[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2024202987A1 - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
WO2024202987A1
WO2024202987A1 PCT/JP2024/008084 JP2024008084W WO2024202987A1 WO 2024202987 A1 WO2024202987 A1 WO 2024202987A1 JP 2024008084 W JP2024008084 W JP 2024008084W WO 2024202987 A1 WO2024202987 A1 WO 2024202987A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
igbt
diode
regions
semiconductor device
Prior art date
Application number
PCT/JP2024/008084
Other languages
French (fr)
Japanese (ja)
Inventor
耕平 村▲崎▼
英 本堂
Original Assignee
ローム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ローム株式会社 filed Critical ローム株式会社
Publication of WO2024202987A1 publication Critical patent/WO2024202987A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Definitions

  • This disclosure relates to a semiconductor device including an IGBT region and a diode region.
  • Patent Document 1 discloses an RC-IGBT (Reverse Conducting-Insulated Gate Bipolar Transistor) as an example of a semiconductor device.
  • the RC-IGBT includes an IGBT region and a diode region fabricated in a common semiconductor layer.
  • the IGBT region includes an IGBT.
  • the diode region includes a diode.
  • One embodiment of the present disclosure provides a semiconductor device that can suppress localized increases in heat generation in an RC-IGBT.
  • An embodiment of the present disclosure provides a semiconductor device including a semiconductor layer having a first main surface and a second main surface on the opposite side thereof, an IGBT region formed in the semiconductor layer, the IGBT region having a gate trench formed therein, a diode region formed in the semiconductor layer, and a plurality of gate wirings formed on the first main surface.
  • a semiconductor device including a semiconductor layer having a first main surface and a second main surface on the opposite side thereof, an IGBT region formed in the semiconductor layer, the IGBT region having a gate trench formed therein, a diode region formed in the semiconductor layer, and a plurality of gate wirings formed on the first main surface.
  • one of the IGBT region and the diode region is a reference region, and the other is a heterogeneous region different from the reference region.
  • the reference region faces the heterogeneous region in a first direction perpendicular to the extension direction of the gate trench in a plan view.
  • the reference region further faces the heterogeneous
  • a semiconductor device can be provided that can suppress an increase in localized heat generation in an RC-IGBT.
  • FIG. 1 is a schematic plan view of a semiconductor device according to a first embodiment of the present disclosure.
  • FIG. 2 is a plan view showing a schematic structure of a first main surface of the semiconductor device.
  • FIG. 3 is a bottom view showing a schematic structure of the second main surface of the semiconductor device.
  • FIG. 4 is an enlarged view of a portion enclosed by a dashed line IV in FIG.
  • FIG. 5A is an enlarged view of a portion surrounded by a dashed line VA in FIG.
  • FIG. 5B is an enlarged view of the portion surrounded by the dashed dotted line VB in FIG. 5A.
  • FIG. 6 is an enlarged view of a portion surrounded by a dashed line VI in FIG.
  • FIG. 1 is a schematic plan view of a semiconductor device according to a first embodiment of the present disclosure.
  • FIG. 2 is a plan view showing a schematic structure of a first main surface of the semiconductor device.
  • FIG. 3 is a bottom view showing
  • FIG. 7 is an enlarged view of a portion surrounded by a dashed line VII in FIG.
  • FIG. 8 is an enlarged view of the portion surrounded by the dashed line VIII in FIG.
  • FIG. 9 is a cross-sectional view taken along line IX-IX in FIG.
  • FIG. 10 is a cross-sectional view taken along line X-X of FIG.
  • FIG. 11 is a cross-sectional view taken along line XI-XI in FIG.
  • FIG. 12 is a schematic plan view of a semiconductor package including the semiconductor device.
  • FIG. 13 is a cross-sectional view showing the mounting structure of the semiconductor package of FIG.
  • FIG. 14 is a bottom view for explaining a semiconductor device according to a modified example in which the configuration of the collector region and the cathode region is changed.
  • FIG. 15 is a cross-sectional view of a semiconductor device according to a modification of FIG. 14, and corresponds to FIG.
  • FIG. 16 is a schematic plan view of a semiconductor device according to a second embodiment of the present disclosure.
  • FIG. 17 is a plan view showing a schematic structure of the first main surface of the semiconductor device.
  • FIG. 18 is a schematic plan view of a semiconductor device according to a third embodiment of the present disclosure.
  • FIG. 19 is a plan view showing a schematic structure of the first main surface of the semiconductor device.
  • FIG. 20 is a schematic plan view of a semiconductor device according to a fourth embodiment of the present disclosure.
  • FIG. 21 is a plan view showing a schematic structure of the first main surface of the semiconductor device.
  • FIG. 22 is a schematic cross-sectional view of a semiconductor package including the semiconductor device.
  • FIG. 1 is a schematic plan view of a semiconductor device 1 according to a first embodiment of the present disclosure.
  • FIG. 2 is a plan view showing a schematic structure of a first main surface 3 of the semiconductor device 1.
  • FIG. 3 is a bottom view showing a schematic structure of a second main surface 4 of the semiconductor device 1.
  • FIG. 4 is an enlarged view of a portion surrounded by dashed line IV in FIG. 1.
  • FIG. 5A is an enlarged view of a portion surrounded by dashed line VA in FIG. 1.
  • FIG. 5B is an enlarged view of a portion surrounded by dashed line VB in FIG. 5A.
  • the semiconductor device 1 is an electronic component having an RC-IGBT (Reverse Conducting-Insulated Gate Bipolar Transistor) that has an IGBT and a diode integrated together.
  • RC-IGBT Reverse Conducting-Insulated Gate Bipolar Transistor
  • the semiconductor device 1 includes a semiconductor layer 2 having a rectangular parallelepiped shape.
  • the semiconductor layer 2 has a first main surface 3 on one side, a second main surface 4 on the other side, and side surfaces 5A, 5B, 5C, and 5D that connect the first main surface 3 and the second main surface 4.
  • the first main surface 3 and the second main surface 4 are formed in a quadrangular shape in a plan view (hereinafter simply referred to as "plan view") seen from their normal direction Z.
  • the side surface 5A and the side surface 5C extend along the first direction X and face a second direction Y that intersects with the first direction X.
  • the side surface 5B and the side surface 5D extend along the second direction Y and face the first direction X.
  • the second direction Y is orthogonal (perpendicular) to the first direction X.
  • the second direction Y includes one side Y1 and the other side Y2.
  • the one side Y1 coincides with the upper side of the paper in FIG. 1.
  • the other side Y2 coincides with the lower side of the paper in FIG. 1.
  • the semiconductor layer 2 includes an active region 6 and an outer region 7.
  • the active region 6 is a region in which an RC-IGBT is formed.
  • the active region 6 is set in the center of the semiconductor layer 2, spaced from the side surfaces 5A to 5D toward the inner region in a plan view.
  • the active region 6 may be set in a rectangular shape having four sides parallel to the side surfaces 5A to 5D in a plan view.
  • the thickness of the semiconductor layer 2 may be 50 ⁇ m or more and 200 ⁇ m or less.
  • the outer region 7 is the region outside the active region 6.
  • the outer region 7 extends in a band shape along the periphery of the active region 6 in a planar view. Specifically, the outer region 7 is endless (square ring shape) surrounding the active region 6 in a planar view.
  • the active region 6 includes an IGBT region 8 and a diode region 9.
  • the IGBT region 8 is shown by hatching for clarity.
  • the IGBT region 8 is the region in which the IGBT is formed.
  • the diode region 9 is the region in which the diode is formed.
  • the active region 6 specifically includes an RC-IGBT array (region array) 12.
  • a plurality of RC-IGBT arrays 12 are formed at intervals in the second direction Y.
  • the RC-IGBT array 12 has a first end on one side (side surface 5B side) and a second end on the other side (side surface 5D side).
  • the RC-IGBT array 12 has a loop array that repeatedly includes IGBT regions 8, diode regions 9, IGBT regions 8, diode regions 9, etc., that are arranged in a line along the first direction X from the first end to the second end.
  • a plurality of IGBT regions 8 and a plurality of diode regions 9 are alternately arranged along the first direction X.
  • a plurality of IGBT regions 8 are distributed and arranged.
  • the IGBT regions 8 are formed at intervals along the first direction X and the second direction Y.
  • the IGBT regions 8 are arranged in a staggered pattern in a plan view. Specifically, each of the IGBT regions 8 is formed in a rectangular shape extending along the second direction Y. In this embodiment, the IGBT regions 8 have the same width WG (see FIG. 4).
  • a plurality of diode regions 9 are distributed and arranged in the active region 6.
  • the plurality of diode regions 9 are each formed so as to be adjacent to an IGBT region 8 in the first direction X.
  • the plurality of diode regions 9 are formed at intervals along the first direction X and the second direction Y.
  • the plurality of diode regions 9 are arranged in a staggered manner in a plan view.
  • the diode regions 9 are each formed in a rectangular shape extending along the second direction Y.
  • the plurality of diode regions 9 have the same width WD.
  • the plurality of IGBT regions 8 and the plurality of diode regions 9 are each arranged in a staggered manner throughout the active region 6.
  • each diode region 9 is shorter than the length of each IGBT region 8. Therefore, the planar area of each diode region 9 is smaller than the planar area of each IGBT region 8.
  • the area ratio of the diode region 9 to the active region 6 is 25% or more and 45% or less. In other words, in a planar view, the area ratio of the IGBT region 8 to the active region 6 is 55% or more and 75% or less.
  • the multiple (e.g., six) RC-IGBT arrays 12 include, in order from one side Y1 in the second direction Y, a first array 12A, a second array 12B, a third array 12C, a fourth array 12D, a fifth array 12E, and a sixth array 12F.
  • the column widths (widths in the second direction Y) of the first array 12A and the sixth array 12F are the same.
  • the column widths (widths in the second direction Y) of the second array 12B and the fifth array 12E are the same.
  • the column widths (widths in the second direction Y) of the third array 12C and the fourth array 12D are the same.
  • the first array 12A, the third array 12C, and the fifth array 12E are arranged in the same array pattern.
  • the second array 12B, the fourth array 12D, and the sixth array 12F are arranged in the same array pattern.
  • the second array 12B, the fourth array 12D, and the sixth array 12F are offset from the first array 12A, the third array 12C, and the fifth array 12E in the first direction X of the IGBT regions 8 and the diode regions 9.
  • the first ends of the first array 12A, the third array 12C, and the fifth array 12E in the first direction X are formed by the IGBT region 8.
  • the first ends of the first array 12A, the third array 12C, and the fifth array 12E may be formed by the diode region 9.
  • the second ends of the first array 12A, the third array 12C, and the fifth array 12E in the first direction X are formed by the IGBT region 8.
  • the second ends of the first array 12A, the third array 12C, and the fifth array 12E may be formed by the diode region 9.
  • the first ends of the second array 12B, the fourth array 12D, and the sixth array 12F in the first direction X are formed by the IGBT region 8.
  • the first ends of the second array 12B, the fourth array 12D, and the sixth array 12F may be formed by the diode region 9.
  • the second ends of the second array 12B, the fourth array 12D, and the sixth array 12F in the first direction X are formed by the diode region 9.
  • the second ends of the second array 12B, the fourth array 12D, and the sixth array 12F in the first direction X may be formed by the IGBT region 8.
  • the width WG of each IGBT region 8 may be 10 ⁇ m or more and 1000 ⁇ m or less.
  • the width WG may be 100 ⁇ m or more. It is preferable that the width WG is 200 ⁇ m or more.
  • the width WD of each diode region 9 may be less than or equal to the width WG of each IGBT region 8.
  • the width WD is the width of the diode region 9 in the first direction X. It is preferable that the width WD of each diode region 9 is less than the width WG of each IGBT region 8.
  • the active area 6 further includes a sensor area 11 in which a temperature sensor is formed.
  • the sensor area 11 is formed in a region between two RC-IGBT arrays 12 adjacent to each other in the second direction Y. In this embodiment, the sensor area 11 is formed in the center of the active area 6.
  • the semiconductor device 1 further includes an emitter terminal electrode 13 (see the dashed line in FIG. 1).
  • the emitter terminal electrode 13 is formed on the first main surface 3 of the semiconductor layer 2 in the active region 6.
  • the emitter terminal electrode 13 transmits an emitter signal to the active region 6 (IGBT region 8).
  • the emitter signal may be a reference potential or a ground potential.
  • the semiconductor device 1 further includes a plurality of terminal electrodes 14, 15, 16, 17, and 18 (five in this embodiment) formed on the first main surface 3 of the semiconductor layer 2 in the outer region 7.
  • the multiple terminal electrodes 14 to 18 are arranged at intervals along the side surface 5D.
  • the multiple terminal electrodes 14 to 18 are formed in a quadrangular shape in a plan view.
  • the multiple terminal electrodes 14 to 18 include a gate terminal electrode 14, a first sense terminal electrode 15, a second sense terminal electrode 16, a current detection terminal electrode 17, and an open terminal electrode 18.
  • the gate terminal electrode 14 transmits a gate signal to the active region 6 (IGBT region 8).
  • the first sense terminal electrode 15 and the second sense terminal electrode 16 transmit a control signal for controlling the sensor region 11 (temperature sensor).
  • the current detection terminal electrode 17 is an electrode for detecting a current flowing through the active region 6 and extracting it to the outside.
  • the open terminal electrode 18 is in an electrically floating state.
  • the gate terminal electrode 14, the first sense terminal electrode 15, the second sense terminal electrode 16, the current detection terminal electrode 17, and the open terminal electrode 18 may be arranged in any manner. In the example of FIG. 1, the open terminal electrode 18, the current detection terminal electrode 17, the gate terminal electrode 14, the first sense terminal electrode 15, and the second sense terminal electrode 16 are arranged in this order from the side surface 5A to the side surface 5C.
  • the semiconductor device 1 further includes a gate wiring 19 electrically connected to the gate terminal electrode 14.
  • the gate wiring 19 is also called a gate finger.
  • the gate wiring 19 extends from the outer region 7 toward the active region 6.
  • the gate wiring 19 transmits a gate signal applied to the gate terminal electrode 14 to the active region 6 (IGBT region 8).
  • the gate wiring 19 includes a first region 19a located in the outer region 7 and a second region 19b located in the active region 6.
  • the first region 19a is electrically connected to the gate terminal electrode 14.
  • the first region 19a is selectively routed in a region on the side surface 5D side in the outer region 7.
  • a plurality of second regions 19b are formed in the active region 6.
  • the second regions 19b are formed at intervals along the second direction Y.
  • the second regions 19b are each formed in a region between two adjacent RC-IGBT arrays 12.
  • the second regions 19b each extend from the region on the side face 5D side to the region on the side face 5B side in the outer region 7.
  • the second regions 19b are connected to the first region 19a in the outer region 7.
  • the second regions 19b transmit gate signals to one or both of the two adjacent RC-IGBT arrays 12.
  • the gate signal applied to the gate terminal electrode 14 is transmitted to the second region 19b via the first region 19a. This causes the gate signal to be transmitted to the active region 6 (IGBT region 8) via the second region 19b.
  • the first sense wiring 20 is electrically connected to the first sense terminal electrode 15.
  • the first sense wiring 20 extends from the outer region 7 toward the sensor region 11.
  • the first sense wiring 20 transmits a control signal for the temperature sensor.
  • the first sense wiring 20 includes a first region 20a located in the outer region 7 and a second region 20b located in the active region 6.
  • the first region 20a is electrically connected to the first sense terminal electrode 15.
  • the second region 20b is electrically connected to the temperature sensor in the sensor region 11.
  • the second region 20b is connected to the first region 20a in the outer region 7.
  • An electrical signal applied to the first sense terminal electrode 15 is transmitted to the second region 20b via the first region 20a. As a result, an electrical signal is transmitted to the temperature sensor via the second region 20b.
  • the second sense wiring 21 is electrically connected to the second sense terminal electrode 16.
  • the second sense wiring 21 extends from the outer region 7 toward the sensor region 11.
  • the second sense wiring 21 transmits a control signal for the temperature sensor.
  • the second sense wiring 21 includes a first region 21a located in the outer region 7 and a second region 21b located in the active region 6.
  • the first region 21a is electrically connected to the second sense terminal electrode 16.
  • the second region 21b is electrically connected to the temperature sensor in the sensor region 11.
  • the second region 21b is connected to the first region 21a in the outer region 7.
  • An electrical signal applied to the second sense terminal electrode 16 is transmitted to the second region 21b via the first region 21a. As a result, an electrical signal is transmitted to the temperature sensor via the second region 21b.
  • a gate wiring 19, a first sense wiring 20, and a second sense wiring 21 are formed in the region between adjacent RC-IGBT arrays 12 where the sensor region 11 is formed.
  • the gate wiring 19, the first sense wiring 20, and the second sense wiring 21 run parallel to each other in the region between two adjacent RC-IGBT arrays 12.
  • the following description focuses on the individual IGBT regions 8 included in the active region 6.
  • the IGBT region 8B is adjacent to two diode regions 9B on both sides in the first direction X (horizontal direction on the paper).
  • the IGBT region 8B is further adjacent to two diode regions 9A, 9C on both sides in the second direction Y (vertical direction on the paper).
  • the IGBT region 8B is adjacent to two IGBT regions 8A and two IGBT regions 8C that are independent of the IGBT region 8B on both sides of two diagonal directions that intersect both the first direction X and the second direction Y.
  • the IGBT region 8B located at the center is the reference IGBT region that serves as the reference region.
  • the four diode regions 9A, 9C on both sides of the first direction X (horizontal direction on the paper) and the second direction Y (vertical direction on the paper) as viewed from the IGBT region 8B are heterogeneous diode regions as heterogeneous regions.
  • the four IGBT regions 8A, 8C adjacent to the IGBT region 8B on both sides of two diagonal directions intersecting both the first direction X and the second direction Y as viewed from the IGBT region 8B and independent from the IGBT region 8B are homogeneous IGBT regions as homogeneous regions.
  • the IGBT region 8B is adjacent to each of the two diode regions 9B included in the same RC-IGBT array (second array 12B) in the first direction X.
  • the IGBT region 8B faces each of the two diode regions 9B on either side of the first direction X, with a boundary region 72 (see also FIG. 10) sandwiched therebetween, in the first direction X.
  • the IGBT region 8B faces one diode region 9A included in the RC-IGBT array (first array 12A) adjacent to one side Y1 in the second direction Y, and one or more second regions 19b of the gate wiring 19 (one in the example of FIG. 5A. Hereinafter, sometimes referred to as "first gate wiring 19bA" (see FIG. 5A)).
  • the IGBT region 8B faces each of the two IGBT regions 8A on both sides of the diode region 9A in the first direction X, in the second direction Y, with the first gate wiring 19bA between them.
  • the IGBT region 8A is an IGBT region independent of the IGBT region 8B.
  • the IGBT region 8B faces the IGBT region 8A on one side (side surface 5B side) with a first facing width (facing width) W1.
  • the IGBT region 8B faces the IGBT region 8A on the other side (side surface 5D side) with a second facing width (facing width) W2.
  • the combined width of the first facing width W1 and the second facing width W2 is narrower than the width WG of the IGBT region 8.
  • the first facing width W1 is the same as the second facing width W2.
  • the first facing width W1 may be wider than the second facing width W2.
  • the first facing width W1 may be narrower than the second facing width W2.
  • the ratio W1/WG of the first opposing width W1 to the width WG of the IGBT region 8 may be 0.001 or more and less than 0.5.
  • W1/WG may be 0.001 or more and less than 0.01, 0.01 or more and less than 0.05, 0.05 or more and less than 0.1, 0.1 or more and less than 0.15, 0.15 or more and less than 0.2, 0.2 or more and less than 0.25, 0.25 or more and less than 0.3, 0.3 or more and less than 0.35, 0.35 or more and less than 0.4, 0.4 or more and less than 0.45, or 0.45 or more and less than 0.5.
  • the first opposing width W1 may be 0.1 ⁇ m or more and less than 500 ⁇ m.
  • the first opposing width W1 may be 0.1 ⁇ m or more and less than 50 ⁇ m, 50 ⁇ m or more and less than 100 ⁇ m, 100 ⁇ m or more and less than 150 ⁇ m, 150 ⁇ m or more and less than 200 ⁇ m, 200 ⁇ m or more and less than 250 ⁇ m, 250 ⁇ m or more and less than 300 ⁇ m, 300 ⁇ m or more and less than 350 ⁇ m, 350 ⁇ m or more and less than 400 ⁇ m, 400 ⁇ m or more and less than 450 ⁇ m, or 450 ⁇ m or more and less than 500 ⁇ m.
  • the first opposing width W1 may be wider than the first interval W5 between the IGBT region 8 and the diode region 9 that face each other in the second direction Y.
  • the first opposing width W1 may be the same as the first interval W5.
  • the first opposing width W1 may be narrower than the first interval W5.
  • the first opposing width W1 may be wider than the second interval W4 between two IGBT regions 8 opposing in the second direction Y.
  • the first opposing width W1 may be the same as the second interval W4.
  • the first opposing width W1 may be narrower than the second interval W4.
  • the first opposing width W1 may be wider than the line width W3 of the second region 19b of the gate wiring 19.
  • the first opposing width W1 may be the same as the line width W3 of the second region 19b.
  • the first opposing width W1 may be narrower than the line width W3 of the second region 19b.
  • the ratio W2/WG of the second opposing width W2 to the width WG of the IGBT region 8 (IGBT region 8B) may be 0.001 or more and less than 0.5.
  • W2/WG may be 0.001 or more and less than 0.01, 0.01 or more and less than 0.05, 0.05 or more and less than 0.1, 0.1 or more and less than 0.15, 0.15 or more and less than 0.2, 0.2 or more and less than 0.25, 0.25 or more and less than 0.3, 0.3 or more and less than 0.35, 0.35 or more and less than 0.4, 0.4 or more and less than 0.45, or 0.45 or more and less than 0.5.
  • the second opposing width W2 may be 0.1 ⁇ m or more and 500 ⁇ m or less.
  • the second opposing width W2 may be 0.1 ⁇ m or more and 50 ⁇ m or less, 50 ⁇ m or more and 100 ⁇ m or less, 100 ⁇ m or more and 150 ⁇ m or less, 150 ⁇ m or more and 200 ⁇ m or less, 200 ⁇ m or more and 250 ⁇ m or less, 250 ⁇ m or more and 300 ⁇ m or less, 300 ⁇ m or more and 350 ⁇ m or less, 350 ⁇ m or more and 400 ⁇ m or less, 400 ⁇ m or more and 450 ⁇ m or less, or 450 ⁇ m or more and less than 500 ⁇ m.
  • the second opposing width W2 may be wider than the first interval W5 between the IGBT region 8 and the diode region 9 that face each other in the second direction Y.
  • the second opposing width W2 may be the same as the first interval W5.
  • the second opposing width W2 may be narrower than the first interval W5.
  • the second opposing width W2 may be wider than the second interval W4 between two IGBT regions 8 opposing in the second direction Y.
  • the second opposing width W2 may be the same as the second interval W4.
  • the second opposing width W2 may be narrower than the second interval W4.
  • the second opposing width W2 may be wider than the line width W3 of the second region 19b of the gate wiring 19.
  • the second opposing width W2 may be the same as the line width W3 of the second region 19b.
  • the second opposing width W2 may be narrower than the line width W3 of the second region 19b.
  • the IGBT region 8B faces one diode region 9C included in the RC-IGBT array 12 (third array 12C) adjacent to it on the other side Y2 of the second direction Y, across one or more second regions 19b of the gate wiring 19 (one in the example of FIG. 5A; hereinafter, sometimes referred to as "second gate wiring 19bB" (see FIG. 5A)).
  • the IGBT region 8B faces each of the two IGBT regions 8C on either side of the diode region 9B in the first direction X, across the second gate wiring 19bB.
  • the second gate wiring 19bB is another gate wiring extending parallel to the first gate wiring 19bA.
  • the IGBT region 8 and the diode region 9 included in one RC-IGBT array 12 are sandwiched in the second direction Y by the first gate wiring 19bA and the second gate wiring 19bB.
  • the IGBT region 8C is an IGBT region independent of the IGBT region 8B.
  • the IGBT region 8B faces the IGBT region 8C on one side (side surface 5B) of the diode region 9C at a first facing width W1.
  • the IGBT region 8B faces the IGBT region 8C on the other side (side surface 5D) of the diode region 9C at a second facing width W2.
  • the total width (first opposing width W1+second opposing width W2) of the portion where the IGBT region 8B, which is the reference IGBT region, faces the IGBT regions 8A and 8C, which are homogeneous IGBT regions, in the second direction Y is narrow.
  • the amount of heat generated does not increase locally in the unit array UA.
  • the amount of heat generated does not increase locally in the unit array UA.
  • the following can be said about the arrangement of the IGBT regions 8 and diode regions 9 included in the multiple RC-IGBT arrays 12. That is, the multiple IGBT regions 8 included in each of the arrays 12A to 12F face in the second direction Y with each of the multiple diode regions 9 included in the RC-IGBT array (arrays 12A to 12F) adjacent to that array 12A to 12F in the second direction Y. Also, the multiple diode regions 9 included in each of the arrays 12A to 12F face in the second direction Y with each of the multiple IGBT regions 8 included in the RC-IGBT array (arrays 12A to 12F) adjacent to that array 12A to 12F in the second direction Y.
  • the center of the IGBT region 8 in the first direction X and the center of the diode region 9 in the first direction X are aligned with each other in the first direction X.
  • a plurality of IGBT regions 8 and a plurality of diode regions 9 are arranged alternately along the second direction Y.
  • one IGBT region 8 included in each of the arrays 12A to 12F is further opposed in the second direction Y to two IGBT regions 8 included in the RC-IGBT array (arrays 12A to 12F) adjacent to that array 12A to 12F in the second direction Y.
  • the total width of the portion where one IGBT region 8 faces two IGBT regions 8 in the second direction Y is narrower than the width WG of the IGBT region 8.
  • the total width of the portion where the IGBT regions 8 continuous in the second direction Y face the second direction Y in the active region 6 is narrow.
  • a diode region 9 included in each of the arrays 12A to 12F does not face, in the second direction Y, the diode region 9 included in the RC-IGBT array (arrays 12A to 12F) adjacent to that array 12A to 12F in the second direction Y. Therefore, the diode region 9 is not continuous in the second direction Y.
  • the semiconductor device 1 further includes a collector terminal electrode 32 (see the dashed line in FIG. 3) formed on the second main surface 4 of the semiconductor layer 2. Specifically, the collector terminal electrode 32 is electrically connected to the IGBT region 8 (collector region 34 described next) and the diode region 9 (cathode region 61 described next).
  • the collector terminal electrode 32 forms an ohmic contact with the second main surface 4.
  • the collector terminal electrode 32 transmits a collector signal to the IGBT region 8 and the diode region 9.
  • the collector terminal electrode 32 may include at least one of a Ti layer, a Ni layer, an Au layer, an Ag layer, and an Al layer.
  • the collector terminal electrode 32 may have a single layer structure including a Ti layer, a Ni layer, an Au layer, an Ag layer, or an Al layer.
  • the collector terminal electrode 32 may have a layered structure in which at least two of a Ti layer, a Ni layer, an Au layer, an Ag layer, and an Al layer are layered in any manner.
  • Each IGBT region 8 includes a p-type (second conductivity type) collector region 34 formed in a surface layer portion of the second main surface 4 of the semiconductor layer 2.
  • the collector region 34 is exposed from the second main surface 4.
  • the p-type impurity concentration of the collector region 34 may be 1.0 ⁇ 10 15 cm ⁇ 3 or more and 1.0 ⁇ 10 18 cm ⁇ 3 or less.
  • the collector region 34 forms an ohmic contact with the collector terminal electrode 32. In this embodiment, the collector region 34 is formed in the surface layer portion of the second main surface 4 throughout the entire IGBT region 8.
  • Each diode region 9 includes an n + type cathode region 61 formed in a surface layer portion of the second main surface 4 of the semiconductor layer 2.
  • the n-type impurity concentration of the cathode region 61 is higher than the n-type impurity concentration of the drift region 30 (see FIG. 9 and the like) described below.
  • the cathode region 61 is exposed from the second main surface 4.
  • the n-type impurity concentration of the cathode region 61 may be 1.0 ⁇ 10 19 cm ⁇ 3 or more and 1.0 ⁇ 10 20 cm ⁇ 3 or less.
  • the cathode region 61 forms an ohmic contact with the collector terminal electrode 32.
  • the cathode region 61 is formed in the surface layer portion of the second main surface 4 over the entire IGBT region 8.
  • Figure 6 is an enlarged view of the portion surrounded by dashed line VI in Figure 4.
  • Figure 7 is an enlarged view of the portion surrounded by dashed line VII in Figure 6.
  • Figure 8 is an enlarged view of the portion surrounded by dashed line VIII in Figure 6.
  • Figure 9 is a cross-sectional view taken along line IX-IX in Figure 7.
  • Figure 10 is a cross-sectional view taken along line X-X in Figure 8.
  • Figure 11 is a cross-sectional view taken along line XI-XI in Figure 7.
  • the semiconductor device 1 further includes an n -type drift region 30 formed inside the semiconductor layer 2.
  • the drift region 30 is formed over the entire semiconductor layer 2 in the first direction X and the second direction Y.
  • the drift region 30 is formed in a surface layer portion of the first main surface 3 of the semiconductor layer 2 in the normal direction Z (thickness direction of the semiconductor layer 2).
  • the n-type (first conductivity type) impurity concentration of the drift region 30 may be not less than 1.0 ⁇ 10 13 cm -3 and not more than 1.0 ⁇ 10 15 cm -3 .
  • the semiconductor layer 2 has a single-layer structure including an n - type semiconductor substrate 31.
  • the semiconductor substrate 31 may be a silicon FZ (Floating Zone) substrate formed through an FZ method.
  • the drift region 30 is formed by the semiconductor substrate 31.
  • the semiconductor device 1 includes an n-type buffer layer 33 formed in a surface layer portion of the second main surface 4 of the semiconductor layer 2.
  • the buffer layer 33 may be formed over the entire surface layer portion of the second main surface 4.
  • the n-type impurity concentration of the buffer layer 33 is higher than the n-type impurity concentration of the drift region 30.
  • the n-type impurity concentration of the buffer layer 33 may be 1.0 ⁇ 10 15 cm ⁇ 3 or more and 1.0 ⁇ 10 17 cm ⁇ 3 or less.
