の電子によってX線が散乱される。その際、散乱されたX線同士が干渉しあうことにより、明部と暗部からなる散乱像が得られる。散乱像はサンプル中の電子密度のコントラストを反映しており、実空間における電子密度分布とフーリエ変換の関係にある。よって、散乱像においてピークが観測される場合には、その散乱角に対応する長さの繰り返し構造があることを示している。WAXSでは、1-10 Å程度の小さい構造を対象とする。よって、本検討では、PEGの結晶に対応するブラッグピークが観測される。
[Measurement: Wide-angle scattering experiment]
The structural changes during the uniaxial extension test were analyzed using wide-angle X-ray scattering (WAXS). When the sample is irradiated with X-rays, the X-rays are scattered by electrons in the sample. The scattered X-rays interfere with each other, resulting in a scattering image consisting of bright and dark areas. The scattering image reflects the contrast of the electron density in the sample, and has a Fourier transform relationship with the electron density distribution in real space. Therefore, when a peak is observed in the scattering image, it indicates the presence of a repeating structure with a length corresponding to that scattering angle. WAXS targets small structures of about 1-10 Å. Therefore, in this study, a Bragg peak corresponding to PEG crystals is observed.
 測定は主にNANOPIX (Rigaku, Tokyo, Japan)を用いた。波長は1.5 Å,で、カメラ長は80 mmとした。また、測定の際の露光時間は5分とした。サンプルは一軸伸長試験と同じダンベル状のものを使用した。サンプルを歪み速度およそ0.125 / secで変形させ、目的の伸長度に至ったら変形を止め、止めている最中にX線を照射し、散乱像を得た。これを破断するまで、100%ずつ延伸度を増やしながら行った。ハイドロゲルでは水分の揮発を防ぐため、治具全体を包み込む容器に流動パラフィンオイルを満たした状態で測定を行った。イオンゲルについては空気中で測定を行った。  Measurements were mainly carried out using NANOPIX (Rigaku, Tokyo, Japan). The wavelength was 1.5 Å, and the camera length was 80 mm. The exposure time for measurements was 5 minutes. The samples used were the same dumbbell-shaped as those used in the uniaxial extension test. The samples were deformed at a strain rate of approximately 0.125/sec, and when the desired degree of extension was reached, the deformation was stopped. X-rays were irradiated while the deformation was stopped to obtain a scattering image. This was repeated while increasing the degree of extension by 100% increments until the sample broke. For hydrogels, measurements were carried out in a container filled with liquid paraffin oil that encased the entire jig to prevent evaporation of water. For ion gels, measurements were carried out in air.
[4分岐ハイドロゲルの実験結果]
 4分岐ハイドロゲルである実施例1-3及び比較例1-7のゲルシートにおける伸長誘起結晶化挙動を表2にまとめる。高分子濃度を40 w%に揃えて架橋点間分子量を5,000から30,000まで変えた際の応力伸長比曲線を図2(A)に示す。架橋点間分子量が5,000であるTetra10k+ Tetra10k(比較例7)では伸長誘起結晶化が見られなかった(図2(B)が、架橋点間分子量が10,000であるTetra20k+ Tetra20k(実施例3)(図2(C))および4分岐マクロマーに加えて直鎖をネットワークに組み込んだLinear 20k+ Tetra 20k(架橋点間分子量30,000)(実施例1)では伸長誘起結晶化が観察された(図2(D))が、。伸長誘起結晶化が起こったLinear 20k+ Tetra 20kおよびTetra20k+ Tetra20kでは破断応力は1 MPaを越えており、伸長誘起結晶化による強靭化が起こっていることが分かる(図2(A))。他に、実施例2,3のゲルシートでは伸長誘起結晶化が観察されたが、比較例1-6のゲルシートのゲルシートでは伸長誘起結晶化が観察されなかった。
[Experimental results of 4-branched hydrogel]
The stretch-induced crystallization behavior of the gel sheets of the 4-branched hydrogels of Examples 1-3 and Comparative Examples 1-7 is summarized in Table 2. The stress-strain ratio curves when the molecular weight between crosslinking points was changed from 5,000 to 30,000 with the polymer concentration set to 40 w% are shown in Figure 2 (A). In the case of Tetra10k+ Tetra10k (Comparative Example 7) with a molecular weight between crosslinks of 5,000, no stretch-induced crystallization was observed (FIG. 2(B)). However, in the case of Tetra20k+ Tetra20k (Example 3) with a molecular weight between crosslinks of 10,000 (FIG. 2(C)) and Linear 20k+ Tetra 20k (molecular weight between crosslinks of 30,000) (Example 1) in which a linear chain was incorporated into the network in addition to the 4-branch macromer, stretch-induced crystallization was observed (FIG. 2(D)). In the case of Linear 20k+ Tetra 20k and Tetra20k+ Tetra20k in which stretch-induced crystallization occurred, the breaking stress was 1 MPa, which indicates that toughening due to elongation-induced crystallization has occurred (FIG. 2(A)). In addition, elongation-induced crystallization was observed in the gel sheets of Examples 2 and 3, but not in the gel sheets of Comparative Examples 1-6.
