[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2024203359A1 - Method for producing refractory for gas-blowing nozzle, refractory for gas-blowing nozzle, and gas-blowing nozzle - Google Patents

Method for producing refractory for gas-blowing nozzle, refractory for gas-blowing nozzle, and gas-blowing nozzle Download PDF

Info

Publication number
WO2024203359A1
WO2024203359A1 PCT/JP2024/009888 JP2024009888W WO2024203359A1 WO 2024203359 A1 WO2024203359 A1 WO 2024203359A1 JP 2024009888 W JP2024009888 W JP 2024009888W WO 2024203359 A1 WO2024203359 A1 WO 2024203359A1
Authority
WO
WIPO (PCT)
Prior art keywords
refractory
carbon
firing
gas
gas injection
Prior art date
Application number
PCT/JP2024/009888
Other languages
French (fr)
Japanese (ja)
Inventor
聖司 細原
善幸 中村
敦久 飯田
宏樹 吉岡
Original Assignee
Jfeスチール株式会社
品川リフラクトリーズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社, 品川リフラクトリーズ株式会社 filed Critical Jfeスチール株式会社
Publication of WO2024203359A1 publication Critical patent/WO2024203359A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/42Constructional features of converters
    • C21C5/46Details or accessories
    • C21C5/48Bottoms or tuyéres of converters