  • the thickness of the buffer layer 33 may be 0.5 ⁇ m or more and 30 ⁇ m or less.
  • Each IGBT region 8 includes a p-type (second conductivity type) collector region 34 formed in a surface layer portion of the second main surface 4 of the semiconductor layer 2.
  • the collector region 34 is exposed from the second main surface 4.
  • the collector region 34 may be formed throughout the entire IGBT region 8 in the surface layer portion of the second main surface 4.
  • the p-type impurity concentration of the collector region 34 may be 1.0 ⁇ 10 15 cm -3 or more and 1.0 ⁇ 10 18 cm -3 or less.
  • the collector region 34 forms an ohmic contact with the collector terminal electrode 32.
  • each IGBT region 8 includes a plurality of FET structures 35 formed on the first main surface 3 of the semiconductor layer 2.
  • the FET structures 35 include trench gate structures 36 formed on the first main surface 3.
  • a plurality of trench gate structures 36 are formed at intervals along the first direction X in the IGBT region 8.
  • the distance between two trench gate structures 36 adjacent to each other in the first direction X may be 1 ⁇ m or more and 8 ⁇ m or less.
  • the trench gate structures 36 are indicated by hatching.
  • the multiple trench gate structures 36 are formed in a band shape extending along the second direction Y in a plan view.
  • the multiple trench gate structures 36 are formed in a stripe shape as a whole.
  • Each of the multiple trench gate structures 36 has one end on one side of the second direction Y and the other end on the other side of the second direction Y.
  • the trench gate structure 36 includes a first outer trench gate structure 37 and a second outer trench gate structure 38.
  • the first outer trench gate structure 37 extends along the first direction X and connects one ends of the multiple trench gate structures 36.
  • the second outer trench gate structure 38 extends along the first direction X and connects the other ends of the multiple trench gate structures 36.
  • the first outer trench gate structure 37 and the second outer trench gate structure 38 have the same structure as the trench gate structure 36, except that they extend in different directions. Below, the structure of the trench gate structure 36 will be described, and a description of the structures of the first outer trench gate structure 37 and the second outer trench gate structure 38 will be omitted.
  • each trench gate structure 36 includes a gate trench 39, a gate insulating layer 40, and a gate conductive layer 41.
  • the gate trench 39 is formed in the first main surface 3.
  • the gate trench 39 includes a sidewall and a bottom wall. The sidewall of the gate trench 39 may be formed perpendicular to the first main surface 3.
  • the sidewalls of the gate trench 39 may slope downward from the first main surface 3 toward the bottom wall.
  • the gate trench 39 may be formed in a tapered shape in which the opening area on the opening side is larger than the bottom area.
  • the bottom wall of the gate trench 39 may be formed parallel to the first main surface 3.
  • the bottom wall of the gate trench 39 may be formed in a curved shape toward the second main surface 4.
  • the gate trench 39 includes a bottom wall edge portion.
  • the bottom wall edge portion connects the sidewalls and bottom wall of the gate trench 39.
  • the bottom wall edge portion may be formed in a curved shape toward the second main surface 4.
  • the depth D1 of the gate trench 39 may be 2 ⁇ m or more and 10 ⁇ m or less.
  • the depth D1 of the gate trench 39 may be defined as the distance between the deepest depth position of the bottom wall of the gate trench 39 and the first main surface 3.
  • the width of the gate trench 39 may be 0.5 ⁇ m or more and 3 ⁇ m or less.
  • the width of the gate trench 39 is the width of the gate trench 39 in the first direction X.
  • the gate insulating layer 40 is formed in the form of a film along the inner wall of the gate trench 39.
  • the gate insulating layer 40 defines a recess space within the gate trench 39.
  • the gate insulating layer 40 includes a silicon oxide film.
  • the gate insulating layer 40 may include a silicon nitride film instead of or in addition to the silicon oxide film.
  • the gate conductive layer 41 is embedded in the gate trench 39 with the gate insulating layer 40 sandwiched therebetween. Specifically, the gate conductive layer 41 is embedded in a recess space defined by the gate insulating layer 40 in the gate trench 39. The gate conductive layer 41 is controlled by a gate signal.
  • the gate conductive layer 41 may include conductive polysilicon.
  • the gate conductive layer 41 is formed in a wall shape extending along the normal direction Z in a cross-sectional view.
  • the gate conductive layer 41 has an upper end portion located on the opening side of the gate trench 39.
  • the upper end portion of the gate conductive layer 41 is located on the bottom wall side of the gate trench 39 with respect to the first main surface 3.
  • a recess is formed at the upper end of the gate conductive layer 41, recessed toward the bottom wall of the gate trench 39.
  • the recess at the upper end of the gate conductive layer 41 is formed in a tapered shape toward the bottom wall of the gate trench 39.
  • the upper end of the gate conductive layer 41 has a narrowed portion on the inside of the gate conductive layer 41.
  • the FET structure 35 includes a p-type body region 45 formed in a surface layer portion of the first main surface 3 of the semiconductor layer 2.
  • the p-type impurity concentration of the body region 45 may be 1.0 ⁇ 10 17 cm ⁇ 3 or more and 1.0 ⁇ 10 18 cm ⁇ 3 or less.
  • the body region 45 is formed on both sides of the trench gate structure 36.
  • the body region 45 is formed in a strip shape extending along the trench gate structure 36 in a plan view.
  • the body region 45 is exposed from a side wall of the gate trench 39.
  • the bottom of the body region 45 is formed in a region between the first main surface 3 and the bottom wall of the gate trench 39 with respect to the normal direction Z.
  • the FET structure 35 includes an n + type emitter region 46 formed in a surface layer portion of the body region 45.
  • the n-type impurity concentration of the emitter region 46 is higher than the n-type impurity concentration of the drift region 30.
  • the n-type impurity concentration of the emitter region 46 may be 1.0 ⁇ 10 19 cm ⁇ 3 or more and 1.0 ⁇ 10 20 cm ⁇ 3 or less.
  • the FET structure 35 includes a plurality of emitter regions 46 formed on both sides of the trench gate structure 36.
  • the emitter regions 46 are formed in a strip shape extending along the trench gate structure 36 in a plan view.
  • the emitter regions 46 are exposed from the first main surface 3 and the sidewalls of the gate trench 39.
  • the bottoms of the emitter regions 46 are formed in a region between the upper end of the gate conductive layer 41 and the bottom of the body region 45 in the normal direction Z.
  • the FET structure 35 includes an n + type carrier storage region 47 formed in a region of the semiconductor layer 2 on the second main surface 4 side with respect to the body region 45.
  • the n type impurity concentration of the carrier storage region 47 is higher than the n type impurity concentration of the drift region 30.
  • the n type impurity concentration of the carrier storage region 47 may be 1.0 ⁇ 10 15 cm -3 or more and 1.0 ⁇ 10 17 cm -3 or less.
  • the FET structure 35 includes a plurality of carrier storage regions 47 formed on both sides of the trench gate structure 36.
  • the carrier storage regions 47 are formed in a strip shape extending along the trench gate structure 36 in a plan view.
  • the carrier storage regions 47 are exposed from the side walls of the gate trench 39.
  • the bottoms of the carrier storage regions 47 are formed in the region between the bottom of the body region 45 and the bottom wall of the gate trench 39 in the normal direction Z.
  • the carrier storage region 47 prevents carriers (holes) supplied to the semiconductor layer 2 from being drawn back (discharged) to the body region 45. This causes holes to accumulate in the region directly below the FET structure 35 in the semiconductor layer 2. As a result, the on-resistance and on-voltage are reduced.
  • the FET structure 35 includes a contact trench 48 formed in the first major surface 3 of the semiconductor layer 2.
  • the FET structure 35 includes a plurality of contact trenches 48 formed on both sides of the trench gate structure 36.
  • the contact trenches 48 expose the emitter region 46.
  • the contact trenches 48 penetrate the emitter region 46.
  • the contact trench 48 is formed at a distance from the trench gate structure 36 in the first direction X.
  • the contact trench 48 extends in a strip shape along the trench gate structure 36 in a plan view.
  • the length of the contact trench 48 is equal to or less than the length of the trench gate structure 36. Specifically, the length of the contact trench 48 is less than the length of the trench gate structure 36.
  • the FET structure 35 includes a p + type contact region 49 formed in a region along the bottom wall of the contact trench 48 in the body region 45.
  • the p-type impurity concentration of the contact region 49 is higher than the p-type impurity concentration of the body region 45.
  • the p-type impurity concentration of the contact region 49 may be 1.0 ⁇ 10 19 cm ⁇ 3 or more and 1.0 ⁇ 10 20 cm ⁇ 3 or less.
  • the contact region 49 is exposed from the bottom wall of the contact trench 48. In a plan view, the contact region 49 extends in a band shape along the contact trench 48. The bottom of the contact region 49 is formed in the region between the bottom wall of the contact trench 48 and the bottom of the body region 45 in the normal direction Z.
  • the gate conductive layer 41 faces the body region 45 and the emitter region 46 with the gate insulating layer 40 in between.
  • the gate conductive layer 41 also faces the carrier storage region 47 with the gate insulating layer 40 in between.
  • the channel of the IGBT is formed in the region between the emitter region 46 and the drift region 30 (carrier storage region 47) in the body region 45. The on/off of the channel is controlled by a gate signal.
  • Each IGBT region 8 further includes an emitter trench structure 73 formed on the first main surface 3 of the semiconductor layer 2.
  • each IGBT region 8 includes a plurality of emitter trench structures 73 formed on both sides of the FET structure 35.
  • the emitter trench structure 73 is formed in a region adjacent to the FET structure 35 in the surface layer portion of the first main surface 3.
  • the emitter trench structure 73 is formed in a band shape extending along the second direction Y in a plan view.
  • the plurality of emitter trench structures 73 are formed in a stripe shape as a whole.
  • the emitter trench structure 73 may be in a band shape parallel to the trench gate structure 36.
  • the trench gate structures 36 and the emitter trench structures 73 are arranged alternately at intervals along the first direction X.
  • the trench gate structures 36 and the emitter trench structures 73 may be arranged alternately at equal intervals.
  • the distance between two adjacent trench gate structures 36 and emitter trench structures 73 in the first direction X (first pitch P1 (see FIG. 7)) may be, for example, 1.0 ⁇ m or more and 3.5 ⁇ m or less.
  • the emitter trench structure 73 includes an emitter trench 74, an emitter insulating layer 75, and an emitter potential electrode layer 76.
  • the emitter trench 74 is formed in the first main surface 3 of the semiconductor layer 2.
  • the emitter trench 74 includes a sidewall and a bottom wall. The sidewall of the emitter trench 74 may be formed perpendicular to the first main surface 3.
  • the sidewall of the emitter trench 74 may be inclined downward from the first main surface 3 toward the bottom wall.
  • the emitter trench 74 may be formed in a tapered shape in which the opening area on the opening side is larger than the bottom area.
  • the emitter region 46, the body region 45, and the carrier storage region 47 are exposed from the sidewall (outer sidewall) of the emitter trench 74 facing the FET structure 35.
  • the bottom wall of the emitter trench 74 may be formed parallel to the first main surface 3.
  • the bottom wall of the emitter trench 74 may be formed in a curved shape toward the second main surface 4.
  • the emitter trench 74 includes a bottom wall edge portion.
  • the bottom wall edge portion connects the sidewall and the bottom wall of the emitter trench 74.
  • the bottom wall edge portion may be formed in a curved shape toward the second main surface 4 of the semiconductor layer 2.
  • the depth D3 of the emitter trench 74 may be 2 ⁇ m or more and 10 ⁇ m or less.
  • the depth D3 of the emitter trench 74 may be equal to the depth D1 of the gate trench 39.
  • the width of the emitter trench 74 may be 0.5 ⁇ m or more and 3 ⁇ m or less.
  • the width of the emitter trench 74 is the width of the emitter trench 74 in the first direction X.
  • the width of the emitter trench 74 may be equal to the width of the gate trench 39.
  • the emitter insulating layer 75 is formed in the form of a film along the inner wall of the emitter trench 74.
  • the emitter insulating layer 75 defines a recess space within the emitter trench 74.
  • the emitter insulating layer 75 includes a silicon oxide film.
  • the emitter insulating layer 75 may include a silicon nitride film instead of or in addition to the silicon oxide film.
  • the emitter potential electrode layer 76 is embedded in the emitter trench 74 with the emitter insulating layer 75 sandwiched therebetween. Specifically, the emitter potential electrode layer 76 is embedded in a recess space defined by the emitter insulating layer 75 in the emitter trench 74.
  • the emitter potential electrode layer 76 may include conductive polysilicon. The emitter potential electrode layer 76 is controlled by an emitter signal.
  • the emitter potential electrode layer 76 is formed in a wall shape extending along the normal direction Z in a cross-sectional view.
  • the emitter potential electrode layer 76 has an upper end portion located on the opening side of the emitter trench 74.
  • the upper end portion of the emitter potential electrode layer 76 is located on the bottom wall side of the emitter trench 74 with respect to the first main surface 3.
  • a recess is formed at the upper end of the emitter potential electrode layer 76, recessed toward the bottom wall of the emitter trench 74.
  • the recess at the upper end of the emitter potential electrode layer 76 is formed in a tapered shape toward the bottom wall of the emitter trench 74.
  • the upper end of the emitter potential electrode layer 76 has a narrowed portion that is narrowed on the inside of the emitter potential electrode layer 76.
  • each diode region 9 includes a cell isolation structure 63 that defines a diode cell region 69.
  • the cell isolation structure 63 is indicated by hatching.
  • each diode region 9 includes a plurality of cell isolation structures 63 that define a plurality of diode cell regions 69, respectively.
  • the multiple cell isolation structures 63 are each formed in the region between multiple adjacent diode cell regions 69. Specifically, the multiple cell isolation structures 63 are each formed in a ring shape (a square ring shape in this embodiment) surrounding the diode cell region 69 in a plan view. The cell isolation structure 63 that divides one diode cell region 69 and the cell isolation structure 63 that divides the other diode cell region 69 are integrally formed in the region between the multiple adjacent diode cell regions 69.
  • the multiple cell separation structures 63 may be arranged at equal intervals in the first direction X.
  • the multiple cell separation structures 63 are formed in a stripe pattern.
  • the distance between two adjacent cell separation structures 63 in the first direction X (second pitch P2 (see FIG. 8)) may be, for example, 1.0 ⁇ m or more and 10.0 ⁇ m or less.
  • the second pitch P2 may be the same as the first pitch P1 (see FIG. 7).
  • the diode cell regions 69 partitioned by the cell separation structures 63 are formed at intervals along the first direction X in a planar view.
  • the diode cell regions 69 are each formed in a band shape extending along the second direction Y in a planar view.
  • the diode cell regions 69 are formed in a stripe shape as a whole.
  • the length of the diode cell region 69 may be equal to or less than the length of the trench gate structure 36.
  • the length of the diode cell region 69 may be less than the length of the trench gate structure 36.
  • the cell isolation structure 63 includes a cell isolation trench 64, a cell isolation insulating layer 65, and a cell isolation electrode layer 66.
  • the cell isolation trench 64 is formed in the first main surface 3.
  • the cell isolation trench 64 includes a sidewall and a bottom wall. The sidewall of the cell isolation trench 64 may be formed perpendicular to the first main surface 3.
  • the sidewalls of the cell separation trench 64 may slope downward from the first main surface 3 toward the bottom wall.
  • the cell separation trench 64 may be formed in a tapered shape in which the opening area on the opening side is larger than the bottom area.
  • the bottom wall of the cell separation trench 64 may be formed parallel to the first main surface 3.
  • the bottom wall of the cell separation trench 64 may be formed in a curved shape toward the second main surface 4.
  • the cell separation trench 64 includes a bottom wall edge portion.
  • the bottom wall edge portion connects the sidewalls and the bottom wall of the cell separation trench 64.
  • the bottom wall edge portion may be formed in a curved shape toward the second main surface 4.
  • the depth D2 of the cell isolation trench 64 may be 2 ⁇ m or more and 10 ⁇ m or less.
  • the depth D2 of the cell isolation trench 64 may be defined as the distance between the deepest depth position of the bottom wall of the cell isolation trench 64 and the first main surface 3.
  • the depth D2 of the cell isolation trench 64 may be equal to the depth D1 of the gate trench 39 (see FIG. 9, etc.).
  • the width of the cell isolation trench 64 may be 0.5 ⁇ m or more and 3 ⁇ m or less.
  • the width of the cell isolation trench 64 is the width of the cell isolation trench 64 in the first direction X.
  • the width of the cell isolation trench 64 may be equal to the width of the gate trench 39.
  • the cell isolation insulating layer 65 is formed in the form of a film along the inner wall of the cell isolation trench 64.
  • the cell isolation insulating layer 65 defines a recess space within the cell isolation trench 64.
  • the cell isolation insulating layer 65 includes a silicon oxide film.
  • the cell isolation insulating layer 65 may include a silicon nitride film instead of or in addition to the silicon oxide film.
  • the cell separation electrode layer 66 is embedded in the cell separation trench 64 with the cell separation insulating layer 65 sandwiched therebetween. Specifically, the cell separation electrode layer 66 is embedded in a recess space defined by the cell separation insulating layer 65 in the cell separation trench 64. The cell separation electrode layer 66 is controlled by an emitter signal.
  • the cell separation electrode layer 66 may include conductive polysilicon.
  • the cell separation electrode layer 66 is formed in a wall shape extending along the normal direction Z in a cross-sectional view.
  • the cell separation electrode layer 66 has an upper end portion located on the opening side of the cell separation trench 64.
  • the upper end portion of the cell separation electrode layer 66 is located on the bottom wall side of the cell separation trench 64 with respect to the first main surface 3.
  • the upper end of the cell separation electrode layer 66 is tapered toward the first main surface 3.
  • a recess is formed at the upper end of the cell separation electrode layer 66, recessed toward the bottom wall of the cell separation trench 64.
  • the recess in the cell separation electrode layer 66 is tapered toward the bottom wall of the cell separation trench 64.
  • Each diode region 9 includes ap ⁇ type anode region 62 formed in a surface layer portion of the first main surface 3 of the semiconductor layer 2.
  • the p-type impurity concentration of the anode region 62 may be equal to or lower than the p-type impurity concentration of the body region 45.
  • the p-type impurity concentration of the anode region 62 is preferably lower than the p-type impurity concentration of the body region 45.
  • the p-type impurity concentration of the anode region 62 may be equal to or higher than 1.0 ⁇ 10 15 cm ⁇ 3 and lower than 1.0 ⁇ 10 18 cm ⁇ 3 .
  • the anode region 62 is formed in each diode cell region 69. Therefore, the multiple anode regions 62 are arranged at equal intervals in the first direction X, and are formed in a striped shape overall.
  • the anode region 62 forms a pn junction 68 with the semiconductor layer 2. This forms a pn junction diode D with the anode region 62 as the anode and the semiconductor layer 2 (cathode region 61) as the cathode.
  • a forward current flows through the pn junction diode D. This causes a current to flow in the diode region 9.
  • the boundary between the collector region 34 and the cathode region 61 in the first direction X is aligned with the boundary region 72 between the IGBT region 8 and the diode region 9 in a plan view.
  • a recess 67 is defined by the sidewall of the cell separation trench 64, the upper end of the cell separation electrode layer 66, and the upper end of the cell separation insulating layer 65.
  • the wide portion of the cell separation trench 64 is formed by the recess 67.
  • the sidewall of the recess 67 (the sidewall of the cell separation trench 64) exposes the anode region 62.
  • the sidewall of the terminal emitter trench structure 73A closer to the diode region 9 forms the boundary region 72 between the IGBT region 8 and the diode region 9.
  • a body region 45 and a carrier storage region 47 are formed in this order from the first main surface 3 side, similar to the FET structure 35.
  • this region does not have an emitter region 46 formed therein, and is not a structure that forms a channel, so it may be referred to as a dummy FET structure 42.
  • the dummy FET structure 42 is formed in the diode region 9.
  • the semiconductor device 1 includes an interlayer insulating layer 79 formed on the first main surface 3 of the semiconductor layer 2.
  • the interlayer insulating layer 79 is formed in a film shape along the first main surface 3, and selectively covers the first main surface 3. Specifically, the interlayer insulating layer 79 selectively covers the IGBT region 8 and the diode region 9.
  • the interlayer insulating layer 79 may contain silicon oxide or silicon nitride.
  • the interlayer insulating layer 79 may contain at least one of NSG (Non-doped Silicate Glass), PSG (Phosphor Silicate Glass), and BPSG (Boron Phosphor Silicate Glass).
  • the thickness of the interlayer insulating layer 79 may be 0.1 ⁇ m or more and 1 ⁇ m or less.
  • the interlayer insulating layer 79 has a laminated structure including a first insulating layer 80, a second insulating layer 81, and a third insulating layer 82, which are laminated in this order from the first main surface 3 side.
  • the first insulating layer 80 may include silicon oxide (e.g., a thermal oxide film).
  • the second insulating layer 81 may include an NGS layer, a PSG layer, or a BPSG layer.
  • the third insulating layer 82 may include a BPSG layer, an NGS layer, or a PSG layer.
  • the third insulating layer 82 may include an insulating material having properties different from those of the second insulating layer 81.
  • the first insulating layer 80 is formed in the form of a film on the first main surface 3.
  • the first insulating layer 80 is continuous with the gate insulating layer 40, the region isolation insulating layer 55, and the cell isolation insulating layer 65.
  • the thickness of the first insulating layer 80 may be 500 ⁇ or more and 2000 ⁇ or less.
  • the second insulating layer 81 is formed in the form of a film on the first insulating layer 80.
  • the thickness of the second insulating layer 81 may be 500 ⁇ or more and 4000 ⁇ or less.
  • the third insulating layer 82 is formed in the form of a film on the second insulating layer 81.
  • the thickness of the third insulating layer 82 may be 1000 ⁇ or more and 8000 ⁇ or less.
  • the gate conductive layer 41 of the FET structure 35 has a gate extraction electrode layer 41a that is extended from the gate trench 39 onto the first main surface 3.
  • the gate extraction electrode layer 41a is extended from the gate trench 39 of the first outer trench gate structure 37 onto the first main surface 3.
  • the gate extraction electrode layer 41a is extended along the second direction Y.
  • the gate extraction electrode layer 41a is specifically formed inside the interlayer insulating layer 79.
  • the gate extraction electrode layer 41a is extended onto the first insulating layer 80 and is interposed in the region between the first insulating layer 80 and the second insulating layer 81.
  • the gate extraction electrode layer 41a is electrically connected to the gate wiring 19 (see FIG. 1) in a region not shown.
  • a gate signal applied to the gate terminal electrode 14 is transmitted to the gate conductive layer 41 via the gate wiring 19 and the gate extraction electrode layer 41a.
  • the emitter potential electrode layer 76 of the emitter trench structure 73 has an extraction electrode layer 76a that is pulled out from the emitter trench 74 onto the first main surface 3.
  • the emitter potential electrode layer 76 is pulled out along the second direction Y.
  • the extraction electrode layer 76a is specifically formed inside the interlayer insulating layer 79.
  • the extraction electrode layer 76a is extended onto the first insulating layer 80 and is interposed in the region between the first insulating layer 80 and the second insulating layer 81.
  • the extraction electrode layer 76a is electrically connected to the emitter terminal electrode 13.
  • An emitter signal applied to the extraction electrode layer 76a is transmitted to the emitter potential electrode layer 76 via the extraction electrode layer 76a.
  • the interlayer insulating layer 79 includes an emitter opening 83.
  • the emitter opening 83 exposes the contact trench 48.
  • the emitter opening 83 is in communication with the contact trench 48.
  • the contact trench 48 is formed in the first main surface 3, penetrating the first insulating layer 80 and the second insulating layer 81.
  • the emitter opening 83 penetrates the third insulating layer 82, exposing the contact trench 48.
  • the emitter opening 83 forms an opening between itself and the contact trench 48.
  • the edge of the emitter opening 83 is curved toward the inside of the interlayer insulating layer 79. As a result, the emitter opening 83 has an opening width larger than the opening width of the contact trench 48.
  • the interlayer insulating layer 79 includes a diode opening 84.
  • the diode opening 84 exposes the diode region 9. Specifically, the diode opening 84 penetrates the interlayer insulating layer 79 and exposes a plurality of anode regions 62 (diode cell regions 69) and a plurality of cell isolation structures 63.
  • the portion of the inner wall of the diode opening 84 that is aligned with the second direction Y may be located above the anode region 62.
  • the portion of the inner wall of the diode opening 84 that is aligned with the second direction Y may be located above the cell separation structure 63.
  • the portion of the inner wall of the diode opening 84 that is aligned with the second direction Y is located above the body region 45 of the dummy FET structure 42.
  • the interlayer insulating layer 79 includes a first opening 86.
  • the first opening 86 exposes the lead electrode layer 76a in the IGBT region 8.
  • the first opening 86 is formed such that the opening width narrows from the opening side toward the bottom wall side.
  • the semiconductor device 1 includes an emitter plug electrode 91 embedded in a portion of the interlayer insulating layer 79 that covers the IGBT region 8.
  • the emitter plug electrode 91 penetrates the interlayer insulating layer 79 and is electrically connected to the emitter region 46 and the contact region 49.
  • the emitter plug electrode 91 is embedded in the contact trench 48.
  • the emitter plug electrode 91 is electrically connected to the emitter region 46 and the contact region 49 within the contact trench 48.
  • the emitter plug electrode 91 has a layered structure including a barrier electrode layer 92 and a main electrode layer 93.
  • the barrier electrode layer 92 is formed in the form of a film along the inner wall of the contact trench 48 so as to contact the interlayer insulating layer 79.
  • the barrier electrode layer 92 defines a recess space within the contact trench 48.
  • the barrier electrode layer 92 may have a single-layer structure including a titanium layer or a titanium nitride layer.
  • the barrier electrode layer 92 may have a laminated structure including a titanium layer and a titanium nitride layer. In this case, the titanium nitride layer may be laminated on the titanium layer.
  • the main electrode layer 93 is embedded in the contact trench 48 with the barrier electrode layer 92 sandwiched therebetween. Specifically, the main electrode layer 93 is embedded in a recess space defined by the barrier electrode layer 92 in the contact trench 48.
  • the main electrode layer 93 may contain tungsten.
  • the semiconductor device 1 includes a first plug electrode 94 embedded in the first opening 86.
  • the first plug electrode 94 is electrically connected to the extraction electrode layer 76a within the first opening 86.
  • the first plug electrode 94 has a structure corresponding to the emitter plug electrode 91.
  • the description of the emitter plug electrode 91 applies mutatis mutandis to the description of the first plug electrode 94.
  • the structures in the first plug electrode 94 that face the structures described for the emitter plug electrode 91 are given the same reference numerals and will not be described.
  • the emitter terminal electrode 13 is formed on an interlayer insulating layer 79.
  • the emitter terminal electrode 13 may contain at least one of aluminum, copper, an aluminum-silicon-copper alloy, an aluminum-silicon alloy, and an aluminum-copper alloy.
  • the emitter terminal electrode 13 may have a single-layer structure containing any one of these conductive materials.
  • the emitter terminal electrode 13 may have a layered structure in which at least two of these conductive materials are layered in any order.
  • the thickness of the emitter terminal electrode 13 may be 1.0 ⁇ m or more and 6.0 ⁇ m or less.
  • the emitter terminal electrode 13 has a laminated structure including a first electrode layer 22, a second electrode layer 23, and a third electrode layer 24, which are laminated in this order from the first main surface 3 side.
  • the first electrode layer 22 may include an aluminum-silicon-copper alloy (Al-Si-Cu).
  • the second electrode layer 23 may include titanium nitride (TiN).
  • the second electrode layer 23 may be referred to as a barrier layer.
  • the third electrode layer 24 may include an aluminum-copper alloy (Al-Cu).
  • the emitter terminal electrode 13 is electrically connected to the emitter region 46 and the contact region 49 via an emitter plug electrode 91 on the interlayer insulating layer 79. Specifically, the emitter terminal electrode 13 extends into the emitter opening 83 from above the interlayer insulating layer 79. The emitter terminal electrode 13 is electrically connected to the emitter plug electrode 91 in the emitter opening 83. The emitter terminal electrode 13 is electrically connected to the emitter region 46 and the contact region 49 via the emitter plug electrode 91.
  • the emitter terminal electrode 13 further extends into the diode opening 84 through the inner wall of the diode opening 84 from above the interlayer insulating layer 79.
  • the emitter terminal electrode 13 functions as an anode terminal electrode in the diode region 9.
  • the emitter terminal electrode 13 is in contact with the inner wall of the diode opening 84.
  • the emitter terminal electrode 13 is electrically connected to the anode region 62 at the diode opening 84.
  • the emitter terminal electrode 13 is electrically connected to the cell separation electrode layer 66 at the diode opening 84.
  • the emitter terminal electrode 13 is directly connected to the anode region 62 and the cell separation electrode layer 66.
  • the emitter terminal electrode 13 extends from above the first main surface 3 into the recess 67 (cell separation trench 64) within the diode opening 84.
  • the emitter terminal electrode 13 is connected to the cell separation electrode layer 66 within the recess 67.
  • the emitter terminal electrode 13 is also connected to the anode region 62 above the first main surface 3 and within the recess 67.
  • the emitter terminal electrode 13 forms an ohmic contact with the anode region 62.
  • the emitter terminal electrode 13 is electrically connected to a first plug electrode 94 on the interlayer insulating layer 79.
  • the emitter signal is transmitted to the emitter potential electrode layer 76 via the first plug electrode 94.
  • a conductor e.g., a bonding wire
  • a single-layer electrode made of a nickel layer or a gold layer, or a laminated electrode including a nickel layer and a gold layer, may be formed on the emitter terminal electrode 13.
  • the gold layer may be formed on the nickel layer.
  • the gate terminal electrode 14, the first sense terminal electrode 15, the second sense terminal electrode 16, the current detection terminal electrode 17 and the release terminal electrode 18 are formed on the interlayer insulating layer 79, similar to the emitter terminal electrode 13.
  • the multiple terminal electrodes 14-18 may each contain at least one of aluminum, copper, aluminum-silicon-copper alloy, aluminum-silicon alloy, and aluminum-copper alloy.
  • the multiple terminal electrodes 14-18 may each have a single-layer structure containing any one of these conductive materials.
  • the multiple terminal electrodes 14-18 may each have a layered structure in which at least two of these conductive materials are layered in any order. In this embodiment, the multiple terminal electrodes 14-18 contain the same conductive material as the emitter terminal electrode 13.
