WO2024203375A1 - Holding device, alignment device, film formation device, film formation method, and manufacturing method - Google Patents
Holding device, alignment device, film formation device, film formation method, and manufacturing method Download PDFInfo
- Publication number
- WO2024203375A1 WO2024203375A1 PCT/JP2024/009929 JP2024009929W WO2024203375A1 WO 2024203375 A1 WO2024203375 A1 WO 2024203375A1 JP 2024009929 W JP2024009929 W JP 2024009929W WO 2024203375 A1 WO2024203375 A1 WO 2024203375A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- side portion
- weight member
- substrate
- holding
- mask
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 22
- 238000000034 method Methods 0.000 title claims description 14
- 230000015572 biosynthetic process Effects 0.000 title description 20
- 238000007667 floating Methods 0.000 claims abstract description 16
- 239000000758 substrate Substances 0.000 claims description 102
- 238000000151 deposition Methods 0.000 claims description 37
- 230000008021 deposition Effects 0.000 claims description 36
- 239000000463 material Substances 0.000 claims description 16
- 239000010410 layer Substances 0.000 description 97
- 239000010408 film Substances 0.000 description 43
- 230000032258 transport Effects 0.000 description 23
- 238000005259 measurement Methods 0.000 description 18
- 238000010586 diagram Methods 0.000 description 17
- 238000001816 cooling Methods 0.000 description 14
- 230000005525 hole transport Effects 0.000 description 14
- 230000007246 mechanism Effects 0.000 description 14
- 238000003860 storage Methods 0.000 description 10
- 238000002955 isolation Methods 0.000 description 9
- 238000001704 evaporation Methods 0.000 description 8
- 230000008020 evaporation Effects 0.000 description 8
- 238000005339 levitation Methods 0.000 description 8
- 238000012546 transfer Methods 0.000 description 7
- 230000005484 gravity Effects 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 238000012545 processing Methods 0.000 description 6
- 230000000903 blocking effect Effects 0.000 description 5
- 238000004891 communication Methods 0.000 description 5
- 239000010409 thin film Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 230000002829 reductive effect Effects 0.000 description 4
- 238000000926 separation method Methods 0.000 description 4
- 239000011521 glass Substances 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 239000011241 protective layer Substances 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 239000012044 organic layer Substances 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 238000001771 vacuum deposition Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- 229910001374 Invar Inorganic materials 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000001010 compromised effect Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/50—Substrate holders
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/683—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
- H10K71/10—Deposition of organic active material
- H10K71/16—Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
Definitions
- the present invention relates to a holding device, an alignment device, a film forming device, a film forming method, and a manufacturing method.
- Patent Document 1 discloses a semiconductor exposure apparatus that supports a stage that holds a substrate in a floating state.
- the floating attitude of the stage is adjusted with a weight member so that the stage is maintained in, for example, a horizontal attitude.
- installing the weight member may affect the vibration characteristics of the member that holds the object. For example, installing a weight member may lower the natural frequency of the member that holds the object, deteriorating the vibration characteristics.
- the object of the present invention is to adjust the levitation posture using a weight member while suppressing the effect of the weight member on vibration characteristics.
- a holding means for holding an object a support means for supporting the holding means in a floating state; a first weight member provided on the holding means;
- a holding device comprising: The outer shape of the holding means is a polygon including a first side portion, the first weight member is disposed along the first side portion and is disposed closer to a center of the first side portion than an end portion of the first side portion;
- a holding device characterized in that
- the floating attitude can be adjusted using the weight member while suppressing the effect of the weight member on vibration characteristics.
- FIG. 1 is a schematic diagram showing a part of a configuration of a manufacturing line for electronic devices to which the present invention can be applied; 1 is a schematic diagram of a film forming apparatus according to an embodiment of the present invention.
- FIG. 3 is an enlarged view of a portion of FIG. 2 .
- FIG. 4 is a schematic diagram showing an example of the operation of the film forming apparatus.
- FIG. 4 is a schematic diagram showing an example of the operation of the film forming apparatus.
- FIG. 4 is a plan view of the holding device taken along line A-A of FIG. 3 .
- FIG. FIG. 4 is an explanatory diagram of an arrangement area of a weight member.
- FIG. 4 is an explanatory diagram of an arrangement area of a weight member.
- FIG. 4 is an explanatory diagram of an arrangement area of a weight member.
- FIG. 4 is a schematic diagram showing a first natural vibration mode of the main body.
- FIG. 1 is a schematic diagram showing an example of an organic EL display device.
- FIG. 1 is a schematic diagram showing an example of an organic EL display device.
- FIG. FIG. FIG. 4 is a side view showing an example of an arrangement of weight members.
- FIG. FIG. FIG. 4 is a plan view showing an example of the outer shape of a main body portion.
- FIG. 4 is a plan view showing an example of the outer shape of a main body portion.
- First Embodiment ⁇ Electronic device manufacturing line> 1 is a schematic diagram showing a part of the configuration of a manufacturing line for electronic devices to which the present invention can be applied.
- the manufacturing line in FIG. 1 is used, for example, for manufacturing display panels for organic EL display devices for smartphones, in which substrates 1 are sequentially transported to a film-forming block 401, and an organic EL film is formed on the substrates 1.
- a plurality of deposition chambers 403a to 403d in which deposition processing is performed on the substrate 1, and a mask storage chamber 405 in which masks before and after use are stored are arranged around a transfer chamber 402 that has an octagonal shape in a plan view.
- a transfer robot 402a that transfers the substrate 1 is arranged in the transfer chamber 402.
- the transfer robot 402a includes a hand that holds the substrate 1 and a multi-joint arm that moves the hand horizontally.
- the deposition block 401 is a cluster-type deposition unit in which a plurality of deposition chambers 403a to 403d are arranged to surround the transfer robot 402a.
- the deposition chambers 403a to 403d are collectively referred to or when no distinction is made, they are referred to as deposition chambers 403.
- a buffer chamber 406, a swirl chamber 407, and a delivery chamber 408 are disposed upstream and downstream of the deposition block 401, respectively.
- each chamber is maintained in a vacuum state.
- the manufacturing line according to this embodiment has multiple deposition blocks 401, which are connected by a connection device composed of a buffer chamber 406, a swirl chamber 407, and a delivery chamber 408.
- the configuration of the connection device is not limited to this, and may be composed of only the buffer chamber 406 or the delivery chamber 408, for example.
- the transport robot 402a transports the substrate 1 from the upstream delivery chamber 408 to the transport chamber 402, transports the substrate 1 between the deposition chambers 403, transports the mask between the mask storage chamber 305 and the deposition chamber 303, and transports the substrate 1 from the transport chamber 402 to the downstream buffer chamber 406.
- the buffer chamber 406 is a chamber for temporarily storing substrates 1 depending on the operating status of the production line.
- the buffer chamber 406 is provided with a substrate storage shelf, also called a cassette, and a lifting mechanism.
- the substrate storage shelf has a multi-tier structure capable of storing multiple substrates 1 while maintaining the substrate 1 in a horizontal position with the surface to be processed (surface to be deposited) facing downward in the direction of gravity.
- the lifting mechanism raises and lowers the substrate storage shelf to align the tier where the substrate 1 is loaded or unloaded with the transport position. This allows multiple substrates 1 to be temporarily stored and retained in the buffer chamber 406.
- the swirl chamber 407 is equipped with a device for changing the orientation of the substrate 1.
- the orientation of the substrate 1 is rotated 180 degrees by a transport robot provided in the swirl chamber 407.
- the transport robot provided in the swirl chamber 407 rotates 180 degrees while supporting the substrate 1 received in the buffer chamber 406 and delivers it to the delivery chamber 408, so that the front end and rear end of the substrate are swapped between the buffer chamber 406 and the delivery chamber 408.
- the orientation of the substrate 1 when it is brought into the film formation chamber 403 is the same in each film formation block 401, so that the scan direction of film formation on the substrate 1 and the orientation of the mask can be aligned in each film formation block 401.
- the orientation of the mask installed in the mask storage chamber 405 in each film formation block 401 can be aligned, simplifying mask management and improving usability.
- the control system of the manufacturing line includes a higher-level device 400 that controls the entire line as a host computer, and control devices 140a-140d, 409, 410 that control each component, and these can communicate via a wired or wireless communication line 400a.
- the control devices 140a-140d are provided corresponding to the deposition chambers 403a-403d, and control the deposition device 100 described below. Note that when the control devices 140a-140d are referred to collectively or when no distinction is made, they are referred to as control device 140.
- the control device 409 controls the transport robot 402a.
- the control device 410 controls the devices in the swirl chamber 307.
- the higher-level device 400 transmits information about the substrate 1 and instructions such as transport timing to each of the control devices 140, 409, and 410, and each of the control devices 140, 409, and 410 controls each component based on the received instructions.
- ⁇ Film forming equipment> 2 is a schematic diagram showing a film forming apparatus 100 according to an embodiment of the present invention.
- the film forming apparatus 100 is an apparatus for forming a film of a deposition material on a substrate 1, and forms a thin film of the deposition material in a predetermined pattern on the substrate 1 using a mask 2.
- the material of the substrate 1 on which a film is formed in the film forming apparatus 100 can be appropriately selected from materials such as glass, resin, and metal.
- the deposition material is an organic material, an inorganic material (metal, metal oxide, etc.), and the like.
- the film forming process is performed in a state in which the substrate 1 is placed on the mask 2 and the substrate 1 and the mask 2 are superimposed on each other.
- the film forming apparatus 100 can be used as a manufacturing apparatus for manufacturing electronic devices such as display devices (such as flat panel displays), thin-film solar cells, and organic photoelectric conversion elements (organic thin-film imaging elements), as well as optical components, and is particularly applicable to a manufacturing apparatus for manufacturing organic EL panels.
- display devices such as flat panel displays
- organic photoelectric conversion elements organic thin-film imaging elements
- optical components such as optical components
- an example is assumed in which the film forming apparatus 100 forms a film on the substrate 1 by vacuum deposition, but the present invention is not limited to this, and various film forming methods such as sputtering and CVD can be applied.
- the arrow Z indicates the up-down direction (the direction of gravity)
- the arrows X and Y indicate horizontal directions that are perpendicular to each other.
- the film forming apparatus 100 includes a box-shaped vacuum chamber 110 (sometimes simply referred to as chamber 110) having a bottom 111, sides 112, and a top 113.
- An internal space 114 of the vacuum chamber 110 is maintained in a vacuum atmosphere or an inert gas atmosphere such as nitrogen gas.
- the vacuum chamber 110 is connected to a vacuum pump (not shown).
- vacuum refers to a state filled with gas at a pressure lower than atmospheric pressure, in other words, a reduced pressure state.
- a holding device 300 that holds the substrate 1 in a horizontal position, a mask support unit 9 that supports the mask 2, a deposition unit 12, and a plate unit 11 are arranged.
- the mask 2 has an opening pattern corresponding to the thin film pattern to be formed on the substrate 1, and is placed on the mask table 91.
- the mask table 91 can be replaced with other means for fixing the mask 2 in a predetermined position.
- the mask 2 can be a mask having a structure in which a mask foil having a thickness of several ⁇ m to several tens of ⁇ m is welded to a frame-shaped mask frame.
- the material of the mask is not particularly limited, but it is preferable to use a metal with a small thermal expansion coefficient such as Invar.
- the film formation process is performed with the substrate 1 placed on the mask 2 and the substrate 1 and mask 2 overlapping each other.
- the plate unit 11 includes a cooling plate 11a, a magnet plate 11b, and a plate movable part 11c.
- the cooling plate 11a is disposed below the magnet plate 11b, and the cooling plate 11a and the magnet plate 11b are suspended by the plate movable part 11c so as to be displaceable in the Z direction.
- the cooling plate 11a has a function of cooling the substrate 1 attracted to the holder 6 by approaching the holder 6 described later during film formation.
- the cooling plate 11a is not limited to a type that is equipped with a water cooling mechanism or the like and actively cools the substrate 1, and may be a plate-like member that does not have a water cooling mechanism or the like but removes heat from the substrate 1 by approaching the holder 6.
- the magnet plate 11b is a plate that attracts the mask 2 by magnetic force, and is placed on the upper surface of the substrate 1 to improve the adhesion between the substrate 1 and the mask 2 during film formation.
- the cooling plate 11a and the magnetic plate 11b may be omitted as appropriate.
- the holding unit 6 is provided with a cooling mechanism, the cooling plate 11a may not be necessary.
- the holding unit 6 may be configured to attract the mask 2 without the magnetic plate 11b.
- the film forming apparatus 1 includes an alignment device 200 that aligns a substrate 1 and a mask 2.
- the alignment device 200 includes a holding device 300 that holds the substrate 1, a mask support unit 9, a position measurement unit 10, a measurement unit 13, and a vibration isolation unit 120.
- the holding device 300 also includes a holding unit 3 that holds the substrate 1, etc. Each component of the alignment device 200 will be described below.
- the mask support unit 9 includes a mask table 91, a mask support column 92, a mask lifting mechanism 93, and an airtight member 94.
- the mask table 91 is fixed to the mask support column 92.
- the mask support column 92 is connected to the mask lifting mechanism 93 through an airtight member 94 provided between the support frame 130 and the ceiling 113.
- the mask lifting mechanism 93 is provided on the support frame 130, and raises and lowers the mask support column 92 in the Z direction.
- the airtight member 94 is, for example, a bellows, and is airtight and elastic. The airtight member 94 can prevent the vacuum level of the vacuum chamber 110 from being compromised when the mask support column 92 is raised and lowered.
- the position measurement unit 10 measures the position of the holding unit 3 that holds the substrate 1.
- a plurality of position measurement units 10 are arranged on the mask stage 91 so as to measure the positions of the holding unit 3 in the X, Y, and Z directions (only one of them is shown in FIG. 2).
- the floating attitude e.g., the inclination with respect to the X-Y plane
- floating position e.g., the position in the Z direction
- the position measurement unit 10 may use, for example, a laser displacement meter that measures the distance to the object in a non-contact manner.
- the measurement unit 13 measures the positional deviation between the substrate 1 and mask 2 held by the holding unit 3.
- the measurement unit 13 is provided on the support frame 130, and can capture an image of the inside of the vacuum chamber 110 through windows 130a, 113a formed in the support frame 130 and the vacuum chamber top plate 113. Alignment marks (not shown) are formed on the substrate 1 and mask 2, respectively.
- the measurement unit 13 captures the alignment marks of the substrate 1 and mask 2.
- the control device 140 controls the holding device 300 to eliminate the positional deviation of each alignment mark, and adjusts the relative positions of the substrate 1 and mask 2.
- the measurement unit 13 can use multiple types of alignment cameras, such as a low-magnification CCD camera (rough camera) with a relatively wide field of view but low resolution, and a high-magnification CCD camera (fine camera) with a relatively narrow field of view but high resolution (for example, on the order of a few ⁇ m). This makes it possible to measure the rough positional misalignment between the substrate 1 and mask 2 while also measuring the positional misalignment between the substrate 1 and mask 2 with high accuracy.
- a low-magnification CCD camera rough camera
- a high-magnification CCD camera fine camera
- the vibration isolation unit 120 is composed of a vibration isolation table base 121, a vibration isolation table 122, etc.
- the vibration isolation section 120 may be, for example, an active vibration isolation device or a passive vibration isolation device such as a vibration isolation rubber.
- the vibration isolation unit 120 is provided on top of the vacuum chamber top plate 113, and when vibration occurs in the vacuum chamber 110, it suppresses the transmission of vibration to the support frame 130 side. This allows the alignment device 200 to perform highly accurate alignment even when vibration occurs in the vacuum chamber 110.
- the holding device 300 will be described with reference to Fig. 3 in addition to Fig. 2.
- Fig. 3 is an enlarged view of the holding device 300 and its periphery in Fig. 2.
- the holding device 300 includes a holding unit 3 that holds a substrate, a support unit 7 that supports the holding unit 3 in a floating state, and a position adjustment unit 8 that displaces the holding unit 3.
- the position adjustment unit 8 in this embodiment is a unit that displaces the holding unit 3 by magnetic force, and is, for example, a linear motor.
- the position adjustment unit 8 has a magnetic force generating unit 8a provided on the main body 5 and a magnetic force generating unit 8b provided on the fixed member 4.
- One of the magnetic force generating units 8a and 8b is a permanent magnet, and the other is an electromagnet.
- the position adjustment unit 8 is provided in multiple sets (see FIG. 6, etc., described later), and can adjust the holding unit 3 in translation in the X, Y, and Z directions, in rotation around the X, Y, and Z axes, and in posture (tilt with respect to the horizontal direction).
