[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2024203343A1 - (meth)acrylic acid copolymer, method for producing same, water treatment agent and scale inhibitor - Google Patents

(meth)acrylic acid copolymer, method for producing same, water treatment agent and scale inhibitor Download PDF

Info

Publication number
WO2024203343A1
WO2024203343A1 PCT/JP2024/009811 JP2024009811W WO2024203343A1 WO 2024203343 A1 WO2024203343 A1 WO 2024203343A1 JP 2024009811 W JP2024009811 W JP 2024009811W WO 2024203343 A1 WO2024203343 A1 WO 2024203343A1
Authority
WO
WIPO (PCT)
Prior art keywords
meth
acrylic acid
monomer
mass
based copolymer
Prior art date
Application number
PCT/JP2024/009811
Other languages
French (fr)
Japanese (ja)
Inventor
光司 山内
正裕 藤原
Original Assignee
トウアゴウセイ・タイランド・カンパニー・リミテッド
東亞合成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トウアゴウセイ・タイランド・カンパニー・リミテッド, 東亞合成株式会社 filed Critical トウアゴウセイ・タイランド・カンパニー・リミテッド
Publication of WO2024203343A1 publication Critical patent/WO2024203343A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F5/00Softening water; Preventing scale; Adding scale preventatives or scale removers to water, e.g. adding sequestering agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F5/00Softening water; Preventing scale; Adding scale preventatives or scale removers to water, e.g. adding sequestering agents
    • C02F5/08Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents
    • C02F5/10Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents using organic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/04Acids; Metal salts or ammonium salts thereof
    • C08F220/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/52Amides or imides
    • C08F220/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide

Definitions

  • the present invention relates to a water treatment agent or anti-scaling agent that sufficiently inhibits the formation of scale containing at least silica out of the group consisting of silica, calcium phosphate, calcium carbonate, and calcium sulfate, as well as a (meth)acrylic acid-based copolymer suitable as the main component thereof, and a method for producing the same.
  • Patent Document 1 describes a method for preventing the prevalence of silica or silicate formation in an aqueous system, comprising: adding to the system a) a water-soluble copolymer or terpolymer of (meth)acrylic acid or maleic acid or a salt thereof having a weight average molecular weight of about 1,000 to about 25,000, wherein the copolymer is composed of 1) about 20 to about 85% by weight of (meth)acrylic acid or maleic acid, and 2) from about 11 to about 80% by weight of (meth)acrylamidomethylpropanesulfonic acid or styrenesulfonic acid, or 3) from about 5 to about 30% by weight of (meth)acrylamide or a substituted (meth)acrylamide, or 4) from about 30 to about 60% by weight of isobutylene or diisobutylene, and the terpolymer is composed of 1) about 30 to about 80% by weight of (meth)acrylic acid or maleic acid, and 2) from about 11 to
  • a method which comprises adding an effective amount of a scale inhibitor selected from the group consisting of styrene sulfonic acid, 3) about 5 to about 30% by weight of (meth)acrylamide or substituted (meth)acrylamide, or 4) about 5 to about 30% by weight of vinyl alcohol, allyl alcohol, esters of vinyl or allyl alcohol, vinyl esters, styrene, isobutylene or diisobutylene, or 5) about 3 to about 30% by weight of styrene sulfonic acid when (meth)acrylaminomethylpropane sulfonic acid is present, b) magnesium ions, c) a mixture of said copolymer or terpolymer with aluminum ions or magnesium ions, and d) a mixture of poly(meth)acrylic acid or polymaleic acid or a salt thereof having a weight average molecular weight of about 1000 to about 25000 with aluminum ions or magnesium ions.
  • a scale inhibitor selected from the group consisting
  • Patent Document 2 describes a method for stabilizing an aqueous system by suppressing precipitation of inorganic salts, which comprises adding to the aqueous system: (a1) 40 to 60% by weight of an unsaturated sulfonic acid selected from one or more of 2-acrylamido-2-methyl-1-propanesulfonic acid, 2-methacrylamido-2-methyl-1-propanesulfonic acid, 3-methacrylamido-2-hydroxy-1-propanesulfonic acid, or salts thereof; and (b1) a water-soluble polymer having a weight average molecular weight of about 3,000 to about 10,000 and having monomer units of 40 to 60% by weight of an unsaturated carboxyl monomer selected from acrylic acid or methacrylic acid, or a salt thereof; or (a2) 1 or more of 2-acrylamido-2-methyl-1-propanesulfonic acid, 2-methacrylamido-2-methyl-1-propanesulfonic acid, 3-methacrylamido-2-hydroxy-1-propanesul
  • aqueous system includes inorganic ions selected from one or more of iron, zinc, calcium, phosphate, or molybdate ions; and the aqueous system is maintained at a temperature of greater than about
  • Patent Document 3 discloses an acrylic acid-based copolymer that contains a structural unit (x) derived from acrylic acid or a sodium salt thereof and a structural unit (y) derived from 2-acrylamido-2-methylpropanesulfonic acid or a sodium salt thereof, and the contents of the structural unit (x) and the structural unit (y) are 35 to 90% by mass and 10 to 65% by mass, respectively, when the total of the two is taken as 100% by mass, and the content of the acrylic acid-based copolymer having a weight average molecular weight Mw of 2,000 to 30,000 and a molecular weight of 70,000 or more is 0.30% by mass or less relative to the total amount of all polymers. It also discloses that this acrylic acid-based copolymer is suitable as a component of a water treatment agent that has an effect of suppressing scale formation on calcium phosphate.
  • Patent Document 4 also discloses a calcium phosphate and silica scale inhibitor that is a copolymer of (meth)acrylic acid, (meth)acrylamidomethylpropanesulfonic acid, and a (meth)acrylamide derivative having an alkyl group with 1 to 8 carbon atoms, in which, out of 100% by weight of structural units derived from all monomers, the copolymer contains 40 to 70% by weight of structural units derived from (meth)acrylic acid, 15 to 40% by weight of structural units derived from (meth)acrylamidomethylpropanesulfonic acid, and 5 to 25% by weight of structural units derived from a (meth)acrylamide derivative having an alkyl group with 1 to 8 carbon atoms, and the polymer chain contains a skeleton derived from a hypophosphorous compound.
  • Water treatment agents used to inhibit scale formation are usually aqueous solutions, and it is preferable for such water treatment agents to be transparent, since it is easy to visually determine whether or not they have acted on the water to be treated.Furthermore, since the scale formation inhibiting effect of active ingredients such as polymers is easily exerted, it is preferable for the water treatment agent to be less likely to generate foaming when mixed with water containing precursor components that form scale components, such as silica, calcium phosphate, calcium carbonate, or calcium sulfate.
  • precursor components that form scale components such as silica, calcium phosphate, calcium carbonate, or calcium sulfate.
  • An object of the present invention is to provide a (meth)acrylic acid-based copolymer which, when made into an aqueous solution, provides a water treatment agent and a scale adhesion inhibitor which have excellent transparency, are less likely to generate foam when mixed with water (water to be treated) containing precursor components that form silica, calcium phosphate, calcium carbonate, calcium sulfate, etc., and which satisfactorily suppresses the formation of scale containing at least silica out of the silica, calcium phosphate, calcium carbonate, and calcium sulfate scales in the mixed liquid, and a method for producing the same.
  • the inventors have found that when a (meth)acrylic acid-based copolymer containing a specific ratio of monomer units derived from at least one monomer selected from the group consisting of (meth)acrylic acid and its salts, and at least one monomer selected from the group consisting of 2-acrylamido-2-methylpropanesulfonic acid and its salts, each of which has a solubility of more than 7 g in 100 mL of water at 20°C or 30°C, is dissolved in water, a transparent aqueous solution can be obtained, and when this aqueous solution is used as a water treatment agent and contacted with water (water to be treated) containing precursor components that form silica, calcium phosphate, calcium carbonate, or calcium sulfate, foaming is unlikely to occur, and the formation of scale containing these compounds is suppressed in each mixture of the water treatment agent and each water to be treated.
  • a (meth)acrylic acid-based copolymer comprising the following monomer units (a), (b) and (c): (a) a monomer unit derived from at least one monomer (ma) selected from the group consisting of (meth)acrylic acid and salts thereof; (b) a monomer unit derived from at least one monomer (mb) selected from the group consisting of 2-acrylamido-2-methylpropanesulfonic acid and salts thereof; and (c) a monomer unit derived from at least one monomer (mc) selected from the group consisting of vinyl monomers and aromatic vinyl monomers having a solubility of 7 g or less in 100 mL of water at 20° C.
  • the (meth)acrylic acid-based copolymer has the following contents, when the total of the monomer units (a), (b) and (c) is taken as 100 mass%, the contents of the monomer units (a), (b) and (c) are 65.1 to 95.8 mass%, 4.1 to 34.8 mass% and 0.1 to 4.9 mass%, respectively.
  • [3] The (meth)acrylic acid-based copolymer according to the above [1] or [2], having a weight average molecular weight of 1,500 to 20,000.
  • [4] The (meth)acrylic acid-based copolymer according to any one of [1] to [3] above, wherein the content of the (meth)acrylic acid-based copolymer having a molecular weight of 1,000 or less is 15.0 mass% or less, and the content of the (meth)acrylic acid-based copolymer having a molecular weight of 200,000 or more is 0.10 mass% or less, based on the total amount of the (meth)acrylic acid-based copolymer.
  • the method for producing a (meth)acrylic acid-based copolymer includes the steps of: [6] The method for producing a (meth)acrylic acid-based copolymer according to the above [5], wherein in the polymerization step, the supply time of the monomer mixture to the reactor is 2 to 12 hours.
  • the weight average molecular weight (hereinafter also referred to as "Mw”) and number average molecular weight (hereinafter also referred to as "Mn”) of the polymer are values calculated as standard sodium polyacrylate measured by gel permeation chromatography (hereinafter also referred to as “GPC”).
  • Mw weight average molecular weight
  • Mn number average molecular weight
  • GPC gel permeation chromatography
  • (meth)acrylic refers to acrylic and methacrylic.
  • a transparent aqueous solution When the (meth)acrylic acid copolymer of the present invention is dissolved in water, a transparent aqueous solution can be obtained.
  • this aqueous solution is used as a water treatment agent and contacted with water (water to be treated) containing precursor components that form silica, calcium phosphate, calcium carbonate or calcium sulfate, foaming is unlikely to occur, and in the mixed liquid of the water treatment agent and each water to be treated, the formation of scale containing at least silica among silica, calcium phosphate, calcium carbonate and calcium sulfate can be suitably suppressed.
  • the (meth)acrylic acid copolymer of the present invention can also be used as a drug component that prevents the adhesion of scale containing at least silica among silica, calcium phosphate, calcium carbonate and calcium sulfate to the inner surface of a pipe or the like that comes into contact with water (water to be treated) containing precursor components that form scale.
  • a (meth)acrylic acid-based copolymer having the above-mentioned effects can be efficiently produced.
  • the (meth)acrylic acid-based copolymer of the present invention (hereinafter referred to as "(meth)acrylic acid-based copolymer (P)") is characterized in that it comprises the following monomer units (a), (b) and (c), and the contents of the monomer units (a), (b) and (c) are 65.1 to 95.8% by mass, 4.1 to 34.8% by mass and 0.1 to 4.9% by mass, respectively, when the total of the monomer units (a), (b) and (c) is taken as 100% by mass.
  • the monomer unit (a) constituting the (meth)acrylic acid-based copolymer (P) of the present invention is derived from at least one type of monomer (ma), and is a monomer unit derived from at least one selected from acrylic acid, acrylic acid salts, methacrylic acid, and methacrylic acid salts.
  • Examples of the above monomer (ma) include acrylic acid, sodium acrylate, potassium acrylate, magnesium acrylate, calcium acrylate, methacrylic acid, sodium methacrylate, potassium methacrylate, magnesium methacrylate, calcium methacrylate, etc.
  • the monomer unit (a) contains a monomer unit derived from an acrylate salt.
  • the content of the monomer unit (a) constituting the (meth)acrylic acid-based copolymer (P) is 65.1 to 95.8% by mass, assuming that the total of the monomer units (a), (b) and (c) is 100% by mass.
  • the lower limit is preferably 66.0% by mass, more preferably 67.0% by mass.
  • the upper limit is preferably 80% by mass, more preferably 70% by mass.
  • the monomer unit (b) constituting the (meth)acrylic acid-based copolymer (P) of the present invention is derived from at least one type of monomer (mb), and is a monomer unit derived from at least one selected from 2-acrylamido-2-methylpropanesulfonic acid and its salts.
  • Examples of the above monomer (mb) include 2-acrylamido-2-methylpropanesulfonic acid, sodium 2-acrylamido-2-methylpropanesulfonate, etc.
  • the monomer unit (b) contains a monomer unit derived from 2-acrylamido-2-methylpropanesulfonate.
  • the content of the monomer unit (b) constituting the (meth)acrylic acid-based copolymer (P) is 4.1 to 34.8% by mass, assuming that the total of the monomer units (a), (b) and (c) is 100% by mass.
  • the lower limit is preferably 10% by mass, more preferably 20% by mass.
  • the upper limit is preferably 34.0% by mass, more preferably 33.0% by mass.
  • the monomer unit (c) constituting the (meth)acrylic acid-based copolymer (P) of the present invention is derived from at least one type of monomer (mc), and is at least one type selected from the group consisting of vinyl monomers having a solubility of 7 g or less in 100 mL of water at 20° C. or 30° C., and aromatic vinyl monomers. Examples of vinyl monomers having a solubility of 7 g or less in 100 mL of water at 20° C. or 30° C.
  • vinyl monomers having a solubility of 3 g or less are preferred, vinyl monomers having a solubility of 2 g or less are more preferred, vinyl monomers having a solubility of 1 g or less are even more preferred, and vinyl monomers having a solubility of 0.1 g or less are particularly preferred.
  • aromatic vinyl monomer examples include styrene, ⁇ -methylstyrene, o-methylstyrene, p-methylstyrene, ⁇ -methylstyrene, ethylstyrene, p-tert-butylstyrene, vinyltoluene, vinylxylene, and vinylnaphthalene.
  • the monomer unit (c) contains a monomer unit derived from ethyl acrylate, n-butyl acrylate, isobutyl acrylate, N-tert-butylacrylamide (TBAM), or styrene.
  • the content of the monomer unit (c) constituting the (meth)acrylic acid-based copolymer (P) is 0.1 to 4.9% by mass, assuming that the total of the monomer units (a), (b) and (c) is 100% by mass.
  • the lower limit is preferably 0.2% by mass, more preferably 0.4% by mass.
  • the upper limit is preferably 3.0% by mass, more preferably 2.0% by mass.
  • (meth)acrylic acid-based copolymer (P) of the present invention are shown below.
  • the structure of the (meth)acrylic acid-based copolymer (P) of the present invention is not particularly limited, but is preferably a random copolymer.
  • the Mw of the (meth)acrylic acid-based copolymer (P) of the present invention is preferably 1,500 to 20,000, more preferably 2,000 to 15,000, and even more preferably 3,000 to 10,000, from the viewpoint of inhibiting the formation of scale containing at least silica among silica, calcium phosphate, calcium carbonate, and calcium sulfate.
  • the polydispersity which is the ratio of Mw to Mn (Mw/Mn) is preferably 1.2 to 2.5, and more preferably 1.2 to 2.0.
  • the (meth)acrylic acid copolymer (P) of the present invention can have the above-mentioned preferred Mw by assembling copolymers having different molecular weights.
  • a (meth)acrylic acid copolymer having a molecular weight of 1,000 or less (hereinafter referred to as "(meth)acrylic acid copolymer (P1)") and a (meth)acrylic acid copolymer having a molecular weight of 200,000 or more (hereinafter referred to as "(meth)acrylic acid copolymer (P2))
  • the content of the (meth)acrylic acid copolymer (P1) is preferably 15.0 mass% or less, more preferably 10.0 mass% or less, and even more preferably 5.0 mass% or less, based on the total amount of the (meth)acrylic acid copolymer (P) of the present invention
  • the content of the (meth)acrylic acid copolymer (P2) is preferably 0.10
  • the (meth)acrylic acid copolymer (P) of the present invention contains a specific monomer unit at a specific content ratio and has the above-mentioned preferred Mw, so that an aqueous solution with excellent transparency can be obtained.
  • this aqueous solution is used as a water treatment agent and contacted with water (water to be treated) containing precursor components that form silica, calcium phosphate, calcium carbonate, or calcium sulfate, foaming is unlikely to occur, and the formation of scale containing at least silica among silica, calcium phosphate, calcium carbonate, and calcium sulfate can be suppressed in a mixture of the water treatment agent and each water to be treated.
  • the inventors presume that the reason why foaming is unlikely to occur when the water treatment agent is mixed with the water to be treated is because the monomer unit (c) has a hydrophobic group, and therefore in the (meth)acrylic acid copolymer (P) containing 0.1 to 4.9 mass% of this monomer unit (c), the balance between the hydrophobic group and the hydrophilic group can be controlled within a range that does not act as a surfactant.
  • the (meth)acrylic acid copolymer (P) of the present invention can be produced by a conventional method.
  • the monomers may be polymerized but also the reaction product obtained by polymerization may be purified.
  • the method for producing the (meth)acrylic acid-based copolymer (P) of the present invention sequentially comprises a preparation step of preparing a monomer mixture containing monomer (ma), monomer (mb), monomer (mc), and water, and a polymerization step of continuously supplying the obtained monomer mixture, a polymerization initiator, and an optional chain transfer agent to a reactor, respectively, and polymerizing the monomers.
  • the monomers to be polymerized contain at least (meth)acrylic acid, i.e., (meth)acrylic acid and 2-acrylamido-2-methylpropanesulfonic acid, and a (meth)acrylic acid-based copolymer (P) containing monomer units derived from (meth)acrylic acid salts and/or monomer units derived from 2-acrylamido-2-methylpropanesulfonic acid salts is produced
  • a step of removing unreacted monomers can be provided after either the polymerization step or the neutralization step.
  • the method for obtaining the monomer mixture is not particularly limited.
  • a hydrophobic monomer (mc) since a hydrophobic monomer (mc) is used, it is preferable to first dissolve the monomer (mc) in the monomer (ma), and then mix the obtained solution with the monomer (mb) and water.
  • the mixing method is not particularly limited.
  • the amounts of each monomer and water used in the above preparation steps are as follows.
  • the amount of the monomer (ma) used is 65.1 to 95.8% by mass based on the total amount of the monomers (ma), (mb) and (mc).
  • the lower limit is preferably 66.0% by mass, more preferably 67.0% by mass.
  • the upper limit is preferably 80% by mass, more preferably 70% by mass.
  • the amount of the monomer (mb) used is 4.1 to 34.8% by mass based on the total amount of the monomers (ma), (mb) and (mc).
  • the lower limit is preferably 10% by mass, more preferably 20% by mass.
  • the upper limit is preferably 34.0% by mass, more preferably 33.0% by mass.
  • the amount of the monomer (mc) used is 0.1 to 4.9% by mass based on the total amount of the monomers (ma), (mb) and (mc).
  • the lower limit is preferably 0.2% by mass, more preferably 0.4% by mass.
  • the upper limit is preferably 3.0% by mass, more preferably 2.0% by mass.
  • the amount of water used is preferably 5 to 80 parts by mass, and more preferably 20 to 60 parts by mass, relative to 100 parts by mass of the total of the monomers (ma), (mb) and (mc).
  • the monomer mixture obtained in the preparation step, the polymerization initiator, and an optional chain transfer agent are each continuously supplied to a reactor, and the monomers are polymerized, preferably while stirring the reaction system. At this time, water may also be continuously supplied, if necessary.
  • a reactor reaction device of a conventional, publicly known configuration, equipped with a means for supplying a monomer mixture, a means for supplying a chain transfer agent, a means for supplying a polymerization initiator, a stirring means, a means for adjusting the temperature of the reaction system, a reflux cooling means, a means for supplying a neutralizing agent, a means for discharging the reaction liquid, etc., can be used.
  • a copolymer with the desired physical properties can be efficiently produced by setting the supply time of the monomer mixture to the reactor within a specific range.
  • the supply time of the monomer mixture is preferably 2 to 12 hours, more preferably 2 to 10 hours, and even more preferably 2 to 6 hours. Note that the polymerization process is usually not completed at the same time as the completion of the supply of the monomer mixture.
  • the feed rate of the monomer mixture to the reactor is constant, but the feed rate may be changed while checking the change in the polymerization conversion rate over time.
  • Polymerization initiators include hydrogen peroxide; persulfates such as sodium persulfate, potassium persulfate, and ammonium persulfate; dimethyl 2,2'-azobis(2-methylpropionate), 2,2'-azobis(isobutyronitrile), 2,2'-azobis(2-methylbutyronitrile), 2,2'-azobis(2,4-dimethylvaleronitrile), 2,2'-azobis(4-methoxy-2,4-dimethylvaleronitrile), 2,2'-azobis(isobutyric acid) dimethyl, 4,4'-azobis(4-cyanovaleric acid), 2,2'-azobis(2-methyl Examples of the azo compounds include 2,2'-azobis[N-(2-carboxyethyl)-2-methylpropionamidine] dihydrochloride, 2,2'-azobis[2-(2-imidazolin-2-yl)propane] dihydrochloride, 2,2'-azobis[2-(2-imid
  • the amount of the polymerization initiator used is preferably 0.1 to 10.0 parts by mass, and more preferably 0.1 to 2.0 parts by mass, per 100 parts by mass of the total of the monomers (ma), (mb), and (mc).
  • the method of using the polymerization initiator is not particularly limited, but it is preferable to start the supply of the polymerization initiator at the same time as the monomer mixture, or to start the supply of the polymerization initiator after the supply of the monomer mixture.
  • the supply of the polymerization initiator is terminated preferably 5 minutes or more, and particularly preferably 10 minutes or more later than the completion of the supply of the monomer mixture.
  • Chain transfer agents include phosphorous acid, hypophosphorous acid, and salts thereof (sodium hypophosphite, potassium hypophosphite, etc.); sulfurous acid, hydrogen sulfite, dithionite, metabisulfite, and salts thereof (sodium hydrogen sulfite, potassium hydrogen sulfite, sodium dithionite, potassium dithionite, sodium metabisulfite, potassium metabisulfite, etc.); mercaptoethanol, thioglycerol, thioglycolic acid, 2-mercaptopropionic acid, 3-mercaptopropionic acid, thiomalic acid, octyl thioglycolate, octyl 3-mercaptopropionate, 2-mercaptoethanesulfonic acid, n-dodecyl mercaptan, octyl mercaptan, butyl thioglycolate, and other thiols. These may be used alone
  • the amount of the chain transfer agent used is preferably 0.1 to 30 parts by mass, more preferably 1 to 15 parts by mass, per 100 parts by mass of the total of the monomers (ma), (mb) and (mc).
  • the method of using the chain transfer agent is not particularly limited, but the supply of the chain transfer agent should be terminated preferably at least 10 minutes, and more preferably at least 20 minutes, earlier than the completion time of the supply of the monomer mixture.
  • the presence of polyvalent metal ions in the reaction system can promote the decomposition of the polymerization initiator and the chain transfer agent during the polymerization reaction.
  • Materials that form such polyvalent metal ions include ammonium iron (III) sulfate or its hydrate, iron (III) sulfate or its hydrate, iron (II) sulfate or its hydrate, etc.
  • the reactor In the polymerization process, it is preferable to store water in the reactor before supplying each raw material to the reactor. This allows the raw materials supplied to the reactor to be mixed efficiently and the polymerization reaction to proceed smoothly.
  • the contents can be water only, water containing a chain transfer agent, or water containing polyvalent metal ions, etc.
  • the polymerization temperature of the monomers in the polymerization process (the temperature of the reaction system) is appropriately selected depending on the type of polymerization initiator, etc., and is not particularly limited.
  • a preferred polymerization temperature is 70°C or higher.
  • the temperature is preferably close to the boiling point of the polymerization solvent (water), and is particularly preferably the boiling point of the polymerization solvent (water).
  • the temperature of the reaction system at the start of the supply of the monomer mixture may be lower than the specified polymerization temperature. When set in this way, the temperature can be adjusted to the specified polymerization temperature after the supply of the polymerization initiator begins.
  • the residual concentration (total concentration) of the monomer (mc) per 100 mL of reaction liquid in the reactor can be adjusted to preferably 0.3 g or less, more preferably 0.1 g or less, throughout the entire process from the start of polymerization to the end of the supply of the polymerization initiator, so that a (meth)acrylic acid-based copolymer (P) having the desired physical properties can be efficiently produced. It is preferable to end the polymerization process a maximum of 13 hours after the completion of the supply of the monomer mixture.
  • an alkaline agent or an aqueous solution thereof can be used, such as an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide; an alkaline earth metal hydroxide such as calcium hydroxide or magnesium hydroxide; ammonia; or an organic amine salt such as monoethanolamine or triethanolamine.
  • an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide is preferred, and sodium hydroxide is particularly preferred.
  • the pH of the reaction solution is preferably adjusted to 7.0 or less, and more preferably to a range of 1.0 to 5.0.
  • the manufacturing method of the present invention makes it possible to efficiently manufacture a (meth)acrylic acid-based copolymer (P) in which the content ratios of monomer units (a), (b), and (c) are within a predetermined range, and the content of unreacted monomers (ma), (mb), and (mc), as well as the content of the above-mentioned (meth)acrylic acid-based copolymers (P1) and (P2) are all as small as possible.
  • P methacrylic acid-based copolymer
  • the reaction liquid usually consists of an aqueous solution of the (meth)acrylic acid copolymer (P).
  • aqueous solution of the (meth)acrylic acid copolymer (P).
  • the aqueous solution of the (meth)acrylic acid copolymer (P) can be made clear and transparent, the water treatment agent and scale adhesion inhibitor obtained using this aqueous solution can also be transparent and easy to handle.
  • the water treatment agent of the present invention contains a (meth)acrylic acid-based copolymer (P) and is preferably in the form of a liquid (aqueous solution).
  • the content of the (meth)acrylic acid-based copolymer (P) in this aqueous solution is preferably 1 to 1000 mg/L, more preferably 5 to 100 mg/L, since the effect as a water treatment agent, i.e., the effect of inhibiting scale formation, can be sufficiently obtained.
  • the water treatment agent of the present invention may contain, as necessary, conventionally known scale formation inhibitors, bactericides, anticorrosive agents, slime inhibitors, defoamers, etc., such as polyacrylic acid or its salts, polymaleic acid or its salts, other (meth)acrylic acid copolymers, and styrene-maleic acid copolymers.
  • the water treatment agent of the present invention is suitable for application to water (water to be treated) containing at least a precursor component for forming silica scale among silica scale, calcium phosphate scale, calcium carbonate scale, and calcium sulfate scale.
  • water water to be treated
  • the cooling water may be concentrated and poorly soluble salts such as calcium phosphate and calcium carbonate may be formed.
  • the use of the water treatment agent of the present invention can suppress problems such as a decrease in heat exchange efficiency and blockage of piping.
  • silica scale may be formed.
  • silica scale adheres to the components of the equipment, it is often difficult to remove it, so the use of the water treatment agent of the present invention can suitably suppress the formation of silica scale.
  • the pH and temperature of the water (water to be treated) are not particularly limited.
  • the water treatment agent of the present invention When using the water treatment agent of the present invention, for example, it is added to water (water to be treated) containing the precursor components that form the above-mentioned scale materials, and stirred as necessary.
  • the scale adhesion inhibitor of the present invention contains a (meth)acrylic acid-based copolymer (P) and is preferably in the form of a liquid (aqueous solution).
  • the content of the (meth)acrylic acid-based copolymer (P) in this aqueous solution is preferably 1 to 1000 mg/L, more preferably 5 to 100 mg/L, since the effect as a scale adhesion inhibitor can be sufficiently obtained, for example, the effect of preventing scale adhesion on structural members such as condensers, heat exchangers, and piping that come into contact with water such as industrial water, tap water, and groundwater.
  • the scale adhesion inhibitor of the present invention is added to water (water to be treated) containing the precursor components that form the above-mentioned scale materials, and stirred as necessary.
  • Monomer AA acrylic acid
  • ATBS sodium 2-acrylamido-2-methylpropanesulfonate
  • St styrene
  • EA ethyl acrylate
  • BA n-butyl acrylate.
  • IBA isobutyl acrylate.
  • the solubility in 100 mL of water at 20° C. is 0.79 g.
  • TBAM N-tert-butylacrylamide.
  • the solubility in 100 mL of water at 30° C. is 0.1 g.
  • Neutralizing agent 50% aqueous solution of sodium hydroxide
  • Example 1-1 First, 1.4 g of styrene (St) was dissolved in 475 g of acrylic acid (AA), and 496 g of a 50% aqueous solution of sodium 2-acrylamido-2-methylpropanesulfonate (ATBS) and 14 g of pure water were added to this mixture, followed by thorough stirring to obtain a monomer mixture. Then, 420 g of pure water was charged into a reactor equipped with a reflux condenser, and the temperature was raised to 75° C., and 9 g of a 30% aqueous solution of sodium bicarbonate was added while stirring the inside of the reactor.
  • AA acrylic acid
  • ATBS sodium 2-acrylamido-2-methylpropanesulfonate
  • the above-mentioned monomer mixture, a 5% aqueous solution of sodium persulfate, and a 30% aqueous solution of sodium bicarbonate were continuously fed into the reactor to carry out a polymerization reaction.
  • the feed amount and feed time of the monomer mixture were 4.1 g/min and 4 hours, respectively.
  • the feed amount and feed time of the 5% aqueous solution of sodium persulfate were 0.3 g/min and 4 hours and 10 minutes, respectively.
  • the feed amount and feed time of the 30% aqueous solution of sodium bicarbonate were 0.7 g/min and 3 hours and 40 minutes, respectively.
  • the temperature in the reactor was maintained at 75° C.
  • the residual concentration of styrene (St), which is the monomer (mc), per 100 mL of the reaction liquid was maintained at less than 0.1 g.
  • the reaction solution was heated to 85° C. and held for 1 hour.
  • the pH of the reaction solution was then adjusted to 2.3 using a neutralizing agent to obtain an aqueous solution of a (meth)acrylic acid-based copolymer (hereinafter also referred to as “copolymer (E1)”) with a solid content of 42%.
  • This aqueous solution was clear and transparent.
  • copolymer (E1) was subjected to gel permeation chromatography (GPC), and the Mw was 9,570, the Mn was 4,830, and the Mw/Mn was about 2.0.
  • the content of (meth)acrylic acid-based copolymers having a molecular weight of 1,000 or less in copolymer (E1) was 0.6%, and the content of (meth)acrylic acid-based copolymers having a molecular weight of 200,000 or more was 0.0% (see Table 1).
  • copolymer (E1) quantitative analysis of the unreacted monomers contained in copolymer (E1) revealed that AA and its sodium salt were 55 ppm, ATBS was 125 ppm, and St was below the detection limit (1 ppm) (see Table 1).
  • Examples 1-2 to 1-9 Using monomers having the compositions shown in Table 1, (meth)acrylic acid-based copolymers (E2) to (E9) were produced in the same manner as in Example 1-1 (see Table 1).
  • Comparative Example 1-1 First, 473 g of acrylic acid (AA), 496 g of a 50% aqueous solution of sodium 2-acrylamido-2-methylpropanesulfonate (ATBS), and 14 g of pure water were thoroughly stirred to obtain a monomer mixture. Then, 420 g of pure water was charged into a reactor equipped with a reflux condenser, and the temperature was raised to 75° C., and 9 g of a 30% aqueous solution of sodium bicarbonate was added while stirring the inside of the reactor.
  • AA acrylic acid
  • ATBS sodium 2-acrylamido-2-methylpropanesulfonate
  • the above-mentioned monomer mixture, a 5% aqueous solution of sodium persulfate, and a 30% aqueous solution of sodium bicarbonate were continuously fed into the reactor to carry out a polymerization reaction.
  • the feed amount and feed time of the monomer mixture were 4.1 g/min and 4 hours, respectively.
  • the feed amount and feed time of the 5% aqueous solution of sodium persulfate were 0.3 g/min and 4 hours and 10 minutes, respectively.
  • the feed amount and feed time of the 30% aqueous solution of sodium bicarbonate were 0.7 g/min and 3 hours and 40 minutes, respectively.
  • the temperature inside the reactor was maintained at 75° C.
  • the reaction liquid was heated to 85° C. and maintained at that temperature for 1 hour.
  • the pH of the reaction solution was adjusted to 2.3 using a neutralizing agent to obtain an aqueous solution of a (meth)acrylic acid-based copolymer (hereinafter also referred to as "copolymer (EE1)") having a solid content of 45%.
  • EE1 a (meth)acrylic acid-based copolymer
  • the copolymer (EE1) was subjected to gel permeation chromatography (GPC), and the Mw was 6730, the Mn was 4130, and the Mw/Mn was about 1.6.
  • the content of (meth)acrylic acid-based copolymers with a molecular weight of 1000 or less in this copolymer (EE1) was 0.8%, and the content of (meth)acrylic acid-based copolymers with a molecular weight of 200000 or more was 0.0% (see Table 1).
  • the above-mentioned monomer mixture, a 5% aqueous solution of sodium persulfate, and a 30% aqueous solution of sodium bicarbonate were continuously fed into the reactor to carry out a polymerization reaction.
  • the feed rate and feed time of the monomer mixture were 4.7 g/min and 4 hours, respectively.
  • the feed rate and feed time of the 5% aqueous solution of sodium persulfate were 0.3 g/min and 4 hours and 10 minutes, respectively.
  • the feed rate and feed time of the 30% aqueous solution of sodium bicarbonate were 0.7 g/min and 3 hours and 40 minutes, respectively.
  • the temperature inside the reactor was maintained at 75° C.
  • the reaction liquid was heated to 85° C. and maintained at that temperature for 1 hour.
  • the pH of the reaction solution was adjusted to 2.6 using a neutralizing agent to obtain an aqueous solution of a (meth)acrylic acid-based copolymer (hereinafter referred to as "copolymer (EE2)") having a solid content of 42%.
  • copolymer (EE2) a (meth)acrylic acid-based copolymer
  • copolymer (EE2) was subjected to gel permeation chromatography (GPC), and the Mw was 7700, the Mn was 4640, and the Mw/Mn was about 1.7.
  • the content of (meth)acrylic acid-based copolymers with a molecular weight of 1000 or less in this copolymer (EE2) was 0.5%, and the content of (meth)acrylic acid-based copolymers with a molecular weight of 200000 or more was 0.0% (see Table 1).
  • blank refers to the test result of a solution in which no water treatment agent (S) is added and inorganic salts are present at a specified concentration.
  • ⁇ Calcium phosphate scale inhibition test> Using the water treatment agent (S), disodium hydrogen phosphate, and calcium chloride, 360 mL of a solution having a concentration of 20 mg/L of (meth)acrylic acid-based copolymer, a concentration of 90 mg/L of disodium hydrogen phosphate, and a concentration of 375 mg/L of calcium chloride was prepared. Next, while stirring this solution, 40 mL of 0.21% sodium bicarbonate aqueous solution was added, and the pH was adjusted to 8.5 with a 0.1 mol/L sodium hydroxide aqueous solution.
  • ⁇ Calcium carbonate scale inhibition test> Using the water treatment agent (S), sodium bicarbonate, and calcium chloride, 400 mL of a solution containing a (meth)acrylic acid copolymer concentration of 10 mg/L, a sodium bicarbonate concentration of 420 mg/L, and a calcium chloride concentration of 375 mg/L was prepared. Next, this solution was adjusted to pH 8.5 with a 1M aqueous sodium hydroxide solution. After that, it was left at 60°C for 20 hours, and the presence or absence of turbidity and precipitation due to calcium carbonate was visually observed, and the scale inhibition was evaluated according to the following criteria. ⁇ : No turbidity or precipitation was observed.
  • ⁇ Calcium sulfate scale inhibition test> Using the water treatment agent (S), sodium sulfate, and calcium chloride, 400 mL of a solution having a (meth)acrylic acid copolymer concentration of 4 mg/L, a sodium sulfate concentration of 6000 mg/L, and a calcium chloride concentration of 6200 mg/L was prepared. After leaving it at 60° C. for 3 hours, the solution was visually observed for turbidity and precipitation due to calcium sulfate, and the scale inhibition ability was evaluated according to the following criteria. ⁇ : No turbidity or precipitation was observed. ⁇ : Turbidity and precipitation were observed, but the Ca concentration in the supernatant after filtration was higher than that in the blank. ⁇ : Turbidity and precipitation were observed, but there was no difference in the Ca concentration in the supernatant after filtration compared to the blank.
  • Examples 2-1 to 2-4 are examples using (meth)acrylic acid-based copolymers E1 to E4 with a content of monomer unit (a) of 70% or less, and showed particularly excellent performance in all areas of silica deposition inhibition, calcium phosphate formation inhibition, calcium carbonate formation inhibition, and calcium sulfate formation inhibition.
  • Examples 2-1 to 2-3 are examples using (meth)acrylic acid-based copolymers E1 to E3 with a content of monomer unit (c) of 2.0% or less, and showed excellent results in foaming evaluation, with foaming immediately after stirring being suppressed.
  • Examples 2-5 to 2-9 are examples using (meth)acrylic acid copolymers E5 to E9, which showed a certain effect in suppressing silica deposition, and demonstrated excellent performance in suppressing calcium phosphate formation, calcium carbonate formation, and calcium sulfate formation. Furthermore, in Examples 2-5 to 2-7, foaming immediately after stirring was suppressed in the foaming evaluation, demonstrating excellent results.
  • Comparative Examples 2-1 and 2-2 no silica deposition inhibition effect was obtained in Comparative Examples 2-1 and 2-2.
  • the (meth)acrylic acid-based copolymers EE2 and EE3 of Comparative Examples 2-2 and 2-3 are not sufficiently water-soluble and cannot be used as a water treatment agent or a component of a scale adhesion inhibitor that has an effect of inhibiting scale adhesion to components of equipment in cooling water systems, boiler water systems, or geothermal power generation water systems.
  • the (meth)acrylic acid-based copolymer of the present invention is suitable as a component of a water treatment agent having excellent effects of inhibiting scale formation, including at least silica, among silica, calcium phosphate, calcium carbonate, and calcium sulfate, or a scale adhesion inhibitor having excellent effects of inhibiting scale adhesion to components of equipment in cooling water systems, boiler water systems, or geothermal power generation water systems.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • General Chemical & Material Sciences (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

A (meth)acrylic acid copolymer according to the present invention contains (a) a monomer unit derived from at least one substance selected from (meth)acrylic acid and salts thereof, (b) a monomer unit derived from at least one substance selected from 2-acrylamide-2-methylpropanesulfonic acid and salts thereof, and (c) a monomer unit derived from at least one monomer selected from aromatic vinyl monomers and vinyl monomers having a solubility of 7g or less in 100mL of water at 20°C or 30°C in the following proportions: 65.1-95.8 mass%, 4.1-34.8 mass%, and 0.1-4.9 mass%.

