WO2024203041A1 - Rotary compressor and refrigeration device - Google Patents
Rotary compressor and refrigeration device Download PDFInfo
- Publication number
- WO2024203041A1 WO2024203041A1 PCT/JP2024/008357 JP2024008357W WO2024203041A1 WO 2024203041 A1 WO2024203041 A1 WO 2024203041A1 JP 2024008357 W JP2024008357 W JP 2024008357W WO 2024203041 A1 WO2024203041 A1 WO 2024203041A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cylinder
- head
- passage
- rotary compressor
- chamber
- Prior art date
Links
- 238000005057 refrigeration Methods 0.000 title description 13
- 239000012530 fluid Substances 0.000 claims abstract description 28
- 239000003507 refrigerant Substances 0.000 description 23
- 230000006835 compression Effects 0.000 description 15
- 238000007906 compression Methods 0.000 description 15
- 230000000694 effects Effects 0.000 description 5
- 238000004378 air conditioning Methods 0.000 description 4
- 238000001816 cooling Methods 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 239000007788 liquid Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 230000032258 transport Effects 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C23/00—Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
- F04C23/001—Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C18/00—Rotary-piston pumps specially adapted for elastic fluids
- F04C18/30—Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
- F04C18/32—Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having both the movement defined in group F04C18/02 and relative reciprocation between the co-operating members
- F04C18/322—Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having both the movement defined in group F04C18/02 and relative reciprocation between the co-operating members with vanes hinged to the outer member and reciprocating with respect to the outer member
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C29/00—Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
- F04C29/12—Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C2240/00—Components
- F04C2240/80—Other components
- F04C2240/805—Fastening means, e.g. bolts
Definitions
- This disclosure relates to a rotary compressor and a refrigeration device.
- Patent Document 1 discloses a compressor that includes a front head, a first cylinder having a first cylinder chamber, a partition plate, a second cylinder having a second cylinder chamber, and a rear head.
- a first suction pipe and a second suction pipe are connected to the first cylinder and the second cylinder, respectively.
- Refrigerant gas is drawn into the first cylinder chamber and the second cylinder chamber from an accumulator via the first suction pipe and the second suction pipe, respectively.
- reducing the thickness of the first and second cylinders reduces the distance between the first and second suction pipes, which may reduce the strength of the area around the connection between the first and second suction pipes in the casing.
- the objective of this disclosure is to increase compressor efficiency and increase the distance between the first and second suction pipes.
- the first aspect of the present disclosure is a rotary compressor in which a first head (31), a first cylinder (40) having a first cylinder chamber (41), a middle plate (32), a second cylinder (50) having a second cylinder chamber (51), and a second head (33) are stacked, and a first piston (45) and a second piston (55) are eccentrically rotated in the first cylinder chamber (41) and the second cylinder chamber (51), respectively.
- the rotary compressor is equipped with a first suction pipe (15) connected to the first cylinder (40) and sucking fluid into the first cylinder chamber (41), a head-side suction passage (70) provided in the second head (33) and communicating with the second cylinder chamber (51), and a second suction pipe (16) connected to the second head (33) and sucking fluid into the second cylinder chamber (51) via the head-side suction passage (70).
- the distance between the first suction pipe (15) and the second suction pipe (16) can be made larger than when the second suction pipe (16) is connected to the second cylinder (50). This makes it possible to reduce the thickness of the first cylinder (40) and the second cylinder (50) and reduce leakage loss, thereby improving the efficiency of the rotary compressor.
- the first head (31) is provided with a screw hole (36), and the first cylinder (40), the middle plate (32), the second cylinder (50), and the second head (33) are each provided with a through hole (37) at a position corresponding to the screw hole (36), and a bolt (35) is inserted from the second head (33) side to fasten the first head (31), the first cylinder (40), the middle plate (32), the second cylinder (50), and the second head (33).
- the fastening distortion of the second cylinder (50) caused by the tightening of the bolt (35) is greater than the fastening distortion of the first cylinder (40).
- the low-temperature fluid is heated when passing through the head-side suction passage (70), the difference in temperature distribution between the second cylinder (50) and the fluid is reduced, and the thermal distortion of the second cylinder (50) caused by thermal expansion is smaller than the thermal distortion of the first cylinder (40).
- the leakage loss can be reduced by setting the gap between the second cylinder (50) and the second piston (55) small, taking into account the effects of fastening distortion and thermal distortion.
- the third aspect of the present disclosure is a rotary compressor according to the first aspect, in which the first cylinder (40) is provided with a screw hole (36), the middle plate (32), the second cylinder (50), and the second head (33) are each provided with a through hole (37) at a position corresponding to the screw hole (36), and a bolt (35) is inserted from the second head (33) side to fasten the first cylinder (40), the middle plate (32), the second cylinder (50), and the second head (33).
- the leakage loss can be reduced by setting the gap between the second cylinder (50) and the second piston (55) small, taking into account the effects of fastening distortion and thermal distortion, in the second cylinder (50) close to the seating surface of the bolt (35).
- the fourth aspect of the present disclosure is a rotary compressor according to any one of the first to third aspects, in which the head-side suction passage (70) has a first passage (71) extending in the radial direction and a second passage (72) extending in the axial direction and communicating between the first passage (71) and the second cylinder chamber (51).
- the low-temperature fluid that flows from the second suction pipe (16) into the head-side suction passage (70) is heated as it passes through the first passage (71) and the second passage (72), and then flows radially into the second cylinder chamber (51). This makes it possible to prevent the low-temperature fluid from being directly sprayed onto the second piston (55).
- the fifth aspect of the present disclosure is a refrigeration system including a rotary compressor (10) according to any one of the first to fourth aspects and a fluid circuit (1a) through which the fluid compressed by the rotary compressor (10) flows.
- a refrigeration system equipped with a rotary compressor (10) can be provided.
- FIG. 1 is a refrigerant circuit diagram showing the configuration of a refrigeration device according to the first embodiment.
- FIG. 2 is a vertical cross-sectional view showing the configuration of the rotary compressor.
- FIG. 3 is a cross-sectional plan view showing the configuration of the first cylinder and the first piston.
- FIG. 4 is a cross-sectional plan view showing the configuration of the second cylinder and the second piston.
- FIG. 5 is a vertical cross-sectional view showing the configuration of a rotary compressor according to the second embodiment.
- a rotary compressor (10) is provided in a refrigeration system (1).
- the refrigeration system (1) has a refrigerant circuit (1a) as a fluid circuit filled with a refrigerant.
- the refrigerant circuit (1a) has a rotary compressor (10), a radiator (3), a pressure reduction mechanism (4), and an evaporator (5).
- the pressure reduction mechanism (4) is, for example, an expansion valve.
- the refrigerant circuit (1a) performs a vapor compression refrigeration cycle.
- the refrigeration system (1) is an air conditioning system.
- the air conditioning system may be a cooling-only system, a heating-only system, or an air conditioning system that switches between cooling and heating.
- the air conditioning system has a switching mechanism (e.g., a four-way switching valve) that switches the refrigerant circulation direction.
- the refrigeration system (1) may be a water heater, a chiller unit, a cooling system that cools the air inside a storage unit, etc.
- a cooling system cools the air inside a refrigerator, a freezer, a container, etc.
- the rotary compressor (10) includes a casing (11), a drive mechanism (20), and a compression mechanism (30).
- the drive mechanism (20) and the compression mechanism (30) are housed inside the casing (11).
- the casing (11) is composed of a vertically long cylindrical sealed container.
- the casing (11) has a body (12), a lower head plate (13), and an upper head plate (14).
- the body (12) is formed in a cylindrical shape that extends vertically and is open at both axial ends.
- the lower head plate (13) is fixed to the lower end of the body (12).
- the upper head plate (14) is fixed to the upper end of the body (12).
- the first suction pipe (15) and the second suction pipe (16) are fixed to the body (12) and pass through it.
- the discharge pipe (17) is fixed to the upper end plate (14).
- An oil reservoir (18) is provided at the bottom of the casing (11).
- the oil reservoir (18) is formed by the lower head (13) and the inner wall of the lower part of the body (12). Oil is stored in the oil reservoir (18) to lubricate the sliding parts of the compression mechanism (30) and the drive shaft (25).
- the drive mechanism (20) includes a motor (21) and a drive shaft (25).
- the motor (21) is disposed above the compression mechanism (30).
- the motor (21) includes a stator (22) and a rotor (23).
- the stator (22) is fixed to the inner circumferential surface of the body (12) of the casing (11).
- the rotor (23) extends vertically through the interior of the stator (22).
- the drive shaft (25) is fixed inside the axis of the rotor (23). When the motor (21) is energized, the drive shaft (25) is rotated together with the rotor (23).
- the drive shaft (25) is disposed on the axis of the body (12) of the casing (11).
- An oil supply pump (25a) is provided at the lower end of the drive shaft (25).
- the oil supply pump (25a) transports oil stored in the oil reservoir (18). The transported oil is supplied to the compression mechanism (30) and the sliding parts of the drive shaft (25) through an oil passage (25b) inside the drive shaft (25).
- the drive shaft (25) has a main shaft portion (26), a first eccentric portion (27), and a second eccentric portion (28).
- the upper portion of the main shaft portion (26) is fixed to the rotor (23) of the motor (21).
- the first eccentric portion (27) is disposed above the second eccentric portion (28).
- the axes of the first eccentric portion (27) and the second eccentric portion (28) are eccentric from the axis of the main shaft portion (26) by a predetermined amount.
- the portion of the main shaft portion (26) above the first eccentric portion (27) is rotatably supported by the front head (31) described below.
- the portion of the main shaft portion (26) below the second eccentric portion (28) is rotatably supported by the rear head (33) described below.
- the compression mechanism (30) is a two-cylinder rotary fluid machine.