  • a conducting wire e.g., a bonding wire
  • a single-layer electrode made of a nickel layer or a gold layer, or a laminated electrode including a nickel layer and a gold layer may be formed on each of the multiple terminal electrodes 14-18.
  • the gold layer may be formed on the nickel layer.
  • FIG. 12 is a schematic plan view of a semiconductor package 101 including a semiconductor device 1.
  • FIG. 13 is a cross-sectional view showing the mounting structure of the semiconductor package 101 in FIG. 12.
  • the semiconductor package 101 includes the semiconductor device 1, electrodes 102-107, wires 133-136, and a resin package 108.
  • the resin package 108 is indicated by a two-dot chain line.
  • the semiconductor package 101 is mounted on a mounting board 109.
  • the semiconductor package 101 is used as an electronic component that performs switching functions, rectification functions, amplification functions, etc. in an electric circuit.
  • the electrode 102 includes a die bonding pad (heat dissipation unit) 110 and a lead 111.
  • the die bonding pad 110 and the lead 111 are made of a conductive material such as copper.
  • the die bonding pad 110 is flat.
  • the die bonding pad 110 has an arrangement surface 110A and a back surface 110B.
  • the arrangement surface 110A faces one side of the normal direction Z.
  • One side of the normal direction Z coincides with the upper side of the paper in FIG. 13.
  • the back surface 110B faces the other side of the normal direction Z.
  • the other side of the normal direction Z coincides with the lower side of the paper in FIG. 13.
  • the semiconductor device 1 is arranged on the arrangement surface 110A.
  • the die bonding pad 110 has a hole 112 formed therein, penetrating from the arrangement surface 110A to the back surface 110B.
  • the lead 111 extends linearly from the die bonding pad 110.
  • the lead 111 is for insertion mounting. As shown in FIG. 13, the lead 111 is inserted into the hole 113. This causes the semiconductor package 101 to be mounted on the mounting board 109. To fix the lead 111 to the mounting board 109, the hole 113 is filled with solder 114.
  • the lead 111 has a connecting portion 111A and a terminal portion 112B. It functions as a collector terminal that is connected to the collector terminal electrode 32 (see the dashed line portion in FIG. 3) of the semiconductor device 1.
  • the connecting portion 111A is connected to the die bonding pad 110.
  • the connecting portion 111A extends from the die bonding pad 110 in a direction intersecting with the placement surface 110A.
  • the terminal portion 112B is connected to the connecting portion 111A.
  • the terminal portion 112B has a portion that protrudes from the resin package 108.
  • Electrode 103 includes wire bonding pad 115 and lead 116. Electrode 104 includes wire bonding pad 117 and lead 118. Electrode 105 includes wire bonding pad 119 and lead 120. Electrode 106 includes wire bonding pad 121 and lead 122. Electrode 107 includes wire bonding pad 123 and lead 124. Wire bonding pads 115, 117, 119, 121, 123 and leads 116, 118, 120, 122, 124 are made of a conductive material such as copper.
  • the leads 116, 118, 120, 122, and 124 are inserted into the holes 113. This causes the semiconductor package 101 to be mounted on the mounting board 109.
  • the holes 113 are filled with solder 114 to secure the leads 116, 118, 120, 122, and 124 to the mounting board 109.
  • the resin package 108 covers the semiconductor device 1 and the electrodes 102 to 107.
  • the resin package 108 is made of epoxy resin.
  • the resin package 108 has a first surface 108A and a second surface 108B.
  • the first surface 108A has a flat surface 108C and a tapered surface 108D.
  • the first surface 108A of the resin package 108 contacts the second main surface 4 of the semiconductor device 1.
  • the second surface 108B has a plurality of flat surfaces 108E and a plurality of tapered surfaces 108F.
  • the resin package 108 has a screw hole 108H formed therein. A screw 130 is inserted into the screw hole 108H to fix the resin package 108 to the heat sink 129.
  • the wires 133 to 136 are made of a metal such as aluminum.
  • the wire 133 is bonded to the emitter terminal electrode 13 and the wire bonding pad 115 of the semiconductor device 1. This electrically connects the emitter terminal electrode 13 and the wire bonding pad 115.
  • the wire 134 is bonded to the current detection terminal electrode 17 and the wire bonding pad 119 of the semiconductor device 1. This electrically connects the current detection terminal electrode 17 and the wire bonding pad 119.
  • the wire 135 is bonded to the first sense terminal electrode 15 or the second sense terminal electrode 16 (the first sense terminal electrode 15 in the example of FIG. 12) of the semiconductor device 1 and the wire bonding pad 121.
  • the wire 136 is bonded to the gate terminal electrode 14 and the wire bonding pad 123 of the semiconductor device 1. This electrically connects the gate terminal electrode 14 and the wire bonding pad 123. Note that the wire bonding pad 117 is not electrically connected to the semiconductor device 1.
  • Heat generated in the semiconductor device 1 is dissipated via the die bonding pad 110 and the heat sink 129.
  • the placement surface 110A of the die bonding pad 110 is in contact with the entire second main surface 4 of the semiconductor device 1, thereby allowing the second main surface 4 of the semiconductor device 1 to be uniformly cooled.
  • no member for dissipating heat is in contact with the first main surface 3 of the semiconductor device 1.
  • the multiple IGBT regions 8 and the multiple diode regions 9 are each arranged in a staggered pattern in a planar view. Therefore, in the active region 6, the total width (first opposing width W1 + second opposing width W2) of the portions where the IGBT regions 8 that are continuous in the second direction Y face the second direction Y is narrow.
  • the IGBT regions 8 and multiple diode regions 9 are arranged in a row along the second direction Y, the IGBT regions 8 that are continuous in the second direction Y face each other widely, and the diode regions 9 that are continuous in the second direction Y face each other widely.
  • the IGBT is on, a current flows simultaneously through the multiple IGBT regions 8.
  • the IGBT regions 8 generate heat.
  • the diode is on, a current flows simultaneously through the multiple diode regions 9.
  • the diode regions 9 generate heat.
  • the center of the active region 6 is surrounded by the IGBT region 8 and the diode region 9, both of which are heat generating regions.
  • the center of the active region 6 is an area that is difficult to dissipate heat. Therefore, when the IGBT or the diode is on, the center of the active region 6 may become particularly hot.
  • the IGBT or the diode in order to prevent the active region 6 from becoming too hot, it is possible to reduce the amount of current flowing through the IGBT region 8 and the diode region 9.
  • a staggered pattern (unit array UA of the staggered pattern) of IGBT regions 8 and diode regions 9 is formed over the entire active region 6. Therefore, the total width (first opposing width W1 + second opposing width W2) of the portions of the IGBT regions 8 that are continuous in the second direction Y and face the second direction Y is narrow. In addition, the multiple diode regions 9 do not face the second direction Y.
  • FIG. 14 is a bottom view for explaining a semiconductor device 151 according to a modified example in which the configuration of the collector region 34 and the cathode region 61 is changed.
  • FIG. 14 is a view corresponding to FIG. 3.
  • FIG. 15 is a cross-sectional view of the semiconductor device 151 according to the modified example of FIG. 14.
  • the semiconductor device 151 according to the modified example of FIG. 14 and FIG. 15 differs from the semiconductor device 1 according to the first embodiment in that the cathode region 61 includes a lead-out region 182.
  • the lead-out region 182 is a region that crosses the boundary region 72 (see FIG. 15) between the IGBT region 8 and the diode region 9 and is led out to the IGBT region 8.
  • the lead-out region 182 is led out from the diode region 9 to the IGBT region 8 along the first direction X.
  • FIG. 14 shows a cross section of the IGBT region 8 and the diode region 9 included in the first array 12A, the third array 12C, and the fifth array 12E, and corresponds to FIG. 10.
  • the second array 12B, the fourth array 12D, and the sixth array 12F do not have a lead-out region 182, as in the semiconductor device 1 (see FIG. 3).
  • the boundaries of the collector regions 34 and the cathode regions 61 are all aligned in the first direction X.
  • the pull-out region 182 overlaps the IGBT region 8 with a predetermined overlap width W.
  • the start point of the overlap width W is set at the boundary region 72 between the IGBT region 8 and the diode region 9.
  • the end point of the overlap width W is set at the boundary between the collector region 34 and the pull-out region 182.
  • the ratio W/WG of the overlap width W to the width WG of the IGBT region 8 may be 0.001 or more and 0.5 or less.
  • the ratio W/WG may be 0.001 or more and 0.01 or less, 0.01 or more and 0.05 or less, 0.05 or more and 0.1 or less, 0.1 or more and 0.15 or less, 0.15 or more and 0.2 or less, 0.2 or more and 0.25 or less, 0.25 or more and 0.3 or less, 0.35 or more and 0.4 or less, 0.4 or more and 0.45 or less, or 0.45 or more and 0.5 or less.
  • the overlap width W may be 1 ⁇ m or more and 200 ⁇ m or less.
  • the overlap width W may be 1 ⁇ m or more and 50 ⁇ m or less, 50 ⁇ m or more and 100 ⁇ m or less, 100 ⁇ m or more and 150 ⁇ m or less, or 150 ⁇ m or more and 200 ⁇ m or less.
  • the overlap width W may be 1 ⁇ m or more and 20 ⁇ m or less, 20 ⁇ m or more and 40 ⁇ m or less, 40 ⁇ m or more and 60 ⁇ m or less, 60 ⁇ m or more and 80 ⁇ m or less, 80 ⁇ m or more and 100 ⁇ m or less, 100 ⁇ m or more and 120 ⁇ m or less, 120 ⁇ m or more and 140 ⁇ m or less, 140 ⁇ m or more and 160 ⁇ m or less, 160 ⁇ m or more and 180 ⁇ m or less, or 180 ⁇ m or more and 200 ⁇ m or less.
  • the overlap width W is preferably 10 ⁇ m or more and 150 ⁇ m or less.
  • the pull-out region 182 may face one or more FET structures 35 in the normal direction Z.
  • the pull-out region 182 may face 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 FET structures 35.
  • FIG. 16 is a schematic plan view of a semiconductor device 201 according to a second embodiment of the present disclosure.
  • FIG. 17 is a schematic plan view showing the structure of a first main surface 3 of the semiconductor device 201.
  • the second embodiment only the parts that differ from the first embodiment will be mainly described, and the same reference symbols will be used for the same configurations as those described so far, and their description will be omitted.
  • the semiconductor device 201 according to the second embodiment differs from the semiconductor device 1 according to the first embodiment in that the area ratio of the diode region 9 to the active region 6 is approximately 50%. In other words, in a plan view, the area ratio of the IGBT 8 to the active region 6 is approximately 50%. In the active region 6, the planar area of the IGBT 8 and the planar area of the diode region 9 are approximately the same.
  • the width WG of each IGBT region 8 is approximately the same as the width WD of each diode region 9 (see FIG. 17).
  • a plurality of IGBT regions 8 and a plurality of diode regions 9 are arranged in a staggered pattern in a plan view throughout the active region 6. That is, a staggered pattern (unit array UA of the staggered pattern) of the IGBT regions 8 and diode regions 9 is formed throughout the active region 6.
  • each IGBT region 8 faces one diode region 9 included in the RC-IGBT array adjacent to it in the second direction Y, across the second region 19b of the gate wiring 19. Each IGBT region 8 does not face an IGBT region 8 included in the RC-IGBT array adjacent to it in the second direction Y in the second direction Y.
  • each diode region 9 faces one IGBT region 8 included in the RC-IGBT array 12 adjacent thereto in the second direction Y, across the second region 19b of the gate wiring 19. Each diode region 9 does not face the diode region 9 included in the RC-IGBT array 12 adjacent thereto in the second direction Y.
  • the multiple IGBT regions 8 and the multiple diode regions 9 are each arranged in a staggered pattern in a plan view. Not only the multiple diode regions 9, but also the multiple IGBT regions 8 do not face the second direction Y. Therefore, compared to the first embodiment, local increases in the amount of heat generated in the active region 6 when the IGBTs and diodes are on can be further suppressed. This makes it possible to further suppress temperature increases in the active region 6.
  • FIG. 18 is a schematic plan view of a semiconductor device 301 according to a third embodiment of the present disclosure.
  • FIG. 19 is a schematic plan view showing the structure of the first main surface 3 of the semiconductor device 301.
  • the semiconductor device 301 according to the third embodiment differs from the semiconductor device 1 according to the first embodiment in that the staggered pattern (unit array UA of the staggered pattern) of the IGBT regions 8 and the diode regions 9 is formed only in the central portion 6a of the active region 6, rather than over the entire active region 6.
  • the peripheral portion 6b of the active region 6 instead of the above-mentioned array pattern, an array pattern in which a plurality of IGBT regions 8 are arranged in rows along the second direction Y, and an array pattern in which a plurality of diode regions 9 are arranged in rows along the second direction Y, are adopted.
  • a plurality of IGBT regions 8 are arranged in rows along the second direction Y, and in the region on the side surface 5D side of that region, a plurality of diode regions 9 are each arranged in rows along the second direction Y.
  • multiple IGBT regions 8 are lined up in a row along the second direction Y, and in the region on the side surface 5B side of that region, multiple diode regions 9 are lined up in a row along the second direction Y.
  • the central portion 6a of the active region 6 is surrounded by the IGBT region 8 and the diode region 9, both of which are heat generating regions. Therefore, the central portion 6a of the active region 6 is an area that is difficult to dissipate heat.
  • the staggered pattern of the IGBT region 8 and the diode region 9 is formed in the central portion 6a of the active region 6, which is the portion that is least likely to dissipate heat, so that the temperature rise in the central portion 6a of the active region 6 can be suppressed. This makes it possible to reduce the maximum temperature of the semiconductor device 301.
  • the package structure of the semiconductor package 101 in FIG. 12 and the mounting structure in FIG. 13 are also applied to the semiconductor device 301.
  • FIG. 20 is a schematic plan view of a semiconductor device 401 according to a fourth embodiment of the present disclosure.
  • FIG. 21 is a schematic plan view showing the structure of a first main surface 3 of the semiconductor device 401.
  • the semiconductor device 401 according to the fourth embodiment differs from the semiconductor device 1 according to the first embodiment in that the staggered pattern (unit array UA of the staggered pattern) of the IGBT regions 8 and diode regions 9 is formed only on the outer periphery 6b of the active region 6, rather than over the entire active region 6.
  • the staggered pattern unit array UA of the staggered pattern
  • diode regions 9 is formed only on the outer periphery 6b of the active region 6, rather than over the entire active region 6.
  • an arrangement pattern in which a plurality of IGBT regions 8 are arranged in a row along the second direction Y, and an arrangement pattern in which a plurality of diode regions 9 are arranged in a row along the second direction Y are adopted.
  • FIG. 22 is a schematic cross-sectional view of a semiconductor package 450 including a semiconductor device 401.
  • the semiconductor package 450 includes a semiconductor device 401, a first heat dissipation pad (heat dissipation unit) 451, a second heat dissipation pad 452, a spacer (heat dissipation unit) 453 for regulating the distance between the top surface of the semiconductor device 401 and the second heat dissipation pad 452, a resin package 454, a first lead 456, a second lead 457, a third lead 458, a fourth lead 459, a fifth lead 460, a sixth lead 461, and wires 471 to 475.
  • the first heat dissipation pad 451 is flat.
  • the first heat dissipation pad 451 is made of a conductive material such as copper.
  • the first heat dissipation pad 451 has a flat placement surface 451A.
  • the placement surface 451A faces one side of the normal direction Z.
  • the one side of the normal direction Z coincides with the upper side of the paper surface of FIG. 22.
  • the first lead 456, the second lead 457, the third lead 458, the fourth lead 459, the fifth lead 460 and the sixth lead 461 are shaped to extend linearly from the first heat dissipation pad 451.
  • the first lead 456, the second lead 457, the third lead 458, the fourth lead 459, the fifth lead 460 and the sixth lead 461 are arranged in a line in the first direction X.
  • the first direction X is a direction perpendicular to the paper surface of FIG. 22.
  • the first lead 456, the second lead 457, the third lead 458, the fourth lead 459, the fifth lead 460 and the sixth lead 461 are made of a conductive material such as copper.
  • the wires 471 to 475 are made of a metal such as aluminum.
  • the wire 471 is joined to the collector terminal electrode 32 (see the dashed line in FIG. 20) of the semiconductor device 401 and the first lead 456. This electrically connects the collector terminal electrode 32 and the first lead 456.
  • the wire 472 is joined to the emitter terminal electrode 13 (see FIG. 20) of the semiconductor device 401 and the second lead 457. This electrically connects the emitter terminal electrode 13 and the second lead 457.
  • the wire 473 is joined to the current detection terminal electrode 17 (see FIG. 20) and the fourth lead 459 of the semiconductor device 401. This electrically connects the current detection terminal electrode 17 and the fourth lead 459.
  • the wire 474 is joined to the first sense terminal electrode 15 or the second sense terminal electrode 16 (for example, the first sense terminal electrode 15 in this embodiment) of the semiconductor device 401 and the fifth lead 460. This electrically connects the first sense terminal electrode 15 or the second sense terminal electrode 16 (for example, the first sense terminal electrode 15) and the fifth lead 460.
  • the wire 475 is joined to the gate terminal electrode 14 (see FIG. 20) and the sixth lead 461 of the semiconductor device 401. This electrically connects the gate terminal electrode 14 and the sixth lead 461.
  • the third lead 458 is not electrically connected to the semiconductor device 401.
  • the second heat dissipation pad 452 is flat.
  • the second heat dissipation pad 452 is made of a conductive material such as copper.
  • the second heat dissipation pad 452 is disposed on one side of the first heat dissipation pad 451 in the normal direction Z, sandwiching the semiconductor device 401 therebetween.
  • the spacer 453 is a columnar body extending in the normal direction Z.
  • the spacer 453 is disposed between the first heat dissipation pad 451 and the second heat dissipation pad 452.
  • the spacer 453 is made of a conductive material such as copper.
  • An end face 453A of the spacer 453 contacts the center of the semiconductor device 401, more specifically, the center of the first main surface 3 (the center 6a of the active region 6 (see FIG. 20, etc.)). As a result, only the center 6a is cooled on the first main surface 3 of the semiconductor device 401.
  • Heat generated in the semiconductor device 401 is dissipated via the first heat dissipation pad 451, the spacer 453, and the second heat dissipation pad 452.
  • the placement surface 451A of the first heat dissipation pad 451 contacts the entire second main surface 4 of the semiconductor device 401, thereby uniformly cooling the second main surface 4 of the semiconductor device 401.
  • the end surface 453A of the spacer 453 contacts the first main surface 3 of the semiconductor device 401 only at the center.
  • the central portion 6a of the active region 6 is an area that dissipates heat easily.
  • the peripheral portion 6b of the active region 6 is an area that dissipates heat less easily than the central portion 6a. Since the staggered pattern of the IGBT region 8 and the diode region 9 is formed in the peripheral portion 6b of the active region 6, which is less likely to dissipate heat, it is possible to suppress a rise in temperature in the peripheral portion 6b of the active region 6. This makes it possible to reduce the maximum temperature of the semiconductor device 401.
  • a package structure similar to the semiconductor package 450 may be applied to the semiconductor device 1, the semiconductor device 151, or the semiconductor device 201.
  • the semiconductor layer 2 may have a layered structure including a p-type semiconductor substrate and an n - type epitaxial layer formed on the semiconductor substrate, instead of the n - type semiconductor substrate 31.
  • the p-type semiconductor substrate faces the collector region 34.
  • the n - type epitaxial layer faces the drift region 30.
  • the p-type semiconductor substrate may be made of silicon.
  • the n - type epitaxial layer may be made of silicon.
  • the n- type epitaxial layer is formed by epitaxially growing silicon from the main surface of the p-type semiconductor substrate.
  • a structure in which the conductivity type of each semiconductor portion is inverted may be adopted.
  • the p-type portion may be formed as n-type
  • the n-type portion may be formed as p-type.
  • one of the IGBT region (8) and the diode region (9) is a reference region (8B), and the other is a heterogeneous region (9A, 9B, 9C) different from the reference region (8B); the reference region (8B) faces the heterogeneous region (9B) in a first direction (X) perpendicular to an extension direction of the gate trench (39) in a plan view;
  • one of the reference regions (8B) of the IGBT region (8) and the diode region (9) faces the other heterogeneous region (9A) of the IGBT region (8) and the diode region (9) across the first gate wiring (19bA) in the second direction (Y) parallel to the extension direction of the gate trench (39) in a plan view.
  • the reference region (8B) does not face the homogeneous region (8A) of the same type as the reference region (8B) across the first gate wiring (19bA) in the second direction (Y), or even if it faces the homogeneous region (8A) in the second direction (Y), the facing width with the homogeneous region (8C) is narrow.
  • This makes it possible to suppress a local increase in the amount of heat generated in a predetermined region of the active region (6) when a current flows through the reference region (8B) and the homogeneous region (8A). Therefore, it is possible to suppress temperature rise in a specific area of the active area (6).
  • the plurality of gate wirings (19b) include the first gate wiring (19bA) and a second gate wiring (19bB) extending along the first gate wiring (19bA); the reference region (8B) is sandwiched in the second direction (Y) by the first gate wiring (19bA) and the second gate wiring (19bB); The semiconductor device (1, 151, 201, 301, 401) according to Appendix 1-1, wherein the reference region (8B) is further opposed to the heterogeneous region (9C) in the second direction (Y) across the second gate wiring (19bB).
  • Appendix 1-3 The semiconductor device (1, 151, 301, 401) described in Appendix 1-1 or Appendix 1-2, wherein the reference region (8B) is formed independently of the reference region (8B) and is further opposed to a homogeneous region (8A) of the same type as the reference region (8B) in the second direction (Y) across the first gate wiring (19bA).
  • the reference region (8B) includes a reference IGBT region (8B) consisting of the IGBT region (8);
  • the second main surface (4) is an area whose entire area is in contact with the heat dissipation unit (110), The semiconductor device (1, 151, 201, 301) according to appendix 1-7, wherein a heat dissipation unit is not in contact with the first main surface (3).
  • the unit array (UA) includes the reference region (8B), a plurality of the heterogeneous regions (9A, 9B, 9C) adjacent to the reference region (8B) in the first direction (X) and the second direction (Y), and the homogeneous regions (8A, 8C) adjacent to the reference region (8B) on both sides of two diagonal directions intersecting both the first direction (X) and the second direction (Y) and independent of the reference region (8B),
  • the semiconductor device (1, 151, 201, 301, 401) according to any one of Supplementary Notes 1-3 to 1-6, wherein the unit array (UA) is formed over the entire active region (6) in a planar view.
  • the IGBT region and the diode region each include a plurality of the IGBT regions and a plurality of the diode regions, a plurality of region arrays including a plurality of the IGBT regions and a plurality of the diode regions, the plurality of the IGBT regions and the plurality of the diode regions being alternately arranged along the first direction, the plurality of region arrays being arranged at intervals in the second direction on the first main surface; a plurality of the IGBT regions included in a predetermined region array among the plurality of region arrays face, in the second direction, each of a plurality of the diode regions included in a region array adjacent in the second direction to the predetermined region array,
  • the semiconductor device according to claim 1-1, wherein the plurality of diode regions included in the predetermined region array are opposed in the second direction to each of the plurality of IGBT regions included in the region array adjacent to the predetermined region array in the second direction.
  • the diode region (9) includes a cathode region (61) formed in a surface layer portion of the second main surface (4), The semiconductor device (1, 151, 301, 401) according to any one of Supplementary Notes 1-1 to 1-13, wherein the cathode region (61) includes an extraction region (182) that crosses the boundary region (72) and is extracted to the IGBT region side.
  • the IGBT region (8) and the diode region (9) each include a plurality of IGBT regions (8) and a plurality of diode regions (9);
  • the semiconductor device (1, 151, 201) according to any one of Appendix 1-1 to Appendix 1-15, wherein, in a plan view, the plurality of IGBT regions (8) and the plurality of diode regions (9) are each staggered.
  • Sense terminal electrode 17 Current detection terminal electrode 18: Open terminal electrode 19: Gate wiring 19a: First region 19b: Second region 19bA: First gate wiring 19bB: Second gate wiring 20: First sense wiring 20a: First region 20b: second region 21: second sense wiring 21a: first region 21b: second region 22: first electrode layer 23: second electrode layer 24: third electrode layer 30: drift region 31: semiconductor substrate 32 : Collector terminal electrode 33 : Buffer layer 34 : collector region 35 : FET structure 36 : trench gate structure 37 : first outer trench gate structure 38 : second outer trench gate structure 39 : gate trench 40 : gate insulating layer 41 : gate conductive layer 41 a : gate extraction electrode layer 42 : Dummy FET structure 45: body region 46: emitter region 47: carrier storage region 48: contact trench 49: contact region 55: region isolation insulating layer 61: cathode region 62: anode region 63: cell isolation structure 64: cell isolation trench 65: Cell isolation insulating layer 66 : Cell isolation electrode layer 67 : Re

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

This semiconductor device comprises: an IGBT region and a diode region that are formed in a semiconductor layer; and a plurality of gate wires that are formed on a first main surface of the semiconductor layer, wherein one of the IGBT region and the diode region is a reference region and the other is a different region that differs from the reference region, in a predetermined region among active regions that include the IGBT region and the diode region, the reference region facing the different region in a first direction that is perpendicular to an extension direction of a gate trench in a plan view, and, in a predetermined region among the active regions the reference region further facing the different region in a second direction that is parallel to the extension direction of the gate trench in a plan view with a first gate wire that is included in the plurality of gate wires interposed therebetween.

Description

半導体装置Semiconductor Device 関連出願Related Applications
 本出願は、2023年3月31日に日本国特許庁に提出された特願2023-059174号に対応しており、この出願の全開示はここに引用により組み込まれるものとする。 This application corresponds to Patent Application No. 2023-059174 filed with the Japan Patent Office on March 31, 2023, the entire disclosure of which is incorporated herein by reference.
 本開示は、IGBT領域およびダイオード領域を含む半導体装置に関する。 This disclosure relates to a semiconductor device including an IGBT region and a diode region.
 特許文献1は、半導体装置の一例としてのRC-IGBT(Reverse Conducting - Insulated Gate Bipolar Transistor)を開示している。RC-IGBTは、共通の半導体層に作り込まれたIGBT領域およびダイオード領域を含む。IGBT領域は、IGBTを含む。ダイオード領域は、ダイオードを含む。 Patent Document 1 discloses an RC-IGBT (Reverse Conducting-Insulated Gate Bipolar Transistor) as an example of a semiconductor device. The RC-IGBT includes an IGBT region and a diode region fabricated in a common semiconductor layer. The IGBT region includes an IGBT. The diode region includes a diode.
国際公開第2019/230851号公報International Publication No. 2019/230851
 本開示の一実施形態は、RC-IGBTにおいて、局所的な発熱量の増大を抑制できる半導体装置を提供する。 One embodiment of the present disclosure provides a semiconductor device that can suppress localized increases in heat generation in an RC-IGBT.
 本開示の一実施形態は、第1主面およびその反対側の第2主面を有する半導体層と、前記半導体層に形成されたIGBT領域であって、ゲートトレンチが形成されたIGBT領域と、前記半導体層に形成されたダイオード領域と、前記第1主面上に形成された複数のゲート配線とを含む半導体装置を提供する。そして、前記IGBT領域および前記ダイオード領域を含むアクティブ領域のうち所定の領域において、前記IGBT領域および前記ダイオード領域の一方が基準領域であり、他方が前記基準領域とは異なる異種領域である。そして、前記基準領域が、平面視において前記ゲートトレンチの延伸方向と垂直な第1方向に、前記異種領域と対向している。そして、前記アクティブ領域のうち所定の領域において、前記基準領域が、平面視において前記ゲートトレンチの前記延伸方向と平行な第2方向に、前記異種領域と、前記複数のゲート配線に含まれる第1ゲート配線を挟んでさらに対向している、半導体装置を提供する。 An embodiment of the present disclosure provides a semiconductor device including a semiconductor layer having a first main surface and a second main surface on the opposite side thereof, an IGBT region formed in the semiconductor layer, the IGBT region having a gate trench formed therein, a diode region formed in the semiconductor layer, and a plurality of gate wirings formed on the first main surface. In a predetermined region of an active region including the IGBT region and the diode region, one of the IGBT region and the diode region is a reference region, and the other is a heterogeneous region different from the reference region. The reference region faces the heterogeneous region in a first direction perpendicular to the extension direction of the gate trench in a plan view. In a predetermined region of the active region, the reference region further faces the heterogeneous region in a second direction parallel to the extension direction of the gate trench in a plan view, sandwiching a first gate wiring included in the plurality of gate wirings.
 本開示の一実施形態によれば、RC-IGBTにおいて、局所的な発熱量の増大を抑制できる半導体装置を提供できる。 According to one embodiment of the present disclosure, a semiconductor device can be provided that can suppress an increase in localized heat generation in an RC-IGBT.