Definitions

  • the present invention aims to improve refining efficiency and alloy yield in converters or electric furnaces. It relates to a refractory for a gas injection nozzle for injecting gas into molten metal from the bottom of the furnace or the like, and relates to a method for manufacturing the refractory for a gas injection nozzle in which one or more thin metal tubes for gas injection are embedded in a carbon-containing refractory. The present invention also relates to a refractory for a gas injection nozzle and a gas injection nozzle.
  • a so-called bottom blowing is performed in which a stirring gas (usually an inert gas such as nitrogen or Ar) or a refining gas is blown into the molten metal from the bottom of the furnace in order to improve refining efficiency and alloy yield.
  • bottom blowing methods include the following (1) to (3).
  • Method (1) is a double-tube method in which oxygen for decarburization is blown from the inner tube, and a hydrocarbon gas (such as propane) for cooling the molten steel contact area is blown from the outer tube.
  • Method (2) is a method (slit method) in which slit-shaped openings are made in the gap between the metal tube and the brick, and an inert gas is blown through the openings.
  • Method (3) is a method in which multiple (several to several hundred) metal tubes are embedded in carbon-containing bricks, and an inert gas is supplied to the metal tubes from the bottom of the bricks through a gas introduction tube and a gas reservoir, and the inert gas is blown from the metal tubes.
  • the tuyere bricks are manufactured in advance by standard methods. After that, the installation section of the metal pipe that forms the double pipe or slit is processed. Alternatively, it is common to divide it into two or four parts to create a space to install the metal pipe, and during construction, the metal pipe for blowing gas is set in place beforehand, and the tuyere bricks are installed around it.
  • the gas injection plug (nozzle) used in the method (3) is called a multiple hole plug (hereinafter referred to as MHP).
  • MHP multiple hole plug
  • Patent Document 1 it is said that this MHP can control a gas flow rate 1 to 20 times (0.01 to 0.20 Nm 3 /min). For this reason, the MHP is easier to adopt than the double tube method or the slit method.
  • MHPs have a structure in which multiple metal tubes connected to a gas reservoir are embedded in a carbon-containing refractory material such as magnesia-carbon bricks. Therefore, unlike double-tube or slit-type nozzles, the following method is used for their manufacture.
  • raw materials which are made by adding a carbon source such as scaly graphite, pitch, metal species, and binders such as phenolic resin to aggregates such as magnesia raw materials, are kneaded using a kneading means such as a high-speed mixer with high dispersion performance.
  • a kneaded material that will form a carbon-containing refractory material in which metal tubes are embedded is obtained.
  • the metal tubes are then laid on top of this kneaded material to embed them in a layered configuration, and molded at a specified pressure using a press.
  • a method of performing a specified drying (the metal tubes are then welded to a member for gas storage), or a method of previously welding the metal tubes to a member for gas storage, filling the kneaded material around it, and molding at a specified pressure using a press.
  • a MHP is manufactured by a method such as performing a specified drying.
  • bottom blowing nozzles are subject to greater damage (wear and tear) than refractory materials such as furnace walls and are an important component that determines the furnace lifespan, various proposals have been made to prevent damage to them, and for MHPs, the following improvements have been proposed:
  • Patent Document 2 the gas injection nozzle of the MHP is integrated with the surrounding tuyere to reduce the pre-dissolution and wear from the joints.
  • damage to the MHP also occurs in the part where the metal capillaries are embedded. Therefore, this technology is not a very effective measure.
  • One of the causes of damage to MHPs is the lowering of the melting point of the metal tubes embedded in the refractory due to carburization (pre-damage to the metal tubes). The following countermeasures have been proposed:
  • Patent Document 3 proposes forming an oxide layer on the surface of a stainless steel metal tube by thermal spraying in order to suppress carburization of the metal tube embedded in a carbon-containing refractory such as mag-carbon.
  • a carbon-containing refractory such as mag-carbon.
  • the oxide layer is not thick enough, and the carburization suppression effect is small.
  • Patent Document 4 also proposes disposing a refractory sintered body between the metal tube and the carbon-containing refractory material in order to suppress carburization of the metal tube. This technology is effective in suppressing carburization. However, in a nozzle in which many metal tubes are embedded, it is difficult to dispose a refractory sintered body because the intervals between the metal tubes are narrow, making it difficult to put into practical use.
  • Japanese Patent Application Publication No. 59-31810 Japanese Unexamined Patent Publication No. 63-24008 JP 2000-212634 A JP 2003-231912 A Japanese Unexamined Patent Publication No. 58-15072 Patent No. 3201678 JP 2017-144460 A
  • the object of the present invention is therefore to solve the problems of the prior art as described above.
  • the object of the present invention is to provide a method for manufacturing a refractory for a gas injection nozzle, in which one or more metal thin tubes for gas injection are embedded in a carbon-containing refractory, and which can improve the durability of the gas injection nozzle.
  • the inventors recovered a used MHP from an actual furnace and conducted a detailed investigation of the refractory structure near the nozzle working surface. As a result, it was discovered that a very large temperature change of 500-600°C had occurred inside the refractory at a depth of about 10-20 mm from the working surface, and furthermore, a crack parallel to the working surface was confirmed in this area. As a result of repeated detailed investigations of the working surface area of this used MHP, it was concluded that the damage to the MHP was mainly due to thermal shock caused by the sudden temperature gradient occurring near the working surface, rather than damage due to melting or wear.
  • thermal shock resistance has been to prevent cracks from occurring in the carbon-containing refractory itself, which is the base material of the nozzle, and improvements have been made to reduce the elastic modulus, thermal expansion, and strength of the material.
  • the inventors have been investigating methods to improve the situation by making it difficult for cracks to propagate even if they do occur, and have focused on the fracture energy of carbon-containing refractories.
  • the fracture energy of a refractory is defined as the energy required to form a new surface when a crack propagates. If a certain amount of elastic energy is stored in the refractory due to thermal stress, and a crack is generated by this energy, the greater the fracture energy, the more difficult it is for the crack to propagate.
  • Patent Document 5 a mag-carbon brick to which metal Al powder has been added is fired and heated in a non-oxidizing atmosphere at 500 to 1000°C, and then an organic substance with a carbonization yield of 25% or more is impregnated into the brick pores, thereby improving hot strength and corrosion resistance.
  • Patent Document 6 a mag-carbon brick to which 0.5 to 10% by weight of calcined anthracite is added is fired in a reducing atmosphere at 600 to 1500°C, improving slag erosion resistance and heat spalling resistance by reducing the elastic modulus.
  • the elastic modulus after reduction firing at 1400°C is evaluated as an index of spalling resistance, and it is important that the elastic modulus is 1.2 ⁇ 10 4 MPa or less.
  • tar may be impregnated after reduction firing, and that this impregnation serves to seal pores, increase strength, and improve slaking resistance, but no examples are given.
  • Patent Document 7 discloses that a method of firing a refractory under non-oxidizing conditions and then impregnating it with an organic substance (non-oxidizing firing and impregnation with an organic substance) is effective in improving the fracture energy.
  • non-oxidizing firing and impregnation with an organic substance is effective in improving the fracture energy.
  • Carbon-containing refractories are generally manufactured using phenolic resins and other binders. Phenol resins are pyrolyzed at high temperatures, leaving some carbon behind, which functions as a binder for carbon-containing refractories. However, the degree of bonding is large. Also, when cracks occur, they easily expand, so the fracture energy is not very large. In contrast, when organic matter is impregnated after non-oxidizing firing, the organic matter diffuses and penetrates evenly into the interior of the refractory, and the organic matter penetrates into the matrix part of the refractory or between the layers of scaly graphite. These organic matter decomposes when heated when the nozzle is used, and carbon bonds are formed.
  • Patent Document 7 has limitations in increasing the fracture energy and the associated improvement in durability, and that by carrying out non-oxidizing firing and organic substance impregnation multiple times, the fracture energy increases dramatically.
  • the fracture energy can be dramatically increased by subjecting a carbon-containing refractory in which a metal capillary tube is embedded to non-oxidizing firing and organic substance impregnation multiple times.
  • carbon components derived from the carbon-containing refractory penetrate into the metal capillary tubes, causing the melting point of the capillary tubes to be lowered due to carburization. Therefore, the lowering of the melting point of the metal capillary tubes due to carburization is prevented in multiple non-oxidizing firings of a carbon-containing refractory in which a metal capillary tube is embedded.
  • the fracture energy of the refractory surrounding the metal capillary tube can be dramatically improved. This makes it possible to suppress the propagation of cracks that occur near the operating surface of the MHP, and greatly improve the lifespan of the MHP. Furthermore, it was found that it is possible to extend the lifespan of the MHP by optimizing the non-oxidizing sintering conditions and suppressing carburization of the metal capillary tube during the manufacturing process of the MHP.
  • the present invention has been made based on these findings, and has the following gist.
  • a method for producing a refractory for a gas-blowing nozzle comprising embedding one or more metal capillaries for blowing gas into a carbon-containing refractory
  • a method for producing a refractory for a gas injection nozzle comprising the steps of: non-oxidatively firing a carbon-containing refractory having a metal capillary embedded therein; and then impregnating the carbon-containing refractory with an organic substance having a residual carbon rate of 30 mass% or more; and repeating the steps multiple times.
  • a method for producing a refractory material for a gas injection nozzle comprising the steps of the method for producing the refractory material in the above-mentioned [1], wherein the non-oxidizing firing is performed at a firing temperature of 400 to 1100°C for a firing time of 1 to 20 hours.
  • a method for producing a refractory material for a gas injection nozzle comprising the steps of the method for producing the refractory material in the above-mentioned [1], wherein the non-oxidizing firing is performed at a firing temperature of 800 to 1100°C for a firing time of 3 to 20 hours.
  • a method for producing a refractory material for a gas injection nozzle comprising the steps of non-oxidizing firing and impregnation with an organic substance, performed two or three times in any one of the methods described above [1] to [3].
  • a method for manufacturing a refractory for a gas injection nozzle comprising the steps of: (1) setting the conditions for the non-oxidizing firing such that the total carburization index N during firing in a plurality of non-oxidizing firings is equal to or less than a threshold value, in any one of the manufacturing methods described above in [1] to [4].
  • a method for producing a refractory for a gas blowing nozzle characterized in that the fracture energy of the carbon-containing refractory constituting the produced refractory for a gas blowing nozzle is 175 J/ m2 or more, in any one of the production methods [1] to [5] above.
  • a method for producing a refractory for a gas injection nozzle comprising any one of the methods [1] to [6] above, wherein the porosity of the carbon-containing refractory constituting the produced refractory for a gas injection nozzle is 3% or less.
  • a method for producing a refractory material for a gas injection nozzle comprising any one of the above-mentioned methods [1] to [7], characterized in that the carbon content of the metal tube after the final non-oxidizing firing is 2.0 mass% or less.
  • a method for producing a refractory material for a gas injection nozzle comprising any one of the methods [1] to [7] above, wherein the carbon content of the metal tube after the final non-oxidizing firing is 1.3 mass% or less.
  • a method for producing a refractory for a gas injection nozzle in any one of the above methods [1] to [9], characterized in that the organic material impregnated into the carbon-containing refractory in the impregnation treatment is one or more selected from coal tar pitch, phenolic resin, and furan resin.
  • a refractory for a gas-blowing nozzle comprising a carbon-containing refractory having one or more metal thin tubes for blowing gas embedded therein, A refractory for a gas blowing nozzle, characterized in that the fracture energy of the carbon-containing refractory is 175 J/ m2 or more.
  • a gas injection nozzle comprising any one of the refractories for gas injection nozzles described above in [11] to [14].
  • the manufacturing method of the present invention makes it possible to manufacture a refractory material for gas injection nozzles in which the fracture energy of the carbon-containing refractory material with embedded metal tubes is high and the propagation of cracks caused by a steep temperature gradient near the nozzle operating surface is suppressed.
  • this refractory material for gas injection nozzles By using this refractory material for gas injection nozzles, the life of the gas injection nozzle can be significantly improved.
  • non-oxidizing sintering conditions sintering temperature, sintering time
  • carbon content of the metal tube after non-oxidizing sintering it is possible to suppress carburization of the metal tube, thereby preventing a decrease in the melting point of the metal tube, and further improving the lifespan of the gas injection nozzle.
  • the present invention is a method for manufacturing a refractory for a gas injection nozzle, in which one or more metal capillaries for gas injection are embedded in a carbon-containing refractory.
  • the carbon-containing refractory in which the metal capillaries are embedded is subjected to non-oxidative firing (non-oxidative firing step), and then the carbon-containing refractory is subjected to an impregnation treatment in which an organic substance having a residual carbon rate of 30 mass% or more is impregnated into the carbon-containing refractory (impregnation treatment step).
  • the non-oxidative firing and organic substance impregnation are performed multiple times.
  • a gas injection nozzle with dozens or more metal tubes embedded in a carbon-containing refractory material may be referred to as an "MHP.”
  • the material (raw material) and molding method of the carbon-containing refractory used in the manufacturing method of the present invention, the material and number of the metal capillaries, and the method of embedding the metal capillaries in the carbon-containing refractory will be described in detail later.
  • the object to be non-oxidatively fired and impregnated with an organic substance is a carbon-containing refractory material in which a metal capillary is embedded.
  • the object may be a carbon-containing refractory material in which only a metal capillary is embedded.
  • the object may be a carbon-containing refractory material in which a metal capillary is embedded and in which all or part of a member for a gas reservoir is joined to the metal capillary.
  • the carbon-containing refractory is subjected to non-oxidative firing and then impregnated with an organic substance.
  • impregnation with an organic substance cannot be achieved without non-oxidative firing.
  • carbon-containing refractories bricks
  • the porosity of the refractory is very low at only a few percent due to the hardening of the binder. Therefore, it is difficult to impregnate the entire refractory with an organic substance in an unfired product. Therefore, in order to impregnate the organic substance, non-oxidative firing is required in advance.
  • the entire refractory is heat-treated, so that carbon components derived from the binder, etc., are generated homogeneously as a binding material. Therefore, it is possible to easily impregnate the organic substance while obtaining a homogeneous refractory structure for unfired products, whose refractory structure changes due to heat received during actual operation.
  • the fracture energy increases dramatically by performing non-oxidizing firing and organic impregnation multiple times, and this is thought to be due to the following reasons. That is, the organic matter impregnated into the carbon-containing refractory during organic impregnation contains a vaporized component (a component that becomes a gas even in the absence of oxygen when the temperature rises, such as alcohol, and dissipates outside the refractory). It also contains a residual carbon component (a component that does not become a gas in the absence of oxygen even when the temperature rises, such as carbon, and remains inside the refractory).
  • the vaporized component dissipates outside the refractory in the room temperature environment after the refractory is manufactured and in the high temperature environment during actual use, reducing the effect of the organic impregnation.
  • dissipation of the vaporized component due to non-oxidizing firing ⁇ filling of the pores with organic matter due to impregnation
  • dissipation of the vaporized component due to non-oxidizing firing the pores are reduced from the previous time due to the residual carbon component
  • ⁇ filling of the pores with organic matter due to impregnation the number of pores that remain even when exposed to high temperatures decreases.
  • the pore volume will be halved even if the vaporized components dissipate afterwards. After two impregnations, the pore volume will be halved again (one-quarter of the original volume). After three impregnations, the pore volume will be halved again (one-eighth of the original volume). In this way, by performing multiple non-oxidizing firing and organic material impregnations, the pore volume is greatly reduced, and it is believed that the fracture energy will increase dramatically.
  • the pores are filled with residual charcoal each time, which is expected to improve thermal conductivity, ease the temperature gradient, and reduce thermal shock.
  • the firing temperature (heat treatment temperature) in the non-oxidizing firing of the carbon-containing refractory is preferably 400°C or higher and 1100°C or lower. If the firing temperature is lower than 400°C, the thermal decomposition of the binder (usually a resin such as a phenolic resin) does not occur sufficiently, and the impregnation of the organic matter in the impregnation treatment after the non-oxidizing firing may be insufficient, and the fracture energy may not be sufficiently improved. On the other hand, if the firing temperature exceeds 1100°C, the carbon components derived from the carbon-containing refractory may carburize the metal tubes, causing a lower melting point of the metal tubes. In addition, since non-oxidizing firing is performed multiple times in the present invention, if the firing temperature exceeds 1100°C, the embedded metal tubes may melt or become clogged, and the gas-blowing function as a gas-blowing nozzle may be lost.
  • the firing temperature is preferably 800°C or higher.
  • the firing time (holding time) for non-oxidizing firing is preferably 1 to 20 hours. If the firing time is less than 1 hour, the heat treatment of the entire nozzle is likely to be insufficient. On the other hand, if the firing time exceeds 20 hours, carburization of the metal tube may occur, as in the case where the firing temperature exceeds 1100°C, which may result in a lower melting point of the metal tube. From this perspective, a more preferable firing time is 3 to 20 hours.
  • non-oxidizing sintering since non-oxidizing sintering is performed multiple times, it is preferable to control the total amount of heat treatment for the multiple times. Specifically, it is preferable to set the conditions for non-oxidizing sintering so that the total carburization index N during sintering, shown in the following formula (1), is equal to or less than a threshold value.
  • the conditions for non-oxidizing sintering are explained as including, for example, the number of times sintering is performed, the sintering temperature, and the sintering time.
  • D is the carbon diffusion coefficient and is expressed by the following formula (2):
  • the total carburization index N during firing is the value obtained by integrating the carbon diffusion coefficient D over the total time of each firing and multiplying the result by 109 .
  • D 0 is the frequency factor of carbon diffusion
  • Q is the activation energy for carbon diffusion
  • R is the gas constant
  • T is the firing time.
  • the total carburization index N at firing is an index indicating how much carbon penetrates into the metal tube.
  • the threshold value is a value calculated in advance by repeating tests and is appropriately determined according to the material of the metal tube, and is 118 as an example in this embodiment. That is, in this embodiment, it is preferable to set the number of firings, the firing temperature, and the firing time so that the total carburization index N at firing when non-oxidizing firing is performed multiple times is 118 or less.
  • the lower limit value of the heat treatment amount may be set from other viewpoints such as thermal decomposition of the binder.
  • the carbon-containing refractory is fired in a non-oxidizing manner in order to prevent the inherent properties of the carbon-containing refractory, such as heat spalling resistance and slag penetration resistance, from being lost.
  • the carbon-containing refractory is fired under firing conditions that significantly reduce the amount of carbon contained in the refractory, for example, under conditions of heating at high temperature for a long period of time in an oxidizing atmosphere, the carbon in the carbon-containing refractory is oxidized and lost.
  • the properties of the carbon-containing refractory such as heat spalling resistance and slag penetration resistance, are lost. Therefore, the carbon-containing refractory is fired under non-oxidizing conditions in order to prevent the loss of the above properties.
  • non-oxidizing firing conditions have been described as including the number of firings, the firing temperature, and the firing time, there are no particular limitations as long as the conditions are such that the carbon, such as scaly graphite, contained in the carbon-containing refractory material is not substantially lost.
  • applicable non-oxidizing firing conditions include reducing firing, firing in a reducing atmosphere, firing in a non-oxidizing atmosphere, and short-time firing in an oxidizing atmosphere.
  • non-oxidizing firing there are no particular limitations on the method for carrying out non-oxidizing firing, and it may be carried out in the usual manner.
  • a sheath made of assembled bricks or a metal container is placed on a cart that is loaded into the firing furnace, and the carbon-containing refractory to be subjected to reduction firing (carbon-containing refractory with embedded metal tubes) is placed inside it.
  • a carbon source such as coke is placed around the carbon-containing refractory, and then a lid is placed on top to block out the outside air, and reduction firing (heat treatment) is carried out at a specified temperature and time.
  • the firing of carbon-containing refractories can be performed in a reducing atmosphere, in which the firing atmosphere is a reducing atmosphere containing a flammable gas such as NX gas, or in a non-oxidizing atmosphere, in which the firing atmosphere is an inert gas such as nitrogen or argon, or a non-oxidizing gas atmosphere.
  • a sheath or metal container can be omitted.
  • the carbon-containing refractory is fired in an oxidizing atmosphere, it is possible to fire it for a short time, remove the decarburized layer formed on the surface after firing, and use the non-decarburized part inside the refractory.
  • the surface of the carbon-containing refractory becomes oxidized.
  • this part acts as a protective layer, and the inside of the refractory can be fired under non-oxidizing conditions. Therefore, the inside of the refractory can be considered to have been fired in a substantially non-oxidizing manner.
  • a method of applying an anti-oxidizing glaze to the surface of the carbon-containing refractory in advance can also be used.
  • the carbon content of the metal capillaries (metal capillaries embedded in a carbon-containing refractory) after the final non-oxidizing firing is preferably 2.0% by mass or less. If the carbon content of the metal capillaries exceeds 2.0% by mass, the melting point of the metal capillaries will decrease, and there is a risk that the metal capillaries will melt near the working surface of the nozzle tip, reducing the durability of the nozzle itself. From the above perspective, a more preferable carbon content of the metal capillaries is 1.3% by mass or less.
  • the non-oxidizing sintering temperature is kept low and the non-oxidizing sintering time is not made excessively long.
  • the non-oxidizing sintering temperature is set to 1000°C or less and the non-oxidizing sintering time is set to 20 hours or less.
  • Another method is, for example, (ii) applying a gas-impermeable coating film to the surface of the metal tube to suppress carburization, but method (i) is particularly effective.
  • the carbon-containing refractory that has undergone the above non-oxidizing firing process is then subjected to an impregnation process in which an organic substance is impregnated into it.
  • the residual carbon rate of the organic matter to be impregnated must be 30% by mass or more.
  • the residual carbon rate of this material is measured based on the fixed carbon measurement method described in JIS K6910 (phenolic resin test method). If the residual carbon rate of the organic matter to be impregnated is less than 30% by mass, the effect of the residual carbon in strengthening the refractory structure is small, which is not preferable. From this perspective, a residual carbon rate of 35% by mass or more is more preferable.
  • the organic matter to be impregnated includes coal tar pitch (melted by heating), phenolic resin (liquid resin), furan resin (liquid resin), etc., and one or more of these can be used, but among these, coal tar pitch is particularly preferable. This is because coal tar pitch contributes more to improving the breaking energy because the carbon after pyrolysis easily crystallizes. In contrast, phenolic resin carbon after pyrolysis does not easily crystallize, and it tends to become glassy carbon. Therefore, the effect of improving the breaking energy is relatively low compared to coal tar pitch.
  • the method of impregnating the organic matter there is no particular limitation on the method of impregnating the organic matter.
  • the pressure is maintained at 5 kgf/ cm2 or more for 2 hours or more to impregnate the organic matter.
  • the vacuum pressure when reducing the pressure is preferably 100 Torr or less, more preferably 60 Torr or less.
  • the pressure after reducing the pressure is low or the pressure holding time is short, there is a risk that the organic matter may not be sufficiently impregnated into the refractory.
  • the pressure after reducing the pressure is preferably 5 kgf/ cm2 or more, more preferably 10 kgf/cm2 or more .
  • the pressure holding time is preferably 2 hours or more, more preferably 4 hours or more.
  • the impregnation process of the organic substance can be performed while maintaining the carbon-containing refractory at a predetermined pressure by using general impregnation process equipment used for impregnating organic substances with slide plates, etc. After impregnation, a drying process at about 200°C can be performed to remove any volatile matter remaining in the carbon-containing refractory.
  • the fracture energy increases dramatically by performing non-oxidizing firing and organic impregnation multiple times.
  • the effect of increasing fracture energy becomes saturated. Therefore, from an economical perspective, it is desirable to perform non-oxidizing firing and organic impregnation two to three times.
  • the refractory for gas injection nozzle manufactured by the method of the present invention preferably has a fracture energy of 175 J/m2 or more for the carbon-containing refractory. If the fracture energy is less than 175 J/ m2 , the difference from a conventional one-time impregnated refractory (a refractory obtained by performing non-oxidizing firing and organic impregnation only once) is small. Therefore, the effect of improving the life of the gas injection nozzle is small. In other words, by making the fracture energy of the carbon-containing refractory 175 J/ m2 or more, it is possible to effectively suppress the propagation of cracks caused by a steep temperature gradient near the nozzle operating surface, and the life of the gas injection nozzle can be significantly improved.
  • the fracture energy is measured using a three-point bending test. That is, for refractory materials for gas injection nozzles, a three-point bending test is performed on a 25 x 25 x 140 mm test piece in an inert atmosphere at 800°C over a span of 100 mm. A bending load is applied to the test piece at a rate of 0.1 mm/min to obtain a stress-strain curve, and the fracture energy is obtained from the area of this stress-strain curve.
  • sample (i) was a sample that had been subjected to a normal drying treatment.
  • Sample (ii) was a sample that had been further subjected to a non-oxidative firing after drying treatment.
  • Sample (iii) was a sample that had been subjected to a single non-oxidative firing and organic substance impregnation after drying treatment.
  • Sample (iv) was a sample that had been subjected to two non-oxidative firings and organic substance impregnations under the conditions of the present invention after drying treatment.
  • Sample (v) was a sample that had been subjected to three non-oxidative firings and organic substance impregnations under the conditions of the present invention after drying treatment.
  • the fracture energy was 85 J/ m for sample (i), 62 J/ m for sample (ii), 160 J/ m for sample (iii), 187 J/ m for sample (iv), and 193 J/ m for sample (v). In this way, the fracture energy is effectively increased by performing non-oxidative baking and organic substance impregnation multiple times.
  • one method of increasing the fracture energy of refractories is to add carbon fibers (long carbon fibers).
  • carbon fibers long carbon fibers
  • the addition of carbon fibers is effective in increasing fracture energy
  • the carbon fibers do not blend well with the refractory material, resulting in a porous structure with a very high porosity.
  • materials with added carbon fibers suffer a significant decrease in corrosion resistance, making them difficult to put into practical use.
  • non-oxidizing firing and organic impregnation are preferable, as they can increase fracture energy while maintaining the density of the refractory structure.
  • the refractory for gas injection nozzle manufactured by the method of the present invention preferably has a porosity of 3% or less.
  • This porosity is an index of the amount of organic matter impregnated, and a large porosity means a small amount of impregnation, and a small porosity means a large amount of impregnation. If the amount of organic matter impregnated is small and the porosity of the carbon-containing refractory exceeds 3%, the effect of the organic matter impregnation is small, the effect of strengthening the refractory structure and improving the toughness is small, and it becomes difficult to ensure a fracture energy of 175 J/m 2 or more.
  • a more preferable porosity of the carbon-containing refractory is 1.5% or less. In order to reduce the porosity of the carbon-containing refractory, it is effective to sufficiently impregnate the carbon-containing refractory with an organic matter.
  • the raw materials for carbon-containing refractories generally consist of aggregate, a carbon source, other additives, and binders.
  • Aggregates include magnesia, alumina, dolomite, zirconia, chromia, and spinel (alumina-magnesia, chromia-magnesia). One or more of these can be used, but magnesia is particularly preferred from the standpoint of corrosion resistance to molten metal and molten slag.
  • the carbon source is not particularly limited, and commonly used carbon sources such as flake graphite, soil graphite, petroleum pitch, and carbon black can be used, and one or more of these can be used.
  • the amount of carbon source in the carbon-containing refractory is not particularly limited, but generally, about 10 to 25 mass% is appropriate.
  • Examples of other materials include, but are not limited to, metallic species such as metallic Al, metallic Si, and Al--Mg alloys, and carbides such as SiC and B.sub.4C .
  • Binders that can be used include phenolic resins, liquid pitch, and other materials that are generally applicable as binders for shaped refractories.
  • the metal capillary tube is usually a metal tube with an inner diameter of about 1 to 5 mm and a tube thickness of about 0.5 to 4 mm.
  • the material of the metal capillary tube can be a metal material (metal or alloy) containing one or more of iron, chromium, cobalt, and nickel, and among these, stainless steel (ferritic, martensitic, austenitic) or ordinary steel is particularly common.
  • the number of metal capillaries embedded in the carbon-containing refractory there is no particular limit to the number of metal capillaries embedded in the carbon-containing refractory.
  • the number of metal capillaries may be one or more.
  • the number of metal capillaries is determined by the inner diameter of the metal capillaries used and the required amount of gas injection. In a typical MHP for a converter, usually about 60 to 250 metal capillaries are embedded in the carbon-containing refractory.
  • the number of metal capillaries may be one to several. Even in such gas injection nozzles, the tuyere tip cools due to the forceful gas injection, and the extension of cracks due to thermal shock can cause damage, so the present invention can also be applied to such gas injection nozzles.
  • the method for embedding the metal capillaries in the carbon-containing refractory is not particularly limited.
  • the raw materials for the carbon-containing refractory as mentioned above are mixed and kneaded in a mixer.
  • the metal capillaries are laid on top of the kneaded mixture so that the metal capillaries are embedded in a layered configuration, and then the mixture is molded at a specified pressure using a press, and after molding, is dried at an appropriate temperature.
  • the carbon-containing refractory with the metal capillaries embedded in it is then subjected to non-oxidizing firing and organic substance impregnation multiple times according to the method of the present invention, after which a gas reservoir member necessary for the function of the gas injection nozzle is joined (welded) to the metal capillaries to produce the gas injection nozzle product.
  • a metal tube is first joined (welded) to the gas reservoir member (top plate), the mixture is filled around it, and then it is molded at a specified pressure using a press, and after molding, it is dried at an appropriate temperature. Then, the carbon-containing refractory material with the metal tube embedded in it is subjected to non-oxidizing firing and organic matter impregnation multiple times according to the method of the present invention to produce a gas injection nozzle product.
  • any mixing means that is used as mixing equipment for shaped refractories such as a high-speed mixer, a tire mixer (Conner mixer), or an Eirich mixer, may be used.
  • a uniaxial molding machine such as a hydraulic press or friction press, or a press commonly used for molding refractories, such as a cold isostatic press (CIP), can be used.
  • a press commonly used for molding refractories such as a cold isostatic press (CIP)
  • the molded carbon-containing refractory can be dried at a temperature of 180°C to 350°C for a drying time of about 5 to 30 hours.
  • Tables 1 to 3 show the manufacturing conditions and characteristics of the refractory materials for gas injection nozzles manufactured in this embodiment (invention example, comparative example).
  • the raw materials for the carbon-containing refractory in which the metal tubes are embedded were electrofused magnesia (purity 98.2% by mass) as the magnesia raw material aggregate, flake graphite (purity 98.4% by mass, average particle size 0.18 mm) as the carbon source, and phenolic resin with a residual carbon content of 46% by mass as the binder.
  • the metal tubes embedded in the carbon-containing refractory were made of ordinary steel and had an outer diameter of 3 mm and an inner diameter of 2 mm.
  • Coal tar pitch or phenolic resin was used as the organic matter to be impregnated into the carbon-containing refractory material.
  • Tables 1 to 3 the one with a residual carbon ratio of 42% by mass is coal tar pitch.
  • the one with a residual carbon ratio of 15% by mass is phenolic resin.
  • the residual carbon ratio was measured based on the fixed carbon measurement method described in JIS K6910 (phenolic resin test method).
  • the raw materials of the carbon-containing refractory were mixed in the ratios shown in Tables 1 to 3 and kneaded using an Eirich mixer, and then using a 230 x 200 mm mold, the metal capillaries were embedded in a layered manner while being laid on the kneaded mixture, and then molded using a hydraulic press at a pressure of 2.5 tons/ cm2 .
  • the molded refractory was cured and dried in a dryer at 250°C for 10 hours to produce a carbon-containing refractory with embedded metal capillaries.
  • the carbon-containing refractory produced as described above was non-oxidatively fired in coke breeze according to the conditions shown in Tables 1 to 3, and then impregnated with an organic substance to obtain a refractory for a gas injection nozzle.
  • this non-oxidative firing and impregnation with an organic substance was performed multiple times.
  • the carbon-containing refractory was held at a specified pressure for 10 hours.
  • the porosity of the refractory was measured according to JIS R2205.
  • the vacuum method was used, and kerosene was used as the soot liquid.
  • the fracture energy of the refractory was measured as follows.
  • the test piece size was 25 x 25 x 140 mm, and a three-point bending test with a span of 100 mm was performed.
  • the bending test was performed in an inert atmosphere at 800°C.
  • the test machine used was an Autograph AG-X/R manufactured by Shimadzu Corporation, with a crosshead speed of 0.1 mm/min.
  • the occurrence of stable fracture was confirmed from the stress-strain curve obtained from the three-point bending test, and the fracture energy was calculated by dividing the area of the stress-strain curve by twice the projected area of the cut surface (25 x 25 mm). It was confirmed that stable fracture had occurred in all cases measured.
  • the carbon content of the metal capillaries was measured by polishing the cut surface of the test piece after non-oxidizing firing with the metal capillaries embedded, and performing a quantitative analysis using an analytical instrument.
  • the measurement range was the amount of carbon in a 100 x 100 ⁇ m field along the outer circumference of the metal capillaries.
  • the analytical device used was the JXA-8230 manufactured by JEOL Ltd.
  • the total carburization index N during firing was calculated under the following conditions: First, the frequency factor D0 of carbon diffusion in formula (1) and the activation energy Q for carbon diffusion are expressed by the following formula.
  • Wc is also called the carbon solubility limit. Cementite precipitates when the carbon solubility limit is exceeded.
  • the gas constant R in equation (1) is set to 8.314 J/(K ⁇ mol).
  • all of the examples of the present invention have low porosity and high fracture energy.
  • all of the examples of the present invention 1 to 5, 7 to 11, and 13 to 16 had a total carburization index N of 118 or less during firing, and the carbon content of the metal tube after non-oxidizing firing was 2.0 mass% or less.
  • Comparative Example 1 is a magnesia-carbon brick that is commonly used. Comparative Example 1 has a small fracture energy. Comparative Example 2 is Comparative Example 1 that has been non-oxidatively fired at 1400°C (without impregnation with organic matter). Comparative Example 2 has a small fracture energy. In addition, the total carburization index N during firing exceeds 118, and the carbon content of the metal tube is large at 3.1 mass%. Comparative Example 3 is a case in which the non-oxidative firing temperature is low at 300°C. Comparative Example 3 is a case in which the binder is not sufficiently thermally decomposed by non-oxidative firing, so that impregnation with organic matter cannot be performed, and the fracture energy is small.
  • Comparative Example 4 is a case in which an organic matter with a small residual carbon rate of 15 mass% is used in the impregnation treatment. Comparative Example 4 does not have a satisfactory increase in fracture energy. Comparative Example 5 is a case in which non-oxidative firing and organic matter impregnation are performed only once. Comparative Example 5 has an increase in fracture energy, but it is small compared to the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