Description

(メタ)アクリル酸系共重合体及びその製造方法、水処理剤並びにスケール付着防止剤(Meth)acrylic acid copolymer and method for producing the same, water treatment agent, and scale adhesion inhibitor

 本発明は、シリカ、リン酸カルシウム、炭酸カルシウム及び硫酸カルシウムのうち少なくともシリカを含むスケールの形成が十分に抑制される水処理剤又はスケール付着防止剤並びにこれらの主成分として好適な(メタ)アクリル酸系共重合体及びその製造方法に関する。 The present invention relates to a water treatment agent or anti-scaling agent that sufficiently inhibits the formation of scale containing at least silica out of the group consisting of silica, calcium phosphate, calcium carbonate, and calcium sulfate, as well as a (meth)acrylic acid-based copolymer suitable as the main component thereof, and a method for producing the same.

 従来、水は、各種産業において用いられており、水の送液は、通常、配管を介してなされる。しかしながら、送液又は滞留を繰り返す等により配管の内表面に、珪素化合物、カルシウム化合物、マグネシウム化合物、亜鉛化合物等を含むスケールが形成されるため、このようなスケール形成を抑制する処理剤(水処理剤)が用いられている。  Traditionally, water has been used in various industries, and water is usually transported through pipes. However, repeated transport or retention of water can cause scale to form on the inner surface of the pipes, including silicon compounds, calcium compounds, magnesium compounds, zinc compounds, etc., and treatment agents (water treatment agents) are used to suppress this scale formation.

 例えば、特許文献1には、水性系の中にシリカまたは珪酸塩の形成が蔓延するのを防止するための方法であって、前記系に、a)重量平均分子量約1000~約25000の、(メタ)アクリル酸またはマレイン酸またはそれらの塩の水溶性コポリマーまたはターポリマー、但し、コポリマーは、1)約20~約85重量%の(メタ)アクリル酸またはマレイン酸と、2)約11超~約80重量%の(メタ)アクリルアミドメチルプロパンスルホン酸またはスチレンスルホン酸、または、3)約5~約30重量%の(メタ)アクリルアミドまたは置換(メタ)アクリルアミド、または、4)約30~約60重量%のイソブチレンまたはジイソブチレンとから構成されており、そしてターポリマーは、1)約30~約80重量%の(メタ)アクリル酸またはマレイン酸と、2)約11超~約65重量%の(メタ)アクリルアミノメチルプロパンスルホン酸またはスチレンスルホン酸と、3)約5~約30重量%の(メタ)アクリルアミドまたは置換(メタ)アクリルアミド、または4)約5~約30重量%のビニルアルコール、アリルアルコール、ビニルもしくはアリルアルコールのエステル、ビニルエステル、スチレン、イソブチレンまたはジイソブチレン、または、5)(メタ)アクリルアミノメチルプロパンスルホン酸が存在する場合に約3~約30重量%のスチレンスルホン酸とから構成されている、b)マグネシウムイオン、c)前記コポリマーまたはターポリマーと、アルミニウムイオンまたはマグネシウムイオンとの混合物、d)重量平均分子量約1000~約25000のポリ(メタ)アクリル酸またはポリマレイン酸またはそれらの塩と、アルミニウムイオンまたはマグネシウムイオンとの混合物からなる群から選択されたスケール抑制剤の有効量を添加することを特徴とする方法が開示されている。 For example, Patent Document 1 describes a method for preventing the prevalence of silica or silicate formation in an aqueous system, comprising: adding to the system a) a water-soluble copolymer or terpolymer of (meth)acrylic acid or maleic acid or a salt thereof having a weight average molecular weight of about 1,000 to about 25,000, wherein the copolymer is composed of 1) about 20 to about 85% by weight of (meth)acrylic acid or maleic acid, and 2) from about 11 to about 80% by weight of (meth)acrylamidomethylpropanesulfonic acid or styrenesulfonic acid, or 3) from about 5 to about 30% by weight of (meth)acrylamide or a substituted (meth)acrylamide, or 4) from about 30 to about 60% by weight of isobutylene or diisobutylene, and the terpolymer is composed of 1) about 30 to about 80% by weight of (meth)acrylic acid or maleic acid, and 2) from about 11 to about 65% by weight of (meth)acrylamidomethylpropanesulfonic acid or styrenesulfonic acid. A method is disclosed which comprises adding an effective amount of a scale inhibitor selected from the group consisting of styrene sulfonic acid, 3) about 5 to about 30% by weight of (meth)acrylamide or substituted (meth)acrylamide, or 4) about 5 to about 30% by weight of vinyl alcohol, allyl alcohol, esters of vinyl or allyl alcohol, vinyl esters, styrene, isobutylene or diisobutylene, or 5) about 3 to about 30% by weight of styrene sulfonic acid when (meth)acrylaminomethylpropane sulfonic acid is present, b) magnesium ions, c) a mixture of said copolymer or terpolymer with aluminum ions or magnesium ions, and d) a mixture of poly(meth)acrylic acid or polymaleic acid or a salt thereof having a weight average molecular weight of about 1000 to about 25000 with aluminum ions or magnesium ions.

 特許文献2には、無機塩の沈澱を抑制することによって水性系を安定化させる方法であって、水性系に、(a1)2-アクリルアミド-2-メチル-1-プロパンスルホン酸、2-メタクリルアミド-2-メチル-1-プロパンスルホン酸、3-メタクリルアミド-2-ヒドロキシ-1-プロパンスルホン酸又はそれらの塩の1以上から選択される不飽和スルホン酸40~60重量%;及び(b1)アクリル酸又はメタクリル酸又はそれらの塩から選択される不飽和カルボキシルモノマー40~60重量%のモノマー単位を有する、重量平均分子量が約3,000~約10,000である水溶性ポリマー、あるいは、(a2)2-アクリルアミド-2-メチル-1-プロパンスルホン酸、2-メタクリルアミド-2-メチル-1-プロパンスルホン酸、3-メタクリルアミド-2-ヒドロキシ-1-プロパンスルホン酸又はそれらの塩の1以上から選択される不飽和スルホン酸30~60重量%;(b2)アクリル酸又はメタクリル酸又はそれらの塩から選択される不飽和カルボキシルモノマー35~65重量%;及び(c2)tert-ブチルアクリルアミド、tert-オクチルアクリルアミド、ジメチルアクリルアミド、アクリルアミド、アクリロイルモルホリン、スチレン、エチルアクリレート、ブチルアクリレート、ヒドロキシエチルメタクリレート又はヒドロキシプロピルアクリレートの1以上から選択される不飽和非イオン化性モノマー0.1~10重量%のモノマー単位を有する、重量平均分子量が約3,000~約12,000である水溶性ポリマーを加えることを含み;水性系は、鉄、亜鉛、カルシウム、ホスフェート又はモリブデートイオンの1以上から選択される無機イオンを含み;水性系を、約80℃を超える温度に保持する方法が開示されている。 Patent Document 2 describes a method for stabilizing an aqueous system by suppressing precipitation of inorganic salts, which comprises adding to the aqueous system: (a1) 40 to 60% by weight of an unsaturated sulfonic acid selected from one or more of 2-acrylamido-2-methyl-1-propanesulfonic acid, 2-methacrylamido-2-methyl-1-propanesulfonic acid, 3-methacrylamido-2-hydroxy-1-propanesulfonic acid, or salts thereof; and (b1) a water-soluble polymer having a weight average molecular weight of about 3,000 to about 10,000 and having monomer units of 40 to 60% by weight of an unsaturated carboxyl monomer selected from acrylic acid or methacrylic acid, or a salt thereof; or (a2) 1 or more of 2-acrylamido-2-methyl-1-propanesulfonic acid, 2-methacrylamido-2-methyl-1-propanesulfonic acid, 3-methacrylamido-2-hydroxy-1-propanesulfonic acid, or salts thereof. (b2) 30 to 60% by weight of an unsaturated sulfonic acid selected from the above; (b3) 35 to 65% by weight of an unsaturated carboxyl monomer selected from acrylic acid or methacrylic acid or a salt thereof; and (c2) a water-soluble polymer having a weight average molecular weight of about 3,000 to about 12,000 and having monomer units of 0.1 to 10% by weight of an unsaturated non-ionizable monomer selected from one or more of tert-butylacrylamide, tert-octylacrylamide, dimethylacrylamide, acrylamide, acryloylmorpholine, styrene, ethyl acrylate, butyl acrylate, hydroxyethyl methacrylate, or hydroxypropyl acrylate; the aqueous system includes inorganic ions selected from one or more of iron, zinc, calcium, phosphate, or molybdate ions; and the aqueous system is maintained at a temperature of greater than about 80°C.

 特許文献3には、アクリル酸又はそのナトリウム塩に由来する構造単位(x)と、2-アクリルアミド-2-メチルプロパンスルホン酸又はそのナトリウム塩に由来する構造単位(y)とを含み、前記構造単位(x)及び前記構造単位(y)の含有割合は、両者の合計を100質量%とした場合に、それぞれ、35~90質量%及び10~65質量%であるアクリル酸系共重合体であり、重量平均分子量Mwが2000~30000であり、分子量が70000以上であるアクリル酸系共重合体の含有割合が、すべての重合体の合計量に対して0.30質量%以下であるアクリル酸系共重合体が開示されている。そして、このアクリル酸系共重合体は、リン酸カルシウムに対するスケール形成の抑制効果を有する水処理剤の含有成分として好適であることが記載されている。 Patent Document 3 discloses an acrylic acid-based copolymer that contains a structural unit (x) derived from acrylic acid or a sodium salt thereof and a structural unit (y) derived from 2-acrylamido-2-methylpropanesulfonic acid or a sodium salt thereof, and the contents of the structural unit (x) and the structural unit (y) are 35 to 90% by mass and 10 to 65% by mass, respectively, when the total of the two is taken as 100% by mass, and the content of the acrylic acid-based copolymer having a weight average molecular weight Mw of 2,000 to 30,000 and a molecular weight of 70,000 or more is 0.30% by mass or less relative to the total amount of all polymers. It also discloses that this acrylic acid-based copolymer is suitable as a component of a water treatment agent that has an effect of suppressing scale formation on calcium phosphate.

 また、特許文献4には、開放循環冷却水系等において、熱交換器等へのリン酸カルシウム系スケール及びシリカ系スケールの付着を効果的に防止する処理剤として、(メタ)アクリル酸と、(メタ)アクリルアミドメチルプロパンスルホン酸と、炭素数1~8のアルキル基を有する(メタ)アクリルアミド誘導体との共重合体であって、全単量体由来の構造単位100重量%中、(メタ)アクリル酸由来の構造単位を40~70重量%、(メタ)アクリルアミドメチルプロパンスルホン酸由来の構造単位を15~40重量%、炭素数1~8のアルキル基を有する(メタ)アクリルアミド誘導体由来の構造単位を5~25重量%有し、かつ、ポリマー鎖に次亜リン酸化合物由来の骨格を含む共重合体を有効成分とすることを特徴とするリン酸カルシウム系スケール及びシリカ系スケール防止剤が開示されている。 Patent Document 4 also discloses a calcium phosphate and silica scale inhibitor that is a copolymer of (meth)acrylic acid, (meth)acrylamidomethylpropanesulfonic acid, and a (meth)acrylamide derivative having an alkyl group with 1 to 8 carbon atoms, in which, out of 100% by weight of structural units derived from all monomers, the copolymer contains 40 to 70% by weight of structural units derived from (meth)acrylic acid, 15 to 40% by weight of structural units derived from (meth)acrylamidomethylpropanesulfonic acid, and 5 to 25% by weight of structural units derived from a (meth)acrylamide derivative having an alkyl group with 1 to 8 carbon atoms, and the polymer chain contains a skeleton derived from a hypophosphorous compound.

特開平4-356580号公報Japanese Patent Application Publication No. 4-356580 特開平8-224597号公報Japanese Patent Application Publication No. 8-224597 国際公開2016/047267号公報International Publication No. 2016/047267 特開2018-130702号公報JP 2018-130702 A

 スケール形成の抑制に用いられる水処理剤は、通常、水溶液であり、このような水処理剤は、被処理水に対してそれが作用したか否かを目視で判断しやすいことから、透明性を有することが好ましく、また、重合体等の有効成分によるスケール形成抑制効果を発現させやすいことから、スケールの構成成分である、例えば、シリカ、リン酸カルシウム、炭酸カルシウム又は硫酸カルシウムを形成する前駆体成分を含む水と混合したときに、泡立ちが発生しにくいことが好ましい。
 本発明の課題は、水溶液とした際に透明性に優れ、シリカ、リン酸カルシウム、炭酸カルシウム、硫酸カルシウム等を形成する前駆体成分を含む水(被処理水)と混合した際に泡立ちが発生しにくく、混合液において、シリカ、リン酸カルシウム、炭酸カルシウム及び硫酸カルシウムのうち少なくともシリカを含むスケールの形成が十分に抑制される水処理剤並びにスケール付着防止剤を与える(メタ)アクリル酸系共重合体及びその製造方法を提供することである。
Water treatment agents used to inhibit scale formation are usually aqueous solutions, and it is preferable for such water treatment agents to be transparent, since it is easy to visually determine whether or not they have acted on the water to be treated.Furthermore, since the scale formation inhibiting effect of active ingredients such as polymers is easily exerted, it is preferable for the water treatment agent to be less likely to generate foaming when mixed with water containing precursor components that form scale components, such as silica, calcium phosphate, calcium carbonate, or calcium sulfate.
An object of the present invention is to provide a (meth)acrylic acid-based copolymer which, when made into an aqueous solution, provides a water treatment agent and a scale adhesion inhibitor which have excellent transparency, are less likely to generate foam when mixed with water (water to be treated) containing precursor components that form silica, calcium phosphate, calcium carbonate, calcium sulfate, etc., and which satisfactorily suppresses the formation of scale containing at least silica out of the silica, calcium phosphate, calcium carbonate, and calcium sulfate scales in the mixed liquid, and a method for producing the same.

 本発明者らは、20℃又は30℃の水100mLに対する溶解度が7gを超える単量体である、(メタ)アクリル酸及びその塩からなる群より選ばれる少なくとも1種、並びに、2-アクリルアミド-2-メチルプロパンスルホン酸及びその塩からなる群より選ばれる少なくとも1種、に、それぞれ、由来する各単量体単位と、20℃又は30℃の水100mLに対する溶解度が7g以下のビニル単量体、及び芳香族ビニル単量体からなる群より選ばれる少なくとも1種の単量体に由来する単量体単位とからなり、これらの3種の単量体単位が特定の割合で含有される(メタ)アクリル酸系共重合体を水に溶解させると透明性を有する水溶液を得ることができ、この水溶液を水処理剤として用い、シリカ、リン酸カルシウム、炭酸カルシウム又は硫酸カルシウムを形成する前駆体成分を含む水(被処理水)と接触させると、泡立ちが発生しにくく、水処理剤と各被処理水との各混合液において、これらの化合物を含むスケールの形成が抑制されることを見い出した。 The inventors have found that when a (meth)acrylic acid-based copolymer containing a specific ratio of monomer units derived from at least one monomer selected from the group consisting of (meth)acrylic acid and its salts, and at least one monomer selected from the group consisting of 2-acrylamido-2-methylpropanesulfonic acid and its salts, each of which has a solubility of more than 7 g in 100 mL of water at 20°C or 30°C, is dissolved in water, a transparent aqueous solution can be obtained, and when this aqueous solution is used as a water treatment agent and contacted with water (water to be treated) containing precursor components that form silica, calcium phosphate, calcium carbonate, or calcium sulfate, foaming is unlikely to occur, and the formation of scale containing these compounds is suppressed in each mixture of the water treatment agent and each water to be treated.