- the control device 140 controls the entire film forming apparatus 100.
- the control device 140 includes a processing unit 140a, a storage unit 140b, an input/output interface (I/O) 140c, and a communication unit 140d.
- the processing unit 140a is a processor such as a CPU, and controls the film forming apparatus 100 by executing a program stored in the storage unit 140b.
- the storage unit 140b is a storage device such as a ROM, RAM, or HDD, and stores various control information in addition to the program executed by the processing unit 140a.
- the I/O 140c is an interface that transmits and receives signals between the processing unit 140a and an external device.
- the communication unit 140d is a communication device that communicates with the above-mentioned devices or other control devices via a communication line.
- State ST42 in Figure 4 shows the state of the film forming apparatus 100 during the alignment operation of the substrate 1 and mask 2.
- the substrate 1 is held by the holder 6.
- the mask 2 is raised to the alignment position.
- the alignment of the substrate 1 and mask 2 is performed with the substrate 1 and mask 2 spaced apart very slightly.
- the gap between the substrate 1 and mask 2 is exaggerated to make the operation easier to understand.
- the measurement unit 13 photographs the alignment marks on the substrate 1 and mask 2, and measures the amount of misalignment between the substrate 1 and mask 2.
- the “amount of misalignment” refers to the amount of relative misalignment between the substrate 1 and mask 2 in the X direction, Y direction, and the ⁇ direction around the Z axis.
- the control device 104 controls the position adjustment unit 8 so as to reduce the amount of misalignment, and the position of the holding unit 3 is adjusted. Measurement and position adjustment are repeated until the amount of misalignment falls within the allowable range. This adjusts the relative position of the substrate 1 with respect to the mask 2.
- the substrate 1 is placed on the mask 2.
- the cooling plate 11a and magnet plate 11b of the plate unit 11 are lowered into the opening 50a of the main body 5.
- the plate unit 11 is lowered toward the opening 50a of the main body 5, and the cooling plate 11a approaches the holder 6 as shown in state ST52 of FIG. 5.
- the mask 2 is attracted by the magnetic force of the magnet plate 11b, and the mask 2 and the substrate 1 can be brought into close contact as a whole.
- a film formation process is performed in which the deposition material is released from the deposition unit 12 through the mask 2 onto the substrate 1. A thin film of the deposition material is formed on the substrate 1.
- FIG. 6 is a plan view of the holding unit 3, and corresponds to the view in the direction of the arrow A-A in FIG. 3.
- FIG. 7 is a perspective view of the holding unit 3.
- the Y direction may be called the front-rear direction and the X direction may be called the left-right direction.
- the main body 5 forms the outer shape of the holding unit 3 in a plan view.
- the outer shape of the main body 5 is polygonal, and in particular rectangular (square).
- Point P is the centroid of the outer shape of the main body 5.
- the main body 5 is a plate-like member having a circular opening 50a in its center. The opening 50a is large enough to allow the cooling plate 11a and magnet plate 11b of the plate unit 11 to pass through.
- the main body 5 has a front edge 5F and a rear edge 5B that face each other in the Y direction, and a left edge 5L and a right edge 5R that face each other in the X direction between the front edge 5F and the rear edge 5B, and also has corners 5a to 5d.
- the corners 5a and 5b are corners at both ends of the front edge 5F.
- the corners 5c and 5d are corners at both ends of the rear edge 5B.
- the corners 5a and 5d are corners at both ends of the left edge 5L.
- the corners 5b and 5c are corners at both ends of the right edge 5R.
- the front edge 5F and the rear edge 5B are parallel, and the left edge 5L and the right edge 5R are parallel.
- the direction of the front edge 5F and the rear edge 5B is perpendicular to the direction of the left edge 5L and the right edge 5R.
- the upper surface U of the main body 5 is provided with the magnetic force generating portion 7b of the support unit 7, the magnetic force generating portion 8b of the position adjustment unit 8, and the weight member 15.
- Surface U is the surface on the side of the fixed member 4.
- the lower surface D of the main body is provided with the holding portion 6.
- Surface D is the surface on the side to which the mask 2 is attracted.
- the holding device 300 of this embodiment has four support units 7 and four position adjustment units 8. Therefore, four magnetic force generating units 7b and four magnetic force generating units 8b are provided on the upper surface U of the main body 5.
- the four magnetic force generating units 7b and the four magnetic force generating units 8b are arranged at diagonal positions on the main body 5. Two of the four magnetic force generating units 8b extend in the Y direction, and the remaining two extend in the X direction.
- a total of four weight members 15 are provided on each of the sides 5F, 5B, 5L, and 5R.
- the floating attitude of the holding unit 3 can be adjusted by tuning the weight of each weight member 15.
- the weight members 15 are detachably attached to the main body 5 using a fastener 150.
- the fastener 150 is, for example, a bolt that screws into a screw hole formed in the main body 5. Weight members 15 of different weights can be easily replaced, making it easier to adjust the floating attitude of the holding unit 3.
- Each weight member 15 is provided along the corresponding side 5F, 5B, 5L, or 5R. Each weight member 15 is positioned closer to the center 51-54 than the end (corner 5a-5d) of the corresponding side 5F-5R.
- the weight member 15 arranged along the front edge 5F is positioned closer to the center 51 of the front edge 5F than the corners 5a and 5b.
- the weight member 15 arranged along the rear edge 5B is positioned closer to the center 53 of the rear edge 5B than the corners 5c and 5d.
- the weight member 15 arranged along the left edge 5L is positioned closer to the center 52 of the left edge 5L than the corners 5b and 5c.
- the weight member 15 arranged along the right edge 5R is positioned closer to the center 54 of the right edge 5R than the corners 5a and 5d.
- the positions of the weight members 15 along the corresponding sides 5F, 5B, 5L, and 5R are arranged so that their longitudinal centers (in other words, the centroids in plan view) are located at the centers 51 to 54 of the corresponding sides 5F, 5B, 5L, and 5R, respectively, but the positions of the weight members 15 are not limited to this.
- Figures 8A and 8B are explanatory diagrams and are schematic diagrams of the main body 5.
- Figure 8A is a schematic diagram explaining the range of the weight member 15 along the side 5F of the main body 5.
- the range of the range is, for example, range L12, which is 3/5 of the range centered on the center 51 of the length L1 of the side 5F divided into 5 equal parts.
- Length L1 is also the length (separation distance) between side 5L and side 5R.
- the arrangement range may be a range L11 narrower than L12.
- Range L11 is 2/4 of the range centered on the center 51 of the length L1 of the side 5F divided into four equal parts.
- the arrangement range may be a range L10 narrower than L11.
- Range L10 is 1/3 of the range centered on the center 51 of the length L1 of the side 5F divided into three equal parts.
- the weight member 15 is arranged within range L10.
- FIG. 8B is a diagram showing a range similar to range L10 of side 5F for each of sides 5B, 5L, and 5R.
- Range L20 is one-third of the length L2 of side 5R, centered on center 52, and in this embodiment, the corresponding weight member 15 is disposed within range L20.
- Length L2 is also the length (separation distance) between side 5F and side 5B.
- Range L30 is one-third of the length L3 of side 5B, centered on center 53, and in this embodiment, the corresponding weight member 15 is disposed within range L30.
- Length L3 is also the length (separation distance) between side 5L and side 5R.
- Range L40 is one-third of the length L4 of side 5L, centered on center 54, and in this embodiment, the corresponding weight member 15 is disposed within range L40.
- Length L4 is also the length (separation distance) between side 5F and side 5B.
- FIG. 9 is a schematic diagram showing the primary natural vibration mode of the main body 5 without the weight member 15.
- the main body 5 When the holding unit 3 is displaced, the main body 5 generates micro-vibrations.
- the amplitude is large at the corners 5a to 5d and small at the centers 51 to 54 of each side 5F to 5L. Therefore, when the weight member 15 is placed near the corners 5a to 5d, it acts in a direction that increases the amplitude of the vibration.
- the weight member 15 By placing the weight member 15 closer to the centers 51 to 54 of the main body 5 than the corners 5a to 5d, the increase in the amplitude of the vibration can be reduced and the decrease in the natural frequency can be suppressed.
- the center (center of gravity) P of the main body 5 is closer to the center 51-54 side than the corners 5a-5d, the moment of inertia acting on the weight member 15 is smaller by placing the weight member 15 on the center 51-54 side. Therefore, as in this embodiment, the influence of the weight member 15 can be suppressed by placing the weight member 15 on the center 51-54 side of each side 5F-5L rather than the corners 5a-5d of the main body 5.
- the influence of the vibration characteristics can be reduced by placing the weight member 15 in range L11 rather than range L12, and furthermore, the influence of the vibration characteristics can be reduced by placing the weight member 15 in range L10 rather than range L11.
- Figure 10A is an overall view of organic EL display device 500
- Figure 10B is a diagram showing the cross-sectional structure of one pixel.
- each of the light-emitting elements has a structure including an organic layer sandwiched between a pair of electrodes.
- the pixel here refers to the smallest unit that allows a desired color to be displayed in the display region 501.
- the pixel 510 is configured by a combination of multiple sub-pixels of a first light-emitting element 510R, a second light-emitting element 510G, and a third light-emitting element 510B that emit light differently from each other.
- the pixel 510 is often configured by a combination of three types of sub-pixels: a red (R) light-emitting element, a green (G) light-emitting element, and a blue (B) light-emitting element, but is not limited to this.
- the pixel 510 needs to include at least one type of sub-pixel, and preferably includes two or more types of sub-pixels, and more preferably includes three or more types of sub-pixels.
- the sub-pixels that make up the pixel 510 may be, for example, a combination of four types of sub-pixels: a red (R) light-emitting element, a green (G) light-emitting element, a blue (B) light-emitting element, and a yellow (Y) light-emitting element.
- FIG. 10B is a schematic partial cross-sectional view taken along line A-B in FIG. 10A.
- the pixel 510 has a plurality of sub-pixels on a substrate 520, each of which is composed of an organic EL element having a first electrode (anode) 521, a hole transport layer 522, a red layer 522R, a green layer 522G, or a blue layer 522B, an electron transport layer 523, and a second electrode (cathode) 528.
- the hole transport layer 522, the red layer 522R, the green layer 522G, the blue layer 522B, and the electron transport layer 523 correspond to organic layers.
- the red layer 522R, the green layer 522G, and the blue layer 522B are formed in patterns corresponding to light-emitting elements (sometimes referred to as organic EL elements) that emit red, green, and blue light, respectively.
- light-emitting elements sometimes referred to as organic EL elements
- the first electrode 521 is formed separately for each light-emitting element.
- the hole transport layer 522, the electron transport layer 523, and the second electrode 522 may be formed in common across multiple light-emitting elements 510R, 510G, and 510B, or may be formed for each light-emitting element. That is, as shown in FIG. 10B, the hole transport layer 522 may be formed as a common layer across multiple sub-pixel regions, and the red layer 522R, the green layer 522G, and the blue layer 522B may be formed separately for each sub-pixel region on top of the hole transport layer 522, and the electron transport layer 523 and the second electrode 522 may be formed on top of the hole transport layer 522 as a common layer across multiple sub-pixel regions.
- an insulating layer 529 is provided between the first electrodes 521. Furthermore, since the organic EL layer deteriorates due to moisture and oxygen, a protective layer 530 is provided to protect the organic EL element from moisture and oxygen.
- the hole transport layer 522 and the electron transport layer 523 are shown as a single layer, but depending on the structure of the organic EL display element, they may be formed of multiple layers including a hole blocking layer and an electron blocking layer.
- a hole injection layer having an energy band structure that allows holes to be smoothly injected from the first electrode 521 to the hole transport layer 522 may be formed between the first electrode 521 and the hole transport layer 522.
- an electron injection layer may be formed between the second electrode 528 and the electron transport layer 523.
- red layer 522R a similar structure may also be adopted for the green layer 522G and the blue layer 522B.
- the number of layers may be two or more.
- layers of different materials may be laminated, such as a light-emitting layer and an electron blocking layer, or layers of the same material may be laminated, for example, two or more light-emitting layers may be laminated.
- the red layer 522R is composed of two layers, a lower layer 522R1 and an upper layer 522R2, and the green layer 522G and the blue layer 522B are composed of a single light-emitting layer.
- Six deposition chambers are assumed as the deposition chambers 403.
- a circuit (not shown) for driving the organic EL display device 500 and a substrate 520 on which a first electrode 521 are formed are prepared.
- the material of the substrate 520 is not particularly limited, and it can be made of glass, plastic, metal, or the like.
- a substrate in which a polyimide film is laminated on a glass substrate is used as the substrate 520.
- a resin layer such as acrylic or polyimide is coated by bar coating or spin coating on the substrate 520 on which the first electrode 521 is formed, and the resin layer is patterned by lithography so that an opening is formed in the portion where the first electrode 521 is formed, forming the insulating layer 529.
- This opening corresponds to the light-emitting region where the light-emitting element actually emits light. Note that in this embodiment, processing is performed on the large substrate up to the formation of the insulating layer 529, and after the insulating layer 529 is formed, a division process is carried out to divide the substrate 520.
- the substrate 520 with the patterned insulating layer 529 is carried into the first film forming apparatus 100, and the hole transport layer 522 is formed as a common layer on the first electrode 521 of the display area.
- the hole transport layer 522 is formed using a mask with an opening for each display area 501 that will eventually become the panel portion of each organic EL display device.
- the substrate 520 on which the hole transport layer 522 has been formed is carried into the second film formation chamber 403.
- the substrate 520 and the mask are aligned, the substrate 520 is placed on the mask, and the red layer 56R is formed on the hole transport layer 522 in the portion of the substrate 520 where the red emitting element is to be arranged (the region where the red subpixel is formed).
- the mask used in the second film formation apparatus is a high-definition mask in which openings are formed only in the multiple regions that will become the red subpixels among the multiple regions on the substrate 520 that will become the subpixels of the organic EL display device 500.
- the red layer 522R including the red light emitting layer is formed only in the multiple regions that will become the red subpixels among the multiple regions on the substrate 520 that will become the subpixels.
- the red layer 522R is selectively deposited in the regions that will become red subpixels, but not in the regions that will become blue subpixels or green subpixels among the regions on the substrate 520 that will become subpixels.
- the green layer 522G is formed in the third film formation chamber 503, and then the blue layer 522B is formed in the fourth film formation chamber 503.
- the electron transport layer 523 is formed over the entire display area 501 in the fifth film formation device 100.
- the electron transport layer 523 is formed as a layer common to the three color layers 522R, 522G, and 522B.
- the substrate on which the electron transport layer 523 has been formed is moved to the sixth deposition chamber 403, where the second electrode 528 is formed.
- the layers are formed by vacuum deposition in the first deposition chamber 403 to the sixth deposition chamber 403.
- the present invention is not limited to this, and for example, the second electrode 528 in the sixth deposition chamber 403 may be formed by sputtering.
- the substrate on which the second electrode 528 has been formed is moved to a sealing device, and the protective layer 530 is formed by plasma CVD (sealing process), completing the organic EL display device 500.
- the protective layer 530 is formed by the CVD method here, the method is not limited to this, and it may also be formed by the ALD method or the inkjet method.
- the weight member 15 is disposed on the upper surface U of the main body 5, but the location of the weight member 15 is not limited thereto.
- FIG. 11A shows an example in which the weight member 15 is arranged on the side of the main body 5.
- FIG. 11B shows an example in which the weight member 15 is arranged on the bottom surface U of the main body 5.
- the weight member 15 may be arranged on the side of the main body 5 or on the bottom surface U along the corresponding sides 5F, 5B, 5L, and 5L.
- a mode for arranging the weight member 15 in region L10 in addition to the mode in which the entire weight member 15 is arranged in region L10 as in the first embodiment, a mode in which a part of the weight member 15 protrudes from region L10 but the center of gravity is arranged in region L10 may also be used.
- Figure 11C shows one example.
- the weight member 15 arranged along side 5F has both ends in the longitudinal direction protruding slightly from region L10, but its center of gravity position P' is located within region L10. The same applies to each of the weight members 15 along the other sides 5B, 5L, and 5R.
- the weight member 15 may be entirely or partially embedded inside the main body 5.
- FIG. 12 shows an example in which the weight member 15 is disposed in a recess 50b provided on the upper surface U of the main body 5.
- the weight members 15 are provided on each of the sides 5F, 5B, 5L, and 5R, but there may be sides on which the weight members 15 are not provided.