図1は、本開示の第1実施形態に係る半導体装置の模式的な平面図である。FIG. 1 is a schematic plan view of a semiconductor device according to a first embodiment of the present disclosure. 図2は、前記半導体装置の第1主面の構造を模式的に示す平面図である。FIG. 2 is a plan view showing a schematic structure of a first main surface of the semiconductor device. 図3は、前記半導体装置の第2主面の構造を模式的に示す底面図である。FIG. 3 is a bottom view showing a schematic structure of the second main surface of the semiconductor device. 図4は、図1の一点鎖線IVで囲まれた部分の拡大図である。FIG. 4 is an enlarged view of a portion enclosed by a dashed line IV in FIG. 図5Aは、図1の一点鎖線VAで囲まれた部分の拡大図である。FIG. 5A is an enlarged view of a portion surrounded by a dashed line VA in FIG. 図5Bは、図5Aの一点鎖線VBで囲まれた部分の拡大図である。FIG. 5B is an enlarged view of the portion surrounded by the dashed dotted line VB in FIG. 5A. 図6は、図4の一点鎖線VIで囲まれた部分の拡大図である。FIG. 6 is an enlarged view of a portion surrounded by a dashed line VI in FIG. 図7は、図6の一点鎖線VIIで囲まれた部分の拡大図である。FIG. 7 is an enlarged view of a portion surrounded by a dashed line VII in FIG. 図8は、図6の一点鎖線VIIIで囲まれた部分の拡大図である。FIG. 8 is an enlarged view of the portion surrounded by the dashed line VIII in FIG. 図9は、図7のIX-IX線に沿う断面図である。FIG. 9 is a cross-sectional view taken along line IX-IX in FIG. 図10は、図8のX-X線に沿う断面図である。FIG. 10 is a cross-sectional view taken along line X-X of FIG. 図11は、図7のXI-XI線に沿う断面図である。FIG. 11 is a cross-sectional view taken along line XI-XI in FIG. 図12は、前記半導体装置を含む半導体パッケージの模式的な平面図である。FIG. 12 is a schematic plan view of a semiconductor package including the semiconductor device. 図13は、図12の半導体パッケージの実装構造を示す断面図である。FIG. 13 is a cross-sectional view showing the mounting structure of the semiconductor package of FIG. 図14は、コレクタ領域およびカソード領域の態様を変更した変形例に係る半導体装置を説明するための底面図である。FIG. 14 is a bottom view for explaining a semiconductor device according to a modified example in which the configuration of the collector region and the cathode region is changed. 図15は、図14の変形例に係る半導体装置の断面図であり、図10に対応する図である。FIG. 15 is a cross-sectional view of a semiconductor device according to a modification of FIG. 14, and corresponds to FIG. 図16は、本開示の第2実施形態に係る半導体装置の模式的な平面図である。FIG. 16 is a schematic plan view of a semiconductor device according to a second embodiment of the present disclosure. 図17は、前記半導体装置の第1主面の構造を模式的に示す平面図である。FIG. 17 is a plan view showing a schematic structure of the first main surface of the semiconductor device. 図18は、本開示の第3実施形態に係る半導体装置の模式的な平面図である。FIG. 18 is a schematic plan view of a semiconductor device according to a third embodiment of the present disclosure. 図19は、前記半導体装置の第1主面の構造を模式的に示す平面図である。FIG. 19 is a plan view showing a schematic structure of the first main surface of the semiconductor device. 図20は、本開示の第4実施形態に係る半導体装置の模式的な平面図である。FIG. 20 is a schematic plan view of a semiconductor device according to a fourth embodiment of the present disclosure. 図21は、前記半導体装置の第1主面の構造を模式的に示す平面図である。FIG. 21 is a plan view showing a schematic structure of the first main surface of the semiconductor device. 図22は、前記半導体装置を含む半導体パッケージの模式的な断面図である。FIG. 22 is a schematic cross-sectional view of a semiconductor package including the semiconductor device.
 図1は、本開示の第1実施形態に係る半導体装置1の模式的な平面図である。図2は、半導体装置1の第1主面3の構造を模式的に示す平面図である。図3は、半導体装置1の第2主面4の構造を模式的に示す底面図である。図4は、図1の一点鎖線IVで囲まれた部分の拡大図である。図5Aは、図1の一点鎖線VAで囲まれた部分の拡大図である。図5Bは、図5Aの一点鎖線VBで囲まれた部分の拡大図である。 FIG. 1 is a schematic plan view of a semiconductor device 1 according to a first embodiment of the present disclosure. FIG. 2 is a plan view showing a schematic structure of a first main surface 3 of the semiconductor device 1. FIG. 3 is a bottom view showing a schematic structure of a second main surface 4 of the semiconductor device 1. FIG. 4 is an enlarged view of a portion surrounded by dashed line IV in FIG. 1. FIG. 5A is an enlarged view of a portion surrounded by dashed line VA in FIG. 1. FIG. 5B is an enlarged view of a portion surrounded by dashed line VB in FIG. 5A.
 半導体装置1は、IGBTおよびダイオードを一体的に備えたRC-IGBT(Reverse Conducting - Insulated Gate Bipolar Transistor)を有する電子部品である。 The semiconductor device 1 is an electronic component having an RC-IGBT (Reverse Conducting-Insulated Gate Bipolar Transistor) that has an IGBT and a diode integrated together.
 図1~図3を参照して、半導体装置1は、直方体形状の半導体層2を含む。半導体層2は、一方側の第1主面3、他方側の第2主面4、ならびに第1主面3および第2主面4を接続する側面5A,5B,5C,5Dを有している。 Referring to Figures 1 to 3, the semiconductor device 1 includes a semiconductor layer 2 having a rectangular parallelepiped shape. The semiconductor layer 2 has a first main surface 3 on one side, a second main surface 4 on the other side, and side surfaces 5A, 5B, 5C, and 5D that connect the first main surface 3 and the second main surface 4.
 第1主面3および第2主面4は、それらの法線方向Zから見た平面視(以下、単に「平面視」という。)において四角形状に形成されている。側面5Aおよび側面5Cは、第1方向Xに沿って延び、第1方向Xに交差する第2方向Yに対向している。側面5Bおよび側面5Dは、第2方向Yに沿って延び、第1方向Xに対向している。第2方向Yは、具体的には、第1方向Xに直交している(垂直である)。第2方向Yは、一方側Y1と、他方側Y2とを含む。一方側Y1は、図1の紙面の上側に一致している。他方側Y2は、図1の紙面の下側に一致している。 The first main surface 3 and the second main surface 4 are formed in a quadrangular shape in a plan view (hereinafter simply referred to as "plan view") seen from their normal direction Z. The side surface 5A and the side surface 5C extend along the first direction X and face a second direction Y that intersects with the first direction X. The side surface 5B and the side surface 5D extend along the second direction Y and face the first direction X. Specifically, the second direction Y is orthogonal (perpendicular) to the first direction X. The second direction Y includes one side Y1 and the other side Y2. The one side Y1 coincides with the upper side of the paper in FIG. 1. The other side Y2 coincides with the lower side of the paper in FIG. 1.
 半導体層2は、アクティブ領域6および外側領域7を含む。アクティブ領域6は、RC-IGBTが形成された領域である。アクティブ領域6は、平面視において側面5A~5Dから内方領域に間隔を空けて半導体層2の中央部に設定されている。アクティブ領域6は、平面視において側面5A~5Dに平行な四辺を有する四角形状に設定されていてもよい。半導体層2の厚さは、50μm以上200μm以下であってもよい。 The semiconductor layer 2 includes an active region 6 and an outer region 7. The active region 6 is a region in which an RC-IGBT is formed. The active region 6 is set in the center of the semiconductor layer 2, spaced from the side surfaces 5A to 5D toward the inner region in a plan view. The active region 6 may be set in a rectangular shape having four sides parallel to the side surfaces 5A to 5D in a plan view. The thickness of the semiconductor layer 2 may be 50 μm or more and 200 μm or less.
 外側領域7は、アクティブ領域6の外側の領域である。外側領域7は、平面視においてアクティブ領域6の周縁に沿って帯状に延びている。外側領域7は、具体的には、平面視においてアクティブ領域6を取り囲む無端状(四角環状)である。 The outer region 7 is the region outside the active region 6. The outer region 7 extends in a band shape along the periphery of the active region 6 in a planar view. Specifically, the outer region 7 is endless (square ring shape) surrounding the active region 6 in a planar view.
 アクティブ領域6は、IGBT領域8およびダイオード領域9を含む。図2および図3では、明瞭化のため、IGBT領域8がハッチングによって示されている。IGBT領域8は、IGBTが形成された領域である。ダイオード領域9は、ダイオードが形成された領域である。 The active region 6 includes an IGBT region 8 and a diode region 9. In Figures 2 and 3, the IGBT region 8 is shown by hatching for clarity. The IGBT region 8 is the region in which the IGBT is formed. The diode region 9 is the region in which the diode is formed.
 アクティブ領域6は、具体的には、RC-IGBT配列(領域配列)12を含む。RC-IGBT配列12は、第2方向Yに間隔を空けて複数(この実施形態では6つ)形成されている。RC-IGBT配列12は、一方側(側面5B側)の第1端部および他方側(側面5D側)の第2端部を有している。RC-IGBT配列12は、第1端部から第2端部に向けて第1方向Xに沿って一列に配列されたIGBT領域8、ダイオード領域9、IGBT領域8、ダイオード領域9・・・を繰り返し含むループ配列を有している。RC-IGBT配列12では、複数のIGBT領域8および複数のダイオード領域9が第1方向Xに沿って交互に並んでいる。 The active region 6 specifically includes an RC-IGBT array (region array) 12. A plurality of RC-IGBT arrays 12 (six in this embodiment) are formed at intervals in the second direction Y. The RC-IGBT array 12 has a first end on one side (side surface 5B side) and a second end on the other side (side surface 5D side). The RC-IGBT array 12 has a loop array that repeatedly includes IGBT regions 8, diode regions 9, IGBT regions 8, diode regions 9, etc., that are arranged in a line along the first direction X from the first end to the second end. In the RC-IGBT array 12, a plurality of IGBT regions 8 and a plurality of diode regions 9 are alternately arranged along the first direction X.
 アクティブ領域6には、複数のIGBT領域8が分散配列されている。複数のIGBT領域8は、第1方向Xおよび第2方向Yに沿って間隔を空けて形成されている。複数のIGBT領域8は、平面視において千鳥状に配列されている。複数のIGBT領域8は、具体的には、第2方向Yに沿って延びる長方形状にそれぞれ形成されている。複数のIGBT領域8は、この実施形態では、互いに同じ幅WG(図4参照)を有している。 In the active region 6, a plurality of IGBT regions 8 are distributed and arranged. The IGBT regions 8 are formed at intervals along the first direction X and the second direction Y. The IGBT regions 8 are arranged in a staggered pattern in a plan view. Specifically, each of the IGBT regions 8 is formed in a rectangular shape extending along the second direction Y. In this embodiment, the IGBT regions 8 have the same width WG (see FIG. 4).
 また、アクティブ領域6には、複数のダイオード領域9が分散配列されている。複数のダイオード領域9は、具体的には、第1方向XにIGBT領域8と隣り合うようにそれぞれ形成されている。複数のダイオード領域9は、第1方向Xおよび第2方向Yに沿って間隔を空けて形成されている。複数のダイオード領域9は、平面視において千鳥状に配列されている。ダイオード領域9は、具体的には、第2方向Yに沿って延びる長方形状にそれぞれ形成されている。複数のダイオード領域9は、この実施形態では、互いに同じ幅WDを有している。この実施形態では、アクティブ領域6の全域において、複数のIGBT領域8および複数のダイオード領域9がそれぞれ千鳥状に配列されている。 In addition, a plurality of diode regions 9 are distributed and arranged in the active region 6. Specifically, the plurality of diode regions 9 are each formed so as to be adjacent to an IGBT region 8 in the first direction X. The plurality of diode regions 9 are formed at intervals along the first direction X and the second direction Y. The plurality of diode regions 9 are arranged in a staggered manner in a plan view. Specifically, the diode regions 9 are each formed in a rectangular shape extending along the second direction Y. In this embodiment, the plurality of diode regions 9 have the same width WD. In this embodiment, the plurality of IGBT regions 8 and the plurality of diode regions 9 are each arranged in a staggered manner throughout the active region 6.
 各ダイオード領域9の長さは、この実施形態では、各IGBT領域8の長さよりも短い。そのため、各ダイオード領域9の平面面積が各IGBT領域8の平面面積よりも小さい。平面視において、アクティブ領域6に占めるダイオード領域9の面積比率が、25%以上45%以下である。別の言い方では、平面視において、アクティブ領域6に占めるIGBT領域8の面積比率が、55%以上75%以下である。 In this embodiment, the length of each diode region 9 is shorter than the length of each IGBT region 8. Therefore, the planar area of each diode region 9 is smaller than the planar area of each IGBT region 8. In a planar view, the area ratio of the diode region 9 to the active region 6 is 25% or more and 45% or less. In other words, in a planar view, the area ratio of the IGBT region 8 to the active region 6 is 55% or more and 75% or less.
 複数(たとえば6つ)のRC-IGBT配列12は、第2方向Yの一方側Y1から順に、第1配列12A、第2配列12B、第3配列12C、第4配列12D、第5配列12Eおよび第6配列12Fを含む。第1配列12Aおよび第6配列12Fの列幅(第2方向Yの幅)は、同じである。第2配列12Bおよび第5配列12Eの列幅(第2方向Yの幅)は、同じである。第3配列12Cおよび第4配列12Dの列幅(第2方向Yの幅)は、同じである。 The multiple (e.g., six) RC-IGBT arrays 12 include, in order from one side Y1 in the second direction Y, a first array 12A, a second array 12B, a third array 12C, a fourth array 12D, a fifth array 12E, and a sixth array 12F. The column widths (widths in the second direction Y) of the first array 12A and the sixth array 12F are the same. The column widths (widths in the second direction Y) of the second array 12B and the fifth array 12E are the same. The column widths (widths in the second direction Y) of the third array 12C and the fourth array 12D are the same.
 第1配列12A、第3配列12Cおよび第5配列12Eは、互いに同じ配列パターンで配列されている。第2配列12B、第4配列12Dおよび第6配列12Fは、同じ配列パターンで配列されている。第2配列12B、第4配列12Dおよび第6配列12Fは、第1配列12A、第3配列12Cおよび第5配列12Eと、IGBT領域8およびダイオード領域9の第1方向Xの位置が互いにずれている。 The first array 12A, the third array 12C, and the fifth array 12E are arranged in the same array pattern. The second array 12B, the fourth array 12D, and the sixth array 12F are arranged in the same array pattern. The second array 12B, the fourth array 12D, and the sixth array 12F are offset from the first array 12A, the third array 12C, and the fifth array 12E in the first direction X of the IGBT regions 8 and the diode regions 9.
 第1配列12A、第3配列12Cおよび第5配列12Eの第1方向Xにおける第1端部は、この実施形態では、IGBT領域8によって形成されている。第1配列12A、第3配列12Cおよび第5配列12Eの第1端部が、ダイオード領域9によって形成されていてもよい。第1配列12A、第3配列12Cおよび第5配列12Eの第1方向Xにおける第2端部は、この実施形態では、IGBT領域8によって形成されている。第1配列12A、第3配列12Cおよび第5配列12Eの第2端部が、ダイオード領域9によって形成されていてもよい。 In this embodiment, the first ends of the first array 12A, the third array 12C, and the fifth array 12E in the first direction X are formed by the IGBT region 8. The first ends of the first array 12A, the third array 12C, and the fifth array 12E may be formed by the diode region 9. In this embodiment, the second ends of the first array 12A, the third array 12C, and the fifth array 12E in the first direction X are formed by the IGBT region 8. The second ends of the first array 12A, the third array 12C, and the fifth array 12E may be formed by the diode region 9.
 第2配列12B、第4配列12Dおよび第6配列12Fの第1方向Xにおける第1端部は、この実施形態では、IGBT領域8によって形成されている。第2配列12B、第4配列12Dおよび第6配列12Fの第1端部が、ダイオード領域9によって形成されていてもよい。第2配列12B、第4配列12Dおよび第6配列12Fの第1方向Xにおける第2端部は、この実施形態では、ダイオード領域9によって形成されている。第2配列12B、第4配列12Dおよび第6配列12Fの第1方向Xにおける第2端部が、IGBT領域8によって形成されていてもよい。 In this embodiment, the first ends of the second array 12B, the fourth array 12D, and the sixth array 12F in the first direction X are formed by the IGBT region 8. The first ends of the second array 12B, the fourth array 12D, and the sixth array 12F may be formed by the diode region 9. In this embodiment, the second ends of the second array 12B, the fourth array 12D, and the sixth array 12F in the first direction X are formed by the diode region 9. The second ends of the second array 12B, the fourth array 12D, and the sixth array 12F in the first direction X may be formed by the IGBT region 8.
 図4を参照して、各IGBT領域8の幅WGは、10μm以上1000μm以下であってもよい。幅WGは、100μm以上であってもよい。幅WGは、200μm以上であることが好ましい。 Referring to FIG. 4, the width WG of each IGBT region 8 may be 10 μm or more and 1000 μm or less. The width WG may be 100 μm or more. It is preferable that the width WG is 200 μm or more.
 各ダイオード領域9の幅WDは、各IGBT領域8の幅WG以下であってもよい。幅WDは、ダイオード領域9の第1方向Xの幅である。各ダイオード領域9の幅WDは、各IGBT領域8の幅WG未満であることが好ましい。 The width WD of each diode region 9 may be less than or equal to the width WG of each IGBT region 8. The width WD is the width of the diode region 9 in the first direction X. It is preferable that the width WD of each diode region 9 is less than the width WG of each IGBT region 8.
 図1および図2を参照して、アクティブ領域6は、温度センサが形成されたセンサ領域11をさらに含む。センサ領域11は、第2方向Yに互いに隣り合う2つのRC-IGBT配列12の間の領域に形成されている。センサ領域11は、この実施形態では、アクティブ領域6の中心部に形成されている。 Referring to Figures 1 and 2, the active area 6 further includes a sensor area 11 in which a temperature sensor is formed. The sensor area 11 is formed in a region between two RC-IGBT arrays 12 adjacent to each other in the second direction Y. In this embodiment, the sensor area 11 is formed in the center of the active area 6.
 半導体装置1は、エミッタ端子電極13(図1の破線部参照)をさらに含む。エミッタ端子電極13は、アクティブ領域6において半導体層2の第1主面3の上に形成されている。エミッタ端子電極13は、アクティブ領域6(IGBT領域8)にエミッタ信号を伝達する。エミッタ信号は、基準電位またはグランド電位であってもよい。 The semiconductor device 1 further includes an emitter terminal electrode 13 (see the dashed line in FIG. 1). The emitter terminal electrode 13 is formed on the first main surface 3 of the semiconductor layer 2 in the active region 6. The emitter terminal electrode 13 transmits an emitter signal to the active region 6 (IGBT region 8). The emitter signal may be a reference potential or a ground potential.
 図1を参照して、半導体装置1は、外側領域7において半導体層2の第1主面3の上に形成された複数(この実施形態では5つ)の端子電極14,15,16,17,18をさらに含む。複数の端子電極14~18は、側面5Dに沿って間隔を空けて配置されている。複数の端子電極14~18は、平面視において四角形状に形成されている。 Referring to FIG. 1, the semiconductor device 1 further includes a plurality of terminal electrodes 14, 15, 16, 17, and 18 (five in this embodiment) formed on the first main surface 3 of the semiconductor layer 2 in the outer region 7. The multiple terminal electrodes 14 to 18 are arranged at intervals along the side surface 5D. The multiple terminal electrodes 14 to 18 are formed in a quadrangular shape in a plan view.
 複数の端子電極14~18は、この実施形態では、ゲート端子電極14、第1センス端子電極15、第2センス端子電極16、電流検出端子電極17および開放端子電極18を含む。ゲート端子電極14は、アクティブ領域6(IGBT領域8)にゲート信号を伝達する。第1センス端子電極15および第2センス端子電極16は、センサ領域11(温度センサ)を制御する制御信号を伝達する。電流検出端子電極17は、アクティブ領域6を流れる電流を検出し、外部に取り出すための電極である。開放端子電極18は、電気的に浮遊状態になっている。ゲート端子電極14、第1センス端子電極15、第2センス端子電極16、電流検出端子電極17および開放端子電極18の配置は任意である。図1の例では、開放端子電極18、電流検出端子電極17、ゲート端子電極14、第1センス端子電極15および第2センス端子電極16が、側面5A側から側面5C側に向けてこの順に配置されている。 In this embodiment, the multiple terminal electrodes 14 to 18 include a gate terminal electrode 14, a first sense terminal electrode 15, a second sense terminal electrode 16, a current detection terminal electrode 17, and an open terminal electrode 18. The gate terminal electrode 14 transmits a gate signal to the active region 6 (IGBT region 8). The first sense terminal electrode 15 and the second sense terminal electrode 16 transmit a control signal for controlling the sensor region 11 (temperature sensor). The current detection terminal electrode 17 is an electrode for detecting a current flowing through the active region 6 and extracting it to the outside. The open terminal electrode 18 is in an electrically floating state. The gate terminal electrode 14, the first sense terminal electrode 15, the second sense terminal electrode 16, the current detection terminal electrode 17, and the open terminal electrode 18 may be arranged in any manner. In the example of FIG. 1, the open terminal electrode 18, the current detection terminal electrode 17, the gate terminal electrode 14, the first sense terminal electrode 15, and the second sense terminal electrode 16 are arranged in this order from the side surface 5A to the side surface 5C.
 半導体装置1は、ゲート端子電極14に電気的に接続されたゲート配線19をさらに含む。ゲート配線19は、ゲートフィンガーとも称される。ゲート配線19は、外側領域7からアクティブ領域6に向けて延びている。ゲート配線19は、ゲート端子電極14に印加されたゲート信号をアクティブ領域6(IGBT領域8)に伝達する。ゲート配線19は、具体的には、外側領域7に位置する第1領域19aおよびアクティブ領域6に位置する第2領域19bを含む。第1領域19aは、ゲート端子電極14に電気的に接続されている。第1領域19aは、この実施形態では、外側領域7における側面5D側の領域において選択的に引き回されている。 The semiconductor device 1 further includes a gate wiring 19 electrically connected to the gate terminal electrode 14. The gate wiring 19 is also called a gate finger. The gate wiring 19 extends from the outer region 7 toward the active region 6. The gate wiring 19 transmits a gate signal applied to the gate terminal electrode 14 to the active region 6 (IGBT region 8). Specifically, the gate wiring 19 includes a first region 19a located in the outer region 7 and a second region 19b located in the active region 6. The first region 19a is electrically connected to the gate terminal electrode 14. In this embodiment, the first region 19a is selectively routed in a region on the side surface 5D side in the outer region 7.
 第2領域19bは、アクティブ領域6に複数(この実施形態では5つ)形成されている。複数の第2領域19bは、第2方向Yに沿って間隔を空けて形成されている。複数の第2領域19bは、互いに隣り合う2つのRC-IGBT配列12の間の領域にそれぞれ形成されている。複数の第2領域19bは、外側領域7において側面5D側の領域から側面5B側の領域に向けてそれぞれ延びている。複数の第2領域19bは、外側領域7において第1領域19aに連なっている。複数の第2領域19bは、互いに隣り合う2つのRC-IGBT配列12のいずれか一方または双方にゲート信号を伝達する。 A plurality of second regions 19b (five in this embodiment) are formed in the active region 6. The second regions 19b are formed at intervals along the second direction Y. The second regions 19b are each formed in a region between two adjacent RC-IGBT arrays 12. The second regions 19b each extend from the region on the side face 5D side to the region on the side face 5B side in the outer region 7. The second regions 19b are connected to the first region 19a in the outer region 7. The second regions 19b transmit gate signals to one or both of the two adjacent RC-IGBT arrays 12.
 ゲート端子電極14に印加されたゲート信号は、第1領域19aを介して第2領域19bに伝達される。これにより、第2領域19bを介してアクティブ領域6(IGBT領域8)にゲート信号が伝達される。 The gate signal applied to the gate terminal electrode 14 is transmitted to the second region 19b via the first region 19a. This causes the gate signal to be transmitted to the active region 6 (IGBT region 8) via the second region 19b.
 第1センス端子電極15には、第1センス配線20が電気的に接続されている。第1センス配線20は、外側領域7からセンサ領域11に向けて延びている。第1センス配線20は、温度センサの制御信号を伝達する。第1センス配線20は、具体的には、外側領域7に位置する第1領域20aおよびアクティブ領域6に位置する第2領域20bを含む。第1領域20aは、第1センス端子電極15に電気的に接続されている。第2領域20bは、センサ領域11において温度センサに電気的に接続されている。第2領域20bは、外側領域7において第1領域20aに連なっている。第1センス端子電極15に印加された電気信号は、第1領域20aを介して第2領域20bに伝達される。これにより、第2領域20bを介して温度センサに電気信号が伝達される。 The first sense wiring 20 is electrically connected to the first sense terminal electrode 15. The first sense wiring 20 extends from the outer region 7 toward the sensor region 11. The first sense wiring 20 transmits a control signal for the temperature sensor. Specifically, the first sense wiring 20 includes a first region 20a located in the outer region 7 and a second region 20b located in the active region 6. The first region 20a is electrically connected to the first sense terminal electrode 15. The second region 20b is electrically connected to the temperature sensor in the sensor region 11. The second region 20b is connected to the first region 20a in the outer region 7. An electrical signal applied to the first sense terminal electrode 15 is transmitted to the second region 20b via the first region 20a. As a result, an electrical signal is transmitted to the temperature sensor via the second region 20b.
 第2センス端子電極16には、第2センス配線21が電気的に接続されている。第2センス配線21は、外側領域7からセンサ領域11に向けて延びている。第2センス配線21は、温度センサの制御信号を伝達する。第2センス配線21は、具体的には、外側領域7に位置する第1領域21aおよびアクティブ領域6に位置する第2領域21bを含む。第1領域21aは、第2センス端子電極16に電気的に接続されている。第2領域21bは、センサ領域11において温度センサに電気的に接続されている。第2領域21bは、外側領域7において第1領域21aに連なっている。第2センス端子電極16に印加された電気信号は、第1領域21aを介して第2領域21bに伝達される。これにより、第2領域21bを介して温度センサに電気信号が伝達される。 The second sense wiring 21 is electrically connected to the second sense terminal electrode 16. The second sense wiring 21 extends from the outer region 7 toward the sensor region 11. The second sense wiring 21 transmits a control signal for the temperature sensor. Specifically, the second sense wiring 21 includes a first region 21a located in the outer region 7 and a second region 21b located in the active region 6. The first region 21a is electrically connected to the second sense terminal electrode 16. The second region 21b is electrically connected to the temperature sensor in the sensor region 11. The second region 21b is connected to the first region 21a in the outer region 7. An electrical signal applied to the second sense terminal electrode 16 is transmitted to the second region 21b via the first region 21a. As a result, an electrical signal is transmitted to the temperature sensor via the second region 21b.
 互いに隣り合う複数のRC-IGBT配列12の間の領域においてセンサ領域11が形成された領域には、ゲート配線19、第1センス配線20および第2センス配線21が形成されている。ゲート配線19、第1センス配線20および第2センス配線21は、互いに隣り合う2つのRC-IGBT配列12の間の領域において並走している。 In the region between adjacent RC-IGBT arrays 12 where the sensor region 11 is formed, a gate wiring 19, a first sense wiring 20, and a second sense wiring 21 are formed. The gate wiring 19, the first sense wiring 20, and the second sense wiring 21 run parallel to each other in the region between two adjacent RC-IGBT arrays 12.
 図1および図5Aを参照して、アクティブ領域6に含まれる個々のIGBT領域8に着目して説明する。たとえば、第2配列12Bに含まれる、他方側(側面5D側)から3番目のIGBT領域8Bを例に挙げる。 With reference to Figures 1 and 5A, the following description focuses on the individual IGBT regions 8 included in the active region 6. For example, take the third IGBT region 8B from the other side (side surface 5D) included in the second array 12B as an example.
 IGBT領域8Bは、第1方向X(紙面横方向)の両側において、2つのダイオード領域9Bに隣り合っている。IGBT領域8Bは、第2方向Y(紙面縦方向)の両側において、2つのダイオード領域9A,9Cにさらに隣り合っている。一方、IGBT領域8Bは、第1方向Xおよび第2方向Yのいずれにも交差する2つの斜め方向両側において、IGBT領域8Bから独立した2つのIGBT領域8Aおよび2つのIGBT領域8Cに隣り合っている。これにより、アクティブ領域6の全体に及ぶIGBT領域8およびダイオード領域9の千鳥状パターンの単位配列UAが構成されている。単位配列UAにおいて、中心に配置されたIGBT領域8Bが、基準領域としての基準IGBT領域である。単位配列UAにおいて、IGBT領域8Bから見て第1方向X(紙面横方向)および第2方向Y(紙面縦方向)のそれぞれ両側の4つのダイオード領域9A,9Cが、異種領域としての異種ダイオード領域である。また、単位配列UAにおいて、IGBT領域8Bから見て第1方向Xおよび第2方向Yのいずれにも交差する2つの斜め方向両側においてIGBT領域8Bに隣り合い、かつIGBT領域8Bから独立した4つのIGBT領域8A,8Cが、同種領域としての同種IGBT領域である。 The IGBT region 8B is adjacent to two diode regions 9B on both sides in the first direction X (horizontal direction on the paper). The IGBT region 8B is further adjacent to two diode regions 9A, 9C on both sides in the second direction Y (vertical direction on the paper). Meanwhile, the IGBT region 8B is adjacent to two IGBT regions 8A and two IGBT regions 8C that are independent of the IGBT region 8B on both sides of two diagonal directions that intersect both the first direction X and the second direction Y. This forms a unit array UA of a staggered pattern of IGBT regions 8 and diode regions 9 that covers the entire active region 6. In the unit array UA, the IGBT region 8B located at the center is the reference IGBT region that serves as the reference region. In the unit array UA, the four diode regions 9A, 9C on both sides of the first direction X (horizontal direction on the paper) and the second direction Y (vertical direction on the paper) as viewed from the IGBT region 8B are heterogeneous diode regions as heterogeneous regions. In addition, in the unit array UA, the four IGBT regions 8A, 8C adjacent to the IGBT region 8B on both sides of two diagonal directions intersecting both the first direction X and the second direction Y as viewed from the IGBT region 8B and independent from the IGBT region 8B are homogeneous IGBT regions as homogeneous regions.
 具体的には、IGBT領域8Bは、同じRC-IGBT配列(第2配列12B)に含まれる2つのダイオード領域9Bのそれぞれと第1方向Xに隣り合っている。別の言い方では、IGBT領域8Bは、第1方向Xの両側の2つのダイオード領域9Bのそれぞれと、境界領域72(図10を併せて参照)を挟んで第1方向Xに対向している。 Specifically, the IGBT region 8B is adjacent to each of the two diode regions 9B included in the same RC-IGBT array (second array 12B) in the first direction X. In other words, the IGBT region 8B faces each of the two diode regions 9B on either side of the first direction X, with a boundary region 72 (see also FIG. 10) sandwiched therebetween, in the first direction X.