 本発明は、以下に示される。
[1]下記の単量体単位(a)、(b)及び(c)からなる(メタ)アクリル酸系共重合体であって、
(a)(メタ)アクリル酸及びその塩からなる群より選ばれる少なくとも1種の単量体(ma)に由来する単量体単位
(b)2-アクリルアミド-2-メチルプロパンスルホン酸及びその塩からなる群より選ばれる少なくとも1種の単量体(mb)に由来する単量体単位
(c)20℃又は30℃の水100mLに対する溶解度が7g以下のビニル単量体、及び芳香族ビニル単量体からなる群より選ばれる少なくとも1種の単量体(mc)に由来する単量体単位
 上記単量体単位(a)、(b)及び(c)の合計を100質量%とした場合に、上記単量体単位(a)、(b)及び(c)の含有割合は、それぞれ、65.1~95.8質量%、4.1~34.8質量%及び0.1~4.9質量%である(メタ)アクリル酸系共重合体。
[2]上記単量体(mc)が、スチレン、アクリル酸エチル、アクリル酸n-ブチル、アクリル酸イソブチル及びN-tert-ブチルアクリルアミドから選ばれた少なくとも1種である上記[1]に記載の(メタ)アクリル酸系共重合体。
[3]重量平均分子量が1,500~20,000である上記[1]又は[2]に記載の(メタ)アクリル酸系共重合体。
[4]上記(メタ)アクリル酸系共重合体の合計量に対して、分子量が1,000以下である(メタ)アクリル酸系共重合体の含有割合が15.0質量%以下であり、分子量が200,000以上である(メタ)アクリル酸系共重合体の含有割合が0.10質量%以下である上記[1]から[3]のいずれか一項に記載の(メタ)アクリル酸系共重合体。
[5]上記[1]から[4]のいずれか一項に記載の(メタ)アクリル酸系共重合体の製造方法であって、
 上記単量体(ma)、上記単量体(mb)、上記単量体(mc)及び水を含む単量体混合物を調製する調製工程と、
 反応器に、上記単量体混合物、重合開始剤、及び任意成分として連鎖移動剤を、それぞれ、連続的に供給し、単量体の重合を行う重合工程と、
を、順次、備える(メタ)アクリル酸系共重合体の製造方法。
[6]上記重合工程において、上記反応器への上記単量体混合物の供給時間を2~12時間とする上記[5]に記載の(メタ)アクリル酸系共重合体の製造方法。
[7]上記重合工程において、上記反応器における上記単量体(mc)の残留濃度を合計で0.3g/100mL以下に保持しながら上記単量体の重合を行う上記[5]又は[6]に記載の(メタ)アクリル酸系共重合体の製造方法。
[8]上記[1]から[4]のいずれか一項に記載の(メタ)アクリル酸系共重合体を含有する水処理剤。
[9]上記[1]から[4]のいずれか一項に記載の(メタ)アクリル酸系共重合体を含有する、リン酸カルシウムスケール、炭酸カルシウムスケール、硫酸カルシウムスケール及びシリカスケールの付着防止剤。
The present invention is illustrated below.
[1] A (meth)acrylic acid-based copolymer comprising the following monomer units (a), (b) and (c):
(a) a monomer unit derived from at least one monomer (ma) selected from the group consisting of (meth)acrylic acid and salts thereof; (b) a monomer unit derived from at least one monomer (mb) selected from the group consisting of 2-acrylamido-2-methylpropanesulfonic acid and salts thereof; and (c) a monomer unit derived from at least one monomer (mc) selected from the group consisting of vinyl monomers and aromatic vinyl monomers having a solubility of 7 g or less in 100 mL of water at 20° C. or 30° C. The (meth)acrylic acid-based copolymer has the following contents, when the total of the monomer units (a), (b) and (c) is taken as 100 mass%, the contents of the monomer units (a), (b) and (c) are 65.1 to 95.8 mass%, 4.1 to 34.8 mass% and 0.1 to 4.9 mass%, respectively.
[2] The (meth)acrylic acid-based copolymer according to the above [1], wherein the monomer (mc) is at least one selected from the group consisting of styrene, ethyl acrylate, n-butyl acrylate, isobutyl acrylate and N-tert-butylacrylamide.
[3] The (meth)acrylic acid-based copolymer according to the above [1] or [2], having a weight average molecular weight of 1,500 to 20,000.
[4] The (meth)acrylic acid-based copolymer according to any one of [1] to [3] above, wherein the content of the (meth)acrylic acid-based copolymer having a molecular weight of 1,000 or less is 15.0 mass% or less, and the content of the (meth)acrylic acid-based copolymer having a molecular weight of 200,000 or more is 0.10 mass% or less, based on the total amount of the (meth)acrylic acid-based copolymer.
[5] A method for producing the (meth)acrylic acid-based copolymer according to any one of [1] to [4] above,
a preparation step of preparing a monomer mixture containing the monomer (ma), the monomer (mb), the monomer (mc) and water;
a polymerization step of continuously supplying the monomer mixture, a polymerization initiator, and an optional chain transfer agent to a reactor to polymerize the monomers;
The method for producing a (meth)acrylic acid-based copolymer includes the steps of:
[6] The method for producing a (meth)acrylic acid-based copolymer according to the above [5], wherein in the polymerization step, the supply time of the monomer mixture to the reactor is 2 to 12 hours.
[7] The method for producing a (meth)acrylic acid-based copolymer according to [5] or [6] above, wherein in the polymerization step, polymerization of the monomer is carried out while maintaining a residual concentration of the monomer (mc) in the reactor of 0.3 g/100 mL or less in total.
[8] A water treatment agent containing the (meth)acrylic acid-based copolymer according to any one of [1] to [4] above.
[9] An agent for preventing adhesion of calcium phosphate scale, calcium carbonate scale, calcium sulfate scale, and silica scale, comprising the (meth)acrylic acid-based copolymer according to any one of [1] to [4] above.

 本明細書において、重合体の重量平均分子量(以下、「Mw」ともいう)及び数平均分子量(以下、「Mn」ともいう)は、ゲル・パーミエーションクロマトグラフィー(以下、「GPC」ともいう)により測定された標準ポリアクリル酸ナトリウム換算値である。また、「(メタ)アクリル」の記載は、アクリル及びメタクリルを意味する。 In this specification, the weight average molecular weight (hereinafter also referred to as "Mw") and number average molecular weight (hereinafter also referred to as "Mn") of the polymer are values calculated as standard sodium polyacrylate measured by gel permeation chromatography (hereinafter also referred to as "GPC"). In addition, the term "(meth)acrylic" refers to acrylic and methacrylic.

 本発明の(メタ)アクリル酸系共重合体を水に溶解させると透明性を有する水溶液を得ることができ、この水溶液を水処理剤として用い、シリカ、リン酸カルシウム、炭酸カルシウム又は硫酸カルシウムを形成する前駆体成分を含む水(被処理水)と接触させると、泡立ちが発生しにくく、水処理剤と各被処理水との混合液において、シリカ、リン酸カルシウム、炭酸カルシウム及び硫酸カルシウムのうち少なくともシリカを含むスケールの形成を好適に抑制することができる。従って、本発明の(メタ)アクリル酸系共重合体は、スケールを形成する前駆体成分を含む水(被処理水)が接触する配管等における内表面に、シリカ、リン酸カルシウム、炭酸カルシウム及び硫酸カルシウムのうち少なくともシリカを含むスケールの付着を防止する薬剤成分として用いることもできる。
 本発明の(メタ)アクリル酸系共重合体の製造方法によれば、上記効果を有する(メタ)アクリル酸系共重合体を効率よく製造することができる。
When the (meth)acrylic acid copolymer of the present invention is dissolved in water, a transparent aqueous solution can be obtained. When this aqueous solution is used as a water treatment agent and contacted with water (water to be treated) containing precursor components that form silica, calcium phosphate, calcium carbonate or calcium sulfate, foaming is unlikely to occur, and in the mixed liquid of the water treatment agent and each water to be treated, the formation of scale containing at least silica among silica, calcium phosphate, calcium carbonate and calcium sulfate can be suitably suppressed. Therefore, the (meth)acrylic acid copolymer of the present invention can also be used as a drug component that prevents the adhesion of scale containing at least silica among silica, calcium phosphate, calcium carbonate and calcium sulfate to the inner surface of a pipe or the like that comes into contact with water (water to be treated) containing precursor components that form scale.
According to the method for producing a (meth)acrylic acid-based copolymer of the present invention, a (meth)acrylic acid-based copolymer having the above-mentioned effects can be efficiently produced.

 本発明の(メタ)アクリル酸系共重合体(以下、「(メタ)アクリル酸系共重合体(P)」という)は、下記の単量体単位(a)、(b)及び(c)からなり、これらの単量体単位(a)、(b)及び(c)の合計を100質量%とした場合に、単量体単位(a)、(b)及び(c)の含有割合が、それぞれ、65.1~95.8質量%、4.1~34.8質量%及び0.1~4.9質量%であることを特徴とする。
(a)(メタ)アクリル酸及びその塩からなる群より選ばれる少なくとも1種の単量体(ma)に由来する単量体単位
(b)2-アクリルアミド-2-メチルプロパンスルホン酸及びその塩からなる群より選ばれる少なくとも1種の単量体(mb)に由来する単量体単位
(c)20℃又は30℃の水100mLに対する溶解度が7g以下のビニル単量体、及び芳香族ビニル単量体からなる群より選ばれる少なくとも1種の単量体(mc)に由来する単量体単位
The (meth)acrylic acid-based copolymer of the present invention (hereinafter referred to as "(meth)acrylic acid-based copolymer (P)") is characterized in that it comprises the following monomer units (a), (b) and (c), and the contents of the monomer units (a), (b) and (c) are 65.1 to 95.8% by mass, 4.1 to 34.8% by mass and 0.1 to 4.9% by mass, respectively, when the total of the monomer units (a), (b) and (c) is taken as 100% by mass.
(a) a monomer unit derived from at least one monomer (ma) selected from the group consisting of (meth)acrylic acid and salts thereof; (b) a monomer unit derived from at least one monomer (mb) selected from the group consisting of 2-acrylamido-2-methylpropanesulfonic acid and salts thereof; and (c) a monomer unit derived from at least one monomer (mc) selected from the group consisting of vinyl monomers and aromatic vinyl monomers having a solubility of 7 g or less in 100 mL of water at 20° C. or 30° C.

 本発明の(メタ)アクリル酸系共重合体(P)を構成する単量体単位(a)は、単量体(ma)の少なくとも1種に由来するものであり、アクリル酸、アクリル酸塩、メタクリル酸及びメタクリル酸塩から選ばれた少なくとも1つに由来する単量体単位である。 The monomer unit (a) constituting the (meth)acrylic acid-based copolymer (P) of the present invention is derived from at least one type of monomer (ma), and is a monomer unit derived from at least one selected from acrylic acid, acrylic acid salts, methacrylic acid, and methacrylic acid salts.

 上記単量体(ma)としては、アクリル酸、アクリル酸ナトリウム、アクリル酸カリウム、アクリル酸マグネシウム、アクリル酸カルシウム、メタクリル酸、メタクリル酸ナトリウム、メタクリル酸カリウム、メタクリル酸マグネシウム、メタクリル酸カルシウム等が挙げられる。 Examples of the above monomer (ma) include acrylic acid, sodium acrylate, potassium acrylate, magnesium acrylate, calcium acrylate, methacrylic acid, sodium methacrylate, potassium methacrylate, magnesium methacrylate, calcium methacrylate, etc.

 本発明において、(メタ)アクリル酸系共重合体(P)の水溶液の透明性の観点から、単量体単位(a)は、アクリル酸塩に由来する単量体単位を含むことが好ましい。 In the present invention, from the viewpoint of the transparency of the aqueous solution of the (meth)acrylic acid-based copolymer (P), it is preferable that the monomer unit (a) contains a monomer unit derived from an acrylate salt.

 本発明において、(メタ)アクリル酸系共重合体(P)を構成する単量体単位(a)の含有割合は、単量体単位(a)、(b)及び(c)の合計を100質量%とすると、65.1~95.8質量%である。下限値は、好ましくは66.0質量%、より好ましくは67.0質量%である。また、上限値は、好ましくは80質量%、より好ましくは70質量%である。 In the present invention, the content of the monomer unit (a) constituting the (meth)acrylic acid-based copolymer (P) is 65.1 to 95.8% by mass, assuming that the total of the monomer units (a), (b) and (c) is 100% by mass. The lower limit is preferably 66.0% by mass, more preferably 67.0% by mass. The upper limit is preferably 80% by mass, more preferably 70% by mass.

 本発明の(メタ)アクリル酸系共重合体(P)を構成する単量体単位(b)は、単量体(mb)の少なくとも1種に由来するものであり、2-アクリルアミド-2-メチルプロパンスルホン酸及びその塩から選ばれた少なくとも1つに由来する単量体単位である。 The monomer unit (b) constituting the (meth)acrylic acid-based copolymer (P) of the present invention is derived from at least one type of monomer (mb), and is a monomer unit derived from at least one selected from 2-acrylamido-2-methylpropanesulfonic acid and its salts.

 上記単量体(mb)としては、2-アクリルアミド-2-メチルプロパンスルホン酸、2-アクリルアミド-2-メチルプロパンスルホン酸ナトリウム等が挙げられる。 Examples of the above monomer (mb) include 2-acrylamido-2-methylpropanesulfonic acid, sodium 2-acrylamido-2-methylpropanesulfonate, etc.

 本発明において、共重合体の溶解度向上の観点から、単量体単位(b)は、2-アクリルアミド-2-メチルプロパンスルホン酸塩に由来する単量体単位を含むことが好ましい。 In the present invention, from the viewpoint of improving the solubility of the copolymer, it is preferable that the monomer unit (b) contains a monomer unit derived from 2-acrylamido-2-methylpropanesulfonate.

 本発明において、(メタ)アクリル酸系共重合体(P)を構成する単量体単位(b)の含有割合は、単量体単位(a)、(b)及び(c)の合計を100質量%とすると、4.1~34.8質量%である。下限値は、好ましくは10質量%、より好ましくは20質量%である。また、上限値は、好ましくは34.0質量%、より好ましくは33.0質量%である。 In the present invention, the content of the monomer unit (b) constituting the (meth)acrylic acid-based copolymer (P) is 4.1 to 34.8% by mass, assuming that the total of the monomer units (a), (b) and (c) is 100% by mass. The lower limit is preferably 10% by mass, more preferably 20% by mass. The upper limit is preferably 34.0% by mass, more preferably 33.0% by mass.

 本発明の(メタ)アクリル酸系共重合体(P)を構成する単量体単位(c)は、単量体(mc)の少なくとも1種に由来するものであり、20℃又は30℃の水100mLに対する溶解度が7g以下のビニル単量体、及び芳香族ビニル単量体からなる群より選ばれる少なくとも1種である。
 20℃又は30℃の水100mLに対する溶解度が7g以下のビニル単量体としては、アクリル酸エチル、アクリル酸n-ブチル、アクリル酸イソブチル、プロピルビニルエーテル、ブチルビニルエーテル、イソブチルビニルエーテル、tert-ブチルビニルエーテル、ブチレン、イソブチレン、N-tert-ブチルアクリルアミド(TBAM)等が挙げられる。本発明においては、上記溶解度が3g以下のビニル単量体が好ましく、溶解度が2g以下のビニル単量体がより好ましく、溶解度が1g以下のビニル単量体が更に好ましく、溶解度が0.1g 以下のビニル単量体が特に好ましい。
 また、芳香族ビニル単量体としては、スチレン、α-メチルスチレン、o-メチルスチレン、p-メチルスチレン、β-メチルスチレン、エチルスチレン、p-tert-ブチルスチレン、ビニルトルエン、ビニルキシレン、ビニルナフタレン等が挙げられる。
The monomer unit (c) constituting the (meth)acrylic acid-based copolymer (P) of the present invention is derived from at least one type of monomer (mc), and is at least one type selected from the group consisting of vinyl monomers having a solubility of 7 g or less in 100 mL of water at 20° C. or 30° C., and aromatic vinyl monomers.
Examples of vinyl monomers having a solubility of 7 g or less in 100 mL of water at 20° C. or 30° C. include ethyl acrylate, n-butyl acrylate, isobutyl acrylate, propyl vinyl ether, butyl vinyl ether, isobutyl vinyl ether, tert-butyl vinyl ether, butylene, isobutylene, N-tert-butylacrylamide (TBAM), etc. In the present invention, vinyl monomers having a solubility of 3 g or less are preferred, vinyl monomers having a solubility of 2 g or less are more preferred, vinyl monomers having a solubility of 1 g or less are even more preferred, and vinyl monomers having a solubility of 0.1 g or less are particularly preferred.
Examples of the aromatic vinyl monomer include styrene, α-methylstyrene, o-methylstyrene, p-methylstyrene, β-methylstyrene, ethylstyrene, p-tert-butylstyrene, vinyltoluene, vinylxylene, and vinylnaphthalene.

 本発明において、(メタ)アクリル酸系共重合体(P)の水溶性、得られる水溶液の透明性、並びに、シリカ、リン酸カルシウム、炭酸カルシウム及び硫酸カルシウムのうち少なくともシリカを含むスケールの形成抑制性の観点から、単量体単位(c)は、アクリル酸エチル、アクリル酸n-ブチル、アクリル酸イソブチル、N-tert-ブチルアクリルアミド(TBAM)又はスチレンに由来する単量体単位を含むことが好ましい。 In the present invention, from the viewpoints of the water solubility of the (meth)acrylic acid-based copolymer (P), the transparency of the resulting aqueous solution, and the inhibition of the formation of scale containing at least silica among silica, calcium phosphate, calcium carbonate, and calcium sulfate, it is preferable that the monomer unit (c) contains a monomer unit derived from ethyl acrylate, n-butyl acrylate, isobutyl acrylate, N-tert-butylacrylamide (TBAM), or styrene.

 本発明において、(メタ)アクリル酸系共重合体(P)を構成する単量体単位(c)の含有割合は、単量体単位(a)、(b)及び(c)の合計を100質量%とすると、0.1~4.9質量%である。下限値は、好ましくは0.2質量%、より好ましくは0.4質量%である。また、上限値は、好ましくは3.0質量%、より好ましくは2.0質量%である。 In the present invention, the content of the monomer unit (c) constituting the (meth)acrylic acid-based copolymer (P) is 0.1 to 4.9% by mass, assuming that the total of the monomer units (a), (b) and (c) is 100% by mass. The lower limit is preferably 0.2% by mass, more preferably 0.4% by mass. The upper limit is preferably 3.0% by mass, more preferably 2.0% by mass.

 本発明の(メタ)アクリル酸系共重合体(P)の具体例は、以下に示される。
(1)アクリル酸塩・2-アクリルアミド-2-メチルプロパンスルホン酸塩・スチレン共重合体
(2)アクリル酸塩・2-アクリルアミド-2-メチルプロパンスルホン酸塩・アクリル酸エチル共重合体
(3)アクリル酸塩・2-アクリルアミド-2-メチルプロパンスルホン酸塩・アクリル酸n-ブチル共重合体
(4)アクリル酸塩・2-アクリルアミド-2-メチルプロパンスルホン酸塩・アクリル酸イソブチル共重合体
(5)アクリル酸塩・2-アクリルアミド-2-メチルプロパンスルホン酸塩・N-tert-ブチルアクリルアミド(TBAM)共重合体
Specific examples of the (meth)acrylic acid-based copolymer (P) of the present invention are shown below.
(1) Acrylates/2-acrylamido-2-methylpropanesulfonate/styrene copolymer (2) Acrylates/2-acrylamido-2-methylpropanesulfonate/ethyl acrylate copolymer (3) Acrylates/2-acrylamido-2-methylpropanesulfonate/n-butyl acrylate copolymer (4) Acrylates/2-acrylamido-2-methylpropanesulfonate/isobutyl acrylate copolymer (5) Acrylates/2-acrylamido-2-methylpropanesulfonate/N-tert-butylacrylamide (TBAM) copolymer

 本発明の(メタ)アクリル酸系共重合体(P)の構造は、特に限定されないが、好ましくはランダム共重合体である。 The structure of the (meth)acrylic acid-based copolymer (P) of the present invention is not particularly limited, but is preferably a random copolymer.

 本発明の(メタ)アクリル酸系共重合体(P)のMwは、シリカ、リン酸カルシウム、炭酸カルシウム及び硫酸カルシウムのうち少なくともシリカを含むスケールの形成抑制性の観点から、好ましくは1,500~20,000であり、より好ましくは2,000~15,000、更に好ましくは3,000~10,000である。また、MwとMnとの比(Mw/Mn)である多分散度は、好ましくは1.2~2.5、より好ましくは1.2~2.0である。 The Mw of the (meth)acrylic acid-based copolymer (P) of the present invention is preferably 1,500 to 20,000, more preferably 2,000 to 15,000, and even more preferably 3,000 to 10,000, from the viewpoint of inhibiting the formation of scale containing at least silica among silica, calcium phosphate, calcium carbonate, and calcium sulfate. In addition, the polydispersity, which is the ratio of Mw to Mn (Mw/Mn), is preferably 1.2 to 2.5, and more preferably 1.2 to 2.0.