In this method for producing a refractory for a gas blowing nozzle, the refractory comprising a carbon-containing refractory having one or more gas-blowing fine metal pipes embedded therein, a series of steps for subjecting a carbon-containing refractory having fine metal pipes embedded therein to non-oxidative firing, and then performing an impregnation treatment in which the carbon-containing refractory is impregnated with an organic substance having a percentage residual carbon of 30 mass% or higher is performed multiple times. The non-oxidative firing and the organic-substance impregnation performed multiple times enhance the fracture energy of the carbon-containing refractory having fine metal pipes embedded therein, and extension of cracks caused by a steep temperature gradient around the working surface of the nozzle is inhibited when the gas-blowing nozzle is used. As a result, the life of the gas-blowing nozzle is greatly increased.

Description

ガス吹き込みノズル用耐火物の製造方法、ガス吹き込みノズル用耐火物及びガス吹き込みノズルManufacturing method of refractory for gas blowing nozzle, refractory for gas blowing nozzle, and gas blowing nozzle
 本発明は、転炉又は電気炉などにおいて、精錬効率及び合金歩留まりの向上を目的としたものである。炉底などから溶湯内にガスを吹込むためのガス吹き込みノズル用の耐火物であって、炭素含有耐火物にガス吹込み用の金属細管が1本以上埋設されたガス吹き込みノズル用耐火物の製造方法に関する。また、本発明は、ガス吹き込みノズル用耐火物及びガス吹き込みノズルに関する。 The present invention aims to improve refining efficiency and alloy yield in converters or electric furnaces. It relates to a refractory for a gas injection nozzle for injecting gas into molten metal from the bottom of the furnace or the like, and relates to a method for manufacturing the refractory for a gas injection nozzle in which one or more thin metal tubes for gas injection are embedded in a carbon-containing refractory. The present invention also relates to a refractory for a gas injection nozzle and a gas injection nozzle.
 転炉又は電気炉などでは、精錬効率及び合金歩留まりの向上を目的として、炉底から撹拌ガス(通常、窒素又はArなどの不活性ガス)又は精錬ガスを溶湯内に吹込む、いわゆる底吹きが行われる。この底吹きの方式として、例えば以下の(1)~(3)が挙げられる。(1)の方式は、内管から脱炭を目的とした酸素を、外管から溶鋼接触部位の冷却を目的とした炭化水素ガス(プロパンなど)をそれぞれ吹込む二重管方式である。(2)の方式は、金属管と煉瓦の隙間にスリット状の開孔を設け、その開孔から不活性ガスを吹込む方式(スリット方式)である。(3)の方式は、カーボン含有煉瓦に複数本(数本~数百本)の金属細管を埋設し、煉瓦の底部からガス導入管とガス溜まりを介して不活性ガスを金属細管に供給し、この金属細管から不活性ガスを吹込む方式である。 In converters or electric furnaces, a so-called bottom blowing is performed in which a stirring gas (usually an inert gas such as nitrogen or Ar) or a refining gas is blown into the molten metal from the bottom of the furnace in order to improve refining efficiency and alloy yield. Examples of bottom blowing methods include the following (1) to (3). Method (1) is a double-tube method in which oxygen for decarburization is blown from the inner tube, and a hydrocarbon gas (such as propane) for cooling the molten steel contact area is blown from the outer tube. Method (2) is a method (slit method) in which slit-shaped openings are made in the gap between the metal tube and the brick, and an inert gas is blown through the openings. Method (3) is a method in which multiple (several to several hundred) metal tubes are embedded in carbon-containing bricks, and an inert gas is supplied to the metal tubes from the bottom of the bricks through a gas introduction tube and a gas reservoir, and the inert gas is blown from the metal tubes.
 これらのうち(1)、(2)の方式では、羽口用煉瓦を予め定法により製造する。その後、二重管又はスリットを形成する金属管の設置部分を加工する。もしくは、2分割ないし4分割とすることで金属管を設置する空間を形成し、施工時にはガスを吹き込む金属管を予めセットし、その周囲に羽口用煉瓦を施工するのが一般的である。 In methods (1) and (2), the tuyere bricks are manufactured in advance by standard methods. After that, the installation section of the metal pipe that forms the double pipe or slit is processed. Alternatively, it is common to divide it into two or four parts to create a space to install the metal pipe, and during construction, the metal pipe for blowing gas is set in place beforehand, and the tuyere bricks are installed around it.
 一方、(3)の方式で用いられるガス吹き込み用プラグ(ノズル)は、マルチプル・ホール・プラグ(以下、MHPという)と呼ばれる。例えば、特許文献1では、このMHPでは1~20倍のガス流量(0.01~0.20Nm/min)が制御可能とされている。このため、MHPは二重管方式又はスリット方式に比べて採用が容易である。 On the other hand, the gas injection plug (nozzle) used in the method (3) is called a multiple hole plug (hereinafter referred to as MHP). For example, in Patent Document 1, it is said that this MHP can control a gas flow rate 1 to 20 times (0.01 to 0.20 Nm 3 /min). For this reason, the MHP is easier to adopt than the double tube method or the slit method.
 MHPは、ガス溜まりに接続された複数本の金属細管がマグネシア-カーボン煉瓦などのカーボン含有耐火物に埋め込まれた構造である。そのため、その製造は、二重管方式又はスリット方式のノズルとは異なり、以下のような方法が採られる。  MHPs have a structure in which multiple metal tubes connected to a gas reservoir are embedded in a carbon-containing refractory material such as magnesia-carbon bricks. Therefore, unlike double-tube or slit-type nozzles, the following method is used for their manufacture.
 すなわち、マグネシア原料などの骨材に鱗状黒鉛などの炭素源、ピッチ、金属種、フェノール樹脂などのバインダーを加えた原料を、分散性能の高いハイスピードミキサーなどの混練手段を用いて混練する。そして、金属細管を埋設する炭素含有耐火物を構成すべき混練物を得る。それから、この混練物の上に金属細管を敷設しながら積層状に金属細管を埋設した上で、プレス機により所定の圧力で成形を行う。その後、所定の乾燥を行う方法(金属細管は、その後、ガス溜まり用の部材に溶接で接合する)、或いは、予めガス溜まり用の部材に金属細管を溶接で接合しておき、その周囲の混練物を充填した上で、プレス機により所定の圧力で成形を行う。その後、所定の乾燥を行う方法、などによりMHPが製造される。 In other words, raw materials, which are made by adding a carbon source such as scaly graphite, pitch, metal species, and binders such as phenolic resin to aggregates such as magnesia raw materials, are kneaded using a kneading means such as a high-speed mixer with high dispersion performance. A kneaded material that will form a carbon-containing refractory material in which metal tubes are embedded is obtained. The metal tubes are then laid on top of this kneaded material to embed them in a layered configuration, and molded at a specified pressure using a press. After that, a method of performing a specified drying (the metal tubes are then welded to a member for gas storage), or a method of previously welding the metal tubes to a member for gas storage, filling the kneaded material around it, and molding at a specified pressure using a press. Then, a MHP is manufactured by a method such as performing a specified drying.
 底吹きノズルは炉壁などの耐火物に比べて損傷量(損耗量)が大きく、炉寿命を左右する重要な部材であるため、従来、損傷抑制のための様々な提案がなされており、MHPについても、例えば、以下のような改善が提案されている。 Because bottom blowing nozzles are subject to greater damage (wear and tear) than refractory materials such as furnace walls and are an important component that determines the furnace lifespan, various proposals have been made to prevent damage to them, and for MHPs, the following improvements have been proposed:
 特許文献2では、MHPのガス吹込みノズル部分と周囲羽口を一体化させ、目地部からの先行溶損、磨耗の低減が図られている。しかし、MHPの損傷は、金属細管が埋め込まれた部分でも起こる。そのため、この技術はあまり有効な対策とはなり得ない。
 また、MHPの損傷要因の一つとして、耐火物内に埋設した金属細管の浸炭による低融点化(金属細管の先行損傷)が挙げられる。その対策として、以下のような提案がなされている。
In Patent Document 2, the gas injection nozzle of the MHP is integrated with the surrounding tuyere to reduce the pre-dissolution and wear from the joints. However, damage to the MHP also occurs in the part where the metal capillaries are embedded. Therefore, this technology is not a very effective measure.
One of the causes of damage to MHPs is the lowering of the melting point of the metal tubes embedded in the refractory due to carburization (pre-damage to the metal tubes). The following countermeasures have been proposed:
 特許文献3には、マグカーボンなどの炭素含有耐火物に埋設されたステンレス製の金属細管の浸炭を抑制するために、金属細管表面に溶射によって酸化物層を形成することが提案されている。しかし、転炉などのように長期間使用される精錬炉(例えば2ヶ月~半年の使用期間)では、酸化物層の膜厚が十分ではなく、浸炭抑制効果が小さいという問題がある。 Patent Document 3 proposes forming an oxide layer on the surface of a stainless steel metal tube by thermal spraying in order to suppress carburization of the metal tube embedded in a carbon-containing refractory such as mag-carbon. However, in refining furnaces that are used for long periods such as converters (for example, those used for periods of two to six months), the oxide layer is not thick enough, and the carburization suppression effect is small.
 また、特許文献4には、金属細管の浸炭を抑制するために、金属細管と炭素含有耐火物と間に耐火性焼結体を配設することが提案されている。この技術では、浸炭の抑制効果は認められる。しかし、多数本の金属細管を埋設するノズルでは、金属細管の間隔が狭いため耐火性焼結体を配設することが困難であり、実用化は難しい。 Patent Document 4 also proposes disposing a refractory sintered body between the metal tube and the carbon-containing refractory material in order to suppress carburization of the metal tube. This technology is effective in suppressing carburization. However, in a nozzle in which many metal tubes are embedded, it is difficult to dispose a refractory sintered body because the intervals between the metal tubes are narrow, making it difficult to put into practical use.
特開昭59-31810号公報Japanese Patent Application Publication No. 59-31810 特開昭63-24008号公報Japanese Unexamined Patent Publication No. 63-24008 特開2000-212634号公報JP 2000-212634 A 特開2003-231912号公報JP 2003-231912 A 特開昭58-15072号公報Japanese Unexamined Patent Publication No. 58-15072 特許第3201678号公報Patent No. 3201678 特開2017-144460号公報JP 2017-144460 A
 以上のように、炭素含有耐火物に金属細管を埋設するタイプのガス吹きノズル(MHPなど)では、耐用性を高めるために耐火物材質又は構造について種々検討がなされているが、十分な改善効果が得られていないのが現状である。 As described above, in gas blowing nozzles (such as MHPs) that have metal tubes embedded in carbon-containing refractory, various studies have been conducted on the refractory material or structure to improve durability, but the current situation is that sufficient improvements have not been achieved.
 したがって本発明の目的は、以上のような従来技術の課題を解決することにある。本発明の目的は、炭素含有耐火物にガス吹込み用の金属細管が1本以上埋設されたガス吹き込みノズル用耐火物の製造方法であって、ガス吹き込みノズルの耐用性を向上させることができるガス吹き込みノズル用耐火物の製造方法を提供することにある。 The object of the present invention is therefore to solve the problems of the prior art as described above. The object of the present invention is to provide a method for manufacturing a refractory for a gas injection nozzle, in which one or more metal thin tubes for gas injection are embedded in a carbon-containing refractory, and which can improve the durability of the gas injection nozzle.
 転炉又は電気炉で用いられるMHPの損傷の原因については、これまで、金属細管から勢いよくガスが吹き込まれることから、ノズル稼働面近傍での溶鋼流による溶損、磨耗が主体と考えられてきた。特許文献2の対策はこの考え方に立つものである。また、浸炭などにより金属細管が先に消耗することで、損傷が大きくなるとの考え方もあり、特許文献3又は特許文献4のような手法で金属細管への浸炭を防止してきた。一方、吹錬時は不活性ガスを勢いよく吹き込むために耐火物が冷却され、吹錬時と非吹錬時の間の温度差によってスポーリング損傷するという考え方があった。さらには、炭素含有耐火物は600℃付近で強度が最低になるので、その部分で稼働面に亀裂が入り、損傷するという考え方があった。このように様々な考え方があり、結論が出ていなかった。その結果、十分な対策が行われず、上記のように必ずしも満足する耐用性が得られていないのが現状である。 The cause of damage to MHPs used in converters or electric furnaces has been thought to be mainly wear and tear caused by the molten steel flow near the nozzle working surface, because gas is blown in forcefully from the metal tube. The countermeasures in Patent Document 2 are based on this idea. There is also a view that the damage becomes greater when the metal tube is worn out first due to carburization, and methods such as those in Patent Document 3 and Patent Document 4 have been used to prevent carburization of the metal tube. On the other hand, there was a view that the refractory material is cooled during blowing because inert gas is blown in forcefully, and spalling damage occurs due to the temperature difference between blowing and non-blowing. Furthermore, there was a view that the strength of carbon-containing refractories is lowest at around 600°C, so cracks develop in the working surface at that part, causing damage. As such, there have been various ideas, and no conclusion has been reached. As a result, sufficient measures have not been taken, and the current situation is that satisfactory durability is not necessarily achieved as described above.
 そこで、本発明者らは、MHPの真の損傷原因を探るため、実炉で使用された使用後品(MHP)を回収し、ノズル稼働面近傍の耐火物組織について詳細に調査した。その結果、稼働面から深さ10~20mm程度の耐火物内部で500~600℃という非常に大きな温度変化が発生していることが判明し、さらにこの部位に稼働面と平行な亀裂を確認することができた。このような実炉使用後品の稼働面近傍の詳細な調査を重ねた結果から、MHPの損傷形態は、溶損又は磨耗による損傷ではなく、稼働面近傍で生じている急激な温度勾配に起因した熱衝撃による損傷が主体であるとの結論が得られた。 In order to find the true cause of the damage to the MHP, the inventors recovered a used MHP from an actual furnace and conducted a detailed investigation of the refractory structure near the nozzle working surface. As a result, it was discovered that a very large temperature change of 500-600°C had occurred inside the refractory at a depth of about 10-20 mm from the working surface, and furthermore, a crack parallel to the working surface was confirmed in this area. As a result of repeated detailed investigations of the working surface area of this used MHP, it was concluded that the damage to the MHP was mainly due to thermal shock caused by the sudden temperature gradient occurring near the working surface, rather than damage due to melting or wear.
 これまで耐熱衝撃性の考え方としては、ノズルの母材となる炭素含有耐火物そのものに亀裂を発生させないことを目的とし、材質の低弾性率化、低熱膨張化、高強度化を図るための改善が行われてきた。しかしながら、上記のように稼働面の非常に狭い範囲で急激な温度変化が生じるような条件下では、亀裂の発生自体を止めることは困難である。そこで、本発明者らは、亀裂が発生したとしても亀裂を伸展し難くすることで改善する手法の検討を進め、炭素含有耐火物の破壊エネルギーについて着目した。 Up until now, the idea behind thermal shock resistance has been to prevent cracks from occurring in the carbon-containing refractory itself, which is the base material of the nozzle, and improvements have been made to reduce the elastic modulus, thermal expansion, and strength of the material. However, under conditions such as those described above where sudden temperature changes occur in a very narrow range of the operating surface, it is difficult to stop the occurrence of cracks. Therefore, the inventors have been investigating methods to improve the situation by making it difficult for cracks to propagate even if they do occur, and have focused on the fracture energy of carbon-containing refractories.
 耐火物の破壊エネルギーは、亀裂が伸展して新しい表面が形成される際、その表面形成に必要なエネルギーとして定義される。耐火物に熱応力がかかり一定量の弾性エネルギーが蓄えられて、そのエネルギーによって亀裂が生成されるとすると、破壊エネルギーが大きいほど、亀裂が伸展しにくいことになる。 The fracture energy of a refractory is defined as the energy required to form a new surface when a crack propagates. If a certain amount of elastic energy is stored in the refractory due to thermal stress, and a crack is generated by this energy, the greater the fracture energy, the more difficult it is for the crack to propagate.
 これまで、耐火物の破壊エネルギーを向上させる方法は様々検討されていて、例えば、炭素長繊維を添加することで破壊エネルギーが向上することが知られている。しかし、炭素長繊維を添加すると炭素含有耐火物の充填性が悪くなるという欠点があるため、現状では実用化されていない。 So far, various methods have been investigated to improve the fracture energy of refractories. For example, it is known that adding long carbon fibers can improve fracture energy. However, adding long carbon fibers has the disadvantage that it reduces the packing properties of carbon-containing refractories, and therefore this method has not been put to practical use at present.
 従来、主に炉の内張り用耐火物の耐食性又は耐熱スポーリング性などの改善を目的として、耐火物を非酸化焼成・有機物含浸する技術が知られている。例えば、特許文献5では、金属Al粉末を添加したマグカーボン煉瓦を500~1000℃の非酸化性雰囲気下で焼成加熱し、その後、炭化収率25%以上の有機物を煉瓦気孔内に含浸させる処理を行い、熱間強度の向上とともに耐食性の向上を図っている。また、特許文献6では、仮焼無煙炭を0.5~10重量%添加したマグカーボン煉瓦を600~1500℃の還元雰囲気下で焼成することで、耐スラグ侵食性及び弾性率の低減による耐熱スポーリング性の改善が図られるとしている。この特許文献6では、耐スポーリング性の指標として、1400℃還元焼成後の弾性率で評価しており、弾性率が1.2×10MPa以下であることが重要であるとしている。さらに、還元焼成後にタールを含浸してもよく、この含浸により気孔の密封、強度アップ、耐消化性の向上が図られると説明されているが、実施例は記載されていない。 Conventionally, a technique of non-oxidizing firing and impregnating an organic substance into a refractory for lining a furnace is known for the purpose of improving the corrosion resistance or heat spalling resistance of the refractory. For example, in Patent Document 5, a mag-carbon brick to which metal Al powder has been added is fired and heated in a non-oxidizing atmosphere at 500 to 1000°C, and then an organic substance with a carbonization yield of 25% or more is impregnated into the brick pores, thereby improving hot strength and corrosion resistance. In Patent Document 6, a mag-carbon brick to which 0.5 to 10% by weight of calcined anthracite is added is fired in a reducing atmosphere at 600 to 1500°C, improving slag erosion resistance and heat spalling resistance by reducing the elastic modulus. In Patent Document 6, the elastic modulus after reduction firing at 1400°C is evaluated as an index of spalling resistance, and it is important that the elastic modulus is 1.2×10 4 MPa or less. Furthermore, it is explained that tar may be impregnated after reduction firing, and that this impregnation serves to seal pores, increase strength, and improve slaking resistance, but no examples are given.
 以上のように、耐火物を非酸化焼成・有機物含浸する従来技術は、主に炉の内張り用耐火物の耐食性又は耐熱スポーリング性の改善を目的としたものであった。これに対して、特許文献7には、耐火物を非酸化条件で焼成した後、有機物を含浸する方法(非酸化焼成・有機物含浸)が破壊エネルギーの向上に有効であることが開示されている。
 ここで、炭素含有耐火物を非酸化焼成・有機物含浸することにより破壊エネルギーが増大する理由は必ずしも明確ではないが、以下のように考えられる。
As described above, the conventional technique of non-oxidizing firing of a refractory and impregnating it with an organic substance was aimed at improving the corrosion resistance or heat spalling resistance of the refractory for lining a furnace. In contrast, Patent Document 7 discloses that a method of firing a refractory under non-oxidizing conditions and then impregnating it with an organic substance (non-oxidizing firing and impregnation with an organic substance) is effective in improving the fracture energy.
Here, the reason why the fracture energy of a carbon-containing refractory increases by non-oxidative firing and impregnating it with an organic substance is not entirely clear, but it is thought to be as follows.
 炭素含有耐火物(煉瓦)は、一般にフェノール樹脂などをバインダーとして製造される。フェノール樹脂は、高温で熱分解され、一部が残炭し、炭素含有耐火物の結合材として機能する。しかし、その結合の程度は大きい。また、亀裂が発生すると容易に伸展するため破壊エネルギーはあまり大きくない。これに対して、非酸化焼成した後に有機物を含浸させた場合、有機物が耐火物の内部まで均等に拡散して浸透し、耐火物内のマトリックス部分又は鱗状黒鉛の層間などに有機物が入り込む。これらの有機物は、ノズル使用時に加熱されることによって分解し、炭素結合が形成される。その結果、鱗状黒鉛などの炭素材料と耐火性骨材の間に緩い結合が生じ、結合の程度が高まる。その結果、亀裂が発生しても容易に伸展しにくくなる。加えて、緩い結合が生じたために適度な応力によって上述した有機物由来の炭素結合が引き剥がされ、炭素長繊維を添加した場合と同様に煉瓦組織間の架橋として働く、所謂、引き抜き性の向上効果が得られ、その結果として破壊エネルギーが増大する。 Carbon-containing refractories (bricks) are generally manufactured using phenolic resins and other binders. Phenol resins are pyrolyzed at high temperatures, leaving some carbon behind, which functions as a binder for carbon-containing refractories. However, the degree of bonding is large. Also, when cracks occur, they easily expand, so the fracture energy is not very large. In contrast, when organic matter is impregnated after non-oxidizing firing, the organic matter diffuses and penetrates evenly into the interior of the refractory, and the organic matter penetrates into the matrix part of the refractory or between the layers of scaly graphite. These organic matter decomposes when heated when the nozzle is used, and carbon bonds are formed. As a result, loose bonds are formed between the carbon material, such as scaly graphite, and the refractory aggregate, and the degree of bonding increases. As a result, even if cracks occur, they are less likely to expand. In addition, because loose bonds are formed, the carbon bonds derived from the organic matter described above are peeled off by moderate stress, and they act as bridges between the brick structure in the same way as when long carbon fibers are added, resulting in an effect of improving pullability, and as a result, increasing fracture energy.