- the compression mechanism (30) is disposed below the motor (21).
- the compression mechanism (30) has a front head (31) as a first head, a first cylinder (40), a middle plate (32), a second cylinder (50), and a rear head (33) as a second head.
- the front head (31), first cylinder (40), middle plate (32), second cylinder (50), and rear head (33) are stacked in order from top to bottom and secured in place by bolts (35).
- the front head (31) is provided with a screw hole (36).
- the first cylinder (40), the middle plate (32), the second cylinder (50), and the rear head (33) are each provided with a through hole (37) at a position corresponding to the screw hole (36).
- the bolts (35) are inserted from the rear head (33) side and fasten the front head (31), first cylinder (40), middle plate (32), second cylinder (50), and rear head (33).
- the front head (31) is fixed to the body (12) of the casing (11).
- the front head (31) is stacked on top of the first cylinder (40).
- the front head (31) is arranged so as to cover the first cylinder chamber (41) of the first cylinder (40) from above.
- the main shaft portion (26) of the drive shaft (25) is inserted into the center of the front head (31).
- the front head (31) rotatably supports the drive shaft (25).
- a first discharge passage (49) (see FIG. 3) is formed in the front head (31) and penetrates it in the axial direction.
- the first cylinder (40) is formed of a flat, substantially annular member. As shown in FIG. 3, the first cylinder (40) has a first cylinder chamber (41), a first suction passage (42), and a first blade storage chamber (43).
- the first cylinder chamber (41) is provided in the center of the first cylinder (40).
- the first suction passage (42) extends from the inner wall surface of the first cylinder chamber (41) toward the outside in the radial direction of the first cylinder (40).
- the first suction passage (42) opens to the outer surface of the first cylinder (40).
- the first suction pipe (15) is connected to the inlet end of the first suction passage (42).
- the outlet end of the first suction passage (42) communicates with the first cylinder chamber (41).
- the first cylinder chamber (41) accommodates a first piston (45).
- the first piston (45) has a first piston body (46) and a first blade (47).
- the first piston body (46) is formed in an annular shape.
- the first eccentric portion (27) of the drive shaft (25) is fitted inside the first piston body (46).
- the first blade (47) extends radially outward from the first piston body (46).
- the first blade (47) is supported by a pair of first bushes (48).
- the inside of the first cylinder chamber (41) is divided into a low-pressure chamber and a high-pressure chamber by the first blade (47).
- the first piston (45) rotates eccentrically in the first cylinder chamber (41) as the drive shaft (25) is driven to rotate. As the volume of the low-pressure chamber gradually increases with the eccentric rotation of the first piston (45), the refrigerant flowing through the first suction pipe (15) is sucked radially from the first suction passage (42) into the low-pressure chamber.
- the isolated space forms the high pressure chamber.
- the internal pressure of the high pressure chamber increases.
- the refrigerant in the high pressure chamber flows out of the compression mechanism (30) through the first discharge passage (49).
- This high pressure refrigerant flows upward through the internal space of the casing (11) and passes through the core cut (not shown) of the motor (21), etc.
- the high pressure refrigerant that has flowed out above the motor (21) is sent to the refrigerant circuit through the discharge pipe (17).
- the first blade accommodating chamber (43) is provided at a position radially outwardly spaced from the first cylinder chamber (41).
- the first blade accommodating chamber (43) penetrates the first cylinder (40) in the thickness direction.
- the tip of the first blade (47) is accommodated in the first blade accommodating chamber (43).
- the first blade (47) oscillates within the first blade accommodating chamber (43) in association with the eccentric rotation of the first piston body (46).
- the middle plate (32) is sandwiched between the first cylinder (40) and the second cylinder (50).
- the middle plate (32) is arranged so as to cover the first cylinder chamber (41) of the first cylinder (40) from below.
- the middle plate (32) is arranged so as to cover the second cylinder chamber (51) of the second cylinder (50) from above.
- the second cylinder (50) is formed of a flat, substantially annular member.
- the second cylinder (50) has a second cylinder chamber (51), a second suction passage (52), and a second blade storage chamber (53).
- the second cylinder chamber (51) is provided in the center of the second cylinder (50).
- the second suction passage (52) extends from the inner wall surface of the second cylinder chamber (51) toward the outside in the radial direction of the second cylinder (50).
- the second suction passage (52) opens to the surface on the rear head (33) side (the bottom surface in FIG. 2).
- the inlet end of the second suction passage (52) communicates with a head-side suction passage (70) of the rear head (33) described below.
- the outlet end of the second suction passage (52) communicates with the second cylinder chamber (51).
- the second cylinder chamber (51) accommodates a second piston (55).
- the second piston (55) has a second piston body (56) and a second blade (57).
- the second piston body (56) is formed in an annular shape.
- the second eccentric portion (28) of the drive shaft (25) is fitted inside the second piston body (56).
- the second blade (57) extends radially outward from the second piston body (56).
- the second blade (57) is supported by a pair of second bushes (58).
- the inside of the second cylinder chamber (51) is divided into a low-pressure chamber and a high-pressure chamber by the second blade (57).
- the operation of the second piston (55) is substantially the same as that of the first piston (45), and therefore will not be described here.
- the second blade accommodating chamber (53) is provided at a position radially outwardly spaced from the second cylinder chamber (51).
- the second blade accommodating chamber (53) penetrates the second cylinder (50) in the thickness direction.
- the tip of the second blade (57) is accommodated in the second blade accommodating chamber (53).
- the second blade (57) oscillates within the second blade accommodating chamber (53) in association with the eccentric rotation of the second piston body (56).
- the rear head (33) is stacked on the lower part of the second cylinder (50).
- the rear head (33) is arranged so as to cover the second cylinder chamber (51) of the second cylinder (50) from below.
- the main shaft portion (26) of the drive shaft (25) is inserted into the center of the rear head (33).
- the rear head (33) rotatably supports the drive shaft (25).
- a head-side suction passage (70) is provided in the rear head (33).
- the head-side suction passage (70) has a first passage (71) and a second passage (72).
- the first passage (71) extends radially outward from the rear head (33).
- the first passage (71) opens to the outer surface of the rear head (33).
- the second suction pipe (16) is connected to the inflow end of the first passage (71).
- the second passage (72) is provided at the outflow end of the first passage (71).
- the second passage (72) extends axially upward and opens into the upper surface of the rear head (33).
- the outlet end of the second passage (72) communicates with the second cylinder chamber (51) via the second suction passage (52) of the second cylinder (50).
- the distance between the first suction pipe (15) and the second suction pipe (16) can be made larger than when the second suction pipe (16) is connected to the second cylinder (50). This makes it possible to reduce the thickness of the first cylinder (40) and the second cylinder (50) and reduce leakage loss, thereby improving the efficiency of the rotary compressor (10).
- the low-temperature refrigerant that flows from the second suction pipe (16) into the head-side suction passage (70) is heated as it passes through the first passage (71) and the second passage (72), and then flows into the second cylinder chamber (51). This prevents the low-temperature refrigerant from being directly sprayed onto the second piston (55).
- refrigerant is drawn into the second cylinder chamber (51) through the second suction pipe (16), the head-side suction passage (70) of the rear head (33), and the second suction passage (52) of the second cylinder (50).
- a second discharge passage (59) (see FIG. 4) is formed in the rear head (33) and passes through it in the axial direction.
- the internal pressure of the high-pressure chamber of the second cylinder chamber (51) exceeds a predetermined pressure as the second piston (55) rotates, the refrigerant in the high-pressure chamber flows out of the compression mechanism (30) through the second discharge passage (59).
- the bolt (35) is inserted into the through hole (37) from the rear head (33) side and fastened to the screw hole (36) of the front head (31). Therefore, in the second cylinder (50) close to the seat surface of the bolt (35), the fastening distortion ⁇ 3 of the second cylinder (50) caused by the tightening of the bolt (35) is larger than the fastening distortion ⁇ 1 of the first cylinder (40) ( ⁇ 1 ⁇ ⁇ 3).
- the second cylinder (50) by drawing fluid into the second cylinder (50) from the second head (33) side, the low-temperature fluid is heated as it passes through the head-side suction passage (70), the difference in temperature distribution between the second cylinder (50) and the fluid is reduced, and the thermal strain ⁇ 4 of the second cylinder (50) due to thermal expansion becomes smaller than the thermal strain ⁇ 2 of the first cylinder (40) ( ⁇ 2> ⁇ 4).
- the leakage loss can be reduced by setting the gap between the second cylinder (50) and the second piston (55) small, taking into account the effects of fastening distortion and thermal distortion.
- An accumulator (60) is connected to the upstream side of the rotary compressor (10).
- the accumulator (60) temporarily stores the refrigerant before it is sucked into the rotary compressor (10), and separates liquid refrigerant and oil contained in the gas refrigerant into gas and liquid.
- the accumulator (60) has a sealed container (61), an inlet pipe (62), a first outlet pipe (63), and a second outlet pipe (64).
- the inlet pipe (62) allows the refrigerant to flow into the sealed container (61).
- the outlet pipe (63) allows the refrigerant to flow out of the sealed container (61).
- the sealed container (61) is composed of a vertically long cylindrical member.
- An inlet pipe (62) is connected to the top of the sealed container (61). The lower end of the inlet pipe (62) opens at a position near the top of the internal space of the sealed container (61).
- a first outlet pipe (63) and a second outlet pipe (64) are connected to the lower part of the sealed container (61).
- the upper ends of the first outlet pipe (63) and the second outlet pipe (64) extend upward inside the sealed container (61) and open at positions near the top of the internal space of the sealed container (61).
- the lower end of the first outlet pipe (63) extends downward from the lower end of the sealed container (61), then bends toward the first suction pipe (15) of the rotary compressor (10), and is connected to the first suction pipe (15).