- Figures 13A and 13B show another example of the arrangement of the weight members 15.
- Figure 13A shows an example in which the weight members 15 are arranged along the sides 5L and 5R of the main body 5, and two weight members 15 are provided in total. No weight members 15 are provided corresponding to the sides 5F and 5B.
- the weight member 15 may be composed of multiple weight portions.
- the weight member 15 is composed of multiple weight portions 15'. By adjusting the number of weight portions 15', the weight of each weight member 15 can be easily adjusted.
- the outer shape of the main body 5 can be various polygonal shapes.
- Fig. 14A shows a shape in which chamfered portions 5g are provided at the corners 5a to 5d of the main body 5, and the shape is generally rectangular, more precisely, octagonal.
- the weight members 15 arranged along the side 5F are arranged closer to the center than both ends e1 of the side 5F, and are arranged within a range L10.
- the range L10 is 1/3 of the length L1 between the side 5L and the side 5R divided into three equal parts, the range being centered on the center of the side 5F.
- the weight member 15 arranged along the side 5R is arranged closer to the center than both ends e2 of the side 5R, and is arranged within the range L20.
- the range L20 is 1/3 of the length L2 between the side 5F and the side 5B divided into three equal parts, with the center of the side 5R being the center.
- the weight member 15 arranged along the side portion 5B is arranged closer to the center than both ends e3 of the side portion 5B, and is arranged within the range L30.
- the range L30 is 1/3 of the range centered on the center of the side portion 5B, when the length L3 between the side portions 5L and 5R is divided into three equal parts.
- the weight members 15 arranged along the side 5L are arranged closer to the center than both ends e4 of the side 5L, and are arranged within the range L40.
- the range L40 is 1/3 of the range centered on the center of the side 5L, when the length L4 between the side 5F and the side 5B is divided into three equal parts.
- Fig. 14B shows a form in which the corners 5a-5d of the main body 5 are rounded (arc-shaped).
- the weight members 15 arranged along the side 5F are arranged closer to the center than both ends e1 of the side 5F, and are arranged within the range L10.
- the range L10 is 1/3 of the length L1 between the side 5L and the side 5R, divided into three equal parts, with the center being the center of the side 5F.
- the weight member 15 arranged along the side 5R is arranged closer to the center than both ends e2 of the side 5R, and is arranged within the range L20.
- the range L20 is 1/3 of the length L2 between the side 5F and the side 5B divided into three equal parts, with the center of the side 5R being the center.
- the weight member 15 arranged along the side portion 5B is arranged closer to the center than both ends e3 of the side portion 5B, and is arranged within the range L30.
- the range L30 is 1/3 of the length L3 between the side portions 5L and 5R divided into three equal parts, with the center of the side portion 5B as the center.
- the weight members 15 arranged along the side 5L are arranged closer to the center than both ends e4 of the side 5L, and are arranged within the range L40.
- the range L40 is 1/3 of the range centered on the center of the side 5L, when the length L4 between the side 5F and the side 5B is divided into three equal parts.
- the external shape of the main body 5 can also be a triangle, hexagon, etc.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Power Engineering (AREA)
- Materials Engineering (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Optics & Photonics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Electroluminescent Light Sources (AREA)
- Physical Vapour Deposition (AREA)
- Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
Abstract
This holding device comprises: a holding means for holding an object; a supporting means for supporting the holding means in a floating state; and a first weight member provided to the holding means. The outer shape of the holding means is a polygonal shape including a first side section. The first weight member is disposed along the first side section, and is disposed closer to the center of the first side section than an end of the first side section.
Description
本発明は、保持装置、アライメント装置、成膜装置、成膜方法及び製造方法に関する。
The present invention relates to a holding device, an alignment device, a film forming device, a film forming method, and a manufacturing method.
物体を保持する機構として、浮上状態で物体を支持する機構が提案されている。例えば、特許文献1には、半導体露光装置において、基板を保持するステージを浮上状態で支持するものが開示されている。このような保持機構では、ステージの浮上姿勢を錘部材で調整し、ステージが例えば水平姿勢に維持されるようにしている。
Mechanisms that support objects in a floating state have been proposed as mechanisms for holding objects. For example, Patent Document 1 discloses a semiconductor exposure apparatus that supports a stage that holds a substrate in a floating state. In this type of holding mechanism, the floating attitude of the stage is adjusted with a weight member so that the stage is maintained in, for example, a horizontal attitude.
錘部材の設置は浮上姿勢を調整する点で有利である一方、錘部材を設置したことによっては、物体を保持する部材の振動特性に影響を与える場合がある。例えば、錘部材を設置したことによって物体を保持する部材の固有振動数が低下し、振動特性が悪化する場合がある。
While installing a weight member is advantageous in terms of adjusting the levitation posture, installing the weight member may affect the vibration characteristics of the member that holds the object. For example, installing a weight member may lower the natural frequency of the member that holds the object, deteriorating the vibration characteristics.
本発明の目的は、錘部材によって浮上姿勢を調整しつつ、振動特性に対する錘部材の影響を抑制することにある。
The object of the present invention is to adjust the levitation posture using a weight member while suppressing the effect of the weight member on vibration characteristics.
本発明によれば、
物体を保持する保持手段と、
前記保持手段を浮上状態で支持する支持手段と、
前記保持手段に設けられた第1の錘部材と、
を備えた保持装置であって、
前記保持手段の外形が、第1の辺部を含む多角形状であり、
前記第1の錘部材は、前記第1の辺部に沿って配置され、かつ、前記第1の辺部の端部よりも、前記第1の辺部の中央側に配置される、
ことを特徴とする保持装置。 According to the present invention,
A holding means for holding an object;
a support means for supporting the holding means in a floating state;
a first weight member provided on the holding means;
A holding device comprising:
The outer shape of the holding means is a polygon including a first side portion,
the first weight member is disposed along the first side portion and is disposed closer to a center of the first side portion than an end portion of the first side portion;
A holding device characterized in that
物体を保持する保持手段と、
前記保持手段を浮上状態で支持する支持手段と、
前記保持手段に設けられた第1の錘部材と、
を備えた保持装置であって、
前記保持手段の外形が、第1の辺部を含む多角形状であり、
前記第1の錘部材は、前記第1の辺部に沿って配置され、かつ、前記第1の辺部の端部よりも、前記第1の辺部の中央側に配置される、
ことを特徴とする保持装置。 According to the present invention,
A holding means for holding an object;
a support means for supporting the holding means in a floating state;
a first weight member provided on the holding means;
A holding device comprising:
The outer shape of the holding means is a polygon including a first side portion,
the first weight member is disposed along the first side portion and is disposed closer to a center of the first side portion than an end portion of the first side portion;
A holding device characterized in that
本発明によれば、錘部材によって浮上姿勢を調整しつつ、振動特性に対する錘部材の影響を抑制することができる。
According to the present invention, the floating attitude can be adjusted using the weight member while suppressing the effect of the weight member on vibration characteristics.
以下、添付図面を参照して実施形態を詳しく説明する。尚、以下の実施形態は特許請求の範囲に係る発明を限定するものではない。実施形態には複数の特徴が記載されているが、これらの複数の特徴の全てが発明に必須のものとは限らず、また、複数の特徴は任意に組み合わせられてもよい。さらに、添付図面においては、同一若しくは同様の構成に同一の参照番号を付し、重複した説明は省略する。
Below, the embodiments are described in detail with reference to the attached drawings. Note that the following embodiments do not limit the invention according to the claims. Although the embodiments describe multiple features, not all of these multiple features are necessarily essential to the invention, and multiple features may be combined in any manner. Furthermore, in the attached drawings, the same reference numbers are used for the same or similar configurations, and duplicate explanations are omitted.
<第1実施形態>
<電子デバイスの製造ライン>
図1は、本発明を適用可能な電子デバイスの製造ラインの構成の一部を示す模式図である。図1の製造ラインは、例えば、スマートフォン用の有機EL表示装置の表示パネルの製造に用いられるもので、基板1が成膜ブロック401に順次搬送され、基板1に有機ELの成膜が行われる。 First Embodiment
<Electronic device manufacturing line>
1 is a schematic diagram showing a part of the configuration of a manufacturing line for electronic devices to which the present invention can be applied. The manufacturing line in FIG. 1 is used, for example, for manufacturing display panels for organic EL display devices for smartphones, in whichsubstrates 1 are sequentially transported to a film-forming block 401, and an organic EL film is formed on the substrates 1.
<電子デバイスの製造ライン>
図1は、本発明を適用可能な電子デバイスの製造ラインの構成の一部を示す模式図である。図1の製造ラインは、例えば、スマートフォン用の有機EL表示装置の表示パネルの製造に用いられるもので、基板1が成膜ブロック401に順次搬送され、基板1に有機ELの成膜が行われる。 First Embodiment
<Electronic device manufacturing line>
1 is a schematic diagram showing a part of the configuration of a manufacturing line for electronic devices to which the present invention can be applied. The manufacturing line in FIG. 1 is used, for example, for manufacturing display panels for organic EL display devices for smartphones, in which
成膜ブロック401には、平面視で八角形の形状を有する搬送室402の周囲に、基板1に対する成膜処理が行われる複数の成膜室403a~403dと、使用前後のマスクが収納されるマスク格納室405とが配置されている。搬送室402には、基板1を搬送する搬送ロボット402aが配置されている。搬送ロボット402aは、基板1を保持するハンドと、ハンドを水平方向に移動する多関節アームとを含む。換言すれば、成膜ブロック401は、搬送ロボット402aの周囲を取り囲むように複数の成膜室403a~403dが配置されたクラスタ型の成膜ユニットである。なお、成膜室403a~403dを総称する場合、或いは、区別しない場合は成膜室403と表記する。
In the deposition block 401, a plurality of deposition chambers 403a to 403d in which deposition processing is performed on the substrate 1, and a mask storage chamber 405 in which masks before and after use are stored are arranged around a transfer chamber 402 that has an octagonal shape in a plan view. A transfer robot 402a that transfers the substrate 1 is arranged in the transfer chamber 402. The transfer robot 402a includes a hand that holds the substrate 1 and a multi-joint arm that moves the hand horizontally. In other words, the deposition block 401 is a cluster-type deposition unit in which a plurality of deposition chambers 403a to 403d are arranged to surround the transfer robot 402a. When the deposition chambers 403a to 403d are collectively referred to or when no distinction is made, they are referred to as deposition chambers 403.
基板1の搬送方向(矢印方向)で、成膜ブロック401の上流側、下流側には、それぞれ、バッファ室406、旋回室407、受渡室408が配置されている。製造過程において、各室は真空状態に維持される。なお、図1においては成膜ブロック401を1つしか図示していないが、本実施形態に係る製造ラインは複数の成膜ブロック401を有しており、複数の成膜ブロック401が、バッファ室406、旋回室407、受渡室408で構成される連結装置で連結された構成を有する。なお、連結装置の構成はこれに限定はされず、例えばバッファ室406又は受渡室408のみで構成されていてもよい。
In the transport direction (arrow direction) of the substrate 1, a buffer chamber 406, a swirl chamber 407, and a delivery chamber 408 are disposed upstream and downstream of the deposition block 401, respectively. During the manufacturing process, each chamber is maintained in a vacuum state. Although only one deposition block 401 is shown in FIG. 1, the manufacturing line according to this embodiment has multiple deposition blocks 401, which are connected by a connection device composed of a buffer chamber 406, a swirl chamber 407, and a delivery chamber 408. The configuration of the connection device is not limited to this, and may be composed of only the buffer chamber 406 or the delivery chamber 408, for example.
搬送ロボット402aは、上流側の受渡室408から搬送室402への基板1の搬入、成膜室403間での基板1の搬送、マスク格納室305と成膜室303との間でのマスクの搬送、及び、搬送室402から下流側のバッファ室406への基板1の搬出、を行う。
The transport robot 402a transports the substrate 1 from the upstream delivery chamber 408 to the transport chamber 402, transports the substrate 1 between the deposition chambers 403, transports the mask between the mask storage chamber 305 and the deposition chamber 303, and transports the substrate 1 from the transport chamber 402 to the downstream buffer chamber 406.
バッファ室406は、製造ラインの稼働状況に応じて基板1を一時的に格納するための室である。バッファ室406には、カセットとも呼ばれる基板収納棚と、昇降機構とが設けられる。基板収納棚は、複数枚の基板1を基板1の被処理面(被成膜面)が重力方向下方を向く水平状態を保ったまま収納可能な多段構造を有する。昇降機構は、基板1が搬入又は搬出される段を搬送位置に合わせるために、基板収納棚を昇降させる。これにより、バッファ室406には複数の基板1を一時的に収容し、滞留させることができる。
The buffer chamber 406 is a chamber for temporarily storing substrates 1 depending on the operating status of the production line. The buffer chamber 406 is provided with a substrate storage shelf, also called a cassette, and a lifting mechanism. The substrate storage shelf has a multi-tier structure capable of storing multiple substrates 1 while maintaining the substrate 1 in a horizontal position with the surface to be processed (surface to be deposited) facing downward in the direction of gravity. The lifting mechanism raises and lowers the substrate storage shelf to align the tier where the substrate 1 is loaded or unloaded with the transport position. This allows multiple substrates 1 to be temporarily stored and retained in the buffer chamber 406.
旋回室407は基板1の向きを変更する装置を備えている。例えば、旋回室407では、旋回室407に設けられた搬送ロボットによって基板1の向きを180度回転させる。旋回室407に設けられた搬送ロボットが、バッファ室406で受け取った基板1を支持した状態で180度旋回し受渡室408に引き渡すことで、バッファ室406内と受渡室408とで基板の前端と後端が入れ替わる。これにより、成膜室403に基板1を搬入する際の向きが、各成膜ブロック401で同じ向きになるため、基板1に対する成膜のスキャン方向やマスクの向きを各成膜ブロック401において一致させることができる。このような構成とすることで、各成膜ブロック401においてマスク格納室405にマスクを設置する向きを揃えることができ、マスクの管理が簡易化されユーザビリティを高めることができる。
The swirl chamber 407 is equipped with a device for changing the orientation of the substrate 1. For example, in the swirl chamber 407, the orientation of the substrate 1 is rotated 180 degrees by a transport robot provided in the swirl chamber 407. The transport robot provided in the swirl chamber 407 rotates 180 degrees while supporting the substrate 1 received in the buffer chamber 406 and delivers it to the delivery chamber 408, so that the front end and rear end of the substrate are swapped between the buffer chamber 406 and the delivery chamber 408. As a result, the orientation of the substrate 1 when it is brought into the film formation chamber 403 is the same in each film formation block 401, so that the scan direction of film formation on the substrate 1 and the orientation of the mask can be aligned in each film formation block 401. With this configuration, the orientation of the mask installed in the mask storage chamber 405 in each film formation block 401 can be aligned, simplifying mask management and improving usability.
製造ラインの制御系は、ホストコンピュータとしてライン全体を制御する上位装置400と、各構成を制御する制御装置140a~140d、409、410とを含み、これらは有線又は無線の通信回線400aを介して通信可能である。制御装置140a~140dは、成膜室403a~403dに対応して設けられ、後述する成膜装置100を制御する。なお、制御装置140a~140dを総称する場合、或いは、区別しない場合は制御装置140と表記する。
The control system of the manufacturing line includes a higher-level device 400 that controls the entire line as a host computer, and control devices 140a-140d, 409, 410 that control each component, and these can communicate via a wired or wireless communication line 400a. The control devices 140a-140d are provided corresponding to the deposition chambers 403a-403d, and control the deposition device 100 described below. Note that when the control devices 140a-140d are referred to collectively or when no distinction is made, they are referred to as control device 140.
制御装置409は搬送ロボット402aを制御する。制御装置410は旋回室307の装置を制御する。上位装置400は、基板1に関する情報や搬送タイミング等の指示を各制御装置140、409、410に送信し、各制御装置140、409、410は受信した指示に基づき各構成を制御する。
The control device 409 controls the transport robot 402a. The control device 410 controls the devices in the swirl chamber 307. The higher-level device 400 transmits information about the substrate 1 and instructions such as transport timing to each of the control devices 140, 409, and 410, and each of the control devices 140, 409, and 410 controls each component based on the received instructions.