 本発明の(メタ)アクリル酸系共重合体(P)は、分子量の異なる共重合体が集合して、上記好ましいMwを有するものとすることができる。そして、本発明においては、分子量が1,000以下である(メタ)アクリル酸系共重合体(以下、「(メタ)アクリル酸系共重合体(P1)」という)や、分子量が200,000以上である(メタ)アクリル酸系共重合体(以下、「(メタ)アクリル酸系共重合体(P2)」という)が含まれてもよいが、(メタ)アクリル酸系共重合体(P1)の含有割合は、本発明の(メタ)アクリル酸系共重合体(P)の合計量に対して、好ましくは15.0質量%以下、より好ましくは10.0質量%以下、更に好ましくは5.0質量%以下であり、(メタ)アクリル酸系共重合体(P2)の含有割合は、本発明の(メタ)アクリル酸系共重合体(P)の合計量に対して、好ましくは0.10質量%以下、より好ましくは0.05質量%以下である。 The (meth)acrylic acid copolymer (P) of the present invention can have the above-mentioned preferred Mw by assembling copolymers having different molecular weights. In the present invention, a (meth)acrylic acid copolymer having a molecular weight of 1,000 or less (hereinafter referred to as "(meth)acrylic acid copolymer (P1)") and a (meth)acrylic acid copolymer having a molecular weight of 200,000 or more (hereinafter referred to as "(meth)acrylic acid copolymer (P2)") may be included, but the content of the (meth)acrylic acid copolymer (P1) is preferably 15.0 mass% or less, more preferably 10.0 mass% or less, and even more preferably 5.0 mass% or less, based on the total amount of the (meth)acrylic acid copolymer (P) of the present invention, and the content of the (meth)acrylic acid copolymer (P2) is preferably 0.10 mass% or less, more preferably 0.05 mass% or less, based on the total amount of the (meth)acrylic acid copolymer (P) of the present invention.

 本発明の(メタ)アクリル酸系共重合体(P)は、特定の単量体単位を特定の含有割合で含み、上記好ましいMwを有することから、透明性に優れた水溶液を得ることができる。そして、この水溶液を水処理剤として用い、シリカ、リン酸カルシウム、炭酸カルシウム又は硫酸カルシウムを形成する前駆体成分を含む水(被処理水)と接触させると、泡立ちが発生しにくく、水処理剤と、各被処理水との混合液において、シリカ、リン酸カルシウム、炭酸カルシウム及び硫酸カルシウムのうち少なくともシリカを含むスケールの形成を抑制することができる。水処理剤と被処理水とを混合した際に泡立ちが発生しにくいことについて、本発明者らは、単量体単位(c)が疎水性基を有することから、この単量体単位(c)を0.1~4.9質量%含む(メタ)アクリル酸系共重合体(P)において、疎水性基及び親水性基のバランスが界面活性剤として働かない範囲で制御できているためであると推定している。 The (meth)acrylic acid copolymer (P) of the present invention contains a specific monomer unit at a specific content ratio and has the above-mentioned preferred Mw, so that an aqueous solution with excellent transparency can be obtained. When this aqueous solution is used as a water treatment agent and contacted with water (water to be treated) containing precursor components that form silica, calcium phosphate, calcium carbonate, or calcium sulfate, foaming is unlikely to occur, and the formation of scale containing at least silica among silica, calcium phosphate, calcium carbonate, and calcium sulfate can be suppressed in a mixture of the water treatment agent and each water to be treated. The inventors presume that the reason why foaming is unlikely to occur when the water treatment agent is mixed with the water to be treated is because the monomer unit (c) has a hydrophobic group, and therefore in the (meth)acrylic acid copolymer (P) containing 0.1 to 4.9 mass% of this monomer unit (c), the balance between the hydrophobic group and the hydrophilic group can be controlled within a range that does not act as a surfactant.

 本発明の(メタ)アクリル酸系共重合体(P)は、従来、公知の方法により製造することができる。(メタ)アクリル酸系共重合体(P)の好ましい組成とするために、単量体を重合するのみでなく、重合により得られた反応生成物から精製を行ってもよい。 The (meth)acrylic acid copolymer (P) of the present invention can be produced by a conventional method. In order to obtain a preferred composition of the (meth)acrylic acid copolymer (P), not only the monomers may be polymerized but also the reaction product obtained by polymerization may be purified.

 本発明における(メタ)アクリル酸系共重合体(P)の製造方法(以下、「本発明の製造方法」という)は、単量体(ma)と、単量体(mb)と、単量体(mc)と、水とを含む単量体混合物を調製する調製工程と、反応器に、得られた単量体混合物、重合開始剤、及び任意成分として連鎖移動剤を、それぞれ、連続的に供給し、単量体の重合を行う重合工程とを、順次、備えるものである。尚、重合に供される単量体が、(メタ)アクリル酸及び2-アクリルアミド-2-メチルプロパンスルホン酸の少なくとも(メタ)アクリル酸を含み、(メタ)アクリル酸塩に由来する単量体単位及び/又は2-アクリルアミド-2-メチルプロパンスルホン酸塩に由来する単量体単位を含む(メタ)アクリル酸系共重合体(P)を製造する場合には、重合工程の後、該重合工程により得られた共重合体を中和反応に供する(中和工程)ことが好ましい。また、重合工程及び中和工程のいずれか一方の後には、未反応単量体を除去する工程を備えることができる。 The method for producing the (meth)acrylic acid-based copolymer (P) of the present invention (hereinafter referred to as the "production method of the present invention") sequentially comprises a preparation step of preparing a monomer mixture containing monomer (ma), monomer (mb), monomer (mc), and water, and a polymerization step of continuously supplying the obtained monomer mixture, a polymerization initiator, and an optional chain transfer agent to a reactor, respectively, and polymerizing the monomers. Note that when the monomers to be polymerized contain at least (meth)acrylic acid, i.e., (meth)acrylic acid and 2-acrylamido-2-methylpropanesulfonic acid, and a (meth)acrylic acid-based copolymer (P) containing monomer units derived from (meth)acrylic acid salts and/or monomer units derived from 2-acrylamido-2-methylpropanesulfonic acid salts is produced, it is preferable to subject the copolymer obtained by the polymerization step to a neutralization reaction (neutralization step) after the polymerization step. In addition, a step of removing unreacted monomers can be provided after either the polymerization step or the neutralization step.

 上記調製工程において、単量体混合物を得る方法は特に限定されない。本発明では、疎水性の単量体(mc)を用いるため、まず、単量体(ma)に単量体(mc)を溶解させ、その後、得られた溶液と、単量体(mb)と、水とを混合することが好ましい。尚、混合方法は特に限定されない。 In the above preparation process, the method for obtaining the monomer mixture is not particularly limited. In the present invention, since a hydrophobic monomer (mc) is used, it is preferable to first dissolve the monomer (mc) in the monomer (ma), and then mix the obtained solution with the monomer (mb) and water. The mixing method is not particularly limited.

 上記調製工程における各単量体及び水の使用量は、以下の通りである。
 単量体(ma)の使用量は、単量体(ma)、(mb)及び(mc)の合計に対して、65.1~95.8質量%である。下限値は、好ましくは66.0質量%、より好ましくは67.0質量%である。また、上限値は、好ましくは80質量%、より好ましくは70質量%である。
 単量体(mb)の使用量は、単量体(ma)、(mb)及び(mc)の合計に対して、4.1~34.8質量%である。下限値は、好ましくは10質量%、より好ましくは20質量%である。また、上限値は、好ましくは34.0質量%、より好ましくは33.0質量%である。
 単量体(mc)の使用量は、単量体(ma)、(mb)及び(mc)の合計に対して、0.1~4.9質量%である。下限値は、好ましくは0.2質量%、より好ましくは0.4質量%である。また、上限値は、好ましくは3.0質量%、より好ましくは2.0質量%である。
 また、水の使用量は、単量体(ma)、(mb)及び(mc)の合計を100質量部とすると、好ましくは5~80質量部、より好ましくは20~60質量部である。
The amounts of each monomer and water used in the above preparation steps are as follows.
The amount of the monomer (ma) used is 65.1 to 95.8% by mass based on the total amount of the monomers (ma), (mb) and (mc). The lower limit is preferably 66.0% by mass, more preferably 67.0% by mass. The upper limit is preferably 80% by mass, more preferably 70% by mass.
The amount of the monomer (mb) used is 4.1 to 34.8% by mass based on the total amount of the monomers (ma), (mb) and (mc). The lower limit is preferably 10% by mass, more preferably 20% by mass. The upper limit is preferably 34.0% by mass, more preferably 33.0% by mass.
The amount of the monomer (mc) used is 0.1 to 4.9% by mass based on the total amount of the monomers (ma), (mb) and (mc). The lower limit is preferably 0.2% by mass, more preferably 0.4% by mass. The upper limit is preferably 3.0% by mass, more preferably 2.0% by mass.
The amount of water used is preferably 5 to 80 parts by mass, and more preferably 20 to 60 parts by mass, relative to 100 parts by mass of the total of the monomers (ma), (mb) and (mc).

 次に、重合工程では、調製工程で得られた単量体混合物、重合開始剤、及び任意成分として連鎖移動剤を、それぞれ、連続的に反応器に供給して、好ましくは、反応系を撹拌下、単量体の重合を行う。このとき、必要に応じて、水も連続的に供給してもよい。反応器としては、単量体混合物を供給する手段、連鎖移動剤を供給する手段、重合開始剤を供給する手段、撹拌手段、反応系の温度を調製する手段、還流冷却手段、中和用薬剤を供給する手段、反応液を排出する手段等を備える、従来、公知の構成の反応器(反応装置)を用いることができる。 Next, in the polymerization step, the monomer mixture obtained in the preparation step, the polymerization initiator, and an optional chain transfer agent are each continuously supplied to a reactor, and the monomers are polymerized, preferably while stirring the reaction system. At this time, water may also be continuously supplied, if necessary. As the reactor, a reactor (reaction device) of a conventional, publicly known configuration, equipped with a means for supplying a monomer mixture, a means for supplying a chain transfer agent, a means for supplying a polymerization initiator, a stirring means, a means for adjusting the temperature of the reaction system, a reflux cooling means, a means for supplying a neutralizing agent, a means for discharging the reaction liquid, etc., can be used.

 本発明にかかる重合工程においては、反応器への単量体混合物の供給時間を特定の範囲とすることにより、所望の物性の共重合体を効率よく製造することができる。単量体混合物の供給時間は、好ましくは2~12時間、より好ましくは2~10時間、更に好ましくは2~6時間である。尚、重合工程の終了は、通常、単量体混合物の供給完了と同時ではない。 In the polymerization process of the present invention, a copolymer with the desired physical properties can be efficiently produced by setting the supply time of the monomer mixture to the reactor within a specific range. The supply time of the monomer mixture is preferably 2 to 12 hours, more preferably 2 to 10 hours, and even more preferably 2 to 6 hours. Note that the polymerization process is usually not completed at the same time as the completion of the supply of the monomer mixture.

 また、反応器への単量体混合物の供給速度は一定であることが好ましいが、重合転化率の経時変化を確認しつつ、供給速度を変化させてもよい。 It is also preferable that the feed rate of the monomer mixture to the reactor is constant, but the feed rate may be changed while checking the change in the polymerization conversion rate over time.

 重合開始剤としては、過酸化水素;過硫酸ナトリウム、過硫酸カリウム、過硫酸アンモニウム等の過硫酸塩;ジメチル2,2’-アゾビス(2-メチルプロピオネート)、2,2’-アゾビス(イソブチロニトリル)、2,2’-アゾビス(2-メチルブチロニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)、2,2’-アゾビス(イソ酪酸)ジメチル、4,4’-アゾビス(4-シアノ吉草酸)、2,2’-アゾビス(2-メチルプロピオンアミジン)二塩酸塩、2,2’-アゾビス[N-(2-カルボキシエチル)-2-メチルプロピオンアミジン]n水和物、2,2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]二塩酸塩、2,2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]二硫酸塩二水和物、1,1’-アゾビス(シクロヘキサン-1-カルボニトリル)等のアゾ系化合物;過酸化ベンゾイル、過酸化ラウロイル、過酢酸、ジ-t-ブチルパーオキサイド、クメンヒドロパーオキサイド等の有機過酸化物等が挙げられる。これらは、単独で用いてよいし、2種以上を組み合わせて用いてもよい。 Polymerization initiators include hydrogen peroxide; persulfates such as sodium persulfate, potassium persulfate, and ammonium persulfate; dimethyl 2,2'-azobis(2-methylpropionate), 2,2'-azobis(isobutyronitrile), 2,2'-azobis(2-methylbutyronitrile), 2,2'-azobis(2,4-dimethylvaleronitrile), 2,2'-azobis(4-methoxy-2,4-dimethylvaleronitrile), 2,2'-azobis(isobutyric acid) dimethyl, 4,4'-azobis(4-cyanovaleric acid), 2,2'-azobis(2-methyl Examples of the azo compounds include 2,2'-azobis[N-(2-carboxyethyl)-2-methylpropionamidine] dihydrochloride, 2,2'-azobis[2-(2-imidazolin-2-yl)propane] dihydrochloride, 2,2'-azobis[2-(2-imidazolin-2-yl)propane] disulfate dihydrate, and 1,1'-azobis(cyclohexane-1-carbonitrile); and organic peroxides such as benzoyl peroxide, lauroyl peroxide, peracetic acid, di-t-butyl peroxide, and cumene hydroperoxide. These may be used alone or in combination of two or more.

 重合開始剤の使用量は、単量体(ma)、(mb)及び(mc)の合計100質量部に対して、好ましくは0.1~10.0質量部、より好ましくは0.1~2.0質量部である。 The amount of the polymerization initiator used is preferably 0.1 to 10.0 parts by mass, and more preferably 0.1 to 2.0 parts by mass, per 100 parts by mass of the total of the monomers (ma), (mb), and (mc).

 重合開始剤の使用方法は、特に限定されず、単量体混合物と同時に重合開始剤の供給を開始するか、あるいは、単量体混合物の供給後に重合開始剤の供給を開始することが好ましい。また、重合開始剤の供給終了時期は、単量体混合物の供給完了時期より、好ましくは5分以上、特に好ましくは10分以上遅くなるようにする。 The method of using the polymerization initiator is not particularly limited, but it is preferable to start the supply of the polymerization initiator at the same time as the monomer mixture, or to start the supply of the polymerization initiator after the supply of the monomer mixture. In addition, the supply of the polymerization initiator is terminated preferably 5 minutes or more, and particularly preferably 10 minutes or more later than the completion of the supply of the monomer mixture.

 連鎖移動剤としては、亜リン酸、次亜リン酸及びこれらの塩(次亜リン酸ナトリウム、次亜リン酸カリウム等);亜硫酸、亜硫酸水素、亜二チオン酸、メタ重亜硫酸及びこれらの塩(亜硫酸水素ナトリウム、亜硫酸水素カリウム、亜二チオン酸ナトリウム、亜二チオン酸カリウム、メタ重亜硫酸ナトリウム、メタ重亜硫酸カリウム等);メルカプトエタノール、チオグリセロール、チオグリコール酸、2-メルカプトプロピオン際、3-メルカプトプロピオン際、チオリンゴ酸、チオグリコール酸オクチル、3-メルカプトプロピオン酸オクチル、2-メルカプトエタンスルホン酸、n-ドデシルメルカプタン、オクチルメルカプタン、ブチルチオグリコレート等の、チオール類等が挙げられる。これらは、単独で用いてよいし、2種以上を組み合わせて用いてもよい。 Chain transfer agents include phosphorous acid, hypophosphorous acid, and salts thereof (sodium hypophosphite, potassium hypophosphite, etc.); sulfurous acid, hydrogen sulfite, dithionite, metabisulfite, and salts thereof (sodium hydrogen sulfite, potassium hydrogen sulfite, sodium dithionite, potassium dithionite, sodium metabisulfite, potassium metabisulfite, etc.); mercaptoethanol, thioglycerol, thioglycolic acid, 2-mercaptopropionic acid, 3-mercaptopropionic acid, thiomalic acid, octyl thioglycolate, octyl 3-mercaptopropionate, 2-mercaptoethanesulfonic acid, n-dodecyl mercaptan, octyl mercaptan, butyl thioglycolate, and other thiols. These may be used alone or in combination of two or more.

 連鎖移動剤の使用量は、単量体(ma)、(mb)及び(mc)の合計100質量部に対して、好ましくは0.1~30質量部、より好ましくは1~15質量部である。 The amount of the chain transfer agent used is preferably 0.1 to 30 parts by mass, more preferably 1 to 15 parts by mass, per 100 parts by mass of the total of the monomers (ma), (mb) and (mc).

 連鎖移動剤の使用方法は、特に限定されず、その供給終了時期は、単量体混合物の供給完了時間より、好ましくは10分以上、特に好ましくは20分以上早くなるようにする。 The method of using the chain transfer agent is not particularly limited, but the supply of the chain transfer agent should be terminated preferably at least 10 minutes, and more preferably at least 20 minutes, earlier than the completion time of the supply of the monomer mixture.

 重合工程において、反応系に多価金属イオンを存在させると、重合反応中に重合開始剤及び連鎖移動剤の分解を促進することができる。このような多価金属イオンを形成する材料として、硫酸鉄(III)アンモニウム又はその水和物、硫酸鉄(III)又はその水和物、硫酸鉄(II)又はその水和物等を用いることができる。 In the polymerization process, the presence of polyvalent metal ions in the reaction system can promote the decomposition of the polymerization initiator and the chain transfer agent during the polymerization reaction. Materials that form such polyvalent metal ions include ammonium iron (III) sulfate or its hydrate, iron (III) sulfate or its hydrate, iron (II) sulfate or its hydrate, etc.

 重合工程において、反応器に各原料を供給する前には、予め、水を収容しておくことが好ましく、これにより、反応器に供給された原料が効率よく混合され、重合反応も円滑に進行する。収容物は、水のみ、連鎖移動剤を含む水、又は、多価金属イオンを含む水等とすることができる。 In the polymerization process, it is preferable to store water in the reactor before supplying each raw material to the reactor. This allows the raw materials supplied to the reactor to be mixed efficiently and the polymerization reaction to proceed smoothly. The contents can be water only, water containing a chain transfer agent, or water containing polyvalent metal ions, etc.