- the lower end of the second outlet pipe (64) extends downward from the lower end of the sealed container (61), then bends toward the second suction pipe (16) of the rotary compressor (10), and is connected to the second suction pipe (16).
- the distance between the first suction pipe (15) and the second suction pipe (16) can be made larger than in the case where the second cylinder (50) is connected to the second suction pipe (16).
- the thicknesses of the first cylinder (40) and the second cylinder (50) can be made smaller, thereby reducing leakage loss and improving the efficiency of the rotary compressor.
- first suction pipe (15) By connecting the first suction pipe (15) to the first cylinder (40), it is possible to reduce suction heating of the refrigerant in the first cylinder chamber (41). This improves the efficiency of the rotary compressor (10) compared to the case where the first suction pipe (15) is connected to the first head (31) and the second suction pipe (16) is connected to the second head (33).
- the fastening distortion of the second cylinder (50) caused by the tightening of the bolt (35) is greater than the fastening distortion of the first cylinder (40).
- the low-temperature fluid is heated when passing through the head-side suction passage (70), the difference in temperature distribution between the second cylinder (50) and the fluid is reduced, and the thermal distortion of the second cylinder (50) caused by thermal expansion is smaller than the thermal distortion of the first cylinder (40).
- the leakage loss can be reduced by setting the gap between the second cylinder (50) and the second piston (55) small, taking into account the effects of fastening distortion and thermal distortion.
- the first cylinder (40) disposed in a position close to the first head (31) provided with the screw hole (36), by connecting the first suction pipe (15) to the first cylinder (40), it is possible to reduce the suction pressure loss of the refrigerant. This makes it possible to reduce losses in the entire compression mechanism (30) and improve the efficiency of the rotary compressor (10).
- a rotary compressor (10) and a fluid circuit (1a) through which the fluid compressed by the rotary compressor (10) flows are provided. This makes it possible to provide a refrigeration system equipped with the rotary compressor (10).
- the compression mechanism (30) is disposed below the motor (21).
- the compression mechanism (30) has a front head (31), a first cylinder (40), a middle plate (32), a second cylinder (50), and a rear head (33).
- the front head (31), first cylinder (40), middle plate (32), second cylinder (50), and rear head (33) are stacked in order from top to bottom and secured in place by bolts (35).
- a screw hole (36) is provided in the first cylinder (40).
- Through holes (37) are provided in the front head (31), the middle plate (32), the second cylinder (50), and the rear head (33) at positions corresponding to the screw hole (36).
- a countersunk hole is provided in the front head (31) at a position corresponding to the through hole (37).
- the lower bolt (35) is inserted from the rear head (33) side and fastens the first cylinder (40), middle plate (32), second cylinder (50), and rear head (33).
- the upper bolt (35) is inserted from the front head (31) side and fastens the front head (31) and first cylinder (40).
- Refrigeration device 1a Fluid circuit 10 Rotary compressor 15 First suction pipe 16 Second suction pipe 31 Front head (first head) 32 Middle plate 33 Rear head (second head) 35 bolt 36 screw hole 37 through hole 40 first cylinder 41 first cylinder chamber 45 first piston 50 second cylinder 51 second cylinder chamber 55 second piston 70 head side suction passage 71 first passage 72 second passage
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Applications Or Details Of Rotary Compressors (AREA)
- Rotary Pumps (AREA)
Abstract
Description
本開示は、回転式圧縮機及び冷凍装置に関するものである。 This disclosure relates to a rotary compressor and a refrigeration device.
特許文献1には、フロントヘッドと、第1シリンダ室を有する第1シリンダと、仕切板と、第2シリンダ室を有する第2シリンダと、リアヘッドと、を備えた圧縮機が開示されている。第1シリンダ及び第2シリンダには、第1吸入管及び第2吸入管がそれぞれ接続される。第1シリンダ室及び第2シリンダ室には、アキュムレータから第1吸入管及び第2吸入管を介して冷媒ガスがそれぞれ吸入される。
ところで、圧縮機の効率を高めるために、第1シリンダ及び第2シリンダの厚みを低減することで漏れ損失を低減したいという要望がある。 However, in order to increase the efficiency of the compressor, there is a demand to reduce leakage losses by reducing the thickness of the first and second cylinders.
しかしながら、第1シリンダ及び第2シリンダの厚みを低減すると、第1吸入管と第2吸入管との間の距離が小さくなり、ケーシングにおける第1吸入管及び第2吸入管の接続部周辺の強度が低下するおそれがある。 However, reducing the thickness of the first and second cylinders reduces the distance between the first and second suction pipes, which may reduce the strength of the area around the connection between the first and second suction pipes in the casing.
本開示の目的は、圧縮機効率を高めるとともに第1吸入管と第2吸入管との間の距離を大きくすることにある。 The objective of this disclosure is to increase compressor efficiency and increase the distance between the first and second suction pipes.
本開示の第1の態様は、第1ヘッド(31)と、第1シリンダ室(41)を有する第1シリンダ(40)と、ミドルプレート(32)と、第2シリンダ室(51)を有する第2シリンダ(50)と、第2ヘッド(33)と、が積層され、前記第1シリンダ室(41)及び前記第2シリンダ室(51)で第1ピストン(45)及び第2ピストン(55)をそれぞれ偏心回転させる回転式圧縮機であって、前記第1シリンダ(40)に接続され、前記第1シリンダ室(41)に流体を吸入する第1吸入管(15)と、前記第2ヘッド(33)に設けられ、前記第2シリンダ室(51)に連通するヘッド側吸入通路(70)と、前記第2ヘッド(33)に接続され、前記ヘッド側吸入通路(70)を介して前記第2シリンダ室(51)に流体を吸入する第2吸入管(16)と、を備える。 The first aspect of the present disclosure is a rotary compressor in which a first head (31), a first cylinder (40) having a first cylinder chamber (41), a middle plate (32), a second cylinder (50) having a second cylinder chamber (51), and a second head (33) are stacked, and a first piston (45) and a second piston (55) are eccentrically rotated in the first cylinder chamber (41) and the second cylinder chamber (51), respectively. The rotary compressor is equipped with a first suction pipe (15) connected to the first cylinder (40) and sucking fluid into the first cylinder chamber (41), a head-side suction passage (70) provided in the second head (33) and communicating with the second cylinder chamber (51), and a second suction pipe (16) connected to the second head (33) and sucking fluid into the second cylinder chamber (51) via the head-side suction passage (70).
第1の態様では、第2シリンダ(50)に第2吸入管(16)を接続した場合に比べて、第1吸入管(15)と第2吸入管(16)との間の距離を大きくすることができる。これにより、第1シリンダ(40)及び第2シリンダ(50)の厚みを小さくして漏れ損失を低減することができ、回転式圧縮機の効率を高めることができる。 In the first embodiment, the distance between the first suction pipe (15) and the second suction pipe (16) can be made larger than when the second suction pipe (16) is connected to the second cylinder (50). This makes it possible to reduce the thickness of the first cylinder (40) and the second cylinder (50) and reduce leakage loss, thereby improving the efficiency of the rotary compressor.
本開示の第2の態様は、第1の態様の回転式圧縮機において、前記第1ヘッド(31)には、ネジ孔(36)が設けられ、前記第1シリンダ(40)、前記ミドルプレート(32)、前記第2シリンダ(50)、及び前記第2ヘッド(33)には、前記ネジ孔(36)に対応する位置に貫通孔(37)がそれぞれ設けられ、前記第2ヘッド(33)側から挿通され、前記第1ヘッド(31)、前記第1シリンダ(40)、前記ミドルプレート(32)、前記第2シリンダ(50)、及び前記第2ヘッド(33)を締結するボルト(35)を備える。 In a second aspect of the present disclosure, in the rotary compressor of the first aspect, the first head (31) is provided with a screw hole (36), and the first cylinder (40), the middle plate (32), the second cylinder (50), and the second head (33) are each provided with a through hole (37) at a position corresponding to the screw hole (36), and a bolt (35) is inserted from the second head (33) side to fasten the first head (31), the first cylinder (40), the middle plate (32), the second cylinder (50), and the second head (33).
第2の態様では、ボルト(35)の座面に近い第2シリンダ(50)では、ボルト(35)の締め付けによる第2シリンダ(50)の締結歪みが、第1シリンダ(40)の締結歪みよりも大きくなる。一方、第2シリンダ(50)に対して第2ヘッド(33)側から流体を吸入することで、ヘッド側吸入通路(70)を通過する際に低温の流体が加熱され、第2シリンダ(50)と流体との温度分布差が小さくなり、熱膨張による第2シリンダ(50)の熱歪みが、第1シリンダ(40)の熱歪みよりも小さくなる。 In the second embodiment, in the second cylinder (50) close to the seating surface of the bolt (35), the fastening distortion of the second cylinder (50) caused by the tightening of the bolt (35) is greater than the fastening distortion of the first cylinder (40). On the other hand, by drawing fluid into the second cylinder (50) from the second head (33) side, the low-temperature fluid is heated when passing through the head-side suction passage (70), the difference in temperature distribution between the second cylinder (50) and the fluid is reduced, and the thermal distortion of the second cylinder (50) caused by thermal expansion is smaller than the thermal distortion of the first cylinder (40).
このように、ボルト(35)の座面に近い第2シリンダ(50)において、締結歪みと熱歪みとの影響を考慮して、第2シリンダ(50)と第2ピストン(55)との隙間を小さく設定することで、漏れ損失を低減することができる。 In this way, in the second cylinder (50) close to the seating surface of the bolt (35), the leakage loss can be reduced by setting the gap between the second cylinder (50) and the second piston (55) small, taking into account the effects of fastening distortion and thermal distortion.