<成膜装置>
図2は本発明の実施形態に係る成膜装置100を模式的に示す概略図である。成膜装置100は、基板1に蒸着物質を成膜する装置であり、マスク2を用いて所定のパターンの蒸着物質の薄膜を基板1に形成する。成膜装置100で成膜が行われる基板1の材質は、例えば、ガラス、樹脂、金属等の材料を適宜選択可能である。蒸着物質としては、有機材料、無機材料(金属、金属酸化物など)などの物質である。成膜処理は、基板1がマスク2の上に載置され、基板1とマスク2が互いに重ね合わされた状態で行われる。 <Film forming equipment>
2 is a schematic diagram showing afilm forming apparatus 100 according to an embodiment of the present invention. The film forming apparatus 100 is an apparatus for forming a film of a deposition material on a substrate 1, and forms a thin film of the deposition material in a predetermined pattern on the substrate 1 using a mask 2. The material of the substrate 1 on which a film is formed in the film forming apparatus 100 can be appropriately selected from materials such as glass, resin, and metal. The deposition material is an organic material, an inorganic material (metal, metal oxide, etc.), and the like. The film forming process is performed in a state in which the substrate 1 is placed on the mask 2 and the substrate 1 and the mask 2 are superimposed on each other.
図2は本発明の実施形態に係る成膜装置100を模式的に示す概略図である。成膜装置100は、基板1に蒸着物質を成膜する装置であり、マスク2を用いて所定のパターンの蒸着物質の薄膜を基板1に形成する。成膜装置100で成膜が行われる基板1の材質は、例えば、ガラス、樹脂、金属等の材料を適宜選択可能である。蒸着物質としては、有機材料、無機材料(金属、金属酸化物など)などの物質である。成膜処理は、基板1がマスク2の上に載置され、基板1とマスク2が互いに重ね合わされた状態で行われる。 <Film forming equipment>
2 is a schematic diagram showing a
成膜装置100は、例えば表示装置(フラットパネルディスプレイなど)や薄膜太陽電池、有機光電変換素子(有機薄膜撮像素子)等の電子デバイスや、光学部材等を製造する製造装置に適用可能であり、特に、有機ELパネルを製造する製造装置に適用可能である。以下の説明においては成膜装置100が真空蒸着によって基板1に成膜を行う例を想定するが、本発明はこれに限定はされず、スパッタやCVD等の各種成膜方法を適用可能である。なお、各図において矢印Zは上下方向(重力方向)を示し、矢印X及び矢印Yは互いに直交する水平方向を示す。
The film forming apparatus 100 can be used as a manufacturing apparatus for manufacturing electronic devices such as display devices (such as flat panel displays), thin-film solar cells, and organic photoelectric conversion elements (organic thin-film imaging elements), as well as optical components, and is particularly applicable to a manufacturing apparatus for manufacturing organic EL panels. In the following explanation, an example is assumed in which the film forming apparatus 100 forms a film on the substrate 1 by vacuum deposition, but the present invention is not limited to this, and various film forming methods such as sputtering and CVD can be applied. In each figure, the arrow Z indicates the up-down direction (the direction of gravity), and the arrows X and Y indicate horizontal directions that are perpendicular to each other.
成膜装置100は、底部111、側部112、天部113を有する箱型の真空チャンバ110(単にチャンバ110と呼ぶ場合がある)を備えている。真空チャンバ110の内部空間114は、真空雰囲気か、窒素ガスなどの不活性ガス雰囲気に維持されている。本実施形態では、真空チャンバ110は不図示の真空ポンプに接続されている。なお、本明細書において「真空」とは、大気圧より低い圧力の気体で満たされた状態、換言すれば減圧状態をいう。
The film forming apparatus 100 includes a box-shaped vacuum chamber 110 (sometimes simply referred to as chamber 110) having a bottom 111, sides 112, and a top 113. An internal space 114 of the vacuum chamber 110 is maintained in a vacuum atmosphere or an inert gas atmosphere such as nitrogen gas. In this embodiment, the vacuum chamber 110 is connected to a vacuum pump (not shown). In this specification, "vacuum" refers to a state filled with gas at a pressure lower than atmospheric pressure, in other words, a reduced pressure state.
真空チャンバ110の内部空間114には、基板1を水平姿勢で保持する保持装置300、マスク2を支持するマスク支持ユニット9、蒸着ユニット12、プレートユニット11が配置される。
In the internal space 114 of the vacuum chamber 110, a holding device 300 that holds the substrate 1 in a horizontal position, a mask support unit 9 that supports the mask 2, a deposition unit 12, and a plate unit 11 are arranged.
マスク2は、基板1上に形成する薄膜パターンに対応する開口パターンをもち、マスク台91の上に載置されている。なお、マスク台91は、マスク2を所定の位置に固定する他の形態の手段に置換可能である。マスク2としては、枠状のマスクフレームに数μm~数十μm程度の厚さのマスク箔が溶接固定された構造を有するマスクを用いることができる。マスクの材質は特に限定はされないが、インバー材などの熱膨張係数の小さい金属を用いることが好ましい。成膜処理は、基板1がマスク2の上に載置され、基板1とマスク2とが互いに重ね合わされた状態で行われる。
The mask 2 has an opening pattern corresponding to the thin film pattern to be formed on the substrate 1, and is placed on the mask table 91. The mask table 91 can be replaced with other means for fixing the mask 2 in a predetermined position. The mask 2 can be a mask having a structure in which a mask foil having a thickness of several μm to several tens of μm is welded to a frame-shaped mask frame. The material of the mask is not particularly limited, but it is preferable to use a metal with a small thermal expansion coefficient such as Invar. The film formation process is performed with the substrate 1 placed on the mask 2 and the substrate 1 and mask 2 overlapping each other.
プレートユニット11は、冷却プレート11aと、磁石プレート11bと、プレート可動部11cとを備える。冷却プレート11aは磁石プレート11bの下に配置され、冷却プレート11a及び磁石プレート11bはプレート可動部11cによってZ方向に変位可能に吊り下げられている。冷却プレート11aは、成膜時に後述する保持部6に接近することにより、保持部6に吸着された基板1を冷却する機能を有する。冷却プレート11aは水冷機構等を備えて積極的に基板1を冷却するものに限定はされず、水冷機構等は設けられていないものの保持部6に接近することによって基板1の熱を奪う板状部材であってもよい。磁石プレート11bは、磁力によってマスク2を引き寄せるプレートであり、基板1の上面に載置されて、成膜時に基板1とマスク2の密着性を向上する。
The plate unit 11 includes a cooling plate 11a, a magnet plate 11b, and a plate movable part 11c. The cooling plate 11a is disposed below the magnet plate 11b, and the cooling plate 11a and the magnet plate 11b are suspended by the plate movable part 11c so as to be displaceable in the Z direction. The cooling plate 11a has a function of cooling the substrate 1 attracted to the holder 6 by approaching the holder 6 described later during film formation. The cooling plate 11a is not limited to a type that is equipped with a water cooling mechanism or the like and actively cools the substrate 1, and may be a plate-like member that does not have a water cooling mechanism or the like but removes heat from the substrate 1 by approaching the holder 6. The magnet plate 11b is a plate that attracts the mask 2 by magnetic force, and is placed on the upper surface of the substrate 1 to improve the adhesion between the substrate 1 and the mask 2 during film formation.
なお、冷却プレート11aと磁石プレート11bは適宜省略されてもよい。例えば、保持部6に冷却機構が設けられている場合、冷却プレート11aはなくてもよい。また、保持部6がマスク2を吸着する構成として、磁石プレート11bが無い構成であってもよい。
The cooling plate 11a and the magnetic plate 11b may be omitted as appropriate. For example, if the holding unit 6 is provided with a cooling mechanism, the cooling plate 11a may not be necessary. In addition, the holding unit 6 may be configured to attract the mask 2 without the magnetic plate 11b.
蒸着ユニット12は、ヒータ、シャッタ、蒸発源の駆動機構、蒸発レートモニタなどから構成され、蒸着物質を基板1に蒸着する蒸着源である。より具体的には、本実施形態では、蒸着ユニット12は複数のノズル(不図示)がX方向に並んで配置され、それぞれのノズルから蒸着材料が放出されるリニア蒸発源である。例えば、リニア蒸発源は、蒸発源移動機構(不図示)によってY方向(装置の奥行き方向)に往復移動される。本実施形態では、蒸着ユニット12が後述するアライメント装置2と共に、真空チャンバ110に設けられている。
The deposition unit 12 is composed of a heater, a shutter, an evaporation source drive mechanism, an evaporation rate monitor, etc., and is an evaporation source that deposits an evaporation material onto the substrate 1. More specifically, in this embodiment, the deposition unit 12 is a linear evaporation source in which multiple nozzles (not shown) are arranged in the X direction, and the evaporation material is emitted from each nozzle. For example, the linear evaporation source is moved back and forth in the Y direction (depth direction of the device) by an evaporation source moving mechanism (not shown). In this embodiment, the deposition unit 12 is provided in a vacuum chamber 110 together with an alignment device 2 described later.
<アライメント装置>
成膜装置1は、基板1とマスク2とのアライメントを行うアライメント装置200を備える。アライメント装置200は、基板1を保持する保持装置300、マスク支持ユニット9、位置測定ユニット10、計測ユニット13、除振ユニット120を備えている。また、保持装置300は、基板1を保持する保持ユニット3等を備えている。以下、アライメント装置200の各構成について説明する。 <Alignment device>
Thefilm forming apparatus 1 includes an alignment device 200 that aligns a substrate 1 and a mask 2. The alignment device 200 includes a holding device 300 that holds the substrate 1, a mask support unit 9, a position measurement unit 10, a measurement unit 13, and a vibration isolation unit 120. The holding device 300 also includes a holding unit 3 that holds the substrate 1, etc. Each component of the alignment device 200 will be described below.
成膜装置1は、基板1とマスク2とのアライメントを行うアライメント装置200を備える。アライメント装置200は、基板1を保持する保持装置300、マスク支持ユニット9、位置測定ユニット10、計測ユニット13、除振ユニット120を備えている。また、保持装置300は、基板1を保持する保持ユニット3等を備えている。以下、アライメント装置200の各構成について説明する。 <Alignment device>
The
マスク支持ユニット9は、マスク台91、マスク支持柱92、マスク昇降機構93、及び気密部材94を含む。マスク台91は、マスク支持柱92に固定されている。マスク支持柱92は、支持フレーム130と天部113の間に設けられた気密部材94を通過してマスク昇降機構93に接続されている。マスク昇降機構93は、支持フレーム130に設けられており、マスク支持柱92をZ方向に昇降させる。気密部材94は、例えば、ベローズであって、気密性と伸縮性を有している。気密部材94は、マスク支持柱92の昇降時に、真空チャンバ110の真空度が損なわれることを防ぐことができる。
The mask support unit 9 includes a mask table 91, a mask support column 92, a mask lifting mechanism 93, and an airtight member 94. The mask table 91 is fixed to the mask support column 92. The mask support column 92 is connected to the mask lifting mechanism 93 through an airtight member 94 provided between the support frame 130 and the ceiling 113. The mask lifting mechanism 93 is provided on the support frame 130, and raises and lowers the mask support column 92 in the Z direction. The airtight member 94 is, for example, a bellows, and is airtight and elastic. The airtight member 94 can prevent the vacuum level of the vacuum chamber 110 from being compromised when the mask support column 92 is raised and lowered.
位置測定ユニット10は、基板1を保持する保持ユニット3の位置を測定する。位置測定ユニット10は、保持ユニット3のX方向、Y方向、Z方向の位置を測定するよう、マスク台91に複数配置される(図2ではそのうちの一つのみが図示されている)。位置測定ユニット10が測定する保持ユニット3の各方向における位置情報を基に、保持ユニット3の浮上姿勢(例えばX-Y平面に対する傾き)及び浮上位置(例えばZ方向の位置)を調整することができる。位置測定ユニット10は、例えば、非接触で対象物までの距離を測定するレーザ変位計を用いてもよい。
The position measurement unit 10 measures the position of the holding unit 3 that holds the substrate 1. A plurality of position measurement units 10 are arranged on the mask stage 91 so as to measure the positions of the holding unit 3 in the X, Y, and Z directions (only one of them is shown in FIG. 2). Based on the position information of the holding unit 3 in each direction measured by the position measurement unit 10, the floating attitude (e.g., the inclination with respect to the X-Y plane) and floating position (e.g., the position in the Z direction) of the holding unit 3 can be adjusted. The position measurement unit 10 may use, for example, a laser displacement meter that measures the distance to the object in a non-contact manner.
計測ユニット13は、保持ユニット3に保持された基板1とマスク2の位置ずれを計測する。計測ユニット13は、支持フレーム130に設けられており、支持フレーム130と真空チャンバ天板113に形成された窓部130a、113aを介して真空チャンバ110内の画像を撮像可能である。基板1とマスク2にはそれぞれアライメントマーク(不図示)が形成されている。計測ユニット13は、基板1とマスク2の各アライメントマークを撮影する。計測ユニット13の計測結果に基づいて、後述する制御装置140により各アライメントマークの位置のずれを解消するように保持装置300が制御され、基板1とマスク2との相対位置を調整する。
The measurement unit 13 measures the positional deviation between the substrate 1 and mask 2 held by the holding unit 3. The measurement unit 13 is provided on the support frame 130, and can capture an image of the inside of the vacuum chamber 110 through windows 130a, 113a formed in the support frame 130 and the vacuum chamber top plate 113. Alignment marks (not shown) are formed on the substrate 1 and mask 2, respectively. The measurement unit 13 captures the alignment marks of the substrate 1 and mask 2. Based on the measurement results of the measurement unit 13, the control device 140 (described later) controls the holding device 300 to eliminate the positional deviation of each alignment mark, and adjusts the relative positions of the substrate 1 and mask 2.
計測ユニット13は、例えば、相対的に視野が広いが低い解像度を有する低倍率CCDカメラ(ラフカメラ)や、相対的に視野が狭いが高い解像度(例えば数μmのオーダ)を有する高倍率CCDカメラ(ファインカメラ)などの複数の種類のアライメントカメラを用いることができる。これによって、基板1とマスク2との大まかな位置ずれを計測しつつ、基板1とマスク2との位置ずれを高精度で計測することができる。
The measurement unit 13 can use multiple types of alignment cameras, such as a low-magnification CCD camera (rough camera) with a relatively wide field of view but low resolution, and a high-magnification CCD camera (fine camera) with a relatively narrow field of view but high resolution (for example, on the order of a few μm). This makes it possible to measure the rough positional misalignment between the substrate 1 and mask 2 while also measuring the positional misalignment between the substrate 1 and mask 2 with high accuracy.
除振ユニット120は、除振台ベース121、除振台122などによって構成される。除振部120は、例えば、アクティブ除振装置や除振ゴムのようなパッシブ除振装置などであってもよい。除振ユニット120は、真空チャンバ天板113の上部に設けられており、真空チャンバ110に振動が生じた場合に、支持フレーム130側へ振動が伝達することを抑制する。これによって、アライメント装置200は、真空チャンバ110に振動が生じる場合であっても精度の高いアライメントを行うことができる。
The vibration isolation unit 120 is composed of a vibration isolation table base 121, a vibration isolation table 122, etc. The vibration isolation section 120 may be, for example, an active vibration isolation device or a passive vibration isolation device such as a vibration isolation rubber. The vibration isolation unit 120 is provided on top of the vacuum chamber top plate 113, and when vibration occurs in the vacuum chamber 110, it suppresses the transmission of vibration to the support frame 130 side. This allows the alignment device 200 to perform highly accurate alignment even when vibration occurs in the vacuum chamber 110.
<保持装置>
保持装置300について図2に加えて図3を用いて説明する。図3は、図2の保持装置300とその周辺を拡大した図である。保持装置300は、基板を保持する保持ユニット3、保持ユニット3を浮上状態で支持する支持ユニット7、及び、保持ユニット3を変位する位置調整ユニット8を備える。 <Holding device>
The holdingdevice 300 will be described with reference to Fig. 3 in addition to Fig. 2. Fig. 3 is an enlarged view of the holding device 300 and its periphery in Fig. 2. The holding device 300 includes a holding unit 3 that holds a substrate, a support unit 7 that supports the holding unit 3 in a floating state, and a position adjustment unit 8 that displaces the holding unit 3.