 IGBT領域8Bは、第2方向Yの一方側Y1に隣り合うRC-IGBT配列(第1配列12A)に含まれる1つのダイオード領域9Aと、ゲート配線19の第2領域19bの一つまたは複数(図5Aの例では1つ。以下、「第1ゲート配線19bA」(図5A参照)という場合がある。)を挟んで第2方向Yに対向している。IGBT領域8Bは、ダイオード領域9Aに対し第1方向Xの両側の2つのIGBT領域8Aのそれぞれと、第1ゲート配線19bAを挟んで第2方向Yに対向している。IGBT領域8Aは、IGBT領域8Bから独立したIGBT領域である。 The IGBT region 8B faces one diode region 9A included in the RC-IGBT array (first array 12A) adjacent to one side Y1 in the second direction Y, and one or more second regions 19b of the gate wiring 19 (one in the example of FIG. 5A. Hereinafter, sometimes referred to as "first gate wiring 19bA" (see FIG. 5A)). The IGBT region 8B faces each of the two IGBT regions 8A on both sides of the diode region 9A in the first direction X, in the second direction Y, with the first gate wiring 19bA between them. The IGBT region 8A is an IGBT region independent of the IGBT region 8B.
 図5Aおよび図5Bを参照して、IGBT領域8Bは、一方側(側面5B側)のIGBT領域8Aと第1対向幅(対向幅)W1で対向している。IGBT領域8Bは、他方側(側面5D側)のIGBT領域8Aと第2対向幅(対向幅)W2で対向している。第1対向幅W1および第2対向幅W2を合わせた幅は、IGBT領域8の幅WGよりも狭い。図5Aおよび図5Bの例では、第1対向幅W1は、第2対向幅W2と同じである。第1対向幅W1が、第2対向幅W2より広くてもよい。第1対向幅W1が、第2対向幅W2より狭くてもよい。 Referring to Figures 5A and 5B, the IGBT region 8B faces the IGBT region 8A on one side (side surface 5B side) with a first facing width (facing width) W1. The IGBT region 8B faces the IGBT region 8A on the other side (side surface 5D side) with a second facing width (facing width) W2. The combined width of the first facing width W1 and the second facing width W2 is narrower than the width WG of the IGBT region 8. In the example of Figures 5A and 5B, the first facing width W1 is the same as the second facing width W2. The first facing width W1 may be wider than the second facing width W2. The first facing width W1 may be narrower than the second facing width W2.
 図5Bを参照して、IGBT領域8(IGBT領域8B)の幅WGに対する第1対向幅W1の比W1/WGは、0.001以上0.5未満であってもよい。W1/WGは、0.001以上0.01以下、0.01以上0.05以下、0.05以上0.1以下、0.1以上0.15以下、0.15以上0.2以下、0.2以上0.25以下、0.25以上0.3以下、0.3以上0.35以下、0.35以上0.4以下、0.4以上0.45以下、または0.45以上0.5未満であってもよい。 Referring to FIG. 5B, the ratio W1/WG of the first opposing width W1 to the width WG of the IGBT region 8 (IGBT region 8B) may be 0.001 or more and less than 0.5. W1/WG may be 0.001 or more and less than 0.01, 0.01 or more and less than 0.05, 0.05 or more and less than 0.1, 0.1 or more and less than 0.15, 0.15 or more and less than 0.2, 0.2 or more and less than 0.25, 0.25 or more and less than 0.3, 0.3 or more and less than 0.35, 0.35 or more and less than 0.4, 0.4 or more and less than 0.45, or 0.45 or more and less than 0.5.
 第1対向幅W1は、0.1μm以上500μm未満であってもよい。第1対向幅W1は、0.1μm以上50μm以下、50μm以上100μm以下、100μm以上150μm以下、150μm以上200μm以下、200μm以上250μm以下、250μm以上300μm以下、300μm以上350μm以下、350μm以上400μm以下、400μm以上450μm以下、450μm以上500μm未満であってもよい。 The first opposing width W1 may be 0.1 μm or more and less than 500 μm. The first opposing width W1 may be 0.1 μm or more and less than 50 μm, 50 μm or more and less than 100 μm, 100 μm or more and less than 150 μm, 150 μm or more and less than 200 μm, 200 μm or more and less than 250 μm, 250 μm or more and less than 300 μm, 300 μm or more and less than 350 μm, 350 μm or more and less than 400 μm, 400 μm or more and less than 450 μm, or 450 μm or more and less than 500 μm.
 第1対向幅W1は、第2方向Yに対向するIGBT領域8とダイオード領域9との間の第1間隔W5より広くてもよい。第1対向幅W1は、第1間隔W5と同じでもよい。第1対向幅W1は、第1間隔W5より狭くてもよい。 The first opposing width W1 may be wider than the first interval W5 between the IGBT region 8 and the diode region 9 that face each other in the second direction Y. The first opposing width W1 may be the same as the first interval W5. The first opposing width W1 may be narrower than the first interval W5.
 第1対向幅W1は、第2方向Yに対向する2つのIGBT領域8の間の第2間隔W4より広くてもよい。第1対向幅W1は、第2間隔W4と同じでもよい。第1対向幅W1は、第2間隔W4より狭くてもよい。 The first opposing width W1 may be wider than the second interval W4 between two IGBT regions 8 opposing in the second direction Y. The first opposing width W1 may be the same as the second interval W4. The first opposing width W1 may be narrower than the second interval W4.
 第1対向幅W1は、ゲート配線19の第2領域19bの線幅W3より広くてもよい。第1対向幅W1は、第2領域19bの線幅W3と同じでもよい。第1対向幅W1は、第2領域19bの線幅W3より狭くてもよい。 The first opposing width W1 may be wider than the line width W3 of the second region 19b of the gate wiring 19. The first opposing width W1 may be the same as the line width W3 of the second region 19b. The first opposing width W1 may be narrower than the line width W3 of the second region 19b.
 IGBT領域8(IGBT領域8B)の幅WGに対する第2対向幅W2の比W2/WGは、0.001以上0.5未満であってもよい。W2/WGは、0.001以上0.01以下、0.01以上0.05以下、0.05以上0.1以下、0.1以上0.15以下、0.15以上0.2以下、0.2以上0.25以下、0.25以上0.3以下、0.3以上0.35以下、0.35以上0.4以下、0.4以上0.45以下、または0.45以上0.5未満であってもよい。 The ratio W2/WG of the second opposing width W2 to the width WG of the IGBT region 8 (IGBT region 8B) may be 0.001 or more and less than 0.5. W2/WG may be 0.001 or more and less than 0.01, 0.01 or more and less than 0.05, 0.05 or more and less than 0.1, 0.1 or more and less than 0.15, 0.15 or more and less than 0.2, 0.2 or more and less than 0.25, 0.25 or more and less than 0.3, 0.3 or more and less than 0.35, 0.35 or more and less than 0.4, 0.4 or more and less than 0.45, or 0.45 or more and less than 0.5.
 第2対向幅W2は、0.1μm以上500μm以下であってもよい。第2対向幅W2は、0.1μm以上50μm以下、50μm以上100μm以下、100μm以上150μm以下、150μm以上200μm以下、200μm以上250μm以下、250μm以上300μm以下、300μm以上350μm以下、350μm以上400μm以下、400μm以上450μm以下、450μm以上500μm未満であってもよい。 The second opposing width W2 may be 0.1 μm or more and 500 μm or less. The second opposing width W2 may be 0.1 μm or more and 50 μm or less, 50 μm or more and 100 μm or less, 100 μm or more and 150 μm or less, 150 μm or more and 200 μm or less, 200 μm or more and 250 μm or less, 250 μm or more and 300 μm or less, 300 μm or more and 350 μm or less, 350 μm or more and 400 μm or less, 400 μm or more and 450 μm or less, or 450 μm or more and less than 500 μm.
 第2対向幅W2は、第2方向Yに対向するIGBT領域8とダイオード領域9との間の第1間隔W5より広くてもよい。第2対向幅W2は、第1間隔W5と同じでもよい。第2対向幅W2は、第1間隔W5より狭くてもよい。 The second opposing width W2 may be wider than the first interval W5 between the IGBT region 8 and the diode region 9 that face each other in the second direction Y. The second opposing width W2 may be the same as the first interval W5. The second opposing width W2 may be narrower than the first interval W5.
 第2対向幅W2は、第2方向Yに対向する2つのIGBT領域8の間の第2間隔W4より広くてもよい。第2対向幅W2は、第2間隔W4と同じでもよい。第2対向幅W2は、第2間隔W4より狭くてもよい。 The second opposing width W2 may be wider than the second interval W4 between two IGBT regions 8 opposing in the second direction Y. The second opposing width W2 may be the same as the second interval W4. The second opposing width W2 may be narrower than the second interval W4.
 第2対向幅W2は、ゲート配線19の第2領域19bの線幅W3より広くてもよい。第2対向幅W2は、第2領域19bの線幅W3と同じでもよい。第2対向幅W2は、第2領域19bの線幅W3より狭くてもよい。 The second opposing width W2 may be wider than the line width W3 of the second region 19b of the gate wiring 19. The second opposing width W2 may be the same as the line width W3 of the second region 19b. The second opposing width W2 may be narrower than the line width W3 of the second region 19b.
 図1および図5Aを参照して、IGBT領域8Bは、第2方向Yの他方側Y2に隣り合うRC-IGBT配列12(第3配列12C)に含まれる1つのダイオード領域9Cと、ゲート配線19の第2領域19bの一つまたは複数(図5Aの例では1つ。以下、「第2ゲート配線19bB」(図5A参照)という場合がある。)を挟んで第2方向Yに対向している。IGBT領域8Bは、ダイオード領域9Bの第1方向Xの両側の2つのIGBT領域8Cのそれぞれと、第2ゲート配線19bBを挟んで第2方向Yに対向している。第2ゲート配線19bBは、第1ゲート配線19bAと平行に延びる別のゲート配線である。1つのRC-IGBT配列12(第3配列12C)に含まれるIGBT領域8およびダイオード領域9は、第1ゲート配線19bAと第2ゲート配線19bBとによって、第2方向Yに挟まれている。IGBT領域8Cは、IGBT領域8Bから独立したIGBT領域である。 1 and 5A, the IGBT region 8B faces one diode region 9C included in the RC-IGBT array 12 (third array 12C) adjacent to it on the other side Y2 of the second direction Y, across one or more second regions 19b of the gate wiring 19 (one in the example of FIG. 5A; hereinafter, sometimes referred to as "second gate wiring 19bB" (see FIG. 5A)). The IGBT region 8B faces each of the two IGBT regions 8C on either side of the diode region 9B in the first direction X, across the second gate wiring 19bB. The second gate wiring 19bB is another gate wiring extending parallel to the first gate wiring 19bA. The IGBT region 8 and the diode region 9 included in one RC-IGBT array 12 (third array 12C) are sandwiched in the second direction Y by the first gate wiring 19bA and the second gate wiring 19bB. The IGBT region 8C is an IGBT region independent of the IGBT region 8B.
 IGBT領域8Bは、ダイオード領域9Cに対し一方側(側面5B側)のIGBT領域8Cと第1対向幅W1で対向している。IGBT領域8Bは、ダイオード領域9Cに対し他方側(側面5D側)のIGBT領域8Cと第2対向幅W2で対向している。 The IGBT region 8B faces the IGBT region 8C on one side (side surface 5B) of the diode region 9C at a first facing width W1. The IGBT region 8B faces the IGBT region 8C on the other side (side surface 5D) of the diode region 9C at a second facing width W2.
 基準IGBT領域であるIGBT領域8Bが、同種IGBT領域であるIGBT領域8A,8Cと第2方向Yに対向する部分の幅の合計(第1幅対向W1+第2対向幅W2)は狭い。単位配列UAにおいて、IGBT領域8に電流が流れる場合に、単位配列UAにおいて発熱量が局所的に増大しない。単位配列UAにおいて、ダイオード領域9に電流が流れる場合に、単位配列UAにおいて発熱量が局所的に増大しない。 The total width (first opposing width W1+second opposing width W2) of the portion where the IGBT region 8B, which is the reference IGBT region, faces the IGBT regions 8A and 8C, which are homogeneous IGBT regions, in the second direction Y is narrow. In the unit array UA, when a current flows through the IGBT region 8, the amount of heat generated does not increase locally in the unit array UA. In the unit array UA, when a current flows through the diode region 9, the amount of heat generated does not increase locally in the unit array UA.
 図5Aおよび図5Bを参照して、複数のRC-IGBT配列12に含まれるIGBT領域8およびダイオード領域9の配列について、次のことが言える。すなわち、各配列12A~12Fに含まれる複数のIGBT領域8は、その配列12A~12Fに第2方向Yに隣り合うRC-IGBT配列(配列12A~12F)に含まれる複数のダイオード領域9のそれぞれと、第2方向Yに対向している。また、各配列12A~12Fに含まれる複数のダイオード領域9は、その配列12A~12Fに第2方向Yに隣り合うRC-IGBT配列(配列12A~12F)に含まれる複数のIGBT領域8のそれぞれと、第2方向Yに対向している。 With reference to Figures 5A and 5B, the following can be said about the arrangement of the IGBT regions 8 and diode regions 9 included in the multiple RC-IGBT arrays 12. That is, the multiple IGBT regions 8 included in each of the arrays 12A to 12F face in the second direction Y with each of the multiple diode regions 9 included in the RC-IGBT array (arrays 12A to 12F) adjacent to that array 12A to 12F in the second direction Y. Also, the multiple diode regions 9 included in each of the arrays 12A to 12F face in the second direction Y with each of the multiple IGBT regions 8 included in the RC-IGBT array (arrays 12A to 12F) adjacent to that array 12A to 12F in the second direction Y.
 第2方向Yに対向するIGBT領域8およびダイオード領域9において、IGBT領域8の第1方向Xの中心と、ダイオード領域9の第1方向Xの中心とが、第1方向Xに関して揃っている。別の言い方では、複数のIGBT領域8および複数のダイオード領域9が第2方向Yに沿って交互に並んでいる。 In the IGBT region 8 and the diode region 9 facing the second direction Y, the center of the IGBT region 8 in the first direction X and the center of the diode region 9 in the first direction X are aligned with each other in the first direction X. In other words, a plurality of IGBT regions 8 and a plurality of diode regions 9 are arranged alternately along the second direction Y.
 また、各配列12A~12Fに含まれる1つのIGBT領域8は、その配列12A~12Fに第2方向Yに隣り合うRC-IGBT配列(配列12A~12F)に含まれる2つのIGBT領域8と、第2方向Yにさらに対向している。1つのIGBT領域8が2つのIGBT領域8と第2方向Yに対向する部分の幅の合計(第1対向幅W1+第2対向幅W2)は、IGBT領域8の幅WGよりも狭い。別の言い方では、アクティブ領域6において、第2方向Yに連続するIGBT領域8が第2方向Yに対向する部分の幅の合計(第1幅対向W1+第2対向幅W2)は狭い。 In addition, one IGBT region 8 included in each of the arrays 12A to 12F is further opposed in the second direction Y to two IGBT regions 8 included in the RC-IGBT array (arrays 12A to 12F) adjacent to that array 12A to 12F in the second direction Y. The total width of the portion where one IGBT region 8 faces two IGBT regions 8 in the second direction Y (first opposing width W1 + second opposing width W2) is narrower than the width WG of the IGBT region 8. In other words, the total width of the portion where the IGBT regions 8 continuous in the second direction Y face the second direction Y in the active region 6 (first opposing width W1 + second opposing width W2) is narrow.
 各配列12A~12Fに含まれる1つのダイオード領域9は、その配列12A~12Fに第2方向Yに隣り合うRC-IGBT配列(配列12A~12F)に含まれるダイオード領域9と、第2方向Yに対向していない。したがって、ダイオード領域9は、第2方向Yには連続しない。 A diode region 9 included in each of the arrays 12A to 12F does not face, in the second direction Y, the diode region 9 included in the RC-IGBT array (arrays 12A to 12F) adjacent to that array 12A to 12F in the second direction Y. Therefore, the diode region 9 is not continuous in the second direction Y.
 図3を参照して、半導体装置1は、半導体層2の第2主面4の上に形成されたコレクタ端子電極32(図3の破線部参照)をさらに含む。コレクタ端子電極32は、具体的には、IGBT領域8(次に述べるコレクタ領域34)およびダイオード領域9(次に述べるカソード領域61)に電気的に接続されている。 Referring to FIG. 3, the semiconductor device 1 further includes a collector terminal electrode 32 (see the dashed line in FIG. 3) formed on the second main surface 4 of the semiconductor layer 2. Specifically, the collector terminal electrode 32 is electrically connected to the IGBT region 8 (collector region 34 described next) and the diode region 9 (cathode region 61 described next).
 コレクタ端子電極32は、第2主面4との間でオーミック接触を形成している。コレクタ端子電極32は、IGBT領域8およびダイオード領域9に、コレクタ信号を伝達する。コレクタ端子電極32は、Ti層、Ni層、Au層、Ag層およびAl層のうちの少なくとも一つを含んでいてもよい。コレクタ端子電極32は、Ti層、Ni層、Au層、Ag層またはAl層を含む単層構造を有していてもよい。コレクタ端子電極32は、Ti層、Ni層、Au層、Ag層およびAl層のうちの少なくとも二つを任意の態様で積層させた積層構造を有していてもよい。 The collector terminal electrode 32 forms an ohmic contact with the second main surface 4. The collector terminal electrode 32 transmits a collector signal to the IGBT region 8 and the diode region 9. The collector terminal electrode 32 may include at least one of a Ti layer, a Ni layer, an Au layer, an Ag layer, and an Al layer. The collector terminal electrode 32 may have a single layer structure including a Ti layer, a Ni layer, an Au layer, an Ag layer, or an Al layer. The collector terminal electrode 32 may have a layered structure in which at least two of a Ti layer, a Ni layer, an Au layer, an Ag layer, and an Al layer are layered in any manner.
 各IGBT領域8は、半導体層2の第2主面4の表層部に形成されたp型(第2導電型)のコレクタ領域34を含む。コレクタ領域34は、第2主面4から露出している。コレクタ領域34のp型不純物濃度は、1.0×1015cm-3以上1.0×1018cm-3以下であってもよい。コレクタ領域34は、コレクタ端子電極32との間でオーミック接触を形成している。この実施形態では、コレクタ領域34は、第2主面4の表層部においてIGBT領域8の全域に形成されている。 Each IGBT region 8 includes a p-type (second conductivity type) collector region 34 formed in a surface layer portion of the second main surface 4 of the semiconductor layer 2. The collector region 34 is exposed from the second main surface 4. The p-type impurity concentration of the collector region 34 may be 1.0×10 15 cm −3 or more and 1.0×10 18 cm −3 or less. The collector region 34 forms an ohmic contact with the collector terminal electrode 32. In this embodiment, the collector region 34 is formed in the surface layer portion of the second main surface 4 throughout the entire IGBT region 8.
 各ダイオード領域9は、半導体層2の第2主面4の表層部に形成されたn型のカソード領域61を含む。カソード領域61のn型不純物濃度は、次に述べるドリフト領域30(図9等参照)のn型不純物濃度よりも大きい。カソード領域61は、第2主面4から露出している。カソード領域61のn型不純物濃度は、1.0×1019cm-3以上1.0×1020cm-3以下であってもよい。カソード領域61は、コレクタ端子電極32との間でオーミック接触を形成している。この実施形態では、カソード領域61は、第2主面4の表層部においてIGBT領域8の全域に形成されている。 Each diode region 9 includes an n + type cathode region 61 formed in a surface layer portion of the second main surface 4 of the semiconductor layer 2. The n-type impurity concentration of the cathode region 61 is higher than the n-type impurity concentration of the drift region 30 (see FIG. 9 and the like) described below. The cathode region 61 is exposed from the second main surface 4. The n-type impurity concentration of the cathode region 61 may be 1.0×10 19 cm −3 or more and 1.0×10 20 cm −3 or less. The cathode region 61 forms an ohmic contact with the collector terminal electrode 32. In this embodiment, the cathode region 61 is formed in the surface layer portion of the second main surface 4 over the entire IGBT region 8.
 図6は、図4の一点鎖線VIで囲まれた部分の拡大図である。図7は、図6の一点鎖線VIIで囲まれた部分の拡大図である。図8は、図6の一点鎖線VIIIで囲まれた部分の拡大図である。図9は、図7のIX-IX線に沿う断面図である。図10は、図8のX-X線に沿う断面図である。図11は、図7のXI-XI線に沿う断面図である。 Figure 6 is an enlarged view of the portion surrounded by dashed line VI in Figure 4. Figure 7 is an enlarged view of the portion surrounded by dashed line VII in Figure 6. Figure 8 is an enlarged view of the portion surrounded by dashed line VIII in Figure 6. Figure 9 is a cross-sectional view taken along line IX-IX in Figure 7. Figure 10 is a cross-sectional view taken along line X-X in Figure 8. Figure 11 is a cross-sectional view taken along line XI-XI in Figure 7.
 図9~図11を参照して、半導体装置1は、半導体層2の内部に形成されたn-型のドリフト領域30をさらに含む。ドリフト領域30は、具体的には、第1方向Xおよび第2方向Yにおいて半導体層2の全域に形成されている。ドリフト領域30は、法線方向Z(半導体層2の厚さ方向)において、半導体層2の第1主面3の表層部に形成されている。ドリフト領域30のn型(第1導電型)不純物濃度は、1.0×1013cm-3以上1.0×1015cm-3以下であってもよい。 9 to 11, the semiconductor device 1 further includes an n -type drift region 30 formed inside the semiconductor layer 2. Specifically, the drift region 30 is formed over the entire semiconductor layer 2 in the first direction X and the second direction Y. The drift region 30 is formed in a surface layer portion of the first main surface 3 of the semiconductor layer 2 in the normal direction Z (thickness direction of the semiconductor layer 2). The n-type (first conductivity type) impurity concentration of the drift region 30 may be not less than 1.0×10 13 cm -3 and not more than 1.0×10 15 cm -3 .
 半導体層2は、この実施形態では、n-型の半導体基板31を含む単層構造を有している。半導体基板31は、FZ(Floating Zone)法を経て形成されたシリコン製のFZ基板であってもよい。ドリフト領域30は、半導体基板31によって形成されている。 In this embodiment, the semiconductor layer 2 has a single-layer structure including an n - type semiconductor substrate 31. The semiconductor substrate 31 may be a silicon FZ (Floating Zone) substrate formed through an FZ method. The drift region 30 is formed by the semiconductor substrate 31.
 半導体装置1は、半導体層2の第2主面4の表層部に形成されたn型のバッファ層33を含む。バッファ層33は、第2主面4の表層部の全域に形成されていてもよい。バッファ層33のn型不純物濃度は、ドリフト領域30のn型不純物濃度よりも高い。バッファ層33のn型不純物濃度は、1.0×1015cm-3以上1.0×1017cm-3以下であってもよい。バッファ層33の厚さは、0.5μm以上30μm以下であってもよい。 The semiconductor device 1 includes an n-type buffer layer 33 formed in a surface layer portion of the second main surface 4 of the semiconductor layer 2. The buffer layer 33 may be formed over the entire surface layer portion of the second main surface 4. The n-type impurity concentration of the buffer layer 33 is higher than the n-type impurity concentration of the drift region 30. The n-type impurity concentration of the buffer layer 33 may be 1.0×10 15 cm −3 or more and 1.0×10 17 cm −3 or less. The thickness of the buffer layer 33 may be 0.5 μm or more and 30 μm or less.
 各IGBT領域8は、半導体層2の第2主面4の表層部に形成されたp型(第2導電型)のコレクタ領域34を含む。コレクタ領域34は、第2主面4から露出している。コレクタ領域34は、第2主面4の表層部においてIGBT領域8の全域に形成されていてもよい。コレクタ領域34のp型不純物濃度は、1.0×1015cm-3以上1.0×1018cm-3以下であってもよい。コレクタ領域34は、コレクタ端子電極32との間でオーミック接触を形成している。 Each IGBT region 8 includes a p-type (second conductivity type) collector region 34 formed in a surface layer portion of the second main surface 4 of the semiconductor layer 2. The collector region 34 is exposed from the second main surface 4. The collector region 34 may be formed throughout the entire IGBT region 8 in the surface layer portion of the second main surface 4. The p-type impurity concentration of the collector region 34 may be 1.0×10 15 cm -3 or more and 1.0×10 18 cm -3 or less. The collector region 34 forms an ohmic contact with the collector terminal electrode 32.
 図6~図11を参照して、各IGBT領域8は、半導体層2の第1主面3に形成されたFET構造35を複数含む。FET構造35は、具体的には、第1主面3に形成されたトレンチゲート構造36を含む。トレンチゲート構造36は、IGBT領域8において第1方向Xに沿って間隔を空けて複数形成されている。第1方向Xに互いに隣り合う2つのトレンチゲート構造36の間の距離は、1μm以上8μm以下であってもよい。図6~図8では、トレンチゲート構造36がハッチングによって示されている。 Referring to Figures 6 to 11, each IGBT region 8 includes a plurality of FET structures 35 formed on the first main surface 3 of the semiconductor layer 2. Specifically, the FET structures 35 include trench gate structures 36 formed on the first main surface 3. A plurality of trench gate structures 36 are formed at intervals along the first direction X in the IGBT region 8. The distance between two trench gate structures 36 adjacent to each other in the first direction X may be 1 μm or more and 8 μm or less. In Figures 6 to 8, the trench gate structures 36 are indicated by hatching.
 複数のトレンチゲート構造36は、平面視において第2方向Yに沿って延びる帯状に形成されている。複数のトレンチゲート構造36は、全体としてストライプ状に形成されている。複数のトレンチゲート構造36は、第2方向Yの一方側の一端部および第2方向Yの他方側の他端部をそれぞれ有している。 The multiple trench gate structures 36 are formed in a band shape extending along the second direction Y in a plan view. The multiple trench gate structures 36 are formed in a stripe shape as a whole. Each of the multiple trench gate structures 36 has one end on one side of the second direction Y and the other end on the other side of the second direction Y.
 図4および図5Bを参照して、トレンチゲート構造36は、第1外側トレンチゲート構造37および第2外側トレンチゲート構造38を含む。第1外側トレンチゲート構造37は、第1方向Xに沿って延び、複数のトレンチゲート構造36の一端部を接続している。第2外側トレンチゲート構造38は、第1方向Xに沿って延び、複数のトレンチゲート構造36の他端部を接続している。 Referring to Figures 4 and 5B, the trench gate structure 36 includes a first outer trench gate structure 37 and a second outer trench gate structure 38. The first outer trench gate structure 37 extends along the first direction X and connects one ends of the multiple trench gate structures 36. The second outer trench gate structure 38 extends along the first direction X and connects the other ends of the multiple trench gate structures 36.
 第1外側トレンチゲート構造37および第2外側トレンチゲート構造38は、延びる方向が異なる点を除いて、トレンチゲート構造36と同一の構造を有している。以下では、トレンチゲート構造36の構造について説明し、第1外側トレンチゲート構造37の構造および第2外側トレンチゲート構造38の構造についての説明は省略する。 The first outer trench gate structure 37 and the second outer trench gate structure 38 have the same structure as the trench gate structure 36, except that they extend in different directions. Below, the structure of the trench gate structure 36 will be described, and a description of the structures of the first outer trench gate structure 37 and the second outer trench gate structure 38 will be omitted.
 図9~図11を参照して、各トレンチゲート構造36は、ゲートトレンチ39、ゲート絶縁層40およびゲート導電層41を含む。ゲートトレンチ39は、第1主面3に形成されている。ゲートトレンチ39は、側壁および底壁を含む。ゲートトレンチ39の側壁は、第1主面3に対して垂直に形成されていてもよい。 Referring to Figures 9 to 11, each trench gate structure 36 includes a gate trench 39, a gate insulating layer 40, and a gate conductive layer 41. The gate trench 39 is formed in the first main surface 3. The gate trench 39 includes a sidewall and a bottom wall. The sidewall of the gate trench 39 may be formed perpendicular to the first main surface 3.
 ゲートトレンチ39の側壁は、第1主面3から底壁に向かって下り傾斜していてもよい。ゲートトレンチ39は、開口側の開口面積が底面積よりも大きいテーパ形状に形成されていてもよい。ゲートトレンチ39の底壁は、第1主面3に対して平行に形成されていてもよい。ゲートトレンチ39の底壁は、第2主面4に向かう湾曲状に形成されていてもよい。ゲートトレンチ39は、底壁エッジ部を含む。底壁エッジ部は、ゲートトレンチ39の側壁および底壁を接続している。底壁エッジ部は、第2主面4に向かう湾曲状に形成されていてもよい。 The sidewalls of the gate trench 39 may slope downward from the first main surface 3 toward the bottom wall. The gate trench 39 may be formed in a tapered shape in which the opening area on the opening side is larger than the bottom area. The bottom wall of the gate trench 39 may be formed parallel to the first main surface 3. The bottom wall of the gate trench 39 may be formed in a curved shape toward the second main surface 4. The gate trench 39 includes a bottom wall edge portion. The bottom wall edge portion connects the sidewalls and bottom wall of the gate trench 39. The bottom wall edge portion may be formed in a curved shape toward the second main surface 4.
 ゲートトレンチ39の深さD1は、2μm以上10μm以下であってもよい。ゲートトレンチ39の深さD1は、ゲートトレンチ39の底壁の最深部の深さ位置と第1主面3との距離と定義されてもよい。ゲートトレンチ39の幅は、0.5μm以上3μm以下であってもよい。ゲートトレンチ39の幅は、ゲートトレンチ39の第1方向Xの幅である。 The depth D1 of the gate trench 39 may be 2 μm or more and 10 μm or less. The depth D1 of the gate trench 39 may be defined as the distance between the deepest depth position of the bottom wall of the gate trench 39 and the first main surface 3. The width of the gate trench 39 may be 0.5 μm or more and 3 μm or less. The width of the gate trench 39 is the width of the gate trench 39 in the first direction X.
 ゲート絶縁層40は、ゲートトレンチ39の内壁に沿って膜状に形成されている。ゲート絶縁層40は、ゲートトレンチ39内においてリセス空間を区画している。ゲート絶縁層40は、この実施形態では、シリコン酸化膜を含む。ゲート絶縁層40は、シリコン酸化膜に代えてまたはシリコン酸化膜に加えて、窒化シリコン膜を含んでいてもよい。 The gate insulating layer 40 is formed in the form of a film along the inner wall of the gate trench 39. The gate insulating layer 40 defines a recess space within the gate trench 39. In this embodiment, the gate insulating layer 40 includes a silicon oxide film. The gate insulating layer 40 may include a silicon nitride film instead of or in addition to the silicon oxide film.