本開示の第3の態様は、第1の態様の回転式圧縮機において、前記第1シリンダ(40)には、ネジ孔(36)が設けられ、前記ミドルプレート(32)、前記第2シリンダ(50)、及び前記第2ヘッド(33)には、前記ネジ孔(36)に対応する位置に貫通孔(37)がそれぞれ設けられ、前記第2ヘッド(33)側から挿通され、前記第1シリンダ(40)、前記ミドルプレート(32)、前記第2シリンダ(50)、及び前記第2ヘッド(33)を締結するボルト(35)を備える。 The third aspect of the present disclosure is a rotary compressor according to the first aspect, in which the first cylinder (40) is provided with a screw hole (36), the middle plate (32), the second cylinder (50), and the second head (33) are each provided with a through hole (37) at a position corresponding to the screw hole (36), and a bolt (35) is inserted from the second head (33) side to fasten the first cylinder (40), the middle plate (32), the second cylinder (50), and the second head (33).
第3の態様では、ボルト(35)の座面に近い第2シリンダ(50)において、締結歪みと熱歪みとの影響を考慮して、第2シリンダ(50)と第2ピストン(55)との隙間を小さく設定することで、漏れ損失を低減することができる。 In the third embodiment, the leakage loss can be reduced by setting the gap between the second cylinder (50) and the second piston (55) small, taking into account the effects of fastening distortion and thermal distortion, in the second cylinder (50) close to the seating surface of the bolt (35).
本開示の第4の態様は、第1~3の態様の何れか1つの回転式圧縮機において、前記ヘッド側吸入通路(70)は、径方向に延びる第1通路(71)と、軸方向に延びて前記第1通路(71)と前記第2シリンダ室(51)とを連通する第2通路(72)と、を有する。 The fourth aspect of the present disclosure is a rotary compressor according to any one of the first to third aspects, in which the head-side suction passage (70) has a first passage (71) extending in the radial direction and a second passage (72) extending in the axial direction and communicating between the first passage (71) and the second cylinder chamber (51).
第4の態様では、第2吸入管(16)からヘッド側吸入通路(70)に流入した低温の流体は、第1通路(71)及び第2通路(72)を通過する際に加熱された後で、第2シリンダ室(51)に径方向に流入する。これにより、低温の流体が第2ピストン(55)に直接吹き付けられるのを抑えることができる。 In the fourth embodiment, the low-temperature fluid that flows from the second suction pipe (16) into the head-side suction passage (70) is heated as it passes through the first passage (71) and the second passage (72), and then flows radially into the second cylinder chamber (51). This makes it possible to prevent the low-temperature fluid from being directly sprayed onto the second piston (55).
本開示の第5の態様は、第1~4の態様の何れか1つの回転式圧縮機(10)と、前記回転式圧縮機(10)で圧縮された流体が流れる流体回路(1a)と、を備える冷凍装置である。 The fifth aspect of the present disclosure is a refrigeration system including a rotary compressor (10) according to any one of the first to fourth aspects and a fluid circuit (1a) through which the fluid compressed by the rotary compressor (10) flows.
第5の態様では、回転式圧縮機(10)を備えた冷凍装置を提供できる。 In the fifth aspect, a refrigeration system equipped with a rotary compressor (10) can be provided.
《実施形態1》
図1に示すように、回転式圧縮機(10)は、冷凍装置(1)に設けられる。冷凍装置(1)は、冷媒が充填された流体回路としての冷媒回路(1a)を有する。冷媒回路(1a)は、回転式圧縮機(10)、放熱器(3)、減圧機構(4)、及び蒸発器(5)を有する。減圧機構(4)は、例えば、膨張弁である。冷媒回路(1a)は、蒸気圧縮式の冷凍サイクルを行う。
First Embodiment
As shown in Fig. 1, a rotary compressor (10) is provided in a refrigeration system (1). The refrigeration system (1) has a refrigerant circuit (1a) as a fluid circuit filled with a refrigerant. The refrigerant circuit (1a) has a rotary compressor (10), a radiator (3), a pressure reduction mechanism (4), and an evaporator (5). The pressure reduction mechanism (4) is, for example, an expansion valve. The refrigerant circuit (1a) performs a vapor compression refrigeration cycle.
冷凍装置(1)は、空気調和装置である。空気調和装置は、冷房専用機、暖房専用機、あるいは冷房と暖房とを切り換える空気調和装置であってもよい。この場合、空気調和装置は、冷媒の循環方向を切り換える切換機構(例えば四方切換弁)を有する。冷凍装置(1)は、給湯器、チラーユニット、庫内の空気を冷却する冷却装置などであってもよい。冷却装置は、冷蔵庫、冷凍庫、コンテナなどの内部の空気を冷却する。 The refrigeration system (1) is an air conditioning system. The air conditioning system may be a cooling-only system, a heating-only system, or an air conditioning system that switches between cooling and heating. In this case, the air conditioning system has a switching mechanism (e.g., a four-way switching valve) that switches the refrigerant circulation direction. The refrigeration system (1) may be a water heater, a chiller unit, a cooling system that cools the air inside a storage unit, etc. A cooling system cools the air inside a refrigerator, a freezer, a container, etc.
図2に示すように、回転式圧縮機(10)は、ケーシング(11)と、駆動機構(20)と、圧縮機構(30)と、を備える。駆動機構(20)及び圧縮機構(30)は、ケーシング(11)の内部に収容される。 As shown in FIG. 2, the rotary compressor (10) includes a casing (11), a drive mechanism (20), and a compression mechanism (30). The drive mechanism (20) and the compression mechanism (30) are housed inside the casing (11).
ケーシング(11)は、縦長の円筒状の密閉容器で構成される。ケーシング(11)は、胴部(12)と、下部鏡板(13)と、上部鏡板(14)と、を有する。胴部(12)は、上下に延びる円筒状に形成され、軸方向の両端が開口する。下部鏡板(13)は、胴部(12)の下端に固定される。上部鏡板(14)は、胴部(12)の上端に固定される。 The casing (11) is composed of a vertically long cylindrical sealed container. The casing (11) has a body (12), a lower head plate (13), and an upper head plate (14). The body (12) is formed in a cylindrical shape that extends vertically and is open at both axial ends. The lower head plate (13) is fixed to the lower end of the body (12). The upper head plate (14) is fixed to the upper end of the body (12).
胴部(12)には、第1吸入管(15)及び第2吸入管(16)が貫通して固定される。上部鏡板(14)には、吐出管(17)が貫通して固定される。 The first suction pipe (15) and the second suction pipe (16) are fixed to the body (12) and pass through it. The discharge pipe (17) is fixed to the upper end plate (14).
ケーシング(11)の底部には、油溜まり部(18)が設けられる。油溜まり部(18)は、下部鏡板(13)及び胴部(12)の下部の内壁によって構成される。油溜まり部(18)には、圧縮機構(30)や駆動軸(25)の摺動部を潤滑するための油が貯留される。 An oil reservoir (18) is provided at the bottom of the casing (11). The oil reservoir (18) is formed by the lower head (13) and the inner wall of the lower part of the body (12). Oil is stored in the oil reservoir (18) to lubricate the sliding parts of the compression mechanism (30) and the drive shaft (25).
〈駆動機構〉
駆動機構(20)は、モータ(21)と、駆動軸(25)と、を有する。モータ(21)は、圧縮機構(30)の上方に配置される。モータ(21)は、ステータ(22)と、ロータ(23)と、を有する。
<Drive mechanism>
The drive mechanism (20) includes a motor (21) and a drive shaft (25). The motor (21) is disposed above the compression mechanism (30). The motor (21) includes a stator (22) and a rotor (23).
ステータ(22)は、ケーシング(11)の胴部(12)の内周面に固定される。ロータ(23)は、ステータ(22)の内部を上下方向に貫通して延びる。ロータ(23)の軸心内部には、駆動軸(25)が固定される。モータ(21)が通電されると、ロータ(23)とともに駆動軸(25)が回転駆動される。 The stator (22) is fixed to the inner circumferential surface of the body (12) of the casing (11). The rotor (23) extends vertically through the interior of the stator (22). The drive shaft (25) is fixed inside the axis of the rotor (23). When the motor (21) is energized, the drive shaft (25) is rotated together with the rotor (23).
駆動軸(25)は、ケーシング(11)の胴部(12)の軸心上に配置される。駆動軸(25)の下端には、給油ポンプ(25a)が設けられる。給油ポンプ(25a)は、油溜まり部(18)に貯留された油を搬送する。搬送された油は、駆動軸(25)の内部の油通路(25b)を通じて、圧縮機構(30)や駆動軸(25)の摺動部へ供給される。 The drive shaft (25) is disposed on the axis of the body (12) of the casing (11). An oil supply pump (25a) is provided at the lower end of the drive shaft (25). The oil supply pump (25a) transports oil stored in the oil reservoir (18). The transported oil is supplied to the compression mechanism (30) and the sliding parts of the drive shaft (25) through an oil passage (25b) inside the drive shaft (25).
駆動軸(25)は、主軸部(26)と、第1偏心部(27)と、第2偏心部(28)と、を有する。主軸部(26)の上部は、モータ(21)のロータ(23)に固定される。第1偏心部(27)は、第2偏心部(28)よりも上側に配置される。第1偏心部(27)及び第2偏心部(28)の軸心は、主軸部(26)の軸心から所定量だけ偏心する。 The drive shaft (25) has a main shaft portion (26), a first eccentric portion (27), and a second eccentric portion (28). The upper portion of the main shaft portion (26) is fixed to the rotor (23) of the motor (21). The first eccentric portion (27) is disposed above the second eccentric portion (28). The axes of the first eccentric portion (27) and the second eccentric portion (28) are eccentric from the axis of the main shaft portion (26) by a predetermined amount.