保持装置300について図2に加えて図3を用いて説明する。図3は、図2の保持装置300とその周辺を拡大した図である。保持装置300は、基板を保持する保持ユニット3、保持ユニット3を浮上状態で支持する支持ユニット7、及び、保持ユニット3を変位する位置調整ユニット8を備える。 <Holding device>
The holding
保持ユニット3は、基板1を保持する保持部6と、保持部6を支持するプレート部材である本体部5とを有する。保持部6は、本体部5の下側の面Dに設けられている。保持部6は、例えば、基板1を静電気力によって吸着する静電チャックである。静電チャックは、例えば、セラミックス材質のマトリックス(基体とも呼ばれる)の内部に金属電極などの電気回路が埋め込まれた構造を有する。金属電極にプラス(+)及びマイナス(-)電圧が印加されると、セラミックスマトリックスを通じて基板1に分極電荷が誘導され、基板1と保持部6との間の静電気的な引力(静電気力)により、基板1が保持部6の吸着面(下面)に固定される。
The holding unit 3 has a holding part 6 that holds the substrate 1, and a main body part 5 that is a plate member that supports the holding part 6. The holding part 6 is provided on the lower surface D of the main body part 5. The holding part 6 is, for example, an electrostatic chuck that attracts the substrate 1 by electrostatic force. The electrostatic chuck has a structure in which an electric circuit such as a metal electrode is embedded inside a matrix (also called a base) made of a ceramic material, for example. When a positive (+) and negative (-) voltage is applied to the metal electrode, a polarized charge is induced in the substrate 1 through the ceramic matrix, and the electrostatic attraction (electrostatic force) between the substrate 1 and the holding part 6 fixes the substrate 1 to the attraction surface (lower surface) of the holding part 6.
本実施形態の支持ユニット7は、磁力により保持ユニット3を浮上状態で支持する。支持ユニット7は、本体部5に設けられた磁力発生部7aと、固定部材4に設けられた磁力発生部7bを含む。固定部材4は真空チャンバ110に固定されており、磁力発生部7bを支持する。磁力発生部7a及び7bは永久磁石である。磁力発生部7aと磁力発生部7bとの間の磁気吸引力(又は磁気排斥力)によって、保持ユニット3を固定部材4に対して非接触で磁気浮上させて支持することができる。支持ユニット7は、保持ユニット3の自重に相当する浮上力を発生可能である。
The support unit 7 of this embodiment supports the holding unit 3 in a levitated state by magnetic force. The support unit 7 includes a magnetic force generating unit 7a provided on the main body 5 and a magnetic force generating unit 7b provided on the fixed member 4. The fixed member 4 is fixed to the vacuum chamber 110 and supports the magnetic force generating unit 7b. The magnetic force generating units 7a and 7b are permanent magnets. The magnetic attraction force (or magnetic repulsion force) between the magnetic force generating units 7a and 7b allows the holding unit 3 to be magnetically levitated and supported without contact with the fixed member 4. The support unit 7 is capable of generating a levitation force equivalent to the weight of the holding unit 3 itself.
本実施形態の位置調整ユニット8は、磁力により保持ユニット3を変位するユニットであり、例えば、リニアモータである。位置調整ユニット8は、本体部5に設けられた磁力発生部8aと、固定部材4に設けられた磁力発生部8bとを有する。磁力発生部8a及び8bの一方は永久磁石であり、他方は電磁石である。
The position adjustment unit 8 in this embodiment is a unit that displaces the holding unit 3 by magnetic force, and is, for example, a linear motor. The position adjustment unit 8 has a magnetic force generating unit 8a provided on the main body 5 and a magnetic force generating unit 8b provided on the fixed member 4. One of the magnetic force generating units 8a and 8b is a permanent magnet, and the other is an electromagnet.
位置調整ユニット8は、複数組設けられており(後述する図6等を参照)、保持ユニット3をXYZ方向の並進方向の変位と、X、Y、Z軸周りの回転方向の変位と、姿勢の調整(水平方向に対する傾き)とを行える。
The position adjustment unit 8 is provided in multiple sets (see FIG. 6, etc., described later), and can adjust the holding unit 3 in translation in the X, Y, and Z directions, in rotation around the X, Y, and Z axes, and in posture (tilt with respect to the horizontal direction).
<制御装置>
制御装置140は、成膜装置100の全体を制御する。制御装置140は、処理部140a、記憶部140b、入出力インタフェース(I/O)140c及び通信部140dを備える。処理部140aは、CPUに代表されるプロセッサであり、記憶部140bに記憶されたプログラムを実行して成膜装置100を制御する。記憶部140bは、ROM、RAM、HDD等の記憶デバイスであり、処理部140aが実行するプログラムの他、各種の制御情報を記憶する。I/O140cは、処理部140aと外部デバイスとの間の信号を送受信するインタフェースである。通信部140dは通信回線を介して上記装置又は他の制御装置等と通信を行う通信デバイスである。 <Control device>
Thecontrol device 140 controls the entire film forming apparatus 100. The control device 140 includes a processing unit 140a, a storage unit 140b, an input/output interface (I/O) 140c, and a communication unit 140d. The processing unit 140a is a processor such as a CPU, and controls the film forming apparatus 100 by executing a program stored in the storage unit 140b. The storage unit 140b is a storage device such as a ROM, RAM, or HDD, and stores various control information in addition to the program executed by the processing unit 140a. The I/O 140c is an interface that transmits and receives signals between the processing unit 140a and an external device. The communication unit 140d is a communication device that communicates with the above-mentioned devices or other control devices via a communication line.
制御装置140は、成膜装置100の全体を制御する。制御装置140は、処理部140a、記憶部140b、入出力インタフェース(I/O)140c及び通信部140dを備える。処理部140aは、CPUに代表されるプロセッサであり、記憶部140bに記憶されたプログラムを実行して成膜装置100を制御する。記憶部140bは、ROM、RAM、HDD等の記憶デバイスであり、処理部140aが実行するプログラムの他、各種の制御情報を記憶する。I/O140cは、処理部140aと外部デバイスとの間の信号を送受信するインタフェースである。通信部140dは通信回線を介して上記装置又は他の制御装置等と通信を行う通信デバイスである。 <Control device>
The
<成膜装置の動作例>
成膜装置100の動作例について図4及び図5を用いて説明する。図4及び図5は、基板1が真空チャンバ内部114に搬入され、基板1とマスク2とのアライメント後に、基板1に蒸着物質の成膜が行われる際の成膜装置100の状態の一例を示す。 <Example of film formation device operation>
An operation example of thefilm forming apparatus 100 will be described with reference to Fig. 4 and Fig. 5. Fig. 4 and Fig. 5 show an example of a state of the film forming apparatus 100 when the substrate 1 is carried into the inside 114 of the vacuum chamber, the substrate 1 is aligned with the mask 2, and then a film of a deposition material is formed on the substrate 1.
成膜装置100の動作例について図4及び図5を用いて説明する。図4及び図5は、基板1が真空チャンバ内部114に搬入され、基板1とマスク2とのアライメント後に、基板1に蒸着物質の成膜が行われる際の成膜装置100の状態の一例を示す。 <Example of film formation device operation>
An operation example of the
図4の状態ST41は、図1に示した搬送ロボット402aによって基板1が真空チャンバ110の内部空間114に搬入される前の成膜装置100の状態の一例を示している。マスク台91はマスク昇降機構93によって下降される。図4の状態ST41から基板1が内部空間114に搬入され、保持ユニット3の保持部6に基板1が保持される。
State ST41 in FIG. 4 shows an example of the state of the film forming apparatus 100 before the substrate 1 is loaded into the internal space 114 of the vacuum chamber 110 by the transfer robot 402a shown in FIG. 1. The mask stage 91 is lowered by the mask lifting mechanism 93. From state ST41 in FIG. 4, the substrate 1 is loaded into the internal space 114, and the substrate 1 is held by the holding portion 6 of the holding unit 3.
図4の状態ST42は、基板1とマスク2のアライメント動作時の成膜装置100の状態を示している。基板1は保持部6に保持される。マスク2はアライメント位置まで上昇される。基板1とマスク2のアライメントは、基板1とマスク2が極僅かに離れた状態で行われる。図4及び図5では、動作を分かり易くするため基板1とマスク2との隙間を誇張して表している。
State ST42 in Figure 4 shows the state of the film forming apparatus 100 during the alignment operation of the substrate 1 and mask 2. The substrate 1 is held by the holder 6. The mask 2 is raised to the alignment position. The alignment of the substrate 1 and mask 2 is performed with the substrate 1 and mask 2 spaced apart very slightly. In Figures 4 and 5, the gap between the substrate 1 and mask 2 is exaggerated to make the operation easier to understand.
アライメント動作においては、まず、マスク台91に設けられた位置測定ユニット10によって、保持ユニット3の浮上位置が測定される。位置測定ユニット10が測定した情報を基に、図1に示した制御装置140によって座標変換が行われ、保持ユニット3の6自由度(X方向、Y方向、Z方向、θX方向、θY方向、θZ方向)の位置情報が演算される。保持ユニット3の6自由度の位置情報に基づいて、制御装置140は保持ユニット3の浮上位置を調整するために位置調整ユニット8の制御を行う。位置調整ユニット8によって保持ユニット3の浮上姿勢は、水平に維持される。このようにして、保持ユニット3の浮上姿勢が水平に調整されることで、高精度なアライメント動作を行うことができる。
In the alignment operation, first, the levitation position of the holding unit 3 is measured by the position measurement unit 10 provided on the mask stage 91. Based on the information measured by the position measurement unit 10, the control device 140 shown in FIG. 1 performs coordinate conversion and calculates position information of the holding unit 3 in six degrees of freedom (X direction, Y direction, Z direction, θX direction, θY direction, and θZ direction). Based on the position information of the six degrees of freedom of the holding unit 3, the control device 140 controls the position adjustment unit 8 to adjust the levitation position of the holding unit 3. The position adjustment unit 8 maintains the levitation attitude of the holding unit 3 horizontally. In this way, the levitation attitude of the holding unit 3 is adjusted horizontally, making it possible to perform a highly accurate alignment operation.
次に、計測ユニット13は、基板1とマスク2に設けられたアライメントマークを撮影して、基板1とマスク2との位置ずれ量を計測する。「位置ずれ量」とは、X方向、Y方向、Z軸周りのθ方向の基板1マスク2との相対的なずれの量である。位置ずれ量が小さくなるように制御装置104が位置調整ユニット8を制御し、保持ユニット3の位置調整が行われる。位置ずれ量が許容範囲内になるまで計測と位置調整を繰り返す。これによって、マスク2に対する基板1の相対位置が調整される。
Next, the measurement unit 13 photographs the alignment marks on the substrate 1 and mask 2, and measures the amount of misalignment between the substrate 1 and mask 2. The "amount of misalignment" refers to the amount of relative misalignment between the substrate 1 and mask 2 in the X direction, Y direction, and the θ direction around the Z axis. The control device 104 controls the position adjustment unit 8 so as to reduce the amount of misalignment, and the position of the holding unit 3 is adjusted. Measurement and position adjustment are repeated until the amount of misalignment falls within the allowable range. This adjusts the relative position of the substrate 1 with respect to the mask 2.
アライメント動作が完了すると、基板1をマスク2上に載置する。図5の状態ST51に示すように本体部5の開口部50aにプレートユニット11の冷却プレート11a及び磁石プレート11bが降下される。プレートユニット11は、本体部5の開口部50aに向けて下降され、図5の状態ST52に示すように冷却プレート11aが保持部6に接近する。磁石プレート11bの磁力によって、マスク2が引き寄せられ、マスク2と基板1とを全体的に密着させることができる。その後、蒸着ユニット12から、マスク2を介して基板1に蒸着物質を放出する成膜処理を行う。基板1に蒸着物質の薄膜が成膜される。
Once the alignment operation is complete, the substrate 1 is placed on the mask 2. As shown in state ST51 of FIG. 5, the cooling plate 11a and magnet plate 11b of the plate unit 11 are lowered into the opening 50a of the main body 5. The plate unit 11 is lowered toward the opening 50a of the main body 5, and the cooling plate 11a approaches the holder 6 as shown in state ST52 of FIG. 5. The mask 2 is attracted by the magnetic force of the magnet plate 11b, and the mask 2 and the substrate 1 can be brought into close contact as a whole. After that, a film formation process is performed in which the deposition material is released from the deposition unit 12 through the mask 2 onto the substrate 1. A thin film of the deposition material is formed on the substrate 1.
<保持ユニットの構造>
保持ユニット3の構造の詳細について説明する。上述したように基板1とマスク2の位置ずれを調整するアライメント動作は、保持ユニット3が浮上した状態で行われる。本体部5に錘部材を配置することで、保持ユニット3の重量バランスを調整し、保持ユニット3の浮上姿勢が水平姿勢になりやすくすることができる。一方、錘部材の配置によっては、保持ユニット3の振動特性に影響を与える場合がある。本実施形態では、錘部材によって保持ユニット3の浮上姿勢を調整しつつ、錘部材の配置によって、振動特性に対する錘部材の影響を抑制する構造を示している。図6は、保持ユニット3の平面図であり、図3のA―A線矢視方向の図に相当する。図7は保持ユニット3の斜視図である。以下の説明では、便宜的にY方向を前後方向、X方向を左右方向と呼ぶ場合がある。 <Structure of holding unit>
The structure of the holding unit 3 will be described in detail. As described above, the alignment operation for adjusting the positional deviation between thesubstrate 1 and the mask 2 is performed in a state in which the holding unit 3 is floating. By disposing a weight member on the main body 5, the weight balance of the holding unit 3 can be adjusted, and the floating attitude of the holding unit 3 can be easily made horizontal. On the other hand, depending on the arrangement of the weight member, the vibration characteristics of the holding unit 3 may be affected. In this embodiment, a structure is shown in which the floating attitude of the holding unit 3 is adjusted by the weight member, while the influence of the weight member on the vibration characteristics is suppressed by the arrangement of the weight member. FIG. 6 is a plan view of the holding unit 3, and corresponds to the view in the direction of the arrow A-A in FIG. 3. FIG. 7 is a perspective view of the holding unit 3. In the following description, for convenience, the Y direction may be called the front-rear direction and the X direction may be called the left-right direction.
保持ユニット3の構造の詳細について説明する。上述したように基板1とマスク2の位置ずれを調整するアライメント動作は、保持ユニット3が浮上した状態で行われる。本体部5に錘部材を配置することで、保持ユニット3の重量バランスを調整し、保持ユニット3の浮上姿勢が水平姿勢になりやすくすることができる。一方、錘部材の配置によっては、保持ユニット3の振動特性に影響を与える場合がある。本実施形態では、錘部材によって保持ユニット3の浮上姿勢を調整しつつ、錘部材の配置によって、振動特性に対する錘部材の影響を抑制する構造を示している。図6は、保持ユニット3の平面図であり、図3のA―A線矢視方向の図に相当する。図7は保持ユニット3の斜視図である。以下の説明では、便宜的にY方向を前後方向、X方向を左右方向と呼ぶ場合がある。 <Structure of holding unit>
The structure of the holding unit 3 will be described in detail. As described above, the alignment operation for adjusting the positional deviation between the
本体部5は、平面視で保持ユニット3の外形を形成する。本体部5の外形は多角形状であって、特に矩形(正方形)である。点Pは本体部5の外形の図心である。本体部5は、その中央部に円形の開口部50aを有する板状の部材である。開口部50aはプレートユニット11の冷却プレート11a及び磁石プレート11bが通過可能な大きさを有している。
The main body 5 forms the outer shape of the holding unit 3 in a plan view. The outer shape of the main body 5 is polygonal, and in particular rectangular (square). Point P is the centroid of the outer shape of the main body 5. The main body 5 is a plate-like member having a circular opening 50a in its center. The opening 50a is large enough to allow the cooling plate 11a and magnet plate 11b of the plate unit 11 to pass through.
本体部5は、Y方向に互いに対向する前辺部5F及び後辺部5Bと、これら前辺部5F及び後辺部5Bの間の、X方向に互いに対向する左辺部5L及び右辺部5Rと、を有し、また、角部5a~5dを有している。角部5a及び5bは、前辺部5Fの両端部の角部である。角部5c及び5dは、後辺部5Bの両端部の角部である。角部5a及び5dは左辺部5Lの両端部の角部である。角部5b及び5cは右辺部5Rの両端部の角部である。前辺部5F及び後辺部5Bは平行であり、左辺部5L及び右辺部5Rは平行である。前辺部5F及び後辺部5Bの方向と、左辺部5L及び右辺部5Rの方向とは直交している。
The main body 5 has a front edge 5F and a rear edge 5B that face each other in the Y direction, and a left edge 5L and a right edge 5R that face each other in the X direction between the front edge 5F and the rear edge 5B, and also has corners 5a to 5d. The corners 5a and 5b are corners at both ends of the front edge 5F. The corners 5c and 5d are corners at both ends of the rear edge 5B. The corners 5a and 5d are corners at both ends of the left edge 5L. The corners 5b and 5c are corners at both ends of the right edge 5R. The front edge 5F and the rear edge 5B are parallel, and the left edge 5L and the right edge 5R are parallel. The direction of the front edge 5F and the rear edge 5B is perpendicular to the direction of the left edge 5L and the right edge 5R.