 伸長誘起結晶化が観察された図2(C)及び図2(D)のゲルシートのそれぞれの広角X線散乱(WAXS)像について、伸長と垂直方向の散乱プロファイルを図3および図4に示す。その結果、Tetra20k+Tetra20k(架橋点間分子量10,000、PEG濃度40 wt%)のポリマーを用いて製造されたゲルシート(実施例3)ではPEG鎖の伸び切り鎖結晶が、Linear 20k+Tetra20k(架橋点間分子量30,000、PEG濃度40 wt%)のポリマーを用いて製造されたゲルシート(実施例1)ではPEG鎖のらせん鎖結晶が、観察されたことが分かった(図3及び図4のそれぞれにおける矢印で示される)。 The wide-angle X-ray scattering (WAXS) images of the gel sheets in Figures 2(C) and 2(D) in which stretch-induced crystallization was observed are shown in Figures 3 and 4, respectively, showing the scattering profiles in the stretching and perpendicular directions. As a result, it was found that extended chain crystals of PEG chains were observed in the gel sheet (Example 3) manufactured using the polymer Tetra20k + Tetra20k (molecular weight between crosslinks 10,000, PEG concentration 40 wt%), and helical chain crystals of PEG chains were observed in the gel sheet (Example 1) manufactured using the polymer Linear 20k + Tetra20k (molecular weight between crosslinks 30,000, PEG concentration 40 wt%) (indicated by the arrows in Figures 3 and 4, respectively).
 Linear20kとTetra20kから作られる架橋点間分子量30,000の4分岐ハイドロゲルであるゲルシートについて、PEG濃度を変えた際の応力・伸長比曲線を図5(A)に示す。PEG濃度20wt%以下(比較例1,2)では伸長誘起結晶化は観察されなかった一方で(図5(B),(C))、先述の通りPEG濃度40 wt%(実施例1)では伸長誘起結晶化が見られた(図5(D))。 Figure 5 (A) shows the stress-elongation ratio curves when the PEG concentration is changed for a gel sheet made of a 4-branched hydrogel with a molecular weight between crosslinks of 30,000, made from Linear20k and Tetra20k. At PEG concentrations of 20 wt% or less (Comparative Examples 1 and 2), no elongation-induced crystallization was observed (Figures 5 (B) and (C)), whereas, as mentioned above, at a PEG concentration of 40 wt% (Example 1), elongation-induced crystallization was observed (Figure 5 (D)).
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000021
 [4分岐イオンゲルの実験結果]
 図6(A)に示す通り、実施例1の4分岐ハイドロゲル(Linear 20k + Tetra 20k、架橋点間分子量30,000、PEG濃度 40wt%)のゲルシートを乾燥させた後にイオン液体(図6(B))で再膨潤させ、「2.4分岐ゲルの作製」の記載に従って製造された4分岐イオンゲル(PEG濃度 40wt%)の引張試験片についても伸長誘起結晶化が観察された。伸長比λ=8においてPEGのらせん鎖結晶の形成が確認された(図6(C)、矢印で示される)。
[Experimental results of 4-branched ion gel]
As shown in Fig. 6(A), a gel sheet of the 4-branched hydrogel of Example 1 (Linear 20k + Tetra 20k, molecular weight between crosslinks 30,000, PEG concentration 40wt%) was dried and then re-swollen with an ionic liquid (Fig. 6(B)). Stretch-induced crystallization was also observed in the tensile test specimen of the 4-branched ionic gel (PEG concentration 40wt%) produced according to the description in "2. Preparation of 4-branched gel". The formation of PEG helical chain crystals was confirmed at an elongation ratio λ = 8 (indicated by the arrow in Fig. 6(C)).