主軸部(26)における第1偏心部(27)よりも上部は、後述するフロントヘッド(31)によって回転可能に支持される。主軸部(26)における第2偏心部(28)よりも下部は、後述するリアヘッド(33)によって回転可能に支持される。 The portion of the main shaft portion (26) above the first eccentric portion (27) is rotatably supported by the front head (31) described below. The portion of the main shaft portion (26) below the second eccentric portion (28) is rotatably supported by the rear head (33) described below.
〈圧縮機構〉
図2に示す例では、圧縮機構(30)は、二気筒のロータリ式流体機械である。圧縮機構(30)は、モータ(21)の下方に配置される。圧縮機構(30)は、第1ヘッドとしてのフロントヘッド(31)と、第1シリンダ(40)と、ミドルプレート(32)と、第2シリンダ(50)と、第2ヘッドとしてのリアヘッド(33)と、を有する。
<Compression mechanism>
In the example shown in Fig. 2, the compression mechanism (30) is a two-cylinder rotary fluid machine. The compression mechanism (30) is disposed below the motor (21). The compression mechanism (30) has a front head (31) as a first head, a first cylinder (40), a middle plate (32), a second cylinder (50), and a rear head (33) as a second head.
フロントヘッド(31)、第1シリンダ(40)、ミドルプレート(32)、第2シリンダ(50)、及びリアヘッド(33)は、上方から下方に向かって順に重ね合わされた状態で、ボルト(35)によって固定される。 The front head (31), first cylinder (40), middle plate (32), second cylinder (50), and rear head (33) are stacked in order from top to bottom and secured in place by bolts (35).
具体的に、フロントヘッド(31)には、ネジ孔(36)が設けられる。第1シリンダ(40)、ミドルプレート(32)、第2シリンダ(50)、及びリアヘッド(33)には、ネジ孔(36)に対応する位置に貫通孔(37)がそれぞれ設けられる。 Specifically, the front head (31) is provided with a screw hole (36). The first cylinder (40), the middle plate (32), the second cylinder (50), and the rear head (33) are each provided with a through hole (37) at a position corresponding to the screw hole (36).
ボルト(35)は、リアヘッド(33)側から挿通され、フロントヘッド(31)、第1シリンダ(40)、ミドルプレート(32)、第2シリンダ(50)、及びリアヘッド(33)を締結する。 The bolts (35) are inserted from the rear head (33) side and fasten the front head (31), first cylinder (40), middle plate (32), second cylinder (50), and rear head (33).
フロントヘッド(31)は、ケーシング(11)の胴部(12)に固定される。フロントヘッド(31)は、第1シリンダ(40)の上部に積層される。フロントヘッド(31)は、第1シリンダ(40)の第1シリンダ室(41)を上方から覆うようにして配置される。フロントヘッド(31)の中央部には、駆動軸(25)の主軸部(26)が挿通される。フロントヘッド(31)は、駆動軸(25)を回転可能に支持する。フロントヘッド(31)には、軸方向に貫通する第1吐出通路(49)(図3参照)が形成される。 The front head (31) is fixed to the body (12) of the casing (11). The front head (31) is stacked on top of the first cylinder (40). The front head (31) is arranged so as to cover the first cylinder chamber (41) of the first cylinder (40) from above. The main shaft portion (26) of the drive shaft (25) is inserted into the center of the front head (31). The front head (31) rotatably supports the drive shaft (25). A first discharge passage (49) (see FIG. 3) is formed in the front head (31) and penetrates it in the axial direction.
第1シリンダ(40)は、扁平な略環状の部材で形成される。図3に示すように、第1シリンダ(40)は、第1シリンダ室(41)と、第1吸入通路(42)と、第1ブレード収容室(43)と、を有する。 The first cylinder (40) is formed of a flat, substantially annular member. As shown in FIG. 3, the first cylinder (40) has a first cylinder chamber (41), a first suction passage (42), and a first blade storage chamber (43).
第1シリンダ室(41)は、第1シリンダ(40)の中央部に設けられる。第1吸入通路(42)は、第1シリンダ室(41)の内壁面から第1シリンダ(40)の径方向の外側へ向かって延びる。第1吸入通路(42)は、第1シリンダ(40)の外側面に開口している。第1吸入通路(42)の流入端には、第1吸入管(15)が接続される。第1吸入通路(42)の流出端は、第1シリンダ室(41)に連通する。 The first cylinder chamber (41) is provided in the center of the first cylinder (40). The first suction passage (42) extends from the inner wall surface of the first cylinder chamber (41) toward the outside in the radial direction of the first cylinder (40). The first suction passage (42) opens to the outer surface of the first cylinder (40). The first suction pipe (15) is connected to the inlet end of the first suction passage (42). The outlet end of the first suction passage (42) communicates with the first cylinder chamber (41).
第1シリンダ室(41)には、第1ピストン(45)が収容される。第1ピストン(45)は、第1ピストン本体(46)と、第1ブレード(47)と、を有する。第1ピストン本体(46)は、円環状に形成される。第1ピストン本体(46)の内部には、駆動軸(25)の第1偏心部(27)が嵌め込まれる。第1ブレード(47)は、第1ピストン本体(46)から径方向外方に向かって延びる。第1ブレード(47)は、一対の第1ブッシュ(48)によって支持される。第1シリンダ室(41)の内部は、第1ブレード(47)によって低圧室と高圧室とに区画される。 The first cylinder chamber (41) accommodates a first piston (45). The first piston (45) has a first piston body (46) and a first blade (47). The first piston body (46) is formed in an annular shape. The first eccentric portion (27) of the drive shaft (25) is fitted inside the first piston body (46). The first blade (47) extends radially outward from the first piston body (46). The first blade (47) is supported by a pair of first bushes (48). The inside of the first cylinder chamber (41) is divided into a low-pressure chamber and a high-pressure chamber by the first blade (47).
第1ピストン(45)は、駆動軸(25)の回転駆動に伴って、第1シリンダ室(41)内で偏心回転する。第1ピストン(45)の偏心回転に伴い低圧室の容積が徐々に大きくなると、第1吸入管(15)を流れる冷媒が第1吸入通路(42)から低圧室へ径方向に吸入されていく。 The first piston (45) rotates eccentrically in the first cylinder chamber (41) as the drive shaft (25) is driven to rotate. As the volume of the low-pressure chamber gradually increases with the eccentric rotation of the first piston (45), the refrigerant flowing through the first suction pipe (15) is sucked radially from the first suction passage (42) into the low-pressure chamber.
次に、低圧室が第1吸入通路(42)から遮断されると、遮断された空間が高圧室を構成する。高圧室の容積が徐々に小さくなると、高圧室の内圧が上昇していく。高圧室の内圧が所定の圧力を超えると、高圧室の冷媒が第1吐出通路(49)を通じて、圧縮機構(30)の外部へ流出する。この高圧冷媒は、ケーシング(11)の内部空間を上方へ流れ、モータ(21)のコアカット(図示省略)等を通過する。モータ(21)の上方に流出した高圧冷媒は、吐出管(17)より冷媒回路へ送られる。 Next, when the low pressure chamber is isolated from the first suction passage (42), the isolated space forms the high pressure chamber. As the volume of the high pressure chamber gradually decreases, the internal pressure of the high pressure chamber increases. When the internal pressure of the high pressure chamber exceeds a predetermined pressure, the refrigerant in the high pressure chamber flows out of the compression mechanism (30) through the first discharge passage (49). This high pressure refrigerant flows upward through the internal space of the casing (11) and passes through the core cut (not shown) of the motor (21), etc. The high pressure refrigerant that has flowed out above the motor (21) is sent to the refrigerant circuit through the discharge pipe (17).
第1ブレード収容室(43)は、第1シリンダ室(41)から径方向外方に離れた位置に設けられる。第1ブレード収容室(43)は、第1シリンダ(40)を厚み方向に貫通する。第1ブレード収容室(43)には、第1ブレード(47)の先端部が収容される。第1ブレード(47)は、第1ピストン本体(46)の偏心回転に伴って、第1ブレード収容室(43)内で揺動する。 The first blade accommodating chamber (43) is provided at a position radially outwardly spaced from the first cylinder chamber (41). The first blade accommodating chamber (43) penetrates the first cylinder (40) in the thickness direction. The tip of the first blade (47) is accommodated in the first blade accommodating chamber (43). The first blade (47) oscillates within the first blade accommodating chamber (43) in association with the eccentric rotation of the first piston body (46).
図2に示すように、ミドルプレート(32)は、第1シリンダ(40)と、第2シリンダ(50)と、の間に挟み込まれる。ミドルプレート(32)は、第1シリンダ(40)の第1シリンダ室(41)を下方から覆うようにして配置される。ミドルプレート(32)は、第2シリンダ(50)の第2シリンダ室(51)を上方から覆うようにして配置される。 As shown in FIG. 2, the middle plate (32) is sandwiched between the first cylinder (40) and the second cylinder (50). The middle plate (32) is arranged so as to cover the first cylinder chamber (41) of the first cylinder (40) from below. The middle plate (32) is arranged so as to cover the second cylinder chamber (51) of the second cylinder (50) from above.
図4にも示すように、第2シリンダ(50)は、扁平な略環状の部材で形成される。第2シリンダ(50)は、第2シリンダ室(51)と、第2吸入通路(52)と、第2ブレード収容室(53)と、を有する。 As shown in FIG. 4, the second cylinder (50) is formed of a flat, substantially annular member. The second cylinder (50) has a second cylinder chamber (51), a second suction passage (52), and a second blade storage chamber (53).