本体部5の上面Uには、支持ユニット7の磁力発生部7b、位置調整ユニット8の磁力発生部8b、及び、錘部材15が設けられている。面Uは、固定部材4側の面である。本体部の下面Dには、保持部6が設けられている。下面Dは、マスク2が吸着される側の面である。
The upper surface U of the main body 5 is provided with the magnetic force generating portion 7b of the support unit 7, the magnetic force generating portion 8b of the position adjustment unit 8, and the weight member 15. Surface U is the surface on the side of the fixed member 4. The lower surface D of the main body is provided with the holding portion 6. Surface D is the surface on the side to which the mask 2 is attracted.
本実施形態の保持装置300は、4つの支持ユニット7と、4つの位置調整ユニット8とを備えている。このため、本体部5の上面Uには、4つの磁力発生部7bと、4つの磁力発生部8bとが設けられている。4つの磁力発生部7bと、4つの磁力発生部8bとは、本体部5の対角線上の位置に配置されている。4つの磁力発生部8bのうちの2つはY方向に延設され、残りの2つはX方向に延設されている。
The holding device 300 of this embodiment has four support units 7 and four position adjustment units 8. Therefore, four magnetic force generating units 7b and four magnetic force generating units 8b are provided on the upper surface U of the main body 5. The four magnetic force generating units 7b and the four magnetic force generating units 8b are arranged at diagonal positions on the main body 5. Two of the four magnetic force generating units 8b extend in the Y direction, and the remaining two extend in the X direction.
本実施形態の場合、錘部材15は、辺部5F、5B、5L及び5R毎に設けられ、合計で4つである。各錘部材15の重さをチューニングすることによって、保持ユニット3の浮上姿勢を調整することができる。本実施形態では、錘部材15は、固定具150を用いて本体部5に着脱可能に取り付けられている。固定具150は、例えば、本体部5に形成したねじ穴に螺合するボルトである。重さの異なる錘部材15の交換を容易に行うことができ、保持ユニット3の浮上姿勢をより簡易に調整することができる。
In this embodiment, a total of four weight members 15 are provided on each of the sides 5F, 5B, 5L, and 5R. The floating attitude of the holding unit 3 can be adjusted by tuning the weight of each weight member 15. In this embodiment, the weight members 15 are detachably attached to the main body 5 using a fastener 150. The fastener 150 is, for example, a bolt that screws into a screw hole formed in the main body 5. Weight members 15 of different weights can be easily replaced, making it easier to adjust the floating attitude of the holding unit 3.
各錘部材15は、対応する辺部5F、5B、5L又は5Rに沿って設けられている。各錘部材15は、対応する辺部5F~5Rの端部(角部5a~5d)よりも中央51~54の側に配置されている。
Each weight member 15 is provided along the corresponding side 5F, 5B, 5L, or 5R. Each weight member 15 is positioned closer to the center 51-54 than the end (corner 5a-5d) of the corresponding side 5F-5R.
例えば、前辺部5Fに沿って配置された錘部材15は、角部5a及び5bよりも、前辺部5Fの中央51の側に配置されている。同様に、後辺部5Bに沿って配置された錘部材15は、角部5c及び5dよりも後辺部5Bの中央53の側に配置されている。左辺部5Lに沿って配置された錘部材15は、角部5b及び5cよりも左辺部5Lの中央52の側に配置されている。右辺部5Rに沿って配置された錘部材15は、角部5a及び5dよりも右辺部5Rの中央54の側に配置されている。
For example, the weight member 15 arranged along the front edge 5F is positioned closer to the center 51 of the front edge 5F than the corners 5a and 5b. Similarly, the weight member 15 arranged along the rear edge 5B is positioned closer to the center 53 of the rear edge 5B than the corners 5c and 5d. The weight member 15 arranged along the left edge 5L is positioned closer to the center 52 of the left edge 5L than the corners 5b and 5c. The weight member 15 arranged along the right edge 5R is positioned closer to the center 54 of the right edge 5R than the corners 5a and 5d.
本実施形態の場合、各錘部材15の対応する辺部5F、5B、5L及び5Rに沿った位置は、その長手方向の中心(換言すると平面視での図心)が、対応する辺部5F、5B、5L及び5Rの各中央51~54に位置するように配置されているが、錘部材15の配設位置は、これに限られない。
In this embodiment, the positions of the weight members 15 along the corresponding sides 5F, 5B, 5L, and 5R are arranged so that their longitudinal centers (in other words, the centroids in plan view) are located at the centers 51 to 54 of the corresponding sides 5F, 5B, 5L, and 5R, respectively, but the positions of the weight members 15 are not limited to this.
錘部材15の配設位置について図8A及び図8Bを参照して説明する。図8A及び図8Bはその説明図であり、本体部5の模式図である。図8Aは、本体部5の辺部5Fに沿う錘部材15の配設範囲を説明する模式図である。配設範囲は、例えば、範囲L12であり、範囲L12は、辺部5Fの長さL1を5等分したうちの中央51を中心とした3/5の範囲である。長さL1は、辺部5Lと辺部5Rとの間の長さ(離間距離)でもある。
The position of the weight member 15 will be described with reference to Figures 8A and 8B. Figures 8A and 8B are explanatory diagrams and are schematic diagrams of the main body 5. Figure 8A is a schematic diagram explaining the range of the weight member 15 along the side 5F of the main body 5. The range of the range is, for example, range L12, which is 3/5 of the range centered on the center 51 of the length L1 of the side 5F divided into 5 equal parts. Length L1 is also the length (separation distance) between side 5L and side 5R.
配設範囲はL12よりも狭いL11の範囲であってもよい。範囲L11は、辺部5Fの長さL1を4等分したうちの中央51を中心とした2/4の範囲である。また、配設範囲は、L11よりも狭いL10の範囲であってもよい。範囲L10は、辺部5Fの長さL1を3等分したうちの中央51を中心とした1/3の範囲である。本実施形態では、錘部材15が範囲L10内に配置されている。
The arrangement range may be a range L11 narrower than L12. Range L11 is 2/4 of the range centered on the center 51 of the length L1 of the side 5F divided into four equal parts. The arrangement range may be a range L10 narrower than L11. Range L10 is 1/3 of the range centered on the center 51 of the length L1 of the side 5F divided into three equal parts. In this embodiment, the weight member 15 is arranged within range L10.
図8Bは、辺部5Fの範囲L10と同様の範囲を各辺部5B、5L及び5Rについて示した図である。
FIG. 8B is a diagram showing a range similar to range L10 of side 5F for each of sides 5B, 5L, and 5R.
範囲L20は、辺部5Rの長さL2を3等分したうちの中央52を中心とした1/3の範囲であり、本実施形態では対応する錘部材15が範囲L20内に配置されている。長さL2は辺部5Fと辺部5Bとの間の長さ(離間距離)でもある。
Range L20 is one-third of the length L2 of side 5R, centered on center 52, and in this embodiment, the corresponding weight member 15 is disposed within range L20. Length L2 is also the length (separation distance) between side 5F and side 5B.
範囲L30は、辺部5Bの長さL3を3等分したうちの中央53を中心とした1/3の範囲であり、本実施形態では対応する錘部材15が範囲L30内に配置されている。長さL3は辺部5Lと辺部5Rとの間の長さ(離間距離)でもある。
Range L30 is one-third of the length L3 of side 5B, centered on center 53, and in this embodiment, the corresponding weight member 15 is disposed within range L30. Length L3 is also the length (separation distance) between side 5L and side 5R.
範囲L40は、辺部5Lの長さL4を3等分したうちの中央54を中心とした1/3の範囲であり、本実施形態では対応する錘部材15が範囲L40内に配置されている。長さL4は辺部5Fと辺部5Bとの間の長さ(離間距離)でもある。
Range L40 is one-third of the length L4 of side 5L, centered on center 54, and in this embodiment, the corresponding weight member 15 is disposed within range L40. Length L4 is also the length (separation distance) between side 5F and side 5B.
以上の構成により、本実施形態では、錘部材15を本体部5の角部5a~5dよりも各辺部5F~5Lの中央51~54の側に配置することで、以下に述べるように保持ユニット3の振動特性、特に固有振動数に対する錘部材15の影響を抑制することができる。
With the above configuration, in this embodiment, by arranging the weight members 15 closer to the centers 51-54 of each side 5F-5L than the corners 5a-5d of the main body 5, the effect of the weight members 15 on the vibration characteristics of the holding unit 3, particularly on the natural frequency, can be suppressed as described below.
図9を参照して、本体部5の振動特性について説明する。図9は、錘部材15が無い状態での本体部5の1次固有振動モードを模式的に示す概略図である。保持ユニット3が変位される場合等において、本体部5は微振動を生じる。1次固有振動モードにおいては、本体部5の部材形状に起因して、角部5a~5dで振幅が大きくなり、各辺部5F~5Lの中央51~54では振幅が小さい。したがって、錘部材15が角部5a~5d近傍に配置されると、振動の振幅を増大する方向に作用する。本体部5の角部5a~5dよりも、中央51~54の側に錘部材15を配置することで、振動の振幅の増大を低減でき、固有振動数の低下を抑制することができる。
The vibration characteristics of the main body 5 will be described with reference to FIG. 9. FIG. 9 is a schematic diagram showing the primary natural vibration mode of the main body 5 without the weight member 15. When the holding unit 3 is displaced, the main body 5 generates micro-vibrations. In the primary natural vibration mode, due to the material shape of the main body 5, the amplitude is large at the corners 5a to 5d and small at the centers 51 to 54 of each side 5F to 5L. Therefore, when the weight member 15 is placed near the corners 5a to 5d, it acts in a direction that increases the amplitude of the vibration. By placing the weight member 15 closer to the centers 51 to 54 of the main body 5 than the corners 5a to 5d, the increase in the amplitude of the vibration can be reduced and the decrease in the natural frequency can be suppressed.
更に、角部5a~5dよりも中央51~54側の方が、本体部5の図心(重心位置)Pからの距離が近いため、中央51~54の側に錘部材15を配置することで、錘部材15に働く慣性モーメントが小さくなる。したがって、本実施形態のように、錘部材15を本体部5の角部5a~5dよりも各辺部5F~5Lの中央51~54の側に配置することで錘部材15の影響を抑制でき、図8Aの例で言えば、範囲L12よりも範囲L11に錘部材15を配置することで振動特性の影響を低減でき、更に、範囲L11よりも範囲L10に錘部材15を配置することで振動特性の影響を低減できる。
Furthermore, since the center (center of gravity) P of the main body 5 is closer to the center 51-54 side than the corners 5a-5d, the moment of inertia acting on the weight member 15 is smaller by placing the weight member 15 on the center 51-54 side. Therefore, as in this embodiment, the influence of the weight member 15 can be suppressed by placing the weight member 15 on the center 51-54 side of each side 5F-5L rather than the corners 5a-5d of the main body 5. In the example of FIG. 8A, the influence of the vibration characteristics can be reduced by placing the weight member 15 in range L11 rather than range L12, and furthermore, the influence of the vibration characteristics can be reduced by placing the weight member 15 in range L10 rather than range L11.
<電子デバイスの製造方法>
次に、電子デバイスの製造方法の一例を説明する。以下、電子デバイスの例として有機EL表示装置の構成及び製造方法を例示する。この例の場合、図1に例示した成膜ブロック401、製造ライン上に、例えば、3箇所、設けられる。 <Method of Manufacturing Electronic Device>
Next, an example of a method for manufacturing an electronic device will be described. Below, as an example of an electronic device, the configuration and manufacturing method of an organic EL display device will be illustrated. In this example, thedeposition block 401 illustrated in FIG. 1 is provided in, for example, three places on the manufacturing line.
次に、電子デバイスの製造方法の一例を説明する。以下、電子デバイスの例として有機EL表示装置の構成及び製造方法を例示する。この例の場合、図1に例示した成膜ブロック401、製造ライン上に、例えば、3箇所、設けられる。 <Method of Manufacturing Electronic Device>
Next, an example of a method for manufacturing an electronic device will be described. Below, as an example of an electronic device, the configuration and manufacturing method of an organic EL display device will be illustrated. In this example, the
まず、製造する有機EL表示装置について説明する。図10Aは有機EL表示装置500の全体図、図10Bは1画素の断面構造を示す図である。
First, we will explain the organic EL display device to be manufactured. Figure 10A is an overall view of organic EL display device 500, and Figure 10B is a diagram showing the cross-sectional structure of one pixel.
図10Aに示すように、有機EL表示装置500の表示領域501には、発光素子を複数備える画素510がマトリクス状に複数配置されている。詳細は後で説明するが、発光素子のそれぞれは、一対の電極に挟まれた有機層を備えた構造を有している。
As shown in FIG. 10A, a plurality of pixels 510, each of which includes a plurality of light-emitting elements, are arranged in a matrix in a display region 501 of an organic EL display device 500. As will be described in detail later, each of the light-emitting elements has a structure including an organic layer sandwiched between a pair of electrodes.
なお、ここでいう画素とは、表示領域501において所望の色の表示を可能とする最小単位を指している。カラー有機EL表示装置の場合、互いに異なる発光を示す第1発光素子510R、第2発光素子510G、第3発光素子510Bの複数の副画素の組み合わせにより画素510が構成されている。画素510は、赤色(R)発光素子と緑色(G)発光素子と青色(B)発光素子の3種類の副画素の組み合わせで構成されることが多いが、これに限定はされない。画素510は少なくとも1種類の副画素を含めばよく、2種類以上の副画素を含むことが好ましく、3種類以上の副画素を含むことがより好ましい。画素510を構成する副画素としては、例えば、赤色(R)発光素子と緑色(G)発光素子と青色(B)発光素子と黄色(Y)発光素子の4種類の副画素の組み合わせでもよい。
Note that the pixel here refers to the smallest unit that allows a desired color to be displayed in the display region 501. In the case of a color organic EL display device, the pixel 510 is configured by a combination of multiple sub-pixels of a first light-emitting element 510R, a second light-emitting element 510G, and a third light-emitting element 510B that emit light differently from each other. The pixel 510 is often configured by a combination of three types of sub-pixels: a red (R) light-emitting element, a green (G) light-emitting element, and a blue (B) light-emitting element, but is not limited to this. The pixel 510 needs to include at least one type of sub-pixel, and preferably includes two or more types of sub-pixels, and more preferably includes three or more types of sub-pixels. The sub-pixels that make up the pixel 510 may be, for example, a combination of four types of sub-pixels: a red (R) light-emitting element, a green (G) light-emitting element, a blue (B) light-emitting element, and a yellow (Y) light-emitting element.
図10(B)は、図10AのA-B線における部分断面模式図である。画素510は、基板520上に、第1の電極(陽極)521と、正孔輸送層522と、赤色層522R・緑色層522G・青色層522Bのいずれかと、電子輸送層523と、第2の電極(陰極)528と、を備える有機EL素子で構成される複数の副画素を有している。これらのうち、正孔輸送層522、赤色層522R、緑色層522G、青色層522B、電子輸送層523が有機層に当たる。赤色層522R、緑色層522G、青色層522Bは、それぞれ赤色、緑色、青色を発する発光素子(有機EL素子と記述する場合もある)に対応するパターンに形成されている。
FIG. 10B is a schematic partial cross-sectional view taken along line A-B in FIG. 10A. The pixel 510 has a plurality of sub-pixels on a substrate 520, each of which is composed of an organic EL element having a first electrode (anode) 521, a hole transport layer 522, a red layer 522R, a green layer 522G, or a blue layer 522B, an electron transport layer 523, and a second electrode (cathode) 528. Of these, the hole transport layer 522, the red layer 522R, the green layer 522G, the blue layer 522B, and the electron transport layer 523 correspond to organic layers. The red layer 522R, the green layer 522G, and the blue layer 522B are formed in patterns corresponding to light-emitting elements (sometimes referred to as organic EL elements) that emit red, green, and blue light, respectively.