 重合工程における単量体の重合温度(反応系の温度)は、重合開始剤の種類等により、適宜、選択され、特に限定されない。好ましい重合温度は70℃以上である。副反応が起きない反応系では、好ましくは重合溶媒(水)の沸点近傍であり、特に好ましくは重合溶媒(水)の沸点である。尚、単量体混合物の供給開始後に重合開始剤を供給し始める場合、単量体混合物の供給開始時の反応系の温度は、所定の重合温度より低くてもよい。このように設定した場合、重合開始剤の供給開始後に所定の重合温度に調整すればよい。 The polymerization temperature of the monomers in the polymerization process (the temperature of the reaction system) is appropriately selected depending on the type of polymerization initiator, etc., and is not particularly limited. A preferred polymerization temperature is 70°C or higher. In a reaction system in which no side reactions occur, the temperature is preferably close to the boiling point of the polymerization solvent (water), and is particularly preferably the boiling point of the polymerization solvent (water). When the supply of the polymerization initiator begins after the supply of the monomer mixture begins, the temperature of the reaction system at the start of the supply of the monomer mixture may be lower than the specified polymerization temperature. When set in this way, the temperature can be adjusted to the specified polymerization temperature after the supply of the polymerization initiator begins.

 本発明にかかる重合工程においては、重合を開始してから重合開始剤の供給を終了するまでの全てにおいて、反応器中の反応液100mLあたりの単量体(mc)の残留濃度(合計の濃度)を、好ましくは0.3g以下、より好ましくは0.1g以下に調整することができるので、所望の物性の(メタ)アクリル酸系共重合体(P)を効率よく製造することができる。尚、重合工程は、単量体混合物の供給完了後、最大13時間経過してから終了させることが好ましい。 In the polymerization process of the present invention, the residual concentration (total concentration) of the monomer (mc) per 100 mL of reaction liquid in the reactor can be adjusted to preferably 0.3 g or less, more preferably 0.1 g or less, throughout the entire process from the start of polymerization to the end of the supply of the polymerization initiator, so that a (meth)acrylic acid-based copolymer (P) having the desired physical properties can be efficiently produced. It is preferable to end the polymerization process a maximum of 13 hours after the completion of the supply of the monomer mixture.

 本発明の製造方法が、重合工程の後、中和工程を備える場合、水酸化ナトリウム、水酸化カリウム等のアルカリ金属の水酸化物;水酸化カルシウム、水酸化マグネシウム等のアルカリ土類金属の水酸化物;アンモニア;モノエタノールアミン、トリエタノールアミン等の有機アミン塩等の、アルカリ剤又はその水溶液を用いることができる。アルカリ剤としては、水酸化ナトリウム、水酸化カリウム等のアルカリ金属の水酸化物が好ましく、水酸化ナトリウムが特に好ましい。 When the manufacturing method of the present invention includes a neutralization step after the polymerization step, an alkaline agent or an aqueous solution thereof can be used, such as an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide; an alkaline earth metal hydroxide such as calcium hydroxide or magnesium hydroxide; ammonia; or an organic amine salt such as monoethanolamine or triethanolamine. As the alkaline agent, an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide is preferred, and sodium hydroxide is particularly preferred.

 中和工程を行う場合、反応液のpHを好ましくは7.0以下、より好ましくは1.0~5.0の範囲に調整する。 When performing the neutralization step, the pH of the reaction solution is preferably adjusted to 7.0 or less, and more preferably to a range of 1.0 to 5.0.

 本発明の製造方法によれば、単量体単位(a)、(b)及び(c)の含有割合が所定の範囲にあり、且つ、未反応の単量体(ma)、(mb)及び(mc)の含有、並びに、上記の(メタ)アクリル酸系共重合体(P1)及び(P2)の含有を、いずれも可能な限り僅かとした(メタ)アクリル酸系共重合体(P)を効率よく製造することができる。 The manufacturing method of the present invention makes it possible to efficiently manufacture a (meth)acrylic acid-based copolymer (P) in which the content ratios of monomer units (a), (b), and (c) are within a predetermined range, and the content of unreacted monomers (ma), (mb), and (mc), as well as the content of the above-mentioned (meth)acrylic acid-based copolymers (P1) and (P2) are all as small as possible.

 本発明の製造方法にかかる重合工程後及び中和工程後において、反応液から水を除去しない場合は、通常、反応液が(メタ)アクリル酸系共重合体(P)の水溶液からなる。この水溶液を用いて、冷却水系、ボイラー水系、地熱発電水系、海水の淡水化装置、パルプ溶解釜、黒液濃縮釜等において、スケール形成を抑制する水処理剤、及び、冷却水の配管の内表面、熱交換器の伝熱面等へのスケール付着を防止するスケール付着防止剤を、それぞれ、容易に製造することができる。更に、(メタ)アクリル酸系共重合体(P)の水溶液は濁りがなく透明性を有するものとすることができるので、この水溶液を用いて得られた水処理剤及びスケール付着防止剤もまた、透明性を有することができ、取り扱いが容易である。  When water is not removed from the reaction liquid after the polymerization step and neutralization step in the production method of the present invention, the reaction liquid usually consists of an aqueous solution of the (meth)acrylic acid copolymer (P). Using this aqueous solution, it is possible to easily produce a water treatment agent that suppresses scale formation in cooling water systems, boiler water systems, geothermal power generation water systems, seawater desalination equipment, pulp dissolving pots, black liquor concentrating pots, etc., and a scale adhesion inhibitor that prevents scale adhesion to the inner surface of cooling water piping, the heat transfer surface of a heat exchanger, etc. Furthermore, since the aqueous solution of the (meth)acrylic acid copolymer (P) can be made clear and transparent, the water treatment agent and scale adhesion inhibitor obtained using this aqueous solution can also be transparent and easy to handle.

 本発明の水処理剤は(メタ)アクリル酸系共重合体(P)を含有し、好ましい性状は液体(水溶液)である。この水溶液における(メタ)アクリル酸系共重合体(P)の含有割合は、水処理剤としての効果、即ち、スケール形成の抑制効果が十分に得られることから、好ましくは1~1000mg/L、より好ましくは5~100mg/Lである。 The water treatment agent of the present invention contains a (meth)acrylic acid-based copolymer (P) and is preferably in the form of a liquid (aqueous solution). The content of the (meth)acrylic acid-based copolymer (P) in this aqueous solution is preferably 1 to 1000 mg/L, more preferably 5 to 100 mg/L, since the effect as a water treatment agent, i.e., the effect of inhibiting scale formation, can be sufficiently obtained.

 本発明の水処理剤は、必要に応じて、ポリアクリル酸又はその塩、ポリマレイン酸又はその塩、他の(メタ)アクリル酸系共重合体、スチレン・マレイン酸系共重合体等の、従来、公知のスケール形成抑制剤、殺菌剤、防食剤、スライム防止剤、消泡剤等を含有してもよい。 The water treatment agent of the present invention may contain, as necessary, conventionally known scale formation inhibitors, bactericides, anticorrosive agents, slime inhibitors, defoamers, etc., such as polyacrylic acid or its salts, polymaleic acid or its salts, other (meth)acrylic acid copolymers, and styrene-maleic acid copolymers.

 本発明の水処理剤は、シリカスケール、リン酸カルシウムスケール、炭酸カルシウムスケール及び硫酸カルシウムスケールのうちの少なくともシリカスケールを形成する前駆体成分を含む水(被処理水)への施用に好適である。例えば、解放循環冷却水系においては、節水、省資源の観点から、冷却水の系外への排出量低減のため、冷却水が濃縮され、リン酸カルシウム、炭酸カルシウム等の難溶性の塩を形成することがあるので、このような場合に、本発明の水処理剤を用いると、熱交換効率の低下、配管の閉塞等の不具合を抑制することができる。また、熱交換器、冷凍機等を備え、高濃縮運転を行う冷却水系、ボイラー水系又は地熱発電水系においては、シリカスケールを形成することがある。シリカスケールが設備の構成部材に付着すると、その除去が困難な場合が多いため、本発明の水処理剤を用いると、シリカスケールの形成を好適に抑制することができる。尚、上記水(被処理水)のpH及び温度は、特に限定されない。 The water treatment agent of the present invention is suitable for application to water (water to be treated) containing at least a precursor component for forming silica scale among silica scale, calcium phosphate scale, calcium carbonate scale, and calcium sulfate scale. For example, in an open circulation cooling water system, in order to reduce the amount of cooling water discharged outside the system from the viewpoint of water and resource saving, the cooling water may be concentrated and poorly soluble salts such as calcium phosphate and calcium carbonate may be formed. In such a case, the use of the water treatment agent of the present invention can suppress problems such as a decrease in heat exchange efficiency and blockage of piping. In addition, in a cooling water system, boiler water system, or geothermal power generation water system that is equipped with a heat exchanger, a refrigerator, etc. and performs a highly concentrated operation, silica scale may be formed. When silica scale adheres to the components of the equipment, it is often difficult to remove it, so the use of the water treatment agent of the present invention can suitably suppress the formation of silica scale. The pH and temperature of the water (water to be treated) are not particularly limited.

 本発明の水処理剤を使用する場合、例えば、上記のスケール材料を形成する前駆体成分を含む水(被処理水)に投入され、必要により撹拌される。 When using the water treatment agent of the present invention, for example, it is added to water (water to be treated) containing the precursor components that form the above-mentioned scale materials, and stirred as necessary.

 本発明のスケール付着防止剤は(メタ)アクリル酸系共重合体(P)を含有し、好ましい性状は液体(水溶液)である。この水溶液における(メタ)アクリル酸系共重合体(P)の含有割合は、スケール付着防止剤としての効果、例えば、凝縮器、熱交換器、配管等の、工業用水、水道水、地下水等の水と接触する構造部材へのスケール付着防止効果が十分に得られることから、好ましくは1~1000mg/L、より好ましくは5~100mg/Lである。 The scale adhesion inhibitor of the present invention contains a (meth)acrylic acid-based copolymer (P) and is preferably in the form of a liquid (aqueous solution). The content of the (meth)acrylic acid-based copolymer (P) in this aqueous solution is preferably 1 to 1000 mg/L, more preferably 5 to 100 mg/L, since the effect as a scale adhesion inhibitor can be sufficiently obtained, for example, the effect of preventing scale adhesion on structural members such as condensers, heat exchangers, and piping that come into contact with water such as industrial water, tap water, and groundwater.

 本発明のスケール付着防止剤を使用する場合、例えば、上記のスケール材料を形成する前駆体成分を含む水(被処理水)に投入され、必要により撹拌される。 When using the scale adhesion inhibitor of the present invention, for example, it is added to water (water to be treated) containing the precursor components that form the above-mentioned scale materials, and stirred as necessary.

 以下、本発明を実施例により具体的に説明する。但し、本発明は、この実施例に何ら限定されるものではない。尚、下記において、%及びppmは、特に断らない限り、質量基準である。 The present invention will be explained in detail below with reference to examples. However, the present invention is not limited to these examples. In the following, % and ppm are by mass unless otherwise specified.

1.(メタ)アクリル酸系共重合体の製造原料
 下記原料を用いて、各種重合体を製造した。
1. Raw Materials for Producing (Meth)acrylic Acid-Based Copolymers Various polymers were produced using the following raw materials.

1-1.単量体
 AA:アクリル酸
 ATBS:2-アクリルアミド-2-メチルプロパンスルホン酸ナトリウム
 St:スチレン
 EA:アクリル酸エチル
  20℃の水100mLに対する溶解度は1.5gである。
 BA:アクリル酸n-ブチル
  20℃の水100mLに対する溶解度は0.14gである。
 IBA:アクリル酸イソブチル
  20℃の水100mLに対する溶解度は0.79gである。
 TBAM:N-tert-ブチルアクリルアミド
  30℃の水100mLに対する溶解度は0.1gである。
1-1. Monomer AA: acrylic acid ATBS: sodium 2-acrylamido-2-methylpropanesulfonate St: styrene EA: ethyl acrylate The solubility in 100 mL of water at 20° C. is 1.5 g.
BA: n-butyl acrylate. The solubility in 100 mL of water at 20° C. is 0.14 g.
IBA: isobutyl acrylate. The solubility in 100 mL of water at 20° C. is 0.79 g.
TBAM: N-tert-butylacrylamide. The solubility in 100 mL of water at 30° C. is 0.1 g.

1-2.重合開始剤
 過硫酸ナトリウム
1-2. Polymerization initiator: Sodium persulfate

1-3.連鎖移動剤
 重亜硫曹
1-3. Chain transfer agent Sodium bicarbonate

1-4.中和剤
 水酸化ナトリウムの50%水溶液
1-4. Neutralizing agent: 50% aqueous solution of sodium hydroxide

2.(メタ)アクリル酸系共重合体又はその水溶液の評価方法
2-1.(メタ)アクリル酸系共重合体の分子量分布の測定
 (メタ)アクリル酸系共重合体のMw及びMnを、GPCにより、SHIMADZU社製「LC-20AD」(型式名)を用いて測定した。
<GPC測定条件>
カラム:東ソー社製G4000PWxl、G3000PWxl及びG2500PWxlを連結
溶離液:0.1M-NaCl+リン酸バッファー(pH7)
検出器:RI
カラム温度:40℃
標準物質:創和科学社製ポリアクリル酸ナトリウム
2. Evaluation method of (meth)acrylic acid copolymer or its aqueous solution 2-1. Measurement of molecular weight distribution of (meth)acrylic acid copolymer Mw and Mn of the (meth)acrylic acid copolymer were measured by GPC using Shimadzu Corporation's "LC-20AD" (model name).
<GPC measurement conditions>
Column: Tosoh G4000PWxl, G3000PWxl and G2500PWxl Eluent: 0.1M NaCl + phosphate buffer (pH 7)
Detector: RI
Column temperature: 40°C
Standard material: Sodium polyacrylate manufactured by Sowa Kagaku Co., Ltd.

2-2.(メタ)アクリル酸系共重合体に含まれる未反応単量体の定量(1)
 AA又はそのナトリウム塩、及び、ATBSを、高速液体クロマトグラフィー(以下、「HPLC」という)により、SHIMADZU社製「LC-20AD」(型式名)を用いて測定した。
<HPLC測定条件>
カラム:東ソー社製ODS-80Ts
溶離液:0.17%硫化水素テトラブチルアンモニウム水溶液:アセトニトリル=90:10
カラム温度:40℃
検出器:UV-vis(205nm)
2-2. Quantitative analysis of unreacted monomers contained in (meth)acrylic acid copolymers (1)
AA or its sodium salt, and ATBS were measured by high performance liquid chromatography (hereinafter referred to as "HPLC") using a Shimadzu Corporation "LC-20AD" (model name).
<HPLC measurement conditions>
Column: Tosoh ODS-80Ts
Eluent: 0.17% aqueous tetrabutylammonium hydrogen sulfide solution:acetonitrile = 90:10
Column temperature: 40°C
Detector: UV-vis (205 nm)

2-3.(メタ)アクリル酸系共重合体に含まれる未反応単量体の定量(2)
 St、EA、BA、IBA及びTBAMを、ガスクロマトグラフィー(以下、「GC」という)により、SHIMADZU社製「GC-2014AF」(型式名)を用いて測定した。
<GC測定条件>
カラム:東ソー社製HR-1
キャリヤーガス:He
試料注入口温度:250℃
昇温条件:70℃→150℃(昇温速度:毎分20℃)
検出器:FID
検出器温度:250℃
2-3. Quantitative analysis of unreacted monomers contained in (meth)acrylic acid copolymers (2)
St, EA, BA, IBA and TBAM were measured by gas chromatography (hereinafter referred to as "GC") using a Shimadzu Corporation "GC-2014AF" (model name).
<GC measurement conditions>
Column: Tosoh HR-1
Carrier gas: He
Sample injection port temperature: 250°C
Temperature rise conditions: 70°C → 150°C (heat rise rate: 20°C per minute)
Detector: FID
Detector temperature: 250°C

3.(メタ)アクリル酸系共重合体の製造
 以下、各種の(メタ)アクリル酸系共重合体の製造例を示す。
3. Production of (meth)acrylic acid-based copolymers Production examples of various (meth)acrylic acid-based copolymers are shown below.

  実施例1-1
 初めに、スチレン(St)1.4gを、アクリル酸(AA)475gに溶解し、この混合液に、2-アクリルアミド-2-メチルプロパンスルホン酸ナトリウム(ATBS)の50%水溶液496g及び純水14gを添加して、十分に撹拌し、単量体混合物を得た。
 その後、還流冷却装置を備える反応器に、純水420gを仕込み、75℃に昇温した後、反応器内を撹拌しながら、重亜硫曹の30%水溶液を9g添加した。そして、反応器内に、上記の単量体混合物と、過硫酸ナトリウムの5%水溶液と、重亜硫曹の30%水溶液とを、連続的に供給して重合反応を行った。単量体混合物の供給量及び供給時間は、それぞれ、4.1g/分及び4時間である。過硫酸ナトリウムの5%水溶液の供給量及び供給時間は、それぞれ、0.3g/分及び4時間10分である。重亜硫曹の30%水溶液の供給量及び供給時間は、それぞれ、0.7g/分及び3時間40分である。尚、重合反応を行う間、反応器内の温度を75℃に保持した。また、単量体(mc)であるスチレン(St)の、反応液100mLあたりの残留濃度を0.1g未満に保持した。過硫酸ナトリウムの5%水溶液の供給が終了した後、反応液を昇温して85℃とし、1時間保持した。次いで、中和剤を用いて反応液のpHを2.3に調整し、固形分濃度が42%である(メタ)アクリル酸系共重合体(以下、「共重合体(E1)」ともいう)の水溶液を得た。この水溶液は濁りがなく透明であった。
Example 1-1
First, 1.4 g of styrene (St) was dissolved in 475 g of acrylic acid (AA), and 496 g of a 50% aqueous solution of sodium 2-acrylamido-2-methylpropanesulfonate (ATBS) and 14 g of pure water were added to this mixture, followed by thorough stirring to obtain a monomer mixture.
Then, 420 g of pure water was charged into a reactor equipped with a reflux condenser, and the temperature was raised to 75° C., and 9 g of a 30% aqueous solution of sodium bicarbonate was added while stirring the inside of the reactor. Then, the above-mentioned monomer mixture, a 5% aqueous solution of sodium persulfate, and a 30% aqueous solution of sodium bicarbonate were continuously fed into the reactor to carry out a polymerization reaction. The feed amount and feed time of the monomer mixture were 4.1 g/min and 4 hours, respectively. The feed amount and feed time of the 5% aqueous solution of sodium persulfate were 0.3 g/min and 4 hours and 10 minutes, respectively. The feed amount and feed time of the 30% aqueous solution of sodium bicarbonate were 0.7 g/min and 3 hours and 40 minutes, respectively. During the polymerization reaction, the temperature in the reactor was maintained at 75° C. In addition, the residual concentration of styrene (St), which is the monomer (mc), per 100 mL of the reaction liquid was maintained at less than 0.1 g. After the supply of the 5% aqueous solution of sodium persulfate was completed, the reaction solution was heated to 85° C. and held for 1 hour. The pH of the reaction solution was then adjusted to 2.3 using a neutralizing agent to obtain an aqueous solution of a (meth)acrylic acid-based copolymer (hereinafter also referred to as “copolymer (E1)”) with a solid content of 42%. This aqueous solution was clear and transparent.