第2シリンダ室(51)は、第2シリンダ(50)の中央部に設けられる。第2吸入通路(52)は、第2シリンダ室(51)の内壁面から第2シリンダ(50)の径方向の外側へ向かって延びる。第2吸入通路(52)は、リアヘッド(33)側の面(図2で下面)に開口している。 The second cylinder chamber (51) is provided in the center of the second cylinder (50). The second suction passage (52) extends from the inner wall surface of the second cylinder chamber (51) toward the outside in the radial direction of the second cylinder (50). The second suction passage (52) opens to the surface on the rear head (33) side (the bottom surface in FIG. 2).
第2吸入通路(52)の流入端は、後述するリアヘッド(33)のヘッド側吸入通路(70)に連通する。第2吸入通路(52)の流出端は、第2シリンダ室(51)に連通する。 The inlet end of the second suction passage (52) communicates with a head-side suction passage (70) of the rear head (33) described below. The outlet end of the second suction passage (52) communicates with the second cylinder chamber (51).
第2シリンダ室(51)には、第2ピストン(55)が収容される。第2ピストン(55)は、第2ピストン本体(56)と、第2ブレード(57)と、を有する。第2ピストン本体(56)は、円環状に形成される。第2ピストン本体(56)の内部には、駆動軸(25)の第2偏心部(28)が嵌め込まれる。第2ブレード(57)は、第2ピストン本体(56)から径方向外方に向かって延びる。第2ブレード(57)は、一対の第2ブッシュ(58)によって支持される。第2シリンダ室(51)の内部は、第2ブレード(57)によって低圧室と高圧室とに区画される。 The second cylinder chamber (51) accommodates a second piston (55). The second piston (55) has a second piston body (56) and a second blade (57). The second piston body (56) is formed in an annular shape. The second eccentric portion (28) of the drive shaft (25) is fitted inside the second piston body (56). The second blade (57) extends radially outward from the second piston body (56). The second blade (57) is supported by a pair of second bushes (58). The inside of the second cylinder chamber (51) is divided into a low-pressure chamber and a high-pressure chamber by the second blade (57).
なお、第2ピストン(55)の動作については、第1ピストン(45)の動作と略同じであるため、説明を省略する。 The operation of the second piston (55) is substantially the same as that of the first piston (45), and therefore will not be described here.
第2ブレード収容室(53)は、第2シリンダ室(51)から径方向外方に離れた位置に設けられる。第2ブレード収容室(53)は、第2シリンダ(50)を厚み方向に貫通する。第2ブレード収容室(53)には、第2ブレード(57)の先端部が収容される。第2ブレード(57)は、第2ピストン本体(56)の偏心回転に伴って、第2ブレード収容室(53)内で揺動する。 The second blade accommodating chamber (53) is provided at a position radially outwardly spaced from the second cylinder chamber (51). The second blade accommodating chamber (53) penetrates the second cylinder (50) in the thickness direction. The tip of the second blade (57) is accommodated in the second blade accommodating chamber (53). The second blade (57) oscillates within the second blade accommodating chamber (53) in association with the eccentric rotation of the second piston body (56).
図2に示すように、リアヘッド(33)は、第2シリンダ(50)の下部に積層される。リアヘッド(33)は、第2シリンダ(50)の第2シリンダ室(51)を下方から覆うようにして配置される。リアヘッド(33)の中央部には、駆動軸(25)の主軸部(26)が挿通される。リアヘッド(33)は、駆動軸(25)を回転可能に支持する。 As shown in FIG. 2, the rear head (33) is stacked on the lower part of the second cylinder (50). The rear head (33) is arranged so as to cover the second cylinder chamber (51) of the second cylinder (50) from below. The main shaft portion (26) of the drive shaft (25) is inserted into the center of the rear head (33). The rear head (33) rotatably supports the drive shaft (25).
リアヘッド(33)には、ヘッド側吸入通路(70)が設けられる。ヘッド側吸入通路(70)は、第1通路(71)と、第2通路(72)と、を有する。第1通路(71)は、リアヘッド(33)の径方向の外側へ向かって延びる。第1通路(71)は、リアヘッド(33)の外側面に開口している。第1通路(71)の流入端には、第2吸入管(16)が接続される。第1通路(71)の流出端には、第2通路(72)が設けられる。 A head-side suction passage (70) is provided in the rear head (33). The head-side suction passage (70) has a first passage (71) and a second passage (72). The first passage (71) extends radially outward from the rear head (33). The first passage (71) opens to the outer surface of the rear head (33). The second suction pipe (16) is connected to the inflow end of the first passage (71). The second passage (72) is provided at the outflow end of the first passage (71).
第2通路(72)は、軸方向上方に延びてリアヘッド(33)の上面に開口している。第2通路(72)の流出端は、第2シリンダ(50)の第2吸入通路(52)を介して第2シリンダ室(51)に連通する。 The second passage (72) extends axially upward and opens into the upper surface of the rear head (33). The outlet end of the second passage (72) communicates with the second cylinder chamber (51) via the second suction passage (52) of the second cylinder (50).
このような構成とすれば、第2シリンダ(50)に第2吸入管(16)を接続した場合に比べて、第1吸入管(15)と第2吸入管(16)との間の距離を大きくすることができる。これにより、第1シリンダ(40)及び第2シリンダ(50)の厚みを小さくして漏れ損失を低減することができ、回転式圧縮機(10)の効率を高めることができる。 With this configuration, the distance between the first suction pipe (15) and the second suction pipe (16) can be made larger than when the second suction pipe (16) is connected to the second cylinder (50). This makes it possible to reduce the thickness of the first cylinder (40) and the second cylinder (50) and reduce leakage loss, thereby improving the efficiency of the rotary compressor (10).
第2吸入管(16)からヘッド側吸入通路(70)に流入した低温の冷媒は、第1通路(71)及び第2通路(72)を通過する際に加熱された後で、第2シリンダ室(51)に流入する。これにより、低温の冷媒が第2ピストン(55)に直接吹き付けられるのを抑えることができる。 The low-temperature refrigerant that flows from the second suction pipe (16) into the head-side suction passage (70) is heated as it passes through the first passage (71) and the second passage (72), and then flows into the second cylinder chamber (51). This prevents the low-temperature refrigerant from being directly sprayed onto the second piston (55).
図2に矢印線で示すように、第2シリンダ室(51)には、第2吸入管(16)、リアヘッド(33)のヘッド側吸入通路(70)、第2シリンダ(50)の第2吸入通路(52)を介して、冷媒が吸入される。 As shown by the arrows in FIG. 2, refrigerant is drawn into the second cylinder chamber (51) through the second suction pipe (16), the head-side suction passage (70) of the rear head (33), and the second suction passage (52) of the second cylinder (50).
リアヘッド(33)には、軸方向に貫通する第2吐出通路(59)(図4参照)が形成される。第2ピストン(55)の回転に伴い、第2シリンダ室(51)の高圧室の内圧が所定の圧力を超えると、高圧室の冷媒が第2吐出通路(59)を通じて、圧縮機構(30)の外部へ流出する。 A second discharge passage (59) (see FIG. 4) is formed in the rear head (33) and passes through it in the axial direction. When the internal pressure of the high-pressure chamber of the second cylinder chamber (51) exceeds a predetermined pressure as the second piston (55) rotates, the refrigerant in the high-pressure chamber flows out of the compression mechanism (30) through the second discharge passage (59).
ところで、ボルト(35)は、リアヘッド(33)側から貫通孔(37)に挿通させ、フロントヘッド(31)のネジ孔(36)に締結している。そのため、ボルト(35)の座面に近い第2シリンダ(50)では、ボルト(35)の締め付けによる第2シリンダ(50)の締結歪みδ3が、第1シリンダ(40)の締結歪みδ1よりも大きくなる(δ1<δ3)。 The bolt (35) is inserted into the through hole (37) from the rear head (33) side and fastened to the screw hole (36) of the front head (31). Therefore, in the second cylinder (50) close to the seat surface of the bolt (35), the fastening distortion δ3 of the second cylinder (50) caused by the tightening of the bolt (35) is larger than the fastening distortion δ1 of the first cylinder (40) (δ1 < δ3).
一方、第2シリンダ(50)に対して第2ヘッド(33)側から流体を吸入することで、ヘッド側吸入通路(70)を通過する際に低温の流体が加熱され、第2シリンダ(50)と流体との温度分布差が小さくなり、熱膨張による第2シリンダ(50)の熱歪みδ4が、第1シリンダ(40)の熱歪みδ2よりも小さくなる(δ2>δ4)。 On the other hand, by drawing fluid into the second cylinder (50) from the second head (33) side, the low-temperature fluid is heated as it passes through the head-side suction passage (70), the difference in temperature distribution between the second cylinder (50) and the fluid is reduced, and the thermal strain δ4 of the second cylinder (50) due to thermal expansion becomes smaller than the thermal strain δ2 of the first cylinder (40) (δ2>δ4).
このように、ボルト(35)の座面に近い第2シリンダ(50)において、締結歪みと熱歪みとの影響を考慮して、第2シリンダ(50)と第2ピストン(55)との隙間を小さく設定することで、漏れ損失を低減することができる。 In this way, in the second cylinder (50) close to the seating surface of the bolt (35), the leakage loss can be reduced by setting the gap between the second cylinder (50) and the second piston (55) small, taking into account the effects of fastening distortion and thermal distortion.
〈アキュムレータの構成〉
回転式圧縮機(10)の上流側には、アキュムレータ(60)が接続される。アキュムレータ(60)は、回転式圧縮機(10)に吸入される前の冷媒を一時的に貯留するとともに、ガス冷媒に含まれる液冷媒や油を気液分離する。
<Structure of accumulator>
An accumulator (60) is connected to the upstream side of the rotary compressor (10). The accumulator (60) temporarily stores the refrigerant before it is sucked into the rotary compressor (10), and separates liquid refrigerant and oil contained in the gas refrigerant into gas and liquid.