 しかし、本発明者らが検討した結果、特許文献7の方法では、破壊エネルギーの増大とこれに伴う耐用性の向上に限界があること、これに対して、非酸化焼成・有機物含浸を複数回実施することにより破壊エネルギーが飛躍的に増大することを見出した。 However, as a result of the inventors' investigations, they discovered that the method of Patent Document 7 has limitations in increasing the fracture energy and the associated improvement in durability, and that by carrying out non-oxidizing firing and organic substance impregnation multiple times, the fracture energy increases dramatically.
 一方、MHPの課題としては、特許文献3、4に示すように金属細管からガス吹きをする際に発生する金属細管への浸炭現象がある。金属細管への浸炭は、耐火物(煉瓦)に含まれる炭素源が実機稼働時の高温下で金属細管内に浸入することにより生じるものであり、この浸炭により金属細管が低融点化し、ノズル損傷量を増大させることが知られている。本発明では、ガス吹き込みノズル用耐火物を製造する際に、金属細管が埋設された炭素含有耐火物を複数回にわたって非酸化焼成・有機物含浸することにより破壊エネルギーを飛躍的に増大させ得ることを見出したものである。ただし、その非酸化焼成においても、熱処理条件によっては炭素含有耐火物由来の炭素成分が金属細管内に浸入し、浸炭に伴う細管の低融点化が起こる。そこで、金属細管が埋設された炭素含有耐火物に対する複数回の非酸化焼成において、金属細管の浸炭による低融点化を防止する。そのために、非酸化焼成条件(焼成温度、焼成時間)、さらには非酸化焼成後の金属細管の炭素含有量などについて詳細な検討を行い、金属細管の低融点化を抑制できる実用化可能な最適条件を見出した。 On the other hand, one of the issues with MHP is the carburization of the metal capillary tubes that occurs when gas is blown from the metal capillary tubes, as shown in Patent Documents 3 and 4. Carburization of the metal capillary tubes occurs when the carbon source contained in the refractory (brick) penetrates into the metal capillary tubes under high temperatures during actual operation, and it is known that this carburization lowers the melting point of the metal capillary tubes and increases the amount of damage to the nozzle. In the present invention, it has been discovered that when manufacturing a refractory for a gas injection nozzle, the fracture energy can be dramatically increased by subjecting a carbon-containing refractory in which a metal capillary tube is embedded to non-oxidizing firing and organic substance impregnation multiple times. However, even in the non-oxidizing firing, depending on the heat treatment conditions, carbon components derived from the carbon-containing refractory penetrate into the metal capillary tubes, causing the melting point of the capillary tubes to be lowered due to carburization. Therefore, the lowering of the melting point of the metal capillary tubes due to carburization is prevented in multiple non-oxidizing firings of a carbon-containing refractory in which a metal capillary tube is embedded. To achieve this, detailed studies were conducted on the non-oxidizing sintering conditions (sintering temperature, sintering time) and the carbon content of the metal tubes after non-oxidizing sintering, and optimal conditions for practical use that can prevent the metal tubes from having a low melting point were found.
 以上のように、MHP用の金属細管が埋設された炭素含有耐火物について、非酸化焼成・有機物含浸を複数回行うことにより、金属細管の周囲を形成する耐火物の破壊エネルギーを飛躍的に向上させることができる。これによりMHPの稼働面付近に発生する亀裂の伸展を抑制することができ、MHPの寿命を大きく向上させることができる。さらに、非酸化焼成条件などを最適化し、MHPの製造過程における金属細管へ浸炭を抑制することで、より高寿命とすることが可能となることを見出した。
 本発明は、このような知見に基づきなされたもので、以下を要旨とするものである。
As described above, by performing non-oxidizing sintering and organic substance impregnation multiple times on a carbon-containing refractory in which a metal capillary tube for an MHP is embedded, the fracture energy of the refractory surrounding the metal capillary tube can be dramatically improved. This makes it possible to suppress the propagation of cracks that occur near the operating surface of the MHP, and greatly improve the lifespan of the MHP. Furthermore, it was found that it is possible to extend the lifespan of the MHP by optimizing the non-oxidizing sintering conditions and suppressing carburization of the metal capillary tube during the manufacturing process of the MHP.
The present invention has been made based on these findings, and has the following gist.
[1]炭素含有耐火物にガス吹込み用の金属細管が1本以上埋設されたガス吹き込みノズル用耐火物の製造方法において、
 金属細管が埋設された炭素含有耐火物を非酸化焼成した後、該炭素含有耐火物に、残炭率が30質量%以上の有機物を含浸させる含浸処理を施す一連の工程を複数回行うことを特徴とするガス吹き込みノズル用耐火物の製造方法。
[1] A method for producing a refractory for a gas-blowing nozzle, comprising embedding one or more metal capillaries for blowing gas into a carbon-containing refractory,
A method for producing a refractory for a gas injection nozzle, comprising the steps of: non-oxidatively firing a carbon-containing refractory having a metal capillary embedded therein; and then impregnating the carbon-containing refractory with an organic substance having a residual carbon rate of 30 mass% or more; and repeating the steps multiple times.
[2]上記[1]の製造方法において、非酸化焼成を焼成温度400~1100℃、焼成時間1~20時間で行うことを特徴とするガス吹き込みノズル用耐火物の製造方法。 [2] A method for producing a refractory material for a gas injection nozzle, comprising the steps of the method for producing the refractory material in the above-mentioned [1], wherein the non-oxidizing firing is performed at a firing temperature of 400 to 1100°C for a firing time of 1 to 20 hours.
[3]上記[1]の製造方法において、非酸化焼成を焼成温度800~1100℃、焼成時間3~20時間で行うことを特徴とするガス吹き込みノズル用耐火物の製造方法。 [3] A method for producing a refractory material for a gas injection nozzle, comprising the steps of the method for producing the refractory material in the above-mentioned [1], wherein the non-oxidizing firing is performed at a firing temperature of 800 to 1100°C for a firing time of 3 to 20 hours.
[4]上記[1]~[3]のいずれかの製造方法において、非酸化焼成と有機物の含浸処理を施す一連の工程を2~3回行うことを特徴とするガス吹込みノズル用耐火物の製造方法。 [4] A method for producing a refractory material for a gas injection nozzle, comprising the steps of non-oxidizing firing and impregnation with an organic substance, performed two or three times in any one of the methods described above [1] to [3].
[5]上記[1]~[4]のいずれかの製造方法において、複数回の前記非酸化焼成での合計の焼成時総浸炭指数Nが閾値以下となるように前記非酸化焼成の条件を設定することを特徴とするガス吹き込みノズル用耐火物の製造方法。 [5] A method for manufacturing a refractory for a gas injection nozzle, comprising the steps of: (1) setting the conditions for the non-oxidizing firing such that the total carburization index N during firing in a plurality of non-oxidizing firings is equal to or less than a threshold value, in any one of the manufacturing methods described above in [1] to [4].
[6]上記[1]~[5]のいずれかの製造方法において、製造されたガス吹き込みノズル用耐火物を構成する炭素含有耐火物の破壊エネルギーが175J/m以上であることを特徴とするガス吹き込みノズル用耐火物の製造方法。 [6] A method for producing a refractory for a gas blowing nozzle, characterized in that the fracture energy of the carbon-containing refractory constituting the produced refractory for a gas blowing nozzle is 175 J/ m2 or more, in any one of the production methods [1] to [5] above.
[7]上記[1]~[6]のいずれかの製造方法において、製造されたガス吹き込みノズル用耐火物を構成する炭素含有耐火物の気孔率が3%以下であることを特徴とするガス吹き込みノズル用耐火物の製造方法。 [7] A method for producing a refractory for a gas injection nozzle, comprising any one of the methods [1] to [6] above, wherein the porosity of the carbon-containing refractory constituting the produced refractory for a gas injection nozzle is 3% or less.
[8]上記[1]~[7]のいずれかの製造方法において、最終の非酸化焼成後における金属細管の炭素含有量を2.0質量%以下とすることを特徴とするガス吹き込みノズル用耐火物の製造方法。 [8] A method for producing a refractory material for a gas injection nozzle, comprising any one of the above-mentioned methods [1] to [7], characterized in that the carbon content of the metal tube after the final non-oxidizing firing is 2.0 mass% or less.
[9]上記[1]~[7]のいずれかの製造方法において、最終の非酸化焼成後における金属細管の炭素含有量を1.3質量%以下とすることを特徴とするガス吹き込みノズル用耐火物の製造方法。 [9] A method for producing a refractory material for a gas injection nozzle, comprising any one of the methods [1] to [7] above, wherein the carbon content of the metal tube after the final non-oxidizing firing is 1.3 mass% or less.
[10]上記[1]~[9]のいずれかの製造方法において、含浸処理において炭素含有耐火物に含浸させる有機物が、コールタールピッチ、フェノール樹脂、フラン樹脂の中から選ばれる1種以上であることを特徴とするガス吹き込みノズル用耐火物の製造方法。 [10] A method for producing a refractory for a gas injection nozzle, in any one of the above methods [1] to [9], characterized in that the organic material impregnated into the carbon-containing refractory in the impregnation treatment is one or more selected from coal tar pitch, phenolic resin, and furan resin.
[11]炭素含有耐火物にガス吹込み用の金属細管が1本以上埋設されたガス吹き込みノズル用耐火物であって、
 炭素含有耐火物の破壊エネルギーが175J/m以上であることを特徴とするガス吹き込みノズル用耐火物。
[11] A refractory for a gas-blowing nozzle, comprising a carbon-containing refractory having one or more metal thin tubes for blowing gas embedded therein,
A refractory for a gas blowing nozzle, characterized in that the fracture energy of the carbon-containing refractory is 175 J/ m2 or more.
[12]上記[11]のガス吹き込みノズル用耐火物において、炭素含有耐火物の気孔率が3%以下であることを特徴とするガス吹き込みノズル用耐火物。 [12] The refractory for a gas injection nozzle according to [11] above, characterized in that the porosity of the carbon-containing refractory is 3% or less.
[13]上記[11]又は[12]のガス吹き込みノズル用耐火物において、金属細管の炭素含有量が2.0質量%以下であることを特徴とするガス吹き込みノズル用耐火物。 [13] The refractory for a gas injection nozzle according to [11] or [12] above, characterized in that the carbon content of the metal tube is 2.0 mass% or less.
[14]上記[11]又は[12]のガス吹き込みノズル用耐火物において、金属細管の炭素含有量が1.3質量%以下であることを特徴とするガス吹き込みノズル用耐火物。 [14] The refractory for a gas injection nozzle according to the above [11] or [12], characterized in that the carbon content of the metal tube is 1.3 mass% or less.
[15]上記[11]~[14]のいずれかのガス吹き込みノズル用耐火物を備えることを特徴とするガス吹き込みノズル。 [15] A gas injection nozzle comprising any one of the refractories for gas injection nozzles described above in [11] to [14].
 本発明の製造方法によれば、金属細管が埋設された炭素含有耐火物の破壊エネルギーが高く、ノズル稼働面付近における急激な温度勾配によって発生する亀裂の伸展が抑制されるガス吹き込みノズル用耐火物を製造することができる。このガス吹き込みノズル用耐火物を用いることにより、ガス吹き込みノズルの寿命を大きく向上させることができる。 The manufacturing method of the present invention makes it possible to manufacture a refractory material for gas injection nozzles in which the fracture energy of the carbon-containing refractory material with embedded metal tubes is high and the propagation of cracks caused by a steep temperature gradient near the nozzle operating surface is suppressed. By using this refractory material for gas injection nozzles, the life of the gas injection nozzle can be significantly improved.
 さらに、非酸化焼成条件(焼成温度、焼成時間)、非酸化焼成後の金属細管の炭素含有量などを最適化することにより、金属細管への浸炭を抑えることで金属細管の融点の低下を防止することができ、ガス吹き込みノズルの寿命をさらに向上させることができる。 Furthermore, by optimizing the non-oxidizing sintering conditions (sintering temperature, sintering time) and the carbon content of the metal tube after non-oxidizing sintering, it is possible to suppress carburization of the metal tube, thereby preventing a decrease in the melting point of the metal tube, and further improving the lifespan of the gas injection nozzle.
 本発明は、炭素含有耐火物にガス吹込み用の金属細管が1本以上埋設されたガス吹き込みノズル用耐火物の製造方法である。金属細管が埋設された炭素含有耐火物を非酸化焼成し(非酸化焼成工程)、次いで、この炭素含有耐火物に残炭率が30質量%以上の有機物を含浸させる含浸処理を施す(含浸処理工程)一連の工程、すなわち、非酸化焼成・有機物含浸を複数回行うものである。 The present invention is a method for manufacturing a refractory for a gas injection nozzle, in which one or more metal capillaries for gas injection are embedded in a carbon-containing refractory. The carbon-containing refractory in which the metal capillaries are embedded is subjected to non-oxidative firing (non-oxidative firing step), and then the carbon-containing refractory is subjected to an impregnation treatment in which an organic substance having a residual carbon rate of 30 mass% or more is impregnated into the carbon-containing refractory (impregnation treatment step). In other words, the non-oxidative firing and organic substance impregnation are performed multiple times.
 以下の説明において、炭素含有耐火物に金属細管が数十本以上埋設されたガス吹き込みノズルを、説明の便宜上「MHP」という場合がある。 In the following explanation, for convenience, a gas injection nozzle with dozens or more metal tubes embedded in a carbon-containing refractory material may be referred to as an "MHP."
 なお、本発明の製造方法で用いられる炭素含有耐火物の材質(原料)及び成形方法、金属細管の材質及び本数、金属細管を炭素含有耐火物に埋め込む方法などについては、後に詳しく述べる。 The material (raw material) and molding method of the carbon-containing refractory used in the manufacturing method of the present invention, the material and number of the metal capillaries, and the method of embedding the metal capillaries in the carbon-containing refractory will be described in detail later.
 本発明において、非酸化焼成・有機物含浸される対象物は、金属細管が埋設された炭素含有耐火物である。ガス吹き込みノズルがガス溜まりを有するタイプの場合には、対象物は金属細管が埋設されただけの炭素含有耐火物でもよい。また、金属細管が埋設されるとともに、この金属細管にガス溜まり用の部材の全部又は一部が接合された炭素含有耐火物でもよい。 In the present invention, the object to be non-oxidatively fired and impregnated with an organic substance is a carbon-containing refractory material in which a metal capillary is embedded. In the case where the gas injection nozzle is of a type having a gas reservoir, the object may be a carbon-containing refractory material in which only a metal capillary is embedded. Alternatively, the object may be a carbon-containing refractory material in which a metal capillary is embedded and in which all or part of a member for a gas reservoir is joined to the metal capillary.
 本発明では、炭素含有耐火物を非酸化焼成した後、有機物の含浸処理を施すが、非酸化焼成しないと有機物の含浸ができない。基本的に炭素含有耐火物(煉瓦)は焼成工程を経ないで得られる不焼成耐火物であり、バインダーの硬化に伴い耐火物の気孔率は数%と非常に低い。そのため、不焼成品のままでは有機物を耐火物全体に含浸させることは困難である。そのため、有機物を含浸させるためには、事前に非酸化焼成が必要になる。さらに、非酸化焼成では、耐火物全体を熱処理することで、バインダーなどに由来する炭素成分が結合材として均質に生成する。そのため、実機稼働時の受熱により耐火物組織が変化する不焼成品に対して均質な耐火物組織を得つつ、有機物を容易に含浸させることが可能となる。 In the present invention, the carbon-containing refractory is subjected to non-oxidative firing and then impregnated with an organic substance. However, impregnation with an organic substance cannot be achieved without non-oxidative firing. Basically, carbon-containing refractories (bricks) are unfired refractories obtained without a firing process, and the porosity of the refractory is very low at only a few percent due to the hardening of the binder. Therefore, it is difficult to impregnate the entire refractory with an organic substance in an unfired product. Therefore, in order to impregnate the organic substance, non-oxidative firing is required in advance. Furthermore, in non-oxidative firing, the entire refractory is heat-treated, so that carbon components derived from the binder, etc., are generated homogeneously as a binding material. Therefore, it is possible to easily impregnate the organic substance while obtaining a homogeneous refractory structure for unfired products, whose refractory structure changes due to heat received during actual operation.
 本発明において、非酸化焼成・有機物含浸を複数回行うことにより破壊エネルギーが飛躍的に増大するが、これは以下のような理由によるものと考えられる。すなわち、有機物含浸において炭素含有耐火物に含浸させる有機物には、気化成分(アルコールのように、温度が上がると酸素が無くても気体となり、耐火物の外に散逸する成分)が含まれる。また、残炭成分(炭素のように、温度が上がっても酸素が無ければ気体とはならず、耐火物の内部に残留する成分)が含まれる。このうちの気化成分は、耐火物の製造後の常温環境及び実機使用時の高温環境で耐火物の外に散逸し、有機物含浸の効果が低下する。非酸化焼成と有機物含浸を複数回繰り返すことにより、非酸化焼成による気化成分の散逸→含浸による気孔への有機物の充填→非酸化焼成による気化成分の散逸(残炭成分により前回よりは気孔が減少している)→含浸による気孔への有機物の充填、が起こる。そして、高温に晒されても残る気孔が減少していく。例えば、非酸化焼成により体積が半分になる有機物を用いれば、1回の含浸では、その後に気化成分が散逸しても気孔の体積は半分になる。また、2回の含浸では気孔の体積はさらにその半分(当初の4分の1)になる。さらに、3回の含浸では気孔の体積はさらにその半分(当初の8分の1)になる。このように非酸化焼成・有機物含浸を複数回行うことにより、気孔の体積が大きく減少する結果、破壊エネルギーが飛躍的に増大するものと考えられる。 In the present invention, the fracture energy increases dramatically by performing non-oxidizing firing and organic impregnation multiple times, and this is thought to be due to the following reasons. That is, the organic matter impregnated into the carbon-containing refractory during organic impregnation contains a vaporized component (a component that becomes a gas even in the absence of oxygen when the temperature rises, such as alcohol, and dissipates outside the refractory). It also contains a residual carbon component (a component that does not become a gas in the absence of oxygen even when the temperature rises, such as carbon, and remains inside the refractory). Of these, the vaporized component dissipates outside the refractory in the room temperature environment after the refractory is manufactured and in the high temperature environment during actual use, reducing the effect of the organic impregnation. By repeating non-oxidizing firing and organic impregnation multiple times, the following occurs: dissipation of the vaporized component due to non-oxidizing firing → filling of the pores with organic matter due to impregnation → dissipation of the vaporized component due to non-oxidizing firing (the pores are reduced from the previous time due to the residual carbon component) → filling of the pores with organic matter due to impregnation. And the number of pores that remain even when exposed to high temperatures decreases. For example, if an organic material whose volume is halved by non-oxidizing firing is used, after one impregnation, the pore volume will be halved even if the vaporized components dissipate afterwards. After two impregnations, the pore volume will be halved again (one-quarter of the original volume). After three impregnations, the pore volume will be halved again (one-eighth of the original volume). In this way, by performing multiple non-oxidizing firing and organic material impregnations, the pore volume is greatly reduced, and it is believed that the fracture energy will increase dramatically.
 また、非酸化焼成・有機物含浸を複数回行うと、非酸化焼成・有機物含浸の度に気孔が残炭により充填されていくので、熱伝導率が向上して温度勾配が緩和され、熱衝撃が低減するという効果も期待できる。 In addition, if non-oxidizing firing and organic impregnation are performed multiple times, the pores are filled with residual charcoal each time, which is expected to improve thermal conductivity, ease the temperature gradient, and reduce thermal shock.
 炭素含有耐火物の非酸化焼成での焼成温度(熱処理温度)は400℃以上1100℃以下が好ましい。焼成温度は400℃未満では、バインダー(通常、フェノール樹脂などの樹脂)の熱分解が十分に起こらず、非酸化焼成後の含浸処理において有機物の含浸が不十分となり、破壊エネルギーが十分に向上しない恐れがある。一方、焼成温度が1100℃を超えると、炭素含有耐火物由来の炭素成分の金属細管への浸炭により金属細管の低融点化を招く恐れがある。また、本発明では非酸化焼成を複数回行うので、焼成温度が1100℃を超えると、埋め込まれた金属細管が溶融したり、閉塞したりして、ガス吹き込みノズルとしてのガス吹き機能が失われる恐れもある。 The firing temperature (heat treatment temperature) in the non-oxidizing firing of the carbon-containing refractory is preferably 400°C or higher and 1100°C or lower. If the firing temperature is lower than 400°C, the thermal decomposition of the binder (usually a resin such as a phenolic resin) does not occur sufficiently, and the impregnation of the organic matter in the impregnation treatment after the non-oxidizing firing may be insufficient, and the fracture energy may not be sufficiently improved. On the other hand, if the firing temperature exceeds 1100°C, the carbon components derived from the carbon-containing refractory may carburize the metal tubes, causing a lower melting point of the metal tubes. In addition, since non-oxidizing firing is performed multiple times in the present invention, if the firing temperature exceeds 1100°C, the embedded metal tubes may melt or become clogged, and the gas-blowing function as a gas-blowing nozzle may be lost.