また、第1の電極521は、発光素子ごとに分離して形成されている。正孔輸送層522と電子輸送層523と第2の電極522は、複数の発光素子510R、510G、510Bにわたって共通で形成されていてもよいし、発光素子ごとに形成されていてもよい。すなわち、図10Bに示すように正孔輸送層522が複数の副画素領域にわたって共通の層として形成された上に赤色層522R、緑色層522G、青色層522Bが副画素領域ごとに分離して形成され、さらにその上に電子輸送層523と第2の電極522が複数の副画素領域にわたって共通の層として形成されていてもよい。
The first electrode 521 is formed separately for each light-emitting element. The hole transport layer 522, the electron transport layer 523, and the second electrode 522 may be formed in common across multiple light-emitting elements 510R, 510G, and 510B, or may be formed for each light-emitting element. That is, as shown in FIG. 10B, the hole transport layer 522 may be formed as a common layer across multiple sub-pixel regions, and the red layer 522R, the green layer 522G, and the blue layer 522B may be formed separately for each sub-pixel region on top of the hole transport layer 522, and the electron transport layer 523 and the second electrode 522 may be formed on top of the hole transport layer 522 as a common layer across multiple sub-pixel regions.
なお、近接した第1の電極521の間でのショートを防ぐために、第1の電極521間に絶縁層529が設けられている。さらに、有機EL層は水分や酸素によって劣化するため、水分や酸素から有機EL素子を保護するための保護層530が設けられている。
In order to prevent short circuits between adjacent first electrodes 521, an insulating layer 529 is provided between the first electrodes 521. Furthermore, since the organic EL layer deteriorates due to moisture and oxygen, a protective layer 530 is provided to protect the organic EL element from moisture and oxygen.
図10Bでは正孔輸送層522や電子輸送層523が一つの層で示されているが、有機EL表示素子の構造によって、正孔ブロック層や電子ブロック層を有する複数の層で形成されてもよい。また、第1の電極521と正孔輸送層522との間には第1の電極521から正孔輸送層522への正孔の注入が円滑に行われるようにすることのできるエネルギーバンド構造を有する正孔注入層を形成してもよい。同様に、第2の電極528と電子輸送層523の間にも電子注入層を形成してもよい。
In FIG. 10B, the hole transport layer 522 and the electron transport layer 523 are shown as a single layer, but depending on the structure of the organic EL display element, they may be formed of multiple layers including a hole blocking layer and an electron blocking layer. In addition, a hole injection layer having an energy band structure that allows holes to be smoothly injected from the first electrode 521 to the hole transport layer 522 may be formed between the first electrode 521 and the hole transport layer 522. Similarly, an electron injection layer may be formed between the second electrode 528 and the electron transport layer 523.
赤色層522R、緑色層522G、青色層522Bのそれぞれは、単一の発光層で形成されていてもよいし、複数の層を積層することで形成されていてもよい。例えば、赤色層522Rを2層で構成し、上側の層を赤色の発光層で形成し、下側の層を正孔輸送層又は電子ブロック層で形成してもよい。あるいは、下側の層を赤色の発光層で形成し、上側の層を電子輸送層又は正孔ブロック層で形成してもよい。このように発光層の下側又は上側に層を設けることで、発光層における発光位置を調整し、光路長を調整することによって、発光素子の色純度を向上させる効果がある。
Each of the red layer 522R, green layer 522G, and blue layer 522B may be formed of a single light-emitting layer, or may be formed by laminating multiple layers. For example, the red layer 522R may be configured of two layers, with the upper layer being a red light-emitting layer and the lower layer being a hole transport layer or an electron blocking layer. Alternatively, the lower layer may be formed of a red light-emitting layer and the upper layer being an electron transport layer or a hole blocking layer. In this way, by providing a layer below or above the light-emitting layer, the light-emitting position in the light-emitting layer can be adjusted, and the optical path length can be adjusted, thereby improving the color purity of the light-emitting element.
なお、ここでは赤色層522Rの例を示したが、緑色層522Gや青色層522Bでも同様の構造を採用してもよい。また、積層数は2層以上としてもよい。さらに、発光層と電子ブロック層のように異なる材料の層が積層されてもよいし、例えば発光層を2層以上積層するなど、同じ材料の層が積層されてもよい。
Note that although an example of the red layer 522R is shown here, a similar structure may also be adopted for the green layer 522G and the blue layer 522B. The number of layers may be two or more. Furthermore, layers of different materials may be laminated, such as a light-emitting layer and an electron blocking layer, or layers of the same material may be laminated, for example, two or more light-emitting layers may be laminated.
次に、有機EL表示装置の製造方法の例について具体的に説明する。ここでは、赤色層522Rが下側層522R1と上側層522R2の2層からなり、緑色層522Gと青色層522Bは単一の発光層からなる場合を想定する。成膜室403として6つの成膜室を想定する。
Next, an example of a manufacturing method for an organic EL display device will be specifically described. Here, it is assumed that the red layer 522R is composed of two layers, a lower layer 522R1 and an upper layer 522R2, and the green layer 522G and the blue layer 522B are composed of a single light-emitting layer. Six deposition chambers are assumed as the deposition chambers 403.
まず、有機EL表示装置500を駆動するための回路(不図示)及び第1の電極521が形成された基板520を準備する。なお、基板520の材質は特に限定はされず、ガラス、プラスチック、金属などで構成することができる。本実施形態においては、基板520として、ガラス基板上にポリイミドのフィルムが積層された基板を用いる。
First, a circuit (not shown) for driving the organic EL display device 500 and a substrate 520 on which a first electrode 521 are formed are prepared. The material of the substrate 520 is not particularly limited, and it can be made of glass, plastic, metal, or the like. In this embodiment, a substrate in which a polyimide film is laminated on a glass substrate is used as the substrate 520.
第1の電極521が形成された基板520の上にアクリル又はポリイミド等の樹脂層をバーコートやスピンコートでコートし、樹脂層をリソグラフィ法により、第1の電極521が形成された部分に開口が形成されるようにパターニングし絶縁層529を形成する。この開口部が、発光素子が実際に発光する発光領域に相当する。なお、本実施形態では、絶縁層529の形成までは大型基板に対して処理が行われ、絶縁層529の形成後に、基板520を分割する分割工程が実行される。
A resin layer such as acrylic or polyimide is coated by bar coating or spin coating on the substrate 520 on which the first electrode 521 is formed, and the resin layer is patterned by lithography so that an opening is formed in the portion where the first electrode 521 is formed, forming the insulating layer 529. This opening corresponds to the light-emitting region where the light-emitting element actually emits light. Note that in this embodiment, processing is performed on the large substrate up to the formation of the insulating layer 529, and after the insulating layer 529 is formed, a division process is carried out to divide the substrate 520.
絶縁層529がパターニングされた基板520を第1の成膜装置100に搬入し、正孔輸送層522を、表示領域の第1の電極521の上に共通する層として成膜する。正孔輸送層522は、最終的に1つ1つの有機EL表示装置のパネル部分となる表示領域501ごとに開口が形成されたマスクを用いて成膜される。
The substrate 520 with the patterned insulating layer 529 is carried into the first film forming apparatus 100, and the hole transport layer 522 is formed as a common layer on the first electrode 521 of the display area. The hole transport layer 522 is formed using a mask with an opening for each display area 501 that will eventually become the panel portion of each organic EL display device.
次に、正孔輸送層522までが形成された基板520を第2の成膜室403に搬入する。基板520とマスクとのアライメントを行い、基板520をマスクの上に載置し、正孔輸送層522の上の、基板520の赤色を発する素子を配置する部分(赤色の副画素を形成する領域)に、赤色層56Rを成膜する。ここで、第2の成膜装置で用いるマスクは、有機EL表示装置500の副画素となる基板520上における複数の領域のうち、赤色の副画素となる複数の領域にのみ開口が形成された高精細マスクである。これにより、赤色発光層を含む赤色層522Rは、基板520上の複数の副画素となる領域のうちの赤色の副画素となる領域のみに成膜される。換言すれば、赤色層522Rは、基板520上の複数の副画素となる領域のうちの青色の副画素となる領域や緑色の副画素となる領域には成膜されずに、赤色の副画素となる領域に選択的に成膜される。
Next, the substrate 520 on which the hole transport layer 522 has been formed is carried into the second film formation chamber 403. The substrate 520 and the mask are aligned, the substrate 520 is placed on the mask, and the red layer 56R is formed on the hole transport layer 522 in the portion of the substrate 520 where the red emitting element is to be arranged (the region where the red subpixel is formed). Here, the mask used in the second film formation apparatus is a high-definition mask in which openings are formed only in the multiple regions that will become the red subpixels among the multiple regions on the substrate 520 that will become the subpixels of the organic EL display device 500. As a result, the red layer 522R including the red light emitting layer is formed only in the multiple regions that will become the red subpixels among the multiple regions on the substrate 520 that will become the subpixels. In other words, the red layer 522R is selectively deposited in the regions that will become red subpixels, but not in the regions that will become blue subpixels or green subpixels among the regions on the substrate 520 that will become subpixels.
赤色層522Rの成膜と同様に、第3の成膜室503において緑色層522Gを成膜し、さらに第4の成膜室503において青色層522Bを成膜する。赤色層522R、緑色層522G、青色層522Bの成膜が完了した後、第5の成膜装置100において表示領域501の全体に電子輸送層523を成膜する。電子輸送層523は、3色の層522R、522G、522Bに共通の層として形成される。
Similar to the formation of the red layer 522R, the green layer 522G is formed in the third film formation chamber 503, and then the blue layer 522B is formed in the fourth film formation chamber 503. After the formation of the red layer 522R, the green layer 522G, and the blue layer 522B is completed, the electron transport layer 523 is formed over the entire display area 501 in the fifth film formation device 100. The electron transport layer 523 is formed as a layer common to the three color layers 522R, 522G, and 522B.
電子輸送層523までが形成された基板を第6の成膜室403に移動し、第2の電極528を成膜する。本実施形態では、第1の成膜室403~第6の成膜室403では真空蒸着によって各層の成膜を行う。しかし、本発明はこれに限定はされず、例えば第6の成膜室403における第2の電極528の成膜はスパッタによって成膜するようにしてもよい。その後、第2の電極528までが形成された基板を封止装置に移動してプラズマCVDによって保護層530を成膜して(封止工程)、有機EL表示装置500が完成する。なお、ここでは保護層530をCVD法によって形成するものとしたが、これに限定はされず、ALD法やインクジェット法によって形成してもよい。
The substrate on which the electron transport layer 523 has been formed is moved to the sixth deposition chamber 403, where the second electrode 528 is formed. In this embodiment, the layers are formed by vacuum deposition in the first deposition chamber 403 to the sixth deposition chamber 403. However, the present invention is not limited to this, and for example, the second electrode 528 in the sixth deposition chamber 403 may be formed by sputtering. Thereafter, the substrate on which the second electrode 528 has been formed is moved to a sealing device, and the protective layer 530 is formed by plasma CVD (sealing process), completing the organic EL display device 500. Note that, although the protective layer 530 is formed by the CVD method here, the method is not limited to this, and it may also be formed by the ALD method or the inkjet method.
<第2実施形態>
第1実施形態では、錘部材15を本体部5の上面Uに配置したが、錘部材15の配置場所はこれに限らない。図11A~図11C及び図12は、錘部材15の配置例を示す。 Second Embodiment
In the first embodiment, theweight member 15 is disposed on the upper surface U of the main body 5, but the location of the weight member 15 is not limited thereto.
第1実施形態では、錘部材15を本体部5の上面Uに配置したが、錘部材15の配置場所はこれに限らない。図11A~図11C及び図12は、錘部材15の配置例を示す。 Second Embodiment
In the first embodiment, the
図11Aは、錘部材15を本体部5の側面に配置した例を示している。図11Bは、錘部材15を本体部5の下面Uに配置した例を示す。このように、錘部材15は、対応する辺部5F、5B、5L及び5Lに沿って、本体部5の側面に配置してもよいし、下面Uに配置してもよい。
FIG. 11A shows an example in which the weight member 15 is arranged on the side of the main body 5. FIG. 11B shows an example in which the weight member 15 is arranged on the bottom surface U of the main body 5. In this way, the weight member 15 may be arranged on the side of the main body 5 or on the bottom surface U along the corresponding sides 5F, 5B, 5L, and 5L.
また、錘部材15を領域L10に配置する態様として、第一実施形態のように、錘部材15の全体が領域L10に配置される態様の他、錘部材15の一部が領域L10からはみ出るものの、その重心が領域L10に配置される態様であってもよい。図11Cは、その一例を示す。辺部5Fに沿って配置された錘部材15は、その長手方向の両端部が領域L10から僅かにはみ出ているが、その重心位置P’は領域L10内に位置している。他の辺部5B、5L及び5Rに沿う各錘部材15も同様である。
In addition, as a mode for arranging the weight member 15 in region L10, in addition to the mode in which the entire weight member 15 is arranged in region L10 as in the first embodiment, a mode in which a part of the weight member 15 protrudes from region L10 but the center of gravity is arranged in region L10 may also be used. Figure 11C shows one example. The weight member 15 arranged along side 5F has both ends in the longitudinal direction protruding slightly from region L10, but its center of gravity position P' is located within region L10. The same applies to each of the weight members 15 along the other sides 5B, 5L, and 5R.
錘部材15の全部又は一部が、本体部5の内部に埋め込まれた形態であってもよい。図12は、錘部材15が本体部5の上面Uに設けられたた凹部50bに配置されている例を示す。このように錘部材15が本体部5に埋め込まれるように設けられることによって、錘部材15の重心位置P’が高くなることを避けることができる。したがって、保持ユニット3の浮上姿勢の安定性を高めつつ、保持ユニット3の振動特性の影響を抑制できる。
The weight member 15 may be entirely or partially embedded inside the main body 5. FIG. 12 shows an example in which the weight member 15 is disposed in a recess 50b provided on the upper surface U of the main body 5. By providing the weight member 15 so that it is embedded in the main body 5, it is possible to prevent the center of gravity P' of the weight member 15 from becoming high. Therefore, it is possible to suppress the effects of the vibration characteristics of the holding unit 3 while increasing the stability of the levitation posture of the holding unit 3.
<第3実施形態>
第1実施形態では、各辺部5F、5B、5L及び5Rに錘部材15を設けたが、錘部材15を設けない辺部があってもよい。図13A及び図13Bは、錘部材15の別の配置例を示す。図13Aは、錘部材15が本体部5の辺部5L及び辺部5Rに沿って配置されており、合計で2つ設けられている例を示す。辺部5F及び辺部5Bに対応する錘部材15は設けられていない。 Third Embodiment
In the first embodiment, theweight members 15 are provided on each of the sides 5F, 5B, 5L, and 5R, but there may be sides on which the weight members 15 are not provided. Figures 13A and 13B show another example of the arrangement of the weight members 15. Figure 13A shows an example in which the weight members 15 are arranged along the sides 5L and 5R of the main body 5, and two weight members 15 are provided in total. No weight members 15 are provided corresponding to the sides 5F and 5B.
第1実施形態では、各辺部5F、5B、5L及び5Rに錘部材15を設けたが、錘部材15を設けない辺部があってもよい。図13A及び図13Bは、錘部材15の別の配置例を示す。図13Aは、錘部材15が本体部5の辺部5L及び辺部5Rに沿って配置されており、合計で2つ設けられている例を示す。辺部5F及び辺部5Bに対応する錘部材15は設けられていない。 Third Embodiment
In the first embodiment, the
錘部材15は、複数の錘部から構成されてもよい。図13Bの例では、錘部材15が複数の錘部15’によって構成されている。錘部15’の個数を調整することで、各錘部材15の重さの調整を簡易に行うことができる。
The weight member 15 may be composed of multiple weight portions. In the example of FIG. 13B, the weight member 15 is composed of multiple weight portions 15'. By adjusting the number of weight portions 15', the weight of each weight member 15 can be easily adjusted.
<第4実施形態>
本体部5の外形は様々な多角形状を採用可能である。図14Aは、本体部5の角部5a~5dに面取り部5gを設けた形態であり、略四角形で、厳密には八角形である。辺部5Fに沿って配置される錘部材15は、辺部5Fの両端部e1よりも中央の側に配置され、かつ、範囲L10内に配置されている。範囲L10は、一例として、辺部5Lと辺部5Rとの間の長さL1を3等分したうちの辺部5Fの中央を中心とした1/3の範囲である。 Fourth Embodiment
The outer shape of themain body 5 can be various polygonal shapes. Fig. 14A shows a shape in which chamfered portions 5g are provided at the corners 5a to 5d of the main body 5, and the shape is generally rectangular, more precisely, octagonal. The weight members 15 arranged along the side 5F are arranged closer to the center than both ends e1 of the side 5F, and are arranged within a range L10. As an example, the range L10 is 1/3 of the length L1 between the side 5L and the side 5R divided into three equal parts, the range being centered on the center of the side 5F.