 ゲート導電層41は、ゲート絶縁層40を挟んでゲートトレンチ39に埋め込まれている。ゲート導電層41は、具体的には、ゲートトレンチ39においてゲート絶縁層40によって区画されたリセス空間に埋め込まれている。ゲート導電層41は、ゲート信号によって制御される。ゲート導電層41は、導電性ポリシリコンを含んでいてもよい。 The gate conductive layer 41 is embedded in the gate trench 39 with the gate insulating layer 40 sandwiched therebetween. Specifically, the gate conductive layer 41 is embedded in a recess space defined by the gate insulating layer 40 in the gate trench 39. The gate conductive layer 41 is controlled by a gate signal. The gate conductive layer 41 may include conductive polysilicon.
 ゲート導電層41は、断面視において法線方向Zに沿って延びる壁状に形成されている。ゲート導電層41は、ゲートトレンチ39の開口側に位置する上端部を有している。ゲート導電層41の上端部は、第1主面3に対してゲートトレンチ39の底壁側に位置している。 The gate conductive layer 41 is formed in a wall shape extending along the normal direction Z in a cross-sectional view. The gate conductive layer 41 has an upper end portion located on the opening side of the gate trench 39. The upper end portion of the gate conductive layer 41 is located on the bottom wall side of the gate trench 39 with respect to the first main surface 3.
 ゲート導電層41の上端部には、ゲートトレンチ39の底壁に向かって窪んだ窪みが形成されている。ゲート導電層41の上端部の窪みは、ゲートトレンチ39の底壁に向かう先細り形状に形成されている。ゲート導電層41の上端部は、ゲート導電層41の内側に括れた括れ部を有している。 A recess is formed at the upper end of the gate conductive layer 41, recessed toward the bottom wall of the gate trench 39. The recess at the upper end of the gate conductive layer 41 is formed in a tapered shape toward the bottom wall of the gate trench 39. The upper end of the gate conductive layer 41 has a narrowed portion on the inside of the gate conductive layer 41.
 図9および図10を参照して、FET構造35は、半導体層2の第1主面3の表層部に形成されたp型のボディ領域45を含む。ボディ領域45のp型不純物濃度は、1.0×1017cm-3以上1.0×1018cm-3以下であってもよい。ボディ領域45は、トレンチゲート構造36の両側にそれぞれ形成されている。ボディ領域45は、平面視においてトレンチゲート構造36に沿って延びる帯状に形成されている。ボディ領域45は、ゲートトレンチ39の側壁から露出している。ボディ領域45の底部は、法線方向Zに関して、第1主面3およびゲートトレンチ39の底壁の間の領域に形成されている。 9 and 10, the FET structure 35 includes a p-type body region 45 formed in a surface layer portion of the first main surface 3 of the semiconductor layer 2. The p-type impurity concentration of the body region 45 may be 1.0×10 17 cm −3 or more and 1.0×10 18 cm −3 or less. The body region 45 is formed on both sides of the trench gate structure 36. The body region 45 is formed in a strip shape extending along the trench gate structure 36 in a plan view. The body region 45 is exposed from a side wall of the gate trench 39. The bottom of the body region 45 is formed in a region between the first main surface 3 and the bottom wall of the gate trench 39 with respect to the normal direction Z.
 FET構造35は、ボディ領域45の表層部に形成されたn型のエミッタ領域46を含む。エミッタ領域46のn型不純物濃度は、ドリフト領域30のn型不純物濃度よりも大きい。エミッタ領域46のn型不純物濃度は、1.0×1019cm-3以上1.0×1020cm-3以下であってもよい。 The FET structure 35 includes an n + type emitter region 46 formed in a surface layer portion of the body region 45. The n-type impurity concentration of the emitter region 46 is higher than the n-type impurity concentration of the drift region 30. The n-type impurity concentration of the emitter region 46 may be 1.0×10 19 cm −3 or more and 1.0×10 20 cm −3 or less.
 FET構造35は、この実施形態では、トレンチゲート構造36の両側に形成された複数のエミッタ領域46を含む。エミッタ領域46は、平面視においてトレンチゲート構造36に沿って延びる帯状に形成されている。エミッタ領域46は、第1主面3およびゲートトレンチ39の側壁から露出している。エミッタ領域46の底部は、法線方向Zに関して、ゲート導電層41の上端部およびボディ領域45の底部の間の領域に形成されている。 In this embodiment, the FET structure 35 includes a plurality of emitter regions 46 formed on both sides of the trench gate structure 36. The emitter regions 46 are formed in a strip shape extending along the trench gate structure 36 in a plan view. The emitter regions 46 are exposed from the first main surface 3 and the sidewalls of the gate trench 39. The bottoms of the emitter regions 46 are formed in a region between the upper end of the gate conductive layer 41 and the bottom of the body region 45 in the normal direction Z.
 FET構造35は、この実施形態では、半導体層2においてボディ領域45に対して第2主面4側の領域に形成されたn型のキャリアストレージ領域47を含む。キャリアストレージ領域47のn型不純物濃度は、ドリフト領域30のn型不純物濃度よりも大きい。キャリアストレージ領域47のn型不純物濃度は、1.0×1015cm-3以上1.0×1017cm-3以下であってもよい。 In this embodiment, the FET structure 35 includes an n + type carrier storage region 47 formed in a region of the semiconductor layer 2 on the second main surface 4 side with respect to the body region 45. The n type impurity concentration of the carrier storage region 47 is higher than the n type impurity concentration of the drift region 30. The n type impurity concentration of the carrier storage region 47 may be 1.0×10 15 cm -3 or more and 1.0×10 17 cm -3 or less.
 FET構造35は、この実施形態では、トレンチゲート構造36の両側に形成された複数のキャリアストレージ領域47を含む。キャリアストレージ領域47は、平面視においてトレンチゲート構造36に沿って延びる帯状に形成されている。キャリアストレージ領域47は、ゲートトレンチ39の側壁から露出している。キャリアストレージ領域47の底部は、法線方向Zに関して、ボディ領域45の底部およびゲートトレンチ39の底壁の間の領域に形成されている。 In this embodiment, the FET structure 35 includes a plurality of carrier storage regions 47 formed on both sides of the trench gate structure 36. The carrier storage regions 47 are formed in a strip shape extending along the trench gate structure 36 in a plan view. The carrier storage regions 47 are exposed from the side walls of the gate trench 39. The bottoms of the carrier storage regions 47 are formed in the region between the bottom of the body region 45 and the bottom wall of the gate trench 39 in the normal direction Z.
 キャリアストレージ領域47は、半導体層2に供給されたキャリア(正孔)がボディ領域45に引き戻される(排出される)のを抑制する。これにより、半導体層2においてFET構造35の直下の領域に正孔が蓄積される。その結果、オン抵抗の低減およびオン電圧の低減が図られる。 The carrier storage region 47 prevents carriers (holes) supplied to the semiconductor layer 2 from being drawn back (discharged) to the body region 45. This causes holes to accumulate in the region directly below the FET structure 35 in the semiconductor layer 2. As a result, the on-resistance and on-voltage are reduced.
 FET構造35は、半導体層2の第1主面3に形成されたコンタクトトレンチ48を含む。FET構造35は、この実施形態では、トレンチゲート構造36の両側に形成された複数のコンタクトトレンチ48を含む。コンタクトトレンチ48は、エミッタ領域46を露出させている。コンタクトトレンチ48は、この実施形態では、エミッタ領域46を貫通している。 The FET structure 35 includes a contact trench 48 formed in the first major surface 3 of the semiconductor layer 2. In this embodiment, the FET structure 35 includes a plurality of contact trenches 48 formed on both sides of the trench gate structure 36. The contact trenches 48 expose the emitter region 46. In this embodiment, the contact trenches 48 penetrate the emitter region 46.
 コンタクトトレンチ48は、トレンチゲート構造36から第1方向Xに間隔を空けて形成されている。コンタクトトレンチ48は、平面視においてトレンチゲート構造36に沿って帯状に延びている。第2方向Yに関して、コンタクトトレンチ48の長さは、トレンチゲート構造36の長さ以下である。コンタクトトレンチ48の長さは、具体的には、トレンチゲート構造36の長さ未満である。 The contact trench 48 is formed at a distance from the trench gate structure 36 in the first direction X. The contact trench 48 extends in a strip shape along the trench gate structure 36 in a plan view. In the second direction Y, the length of the contact trench 48 is equal to or less than the length of the trench gate structure 36. Specifically, the length of the contact trench 48 is less than the length of the trench gate structure 36.
 FET構造35は、ボディ領域45においてコンタクトトレンチ48の底壁に沿う領域に形成されたp型のコンタクト領域49を含む。コンタクト領域49のp型不純物濃度は、ボディ領域45のp型不純物濃度よりも大きい。コンタクト領域49のp型不純物濃度は、1.0×1019cm-3以上1.0×1020cm-3以下であってもよい。 The FET structure 35 includes a p + type contact region 49 formed in a region along the bottom wall of the contact trench 48 in the body region 45. The p-type impurity concentration of the contact region 49 is higher than the p-type impurity concentration of the body region 45. The p-type impurity concentration of the contact region 49 may be 1.0×10 19 cm −3 or more and 1.0×10 20 cm −3 or less.
 コンタクト領域49は、コンタクトトレンチ48の底壁から露出している。コンタクト領域49は、平面視においてコンタクトトレンチ48に沿って帯状に延びている。コンタクト領域49の底部は、法線方向Zに関して、コンタクトトレンチ48の底壁およびボディ領域45の底部の間の領域に形成されている。 The contact region 49 is exposed from the bottom wall of the contact trench 48. In a plan view, the contact region 49 extends in a band shape along the contact trench 48. The bottom of the contact region 49 is formed in the region between the bottom wall of the contact trench 48 and the bottom of the body region 45 in the normal direction Z.
 このように、FET構造35では、ゲート導電層41が、ゲート絶縁層40を挟んでボディ領域45およびエミッタ領域46に対向している。この実施形態では、ゲート導電層41は、ゲート絶縁層40を挟んでキャリアストレージ領域47にも対向している。IGBTのチャネルは、ボディ領域45においてエミッタ領域46およびドリフト領域30(キャリアストレージ領域47)の間の領域に形成される。チャネルのオン・オフは、ゲート信号によって制御される。 Thus, in the FET structure 35, the gate conductive layer 41 faces the body region 45 and the emitter region 46 with the gate insulating layer 40 in between. In this embodiment, the gate conductive layer 41 also faces the carrier storage region 47 with the gate insulating layer 40 in between. The channel of the IGBT is formed in the region between the emitter region 46 and the drift region 30 (carrier storage region 47) in the body region 45. The on/off of the channel is controlled by a gate signal.
 各IGBT領域8は、半導体層2の第1主面3に形成されたエミッタトレンチ構造73をさらに含む。各IGBT領域8は、具体的には、FET構造35の両側に形成された複数のエミッタトレンチ構造73を含む。エミッタトレンチ構造73は、第1主面3の表層部においてFET構造35に隣り合う領域に形成されている。エミッタトレンチ構造73は、平面視において第2方向Yに沿って延びる帯状に形成されている。複数のエミッタトレンチ構造73は、全体としてストライプ状に形成されている。エミッタトレンチ構造73は、トレンチゲート構造36と平行な帯状であってもよい。 Each IGBT region 8 further includes an emitter trench structure 73 formed on the first main surface 3 of the semiconductor layer 2. Specifically, each IGBT region 8 includes a plurality of emitter trench structures 73 formed on both sides of the FET structure 35. The emitter trench structure 73 is formed in a region adjacent to the FET structure 35 in the surface layer portion of the first main surface 3. The emitter trench structure 73 is formed in a band shape extending along the second direction Y in a plan view. The plurality of emitter trench structures 73 are formed in a stripe shape as a whole. The emitter trench structure 73 may be in a band shape parallel to the trench gate structure 36.
 図6および図7を参照して、各IGBT領域8では、第1方向Xに沿って間隔を空けて、トレンチゲート構造36およびエミッタトレンチ構造73が交互に配列されている。トレンチゲート構造36およびエミッタトレンチ構造73は、等しい間隔を空けて交互に配列されていてもよい。第1方向Xに互いに隣り合う2つのトレンチゲート構造36およびエミッタトレンチ構造73の間の距離(第1ピッチP1(図7参照))は、たとえば、1.0μm以上3.5μm以下であってもよい。 6 and 7, in each IGBT region 8, the trench gate structures 36 and the emitter trench structures 73 are arranged alternately at intervals along the first direction X. The trench gate structures 36 and the emitter trench structures 73 may be arranged alternately at equal intervals. The distance between two adjacent trench gate structures 36 and emitter trench structures 73 in the first direction X (first pitch P1 (see FIG. 7)) may be, for example, 1.0 μm or more and 3.5 μm or less.
 図9および図10を参照して、エミッタトレンチ構造73は、エミッタトレンチ74、エミッタ絶縁層75およびエミッタ電位電極層76を含む。エミッタトレンチ74は、半導体層2の第1主面3に形成されている。エミッタトレンチ74は、側壁および底壁を含む。エミッタトレンチ74の側壁は、第1主面3に対して垂直に形成されていてもよい。 Referring to Figures 9 and 10, the emitter trench structure 73 includes an emitter trench 74, an emitter insulating layer 75, and an emitter potential electrode layer 76. The emitter trench 74 is formed in the first main surface 3 of the semiconductor layer 2. The emitter trench 74 includes a sidewall and a bottom wall. The sidewall of the emitter trench 74 may be formed perpendicular to the first main surface 3.
 エミッタトレンチ74の側壁は、第1主面3から底壁に向かって下り傾斜していてもよい。エミッタトレンチ74は、開口側の開口面積が底面積よりも大きいテーパ形状に形成されていてもよい。エミッタトレンチ74においてFET構造35に面する側壁(外側側壁)からは、エミッタ領域46、ボディ領域45およびキャリアストレージ領域47が露出している。エミッタトレンチ74の底壁は、第1主面3に対して平行に形成されていてもよい。エミッタトレンチ74の底壁は、第2主面4に向かう湾曲状に形成されていてもよい。エミッタトレンチ74は、底壁エッジ部を含む。底壁エッジ部は、エミッタトレンチ74の側壁および底壁を接続している。底壁エッジ部は、半導体層2の第2主面4に向かう湾曲状に形成されていてもよい。 The sidewall of the emitter trench 74 may be inclined downward from the first main surface 3 toward the bottom wall. The emitter trench 74 may be formed in a tapered shape in which the opening area on the opening side is larger than the bottom area. The emitter region 46, the body region 45, and the carrier storage region 47 are exposed from the sidewall (outer sidewall) of the emitter trench 74 facing the FET structure 35. The bottom wall of the emitter trench 74 may be formed parallel to the first main surface 3. The bottom wall of the emitter trench 74 may be formed in a curved shape toward the second main surface 4. The emitter trench 74 includes a bottom wall edge portion. The bottom wall edge portion connects the sidewall and the bottom wall of the emitter trench 74. The bottom wall edge portion may be formed in a curved shape toward the second main surface 4 of the semiconductor layer 2.
 エミッタトレンチ74の深さD3は、2μm以上10μm以下であってもよい。エミッタトレンチ74の深さD3は、ゲートトレンチ39の深さD1と等しくてもよい。エミッタトレンチ74の幅は、0.5μm以上3μm以下であってもよい。エミッタトレンチ74の幅は、エミッタトレンチ74の第1方向Xの幅である。エミッタトレンチ74の幅は、ゲートトレンチ39の幅と等しくてもよい。 The depth D3 of the emitter trench 74 may be 2 μm or more and 10 μm or less. The depth D3 of the emitter trench 74 may be equal to the depth D1 of the gate trench 39. The width of the emitter trench 74 may be 0.5 μm or more and 3 μm or less. The width of the emitter trench 74 is the width of the emitter trench 74 in the first direction X. The width of the emitter trench 74 may be equal to the width of the gate trench 39.
 エミッタ絶縁層75は、エミッタトレンチ74の内壁に沿って膜状に形成されている。エミッタ絶縁層75は、エミッタトレンチ74内においてリセス空間を区画している。エミッタ絶縁層75は、この実施形態では、シリコン酸化膜を含む。エミッタ絶縁層75は、シリコン酸化膜に代えてまたはシリコン酸化膜に加えて、窒化シリコン膜を含んでいてもよい。 The emitter insulating layer 75 is formed in the form of a film along the inner wall of the emitter trench 74. The emitter insulating layer 75 defines a recess space within the emitter trench 74. In this embodiment, the emitter insulating layer 75 includes a silicon oxide film. The emitter insulating layer 75 may include a silicon nitride film instead of or in addition to the silicon oxide film.
 エミッタ電位電極層76は、エミッタ絶縁層75を挟んでエミッタトレンチ74に埋め込まれている。エミッタ電位電極層76は、具体的には、エミッタトレンチ74においてエミッタ絶縁層75によって区画されたリセス空間に埋め込まれている。エミッタ電位電極層76は、導電性ポリシリコンを含んでいてもよい。エミッタ電位電極層76は、エミッタ信号によって制御される。 The emitter potential electrode layer 76 is embedded in the emitter trench 74 with the emitter insulating layer 75 sandwiched therebetween. Specifically, the emitter potential electrode layer 76 is embedded in a recess space defined by the emitter insulating layer 75 in the emitter trench 74. The emitter potential electrode layer 76 may include conductive polysilicon. The emitter potential electrode layer 76 is controlled by an emitter signal.
 エミッタ電位電極層76は、断面視において法線方向Zに沿って延びる壁状に形成されている。エミッタ電位電極層76は、エミッタトレンチ74の開口側に位置する上端部を有している。エミッタ電位電極層76の上端部は、第1主面3に対してエミッタトレンチ74の底壁側に位置している。 The emitter potential electrode layer 76 is formed in a wall shape extending along the normal direction Z in a cross-sectional view. The emitter potential electrode layer 76 has an upper end portion located on the opening side of the emitter trench 74. The upper end portion of the emitter potential electrode layer 76 is located on the bottom wall side of the emitter trench 74 with respect to the first main surface 3.
 エミッタ電位電極層76の上端部には、エミッタトレンチ74の底壁に向かって窪んだ窪みが形成されている。エミッタ電位電極層76の上端部の窪みは、エミッタトレンチ74の底壁に向かう先細り形状に形成されている。エミッタ電位電極層76の上端部は、エミッタ電位電極層76の内側に括れた括れ部を有している。 A recess is formed at the upper end of the emitter potential electrode layer 76, recessed toward the bottom wall of the emitter trench 74. The recess at the upper end of the emitter potential electrode layer 76 is formed in a tapered shape toward the bottom wall of the emitter trench 74. The upper end of the emitter potential electrode layer 76 has a narrowed portion that is narrowed on the inside of the emitter potential electrode layer 76.
 図6および図8を参照して、各ダイオード領域9は、ダイオードセル領域69を区画するセル分離構造63を含む。図6および図8では、セル分離構造63がハッチングによって示されている。各ダイオード領域9は、具体的には、複数のダイオードセル領域69をそれぞれ区画する複数のセル分離構造63を含む。 Referring to Figures 6 and 8, each diode region 9 includes a cell isolation structure 63 that defines a diode cell region 69. In Figures 6 and 8, the cell isolation structure 63 is indicated by hatching. Specifically, each diode region 9 includes a plurality of cell isolation structures 63 that define a plurality of diode cell regions 69, respectively.
 複数のセル分離構造63は、互いに隣り合う複数のダイオードセル領域69の間の領域にそれぞれ形成されている。複数のセル分離構造63は、具体的には、平面視においてダイオードセル領域69を取り囲む環状(この実施形態では四角環状)にそれぞれ形成されている。一方のダイオードセル領域69を区画するセル分離構造63および他方のダイオードセル領域69を区画するセル分離構造63は、互いに隣り合う複数のダイオードセル領域69の間の領域において一体的に形成されている。 The multiple cell isolation structures 63 are each formed in the region between multiple adjacent diode cell regions 69. Specifically, the multiple cell isolation structures 63 are each formed in a ring shape (a square ring shape in this embodiment) surrounding the diode cell region 69 in a plan view. The cell isolation structure 63 that divides one diode cell region 69 and the cell isolation structure 63 that divides the other diode cell region 69 are integrally formed in the region between the multiple adjacent diode cell regions 69.
 複数のセル分離構造63は、第1方向Xにおいては、等しい間隔を空けて配列されていてもよい。複数のセル分離構造63は、ストライプ状に形成されている。第1方向Xに互いに隣り合う2つのセル分離構造63の間の距離(第2ピッチP2(図8参照))は、たとえば、1.0μm以上10.0μm以下であってもよい。第2ピッチP2は、第1ピッチP1(図7参照)と同じであってもよい。 The multiple cell separation structures 63 may be arranged at equal intervals in the first direction X. The multiple cell separation structures 63 are formed in a stripe pattern. The distance between two adjacent cell separation structures 63 in the first direction X (second pitch P2 (see FIG. 8)) may be, for example, 1.0 μm or more and 10.0 μm or less. The second pitch P2 may be the same as the first pitch P1 (see FIG. 7).
 複数のセル分離構造63によって区画されたダイオードセル領域69は、この実施形態では、平面視において第1方向Xに沿って間隔を空けて複数形成されている。複数のダイオードセル領域69は、平面視において第2方向Yに沿って延びる帯状にそれぞれ形成されている。複数のダイオードセル領域69は、全体としてストライプ状に形成されている。第2方向Yに関して、ダイオードセル領域69の長さは、トレンチゲート構造36の長さ以下であってもよい。ダイオードセル領域69の長さは、トレンチゲート構造36の長さ未満であってもよい。 In this embodiment, the diode cell regions 69 partitioned by the cell separation structures 63 are formed at intervals along the first direction X in a planar view. The diode cell regions 69 are each formed in a band shape extending along the second direction Y in a planar view. The diode cell regions 69 are formed in a stripe shape as a whole. With respect to the second direction Y, the length of the diode cell region 69 may be equal to or less than the length of the trench gate structure 36. The length of the diode cell region 69 may be less than the length of the trench gate structure 36.
 図10を参照して、セル分離構造63は、セル分離トレンチ64、セル分離絶縁層65およびセル分離電極層66を含む。セル分離トレンチ64は、第1主面3に形成されている。セル分離トレンチ64は、側壁および底壁を含む。セル分離トレンチ64の側壁は、第1主面3に対して垂直に形成されていてもよい。 Referring to FIG. 10, the cell isolation structure 63 includes a cell isolation trench 64, a cell isolation insulating layer 65, and a cell isolation electrode layer 66. The cell isolation trench 64 is formed in the first main surface 3. The cell isolation trench 64 includes a sidewall and a bottom wall. The sidewall of the cell isolation trench 64 may be formed perpendicular to the first main surface 3.
 セル分離トレンチ64の側壁は、第1主面3から底壁に向かって下り傾斜していてもよい。セル分離トレンチ64は、開口側の開口面積が底面積よりも大きいテーパ形状に形成されていてもよい。セル分離トレンチ64の底壁は、第1主面3に対して平行に形成されていてもよい。セル分離トレンチ64の底壁は、第2主面4に向かう湾曲状に形成されていてもよい。セル分離トレンチ64は、底壁エッジ部を含む。底壁エッジ部は、セル分離トレンチ64の側壁および底壁を接続している。底壁エッジ部は、第2主面4に向かう湾曲状に形成されていてもよい。 The sidewalls of the cell separation trench 64 may slope downward from the first main surface 3 toward the bottom wall. The cell separation trench 64 may be formed in a tapered shape in which the opening area on the opening side is larger than the bottom area. The bottom wall of the cell separation trench 64 may be formed parallel to the first main surface 3. The bottom wall of the cell separation trench 64 may be formed in a curved shape toward the second main surface 4. The cell separation trench 64 includes a bottom wall edge portion. The bottom wall edge portion connects the sidewalls and the bottom wall of the cell separation trench 64. The bottom wall edge portion may be formed in a curved shape toward the second main surface 4.
 セル分離トレンチ64の深さD2は、2μm以上10μm以下であってもよい。セル分離トレンチ64の深さD2は、セル分離トレンチ64の底壁の最深部の深さ位置と第1主面3との距離と定義されてもよい。セル分離トレンチ64の深さD2は、ゲートトレンチ39の深さD1(図9等参照)と等しくてもよい。セル分離トレンチ64の幅は、0.5μm以上3μm以下であってもよい。セル分離トレンチ64の幅は、セル分離トレンチ64の第1方向Xの幅である。セル分離トレンチ64の幅は、ゲートトレンチ39の幅と等しくてもよい。 The depth D2 of the cell isolation trench 64 may be 2 μm or more and 10 μm or less. The depth D2 of the cell isolation trench 64 may be defined as the distance between the deepest depth position of the bottom wall of the cell isolation trench 64 and the first main surface 3. The depth D2 of the cell isolation trench 64 may be equal to the depth D1 of the gate trench 39 (see FIG. 9, etc.). The width of the cell isolation trench 64 may be 0.5 μm or more and 3 μm or less. The width of the cell isolation trench 64 is the width of the cell isolation trench 64 in the first direction X. The width of the cell isolation trench 64 may be equal to the width of the gate trench 39.
 セル分離絶縁層65は、セル分離トレンチ64の内壁に沿って膜状に形成されている。セル分離絶縁層65は、セル分離トレンチ64内においてリセス空間を区画している。セル分離絶縁層65は、この実施形態では、シリコン酸化膜を含む。セル分離絶縁層65は、シリコン酸化膜に代えてまたはシリコン酸化膜に加えて、窒化シリコン膜を含んでいてもよい。 The cell isolation insulating layer 65 is formed in the form of a film along the inner wall of the cell isolation trench 64. The cell isolation insulating layer 65 defines a recess space within the cell isolation trench 64. In this embodiment, the cell isolation insulating layer 65 includes a silicon oxide film. The cell isolation insulating layer 65 may include a silicon nitride film instead of or in addition to the silicon oxide film.
 セル分離電極層66は、セル分離絶縁層65を挟んでセル分離トレンチ64に埋め込まれている。セル分離電極層66は、具体的には、セル分離トレンチ64においてセル分離絶縁層65によって区画されたリセス空間に埋め込まれている。セル分離電極層66は、エミッタ信号によって制御される。セル分離電極層66は、導電性ポリシリコンを含んでいてもよい。 The cell separation electrode layer 66 is embedded in the cell separation trench 64 with the cell separation insulating layer 65 sandwiched therebetween. Specifically, the cell separation electrode layer 66 is embedded in a recess space defined by the cell separation insulating layer 65 in the cell separation trench 64. The cell separation electrode layer 66 is controlled by an emitter signal. The cell separation electrode layer 66 may include conductive polysilicon.
 セル分離電極層66は、断面視において法線方向Zに沿って延びる壁状に形成されている。セル分離電極層66は、セル分離トレンチ64の開口側に位置する上端部を有している。セル分離電極層66の上端部は、第1主面3に対してセル分離トレンチ64の底壁側に位置している。 The cell separation electrode layer 66 is formed in a wall shape extending along the normal direction Z in a cross-sectional view. The cell separation electrode layer 66 has an upper end portion located on the opening side of the cell separation trench 64. The upper end portion of the cell separation electrode layer 66 is located on the bottom wall side of the cell separation trench 64 with respect to the first main surface 3.
 セル分離電極層66の上端部は、第1主面3側に向かって先細り形状に形成されている。セル分離電極層66の上端部には、セル分離トレンチ64の底壁に向かって窪んだ窪みが形成されている。セル分離電極層66の窪みは、セル分離トレンチ64の底壁に向かう先細り形状に形成されている。 The upper end of the cell separation electrode layer 66 is tapered toward the first main surface 3. A recess is formed at the upper end of the cell separation electrode layer 66, recessed toward the bottom wall of the cell separation trench 64. The recess in the cell separation electrode layer 66 is tapered toward the bottom wall of the cell separation trench 64.
 各ダイオード領域9は、半導体層2の第1主面3の表層部に形成されたp-型のアノード領域62を含む。アノード領域62のp型不純物濃度は、ボディ領域45のp型不純物濃度以下であってもよい。アノード領域62のp型不純物濃度は、ボディ領域45のp型不純物濃度未満であることが好ましい。アノード領域62のp型不純物濃度は、1.0×1015cm-3以上1.0×1018cm-3未満であってもよい。 Each diode region 9 includes ap type anode region 62 formed in a surface layer portion of the first main surface 3 of the semiconductor layer 2. The p-type impurity concentration of the anode region 62 may be equal to or lower than the p-type impurity concentration of the body region 45. The p-type impurity concentration of the anode region 62 is preferably lower than the p-type impurity concentration of the body region 45. The p-type impurity concentration of the anode region 62 may be equal to or higher than 1.0×10 15 cm −3 and lower than 1.0×10 18 cm −3 .
 アノード領域62は、各ダイオードセル領域69に形成されている。したがって、複数のアノード領域62が、第1方向Xにおいては、等しい間隔を空けて配列されており、全体としてストライプ状に形成されている。アノード領域62は、半導体層2との間でpn接合部68を形成する。これにより、アノード領域62をアノードとし、半導体層2(カソード領域61)をカソードとするpn接合ダイオードDが形成されている。pn接合ダイオードDがオフ状態からオン状態に切り換わると、pn接合ダイオードDに順方向電流が流れる。これにより、ダイオード領域9において電流が流れる。 The anode region 62 is formed in each diode cell region 69. Therefore, the multiple anode regions 62 are arranged at equal intervals in the first direction X, and are formed in a striped shape overall. The anode region 62 forms a pn junction 68 with the semiconductor layer 2. This forms a pn junction diode D with the anode region 62 as the anode and the semiconductor layer 2 (cathode region 61) as the cathode. When the pn junction diode D switches from the off state to the on state, a forward current flows through the pn junction diode D. This causes a current to flow in the diode region 9.
 この実施形態において、コレクタ領域34とカソード領域61との第1方向Xの境界は、平面視で、IGBT領域8およびダイオード領域9の間の境界領域72に揃っている。 In this embodiment, the boundary between the collector region 34 and the cathode region 61 in the first direction X is aligned with the boundary region 72 between the IGBT region 8 and the diode region 9 in a plan view.
 セル分離トレンチ64内には、セル分離トレンチ64の側壁、セル分離電極層66の上端部およびセル分離絶縁層65の上端部によってリセス67が区画されている。セル分離トレンチ64の幅広部は、リセス67によって形成されている。リセス67の側壁(セル分離トレンチ64の側壁)は、アノード領域62を露出させている。 Inside the cell separation trench 64, a recess 67 is defined by the sidewall of the cell separation trench 64, the upper end of the cell separation electrode layer 66, and the upper end of the cell separation insulating layer 65. The wide portion of the cell separation trench 64 is formed by the recess 67. The sidewall of the recess 67 (the sidewall of the cell separation trench 64) exposes the anode region 62.