アキュムレータ(60)は、密閉容器(61)と、入口管(62)と、第1出口管(63)と、第2出口管(64)と、を有する。入口管(62)は、密閉容器(61)に冷媒を流入させる。出口管(63)は、密閉容器(61)から冷媒を流出させる。 The accumulator (60) has a sealed container (61), an inlet pipe (62), a first outlet pipe (63), and a second outlet pipe (64). The inlet pipe (62) allows the refrigerant to flow into the sealed container (61). The outlet pipe (63) allows the refrigerant to flow out of the sealed container (61).
密閉容器(61)は、縦長の円筒状の部材で構成される。密閉容器(61)の上部には、入口管(62)が接続される。入口管(62)の下端部は、密閉容器(61)の内部空間における上部寄りの位置に開口している。 The sealed container (61) is composed of a vertically long cylindrical member. An inlet pipe (62) is connected to the top of the sealed container (61). The lower end of the inlet pipe (62) opens at a position near the top of the internal space of the sealed container (61).
密閉容器(61)の下部には、第1出口管(63)及び第2出口管(64)が接続される。第1出口管(63)及び第2出口管(64)の上端部は、密閉容器(61)内を上方向に延びて密閉容器(61)の内部空間における上部寄りの位置に開口している。 A first outlet pipe (63) and a second outlet pipe (64) are connected to the lower part of the sealed container (61). The upper ends of the first outlet pipe (63) and the second outlet pipe (64) extend upward inside the sealed container (61) and open at positions near the top of the internal space of the sealed container (61).
第1出口管(63)の下端部は、密閉容器(61)の下端から下方に延びた後に、回転式圧縮機(10)の第1吸入管(15)に向かって屈曲して、第1吸入管(15)に接続される。第2出口管(64)の下端部は、密閉容器(61)の下端から下方に延びた後に、回転式圧縮機(10)の第2吸入管(16)に向かって屈曲して、第2吸入管(16)に接続される。 The lower end of the first outlet pipe (63) extends downward from the lower end of the sealed container (61), then bends toward the first suction pipe (15) of the rotary compressor (10), and is connected to the first suction pipe (15). The lower end of the second outlet pipe (64) extends downward from the lower end of the sealed container (61), then bends toward the second suction pipe (16) of the rotary compressor (10), and is connected to the second suction pipe (16).
-実施形態1の効果-
本実施形態の特徴によれば、第2シリンダ(50)に第2吸入管(16)を接続した場合に比べて、第1吸入管(15)と第2吸入管(16)との間の距離を大きくすることができる。これにより、第1シリンダ(40)及び第2シリンダ(50)の厚みを小さくして漏れ損失を低減することができ、回転式圧縮機の効率を高めることができる。
--Effects of the First Embodiment--
According to the features of the present embodiment, the distance between the first suction pipe (15) and the second suction pipe (16) can be made larger than in the case where the second cylinder (50) is connected to the second suction pipe (16). As a result, the thicknesses of the first cylinder (40) and the second cylinder (50) can be made smaller, thereby reducing leakage loss and improving the efficiency of the rotary compressor.
また、第1シリンダ(40)に第1吸入管(15)を接続することで、第1シリンダ室(41)における冷媒の吸入加熱を減少させることができる。これにより、第1ヘッド(31)に第1吸入管(15)を接続するとともに、第2ヘッド(33)に第2吸入管(16)を接続する場合に比べて、回転式圧縮機(10)の効率を向上させることができる。 In addition, by connecting the first suction pipe (15) to the first cylinder (40), it is possible to reduce suction heating of the refrigerant in the first cylinder chamber (41). This improves the efficiency of the rotary compressor (10) compared to the case where the first suction pipe (15) is connected to the first head (31) and the second suction pipe (16) is connected to the second head (33).
本実施形態の特徴によれば、ボルト(35)の座面に近い第2シリンダ(50)では、ボルト(35)の締め付けによる第2シリンダ(50)の締結歪みが、第1シリンダ(40)の締結歪みよりも大きくなる。一方、第2シリンダ(50)に対して第2ヘッド(33)側から流体を吸入することで、ヘッド側吸入通路(70)を通過する際に低温の流体が加熱され、第2シリンダ(50)と流体との温度分布差が小さくなり、熱膨張による第2シリンダ(50)の熱歪みが、第1シリンダ(40)の熱歪みよりも小さくなる。 According to the features of this embodiment, in the second cylinder (50) close to the seating surface of the bolt (35), the fastening distortion of the second cylinder (50) caused by the tightening of the bolt (35) is greater than the fastening distortion of the first cylinder (40). On the other hand, by drawing fluid into the second cylinder (50) from the second head (33) side, the low-temperature fluid is heated when passing through the head-side suction passage (70), the difference in temperature distribution between the second cylinder (50) and the fluid is reduced, and the thermal distortion of the second cylinder (50) caused by thermal expansion is smaller than the thermal distortion of the first cylinder (40).
このように、ボルト(35)の座面に近い第2シリンダ(50)において、締結歪みと熱歪みとの影響を考慮して、第2シリンダ(50)と第2ピストン(55)との隙間を小さく設定することで、漏れ損失を低減することができる。 In this way, in the second cylinder (50) close to the seating surface of the bolt (35), the leakage loss can be reduced by setting the gap between the second cylinder (50) and the second piston (55) small, taking into account the effects of fastening distortion and thermal distortion.
また、ネジ孔(36)が設けられた第1ヘッド(31)に近い位置に配置された第1シリンダ(40)では、第1シリンダ(40)に第1吸入管(15)を接続することで、冷媒の吸入圧損を低減することができる。これにより、圧縮機構(30)全体として損失を抑えて、回転式圧縮機(10)の効率を向上させることができる。 Furthermore, in the first cylinder (40) disposed in a position close to the first head (31) provided with the screw hole (36), by connecting the first suction pipe (15) to the first cylinder (40), it is possible to reduce the suction pressure loss of the refrigerant. This makes it possible to reduce losses in the entire compression mechanism (30) and improve the efficiency of the rotary compressor (10).
本実施形態の特徴によれば、第2吸入管(16)からヘッド側吸入通路(70)に流入した低温の流体は、第1通路(71)及び第2通路(72)を通過する際に加熱された後で、第2シリンダ室(51)に径方向に流入する。これにより、低温の流体が第2ピストン(55)に直接吹き付けられるのを抑えることができる。 According to the features of this embodiment, the low-temperature fluid that flows from the second suction pipe (16) into the head-side suction passage (70) is heated as it passes through the first passage (71) and the second passage (72), and then flows radially into the second cylinder chamber (51). This makes it possible to prevent the low-temperature fluid from being directly sprayed onto the second piston (55).
本実施形態の特徴によれば、回転式圧縮機(10)と、前記回転式圧縮機(10)で圧縮された流体が流れる流体回路(1a)と、を備える。これにより、回転式圧縮機(10)を備えた冷凍装置を提供できる。 According to the features of this embodiment, a rotary compressor (10) and a fluid circuit (1a) through which the fluid compressed by the rotary compressor (10) flows are provided. This makes it possible to provide a refrigeration system equipped with the rotary compressor (10).
《実施形態2》
以下、前記実施形態1と同じ部分については同じ符号を付し、相違点についてのみ説明する。
Second Embodiment
Hereinafter, the same parts as those in the first embodiment will be denoted by the same reference numerals, and only the differences will be described.
図5に示すように、圧縮機構(30)は、モータ(21)の下方に配置される。圧縮機構(30)は、フロントヘッド(31)と、第1シリンダ(40)と、ミドルプレート(32)と、第2シリンダ(50)と、リアヘッド(33)と、を有する。 As shown in FIG. 5, the compression mechanism (30) is disposed below the motor (21). The compression mechanism (30) has a front head (31), a first cylinder (40), a middle plate (32), a second cylinder (50), and a rear head (33).
フロントヘッド(31)、第1シリンダ(40)、ミドルプレート(32)、第2シリンダ(50)、及びリアヘッド(33)は、上方から下方に向かって順に重ね合わされた状態で、ボルト(35)によって固定される。 The front head (31), first cylinder (40), middle plate (32), second cylinder (50), and rear head (33) are stacked in order from top to bottom and secured in place by bolts (35).
具体的に、第1シリンダ(40)には、ネジ孔(36)が設けられる。フロントヘッド(31)、ミドルプレート(32)、第2シリンダ(50)、及びリアヘッド(33)には、ネジ孔(36)に対応する位置に貫通孔(37)がそれぞれ設けられる。フロントヘッド(31)における貫通孔(37)に対応する位置には、座グリ孔が設けられる。 Specifically, a screw hole (36) is provided in the first cylinder (40). Through holes (37) are provided in the front head (31), the middle plate (32), the second cylinder (50), and the rear head (33) at positions corresponding to the screw hole (36). A countersunk hole is provided in the front head (31) at a position corresponding to the through hole (37).
下側のボルト(35)は、リアヘッド(33)側から挿通され、第1シリンダ(40)、ミドルプレート(32)、第2シリンダ(50)、及びリアヘッド(33)を締結する。上側のボルト(35)は、フロントヘッド(31)側から挿通され、フロントヘッド(31)及び第1シリンダ(40)を締結する。 The lower bolt (35) is inserted from the rear head (33) side and fastens the first cylinder (40), middle plate (32), second cylinder (50), and rear head (33). The upper bolt (35) is inserted from the front head (31) side and fastens the front head (31) and first cylinder (40).
-実施形態2の効果-
本実施形態の特徴によれば、ボルト(35)の座面に近い第2シリンダ(50)において、締結歪みと熱歪みとの影響を考慮して、第2シリンダ(50)と第2ピストン(55)との隙間を小さく設定することで、漏れ損失を低減することができる。
--Effects of the second embodiment--
According to the features of this embodiment, in the second cylinder (50) close to the seating surface of the bolt (35), the gap between the second cylinder (50) and the second piston (55) is set small, taking into consideration the effects of fastening distortion and thermal distortion, thereby making it possible to reduce leakage loss.