 重合を開始して1時間経過後に採取したサンプルを、ガスクロマトグラフィー(GC)に供したところ、単量体(mc)の残留濃度は0.1g/100mL未満であった(表1参照)。 When a sample taken one hour after the start of polymerization was subjected to gas chromatography (GC), the residual concentration of monomer (mc) was found to be less than 0.1 g/100 mL (see Table 1).

 その後、共重合体(E1)を、ゲルパーミエーションクロマトグラフィー(GPC)に供したところ、Mwは9570、Mnは4830、Mw/Mnは約2.0であった。また、この共重合体(E1)に含まれる、分子量1000以下の(メタ)アクリル酸系共重合体の含有割合は0.6%であり、分子量200000以上の(メタ)アクリル酸系共重合体の含有割合は0.0%であった(表1参照)。 Then, copolymer (E1) was subjected to gel permeation chromatography (GPC), and the Mw was 9,570, the Mn was 4,830, and the Mw/Mn was about 2.0. The content of (meth)acrylic acid-based copolymers having a molecular weight of 1,000 or less in copolymer (E1) was 0.6%, and the content of (meth)acrylic acid-based copolymers having a molecular weight of 200,000 or more was 0.0% (see Table 1).

 また、共重合体(E1)に含まれる未反応単量体の定量分析を行ったところ、AA及びそのナトリウム塩は55ppm、ATBSは125ppm、Stは、検出下限(1ppm)未満であった(表1参照)。 In addition, quantitative analysis of the unreacted monomers contained in copolymer (E1) revealed that AA and its sodium salt were 55 ppm, ATBS was 125 ppm, and St was below the detection limit (1 ppm) (see Table 1).

  実施例1-2~1-9
 表1に記載の組成を有する単量体を用いて、実施例1-1と同様にして、(メタ)アクリル酸系共重合体(E2)~(E9)の製造を行った(表1参照)。
Examples 1-2 to 1-9
Using monomers having the compositions shown in Table 1, (meth)acrylic acid-based copolymers (E2) to (E9) were produced in the same manner as in Example 1-1 (see Table 1).

  比較例1-1
 初めに、アクリル酸(AA)473g、2-アクリルアミド-2-メチルプロパンスルホン酸ナトリウム(ATBS)の50%水溶液496g及び純水14gを、十分に撹拌し、単量体混合物を得た。
 その後、還流冷却装置を備える反応器に、純水420gを仕込み、75℃に昇温した後、反応器内を撹拌しながら、重亜硫曹の30%水溶液を9g添加した。そして、反応器内に、上記の単量体混合物と、過硫酸ナトリウムの5%水溶液と、重亜硫曹の30%水溶液とを、連続的に供給して重合反応を行った。単量体混合物の供給量及び供給時間は、それぞれ、4.1g/分及び4時間である。過硫酸ナトリウムの5%水溶液の供給量及び供給時間は、それぞれ、0.3g/分及び4時間10分である。重亜硫曹の30%水溶液の供給量及び供給時間は、それぞれ、0.7g/分及び3時間40分である。尚、重合反応を行う間、反応器内の温度を75℃に保持した。過硫酸ナトリウムの5%水溶液の供給が終了した後、反応液を昇温して85℃とし、1時間保持した。次いで、中和剤を用いて反応液のpHを2.3に調整し、固形分濃度が45%である(メタ)アクリル酸系共重合体(以下、「共重合体(EE1)」ともいう)の水溶液を得た。この水溶液は濁りがなく透明であった。
Comparative Example 1-1
First, 473 g of acrylic acid (AA), 496 g of a 50% aqueous solution of sodium 2-acrylamido-2-methylpropanesulfonate (ATBS), and 14 g of pure water were thoroughly stirred to obtain a monomer mixture.
Then, 420 g of pure water was charged into a reactor equipped with a reflux condenser, and the temperature was raised to 75° C., and 9 g of a 30% aqueous solution of sodium bicarbonate was added while stirring the inside of the reactor. Then, the above-mentioned monomer mixture, a 5% aqueous solution of sodium persulfate, and a 30% aqueous solution of sodium bicarbonate were continuously fed into the reactor to carry out a polymerization reaction. The feed amount and feed time of the monomer mixture were 4.1 g/min and 4 hours, respectively. The feed amount and feed time of the 5% aqueous solution of sodium persulfate were 0.3 g/min and 4 hours and 10 minutes, respectively. The feed amount and feed time of the 30% aqueous solution of sodium bicarbonate were 0.7 g/min and 3 hours and 40 minutes, respectively. During the polymerization reaction, the temperature inside the reactor was maintained at 75° C. After the supply of the 5% aqueous solution of sodium persulfate was completed, the reaction liquid was heated to 85° C. and maintained at that temperature for 1 hour. Next, the pH of the reaction solution was adjusted to 2.3 using a neutralizing agent to obtain an aqueous solution of a (meth)acrylic acid-based copolymer (hereinafter also referred to as "copolymer (EE1)") having a solid content of 45%. This aqueous solution was clear and not turbid.

 その後、共重合体(EE1)を、ゲルパーミエーションクロマトグラフィー(GPC)に供したところ、Mwは6730、Mnは4130、Mw/Mnは約1.6であった。また、この共重合体(EE1)に含まれる、分子量1000以下の(メタ)アクリル酸系共重合体の含有割合は0.8%であり、分子量200000以上の(メタ)アクリル酸系共重合体の含有割合は0.0%であった(表1参照)。 Then, the copolymer (EE1) was subjected to gel permeation chromatography (GPC), and the Mw was 6730, the Mn was 4130, and the Mw/Mn was about 1.6. The content of (meth)acrylic acid-based copolymers with a molecular weight of 1000 or less in this copolymer (EE1) was 0.8%, and the content of (meth)acrylic acid-based copolymers with a molecular weight of 200000 or more was 0.0% (see Table 1).

 また、共重合体(EE1)に含まれる未反応単量体の定量分析を行ったところ、AA及びそのナトリウム塩は66ppm、ATBSは123ppmであった(表1参照)。 In addition, a quantitative analysis of the unreacted monomers contained in the copolymer (EE1) revealed that AA and its sodium salt were 66 ppm, and ATBS was 123 ppm (see Table 1).

  比較例1-2
 初めに、スチレン(St)35gを、アクリル酸(AA)315gに溶解し、この混合液に、2-アクリルアミド-2-メチルプロパンスルホン酸ナトリウム(ATBS)の50%水溶液774g及び純水14gを添加して、十分に撹拌し、単量体混合物を得た。
 その後、還流冷却装置を備える反応器に、純水420gを仕込み、75℃に昇温した後、反応器内を撹拌しながら、重亜硫曹の30%水溶液を9g添加した。そして、反応器内に、上記の単量体混合物と、過硫酸ナトリウムの5%水溶液と、重亜硫曹の30%水溶液とを、連続的に供給して重合反応を行った。単量体混合物の供給量及び供給時間は、それぞれ、4.7g/分及び4時間である。過硫酸ナトリウムの5%水溶液の供給量及び供給時間は、それぞれ、0.3g/分及び4時間10分である。重亜硫曹の30%水溶液の供給量及び供給時間は、それぞれ、0.7g/分及び3時間40分である。尚、重合反応を行う間、反応器内の温度を75℃に保持した。過硫酸ナトリウムの5%水溶液の供給が終了した後、反応液を昇温して85℃とし、1時間保持した。次いで、中和剤を用いて反応液のpHを2.6に調整し、固形分濃度が42%である(メタ)アクリル酸系共重合体(以下、「共重合体(EE2)」という)の水溶液を得た。この水溶液は濁りがあり不透明であった。
Comparative Example 1-2
First, 35 g of styrene (St) was dissolved in 315 g of acrylic acid (AA), and 774 g of a 50% aqueous solution of sodium 2-acrylamido-2-methylpropanesulfonate (ATBS) and 14 g of pure water were added to this mixture, followed by thorough stirring to obtain a monomer mixture.
Then, 420 g of pure water was charged into a reactor equipped with a reflux condenser, and the temperature was raised to 75° C., and 9 g of a 30% aqueous solution of sodium bicarbonate was added while stirring the inside of the reactor. Then, the above-mentioned monomer mixture, a 5% aqueous solution of sodium persulfate, and a 30% aqueous solution of sodium bicarbonate were continuously fed into the reactor to carry out a polymerization reaction. The feed rate and feed time of the monomer mixture were 4.7 g/min and 4 hours, respectively. The feed rate and feed time of the 5% aqueous solution of sodium persulfate were 0.3 g/min and 4 hours and 10 minutes, respectively. The feed rate and feed time of the 30% aqueous solution of sodium bicarbonate were 0.7 g/min and 3 hours and 40 minutes, respectively. During the polymerization reaction, the temperature inside the reactor was maintained at 75° C. After the supply of the 5% aqueous solution of sodium persulfate was completed, the reaction liquid was heated to 85° C. and maintained at that temperature for 1 hour. Next, the pH of the reaction solution was adjusted to 2.6 using a neutralizing agent to obtain an aqueous solution of a (meth)acrylic acid-based copolymer (hereinafter referred to as "copolymer (EE2)") having a solid content of 42%. This aqueous solution was turbid and opaque.

 重合を開始して1時間経過後に採取したサンプルを、ガスクロマトグラフィー(GC)に供したところ、単量体(mc)の残留濃度は0.1g/100mL未満であった(表1参照)。 When a sample taken one hour after the start of polymerization was subjected to gas chromatography (GC), the residual concentration of monomer (mc) was found to be less than 0.1 g/100 mL (see Table 1).

 その後、共重合体(EE2)を、ゲルパーミエーションクロマトグラフィー(GPC)に供したところ、Mwは7700、Mnは4640、Mw/Mnは約1.7であった。また、この共重合体(EE2)に含まれる、分子量1000以下の(メタ)アクリル酸系共重合体の含有割合は0.5%であり、分子量200000以上の(メタ)アクリル酸系共重合体の含有割合は0.0%であった(表1参照)。 Then, copolymer (EE2) was subjected to gel permeation chromatography (GPC), and the Mw was 7700, the Mn was 4640, and the Mw/Mn was about 1.7. The content of (meth)acrylic acid-based copolymers with a molecular weight of 1000 or less in this copolymer (EE2) was 0.5%, and the content of (meth)acrylic acid-based copolymers with a molecular weight of 200000 or more was 0.0% (see Table 1).

 また、共重合体(EE2)に含まれる未反応単量体の定量分析を行ったところ、AA及びそのナトリウム塩は66ppm、ATBSは628ppmであった(表1参照)。 In addition, quantitative analysis of the unreacted monomers contained in the copolymer (EE2) revealed that AA and its sodium salt were 66 ppm, and ATBS was 628 ppm (see Table 1).

  比較例1-3
 初めに、スチレン(St)70gを、アクリル酸(AA)469gに溶解し、この混合液に、2-アクリルアミド-2-メチルプロパンスルホン酸ナトリウム(ATBS)の50%水溶液357g及び純水14gを添加して、十分に撹拌し、単量体混合物を得た。
 その後、還流冷却装置を備える反応器に、純水420gを仕込み、75℃に昇温した後、反応器内を撹拌しながら、重亜硫曹の30%水溶液を9g添加した。そして、反応器内の温度を75℃に保持しながら、反応器内に、単量体混合物の供給量及び供給時間を、それぞれ、3.8g/分及び4時間、過硫酸ナトリウムの5%水溶液の供給量及び供給時間を、それぞれ、0.3g/分及び4時間10分、重亜硫曹の30%水溶液の供給量及び供給時間を、それぞれ、0.7g/分及び3時間40分として、重合反応を開始したが、重合反応の途中で、反応器内に析出物が生成し、(メタ)アクリル酸系共重合体(以下、「共重合体(EE3)」という)の製造を中止した。
Comparative Example 1-3
First, 70 g of styrene (St) was dissolved in 469 g of acrylic acid (AA), and 357 g of a 50% aqueous solution of sodium 2-acrylamido-2-methylpropanesulfonate (ATBS) and 14 g of pure water were added to this mixture, followed by thorough stirring to obtain a monomer mixture.
Then, 420 g of pure water was charged into a reactor equipped with a reflux condenser, and the temperature was raised to 75° C., and then 9 g of a 30% aqueous solution of sodium bicarbonate was added while stirring the inside of the reactor. Then, while maintaining the temperature in the reactor at 75° C., the amount and time of the monomer mixture fed into the reactor were 3.8 g/min and 4 hours, respectively, the amount and time of the 5% aqueous solution of sodium persulfate were 0.3 g/min and 4 hours 10 minutes, respectively, and the amount and time of the 30% aqueous solution of sodium bicarbonate were 0.7 g/min and 3 hours 40 minutes, respectively, and a polymerization reaction was started, but during the polymerization reaction, a precipitate was formed in the reactor, and the production of a (meth)acrylic acid-based copolymer (hereinafter referred to as "copolymer (EE3)") was stopped.

Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001

4.水処理剤の評価
(1)シリカ、リン酸カルシウム、炭酸カルシウム及び硫酸カルシウムに対するスケール抑制試験
 上記の実施例1-1~1-9及び比較例1-1~1-2で得られた、(メタ)アクリル酸系共重合体の各水溶液を、(メタ)アクリル酸系共重合体の濃度が1000ppmになるように調整して水処理剤(S)とし、シリカ、リン酸カルシウム、炭酸カルシウム及び硫酸カルシウムに対するスケール形成の抑制効果を、以下の方法で確認した。その結果を表2に示す。
 以下のリン酸カルシウムスケール抑制試験、炭酸カルシウムスケール抑制試験及び硫酸カルシウムスケール抑制試験における「ブランク」とは、水処理剤(S)を添加しないで無機塩を、所定の濃度とした溶液の試験結果を意味する。
4. Evaluation of Water Treatment Agents (1) Scale Inhibition Test for Silica, Calcium Phosphate, Calcium Carbonate, and Calcium Sulfate The aqueous solutions of the (meth)acrylic acid copolymers obtained in the above Examples 1-1 to 1-9 and Comparative Examples 1-1 to 1-2 were adjusted to a concentration of the (meth)acrylic acid copolymer of 1000 ppm to prepare water treatment agents (S), and the scale formation inhibition effect for silica, calcium phosphate, calcium carbonate, and calcium sulfate was confirmed by the following method. The results are shown in Table 2.
In the following calcium phosphate scale inhibition test, calcium carbonate scale inhibition test, and calcium sulfate scale inhibition test, "blank" refers to the test result of a solution in which no water treatment agent (S) is added and inorganic salts are present at a specified concentration.

<シリカスケール抑制試験>
 水処理剤(S)と、ケイ酸ナトリウムとを用い、(メタ)アクリル酸系共重合体の濃度が150mg/L、ケイ酸ナトリウムの濃度が351mg/Lである液240mLを準備し、70℃で30分間放置した。その後、この液を攪拌しながら、0.5%塩化マグネシウム水溶液44mL、0.5%塩化カルシウム水溶液31.6mL、及び0.5%炭酸水素ナトリウム水溶液36mL投入した。次いで、この混合液を撹拌しながら、0.21%炭酸水素ナトリウム水溶液40mLを投入し、1mol/L塩酸水溶液でpH8.0に調整した。その後、70℃で3時間放置した後、シリカによる液の濁り及び沈殿の有無を目視観察し、下記の基準でスケール抑制性を評価した。
◎:沈殿は観察されなかったが、液の濁りは薄かった
〇:沈殿は観察されなかったが、液の濁りは濃かった
×:沈殿が観察された
<Silica scale inhibition test>
Using the water treatment agent (S) and sodium silicate, 240 mL of a solution having a concentration of 150 mg/L of (meth)acrylic acid copolymer and a concentration of 351 mg/L of sodium silicate was prepared and left at 70 ° C for 30 minutes. Then, while stirring this solution, 44 mL of 0.5% magnesium chloride aqueous solution, 31.6 mL of 0.5% calcium chloride aqueous solution, and 36 mL of 0.5% sodium bicarbonate aqueous solution were added. Next, while stirring this mixed solution, 40 mL of 0.21% sodium bicarbonate aqueous solution was added, and the pH was adjusted to 8.0 with 1 mol/L hydrochloric acid aqueous solution. After that, after leaving it at 70 ° C for 3 hours, the presence or absence of turbidity and precipitation of the solution due to silica was visually observed, and the scale inhibition was evaluated according to the following criteria.
◎: No precipitation was observed, but the liquid was slightly cloudy. ◯: No precipitation was observed, but the liquid was heavily cloudy. ×: Precipitation was observed.

<リン酸カルシウムスケール抑制試験>
 水処理剤(S)と、リン酸水素2ナトリウムと、塩化カルシウムとを用い、(メタ)アクリル酸系共重合体の濃度が20mg/L、リン酸水素2ナトリウムの濃度が90mg/L、塩化カルシウムの濃度が375mg/Lである液360mLを調製した。次いで、この液を撹拌しながら、0.21%炭酸水素ナトリウム水溶液40mLを投入し、0.1mol/L水酸化ナトリウム水溶液でpH8.5に調整した。その後、60℃で3時間放置した後、リン酸カルシウムによる液の濁り及び沈殿の有無を目視観察し、下記の基準でスケール抑制性を評価した。
◎:濁り及び沈殿が全く観察されなかった
〇:濁り及び沈殿が観察されたが、ブランクと比較すると濾過後の上澄み液におけるCa濃度が高かった
×:濁り及び沈殿が観察されたが、ブランクと比較すると濾過後の上澄み液におけるCa濃度に差がなかった
<Calcium phosphate scale inhibition test>
Using the water treatment agent (S), disodium hydrogen phosphate, and calcium chloride, 360 mL of a solution having a concentration of 20 mg/L of (meth)acrylic acid-based copolymer, a concentration of 90 mg/L of disodium hydrogen phosphate, and a concentration of 375 mg/L of calcium chloride was prepared. Next, while stirring this solution, 40 mL of 0.21% sodium bicarbonate aqueous solution was added, and the pH was adjusted to 8.5 with a 0.1 mol/L sodium hydroxide aqueous solution. After that, the solution was left at 60°C for 3 hours, and the presence or absence of turbidity and precipitation due to calcium phosphate was visually observed, and the scale inhibition was evaluated according to the following criteria.
◎: No turbidity or precipitation was observed. ◯: Turbidity and precipitation were observed, but the Ca concentration in the supernatant after filtration was higher than that in the blank. ×: Turbidity and precipitation were observed, but there was no difference in the Ca concentration in the supernatant after filtration compared to the blank.