 前述のように、終端エミッタトレンチ構造73Aのダイオード領域9に近い側の側壁が、IGBT領域8とダイオード領域9との境界領域72を形成している。終端エミッタトレンチ構造73Aと、IGBT領域8に最近接するセル分離構造63との間の領域には、FET構造35と同様に、第1主面3側から順にボディ領域45およびキャリアストレージ領域47が形成されている。一方で、この領域は、エミッタ領域46が形成されておらず、チャネルを形成する構造でないことから、ダミーFET構造42と称してもよい。ダミーFET構造42は、ダイオード領域9に形成されている。 As described above, the sidewall of the terminal emitter trench structure 73A closer to the diode region 9 forms the boundary region 72 between the IGBT region 8 and the diode region 9. In the region between the terminal emitter trench structure 73A and the cell isolation structure 63 closest to the IGBT region 8, a body region 45 and a carrier storage region 47 are formed in this order from the first main surface 3 side, similar to the FET structure 35. However, this region does not have an emitter region 46 formed therein, and is not a structure that forms a channel, so it may be referred to as a dummy FET structure 42. The dummy FET structure 42 is formed in the diode region 9.
 図9~図11を参照して、半導体装置1は、半導体層2の第1主面3の上に形成された層間絶縁層79を含む。層間絶縁層79は、第1主面3に沿って膜状に形成され、第1主面3を選択的に被覆している。層間絶縁層79は、具体的には、IGBT領域8およびダイオード領域9を選択的に被覆している。 With reference to Figures 9 to 11, the semiconductor device 1 includes an interlayer insulating layer 79 formed on the first main surface 3 of the semiconductor layer 2. The interlayer insulating layer 79 is formed in a film shape along the first main surface 3, and selectively covers the first main surface 3. Specifically, the interlayer insulating layer 79 selectively covers the IGBT region 8 and the diode region 9.
 層間絶縁層79は、酸化シリコンまたは窒化シリコンを含んでいてもよい。層間絶縁層79は、NSG(Non-doped Silicate Glass)、PSG(Phosphor Silicate Glass)およびBPSG(Boron Phosphor Silicate Glass)のうちの少なくとも一種を含んでいてもよい。層間絶縁層79の厚さは、0.1μm以上1μm以下であってもよい。 The interlayer insulating layer 79 may contain silicon oxide or silicon nitride. The interlayer insulating layer 79 may contain at least one of NSG (Non-doped Silicate Glass), PSG (Phosphor Silicate Glass), and BPSG (Boron Phosphor Silicate Glass). The thickness of the interlayer insulating layer 79 may be 0.1 μm or more and 1 μm or less.
 層間絶縁層79は、この実施形態では、第1主面3側からこの順に積層された第1絶縁層80、第2絶縁層81および第3絶縁層82を含む積層構造を有している。第1絶縁層80は、酸化シリコン(たとえば熱酸化膜)を含んでいてもよい。第2絶縁層81は、NGS層、PSG層またはBPSG層を含んでいてもよい。第3絶縁層82は、BPSG層、NGS層またはPSG層を含んでいてもよい。第3絶縁層82は、第2絶縁層81とは異なる性質を有する絶縁材料を含んでいてもよい。 In this embodiment, the interlayer insulating layer 79 has a laminated structure including a first insulating layer 80, a second insulating layer 81, and a third insulating layer 82, which are laminated in this order from the first main surface 3 side. The first insulating layer 80 may include silicon oxide (e.g., a thermal oxide film). The second insulating layer 81 may include an NGS layer, a PSG layer, or a BPSG layer. The third insulating layer 82 may include a BPSG layer, an NGS layer, or a PSG layer. The third insulating layer 82 may include an insulating material having properties different from those of the second insulating layer 81.
 第1絶縁層80は、第1主面3の上に膜状に形成されている。第1絶縁層80は、ゲート絶縁層40、領域分離絶縁層55およびセル分離絶縁層65に連なっている。第1絶縁層80の厚さは、500Å以上2000Å以下であってもよい。第2絶縁層81は、第1絶縁層80の上に膜状に形成されている。第2絶縁層81の厚さは、500Å以上4000Å以下であってもよい。第3絶縁層82は、第2絶縁層81の上に膜状に形成されている。第3絶縁層82の厚さは、1000Å以上8000Å以下であってもよい。 The first insulating layer 80 is formed in the form of a film on the first main surface 3. The first insulating layer 80 is continuous with the gate insulating layer 40, the region isolation insulating layer 55, and the cell isolation insulating layer 65. The thickness of the first insulating layer 80 may be 500 Å or more and 2000 Å or less. The second insulating layer 81 is formed in the form of a film on the first insulating layer 80. The thickness of the second insulating layer 81 may be 500 Å or more and 4000 Å or less. The third insulating layer 82 is formed in the form of a film on the second insulating layer 81. The thickness of the third insulating layer 82 may be 1000 Å or more and 8000 Å or less.
 図11を参照して、FET構造35のゲート導電層41は、ゲートトレンチ39から第1主面3の上に引き出されたゲート引き出し電極層41aを有している。ゲート引き出し電極層41aは、第1外側トレンチゲート構造37のゲートトレンチ39から第1主面3の上に引き出されている。ゲート引き出し電極層41aは、第2方向Yに沿って引き出されている。 Referring to FIG. 11, the gate conductive layer 41 of the FET structure 35 has a gate extraction electrode layer 41a that is extended from the gate trench 39 onto the first main surface 3. The gate extraction electrode layer 41a is extended from the gate trench 39 of the first outer trench gate structure 37 onto the first main surface 3. The gate extraction electrode layer 41a is extended along the second direction Y.
 ゲート引き出し電極層41aは、具体的には、層間絶縁層79の内部に形成されている。ゲート引き出し電極層41aは、第1絶縁層80の上に引き出され、第1絶縁層80および第2絶縁層81の間の領域に介在している。ゲート引き出し電極層41aは、図示しない領域においてゲート配線19(図1参照)に電気的に接続される。ゲート端子電極14に印加されたゲート信号は、ゲート配線19およびゲート引き出し電極層41aを介して、ゲート導電層41に伝達される。 The gate extraction electrode layer 41a is specifically formed inside the interlayer insulating layer 79. The gate extraction electrode layer 41a is extended onto the first insulating layer 80 and is interposed in the region between the first insulating layer 80 and the second insulating layer 81. The gate extraction electrode layer 41a is electrically connected to the gate wiring 19 (see FIG. 1) in a region not shown. A gate signal applied to the gate terminal electrode 14 is transmitted to the gate conductive layer 41 via the gate wiring 19 and the gate extraction electrode layer 41a.
 エミッタトレンチ構造73のエミッタ電位電極層76は、エミッタトレンチ74から第1主面3の上に引き出された引き出し電極層76aを有している。エミッタ電位電極層76は、第2方向Yに沿って引き出されている。 The emitter potential electrode layer 76 of the emitter trench structure 73 has an extraction electrode layer 76a that is pulled out from the emitter trench 74 onto the first main surface 3. The emitter potential electrode layer 76 is pulled out along the second direction Y.
 引き出し電極層76aは、具体的には、層間絶縁層79の内部に形成されている。引き出し電極層76aは、第1絶縁層80の上に引き出され、第1絶縁層80および第2絶縁層81の間の領域に介在している。引き出し電極層76aは、エミッタ端子電極13に電気的に接続される。引き出し電極層76aに印加されたエミッタ信号は、引き出し電極層76aを介して、エミッタ電位電極層76に伝達される。 The extraction electrode layer 76a is specifically formed inside the interlayer insulating layer 79. The extraction electrode layer 76a is extended onto the first insulating layer 80 and is interposed in the region between the first insulating layer 80 and the second insulating layer 81. The extraction electrode layer 76a is electrically connected to the emitter terminal electrode 13. An emitter signal applied to the extraction electrode layer 76a is transmitted to the emitter potential electrode layer 76 via the extraction electrode layer 76a.
 図10を参照して、層間絶縁層79は、エミッタ開口83を含む。エミッタ開口83は、コンタクトトレンチ48を露出させている。エミッタ開口83は、コンタクトトレンチ48に連通している。コンタクトトレンチ48は、この実施形態では、第1絶縁層80および第2絶縁層81を貫通して第1主面3に形成されている。 Referring to FIG. 10, the interlayer insulating layer 79 includes an emitter opening 83. The emitter opening 83 exposes the contact trench 48. The emitter opening 83 is in communication with the contact trench 48. In this embodiment, the contact trench 48 is formed in the first main surface 3, penetrating the first insulating layer 80 and the second insulating layer 81.
 エミッタ開口83は、第3絶縁層82を貫通し、コンタクトトレンチ48を露出させている。エミッタ開口83は、コンタクトトレンチ48との間で1つの開口を形成している。エミッタ開口83の開口エッジ部は、層間絶縁層79の内方に向かう湾曲状に形成されている。これにより、エミッタ開口83は、コンタクトトレンチ48の開口幅よりも大きい開口幅を有している。 The emitter opening 83 penetrates the third insulating layer 82, exposing the contact trench 48. The emitter opening 83 forms an opening between itself and the contact trench 48. The edge of the emitter opening 83 is curved toward the inside of the interlayer insulating layer 79. As a result, the emitter opening 83 has an opening width larger than the opening width of the contact trench 48.
 層間絶縁層79は、ダイオード開口84を含む。ダイオード開口84は、ダイオード領域9を露出させている。ダイオード開口84は、具体的には、層間絶縁層79を貫通し、複数のアノード領域62(ダイオードセル領域69)および複数のセル分離構造63を露出させている。 The interlayer insulating layer 79 includes a diode opening 84. The diode opening 84 exposes the diode region 9. Specifically, the diode opening 84 penetrates the interlayer insulating layer 79 and exposes a plurality of anode regions 62 (diode cell regions 69) and a plurality of cell isolation structures 63.
 ダイオード開口84の内壁のうち第2方向Yに沿う部分は、アノード領域62の上に位置していてもよい。ダイオード開口84の内壁のうち第2方向Yに沿う部分は、セル分離構造63の上に位置していてもよい。ダイオード開口84の内壁のうち第2方向Yに沿う部分は、図10の例では、ダミーFET構造42のボディ領域45上に位置している。 The portion of the inner wall of the diode opening 84 that is aligned with the second direction Y may be located above the anode region 62. The portion of the inner wall of the diode opening 84 that is aligned with the second direction Y may be located above the cell separation structure 63. In the example of FIG. 10, the portion of the inner wall of the diode opening 84 that is aligned with the second direction Y is located above the body region 45 of the dummy FET structure 42.
 図11を参照して、層間絶縁層79は、第1開口86を含む。第1開口86は、IGBT領域8において引き出し電極層76aを露出させている。第1開口86は、開口側から底壁側に向かって開口幅が狭まるように形成されている。 Referring to FIG. 11, the interlayer insulating layer 79 includes a first opening 86. The first opening 86 exposes the lead electrode layer 76a in the IGBT region 8. The first opening 86 is formed such that the opening width narrows from the opening side toward the bottom wall side.
 図9および図10を参照して、半導体装置1は、層間絶縁層79においてIGBT領域8を被覆する部分に埋め込まれたエミッタプラグ電極91を含む。エミッタプラグ電極91は、層間絶縁層79を貫通し、エミッタ領域46およびコンタクト領域49に電気的に接続されている。エミッタプラグ電極91は、具体的には、コンタクトトレンチ48に埋め込まれている。エミッタプラグ電極91は、コンタクトトレンチ48内において、エミッタ領域46およびコンタクト領域49に電気的に接続されている。 Referring to Figures 9 and 10, the semiconductor device 1 includes an emitter plug electrode 91 embedded in a portion of the interlayer insulating layer 79 that covers the IGBT region 8. The emitter plug electrode 91 penetrates the interlayer insulating layer 79 and is electrically connected to the emitter region 46 and the contact region 49. Specifically, the emitter plug electrode 91 is embedded in the contact trench 48. The emitter plug electrode 91 is electrically connected to the emitter region 46 and the contact region 49 within the contact trench 48.
 エミッタプラグ電極91は、この実施形態では、バリア電極層92および主電極層93を含む積層構造を有している。バリア電極層92は、層間絶縁層79に接するように、コンタクトトレンチ48の内壁に沿って膜状に形成されている。バリア電極層92は、コンタクトトレンチ48内においてリセス空間を区画している。 In this embodiment, the emitter plug electrode 91 has a layered structure including a barrier electrode layer 92 and a main electrode layer 93. The barrier electrode layer 92 is formed in the form of a film along the inner wall of the contact trench 48 so as to contact the interlayer insulating layer 79. The barrier electrode layer 92 defines a recess space within the contact trench 48.
 バリア電極層92は、チタン層または窒化チタン層を含む単層構造を有していてもよい。バリア電極層92は、チタン層および窒化チタン層を含む積層構造を有していてもよい。この場合、窒化チタン層は、チタン層の上に積層されていてもよい。 The barrier electrode layer 92 may have a single-layer structure including a titanium layer or a titanium nitride layer. The barrier electrode layer 92 may have a laminated structure including a titanium layer and a titanium nitride layer. In this case, the titanium nitride layer may be laminated on the titanium layer.
 主電極層93は、バリア電極層92を挟んでコンタクトトレンチ48に埋め込まれている。主電極層93は、具体的には、コンタクトトレンチ48においてバリア電極層92によって区画されたリセス空間に埋め込まれている。主電極層93は、タングステンを含んでいてもよい。 The main electrode layer 93 is embedded in the contact trench 48 with the barrier electrode layer 92 sandwiched therebetween. Specifically, the main electrode layer 93 is embedded in a recess space defined by the barrier electrode layer 92 in the contact trench 48. The main electrode layer 93 may contain tungsten.
 図11を参照して、半導体装置1は、第1開口86に埋め込まれた第1プラグ電極94を含む。第1プラグ電極94は、第1開口86内において引き出し電極層76aに電気的に接続されている。第1プラグ電極94は、エミッタプラグ電極91に対応した構造を有している。第1プラグ電極94についての説明は、エミッタプラグ電極91の説明が準用されるものとする。第1プラグ電極94においてエミッタプラグ電極91に対して述べた構造に対向する構造については、同一の参照符号を付して説明を省略する。 Referring to FIG. 11, the semiconductor device 1 includes a first plug electrode 94 embedded in the first opening 86. The first plug electrode 94 is electrically connected to the extraction electrode layer 76a within the first opening 86. The first plug electrode 94 has a structure corresponding to the emitter plug electrode 91. The description of the emitter plug electrode 91 applies mutatis mutandis to the description of the first plug electrode 94. The structures in the first plug electrode 94 that face the structures described for the emitter plug electrode 91 are given the same reference numerals and will not be described.
 図9~図11を参照して、前述のエミッタ端子電極13は、層間絶縁層79の上に形成されている。エミッタ端子電極13は、アルミニウム、銅、アルミニウム-シリコン-銅合金、アルミニウム-シリコン合金、および、アルミニウム-銅合金のうちの少なくとも一種を含んでいてもよい。エミッタ端子電極13は、これらの導電材料のうちのいずれか一種を含む単層構造を有していてもよい。エミッタ端子電極13は、これらの導電材料のうちの少なくとも二種が任意の順序で積層された積層構造を有していてもよい。エミッタ端子電極13の厚さは、1.0μm以上6.0μm以下であってもよい。 Referring to Figures 9 to 11, the emitter terminal electrode 13 is formed on an interlayer insulating layer 79. The emitter terminal electrode 13 may contain at least one of aluminum, copper, an aluminum-silicon-copper alloy, an aluminum-silicon alloy, and an aluminum-copper alloy. The emitter terminal electrode 13 may have a single-layer structure containing any one of these conductive materials. The emitter terminal electrode 13 may have a layered structure in which at least two of these conductive materials are layered in any order. The thickness of the emitter terminal electrode 13 may be 1.0 μm or more and 6.0 μm or less.
 エミッタ端子電極13は、この実施形態では、第1主面3側からこの順に積層された第1電極層22、第2電極層23および第3電極層24を含む積層構造を有している。第1電極層22は、アルミニウム-シリコン-銅合金(Al-Si-Cu)を含んでいてもよい。第2電極層23は、窒化チタン(TiN)を含んでいてもよい。第2電極層23は、バリア層と称してもよい。第3電極層24は、アルミニウム-銅合金(Al-Cu)を含んでいてもよい。 In this embodiment, the emitter terminal electrode 13 has a laminated structure including a first electrode layer 22, a second electrode layer 23, and a third electrode layer 24, which are laminated in this order from the first main surface 3 side. The first electrode layer 22 may include an aluminum-silicon-copper alloy (Al-Si-Cu). The second electrode layer 23 may include titanium nitride (TiN). The second electrode layer 23 may be referred to as a barrier layer. The third electrode layer 24 may include an aluminum-copper alloy (Al-Cu).
 エミッタ端子電極13は、層間絶縁層79の上においてエミッタプラグ電極91を介して、エミッタ領域46およびコンタクト領域49に電気的に接続されている。エミッタ端子電極13は、具体的には、層間絶縁層79の上からエミッタ開口83に入り込んでいる。エミッタ端子電極13は、エミッタ開口83においてエミッタプラグ電極91に電気的に接続されている。エミッタ端子電極13は、エミッタプラグ電極91を介して、エミッタ領域46およびコンタクト領域49に電気的に接続されている。 The emitter terminal electrode 13 is electrically connected to the emitter region 46 and the contact region 49 via an emitter plug electrode 91 on the interlayer insulating layer 79. Specifically, the emitter terminal electrode 13 extends into the emitter opening 83 from above the interlayer insulating layer 79. The emitter terminal electrode 13 is electrically connected to the emitter plug electrode 91 in the emitter opening 83. The emitter terminal electrode 13 is electrically connected to the emitter region 46 and the contact region 49 via the emitter plug electrode 91.
 図10を参照して、エミッタ端子電極13は、さらに、層間絶縁層79の上からダイオード開口84の内壁を介してダイオード開口84内に入り込んでいる。エミッタ端子電極13は、ダイオード領域9においてアノード端子電極として機能する。 Referring to FIG. 10, the emitter terminal electrode 13 further extends into the diode opening 84 through the inner wall of the diode opening 84 from above the interlayer insulating layer 79. The emitter terminal electrode 13 functions as an anode terminal electrode in the diode region 9.
 エミッタ端子電極13は、ダイオード開口84の内壁に接している。エミッタ端子電極13は、ダイオード開口84においてアノード領域62に電気的に接続されている。エミッタ端子電極13は、ダイオード開口84においてセル分離電極層66に電気的に接続されている。エミッタ端子電極13は、この実施形態では、アノード領域62およびセル分離電極層66に直接的に接続されている。 The emitter terminal electrode 13 is in contact with the inner wall of the diode opening 84. The emitter terminal electrode 13 is electrically connected to the anode region 62 at the diode opening 84. The emitter terminal electrode 13 is electrically connected to the cell separation electrode layer 66 at the diode opening 84. In this embodiment, the emitter terminal electrode 13 is directly connected to the anode region 62 and the cell separation electrode layer 66.
 エミッタ端子電極13は、具体的には、ダイオード開口84内において第1主面3の上からリセス67(セル分離トレンチ64)に入り込んでいる。エミッタ端子電極13は、リセス67内においてセル分離電極層66に接続されている。また、エミッタ端子電極13は、第1主面3の上およびリセス67内においてアノード領域62に接続されている。エミッタ端子電極13は、アノード領域62との間でオーミック接触を形成している。 Specifically, the emitter terminal electrode 13 extends from above the first main surface 3 into the recess 67 (cell separation trench 64) within the diode opening 84. The emitter terminal electrode 13 is connected to the cell separation electrode layer 66 within the recess 67. The emitter terminal electrode 13 is also connected to the anode region 62 above the first main surface 3 and within the recess 67. The emitter terminal electrode 13 forms an ohmic contact with the anode region 62.
 図11を参照して、エミッタ端子電極13は、層間絶縁層79の上において第1プラグ電極94に電気的に接続されている。エミッタ信号は、第1プラグ電極94を介してエミッタ電位電極層76に伝達される。 Referring to FIG. 11, the emitter terminal electrode 13 is electrically connected to a first plug electrode 94 on the interlayer insulating layer 79. The emitter signal is transmitted to the emitter potential electrode layer 76 via the first plug electrode 94.
 具体的な図示は省略されるが、導線(たとえばボンディングワイヤ)がエミッタ端子電極13に接続される場合、ニッケル層または金層からなる単層電極、もしくは、ニッケル層および金層を含む積層電極が、エミッタ端子電極13の上に形成されていてもよい。積層電極において、金層は、ニッケル層の上に形成されてもよい。 Although specific illustrations are omitted, when a conductor (e.g., a bonding wire) is connected to the emitter terminal electrode 13, a single-layer electrode made of a nickel layer or a gold layer, or a laminated electrode including a nickel layer and a gold layer, may be formed on the emitter terminal electrode 13. In the laminated electrode, the gold layer may be formed on the nickel layer.
 具体的な図示は省略されるが、ゲート端子電極14、第1センス端子電極15、第2センス端子電極16、電流検出端子電極17および開放端子電極18は、エミッタ端子電極13と同様に、層間絶縁層79の上に形成されている。 Although specific illustrations are omitted, the gate terminal electrode 14, the first sense terminal electrode 15, the second sense terminal electrode 16, the current detection terminal electrode 17 and the release terminal electrode 18 are formed on the interlayer insulating layer 79, similar to the emitter terminal electrode 13.
 複数の端子電極14~18は、アルミニウム、銅、アルミニウム-シリコン-銅合金、アルミニウム-シリコン合金、および、アルミニウム-銅合金のうちの少なくとも一種をそれぞれ含んでいてもよい。複数の端子電極14~18は、これらの導電材料のうちのいずれか一種を含む単層構造をそれぞれ有していてもよい。複数の端子電極14~18は、これらの導電材料のうちの少なくとも二種が任意の順序で積層された積層構造をそれぞれ有していてもよい。複数の端子電極14~18は、この実施形態では、エミッタ端子電極13と同一の導電材料を含む。 The multiple terminal electrodes 14-18 may each contain at least one of aluminum, copper, aluminum-silicon-copper alloy, aluminum-silicon alloy, and aluminum-copper alloy. The multiple terminal electrodes 14-18 may each have a single-layer structure containing any one of these conductive materials. The multiple terminal electrodes 14-18 may each have a layered structure in which at least two of these conductive materials are layered in any order. In this embodiment, the multiple terminal electrodes 14-18 contain the same conductive material as the emitter terminal electrode 13.
 導線(たとえばボンディングワイヤ)が複数の端子電極14~18にそれぞれ接続される場合、ニッケル層または金層からなる単層電極、もしくは、ニッケル層および金層を含む積層電極が、複数の端子電極14~18の上にそれぞれ形成されていてもよい。積層電極において、金層は、ニッケル層の上に形成されてもよい。 When a conducting wire (e.g., a bonding wire) is connected to each of the multiple terminal electrodes 14-18, a single-layer electrode made of a nickel layer or a gold layer, or a laminated electrode including a nickel layer and a gold layer, may be formed on each of the multiple terminal electrodes 14-18. In the laminated electrode, the gold layer may be formed on the nickel layer.
 図12は、半導体装置1を含む半導体パッケージ101の模式的な平面図である。図13は、図12の半導体パッケージ101の実装構造を示す断面図である。 FIG. 12 is a schematic plan view of a semiconductor package 101 including a semiconductor device 1. FIG. 13 is a cross-sectional view showing the mounting structure of the semiconductor package 101 in FIG. 12.
 半導体パッケージ101は、半導体装置1と、電極102~107と、ワイヤ133~136と、樹脂パッケージ108とを含む。図12において、樹脂パッケージ108は、二点鎖線で示されている。図13に示すように、半導体パッケージ101は、実装基板109に実装されている。半導体パッケージ101は、半導体装置1の種類により、電気回路におけるスイッチング機能、整流機能、増幅機能などを果たす電子部品として用いられる。 The semiconductor package 101 includes the semiconductor device 1, electrodes 102-107, wires 133-136, and a resin package 108. In FIG. 12, the resin package 108 is indicated by a two-dot chain line. As shown in FIG. 13, the semiconductor package 101 is mounted on a mounting board 109. Depending on the type of semiconductor device 1, the semiconductor package 101 is used as an electronic component that performs switching functions, rectification functions, amplification functions, etc. in an electric circuit.
 電極102は、ダイボンディングパッド(放熱ユニット)110と、リード111とを含む。ダイボンディングパッド110およびリード111は、たとえば、銅などの導電材料よりなる。 The electrode 102 includes a die bonding pad (heat dissipation unit) 110 and a lead 111. The die bonding pad 110 and the lead 111 are made of a conductive material such as copper.
 ダイボンディングパッド110は、平板状である。ダイボンディングパッド110は、配置面110Aと、裏面110Bとを有する。配置面110Aは法線方向Zの一方を向く。法線方向Zの一方は、図13の紙面の上側に一致している。裏面110Bは、法線方向Zの他方を向く。法線方向Zの他方は、図13の紙面の下側に一致している。配置面110Aには、半導体装置1が配置されている。ダイボンディングパッド110には、配置面110Aから裏面110Bにわたって貫通する孔112が形成されている。 The die bonding pad 110 is flat. The die bonding pad 110 has an arrangement surface 110A and a back surface 110B. The arrangement surface 110A faces one side of the normal direction Z. One side of the normal direction Z coincides with the upper side of the paper in FIG. 13. The back surface 110B faces the other side of the normal direction Z. The other side of the normal direction Z coincides with the lower side of the paper in FIG. 13. The semiconductor device 1 is arranged on the arrangement surface 110A. The die bonding pad 110 has a hole 112 formed therein, penetrating from the arrangement surface 110A to the back surface 110B.
 リード111は、ダイボンディングパッド110から線状に延びる形状である。リード111は挿入実装用のものである。図13に示すように、リード111が孔113に挿入される。これにより、半導体パッケージ101が実装基板109に実装される。リード111を実装基板109に固定するために、孔113にはハンダ114が充填されている。図12に示すように、リード111は、連結部111Aと、端子部112Bとを有している。半導体装置1のコレクタ端子電極32(図3の破線部参照)に接続されるコレクタ端子として機能する。 The lead 111 extends linearly from the die bonding pad 110. The lead 111 is for insertion mounting. As shown in FIG. 13, the lead 111 is inserted into the hole 113. This causes the semiconductor package 101 to be mounted on the mounting board 109. To fix the lead 111 to the mounting board 109, the hole 113 is filled with solder 114. As shown in FIG. 12, the lead 111 has a connecting portion 111A and a terminal portion 112B. It functions as a collector terminal that is connected to the collector terminal electrode 32 (see the dashed line portion in FIG. 3) of the semiconductor device 1.
 連結部111Aは、ダイボンディングパッド110につながる。連結部111Aは、ダイボンディングパッド110から、配置面110Aと交差する方向に延びる形状である。端子部112Bは、連結部111Aにつながる。端子部112Bは、樹脂パッケージ108から突出する部位を有する。 The connecting portion 111A is connected to the die bonding pad 110. The connecting portion 111A extends from the die bonding pad 110 in a direction intersecting with the placement surface 110A. The terminal portion 112B is connected to the connecting portion 111A. The terminal portion 112B has a portion that protrudes from the resin package 108.
 電極103は、ワイヤボンディングパッド115と、リード116とを含む。電極104は、ワイヤボンディングパッド117と、リード118とを含む。電極105は、ワイヤボンディングパッド119と、リード120とを含む。電極106は、ワイヤボンディングパッド121と、リード122とを含む。電極107は、ワイヤボンディングパッド123と、リード124とを含む。ワイヤボンディングパッド115,117,119,121,123およびリード116,118,120,122,124は、たとえば銅などの導電性材料よりなる。 Electrode 103 includes wire bonding pad 115 and lead 116. Electrode 104 includes wire bonding pad 117 and lead 118. Electrode 105 includes wire bonding pad 119 and lead 120. Electrode 106 includes wire bonding pad 121 and lead 122. Electrode 107 includes wire bonding pad 123 and lead 124. Wire bonding pads 115, 117, 119, 121, 123 and leads 116, 118, 120, 122, 124 are made of a conductive material such as copper.
 図13に示すように、リード116,118,120,122,124は、孔113に挿入される。これにより、半導体パッケージ101が実装基板109に実装される。リード116,118,120,122,124を実装基板109に固定するために、孔113にハンダ114が充填されている。 As shown in FIG. 13, the leads 116, 118, 120, 122, and 124 are inserted into the holes 113. This causes the semiconductor package 101 to be mounted on the mounting board 109. The holes 113 are filled with solder 114 to secure the leads 116, 118, 120, 122, and 124 to the mounting board 109.
 主に図13を参照して、樹脂パッケージ108は、半導体装置1および電極102~107を覆っている。樹脂パッケージ108は、エポキシ樹脂よりなる。樹脂パッケージ108は、第1面108Aと、第2面108Bとを有する。第1面108Aは、平坦面108Cとテーパ面108Dとを有する。樹脂パッケージ108の第1面108Aが半導体装置1の第2主面4に接触する。第2面108Bは、複数の平坦面108Eと、複数のテーパ面108Fとを有する。樹脂パッケージ108には、ネジ穴108Hが形成されている。ネジ穴108Hには、樹脂パッケージ108を放熱板129に固定するためのネジ130が挿通される。 Referring mainly to FIG. 13, the resin package 108 covers the semiconductor device 1 and the electrodes 102 to 107. The resin package 108 is made of epoxy resin. The resin package 108 has a first surface 108A and a second surface 108B. The first surface 108A has a flat surface 108C and a tapered surface 108D. The first surface 108A of the resin package 108 contacts the second main surface 4 of the semiconductor device 1. The second surface 108B has a plurality of flat surfaces 108E and a plurality of tapered surfaces 108F. The resin package 108 has a screw hole 108H formed therein. A screw 130 is inserted into the screw hole 108H to fix the resin package 108 to the heat sink 129.