 また、非酸化焼成後の含浸処理において有機物をより効果的に含浸させるには、焼成温度は800℃以上が好ましい。 In addition, to more effectively impregnate organic matter in the impregnation process after non-oxidizing firing, the firing temperature is preferably 800°C or higher.
 非酸化焼成の焼成時間(保持時間)は、1~20時間とすることが好ましい。焼成時間が1時間未満では、ノズル全体の熱処理が不十分となりやすい。一方、焼成時間が20時間を超えると、焼成温度が1100℃を超える場合と同様に金属細管への浸炭が発生し、金属細管の低融点化を招く恐れがある。このような観点からより好ましい焼成時間は3~20時間である。 The firing time (holding time) for non-oxidizing firing is preferably 1 to 20 hours. If the firing time is less than 1 hour, the heat treatment of the entire nozzle is likely to be insufficient. On the other hand, if the firing time exceeds 20 hours, carburization of the metal tube may occur, as in the case where the firing temperature exceeds 1100°C, which may result in a lower melting point of the metal tube. From this perspective, a more preferable firing time is 3 to 20 hours.
 特に本発明では、非酸化焼成を複数回行うため、複数回の合計の熱処理量を制御することが好ましい。具体的には、以下の(1)式で示す焼成時総浸炭指数Nが閾値以下となるように非酸化焼成の条件を設定することが好ましい。非酸化焼成の条件は、例えば焼成の実施回数、焼成温度及び焼成時間を含むとして説明する。 In particular, in the present invention, since non-oxidizing sintering is performed multiple times, it is preferable to control the total amount of heat treatment for the multiple times. Specifically, it is preferable to set the conditions for non-oxidizing sintering so that the total carburization index N during sintering, shown in the following formula (1), is equal to or less than a threshold value. The conditions for non-oxidizing sintering are explained as including, for example, the number of times sintering is performed, the sintering temperature, and the sintering time.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 ここで、Dは炭素の拡散係数であり、以下の式(2)で表される。なお、焼成時総浸炭指数Nは炭素の拡散係数Dを各回の焼成時間の合計時間で積分し、10を乗じた値である。 Here, D is the carbon diffusion coefficient and is expressed by the following formula (2): The total carburization index N during firing is the value obtained by integrating the carbon diffusion coefficient D over the total time of each firing and multiplying the result by 109 .
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 式(2)において、Dは炭素拡散の頻度因子であり、Qは炭素が拡散するための活性化エネルギーであり、Rは気体定数であり、Tは焼成時間である。焼成時総浸炭指数Nは、炭素が金属細管内にどれだけ浸入するかを示す指標である。閾値は予め試験を繰り返すことにより算出される値であり、金属細管の材質に応じて適宜定められるが、本実施形態では一例として118である。すなわち、本実施形態では、非酸化焼成を複数回行った際の焼成時総浸炭指数Nが118以下となるように焼成の実施回数、焼成温度及び焼成時間を設定することが好ましい。焼成時総浸炭指数Nが閾値を超えると、非酸化焼成後の金属細管の炭素含有量が2.0質量%を超えてしまい、ノズル自体の耐用性が低下する。なお、金属細管の浸炭の観点において焼成時総浸炭指数Nに下限値はないため、バインダーの熱分解等の他の観点で熱処理量の下限値を設定すればよい。 In formula (2), D 0 is the frequency factor of carbon diffusion, Q is the activation energy for carbon diffusion, R is the gas constant, and T is the firing time. The total carburization index N at firing is an index indicating how much carbon penetrates into the metal tube. The threshold value is a value calculated in advance by repeating tests and is appropriately determined according to the material of the metal tube, and is 118 as an example in this embodiment. That is, in this embodiment, it is preferable to set the number of firings, the firing temperature, and the firing time so that the total carburization index N at firing when non-oxidizing firing is performed multiple times is 118 or less. If the total carburization index N at firing exceeds the threshold value, the carbon content of the metal tube after non-oxidizing firing exceeds 2.0 mass%, and the durability of the nozzle itself decreases. In addition, since there is no lower limit value for the total carburization index N at firing from the viewpoint of carburization of the metal tube, the lower limit value of the heat treatment amount may be set from other viewpoints such as thermal decomposition of the binder.
 本発明において炭素含有耐火物の焼成を非酸化焼成とするのは、炭素含有耐火物が本来有する耐熱スポーリング性及び耐スラグ浸透性などの特性が損なわれないようにするためである。すなわち、炭素含有耐火物が含有する炭素が著しく減少するような焼成条件、例えば、酸化性の雰囲気下で高温・長時間加熱するような条件で焼成すると、炭素含有耐火物中の炭素が酸化消失する。そして、炭素含有耐火物が有する耐熱スポーリング性及び耐スラグ浸透性などの特性が失われてしまう。そこで、上記特性などが失われないように、非酸化性の条件で焼成するのである。 In the present invention, the carbon-containing refractory is fired in a non-oxidizing manner in order to prevent the inherent properties of the carbon-containing refractory, such as heat spalling resistance and slag penetration resistance, from being lost. In other words, if the carbon-containing refractory is fired under firing conditions that significantly reduce the amount of carbon contained in the refractory, for example, under conditions of heating at high temperature for a long period of time in an oxidizing atmosphere, the carbon in the carbon-containing refractory is oxidized and lost. As a result, the properties of the carbon-containing refractory, such as heat spalling resistance and slag penetration resistance, are lost. Therefore, the carbon-containing refractory is fired under non-oxidizing conditions in order to prevent the loss of the above properties.
 非酸化焼成の条件としては、焼成の実施回数、焼成温度及び焼成時間を含むとして説明したが、炭素含有耐火物中に含まれる鱗状黒鉛などの炭素が実質的に消失しないような条件であれば特に制限はない。例えば、非酸化焼成の条件は、還元焼成、還元雰囲気下での焼成、非酸化性雰囲気下での焼成、酸化雰囲気下での短時間焼成などが適用できる。 Although the non-oxidizing firing conditions have been described as including the number of firings, the firing temperature, and the firing time, there are no particular limitations as long as the conditions are such that the carbon, such as scaly graphite, contained in the carbon-containing refractory material is not substantially lost. For example, applicable non-oxidizing firing conditions include reducing firing, firing in a reducing atmosphere, firing in a non-oxidizing atmosphere, and short-time firing in an oxidizing atmosphere.
 非酸化焼成の実施方法には特に制限はなく、常法で実施すればよい。例えば、焼成炉内に装入する台車上に煉瓦を組合せた鞘又は金属製の容器を設置し、その内部に還元焼成する炭素含有耐火物(金属細管が埋設された炭素含有耐火物)をセットする。その後、炭素含有耐火物の周囲にコークスなどの炭素源を入れた後、上部に蓋をかけ、外気を遮蔽しながら、所定の温度、時間にて還元焼成(熱処理)を実施する。 There are no particular limitations on the method for carrying out non-oxidizing firing, and it may be carried out in the usual manner. For example, a sheath made of assembled bricks or a metal container is placed on a cart that is loaded into the firing furnace, and the carbon-containing refractory to be subjected to reduction firing (carbon-containing refractory with embedded metal tubes) is placed inside it. After that, a carbon source such as coke is placed around the carbon-containing refractory, and then a lid is placed on top to block out the outside air, and reduction firing (heat treatment) is carried out at a specified temperature and time.
 また、炭素含有耐火物の焼成は、焼成雰囲気をNXガスなどのように可燃性のガスを含んだ還元性雰囲気とした還元雰囲気焼成又は焼成雰囲気を窒素又はアルゴンのような不活性ガス、或いは非酸化性ガス雰囲気とした非酸化性雰囲気焼成とすることもできる。還元雰囲気焼成又は非酸化性雰囲気焼成の場合、鞘又は金属容器は不要とすることができる。 Furthermore, the firing of carbon-containing refractories can be performed in a reducing atmosphere, in which the firing atmosphere is a reducing atmosphere containing a flammable gas such as NX gas, or in a non-oxidizing atmosphere, in which the firing atmosphere is an inert gas such as nitrogen or argon, or a non-oxidizing gas atmosphere. In the case of reducing atmosphere firing or non-oxidizing atmosphere firing, a sheath or metal container can be omitted.
 さらに、炭素含有耐火物の焼成は、酸化雰囲気下の焼成であっても、短時間焼成とし、焼成後、表面に形成された脱炭層を除去し、耐火物内部の脱炭されていない部分を使用することもできる。この方法では、炭素含有耐火物の表面は酸化状態となる。しかし、表面の酸化に伴いその部分が保護層として働き、耐火物内部は非酸化条件で焼成することができる。そのため、耐火物内部については実質的に非酸化焼成と見なせる。また、炭素含有耐火物の焼成は、事前に炭素含有耐火物表面に酸化防止用のグレーズを塗布するなどの方法も採用可能である。 Furthermore, even if the carbon-containing refractory is fired in an oxidizing atmosphere, it is possible to fire it for a short time, remove the decarburized layer formed on the surface after firing, and use the non-decarburized part inside the refractory. With this method, the surface of the carbon-containing refractory becomes oxidized. However, as the surface oxidizes, this part acts as a protective layer, and the inside of the refractory can be fired under non-oxidizing conditions. Therefore, the inside of the refractory can be considered to have been fired in a substantially non-oxidizing manner. In addition, when firing the carbon-containing refractory, a method of applying an anti-oxidizing glaze to the surface of the carbon-containing refractory in advance can also be used.
 ただし、上記方法のなかでは、還元焼成、還元雰囲気下での焼成、非酸化性雰囲気下での焼成がより好ましい。酸化雰囲気下の焼成では、表面の脱炭層を除去する必要があるため、経済的ではない。 However, among the above methods, reducing firing, firing in a reducing atmosphere, and firing in a non-oxidizing atmosphere are more preferable. Firing in an oxidizing atmosphere is not economical because it is necessary to remove the decarburized layer on the surface.
 最終の非酸化焼成後の金属細管(炭素含有耐火物に埋設された金属細管)の炭素含有量は2.0質量%以下であることが好ましい。金属細管の炭素含有量が2.0質量%を超えると、金属細管の融点が低下するため、ノズル先端部の稼働面付近で金属細管が溶融する恐れがあり、ノズル自体の耐用性が低下する。また、以上の観点から、より好ましい金属細管の炭素含有量は1.3質量%以下である。 The carbon content of the metal capillaries (metal capillaries embedded in a carbon-containing refractory) after the final non-oxidizing firing is preferably 2.0% by mass or less. If the carbon content of the metal capillaries exceeds 2.0% by mass, the melting point of the metal capillaries will decrease, and there is a risk that the metal capillaries will melt near the working surface of the nozzle tip, reducing the durability of the nozzle itself. From the above perspective, a more preferable carbon content of the metal capillaries is 1.3% by mass or less.
 非酸化焼成後の金属細管の炭素含有量を2.0質量%以下(好ましくは1.3質量%以下)とする方法として、例えば(i)非酸化焼成温度を低めにし、非酸化焼成時間を過度に長くしないことが挙げられる。具体的には、非酸化焼成温度を1000℃以下とし、非酸化焼成時間を20時間以下とすることがある。また、別の方法として、例えば(ii)金属細管の表面にガス透過性のないコーティング膜を塗布し、浸炭を抑えることなどを挙げることができるが、特に(i)の方法が有効である。 As a method for making the carbon content of the metal tube after non-oxidizing sintering 2.0 mass% or less (preferably 1.3 mass% or less), for example, (i) the non-oxidizing sintering temperature is kept low and the non-oxidizing sintering time is not made excessively long. Specifically, the non-oxidizing sintering temperature is set to 1000°C or less and the non-oxidizing sintering time is set to 20 hours or less. Another method is, for example, (ii) applying a gas-impermeable coating film to the surface of the metal tube to suppress carburization, but method (i) is particularly effective.
 以上のような非酸化焼成工程を経た炭素含有耐火物に対して、有機物を含浸させる含浸処理を施す。 The carbon-containing refractory that has undergone the above non-oxidizing firing process is then subjected to an impregnation process in which an organic substance is impregnated into it.
 有機物の含浸処理において、含浸する有機物の残炭率は30質量%以上とする。この機物の残炭率は、JIS K6910(フェノール樹脂試験方法)に記載の固定炭素測定法に基づいて測定されるものである。含浸する有機物の残炭率が30質量%未満では、残炭による耐火物組織強化の効果が小さく好ましくない。この観点から、より好ましい残炭率は35質量%以上である。 In the impregnation process of organic matter, the residual carbon rate of the organic matter to be impregnated must be 30% by mass or more. The residual carbon rate of this material is measured based on the fixed carbon measurement method described in JIS K6910 (phenolic resin test method). If the residual carbon rate of the organic matter to be impregnated is less than 30% by mass, the effect of the residual carbon in strengthening the refractory structure is small, which is not preferable. From this perspective, a residual carbon rate of 35% by mass or more is more preferable.
 含浸する有機物としては、コールタールピッチ(加熱溶解物)、フェノール樹脂(液状樹脂)、フラン樹脂(液状樹脂)などが挙げられ、これらの1種以上を用いることができるが、そのなかでも、特にコールタールピッチが好ましい。コールタールピッチは、熱分解後の炭素が結晶化しやすいため、より破壊エネルギーの向上に寄与するためである。これに対して、フェノール樹脂は熱分解後の炭素が結晶化しにくく、グラッシーなカーボンとなりやすい。そのため、破壊エネルギーの向上効果はコールタールピッチに比べて相対的に低い。 The organic matter to be impregnated includes coal tar pitch (melted by heating), phenolic resin (liquid resin), furan resin (liquid resin), etc., and one or more of these can be used, but among these, coal tar pitch is particularly preferable. This is because coal tar pitch contributes more to improving the breaking energy because the carbon after pyrolysis easily crystallizes. In contrast, phenolic resin carbon after pyrolysis does not easily crystallize, and it tends to become glassy carbon. Therefore, the effect of improving the breaking energy is relatively low compared to coal tar pitch.
 有機物の含浸方法には特に制限はない。ただし、一旦真空に減圧した後、加圧下で有機物を含浸させることが好ましい。例えば、真空圧100Torr以下に減圧した後、加圧力5kgf/cm以上で2時間以上保持して有機物を含浸させる。真空圧が高いと、耐火物内に残留した気泡により、加圧時に耐火物内部まで均質に有機物を含浸させることができなくなる場合がある。このため減圧する場合の真空圧は、100Torr以下、より望ましくは60Torr以下が好ましい。また、減圧後の加圧力が低い、或いは加圧保持時間が短いと、耐火物内に有機物を十分に含浸させることができない恐れがある。このため、減圧後の加圧力は5kgf/cm以上、より望ましくは10kgf/cm以上とすることが好ましい。また、加圧保持時間は2時間以上、より望ましくは4時間以上とすることが好ましい。これらの含浸条件を満たすことにより、炭素含有耐火物内に有機物が均質に浸透し、上述したような原理による炭素含有耐火物の破壊エネルギーの向上効果が特に効果的に得られる。 There is no particular limitation on the method of impregnating the organic matter. However, it is preferable to impregnate the organic matter under pressure after once reducing the pressure to a vacuum. For example, after reducing the pressure to 100 Torr or less, the pressure is maintained at 5 kgf/ cm2 or more for 2 hours or more to impregnate the organic matter. If the vacuum pressure is high, the organic matter may not be homogeneously impregnated into the inside of the refractory when pressurized due to bubbles remaining in the refractory. For this reason, the vacuum pressure when reducing the pressure is preferably 100 Torr or less, more preferably 60 Torr or less. In addition, if the pressure after reducing the pressure is low or the pressure holding time is short, there is a risk that the organic matter may not be sufficiently impregnated into the refractory. For this reason, the pressure after reducing the pressure is preferably 5 kgf/ cm2 or more, more preferably 10 kgf/cm2 or more . In addition, the pressure holding time is preferably 2 hours or more, more preferably 4 hours or more. By satisfying these impregnation conditions, the organic matter is homogeneously permeated into the carbon-containing refractory, and the effect of improving the fracture energy of the carbon-containing refractory according to the above-mentioned principle is particularly effectively obtained.
 以上のように炭素含有耐火物を所定の真空圧に減圧した後、所定の加圧力に保持して有機物の含浸処理を行う設備としては、スライドプレートなどで有機物を含浸する際に用いる一般的な含浸処理設備が使用できる。また、含浸後は炭素含有耐火物内に残留する揮発分を除去するために、200℃程度の乾燥処理を実施してもよい。 As described above, after the carbon-containing refractory is depressurized to a predetermined vacuum pressure, the impregnation process of the organic substance can be performed while maintaining the carbon-containing refractory at a predetermined pressure by using general impregnation process equipment used for impregnating organic substances with slide plates, etc. After impregnation, a drying process at about 200°C can be performed to remove any volatile matter remaining in the carbon-containing refractory.
 本発明では、非酸化焼成・有機物含浸を複数回行うことにより破壊エネルギーが飛躍的に増大する。しかし、ある程度の実施回数になると破壊エネルギーの増大効果は飽和する。そのため、経済性を考慮すると非酸化焼成・有機物含浸の実施回数は2回~3回程度とすることが望ましい。 In the present invention, the fracture energy increases dramatically by performing non-oxidizing firing and organic impregnation multiple times. However, once a certain number of times has been performed, the effect of increasing fracture energy becomes saturated. Therefore, from an economical perspective, it is desirable to perform non-oxidizing firing and organic impregnation two to three times.
 本発明法で製造されるガス吹き込みノズル用耐火物は、炭素含有耐火物の破壊エネルギーが175J/m以上であることが好ましい。破壊エネルギーが175J/m未満では、従来の1回含浸耐火物(非酸化焼成・有機物含浸を1回のみ行って得られた耐火物)との差は小さい。そのため、ガス吹き込みノズルの寿命向上効果は小さい。すなわち、炭素含有耐火物の破壊エネルギーが175J/m以上であることにより、ノズル稼働面付近における急激な温度勾配によって発生する亀裂の伸展を特に有効に抑制することが可能となり、ガス吹き込みノズルの寿命を大きく向上させることができる。 The refractory for gas injection nozzle manufactured by the method of the present invention preferably has a fracture energy of 175 J/m2 or more for the carbon-containing refractory. If the fracture energy is less than 175 J/ m2 , the difference from a conventional one-time impregnated refractory (a refractory obtained by performing non-oxidizing firing and organic impregnation only once) is small. Therefore, the effect of improving the life of the gas injection nozzle is small. In other words, by making the fracture energy of the carbon-containing refractory 175 J/ m2 or more, it is possible to effectively suppress the propagation of cracks caused by a steep temperature gradient near the nozzle operating surface, and the life of the gas injection nozzle can be significantly improved.
 破壊エネルギーは、三点曲げ試験法を用いて測定する。すなわち、ガス吹き込みノズル用耐火物は、25×25×140mmの試験片に対して800℃の不活性雰囲気中で100mmスパンの三点曲げ試験を行い、0.1mm/minの速度で試験片に曲げ荷重を加えて応力・歪み曲線を求め、この応力・歪み曲線のなす面積から破壊エネルギーを得る。 The fracture energy is measured using a three-point bending test. That is, for refractory materials for gas injection nozzles, a three-point bending test is performed on a 25 x 25 x 140 mm test piece in an inert atmosphere at 800°C over a span of 100 mm. A bending load is applied to the test piece at a rate of 0.1 mm/min to obtain a stress-strain curve, and the fracture energy is obtained from the area of this stress-strain curve.
 同一材質の炭素含有耐火物であって、成形後、次に挙げる非酸化焼成・有機物含浸をした試料(i)~(v)について破壊エネルギーを比較した。試料(i)は、通常の乾燥処理までを実施した試料である。試料(ii)は、乾燥処理後にさらに非酸化焼成した試料である。試料(iii)は、乾燥処理後に非酸化焼成・有機物含浸を1回のみ行った試料である。試料(iv)は、乾燥処理後に本発明条件で非酸化焼成・有機物含浸を2回行った試料である。試料(v)は、乾燥処理後に本発明条件で非酸化焼成・有機物含浸を3回行った試料である。その結果、破壊エネルギーはそれぞれ、試料(i)で85J/m、試料(ii)で62J/m、試料(iii)で160J/m、試料(iv)で187J/m、試料(v)で193J/mであった。このように複数回にわたって非酸化焼成・有機物含浸することによって、破壊エネルギーは効果的に増大する。 The fracture energies of samples (i) to (v) of carbon-containing refractories made of the same material, which were molded, then non-oxidatively fired and impregnated with an organic substance as described below, were compared. Sample (i) was a sample that had been subjected to a normal drying treatment. Sample (ii) was a sample that had been further subjected to a non-oxidative firing after drying treatment. Sample (iii) was a sample that had been subjected to a single non-oxidative firing and organic substance impregnation after drying treatment. Sample (iv) was a sample that had been subjected to two non-oxidative firings and organic substance impregnations under the conditions of the present invention after drying treatment. Sample (v) was a sample that had been subjected to three non-oxidative firings and organic substance impregnations under the conditions of the present invention after drying treatment. As a result, the fracture energy was 85 J/ m for sample (i), 62 J/ m for sample (ii), 160 J/ m for sample (iii), 187 J/ m for sample (iv), and 193 J/ m for sample (v). In this way, the fracture energy is effectively increased by performing non-oxidative baking and organic substance impregnation multiple times.