<炭酸カルシウムスケール抑制試験>
 水処理剤(S)と、炭酸水素ナトリウムと、塩化カルシウムとを用い、(メタ)アクリル酸系共重合体の濃度が10mg/L、炭酸水素ナトリウムの濃度が420mg/L、塩化カルシウムの濃度が375mg/Lである液400mLを調製した。次いで、この液を1M水酸化ナトリウム水溶液でpH8.5に調整した。その後、60℃で20時間放置した後、炭酸カルシウムによる液の濁り及び沈殿の有無を目視観察し、下記の基準でスケール抑制性を評価した。
◎:濁り及び沈殿が全く観察されなかった
〇:濁り及び沈殿が観察されたが、ブランクと比較すると濾過後の上澄み液におけるCa濃度が高かった
×:濁り及び沈殿が観察されたが、ブランクと比較すると濾過後の上澄み液におけるCa濃度に差がなかった
<Calcium carbonate scale inhibition test>
Using the water treatment agent (S), sodium bicarbonate, and calcium chloride, 400 mL of a solution containing a (meth)acrylic acid copolymer concentration of 10 mg/L, a sodium bicarbonate concentration of 420 mg/L, and a calcium chloride concentration of 375 mg/L was prepared. Next, this solution was adjusted to pH 8.5 with a 1M aqueous sodium hydroxide solution. After that, it was left at 60°C for 20 hours, and the presence or absence of turbidity and precipitation due to calcium carbonate was visually observed, and the scale inhibition was evaluated according to the following criteria.
◎: No turbidity or precipitation was observed. ◯: Turbidity and precipitation were observed, but the Ca concentration in the supernatant after filtration was higher than that in the blank. ×: Turbidity and precipitation were observed, but there was no difference in the Ca concentration in the supernatant after filtration compared to the blank.

<硫酸カルシウムスケール抑制試験>
 水処理剤(S)と、硫酸ナトリウムと、塩化カルシウムとを用い、(メタ)アクリル酸系共重合体の濃度が4mg/L、硫酸ナトリウムの濃度が6000mg/L、塩化カルシウムの濃度が6200mg/Lである液400mLを調製した。その後、60℃で3時間放置した後、硫酸カルシウムによる液の濁り及び沈殿の有無を目視観察し、下記の基準でスケール抑制性を評価した。
◎:濁り及び沈殿が全く観察されなかった
〇:濁り及び沈殿が観察されたが、ブランクと比較すると濾過後の上澄み液におけるCa濃度が高かった
×:濁り及び沈殿が観察されたが、ブランクと比較すると濾過後の上澄み液におけるCa濃度に差がなかった
<Calcium sulfate scale inhibition test>
Using the water treatment agent (S), sodium sulfate, and calcium chloride, 400 mL of a solution having a (meth)acrylic acid copolymer concentration of 4 mg/L, a sodium sulfate concentration of 6000 mg/L, and a calcium chloride concentration of 6200 mg/L was prepared. After leaving it at 60° C. for 3 hours, the solution was visually observed for turbidity and precipitation due to calcium sulfate, and the scale inhibition ability was evaluated according to the following criteria.
◎: No turbidity or precipitation was observed. ◯: Turbidity and precipitation were observed, but the Ca concentration in the supernatant after filtration was higher than that in the blank. ×: Turbidity and precipitation were observed, but there was no difference in the Ca concentration in the supernatant after filtration compared to the blank.

(2)泡立ち評価試験
 上記の実施例1-1~1-9及び比較例1-1~1-2で得られた、(メタ)アクリル酸系共重合体の各水溶液を、(メタ)アクリル酸系共重合体の濃度が1%になるように調整して水処理剤(T)とし、その10gを、アズワン製の樹脂製ディスポカップ(容積:1L、サイズ:上径122mm、下径102.5mm、高さ147mm)に入れ、SCARLETT製ハンドミキサー「SUPER HAND MIXER MODEL HE-133」(アタッチメントはビータータイプ)を用いて、最大速度で30秒間撹拌した。撹拌開始直後の泡立ち高さ、及び、撹拌開始から発生した泡が消えるまでの時間を測定し、下記の基準で泡立ち性を評価した。その結果を表2に示す。
◎:撹拌直後の泡立ちがほとんどなく(おおよそ1cm以下)、ただち(おおよそ15秒以内)に泡が消えた
〇:撹拌しておよそ1分以内に泡が消えた
×:撹拌しておよそ1分以内に泡が消えなかった
(2) Foaming Evaluation Test The aqueous solutions of the (meth)acrylic acid copolymers obtained in the above Examples 1-1 to 1-9 and Comparative Examples 1-1 to 1-2 were adjusted to a concentration of 1% to prepare a water treatment agent (T), and 10 g of the aqueous solution was placed in a resin disposable cup (volume: 1 L, size: upper diameter 122 mm, lower diameter 102.5 mm, height 147 mm) manufactured by AS ONE, and stirred at maximum speed for 30 seconds using a SCARLETT hand mixer "SUPER HAND MIXER MODEL HE-133" (attachment is beater type). The foaming height immediately after the start of stirring and the time from the start of stirring until the generated foam disappeared were measured, and the foaming property was evaluated according to the following criteria. The results are shown in Table 2.
◎: Almost no foaming immediately after stirring (approximately 1 cm or less), and the foam disappeared immediately (within approximately 15 seconds) ◯: The foam disappeared within approximately 1 minute of stirring ×: The foam did not disappear within approximately 1 minute of stirring

Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002

 実施例2-1~2-4は、単量体単位(a)の含有割合が70%以下である(メタ)アクリル酸系共重合体E1~E4を用いた例であり、シリカ堆積抑制、リン酸カルシウム形成抑制、炭酸カルシウム形成抑制及び硫酸カルシウム形成抑制の全てにおいて特に優れた性能を示した。また、実施例2-1~2-3は、単量体単位(c)の含有割合が2.0%以下の(メタ)アクリル酸系共重合体E1~E3を用いた例であり、泡立ち評価において撹拌直後の泡立ちが抑制され、優れた結果を示した。 Examples 2-1 to 2-4 are examples using (meth)acrylic acid-based copolymers E1 to E4 with a content of monomer unit (a) of 70% or less, and showed particularly excellent performance in all areas of silica deposition inhibition, calcium phosphate formation inhibition, calcium carbonate formation inhibition, and calcium sulfate formation inhibition. Examples 2-1 to 2-3 are examples using (meth)acrylic acid-based copolymers E1 to E3 with a content of monomer unit (c) of 2.0% or less, and showed excellent results in foaming evaluation, with foaming immediately after stirring being suppressed.

 実施例2-5~2-9は、(メタ)アクリル酸系共重合体E5~E9を用いた例であり、シリカ堆積抑制に一定の効果が見られ、リン酸カルシウム形成抑制、炭酸カルシウム形成抑制及び硫酸カルシウム形成抑制において優れた性能を示した。また、実施例2-5~2-7では、泡立ち評価において撹拌直後の泡立ちが抑制され、優れた結果を示した。 Examples 2-5 to 2-9 are examples using (meth)acrylic acid copolymers E5 to E9, which showed a certain effect in suppressing silica deposition, and demonstrated excellent performance in suppressing calcium phosphate formation, calcium carbonate formation, and calcium sulfate formation. Furthermore, in Examples 2-5 to 2-7, foaming immediately after stirring was suppressed in the foaming evaluation, demonstrating excellent results.

 一方、比較例2-1及び2-2ではシリカ堆積抑制効果が得られなかった。比較例2-2及び2-3の(メタ)アクリル酸系共重合体EE2及びEE3は水溶性が十分ではなく、水処理剤、あるいは、冷却水系、ボイラー水系又は地熱発電水系における設備の構成部材へのスケール付着抑制効果を有するスケール付着防止剤の構成成分として使用できない。 On the other hand, no silica deposition inhibition effect was obtained in Comparative Examples 2-1 and 2-2. The (meth)acrylic acid-based copolymers EE2 and EE3 of Comparative Examples 2-2 and 2-3 are not sufficiently water-soluble and cannot be used as a water treatment agent or a component of a scale adhesion inhibitor that has an effect of inhibiting scale adhesion to components of equipment in cooling water systems, boiler water systems, or geothermal power generation water systems.

 本発明の(メタ)アクリル酸系共重合体は、シリカ、リン酸カルシウム、炭酸カルシウム及び硫酸カルシウムのうち少なくともシリカを含むスケール形成の抑制効果に優れる水処理剤、あるいは、冷却水系、ボイラー水系又は地熱発電水系における設備の構成部材へのスケール付着抑制効果に優れるスケール付着防止剤の構成成分として好適である。 The (meth)acrylic acid-based copolymer of the present invention is suitable as a component of a water treatment agent having excellent effects of inhibiting scale formation, including at least silica, among silica, calcium phosphate, calcium carbonate, and calcium sulfate, or a scale adhesion inhibitor having excellent effects of inhibiting scale adhesion to components of equipment in cooling water systems, boiler water systems, or geothermal power generation water systems.

Claims (9)

 下記の単量体単位(a)、(b)及び(c)からなる(メタ)アクリル酸系共重合体であって、
(a)(メタ)アクリル酸及びその塩からなる群より選ばれる少なくとも1種の単量体(ma)に由来する単量体単位
(b)2-アクリルアミド-2-メチルプロパンスルホン酸及びその塩からなる群より選ばれる少なくとも1種の単量体(mb)に由来する単量体単位
(c)20℃又は30℃の水100mLに対する溶解度が7g以下のビニル単量体、及び芳香族ビニル単量体からなる群より選ばれる少なくとも1種の単量体(mc)に由来する単量体単位
 前記単量体単位(a)、(b)及び(c)の合計を100質量%とした場合に、前記単量体単位(a)、(b)及び(c)の含有割合は、それぞれ、65.1~95.8質量%、4.1~34.8質量%及び0.1~4.9質量%である(メタ)アクリル酸系共重合体。
A (meth)acrylic acid-based copolymer comprising the following monomer units (a), (b) and (c):
(a) a monomer unit derived from at least one monomer (ma) selected from the group consisting of (meth)acrylic acid and salts thereof; (b) a monomer unit derived from at least one monomer (mb) selected from the group consisting of 2-acrylamido-2-methylpropanesulfonic acid and salts thereof; and (c) a monomer unit derived from at least one monomer (mc) selected from the group consisting of vinyl monomers and aromatic vinyl monomers having a solubility of 7 g or less in 100 mL of water at 20° C. or 30° C. The (meth)acrylic acid-based copolymer has the following contents, when the total of the monomer units (a), (b), and (c) is taken as 100 mass%, the contents of the monomer units (a), (b), and (c) are 65.1 to 95.8 mass%, 4.1 to 34.8 mass%, and 0.1 to 4.9 mass%, respectively.
 前記単量体(mc)が、スチレン、アクリル酸エチル、アクリル酸n-ブチル、アクリル酸イソブチル及びN-tert-ブチルアクリルアミドから選ばれた少なくとも1種である請求項1に記載の(メタ)アクリル酸系共重合体。 The (meth)acrylic acid copolymer according to claim 1, wherein the monomer (mc) is at least one selected from styrene, ethyl acrylate, n-butyl acrylate, isobutyl acrylate, and N-tert-butylacrylamide.  重量平均分子量が1,500~20,000である請求項1又は2に記載の(メタ)アクリル酸系共重合体。 The (meth)acrylic acid copolymer according to claim 1 or 2, having a weight average molecular weight of 1,500 to 20,000.  前記(メタ)アクリル酸系共重合体の合計量に対して、
 分子量が1,000以下である(メタ)アクリル酸系共重合体の含有割合が15.0質量%以下であり、
 分子量が200,000以上である(メタ)アクリル酸系共重合体の含有割合が0.10質量%以下である請求項1から3のいずれか一項に記載の(メタ)アクリル酸系共重合体。
Relative to the total amount of the (meth)acrylic acid-based copolymer,
The content of the (meth)acrylic acid-based copolymer having a molecular weight of 1,000 or less is 15.0% by mass or less,
The (meth)acrylic acid-based copolymer according to any one of claims 1 to 3, wherein the content of the (meth)acrylic acid-based copolymer having a molecular weight of 200,000 or more is 0.10 mass% or less.
 請求項1から4のいずれか一項に記載の(メタ)アクリル酸系共重合体の製造方法であって、
 前記単量体(ma)、前記単量体(mb)、前記単量体(mc)及び水を含む単量体混合物を調製する調製工程と、
 反応器に、前記単量体混合物、重合開始剤、及び任意成分として連鎖移動剤を、それぞれ、連続的に供給し、単量体の重合を行う重合工程と、
を、順次、備える(メタ)アクリル酸系共重合体の製造方法。
A method for producing the (meth)acrylic acid-based copolymer according to any one of claims 1 to 4, comprising the steps of:
a preparation step of preparing a monomer mixture containing the monomer (ma), the monomer (mb), the monomer (mc) and water;
a polymerization step of continuously supplying the monomer mixture, a polymerization initiator, and an optional chain transfer agent to a reactor to polymerize the monomers;
The method for producing a (meth)acrylic acid-based copolymer includes the steps of:
 前記重合工程において、前記反応器への前記単量体混合物の供給時間を2~12時間とする請求項5に記載の(メタ)アクリル酸系共重合体の製造方法。 The method for producing a (meth)acrylic acid-based copolymer according to claim 5, wherein the monomer mixture is supplied to the reactor for 2 to 12 hours in the polymerization step.  前記重合工程において、前記反応器における前記単量体(mc)の残留濃度を合計で0.3g/100mL以下に保持しながら前記単量体の重合を行う請求項5又は6に記載の(メタ)アクリル酸系共重合体の製造方法。 The method for producing a (meth)acrylic acid-based copolymer according to claim 5 or 6, wherein in the polymerization step, the monomer (mc) is polymerized while maintaining the residual concentration of the monomer (mc) in the reactor at 0.3 g/100 mL or less in total.  請求項1から4のいずれか一項に記載の(メタ)アクリル酸系共重合体を含有する水処理剤。 A water treatment agent containing the (meth)acrylic acid copolymer according to any one of claims 1 to 4.  請求項1から4のいずれか一項に記載の(メタ)アクリル酸系共重合体を含有する、リン酸カルシウムスケール、炭酸カルシウムスケール、硫酸カルシウムスケール及びシリカスケールの付着防止剤。 An anti-adhesion agent for calcium phosphate scale, calcium carbonate scale, calcium sulfate scale, and silica scale, comprising the (meth)acrylic acid-based copolymer according to any one of claims 1 to 4.
PCT/JP2024/009811 2023-03-24 2024-03-13 (meth)acrylic acid copolymer, method for producing same, water treatment agent and scale inhibitor WO2024203343A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2023-048431 2023-03-24
JP2023048431 2023-03-24

Publications (1)

Publication Number Publication Date
WO2024203343A1 true WO2024203343A1 (en) 2024-10-03

Family

ID=92905811

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2024/009811 WO2024203343A1 (en) 2023-03-24 2024-03-13 (meth)acrylic acid copolymer, method for producing same, water treatment agent and scale inhibitor

Country Status (1)

Country Link
WO (1) WO2024203343A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63107800A (en) * 1986-10-23 1988-05-12 Kurita Water Ind Ltd Anti-scale agent for water systems
JPS63137799A (en) * 1986-11-13 1988-06-09 ザ ビー.エフ.グッドリッチ カンパニー Composition and method of preventing calcium phosphonate scale precipitate
JPH07268666A (en) * 1994-03-30 1995-10-17 Japan Organo Co Ltd Metal corrosion preventive agent and metal corrosion preventive method
JP2001152372A (en) * 1999-11-29 2001-06-05 Japan Organo Co Ltd Corrosion preventive dispersant and corrosion preventing method
CN108640299A (en) * 2018-04-29 2018-10-12 宁波金特信钢铁科技有限公司 A kind of preparation method of the preparation method of heavy duty detergent copolymer silicon dirt antisludging agent
JP2020119619A (en) * 2019-01-22 2020-08-06 山口精研工業株式会社 Polishing agent composition for magnetic disk substrate
WO2021131198A1 (en) * 2019-12-27 2021-07-01 東亞合成株式会社 Dispersant and polishing agent composition
JP7343068B1 (en) * 2023-03-13 2023-09-12 栗田工業株式会社 Scale inhibitor and scale inhibition method for reverse osmosis membrane

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63107800A (en) * 1986-10-23 1988-05-12 Kurita Water Ind Ltd Anti-scale agent for water systems
JPS63137799A (en) * 1986-11-13 1988-06-09 ザ ビー.エフ.グッドリッチ カンパニー Composition and method of preventing calcium phosphonate scale precipitate
JPH07268666A (en) * 1994-03-30 1995-10-17 Japan Organo Co Ltd Metal corrosion preventive agent and metal corrosion preventive method
JP2001152372A (en) * 1999-11-29 2001-06-05 Japan Organo Co Ltd Corrosion preventive dispersant and corrosion preventing method
CN108640299A (en) * 2018-04-29 2018-10-12 宁波金特信钢铁科技有限公司 A kind of preparation method of the preparation method of heavy duty detergent copolymer silicon dirt antisludging agent
JP2020119619A (en) * 2019-01-22 2020-08-06 山口精研工業株式会社 Polishing agent composition for magnetic disk substrate
WO2021131198A1 (en) * 2019-12-27 2021-07-01 東亞合成株式会社 Dispersant and polishing agent composition
JP7343068B1 (en) * 2023-03-13 2023-09-12 栗田工業株式会社 Scale inhibitor and scale inhibition method for reverse osmosis membrane

Similar Documents

Publication Publication Date Title
JP6113992B2 (en) Cooling water treatment method
JP6753448B2 (en) Acrylic acid-based copolymer, its production method, and water treatment agent
JPH0133239B2 (en)
JPH0457681B2 (en)
CN110396149A (en) As the useful polymer containing primary amine of scale inhibitor
WO1983002607A1 (en) Process for inhibiting scale
TWI664152B (en) Treatment method of cooling water system
WO2013147112A1 (en) Method for treating cooling water system
WO2022054313A1 (en) Antiscaling agent and antiscaling method
WO2024203343A1 (en) (meth)acrylic acid copolymer, method for producing same, water treatment agent and scale inhibitor
JP2024137086A (en) (Meth)acrylic acid copolymer and method for producing the same, water treatment agent, and scale adhesion inhibitor
JP6120847B2 (en) Copolymer composed of isoprenol, monoethylenically unsaturated monocarboxylic acid and sulfonic acid, its production method and use of the copolymer as an anti-adhesive agent in aqueous systems
CA2840781C (en) Preparing maleic acid-isoprenol copolymers
JP2009028618A (en) Scale inhibitor and (meth)acrylic polymer
JP6942975B2 (en) Calcium phosphate-based scale and silica-based scale inhibitors
CN114286803A (en) Calcium-based scale inhibitor for water system and method for preventing scale
JPH0420005B2 (en)
US20130180926A1 (en) Preparing maleic acid-isoprenol copolymers
JP6375909B2 (en) Transparent aqueous solution containing polyacrylate and potassium hydroxide
JP6512007B2 (en) Method for producing acrylic acid polymer aqueous solution
JP2018069167A (en) Scale inhibitor and scale inhibition method
JP6617709B2 (en) Acrylic acid polymer aqueous solution and method for producing the same
JP6413771B2 (en) Method for producing polymer aqueous solution
JP6500659B2 (en) Method for producing acrylic acid based polymer salt aqueous solution
JP2007038120A (en) Zinc hydroxide scale preventing agent and method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 24779472

Country of ref document: EP

Kind code of ref document: A1