 図7に示す通り、4分岐ハイドロゲルを経由せずにイオン液体[C2mim][NTf2]、Li[NTf2]、 [Li(G3)][NTf2]、及び[Li(G4)][NTf2]の各々を用いて直接イオンゲルを作製した場合の4分岐イオンゲルの引張試験片についても伸長誘起結晶化が観察された。 As shown in Figure 7, stretch-induced crystallization was also observed in tensile specimens of four-branched ion gels when the ion gels were prepared directly using the ionic liquids [C 2 mim][NTf 2 ], Li[NTf 2 ], [Li(G3)][NTf 2 ], and [Li(G4)][NTf 2 ] without going through the four-branched hydrogel.
 [C2mim][NTf2]で作製した4分岐イオンゲルでは、伸長比λ=9でPEGの晶とらせん結晶の形成が確認され、Li[NTf2]で作製した4分岐イオンゲルでは、伸長比λ=14でPEGの伸び切り結晶とらせん結晶の形成が確認され、[Li(G3)][NTf2] 及び[Li(G4)][NTf2]の各々で再膨潤させた4分岐イオンゲルでは、伸長比λ=14でPEGの伸び切り結晶の形成が確認された。 In the four-branched ion gel prepared with [C 2 mim][NTf 2 ], the formation of PEG crystals and helical crystals was confirmed at an elongation ratio of λ = 9, in the four-branched ion gel prepared with Li[NTf 2 ], the formation of PEG extended crystals and helical crystals was confirmed at an elongation ratio of λ = 14, and in the four-branched ion gels reswollen with [Li(G3)][NTf 2 ] and [Li(G4)][NTf 2 ], the formation of PEG extended crystals was confirmed at an elongation ratio of λ = 14.

Claims (8)

  1.  ゲル組成物であって、
     求電子性官能基を有すると共にポリエチレングリコール骨格を有する4分岐又は直鎖のポリマーである第1のポリマーと求核性官能基を有すると共にポリエチレングリコール骨格を有する4分岐又は直鎖のポリマーである第2のポリマーとが架橋されてなる高分子網目であって、ただし第1のポリマーと第2のポリマーの一方又は両方が4分岐のポリマーである高分子網目と、
     溶媒とを含有し、
     前記ゲル組成物の量に対する前記第1のポリマーと前記第2のポリマーの合計量が30重量%以上であり、かつ
     前記高分子網目の架橋点間の分子量が10000以上である、ゲル組成物。
    1. A gel composition comprising:
    A polymer network formed by crosslinking a first polymer, which is a 4-branched or linear polymer having an electrophilic functional group and a polyethylene glycol backbone, with a second polymer, which is a 4-branched or linear polymer having a nucleophilic functional group and a polyethylene glycol backbone, wherein one or both of the first polymer and the second polymer are 4-branched polymers;
    A solvent,
    A gel composition, wherein the total amount of the first polymer and the second polymer relative to the amount of the gel composition is 30% by weight or more, and the molecular weight between crosslinking points of the polymer network is 10,000 or more.
  2.  前記第1のポリマーの求電子性官能基が、活性エステル基、マレイミジル基、カルボキシル基、N-ヒドロキシ-スクシンイミジル基、スルホスクシンイミジル基、フタルイミジル基、又はニトロフェニル基である請求項1に記載のゲル組成物。 The gel composition according to claim 1, wherein the electrophilic functional group of the first polymer is an active ester group, a maleimidyl group, a carboxyl group, an N-hydroxy-succinimidyl group, a sulfosuccinimidyl group, a phthalimidyl group, or a nitrophenyl group.