 ここで、従来法で得られたガス吹込みノズル用耐火物(破壊エネルギー160J/m以下)では、ノズル稼働面から100mm程度耐火物の内部側に入った箇所で割れが発生した。そして、ガス吹込みノズル用耐火物の厚さが瞬時に100mm程度減少する現象が起こり、耐用が10%程度低下していた。しかし、破壊エネルギーが175J/mの本発明品ではそのような現象は発生しなかった。 Here, in the refractory for gas injection nozzles obtained by the conventional method (fracture energy of 160 J/ m2 or less), cracks occurred at a location about 100 mm into the interior of the refractory from the nozzle operating surface. The thickness of the refractory for gas injection nozzles was instantly reduced by about 100 mm, and the durability was reduced by about 10%. However, such a phenomenon did not occur in the product of the present invention with a fracture energy of 175 J/ m2 .
 なお、耐火物の破壊エネルギーを高める方法としては、先に述べたように炭素繊維(炭素長繊維)を添加する方法がある。しかし、炭素繊維の添加は破壊エネルギーの増大には有効であるものの、炭素繊維と耐火物のなじみが非常に悪く、気孔率の非常に高い、ポーラスな組織となってしまう。このため炭素繊維を添加した材質では、耐食性などの低下が大きく、実用化は困難である。これに対して、非酸化焼成・有機物含浸は、耐火物組織の緻密性を保持しつつ破壊エネルギーを高めることができるので好ましい。 As mentioned above, one method of increasing the fracture energy of refractories is to add carbon fibers (long carbon fibers). However, although the addition of carbon fibers is effective in increasing fracture energy, the carbon fibers do not blend well with the refractory material, resulting in a porous structure with a very high porosity. As a result, materials with added carbon fibers suffer a significant decrease in corrosion resistance, making them difficult to put into practical use. In contrast, non-oxidizing firing and organic impregnation are preferable, as they can increase fracture energy while maintaining the density of the refractory structure.
 また、本発明法で製造されるガス吹き込みノズル用耐火物は、炭素含有耐火物の気孔率が3%以下であることが好ましい。この気孔率は、有機物含浸量の指標であり、気孔率が大きければ含浸量が少なく、気孔率が小さければ含浸量が多いことを意味する。有機物含浸量が少なく炭素含有耐火物の気孔率が3%を超えると、有機物含浸による効果が小さくなって、耐火物組織を強化し、靭性を向上させる効果が小さくなり、破壊エネルギーも175J/m以上を確保することが難しくなる。炭素含有耐火物のより好ましい気孔率は1.5%以下である。なお、炭素含有耐火物の気孔率を低減させるには、有機物を炭素含有耐火物内に十分に含浸させることが有効である。 In addition, the refractory for gas injection nozzle manufactured by the method of the present invention preferably has a porosity of 3% or less. This porosity is an index of the amount of organic matter impregnated, and a large porosity means a small amount of impregnation, and a small porosity means a large amount of impregnation. If the amount of organic matter impregnated is small and the porosity of the carbon-containing refractory exceeds 3%, the effect of the organic matter impregnation is small, the effect of strengthening the refractory structure and improving the toughness is small, and it becomes difficult to ensure a fracture energy of 175 J/m 2 or more. A more preferable porosity of the carbon-containing refractory is 1.5% or less. In order to reduce the porosity of the carbon-containing refractory, it is effective to sufficiently impregnate the carbon-containing refractory with an organic matter.
 次に、本発明の製造方法で用いられる炭素含有耐火物の材質(原料)及び成形方法、金属細管の材質及び本数、金属細管を炭素含有耐火物に埋め込む方法などについて説明する。 Next, we will explain the material (raw material) and molding method of the carbon-containing refractory used in the manufacturing method of the present invention, the material and number of the metal tubes, and the method of embedding the metal tubes in the carbon-containing refractory.
 炭素含有耐火物の原料は、一般に骨材、炭素源、その他の添加材料及びバインダーなどからなる。 The raw materials for carbon-containing refractories generally consist of aggregate, a carbon source, other additives, and binders.
 骨材としては、マグネシア、アルミナ、ドロマイト、ジルコニア、クロミア、スピネル(アルミナ-マグネシア、クロミア-マグネシア)などが挙げられる。これらの1種以上を用いることができるが、これらのなかでも、溶融金属及び溶融スラグに対する耐食性の点からは、マグネシアが特に好ましい。 Aggregates include magnesia, alumina, dolomite, zirconia, chromia, and spinel (alumina-magnesia, chromia-magnesia). One or more of these can be used, but magnesia is particularly preferred from the standpoint of corrosion resistance to molten metal and molten slag.
 炭素源は特には限定されず、鱗状黒鉛、土壌黒鉛、石油系ピッチ、カーボンブラックなど一般的に使用されるものが適用でき、これらの1種以上を用いることができる。炭素含有耐火物中での炭素源の配合量は特には限定されないが、一般には10~25質量%程度が適当である。 The carbon source is not particularly limited, and commonly used carbon sources such as flake graphite, soil graphite, petroleum pitch, and carbon black can be used, and one or more of these can be used. The amount of carbon source in the carbon-containing refractory is not particularly limited, but generally, about 10 to 25 mass% is appropriate.
 他の材料として、例えば、金属Al、金属Si、Al-Mg合金などの金属種、SiC、BCなどの炭化物などが挙げられるが、これらに限定されない。 Examples of other materials include, but are not limited to, metallic species such as metallic Al, metallic Si, and Al--Mg alloys, and carbides such as SiC and B.sub.4C .
 バインダーには、フェノール樹脂、液状ピッチなど、一般的に定形耐火物のバインダーとして適用できるものが使用できる。 Binders that can be used include phenolic resins, liquid pitch, and other materials that are generally applicable as binders for shaped refractories.
 金属細管は、通常、内径が1~5mm程度、管厚が0.5~4mm程度の金属管である。金属細管の材質は特には限定されないが、融点が1300℃以上の金属材料を用いることが好ましい。例えば、金属細管の材質は、鉄、クロム、コバルト、ニッケルの1種以上を含む金属材料(金属又は合金)が挙げられ、なかでも特に、ステンレス鋼(フェライト系、マルテンサイト系、オーステナイト系)又は普通鋼などが一般的である。 The metal capillary tube is usually a metal tube with an inner diameter of about 1 to 5 mm and a tube thickness of about 0.5 to 4 mm. There are no particular restrictions on the material of the metal capillary tube, but it is preferable to use a metal material with a melting point of 1300°C or higher. For example, the material of the metal capillary tube can be a metal material (metal or alloy) containing one or more of iron, chromium, cobalt, and nickel, and among these, stainless steel (ferritic, martensitic, austenitic) or ordinary steel is particularly common.
 炭素含有耐火物に埋設する金属細管の本数に制限は特にない。金属細管の本数は、1本~複数本とする。金属細管の本数は、使用する金属細管の内径と、必要とされるガス吹き込み量で決められる。一般の転炉用のMHPでは、通常、60~250本程度の金属細管が炭素含有耐火物に埋設される。一方、少量のガスしか流さないノズルの場合には、金属細管の本数が1本~数本のものがある。このようなガス吹き込みノズルにおいても、勢い良くガスを吹き込むことによる羽口先端冷却が起こり、熱衝撃による亀裂の伸展が損傷の原因となるため、本発明はそのようなガス吹込みノズルにも適用することができる。 There is no particular limit to the number of metal capillaries embedded in the carbon-containing refractory. The number of metal capillaries may be one or more. The number of metal capillaries is determined by the inner diameter of the metal capillaries used and the required amount of gas injection. In a typical MHP for a converter, usually about 60 to 250 metal capillaries are embedded in the carbon-containing refractory. On the other hand, in the case of a nozzle that only flows a small amount of gas, the number of metal capillaries may be one to several. Even in such gas injection nozzles, the tuyere tip cools due to the forceful gas injection, and the extension of cracks due to thermal shock can cause damage, so the present invention can also be applied to such gas injection nozzles.
 金属細管を炭素含有耐火物に埋め込む方法は特には限定されない。例えば、先に挙げたような炭素含有耐火物の原料を混合し、ミキサーで混練する。その混練物の上に金属細管を敷設しながら積層状に金属細管を埋設した上で、プレス機により所定の圧力で成形を行い、成形後は適当な温度で乾燥処理する。そして、この金属細管が埋設された炭素含有耐火物に対して、本発明法に従い非酸化焼成・有機物含浸を複数回実施し、その後、ガス吹き込みノズルの機能に必要なガス溜まり用の部材を金属細管に接合(溶接)し、ガス吹き込みノズルの製品とする。 The method for embedding the metal capillaries in the carbon-containing refractory is not particularly limited. For example, the raw materials for the carbon-containing refractory as mentioned above are mixed and kneaded in a mixer. The metal capillaries are laid on top of the kneaded mixture so that the metal capillaries are embedded in a layered configuration, and then the mixture is molded at a specified pressure using a press, and after molding, is dried at an appropriate temperature. The carbon-containing refractory with the metal capillaries embedded in it is then subjected to non-oxidizing firing and organic substance impregnation multiple times according to the method of the present invention, after which a gas reservoir member necessary for the function of the gas injection nozzle is joined (welded) to the metal capillaries to produce the gas injection nozzle product.
 また、他の方法としては、予めガス溜まり用の部材(上面板)に金属細管を接合(溶接)しておき、その周囲に混練物を充填した上で、プレス機により所定の圧力で成形を行い、成形後は適当な温度で乾燥処理する。そして、この金属細管が埋設された炭素含有耐火物に対して、本発明法に従い非酸化焼成・有機物含浸を複数回実施し、ガス吹き込みノズルの製品とする。 In another method, a metal tube is first joined (welded) to the gas reservoir member (top plate), the mixture is filled around it, and then it is molded at a specified pressure using a press, and after molding, it is dried at an appropriate temperature. Then, the carbon-containing refractory material with the metal tube embedded in it is subjected to non-oxidizing firing and organic matter impregnation multiple times according to the method of the present invention to produce a gas injection nozzle product.
 炭素含有耐火物の原料の混練方法には特に制限はなく、ハイスピードミキサー、タイヤミキサー(コナーミキサー)、アイリッヒミキサーなど、定形耐火物の混練設備として用いられる混練手段を用いればよい。 There are no particular limitations on the method for mixing the raw materials for carbon-containing refractories, and any mixing means that is used as mixing equipment for shaped refractories, such as a high-speed mixer, a tire mixer (Conner mixer), or an Eirich mixer, may be used.
 混練物の成形には、油圧式プレス、フリクションプレスなどの一軸成形機又は等方静圧成形(CIP)など、耐火物の成形に使用される一般的なプレス機が使用できる。 To mold the kneaded material, a uniaxial molding machine such as a hydraulic press or friction press, or a press commonly used for molding refractories, such as a cold isostatic press (CIP), can be used.
 成形した炭素含有耐火物は、乾燥温度180℃~350℃、乾燥時間5~30時間程度で乾燥させればよい。 The molded carbon-containing refractory can be dried at a temperature of 180°C to 350°C for a drying time of about 5 to 30 hours.
 表1~表3に、本実施例(本発明例、比較例)で製造したガス吹き込みノズル用耐火物の製造条件と特性を示す。 Tables 1 to 3 show the manufacturing conditions and characteristics of the refractory materials for gas injection nozzles manufactured in this embodiment (invention example, comparative example).
 金属細管を埋設する炭素含有耐火物の原料としては、骨材であるマグネシア原料に電融マグネシア(純度98.2質量%)を、炭素源に鱗状黒鉛(純度98.4質量%、平均粒子径0.18mm)を、バインダーに残炭量が46質量%のフェノール樹脂をそれぞれ用いた。 The raw materials for the carbon-containing refractory in which the metal tubes are embedded were electrofused magnesia (purity 98.2% by mass) as the magnesia raw material aggregate, flake graphite (purity 98.4% by mass, average particle size 0.18 mm) as the carbon source, and phenolic resin with a residual carbon content of 46% by mass as the binder.
 炭素含有耐火物に埋設する金属細管としては、普通鋼製の外径3mm、内径2mmのものを用いた。 The metal tubes embedded in the carbon-containing refractory were made of ordinary steel and had an outer diameter of 3 mm and an inner diameter of 2 mm.
 炭素含有耐火物に含浸させる有機物としては、コールタールピッチ又はフェノール樹脂を用いた。表1~表3において、残炭率が42質量%のものはコールタールピッチである。また、残炭率が15質量%のものはフェノール樹脂である。残炭率は、JIS K6910(フェノール樹脂試験方法)に記載の固定炭素測定法に基づいて測定した。 Coal tar pitch or phenolic resin was used as the organic matter to be impregnated into the carbon-containing refractory material. In Tables 1 to 3, the one with a residual carbon ratio of 42% by mass is coal tar pitch. Also, the one with a residual carbon ratio of 15% by mass is phenolic resin. The residual carbon ratio was measured based on the fixed carbon measurement method described in JIS K6910 (phenolic resin test method).
 炭素含有耐火物の原料を表1~表3に示す割合で配合し、これをアイリッヒミキサーを用いて混練した後、230×200mmの金型を用いて、この混練物の上に金属細管を敷設しながら積層状に金属細管を埋設し、しかる後、油圧プレスで2.5トン/cmの圧力で成形した。この成形耐火物を乾燥機を用いて250℃で10時間硬化乾燥させ、金属細管を埋設した炭素含有耐火物を作製した。 The raw materials of the carbon-containing refractory were mixed in the ratios shown in Tables 1 to 3 and kneaded using an Eirich mixer, and then using a 230 x 200 mm mold, the metal capillaries were embedded in a layered manner while being laid on the kneaded mixture, and then molded using a hydraulic press at a pressure of 2.5 tons/ cm2 . The molded refractory was cured and dried in a dryer at 250°C for 10 hours to produce a carbon-containing refractory with embedded metal capillaries.
 以上のように作製された炭素含有耐火物を、表1~表3に示す条件に従い、コークスブリーズ中で非酸化焼成した後、有機物の含浸処理を行い、ガス吹き込みノズル用耐火物を得た。本発明例では、この非酸化焼成及び有機物の含浸処理を複数回行った。有機物の含浸処理では、炭素含有耐火物を、所定の圧力にて10時間保持した。 The carbon-containing refractory produced as described above was non-oxidatively fired in coke breeze according to the conditions shown in Tables 1 to 3, and then impregnated with an organic substance to obtain a refractory for a gas injection nozzle. In the present invention, this non-oxidative firing and impregnation with an organic substance was performed multiple times. In the impregnation with an organic substance, the carbon-containing refractory was held at a specified pressure for 10 hours.
 なお、気孔率と破壊エネルギーの測定用に、上記と同じ原料と方法で金属細管を埋設しない炭素含有耐火物を作製した。 In addition, to measure porosity and fracture energy, a carbon-containing refractory material without embedded metal tubes was prepared using the same materials and methods as above.
 また、比較例の一部は、非酸化焼成・有機物含浸を施さないもの、非酸化焼成のみを施して有機物含浸を施さないもの、非酸化焼成・有機物含浸を1回のみ施したものとした。 In addition, some of the comparative examples were not subjected to non-oxidative firing or organic impregnation, were subjected to only non-oxidative firing without organic impregnation, and were subjected to non-oxidative firing and organic impregnation only once.
 以上のようにして得られたガス吹き込みノズル用耐火物について、金属細管の炭素含有量の測定を行った。また、金属細管を埋設しない耐火物について、気孔率と破壊エネルギーの測定を行った。それらの結果を表1~表3に示す。 The carbon content of the metal tubes in the refractories for gas injection nozzles obtained in the above manner was measured. In addition, the porosity and fracture energy of the refractories without embedded metal tubes were measured. The results are shown in Tables 1 to 3.
 耐火物の気孔率は、JIS R2205に従い測定した。この際、真空法を用い、煤液には白灯油を用いた。 The porosity of the refractory was measured according to JIS R2205. The vacuum method was used, and kerosene was used as the soot liquid.
 耐火物の破壊エネルギーの測定は、以下のようにして行った。試験片サイズは、25×25×140mmとし、100mmスパンの3点曲げ試験を行った。曲げ試験は800℃の不活性雰囲気中で行った。試験機には(株)島津製作所製「オートグラフAG-X/R」を用い、クロスヘッドスピード0.1mm/minとした。3点曲げ試験によって得られた応力・歪み曲線から安定破壊が起こっていることを確認し、応力・歪み曲線のなす面積を切断面の投影面積(25×25mm)の2倍で割り、破壊エネルギーを求めた。測定のいずれの場合も安定破壊が起こっていることを確認した。 The fracture energy of the refractory was measured as follows. The test piece size was 25 x 25 x 140 mm, and a three-point bending test with a span of 100 mm was performed. The bending test was performed in an inert atmosphere at 800°C. The test machine used was an Autograph AG-X/R manufactured by Shimadzu Corporation, with a crosshead speed of 0.1 mm/min. The occurrence of stable fracture was confirmed from the stress-strain curve obtained from the three-point bending test, and the fracture energy was calculated by dividing the area of the stress-strain curve by twice the projected area of the cut surface (25 x 25 mm). It was confirmed that stable fracture had occurred in all cases measured.
 金属細管の炭素含有量は、金属細管を埋め込んだ非酸化焼成後の試験片の切断面を研磨し、分析電研によって定量分析を行うことで測定した。測定範囲は、金属細管の外周に沿った部分で100×100μmの視野における炭素量を測定した。分析装置は日本電子(株)製「JXA-8230」を使用した。 The carbon content of the metal capillaries was measured by polishing the cut surface of the test piece after non-oxidizing firing with the metal capillaries embedded, and performing a quantitative analysis using an analytical instrument. The measurement range was the amount of carbon in a 100 x 100 μm field along the outer circumference of the metal capillaries. The analytical device used was the JXA-8230 manufactured by JEOL Ltd.
 さらに、非酸化焼成時の1回あたりの焼成時浸炭指数n、及び複数回の非酸化焼成時の合計の焼成時総浸炭指数N(n×焼成回数)を算出した。それらの結果を表1~表3に示す。 Furthermore, the carburization index n per non-oxidizing firing and the total carburization index N (n x number of firings) for multiple non-oxidizing firings were calculated. The results are shown in Tables 1 to 3.
 焼成時総浸炭指数Nの算出は以下の条件で行った。まず、式(1)中の炭素拡散の頻度因子D及び炭素が拡散するための活性化エネルギーQは以下の式で示される。 The total carburization index N during firing was calculated under the following conditions: First, the frequency factor D0 of carbon diffusion in formula (1) and the activation energy Q for carbon diffusion are expressed by the following formula.
 D=(4.725-5.374Wc+1.779Wc)×10―5
 Q=154.5-21.04Wc-3.285Wc
D 0 = (4.725-5.374Wc+1.779Wc 2 )×10 -5
Q=154.5-21.04Wc-3.285Wc 2
 ここで、Wcは飽和炭素濃度であり、本実施例においてWc=2.14%とした。Wcは炭素固溶限界とも呼ばれる。炭素固溶限界を超えた分はセメンタイトが析出する。Wc=2.14%の場合、D=1.37E-05(m/s)、Q=94.43041(kJ/mol)となる。 Here, Wc is the saturated carbon concentration, and in this embodiment, Wc=2.14%. Wc is also called the carbon solubility limit. Cementite precipitates when the carbon solubility limit is exceeded. When Wc=2.14%, D 0 =1.37E-05 (m 2 /s) and Q=94.43041 (kJ/mol).
 また、本実施例において、式(1)中の気体定数R=8.314J/(K・mol)とした。 In this embodiment, the gas constant R in equation (1) is set to 8.314 J/(K·mol).
 表1~表2によれば、本発明例はいずれも低気孔率であり、また高い破壊エネルギーを有している。特に、発明例1~5、7~11、13~16はいずれも焼成時総浸炭指数Nが118以下となり、非酸化焼成後の金属細管の炭素含有量が2.0質量%以下となった。 According to Tables 1 and 2, all of the examples of the present invention have low porosity and high fracture energy. In particular, all of the examples of the present invention 1 to 5, 7 to 11, and 13 to 16 had a total carburization index N of 118 or less during firing, and the carbon content of the metal tube after non-oxidizing firing was 2.0 mass% or less.
 表3によれば、比較例1は、一般に使用されているマグネシア・カーボン煉瓦である。比較例1の破壊エネルギーは小さい値である。比較例2は、比較例1を1400℃で非酸化焼成したもの(有機物の含浸処理をせず)である。比較例2の破壊エネルギーは小さい値である。また、焼成時総浸炭指数Nが118を超え、金属細管の炭素含有量は3.1質量%と大きい。比較例3は、非酸化焼成温度を300℃と低くしたものである。比較例3は、非酸化焼成によるバインダーの熱分解が十分に起こらないため有機物の含浸ができず、破壊エネルギーが小さい値である。比較例4は、含浸処理において残炭率が15質量%と小さい有機物を用いたものである。比較例4は、破壊エネルギーの上昇が満足できるレベルにない。比較例5は非酸化焼成・有機物含浸を1回のみ施したものである。比較例5は、破壊エネルギーの上昇が認められるものの本発明例と比べると小さい。 According to Table 3, Comparative Example 1 is a magnesia-carbon brick that is commonly used. Comparative Example 1 has a small fracture energy. Comparative Example 2 is Comparative Example 1 that has been non-oxidatively fired at 1400°C (without impregnation with organic matter). Comparative Example 2 has a small fracture energy. In addition, the total carburization index N during firing exceeds 118, and the carbon content of the metal tube is large at 3.1 mass%. Comparative Example 3 is a case in which the non-oxidative firing temperature is low at 300°C. Comparative Example 3 is a case in which the binder is not sufficiently thermally decomposed by non-oxidative firing, so that impregnation with organic matter cannot be performed, and the fracture energy is small. Comparative Example 4 is a case in which an organic matter with a small residual carbon rate of 15 mass% is used in the impregnation treatment. Comparative Example 4 does not have a satisfactory increase in fracture energy. Comparative Example 5 is a case in which non-oxidative firing and organic matter impregnation are performed only once. Comparative Example 5 has an increase in fracture energy, but it is small compared to the present invention.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005