本体部5の外形は様々な多角形状を採用可能である。図14Aは、本体部5の角部5a~5dに面取り部5gを設けた形態であり、略四角形で、厳密には八角形である。辺部5Fに沿って配置される錘部材15は、辺部5Fの両端部e1よりも中央の側に配置され、かつ、範囲L10内に配置されている。範囲L10は、一例として、辺部5Lと辺部5Rとの間の長さL1を3等分したうちの辺部5Fの中央を中心とした1/3の範囲である。 Fourth Embodiment
The outer shape of the
辺部5Rに沿って配置される錘部材15は、辺部5Rの両端部e2よりも中央の側に配置され、かつ、範囲L20内に配置されている。範囲L20は、一例として、辺部5Fと辺部5Bとの間の長さL2を3等分したうちの辺部5Rの中央を中心とした1/3の範囲である。
The weight member 15 arranged along the side 5R is arranged closer to the center than both ends e2 of the side 5R, and is arranged within the range L20. As an example, the range L20 is 1/3 of the length L2 between the side 5F and the side 5B divided into three equal parts, with the center of the side 5R being the center.
辺部5Bに沿って配置される錘部材15は、辺部5Bの両端部e3よりも中央の側に配置され、かつ、範囲L30内に配置されている。範囲L30は、一例として、辺部5Lと辺部5Rとの間の長さL3を3等分したうちの辺部5Bの中央を中心とした1/3の範囲である。
The weight member 15 arranged along the side portion 5B is arranged closer to the center than both ends e3 of the side portion 5B, and is arranged within the range L30. As an example, the range L30 is 1/3 of the range centered on the center of the side portion 5B, when the length L3 between the side portions 5L and 5R is divided into three equal parts.
辺部5Lに沿って配置される錘部材15は、辺部5Lの両端部e4よりも中央の側に配置され、かつ、範囲L40内に配置されている。範囲L40は、一例として、辺部5Fと辺部5Bとの間の長さL4を3等分したうちの辺部5Lの中央を中心とした1/3の範囲である。
The weight members 15 arranged along the side 5L are arranged closer to the center than both ends e4 of the side 5L, and are arranged within the range L40. As an example, the range L40 is 1/3 of the range centered on the center of the side 5L, when the length L4 between the side 5F and the side 5B is divided into three equal parts.
図14Bは、本体部5の角部5a~5dをR形状(円弧形状)にした形態である。この例においても、辺部5Fに沿って配置される錘部材15は、辺部5Fの両端部e1よりも中央の側に配置され、かつ、範囲L10内に配置されている。範囲L10は、一例として、辺部5Lと辺部5Rとの間の長さL1を3等分したうちの辺部5Fの中央を中心とした1/3の範囲である。
Fig. 14B shows a form in which the corners 5a-5d of the main body 5 are rounded (arc-shaped). In this example, the weight members 15 arranged along the side 5F are arranged closer to the center than both ends e1 of the side 5F, and are arranged within the range L10. As an example, the range L10 is 1/3 of the length L1 between the side 5L and the side 5R, divided into three equal parts, with the center being the center of the side 5F.
辺部5Rに沿って配置される錘部材15は、辺部5Rの両端部e2よりも中央の側に配置され、かつ、範囲L20内に配置されている。範囲L20は、一例として、辺部5Fと辺部5Bとの間の長さL2を3等分したうちの辺部5Rの中央を中心とした1/3の範囲である。
The weight member 15 arranged along the side 5R is arranged closer to the center than both ends e2 of the side 5R, and is arranged within the range L20. As an example, the range L20 is 1/3 of the length L2 between the side 5F and the side 5B divided into three equal parts, with the center of the side 5R being the center.
辺部5Bに沿って配置される錘部材15は、辺部5Bの両端部e3よりも中央の側に配置され、かつ、範囲L30内に配置されている。範囲L30は、一例として、辺部5Lと辺部5Rとの間の長さL3を3等分したうちの辺部5Bの中央を中心とした1/3の範囲である。
The weight member 15 arranged along the side portion 5B is arranged closer to the center than both ends e3 of the side portion 5B, and is arranged within the range L30. As an example, the range L30 is 1/3 of the length L3 between the side portions 5L and 5R divided into three equal parts, with the center of the side portion 5B as the center.
辺部5Lに沿って配置される錘部材15は、辺部5Lの両端部e4よりも中央の側に配置され、かつ、範囲L40内に配置されている。範囲L40は、一例として、辺部5Fと辺部5Bとの間の長さL4を3等分したうちの辺部5Lの中央を中心とした1/3の範囲である。
The weight members 15 arranged along the side 5L are arranged closer to the center than both ends e4 of the side 5L, and are arranged within the range L40. As an example, the range L40 is 1/3 of the range centered on the center of the side 5L, when the length L4 between the side 5F and the side 5B is divided into three equal parts.
本体部5の外形は、上記の例以外にも、三角形、六角形なども採用可能である。
In addition to the above examples, the external shape of the main body 5 can also be a triangle, hexagon, etc.
発明は上記実施形態に制限されるものではなく、発明の精神及び範囲から離脱することなく、様々な変更及び変形が可能である。従って、発明の範囲を公にするために請求項を添付する。
The invention is not limited to the above-described embodiment, and various modifications and variations are possible without departing from the spirit and scope of the invention. Therefore, the following claims are attached to publicly disclose the scope of the invention.
1 基板、2 マスク、3 保持ユニット、4 固定部材、5 本体部、6 保持部、7 支持ユニット、8 位置調整ユニット、9 マスク支持ユニット、10 位置測定ユニット、11 プレートユニット、12 蒸着ユニット、13 計測ユニット、15 錘部材、100 成膜装置、200 アライメント装置、300 保持装置
1. Substrate, 2. Mask, 3. Holding unit, 4. Fixing member, 5. Main body, 6. Holding unit, 7. Support unit, 8. Position adjustment unit, 9. Mask support unit, 10. Position measurement unit, 11. Plate unit, 12. Vapor deposition unit, 13. Measurement unit, 15. Weight member, 100. Film deposition device, 200. Alignment device, 300. Holding device
Claims (11)
- 物体を保持する保持手段と、
前記保持手段を浮上状態で支持する支持手段と、
前記保持手段に設けられた第1の錘部材と、
を備えた保持装置であって、
前記保持手段の外形が、 第1の辺部を含む多角形状であり、
前記第1の錘部材は、前記第1の辺部に沿って配置され、かつ、前記第1の辺部の端部よりも、前記第1の辺部の中央側に配置される、
ことを特徴とする保持装置。 A holding means for holding an object;
a support means for supporting the holding means in a floating state;
a first weight member provided on the holding means;
A holding device comprising:
The outer shape of the holding means is a polygon including a first side,
the first weight member is disposed along the first side portion and is disposed closer to a center of the first side portion than an end portion of the first side portion;
A holding device characterized in that - 前記第1の錘部材は、前記第1の辺部の長さを3等分したうちの、中央の1/3の部分に配置される、
ことを特徴とする請求項1に記載の保持装置。 The first weight member is disposed in a central third of the length of the first side portion, the central third of the length being divided into thirds.
2. The holding device according to claim 1. - 前記第1の錘部材は、前記保持手段に着脱可能に配置される、
ことを特徴とする請求項1に記載の保持装置。 The first weight member is detachably disposed on the holding means.
2. The holding device according to claim 1. - 前記保持手段を変位する位置調整手段をさらに備える、
ことを特徴とする請求項1に記載の保持装置。 Further comprising a position adjustment means for displacing the holding means.
2. The holding device according to claim 1. - 前記保持手段に設けられた第2の錘部材をさらに備え、
前記多角形状は、
前記第1の辺部に対向する第2の辺部 をさらに含み、
前記第2の錘部材は、前記第2の辺部に沿って配置され、かつ、前記第2の辺部の端部よりも、前記第2の辺部の中央側に配置される、
ことを特徴とする請求項1に記載の保持装置。 Further comprising a second weight member provided on the holding means,
The polygonal shape is
a second side portion opposed to the first side portion,
the second weight member is disposed along the second side portion and is disposed closer to a center of the second side portion than an end portion of the second side portion.
2. The holding device according to claim 1. - 前記保持手段に設けられた第3の錘部材及び第4の錘部材をさらに備え、
前記多角形状は、
前記第1の辺部と前記第2の辺部との間の第3の辺部及び第4の辺部と、をさらに含み、
前記第3の錘部材は、前記第3の辺部に沿って配置され、かつ、前記第3の辺部の端部よりも、前記第3の辺部の中央側に配置され、
前記第4の錘部材は、前記第4の辺部に沿って配置され、かつ、前記第4の辺部の端部よりも、前記第4の辺部の中央側に配置される、
ことを特徴とする請求項5に記載の保持装置。 The holding means further includes a third weight member and a fourth weight member,
The polygonal shape is
a third side portion and a fourth side portion between the first side portion and the second side portion,
the third weight member is disposed along the third side portion and is disposed closer to a center of the third side portion than an end portion of the third side portion;
the fourth weight member is disposed along the fourth side portion and is disposed closer to a center of the fourth side portion than an end portion of the fourth side portion;
6. A holding device according to claim 5. - 前記第3の辺部及び前記第4の辺部は、前記第1の辺部及び前記第2の辺部の方向と直交する方向の辺部であり、
前記第1の錘部材は、前記第3の辺部と前記第4の辺部との間の長さを3等分したうちの、中央の1/3の部分に配置され、
前記第2の錘部材は、前記第3の辺部と前記第4の辺部との間の長さを3等分したうちの、中央の1/3の部分に配置され、
前記第3の錘部材は、前記第1の辺部と前記第2の辺部との間の長さを3等分したうちの、中央の1/3の部分に配置され、
前記第4の錘部材は、前記第1の辺部と前記第2の辺部との間の長さを3等分したうちの、中央の1/3の部分に配置される、
ことを特徴とする請求項6に記載の保持装置。 the third side portion and the fourth side portion are sides in a direction perpendicular to a direction of the first side portion and the second side portion,
the first weight member is disposed in a central third of a length between the third side portion and the fourth side portion, the central third of the length being divided into thirds,
the second weight member is disposed in a central third of a length between the third side portion and the fourth side portion, the central third of the length being divided into thirds,
the third weight member is disposed in a central third of a length between the first side portion and the second side portion, the central third of the length being divided into thirds,
The fourth weight member is disposed in a central one-third portion of a length between the first side portion and the second side portion, the length being divided into three equal parts.
7. A holding device according to claim 6. - 基板とマスクとの位置を調整するアライメント装置であって、
前記基板を保持する保持手段と、
前記保持手段を浮上状態で支持する支持手段と、
前記保持手段に設けられた第1の錘部材と、
前記保持手段を変位して前記基板と前記マスクとの位置を調整する調整手段と、を備え、
前記保持手段の外形が、第1の辺部と、前記第1の辺部の両側の第1の角部と、を含む多角形状であり、
前記第1の錘部材は、前記第1の辺部に沿って配置され、かつ、前記第1の角部よりも、前記第1の辺部の中央側に配置される、
ことを特徴とするアライメント装置。 An alignment apparatus for adjusting the positions of a substrate and a mask, comprising:
A holding means for holding the substrate;
a support means for supporting the holding means in a floating state;
a first weight member provided on the holding means;
an adjustment means for adjusting positions of the substrate and the mask by displacing the holding means,
The outer shape of the holding means is a polygon including a first side portion and first corner portions on both sides of the first side portion,
the first weight member is disposed along the first side portion and is disposed closer to a center of the first side portion than the first corner portion;
An alignment apparatus comprising: - 請求項8に記載のアライメント装置と、
基板に蒸着物質を成膜する成膜手段と、を備える、
ことを特徴とする成膜装置。 An alignment device according to claim 8 ;
A deposition means for depositing a deposition material on a substrate.
A film forming apparatus comprising: - 請求項9に記載の成膜装置を用いて、マスクを介して基板に成膜することを特徴とする成膜方法。 A film forming method comprising forming a film on a substrate through a mask using the film forming apparatus according to claim 9.
- 請求項10に記載の成膜方法を用いて、電子デバイスを製造することを特徴とする製造方法。 A manufacturing method for manufacturing an electronic device using the film forming method described in claim 10.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023-055372 | 2023-03-30 | ||
JP2023055372A JP2024142949A (en) | 2023-03-30 | 2023-03-30 | Holding device, alignment device and film forming device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024203375A1 true WO2024203375A1 (en) | 2024-10-03 |
Family
ID=92906034
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2024/009929 WO2024203375A1 (en) | 2023-03-30 | 2024-03-14 | Holding device, alignment device, film formation device, film formation method, and manufacturing method |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2024142949A (en) |
WO (1) | WO2024203375A1 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11231079A (en) * | 1998-02-13 | 1999-08-27 | Nikon Corp | Stage device and exposure device |
JP2004342987A (en) * | 2003-05-19 | 2004-12-02 | Canon Inc | Stage apparatus |
WO2014208634A1 (en) * | 2013-06-28 | 2014-12-31 | 株式会社ニコン | Mobile body apparatus, exposure apparatus, and device manufacturing method |
-
2023
- 2023-03-30 JP JP2023055372A patent/JP2024142949A/en active Pending
-
2024
- 2024-03-14 WO PCT/JP2024/009929 patent/WO2024203375A1/en unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11231079A (en) * | 1998-02-13 | 1999-08-27 | Nikon Corp | Stage device and exposure device |
JP2004342987A (en) * | 2003-05-19 | 2004-12-02 | Canon Inc | Stage apparatus |
WO2014208634A1 (en) * | 2013-06-28 | 2014-12-31 | 株式会社ニコン | Mobile body apparatus, exposure apparatus, and device manufacturing method |
Also Published As
Publication number | Publication date |
---|---|
JP2024142949A (en) | 2024-10-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2019192898A (en) | Substrate transfer system, manufacturing apparatus for electronic device, and manufacturing method for electronic device | |
KR102630778B1 (en) | Substrate carrier, film forming apparatus, and film forming method | |
WO2021015224A1 (en) | Alignment mechanism, alignment method, film formation device, and film formation method | |
CN113644018B (en) | Alignment device, film forming device, alignment method, method for manufacturing electronic device, and storage medium | |
KR20210062607A (en) | Film forming apparatus, film forming method, and manufacturing method of electronic device | |
JP7499571B2 (en) | Film forming apparatus, electronic device manufacturing apparatus, film forming method, and electronic device manufacturing method | |
KR102625048B1 (en) | Alignment apparatus, film forming apparatus, alignment method, manufacturing method of electronic device, program, and storage medium | |
JP7048696B2 (en) | Film forming equipment | |
JP7579096B2 (en) | Film forming apparatus, electronic device manufacturing apparatus, film forming method, and electronic device manufacturing method | |
WO2024203375A1 (en) | Holding device, alignment device, film formation device, film formation method, and manufacturing method | |
KR102179271B1 (en) | Film forming apparatus, manufacturing apparatus of electronic device, film forming method, and manufacturing method of electronic device | |
KR20210079890A (en) | Film forming apparatus, film forming method and manufacturing method of electronic device | |
KR102582584B1 (en) | Alignment apparatus, film forming apparatus, alignment method, manufacturing method of electronic device, program, and storage medium | |
WO2024176848A1 (en) | Film forming device, film forming method, and method for manufacturing electronic device | |
KR102650613B1 (en) | Electrostatic chuk system, apparatus for forming film, adsorption method, method for forming film, and manufacturing method of electronic device | |
WO2024203376A1 (en) | Film deposition device, film deposition method, and production method | |
KR102430370B1 (en) | Electrostatic chuk system, film formation apparatus, suction method, film formation method, and manufacturing method of electronic device | |
KR102421610B1 (en) | Electrostatic chuk system, film formation apparatus, suction method, film formation method, and manufacturing method of electronic device | |
KR20210080065A (en) | Film forming apparatus, film forming method, and manufacturing method of electronic device | |
WO2024034236A1 (en) | Alignment device, film forming device, control method, electronic device manufacturing method, program, and storage medium | |
KR20210029899A (en) | Electrostatic chuk system, film formation apparatus, suction method, film formation method, and manufacturing method of electronic device | |
JP7051969B2 (en) | Film forming equipment | |
KR20200014109A (en) | Electrostatic chuk system, film formation apparatus, suction method, film formation method, and manufacturing method of electronic device | |
JP2024152032A (en) | ALIGNMENT APPARATUS, ALIGNMENT METHOD, AND FILM DEPOSITION APPARATUS | |
KR20210080802A (en) | Film forming apparatus, film forming method and manufacturing method of electronic device |