  3.  前記第2のポリマーの求核性官能基が、アミノ基、チオール基、又は-CO2PhNO2(Phはo-、m-、又はp-フェニレン基)である請求項1に記載のゲル組成物。 2. The gel composition of claim 1, wherein the nucleophilic functional group of the second polymer is an amino group, a thiol group, or -CO2PhNO2 , where Ph is an o-, m-, or p-phenylene group.
  4.  前記溶媒が水、有機溶媒、及びイオン液体から成る群から選択される少なくとも一つを含む請求項1に記載のゲル組成物。 The gel composition according to claim 1, wherein the solvent comprises at least one selected from the group consisting of water, an organic solvent, and an ionic liquid.
  5.  一軸延伸によりポリエチレングリコール骨格の結晶が形成される請求項1に記載のゲル組成物。  The gel composition according to claim 1, in which crystals of the polyethylene glycol skeleton are formed by uniaxial stretching.
  6.  厚み1mmのJIS K 6251 3号に従ってダンベル型に打ち抜いた請求項1に記載のゲル組成物からなるゲルシートを一軸延伸にて12. 5%/秒の伸長速度で変形させることにより測定された破断応力が1MPa以上である請求項1に記載のゲル組成物。 The gel composition according to claim 1, wherein a gel sheet made of the gel composition according to claim 1 punched into a dumbbell shape according to JIS K 6251 No. 3 with a thickness of 1 mm is deformed by uniaxial stretching at an elongation rate of 12.5%/sec, and the breaking stress measured is 1 MPa or more.
  7.   第1のポリマーは、下記式(I)で表される化合物であるか、又は式(II)で表される化合物であり、
    Figure JPOXMLDOC01-appb-C000001
    (式(I)中、n1~n4は、それぞれ同一でも又は異なってもよく、n1~n4は、5~300の整数であり、
     Aは、マレイミジル基、N-ヒドロキシ-スクシンイミジル基、スルホスクシンイミジル基、フタルイミジル基、イミダゾイル基、アクリロイル基又はニトロフェニル基であり、
      R1~R4は、それぞれ同一でも異なってもよく、炭素数1-7のアルキレン基、炭素数2-7のアルケニレン基、-NH-R5-、-CO-R5-、-R6-O-R7-、-R6-NH-R7-、-R6-COO-R7-、-R6-COO-NH-R7-、-R6-CO-R7-、-R6-NH-CO-R7-、又は-R6-CO-NH-R7-を示し、ここで、R5は炭素数1-7のアルキレン基を示し、R6は炭素数1-3のアルキレン基を示し、R7は炭素数1-5のアルキレン基を示す。)
    Figure JPOXMLDOC01-appb-C000002
    (式(II)中、n 12は1~10000の整数であり、
     Bはマレイミジル基、N-ヒドロキシ-スクシンイミジル基、スルホスクシンイミジル基、フタルイミジル基、イミダゾイル基、アクリロイル基又はニトロフェニル基であり、
     R11は、炭素数1-7のアルキレン基、炭素数2-7のアルケニレン基、-NH-R13-、-CO-R13-、-R14-O-R15-、-R14-NH-R15-、-R14-COO-R15-、-R14-COO-NH-R15-、-R14-CO-R15-、R14-NH-CO-R15-又は-R14-CO-NH-R15-を示し、ここで、R13は炭素数1-7のアルキレン基を示し、R14は炭素数1-3のアルキレン基を示し、R15は炭素数1-5のアルキレン基を示し、
     R12は、炭素数1-7のアルキレン基、炭素数2-7のアルケニレン基、-NH-R16-、-CO-R16-、-R17-O-R18-、-R17-NH-R18-、-R17-COO-R18-、-R17-COO-NH-R18-、-R17-CO-R18-、R17-NH-CO-R18-又は-R17-CO-NH-R18-を示し、ここで、R16は炭素数1-7のアルキレン基を示し、R17は炭素数1-3のアルキレン基を示し、R18は炭素数1-5のアルキレン基を示す。)