Claims (15)

  1.  炭素含有耐火物にガス吹込み用の金属細管が1本以上埋設されたガス吹き込みノズル用耐火物の製造方法において、
     金属細管が埋設された炭素含有耐火物を非酸化焼成した後、該炭素含有耐火物に、残炭率が30質量%以上の有機物を含浸させる含浸処理を施す一連の工程を複数回行うことを特徴とするガス吹き込みノズル用耐火物の製造方法。
    A method for producing a refractory for a gas-blowing nozzle, comprising embedding one or more metal thin tubes for blowing gas into a carbon-containing refractory, the method comprising the steps of:
    A method for producing a refractory for a gas injection nozzle, comprising the steps of: non-oxidatively firing a carbon-containing refractory having a metal capillary embedded therein; and then impregnating the carbon-containing refractory with an organic substance having a residual carbon rate of 30 mass% or more; and repeating the steps multiple times.
  2.  非酸化焼成を焼成温度400~1100℃、焼成時間1~20時間で行うことを特徴とする請求項1に記載のガス吹き込みノズル用耐火物の製造方法。 The method for manufacturing a refractory material for a gas injection nozzle according to claim 1, characterized in that the non-oxidizing firing is carried out at a firing temperature of 400 to 1100°C for a firing time of 1 to 20 hours.
  3.  非酸化焼成を焼成温度800~1100℃、焼成時間3~20時間で行うことを特徴とする請求項1に記載のガス吹き込みノズル用耐火物の製造方法。 The method for manufacturing a refractory material for a gas injection nozzle according to claim 1, characterized in that the non-oxidizing firing is carried out at a firing temperature of 800 to 1100°C for a firing time of 3 to 20 hours.
  4.  非酸化焼成と有機物の含浸処理を施す一連の工程を2~3回行うことを特徴とする請求項1から3のいずれか一項に記載のガス吹込みノズル用耐火物の製造方法。 The method for manufacturing a refractory material for a gas injection nozzle according to any one of claims 1 to 3, characterized in that a series of steps of non-oxidizing firing and impregnation with an organic substance is carried out two or three times.
  5.  複数回の前記非酸化焼成での合計の焼成時総浸炭指数Nが閾値以下となるように前記非酸化焼成の条件を設定する、請求項1から4のいずれか一項に記載のガス吹込みノズル用耐火物の製造方法。 The method for manufacturing a refractory for a gas injection nozzle according to any one of claims 1 to 4, wherein the conditions of the non-oxidizing firing are set so that the total carburizing index N during firing in multiple non-oxidizing firings is equal to or less than a threshold value.
  6.  製造されたガス吹き込みノズル用耐火物を構成する炭素含有耐火物の破壊エネルギーが175J/m以上であることを特徴とする請求項1から5のいずれか一項に記載のガス吹き込みノズル用耐火物の製造方法。 The method for producing a refractory for a gas blowing nozzle according to any one of claims 1 to 5, characterized in that the fracture energy of the carbon-containing refractory constituting the produced refractory for a gas blowing nozzle is 175 J/ m2 or more.
  7.  製造されたガス吹き込みノズル用耐火物を構成する炭素含有耐火物の気孔率が3%以下であることを特徴とする請求項1から6のいずれか一項に記載のガス吹き込みノズル用耐火物の製造方法。 The method for manufacturing a refractory for a gas injection nozzle according to any one of claims 1 to 6, characterized in that the porosity of the carbon-containing refractory constituting the manufactured refractory for a gas injection nozzle is 3% or less.
  8.  最終の非酸化焼成後における金属細管の炭素含有量を2.0質量%以下とすることを特徴とする請求項1から7のいずれか一項に記載のガス吹き込みノズル用耐火物の製造方法。 The method for manufacturing a refractory material for a gas injection nozzle according to any one of claims 1 to 7, characterized in that the carbon content of the metal tube after the final non-oxidizing firing is 2.0 mass% or less.
  9.  最終の非酸化焼成後における金属細管の炭素含有量を1.3質量%以下とすることを特徴とする請求項1から7のいずれか一項に記載のガス吹き込みノズル用耐火物の製造方法。 The method for manufacturing a refractory material for a gas injection nozzle according to any one of claims 1 to 7, characterized in that the carbon content of the metal tube after the final non-oxidizing firing is 1.3 mass% or less.
  10.  含浸処理において炭素含有耐火物に含浸させる有機物が、コールタールピッチ、フェノール樹脂、フラン樹脂の中から選ばれる1種以上であることを特徴とする請求項1から9のいずれか一項に記載のガス吹き込みノズル用耐火物の製造方法。 The method for manufacturing a refractory for a gas injection nozzle according to any one of claims 1 to 9, characterized in that the organic material impregnated into the carbon-containing refractory in the impregnation treatment is one or more selected from coal tar pitch, phenolic resin, and furan resin.
  11.  炭素含有耐火物にガス吹込み用の金属細管が1本以上埋設されたガス吹き込みノズル用耐火物であって、
     炭素含有耐火物の破壊エネルギーが175J/m以上であることを特徴とするガス吹き込みノズル用耐火物。
    A refractory for a gas injection nozzle, comprising a carbon-containing refractory having one or more metal thin tubes for injecting gas embedded therein,
    A refractory for a gas blowing nozzle, characterized in that the fracture energy of the carbon-containing refractory is 175 J/ m2 or more.
  12.  炭素含有耐火物の気孔率が3%以下であることを特徴とする請求項11に記載のガス吹き込みノズル用耐火物。 The refractory for a gas injection nozzle according to claim 11, characterized in that the porosity of the carbon-containing refractory is 3% or less.
  13.  金属細管の炭素含有量が2.0質量%以下であることを特徴とする請求項11又は12に記載のガス吹き込みノズル用耐火物。 The refractory for a gas injection nozzle according to claim 11 or 12, characterized in that the carbon content of the metal tube is 2.0 mass% or less.
  14.  金属細管の炭素含有量が1.3質量%以下であることを特徴とする請求項11又は12に記載のガス吹き込みノズル用耐火物。 The refractory for a gas injection nozzle according to claim 11 or 12, characterized in that the carbon content of the metal tube is 1.3 mass% or less.
  15.  請求項11から14のいずれか一項に記載のガス吹き込みノズル用耐火物を備えることを特徴とするガス吹き込みノズル。
     