《その他の実施形態》
以上、実施形態及び変形例を説明したが、特許請求の範囲の趣旨及び範囲から逸脱することなく、形態や詳細の多様な変更が可能なことが理解されるであろう。また、以上の実施形態、変形例、その他の実施形態に係る要素を適宜組み合わせたり、置換したりしてもよい。また、明細書及び特許請求の範囲の「第1」、「第2」、「第3」…という記載は、これらの記載が付与された語句を区別するために用いられており、その語句の数や順序までも限定するものではない。
Other Embodiments
Although the embodiments and modifications have been described above, it will be understood that various modifications of form and details are possible without departing from the spirit and scope of the claims. In addition, the elements of the above embodiments, modifications, and other embodiments may be appropriately combined or substituted. In addition, the descriptions "first,""second,""third," etc. in the specification and claims are used to distinguish the words to which these descriptions are attached, and do not limit the number or order of the words.
以上説明したように、本開示は、回転式圧縮機及び冷凍装置について有用である。 As explained above, the present disclosure is useful for rotary compressors and refrigeration devices.
1 冷凍装置
1a 流体回路
10 回転式圧縮機
15 第1吸入管
16 第2吸入管
31 フロントヘッド(第1ヘッド)
32 ミドルプレート
33 リアヘッド(第2ヘッド)
35 ボルト
36 ネジ孔
37 貫通孔
40 第1シリンダ
41 第1シリンダ室
45 第1ピストン
50 第2シリンダ
51 第2シリンダ室
55 第2ピストン
70 ヘッド側吸入通路
71 第1通路
72 第2通路
1
32 Middle plate 33 Rear head (second head)
35 bolt 36 screw hole 37 through hole 40 first cylinder 41 first cylinder chamber 45 first piston 50 second cylinder 51 second cylinder chamber 55 second piston 70 head side suction passage 71 first passage 72 second passage
Claims (5)
前記第1シリンダ(40)に接続され、前記第1シリンダ室(41)に流体を吸入する第1吸入管(15)と、
前記第2ヘッド(33)に設けられ、前記第2シリンダ室(51)に連通するヘッド側吸入通路(70)と、
前記第2ヘッド(33)に接続され、前記ヘッド側吸入通路(70)を介して前記第2シリンダ室(51)に流体を吸入する第2吸入管(16)と、を備える
回転式圧縮機。 A rotary compressor including a first head (31), a first cylinder (40) having a first cylinder chamber (41), a middle plate (32), a second cylinder (50) having a second cylinder chamber (51), and a second head (33), which are stacked together, and which eccentrically rotates a first piston (45) and a second piston (55) in the first cylinder chamber (41) and the second cylinder chamber (51), respectively,
a first suction pipe (15) connected to the first cylinder (40) for sucking fluid into the first cylinder chamber (41);
a head-side suction passage (70) provided in the second head (33) and communicating with the second cylinder chamber (51);
a second suction pipe (16) connected to the second head (33) and configured to draw fluid into the second cylinder chamber (51) through the head-side suction passage (70).
前記第1ヘッド(31)には、ネジ孔(36)が設けられ、
前記第1シリンダ(40)、前記ミドルプレート(32)、前記第2シリンダ(50)、及び前記第2ヘッド(33)には、前記ネジ孔(36)に対応する位置に貫通孔(37)がそれぞれ設けられ、
前記第2ヘッド(33)側から挿通され、前記第1ヘッド(31)、前記第1シリンダ(40)、前記ミドルプレート(32)、前記第2シリンダ(50)、及び前記第2ヘッド(33)を締結するボルト(35)を備える
回転式圧縮機。 2. The rotary compressor according to claim 1,
The first head (31) is provided with a screw hole (36),
the first cylinder (40), the middle plate (32), the second cylinder (50), and the second head (33) are each provided with a through hole (37) at a position corresponding to the screw hole (36);
a bolt (35) that is inserted from the second head (33) side and fastens the first head (31), the first cylinder (40), the middle plate (32), the second cylinder (50), and the second head (33).
前記第1シリンダ(40)には、ネジ孔(36)が設けられ、
前記ミドルプレート(32)、前記第2シリンダ(50)、及び前記第2ヘッド(33)には、前記ネジ孔(36)に対応する位置に貫通孔(37)がそれぞれ設けられ、
前記第2ヘッド(33)側から挿通され、前記第1シリンダ(40)、前記ミドルプレート(32)、前記第2シリンダ(50)、及び前記第2ヘッド(33)を締結するボルト(35)を備える
回転式圧縮機。 2. The rotary compressor according to claim 1,
The first cylinder (40) is provided with a screw hole (36),
the middle plate (32), the second cylinder (50), and the second head (33) are each provided with a through hole (37) at a position corresponding to the screw hole (36);
a bolt (35) that is inserted from the second head (33) side and fastens the first cylinder (40), the middle plate (32), the second cylinder (50), and the second head (33).
前記ヘッド側吸入通路(70)は、径方向に延びる第1通路(71)と、軸方向に延びて前記第1通路(71)と前記第2シリンダ室(51)とを連通する第2通路(72)と、を有する
回転式圧縮機。 In the rotary compressor according to any one of claims 1 to 3,
The head side suction passage (70) has a first passage (71) extending radially and a second passage (72) extending axially and communicating between the first passage (71) and the second cylinder chamber (51).
前記回転式圧縮機(10)で圧縮された流体が流れる流体回路(1a)と、を備える
冷凍装置。 A rotary compressor (10) according to any one of claims 1 to 4;
and a fluid circuit (1a) through which the fluid compressed by the rotary compressor (10) flows.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP24732156.5A EP4461962A4 (en) | 2023-03-29 | 2024-03-05 | ROTARY COMPRESSOR AND REFRIGERATION DEVICE |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023053770A JP2024141900A (en) | 2023-03-29 | 2023-03-29 | Rotary compressor and refrigeration device |
JP2023-053770 | 2023-03-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024203041A1 true WO2024203041A1 (en) | 2024-10-03 |
Family
ID=91670392
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2024/008357 WO2024203041A1 (en) | 2023-03-29 | 2024-03-05 | Rotary compressor and refrigeration device |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP4461962A4 (en) |
JP (1) | JP2024141900A (en) |
WO (1) | WO2024203041A1 (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010084594A (en) * | 2008-09-30 | 2010-04-15 | Daikin Ind Ltd | Rotary compressor |
JP2022072807A (en) | 2020-10-30 | 2022-05-17 | ダイキン工業株式会社 | Compressors, compressor manufacturing methods and air conditioners |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI308631B (en) * | 2002-11-07 | 2009-04-11 | Sanyo Electric Co | Multistage compression type rotary compressor and cooling device |
JP4396773B2 (en) * | 2008-02-04 | 2010-01-13 | ダイキン工業株式会社 | Fluid machinery |
JP7013327B2 (en) * | 2018-05-31 | 2022-01-31 | 株式会社東芝 | Crankshaft, crankshaft assembly method, rotary compressor and refrigeration cycle equipment |
-
2023
- 2023-03-29 JP JP2023053770A patent/JP2024141900A/en active Pending
-
2024
- 2024-03-05 EP EP24732156.5A patent/EP4461962A4/en active Pending
- 2024-03-05 WO PCT/JP2024/008357 patent/WO2024203041A1/en unknown
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010084594A (en) * | 2008-09-30 | 2010-04-15 | Daikin Ind Ltd | Rotary compressor |
JP2022072807A (en) | 2020-10-30 | 2022-05-17 | ダイキン工業株式会社 | Compressors, compressor manufacturing methods and air conditioners |
Non-Patent Citations (1)
Title |
---|
See also references of EP4461962A4 |
Also Published As
Publication number | Publication date |
---|---|
JP2024141900A (en) | 2024-10-10 |
EP4461962A1 (en) | 2024-11-13 |
EP4461962A4 (en) | 2025-04-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8985984B2 (en) | Rotary compressor and refrigeration cycle apparatus | |
US7572116B2 (en) | Compression system, multicylinder rotary compressor, and refrigeration apparatus using the same | |
US8985985B2 (en) | Rotary compressor and refrigeration cycle apparatus | |
JP2008286037A (en) | Rotary compressor and heat pump system | |
WO2011055444A1 (en) | Heat pump device, two-stage compressor, and method of operating heat pump device | |
JP6605140B2 (en) | Rotary compressor and refrigeration cycle apparatus | |
US7802447B2 (en) | Positive displacement expander | |
JP6791234B2 (en) | Multi-stage compression system | |
JP6791233B2 (en) | Multi-stage compression system | |
WO2012160832A1 (en) | Refrigeration cycle device | |
WO2024203041A1 (en) | Rotary compressor and refrigeration device | |
CN208564994U (en) | A fully enclosed intermediate air-supplemented double-cylinder piston refrigeration compressor | |
JP5727348B2 (en) | Gas compressor | |
JP7541257B1 (en) | Rotary compressor and refrigeration device | |
WO2020067197A1 (en) | Multistage compression system | |
JP2025018952A (en) | Rotary compressor and refrigeration device | |
JPS6245456B2 (en) | ||
JP2024145513A (en) | Rotary compressor and refrigeration device | |
CN208330652U (en) | A kind of semiclosed second vapor injection two-cylinder piston refrigeration compressor | |
WO2023233838A1 (en) | Compressor and refrigeration cycle device | |
JP2023162552A (en) | Rotary compressor and refrigeration device | |
JP5223412B2 (en) | Piston eccentric rotating fluid machine | |
JP2007092738A (en) | Compressor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2024732156 Country of ref document: EP Effective date: 20240619 |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 24732156 Country of ref document: EP Kind code of ref document: A1 |