     前記第2のポリマーは、下記式(III)で表される化合物であるか、又は式(IV)で表される化合物である、請求項1に記載のゲル組成物。
    Figure JPOXMLDOC01-appb-C000003
    (式(III)中、n21~n24は、それぞれ同一でも又は異なってもよく、n21~n24は、25~250の整数であり、
     Dはチオール基、アミノ基、又は-COOPhNO2(Phは、o-、m-、又はp-フェニレン基を示す)であり、
     R21~R24は、それぞれ同一でも異なってもよく、炭素数1-7のアルキレン基、炭素数2-7のアルケニレン基、-NH-R25-、-CO-R25-、-R26-O-R27-、-R26-NH-R27-、-R26-COO-R27-、-R26-COO-NH-R27-、-R26-CO-R27-、R26-NH-CO-R27-又は-R26-CO-NH-R27-を示し、ここで、R25は炭素数1-7のアルキレン基を示し、R26は炭素数1-3のアルキレン基を示し、R27は炭素数1-5のアルキレン基を示す。)
    Figure JPOXMLDOC01-appb-C000004
    (式(IV)中、n32は1~10000の整数であり、
     Eはチオール基、アミノ基、又は-COOPhNO2(Phは、o-、m-、又はp-フェニレン基を示す)であり、
     R31は、炭素数1-7のアルキレン基、炭素数2-7のアルケニレン基、-NH-R33-、-CO-R33-、-R34-O-R35-、-R34-NH-R35-、-R34-COO-R35-、-R34-COO-NH-R35-、-R34-CO-R35-、R34-NH-CO-R35-又は-R34-CO-NH-R35-を示し、ここで、R33は炭素数1-7のアルキレン基を示し、R34は炭素数1-3のアルキレン基を示し、R35は炭素数1-5のアルキレン基を示し、
     R32は、炭素数1-7のアルキレン基、炭素数2-7のアルケニレン基、-NH-R36-、-CO-R36-、-R37-O-R38-、-R37-NH-R38-、-R37-COO-R38-、-R37-COO-NH-R38-、-R37-CO-R38-、R37-NH-CO-R38-又は-R37-CO-NH-R38-を示し、ここで、R36は炭素数1-7のアルキレン基を示し、R37は炭素数1-3のアルキレン基を示し、R38は炭素数1-5のアルキレン基を示す。)
    The first polymer is a compound represented by the following formula (I) or a compound represented by the following formula (II):
    Figure JPOXMLDOC01-appb-C000001
    (In formula (I), n 1 to n 4 may be the same or different, and n 1 to n 4 are integers of 5 to 300.
    A is a maleimidyl group, an N-hydroxy-succinimidyl group, a sulfosuccinimidyl group, a phthalimidyl group, an imidazoyl group, an acryloyl group or a nitrophenyl group;
    R 1 to R 4 may be the same or different and each represents an alkylene group having 1 to 7 carbon atoms, an alkenylene group having 2 to 7 carbon atoms, -NH-R 5 -, -CO-R 5 -, -R 6 -OR 7 -, -R 6 -NH-R 7 -, -R 6- COO-R 7 -, -R 6 -COO-NH-R 7 -, -R 6 -CO-R 7 -, -R 6 -NH-CO-R 7 -, or -R 6 -CO-NH-R 7 -, where R 5 represents an alkylene group having 1 to 7 carbon atoms, R 6 represents an alkylene group having 1 to 3 carbon atoms, and R 7 represents an alkylene group having 1 to 5 carbon atoms.