    A gas-blowing nozzle comprising the refractory material for a gas-blowing nozzle according to any one of claims 11 to 14.
PCT/JP2024/009888 2023-03-27 2024-03-13 Method for producing refractory for gas-blowing nozzle, refractory for gas-blowing nozzle, and gas-blowing nozzle WO2024203359A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2023-049158 2023-03-27
JP2023049158 2023-03-27

Publications (1)

Publication Number Publication Date
WO2024203359A1 true WO2024203359A1 (en) 2024-10-03

Family

ID=92905794

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2024/009888 WO2024203359A1 (en) 2023-03-27 2024-03-13 Method for producing refractory for gas-blowing nozzle, refractory for gas-blowing nozzle, and gas-blowing nozzle

Country Status (1)

Country Link
WO (1) WO2024203359A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05301772A (en) * 1992-04-24 1993-11-16 Kyushu Refract Co Ltd Carbon-containing brick
JPH0881256A (en) * 1994-07-11 1996-03-26 Kyushu Refract Co Ltd Brick containing compressed and pulverized expanded graphite
JPH09328378A (en) * 1996-06-03 1997-12-22 Harima Ceramic Co Ltd Production of carbon-containing basic refractory
JP2018021226A (en) * 2016-07-26 2018-02-08 品川リフラクトリーズ株式会社 Lining method of converter injection wall
JP2018168418A (en) * 2017-03-29 2018-11-01 Jfeスチール株式会社 Refining vessel for high-temperature melt

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05301772A (en) * 1992-04-24 1993-11-16 Kyushu Refract Co Ltd Carbon-containing brick
JPH0881256A (en) * 1994-07-11 1996-03-26 Kyushu Refract Co Ltd Brick containing compressed and pulverized expanded graphite
JPH09328378A (en) * 1996-06-03 1997-12-22 Harima Ceramic Co Ltd Production of carbon-containing basic refractory
JP2018021226A (en) * 2016-07-26 2018-02-08 品川リフラクトリーズ株式会社 Lining method of converter injection wall
JP2018168418A (en) * 2017-03-29 2018-11-01 Jfeスチール株式会社 Refining vessel for high-temperature melt

Similar Documents

Publication Publication Date Title
AU2014206243B2 (en) Magnesia-carbon brick
JP5565907B2 (en) Plate brick and manufacturing method thereof
JP4634263B2 (en) Magnesia carbon brick
JP2015193511A (en) Refractory for casting, nozzle for casting using the same and plate for sliding nozzle
EP3822372B1 (en) Refractory for gas blowing nozzle and gas blowing nozzle
WO2024203359A1 (en) Method for producing refractory for gas-blowing nozzle, refractory for gas-blowing nozzle, and gas-blowing nozzle
KR101798843B1 (en) Refractory composition and well block for steel casting by using it
JP6538584B2 (en) Method of manufacturing refractory for gas injection nozzle
WO2020202646A1 (en) Sliding nozzle plate production method
JP6567588B2 (en) High temperature melt refining vessel
JP4802178B2 (en) Microwave heat treatment method for Al or / and Al-Mg alloy-added MgO-C brick
JP4945257B2 (en) Refractory
TWI738262B (en) Refining vessel for high temperature melt
KR102102820B1 (en) The Bottom Gas Bubbling MgO Refractory composition to Relieve Thermal Stress and the product manufacturing Method
JPWO2018061731A1 (en) Plate refractory for sliding nozzle and method of manufacturing the same
JP2018021226A (en) Lining method of converter injection wall
JP6348071B2 (en) Magnesia refractory
JP6541607B2 (en) Method of manufacturing carbon-containing plate refractories for sliding nozzle
TWI833586B (en) Refractories and refractory components for continuous casting
JP6996529B2 (en) Refining vessel for high temperature melts with gas blowing nozzle
EP4074433A1 (en) Refractory material
JP2891867B2 (en) Carbon-containing refractory and method for producing the same
JP5388268B2 (en) Refractory for sliding nozzle plate and manufacturing method thereof
JPH0825786B2 (en) Refractory for continuous casting and manufacturing method thereof
JPH0332463A (en) Plate for sliding nozzle