    Figure JPOXMLDOC01-appb-C000002
    (In formula (II), n 12 is an integer of 1 to 10,000;
    B is a maleimidyl group, an N-hydroxy-succinimidyl group, a sulfosuccinimidyl group, a phthalimidyl group, an imidazoyl group, an acryloyl group, or a nitrophenyl group;
    R 11 represents an alkylene group having 1 to 7 carbon atoms, an alkenylene group having 2 to 7 carbon atoms, -NH-R 13 -, -CO-R 13 -, -R 14 -OR 15 -, -R 14 -NH-R 15 -, -R 14 -COO-R 15 -, -R 14 -COO-NH-R 15 -, -R 14 -CO-R 15 -, R 14 -NH-CO-R 15 - or -R 14 -CO-NH-R 15 -, wherein R 13 represents an alkylene group having 1 to 7 carbon atoms, R 14 represents an alkylene group having 1 to 3 carbon atoms, and R 15 represents an alkylene group having 1 to 5 carbon atoms;
    R 12 represents an alkylene group having 1 to 7 carbon atoms, an alkenylene group having 2 to 7 carbon atoms, -NH-R 16 -, -CO-R 16 -, -R 17 -OR 18 -, -R 17 -NH-R 18 -, -R 17 -COO-R 18 -, -R 17 -COO-NH-R 18 -, -R 17 -CO-R 18 -, R 17 -NH-CO-R 18 - or -R 17 -CO-NH-R 18 -, where R 16 represents an alkylene group having 1 to 7 carbon atoms, R 17 represents an alkylene group having 1 to 3 carbon atoms, and R 18 represents an alkylene group having 1 to 5 carbon atoms.
    2. The gel composition according to claim 1, wherein the second polymer is a compound represented by the following formula (III) or a compound represented by the following formula (IV):
    Figure JPOXMLDOC01-appb-C000003
    (In formula (III), n 21 to n 24 may be the same or different, and n 21 to n 24 are integers of 25 to 250.
    D is a thiol group, an amino group, or -COOPhNO2 (Ph represents an o-, m-, or p-phenylene group);
    R 21 to R 24 may be the same or different and each represents an alkylene group having 1 to 7 carbon atoms, an alkenylene group having 2 to 7 carbon atoms, -NH-R 25 -, -CO-R 25 -, -R 26 -OR 27 -, -R 26 -NH-R 27 -, -R 26 -COO-R 27 -, -R 26 -COO-NH-R 27 -, -R 26 -CO-R 27 -, R 26 -NH-CO-R 27 - or -R 26 -CO-NH-R 27 -, where R 25 represents an alkylene group having 1 to 7 carbon atoms, R 26 represents an alkylene group having 1 to 3 carbon atoms, and R 27 represents an alkylene group having 1 to 5 carbon atoms.
    Figure JPOXMLDOC01-appb-C000004
    (In formula (IV), n 32 is an integer from 1 to 10,000;
    E is a thiol group, an amino group, or -COOPhNO2 (Ph represents an o-, m-, or p-phenylene group);
    R 31 represents an alkylene group having 1 to 7 carbon atoms, an alkenylene group having 2 to 7 carbon atoms, -NH-R 33 -, -CO-R 33 -, -R 34 -OR 35 -, -R 34 -NH-R 35 -, -R 34 -COO-R 35 -, -R 34 -COO-NH-R 35 -, -R 34 -CO-R 35 -, R 34 -NH-CO-R 35 - or -R 34 -CO-NH-R 35 -, where R 33 represents an alkylene group having 1 to 7 carbon atoms, R 34 represents an alkylene group having 1 to 3 carbon atoms, and R 35 represents an alkylene group having 1 to 5 carbon atoms;
    R 32 represents an alkylene group having 1 to 7 carbon atoms, an alkenylene group having 2 to 7 carbon atoms, -NH-R 36 -, -CO-R 36 -, -R 37 -OR 38 -, -R 37 -NH-R 38 -, -R 37 -COO-R 38 -, -R 37 -COO-NH-R 38 -, -R 37 -CO-R 38 -, R 37 -NH-CO-R 38 - or -R 37 -CO-NH-R 38 -, where R 36 represents an alkylene group having 1 to 7 carbon atoms, R 37 represents an alkylene group having 1 to 3 carbon atoms, and R 38 represents an alkylene group having 1 to 5 carbon atoms.
  8.  請求項1~7のいずれかに記載のゲル組成物を成形したシートであるゲルシート。 A gel sheet formed from the gel composition according to any one of claims 1 to 7.
PCT/JP2024/010379 2023-03-29 2024-03-15 Gel material having four-branched crosslinking points at which strain-induced crystallization is developed WO2024203488A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202363455374P 2023-03-29 2023-03-29
US63/455,374 2023-03-29

Publications (1)

Publication Number Publication Date
WO2024203488A1 true WO2024203488A1 (en) 2024-10-03

Family

ID=92905989

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2024/010379 WO2024203488A1 (en) 2023-03-29 2024-03-15 Gel material having four-branched crosslinking points at which strain-induced crystallization is developed

Country Status (1)

Country Link
WO (1) WO2024203488A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000502380A (en) * 1995-12-18 2000-02-29 コラーゲン コーポレイション Crosslinked polymer composition and method of using same
WO2014157186A1 (en) * 2013-03-28 2014-10-02 国立大学法人 東京大学 Novel low-swellling-degree hydrogel containing temperature -responsive polymer
JP2015137430A (en) * 2014-01-20 2015-07-30 国立大学法人福井大学 Gel fiber and nonwoven fabric thereof
WO2021225144A1 (en) * 2020-05-08 2021-11-11 国立大学法人 東京大学 Hemostatic polymer material kit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000502380A (en) * 1995-12-18 2000-02-29 コラーゲン コーポレイション Crosslinked polymer composition and method of using same
WO2014157186A1 (en) * 2013-03-28 2014-10-02 国立大学法人 東京大学 Novel low-swellling-degree hydrogel containing temperature -responsive polymer
JP2015137430A (en) * 2014-01-20 2015-07-30 国立大学法人福井大学 Gel fiber and nonwoven fabric thereof
WO2021225144A1 (en) * 2020-05-08 2021-11-11 国立大学法人 東京大学 Hemostatic polymer material kit

Similar Documents

Publication Publication Date Title
Cui et al. Strong tough conductive hydrogels via the synergy of ion‐induced cross‐linking and salting‐out
Mukesh et al. Preparation of a natural deep eutectic solvent mediated self polymerized highly flexible transparent gel having super capacitive behaviour
KR20140083023A (en) Stretchable, solvent free, completely amorphous solid electrolyte films
Chen et al. Comb‐shaped guanidinium functionalized poly (ether sulfone) s for anion exchange membranes: effects of the spacer types and lengths
CN107428930B (en) Method for producing low-concentration gel using gel precursor cluster, and gel obtained by the production method
CN109476907B (en) Ionic composition and crosslinked product
JP5991314B2 (en) Polyether compounds, crosslinkable compositions and electrolytes
US6727343B2 (en) Heteroatomic polymer for more efficient solid polymer electrolytes for lithium batteries
Bar et al. Quasi-Solid semi-interpenetrating polymer networks as electrolytes: Part I. Dependence of physicochemical characteristics and Ion conduction behavior on matrix composition, cross-link density, chain length between cross-links, molecular entanglements, charge carrier concentration, and nature of anion
KR102014970B1 (en) Anion exchange membrane and method for preparing the same
Shioiri et al. Polymer electrolytes based on a homogeneous poly (ethylene glycol) network and their application to polymer actuators
Itoh et al. Polymer electrolytes based on hyperbranched polymers
Yang et al. Sequential interpenetrating poly (ethylene glycol) hydrogels prepared by UV‐initiated thiol–ene coupling chemistry
WO2024203488A1 (en) Gel material having four-branched crosslinking points at which strain-induced crystallization is developed
US8841406B2 (en) Branched rod-coil polyimide—poly( alkylene oxide) copolymers and electrolyte compositions
Audebeau et al. One-pot synthesis and gelation by borax of glycopolymers in water
Apostolides et al. Model dynamic covalent thermoresponsive amphiphilic polymer co-networks based on acylhydrazone end-linked Tetronic T904 star block copolymers
JP2669299B2 (en) Polymer solid electrolyte
US20100196792A1 (en) Polymer electrolyte composition and fuel cell
JP2024513570A (en) Zwitterions induced from ionic liquids with high conductivity and transference number
KR20180102856A (en) Method of controls of conductivity, mechanical properties, and morphology of polymer electrolytes via end-group chemistry
JP4701404B2 (en) High ion conductive polymer solid electrolyte
JP2017043704A (en) Cationic glycidyl polymer
JPH03149705A (en) High-polymer solid electrolyte
WO2024014183A1 (en) Polymer solid electrolyte having high toughness