 ワイヤ133~136は、たとえば、アルミニウムなどの金属よりなる。ワイヤ133は、半導体装置1のエミッタ端子電極13とワイヤボンディングパッド115とに接合されている。これにより、エミッタ端子電極13とワイヤボンディングパッド115とが電気的に接続されている。ワイヤ134は、半導体装置1の電流検出端子電極17とワイヤボンディングパッド119とに接合されている。これにより、電流検出端子電極17とワイヤボンディングパッド119とが電気的に接続されている。ワイヤ135は、半導体装置1の第1センス端子電極15または第2センス端子電極16(図12の例では第1センス端子電極15)とワイヤボンディングパッド121とに接合されている。これにより、第1センス端子電極15または第2センス端子電極16(図12の例では第1センス端子電極15)とワイヤボンディングパッド121とが電気的に接続されている。ワイヤ136は、半導体装置1のゲート端子電極14とワイヤボンディングパッド123とに接合されている。これにより、ゲート端子電極14とワイヤボンディングパッド123とが電気的に接続されている。なお、ワイヤボンディングパッド117は、半導体装置1に電気的に接続されていない。 The wires 133 to 136 are made of a metal such as aluminum. The wire 133 is bonded to the emitter terminal electrode 13 and the wire bonding pad 115 of the semiconductor device 1. This electrically connects the emitter terminal electrode 13 and the wire bonding pad 115. The wire 134 is bonded to the current detection terminal electrode 17 and the wire bonding pad 119 of the semiconductor device 1. This electrically connects the current detection terminal electrode 17 and the wire bonding pad 119. The wire 135 is bonded to the first sense terminal electrode 15 or the second sense terminal electrode 16 (the first sense terminal electrode 15 in the example of FIG. 12) of the semiconductor device 1 and the wire bonding pad 121. This electrically connects the first sense terminal electrode 15 or the second sense terminal electrode 16 (the first sense terminal electrode 15 in the example of FIG. 12) and the wire bonding pad 121. The wire 136 is bonded to the gate terminal electrode 14 and the wire bonding pad 123 of the semiconductor device 1. This electrically connects the gate terminal electrode 14 and the wire bonding pad 123. Note that the wire bonding pad 117 is not electrically connected to the semiconductor device 1.
 半導体装置1において発生する熱は、ダイボンディングパッド110および放熱板129を介して放熱される。ダイボンディングパッド110の配置面110Aが半導体装置1の第2主面4の全域に接しており、これにより、半導体装置1の第2主面4が均一に冷却される。一方、半導体装置1の第1主面3には、放熱のための部材(放熱ユニット)は接していない。 Heat generated in the semiconductor device 1 is dissipated via the die bonding pad 110 and the heat sink 129. The placement surface 110A of the die bonding pad 110 is in contact with the entire second main surface 4 of the semiconductor device 1, thereby allowing the second main surface 4 of the semiconductor device 1 to be uniformly cooled. On the other hand, no member for dissipating heat (heat dissipation unit) is in contact with the first main surface 3 of the semiconductor device 1.
 以上により、この実施形態によれば、アクティブ領域6において、複数のIGBT領域8および複数のダイオード領域9が、平面視においてそれぞれ千鳥状に配列されている。そのため、アクティブ領域6において、第2方向Yに連続するIGBT領域8が第2方向Yに対向する部分の幅の合計(第1対向幅W1+第2対向幅W2)は狭い。 As described above, according to this embodiment, in the active region 6, the multiple IGBT regions 8 and the multiple diode regions 9 are each arranged in a staggered pattern in a planar view. Therefore, in the active region 6, the total width (first opposing width W1 + second opposing width W2) of the portions where the IGBT regions 8 that are continuous in the second direction Y face the second direction Y is narrow.
 特許文献1に記載のRC-IGBTの半導体装置では、複数のIGBT領域および複数のダイオード領域が、それぞれ行列状に並んでいる。半導体装置1において、特許文献1と同様に、複数のIGBT領域8および複数のダイオード領域9がそれぞれ第2方向Yに沿って列状に並ぶ場合を考える。 In the RC-IGBT semiconductor device described in Patent Document 1, multiple IGBT regions and multiple diode regions are arranged in a matrix. Consider a case in which multiple IGBT regions 8 and multiple diode regions 9 are arranged in rows along the second direction Y in the semiconductor device 1, as in Patent Document 1.
 複数のIGBT領域8および複数のダイオード領域9がそれぞれ第2方向Yに沿って列状に並んでいると、第2方向Yに連続するIGBT領域8が互いに幅広に対向し、かつ第2方向Yに連続するダイオード領域9が互いに幅広に対向する。IGBTのオン時には、複数のIGBT領域8に同時に電流が流れる。IGBT領域8に電流が流れると、IGBT領域8が発熱する。また、ダイオードのオン時には、複数のダイオード領域9に同時に電流が流れる。ダイオード領域9に電流が流れると、ダイオード領域9が発熱する。 When multiple IGBT regions 8 and multiple diode regions 9 are arranged in a row along the second direction Y, the IGBT regions 8 that are continuous in the second direction Y face each other widely, and the diode regions 9 that are continuous in the second direction Y face each other widely. When the IGBT is on, a current flows simultaneously through the multiple IGBT regions 8. When a current flows through the IGBT regions 8, the IGBT regions 8 generate heat. When the diode is on, a current flows simultaneously through the multiple diode regions 9. When a current flows through the diode regions 9, the diode regions 9 generate heat.
 複数のIGBT領域8が第2方向Yに沿って列状に並んでいると、IGBT領域8が並んだ領域において発熱量が局所的に大きくなるおそれがある。また、複数のダイオード領域9が第2方向Yに沿って列状に並んでいると、ダイオード領域9が並んだ領域において発熱量が局所的に大きくなるおそれがある。そのため、IGBTのオン時またはダイオードのオン時において、アクティブ領域6が局所的に高温になるおそれがある。 If multiple IGBT regions 8 are arranged in a row along the second direction Y, there is a risk that the amount of heat generated will be locally large in the area where the IGBT regions 8 are arranged. Also, if multiple diode regions 9 are arranged in a row along the second direction Y, there is a risk that the amount of heat generated will be locally large in the area where the diode regions 9 are arranged. Therefore, when the IGBT or diode is on, the active region 6 may become locally hot.
 とくに、アクティブ領域6の中央部は、周囲が、いずれも発熱領域であるIGBT領域8およびダイオード領域9に囲まれている。そのため、アクティブ領域6の中央部は、放熱しにくい領域である。そのため、IGBTのオン時またはダイオードのオン時において、アクティブ領域6の中央部が、とくに高温になるおそれがある。一方で、アクティブ領域6の高温化を抑制するために、IGBT領域8およびダイオード領域9を流れる電流量の低減を図ることも考えられる。しかし、RC-IGBTの電流特性を高く維持するためには、IGBT領域8およびダイオード領域9を流れる電流量を多く確保する必要がある。 In particular, the center of the active region 6 is surrounded by the IGBT region 8 and the diode region 9, both of which are heat generating regions. As a result, the center of the active region 6 is an area that is difficult to dissipate heat. Therefore, when the IGBT or the diode is on, the center of the active region 6 may become particularly hot. On the other hand, in order to prevent the active region 6 from becoming too hot, it is possible to reduce the amount of current flowing through the IGBT region 8 and the diode region 9. However, in order to maintain high current characteristics of the RC-IGBT, it is necessary to ensure a large amount of current flowing through the IGBT region 8 and the diode region 9.
 第1実施形態に係る半導体装置1によれば、アクティブ領域6の全域に、IGBT領域8およびダイオード領域9の千鳥状パターン(千鳥状パターンの単位配列UA)が形成されている。そのため、第2方向Yに連続するIGBT領域8が第2方向Yに対向する部分の幅の合計(第1対向幅W1+第2対向幅W2)が狭い。また、複数のダイオード領域9は第2方向Yに対向していない。 In the semiconductor device 1 according to the first embodiment, a staggered pattern (unit array UA of the staggered pattern) of IGBT regions 8 and diode regions 9 is formed over the entire active region 6. Therefore, the total width (first opposing width W1 + second opposing width W2) of the portions of the IGBT regions 8 that are continuous in the second direction Y and face the second direction Y is narrow. In addition, the multiple diode regions 9 do not face the second direction Y.
 そのため、IGBTのオン時およびダイオードのオン時において、アクティブ領域6において発熱量が局所的に増大することを抑制できる。これにより、IGBT領域8を流れる電流量およびダイオード領域9を流れる電流量を低く抑えることなく、アクティブ領域6における温度上昇を抑制できる。とくに、アクティブ領域6の中央部における温度上昇を抑制できる。ゆえに、RC-IGBTの電流特性を高く維持しながら、半導体装置1の最大温度を低減できる。 As a result, when the IGBT and the diode are on, local increases in the amount of heat generated in the active region 6 can be suppressed. This makes it possible to suppress temperature increases in the active region 6 without keeping the amount of current flowing through the IGBT region 8 and the diode region 9 low. In particular, it is possible to suppress temperature increases in the center of the active region 6. Therefore, it is possible to reduce the maximum temperature of the semiconductor device 1 while maintaining high current characteristics of the RC-IGBT.
 図14は、コレクタ領域34およびカソード領域61の態様を変更した変形例に係る半導体装置151を説明するための底面図である。図14は、図3に対応する図である。図15は、図14の変形例に係る半導体装置151の断面図である。 FIG. 14 is a bottom view for explaining a semiconductor device 151 according to a modified example in which the configuration of the collector region 34 and the cathode region 61 is changed. FIG. 14 is a view corresponding to FIG. 3. FIG. 15 is a cross-sectional view of the semiconductor device 151 according to the modified example of FIG. 14.
 図14および図15の変形例に係る半導体装置151が第1実施形態に係る半導体装置1と相違する点は、カソード領域61が引き出し領域182を含む点である。引き出し領域182は、IGBT領域8とダイオード領域9との間の境界領域72(図15参照)を横切ってIGBT領域8側に引き出された領域である。引き出し領域182は、第1方向Xに沿ってダイオード領域9からIGBT領域8に引き出されている。 The semiconductor device 151 according to the modified example of FIG. 14 and FIG. 15 differs from the semiconductor device 1 according to the first embodiment in that the cathode region 61 includes a lead-out region 182. The lead-out region 182 is a region that crosses the boundary region 72 (see FIG. 15) between the IGBT region 8 and the diode region 9 and is led out to the IGBT region 8. The lead-out region 182 is led out from the diode region 9 to the IGBT region 8 along the first direction X.
 半導体装置151では、図14に示すように、第1配列12A、第3配列12Cおよび第5配列12Eにおいて、カソード領域61の第1方向Xの両端部に引き出し領域182が形成されている。そのため、第1配列12A、第3配列12Cおよび第5配列12Eでは、半導体装置1(図3参照)と比較して、コレクタ領域34の面積が狭く、かつカソード領域61が広い。図15は、第1配列12A、第3配列12Cおよび第5配列12Eに含まれるIGBT領域8およびダイオード領域9の断面を示しており、図10に対応している。 As shown in FIG. 14, in the semiconductor device 151, in the first array 12A, the third array 12C, and the fifth array 12E, the lead-out regions 182 are formed at both ends of the cathode region 61 in the first direction X. Therefore, in the first array 12A, the third array 12C, and the fifth array 12E, the area of the collector region 34 is narrower and the cathode region 61 is wider than in the semiconductor device 1 (see FIG. 3). FIG. 15 shows a cross section of the IGBT region 8 and the diode region 9 included in the first array 12A, the third array 12C, and the fifth array 12E, and corresponds to FIG. 10.
 一方、第2配列12B、第4配列12Dおよび第6配列12Fは、半導体装置1(図3参照)と同様、引き出し領域182が形成されていない。図14の例では、第1~第6RC-IGBT配列12A~12Fにおいて、コレクタ領域34およびカソード領域61の境界が、いずれも第1方向Xに関して揃っている。 On the other hand, the second array 12B, the fourth array 12D, and the sixth array 12F do not have a lead-out region 182, as in the semiconductor device 1 (see FIG. 3). In the example of FIG. 14, in the first to sixth RC-IGBT arrays 12A to 12F, the boundaries of the collector regions 34 and the cathode regions 61 are all aligned in the first direction X.
 引き出し領域182は、所定の重なり幅WでIGBT領域8に重なっている。重なり幅Wの始点は、IGBT領域8およびダイオード領域9の境界領域72に設定される。重なり幅Wの終点は、コレクタ領域34および引き出し領域182の境界に設定される。 The pull-out region 182 overlaps the IGBT region 8 with a predetermined overlap width W. The start point of the overlap width W is set at the boundary region 72 between the IGBT region 8 and the diode region 9. The end point of the overlap width W is set at the boundary between the collector region 34 and the pull-out region 182.
 IGBT領域8の幅WG(図5B等参照)に対する重なり幅Wの比W/WGは、0.001以上0.5以下であってもよい。比W/WGは、0.001以上0.01以下、0.01以上0.05以下、0.05以上0.1以下、0.1以上0.15以下、0.15以上0.2以下、0.2以上0.25以下、0.25以上0.3以下、0.3以上0.35以下、0.35以上0.4以下、0.4以上0.45以下、または0.45以上0.5以下であってもよい。 The ratio W/WG of the overlap width W to the width WG of the IGBT region 8 (see FIG. 5B, etc.) may be 0.001 or more and 0.5 or less. The ratio W/WG may be 0.001 or more and 0.01 or less, 0.01 or more and 0.05 or less, 0.05 or more and 0.1 or less, 0.1 or more and 0.15 or less, 0.15 or more and 0.2 or less, 0.2 or more and 0.25 or less, 0.25 or more and 0.3 or less, 0.35 or more and 0.4 or less, 0.4 or more and 0.45 or less, or 0.45 or more and 0.5 or less.
 重なり幅Wは、1μm以上200μm以下であってもよい。重なり幅Wは、1μm以上50μm以下、50μm以上100μm以下、100μm以上150μm以下、または150μm以上200μm以下であってもよい。 The overlap width W may be 1 μm or more and 200 μm or less. The overlap width W may be 1 μm or more and 50 μm or less, 50 μm or more and 100 μm or less, 100 μm or more and 150 μm or less, or 150 μm or more and 200 μm or less.
 重なり幅Wは、1μm以上20μm以下、20μm以上40μm以下、40μm以上60μm以下、60μm以上80μm以下、80μm以上100μm以下、100μm以上120μm以下、120μm以上140μm以下、140μm以上160μm以下、160μm以上180μm以下、または180μm以上200μm以下であってもよい。重なり幅Wは、10μm以上150μm以下であることが好ましい。 The overlap width W may be 1 μm or more and 20 μm or less, 20 μm or more and 40 μm or less, 40 μm or more and 60 μm or less, 60 μm or more and 80 μm or less, 80 μm or more and 100 μm or less, 100 μm or more and 120 μm or less, 120 μm or more and 140 μm or less, 140 μm or more and 160 μm or less, 160 μm or more and 180 μm or less, or 180 μm or more and 200 μm or less. The overlap width W is preferably 10 μm or more and 150 μm or less.
 引き出し領域182は、法線方向Zに関して、1個または複数個のFET構造35に対向していてもよい。引き出し領域182は、1個、2個、3個、4個、5個、6個、7個、8個、9個、10個、11個、12個、13個、14個、15個、16個、17個、18個、19個または20個のFET構造35に対向していてもよい。 The pull-out region 182 may face one or more FET structures 35 in the normal direction Z. The pull-out region 182 may face 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 FET structures 35.
 図16は、本開示の第2実施形態に係る半導体装置201の模式的な平面図である。図17は、半導体装置201の第1主面3の構造を模式的に示す平面図である。第2実施形態では、第1実施形態と異なる部分のみを主として説明し、今まで説明した構成と同じ構成には同じ参照符号を付して、その説明を省略する。 FIG. 16 is a schematic plan view of a semiconductor device 201 according to a second embodiment of the present disclosure. FIG. 17 is a schematic plan view showing the structure of a first main surface 3 of the semiconductor device 201. In the second embodiment, only the parts that differ from the first embodiment will be mainly described, and the same reference symbols will be used for the same configurations as those described so far, and their description will be omitted.
 第2実施形態に係る半導体装置201が第1実施形態に係る半導体装置1と相違する点は、アクティブ領域6に占めるダイオード領域9の面積比率が、約50%である点である。別の言い方では、平面視において、アクティブ領域6に占めるIGBT8の面積比率が、約50%である。アクティブ領域6において、IGBT8の面積とダイオード領域9との平面面積はほぼ同じである。各IGBT領域8の幅WG(図17参照)は、各ダイオード領域9の幅WD(図17参照)とほぼ同じである。 The semiconductor device 201 according to the second embodiment differs from the semiconductor device 1 according to the first embodiment in that the area ratio of the diode region 9 to the active region 6 is approximately 50%. In other words, in a plan view, the area ratio of the IGBT 8 to the active region 6 is approximately 50%. In the active region 6, the planar area of the IGBT 8 and the planar area of the diode region 9 are approximately the same. The width WG of each IGBT region 8 (see FIG. 17) is approximately the same as the width WD of each diode region 9 (see FIG. 17).
 半導体装置201において、アクティブ領域6の全域において、複数のIGBT領域8および複数のダイオード領域9が、平面視においてそれぞれ千鳥状に配列されている。すなわち、アクティブ領域6の全域に、IGBT領域8およびダイオード領域9の千鳥状パターン(千鳥状パターンの単位配列UA)が形成されている。 In the semiconductor device 201, a plurality of IGBT regions 8 and a plurality of diode regions 9 are arranged in a staggered pattern in a plan view throughout the active region 6. That is, a staggered pattern (unit array UA of the staggered pattern) of the IGBT regions 8 and diode regions 9 is formed throughout the active region 6.
 半導体装置201において、各IGBT領域8は、第2方向Yに隣り合うRC-IGBT配列に含まれる1つのダイオード領域9と、ゲート配線19の第2領域19bを挟んで第2方向Yに対向している。各IGBT領域8は、第2方向Yに隣り合うRC-IGBT配列に含まれるIGBT領域8と、第2方向Yに対向していない。 In the semiconductor device 201, each IGBT region 8 faces one diode region 9 included in the RC-IGBT array adjacent to it in the second direction Y, across the second region 19b of the gate wiring 19. Each IGBT region 8 does not face an IGBT region 8 included in the RC-IGBT array adjacent to it in the second direction Y in the second direction Y.
 また、各ダイオード領域9は、第2方向Yに隣り合うRC-IGBT配列12に含まれる1つのIGBT領域8と、ゲート配線19の第2領域19bを挟んで第2方向Yに対向している。各ダイオード領域9は、第2方向Yに隣り合うRC-IGBT配列12に含まれるダイオード領域9と、第2方向Yに対向していない。 Furthermore, each diode region 9 faces one IGBT region 8 included in the RC-IGBT array 12 adjacent thereto in the second direction Y, across the second region 19b of the gate wiring 19. Each diode region 9 does not face the diode region 9 included in the RC-IGBT array 12 adjacent thereto in the second direction Y.
 この第2実施形態によれば、アクティブ領域6において、複数のIGBT領域8および複数のダイオード領域9が、平面視においてそれぞれ千鳥状に配列されている。複数のダイオード領域9だけでなく、複数のIGBT領域8も第2方向Yに対向していない。そのため、第1実施形態と比較して、IGBTのオン時およびダイオードのオン時において、アクティブ領域6において発熱量が局所的に増大することを、より一層抑制できる。これにより、アクティブ領域6における温度上昇をより一層抑制できる。 According to the second embodiment, in the active region 6, the multiple IGBT regions 8 and the multiple diode regions 9 are each arranged in a staggered pattern in a plan view. Not only the multiple diode regions 9, but also the multiple IGBT regions 8 do not face the second direction Y. Therefore, compared to the first embodiment, local increases in the amount of heat generated in the active region 6 when the IGBTs and diodes are on can be further suppressed. This makes it possible to further suppress temperature increases in the active region 6.
 図18は、本開示の第3実施形態に係る半導体装置301の模式的な平面図である。図19は、半導体装置301の第1主面3の構造を模式的に示す平面図である。 FIG. 18 is a schematic plan view of a semiconductor device 301 according to a third embodiment of the present disclosure. FIG. 19 is a schematic plan view showing the structure of the first main surface 3 of the semiconductor device 301.
 第3実施形態に係る半導体装置301が第1実施形態に係る半導体装置1と相違する点は、IGBT領域8およびダイオード領域9の千鳥状パターン(千鳥状パターンの単位配列UA)が、アクティブ領域6の全域ではなく、アクティブ領域6の中央部6aにのみ形成されている点である。アクティブ領域6の外周部6bでは、上記の配列パターンではなく、複数のIGBT領域8が第2方向Yに沿って列状に並ぶ配列パターン、および複数のダイオード領域9が第2方向Yに沿って列状に並ぶ配列パターンが採用されている。図18および図19の例では、アクティブ領域6のうち、側面5B側に最も近い領域において、複数のIGBT領域8が第2方向Yに沿って列状に並んでおり、その領域に対し側面5D側の領域を、複数のダイオード領域9がそれぞれ第2方向Yに沿って列状に並んでいる。また、アクティブ領域6のうち、側面5D側に最も近い領域において、複数のIGBT領域8が第2方向Yに沿って列状に並んでおり、その領域に対し側面5B側の領域を、複数のダイオード領域9がそれぞれ第2方向Yに沿って列状に並んでいる。 The semiconductor device 301 according to the third embodiment differs from the semiconductor device 1 according to the first embodiment in that the staggered pattern (unit array UA of the staggered pattern) of the IGBT regions 8 and the diode regions 9 is formed only in the central portion 6a of the active region 6, rather than over the entire active region 6. In the peripheral portion 6b of the active region 6, instead of the above-mentioned array pattern, an array pattern in which a plurality of IGBT regions 8 are arranged in rows along the second direction Y, and an array pattern in which a plurality of diode regions 9 are arranged in rows along the second direction Y, are adopted. In the example of Figures 18 and 19, in the region of the active region 6 closest to the side surface 5B, a plurality of IGBT regions 8 are arranged in rows along the second direction Y, and in the region on the side surface 5D side of that region, a plurality of diode regions 9 are each arranged in rows along the second direction Y. In addition, in the active region 6, in the region closest to the side surface 5D, multiple IGBT regions 8 are lined up in a row along the second direction Y, and in the region on the side surface 5B side of that region, multiple diode regions 9 are lined up in a row along the second direction Y.
 アクティブ領域6の中央部6aは、いずれも発熱領域であるIGBT領域8およびダイオード領域9によって周囲が取り囲まれた部分である。そのため、アクティブ領域6の中央部6aは、放熱しにくい領域である。 The central portion 6a of the active region 6 is surrounded by the IGBT region 8 and the diode region 9, both of which are heat generating regions. Therefore, the central portion 6a of the active region 6 is an area that is difficult to dissipate heat.
 IGBT領域8およびダイオード領域9の千鳥状パターンが、アクティブ領域6のうち放熱しにくい中央部6aに形成されているので、アクティブ領域6の中央部6aにおける温度上昇を抑制できる。これにより、半導体装置301の最大温度を低減できる。 The staggered pattern of the IGBT region 8 and the diode region 9 is formed in the central portion 6a of the active region 6, which is the portion that is least likely to dissipate heat, so that the temperature rise in the central portion 6a of the active region 6 can be suppressed. This makes it possible to reduce the maximum temperature of the semiconductor device 301.
 半導体装置301においても、図12の半導体パッケージ101のパッケージ構造および図13の実装構造が適用される。 The package structure of the semiconductor package 101 in FIG. 12 and the mounting structure in FIG. 13 are also applied to the semiconductor device 301.
 図20は、本開示の第4実施形態に係る半導体装置401の模式的な平面図である。図21は、半導体装置401の第1主面3の構造を模式的に示す平面図である。 FIG. 20 is a schematic plan view of a semiconductor device 401 according to a fourth embodiment of the present disclosure. FIG. 21 is a schematic plan view showing the structure of a first main surface 3 of the semiconductor device 401.
 第4実施形態に係る半導体装置401が第1実施形態に係る半導体装置1と相違する点は、IGBT領域8およびダイオード領域9の千鳥状パターン(千鳥状パターンの単位配列UA)が、アクティブ領域6の全域ではなく、アクティブ領域6の外周部6bにのみ形成された点である。アクティブ領域6の中央部では、上記の配列パターンではなく、複数のIGBT領域8が第2方向Yに沿って列状に並ぶ配列パターン、および複数のダイオード領域9が第2方向Yに沿って列状に並ぶ配列パターンが採用されている。 The semiconductor device 401 according to the fourth embodiment differs from the semiconductor device 1 according to the first embodiment in that the staggered pattern (unit array UA of the staggered pattern) of the IGBT regions 8 and diode regions 9 is formed only on the outer periphery 6b of the active region 6, rather than over the entire active region 6. In the central portion of the active region 6, instead of the above-mentioned arrangement pattern, an arrangement pattern in which a plurality of IGBT regions 8 are arranged in a row along the second direction Y, and an arrangement pattern in which a plurality of diode regions 9 are arranged in a row along the second direction Y are adopted.
 図22は、半導体装置401を含む半導体パッケージ450の模式的な断面図である。 FIG. 22 is a schematic cross-sectional view of a semiconductor package 450 including a semiconductor device 401.
 半導体パッケージ450は、半導体装置401と、第1放熱パッド(放熱ユニット)451と、第2放熱パッド452と、半導体装置401の上面と第2放熱パッド452との間隔を規制するためのスペーサ(放熱ユニット)453と、樹脂パッケージ454と、第1リード456と、第2リード457と、第3リード458と、第4リード459と、第5リード460と、第6リード461と、ワイヤ471~475とを含む。 The semiconductor package 450 includes a semiconductor device 401, a first heat dissipation pad (heat dissipation unit) 451, a second heat dissipation pad 452, a spacer (heat dissipation unit) 453 for regulating the distance between the top surface of the semiconductor device 401 and the second heat dissipation pad 452, a resin package 454, a first lead 456, a second lead 457, a third lead 458, a fourth lead 459, a fifth lead 460, a sixth lead 461, and wires 471 to 475.
 第1放熱パッド451は、平板状である。第1放熱パッド451は、銅などの導電材料よりなる。第1放熱パッド451は、平坦な配置面451Aを有する。配置面451Aは法線方向Zの一方を向く。法線方向Zの一方は、図22の紙面の上側に一致している。 The first heat dissipation pad 451 is flat. The first heat dissipation pad 451 is made of a conductive material such as copper. The first heat dissipation pad 451 has a flat placement surface 451A. The placement surface 451A faces one side of the normal direction Z. The one side of the normal direction Z coincides with the upper side of the paper surface of FIG. 22.
 第1リード456、第2リード457、第3リード458、第4リード459、第5リード460および第6リード461は、第1放熱パッド451から線状に延びる形状である。第1リード456、第2リード457、第3リード458、第4リード459、第5リード460および第6リード461は、第1方向Xに6つ並んでいる。第1方向Xは、図22の紙面に直交する方向である。第1リード456、第2リード457、第3リード458、第4リード459、第5リード460および第6リード461は、銅などの導電材料よりなる。 The first lead 456, the second lead 457, the third lead 458, the fourth lead 459, the fifth lead 460 and the sixth lead 461 are shaped to extend linearly from the first heat dissipation pad 451. The first lead 456, the second lead 457, the third lead 458, the fourth lead 459, the fifth lead 460 and the sixth lead 461 are arranged in a line in the first direction X. The first direction X is a direction perpendicular to the paper surface of FIG. 22. The first lead 456, the second lead 457, the third lead 458, the fourth lead 459, the fifth lead 460 and the sixth lead 461 are made of a conductive material such as copper.
 ワイヤ471~475は、たとえば、アルミニウムなどの金属よりなる。ワイヤ471は、半導体装置401のコレクタ端子電極32(図20の破線部参照)と第1リード456とに接合されている。これにより、コレクタ端子電極32と第1リード456とが電気的に接続されている。ワイヤ472は、半導体装置401のエミッタ端子電極13(図20参照)と第2リード457とに接合されている。これにより、エミッタ端子電極13と第2リード457とが電気的に接続されている。 The wires 471 to 475 are made of a metal such as aluminum. The wire 471 is joined to the collector terminal electrode 32 (see the dashed line in FIG. 20) of the semiconductor device 401 and the first lead 456. This electrically connects the collector terminal electrode 32 and the first lead 456. The wire 472 is joined to the emitter terminal electrode 13 (see FIG. 20) of the semiconductor device 401 and the second lead 457. This electrically connects the emitter terminal electrode 13 and the second lead 457.
 ワイヤ473は、半導体装置401の電流検出端子電極17(図20参照)と第4リード459とに接合されている。これにより、電流検出端子電極17と第4リード459とが電気的に接続されている。ワイヤ474は、半導体装置401の第1センス端子電極15または第2センス端子電極16(この実施形態ではたとえば第1センス端子電極15)と第5リード460とに接合されている。これにより、第1センス端子電極15または第2センス端子電極16(たとえば第1センス端子電極15)と第5リード460とが電気的に接続されている。ワイヤ475は、半導体装置401のゲート端子電極14(図20参照)と第6リード461とに接合されている。これにより、ゲート端子電極14と第6リード461とが電気的に接続されている。なお、第3リード458は、半導体装置401に電気的に接続されていない。 The wire 473 is joined to the current detection terminal electrode 17 (see FIG. 20) and the fourth lead 459 of the semiconductor device 401. This electrically connects the current detection terminal electrode 17 and the fourth lead 459. The wire 474 is joined to the first sense terminal electrode 15 or the second sense terminal electrode 16 (for example, the first sense terminal electrode 15 in this embodiment) of the semiconductor device 401 and the fifth lead 460. This electrically connects the first sense terminal electrode 15 or the second sense terminal electrode 16 (for example, the first sense terminal electrode 15) and the fifth lead 460. The wire 475 is joined to the gate terminal electrode 14 (see FIG. 20) and the sixth lead 461 of the semiconductor device 401. This electrically connects the gate terminal electrode 14 and the sixth lead 461. The third lead 458 is not electrically connected to the semiconductor device 401.
 第2放熱パッド452は、平板状である。第2放熱パッド452は、銅などの導電材料よりなる。第2放熱パッド452は、第1放熱パッド451に対し、半導体装置401を挟んで法線方向Zの一方に配置されている。 The second heat dissipation pad 452 is flat. The second heat dissipation pad 452 is made of a conductive material such as copper. The second heat dissipation pad 452 is disposed on one side of the first heat dissipation pad 451 in the normal direction Z, sandwiching the semiconductor device 401 therebetween.
 スペーサ453は、法線方向Zに延びる柱状体である。スペーサ453は、第1放熱パッド451と第2放熱パッド452との間に配置されている。スペーサ453は、銅などの導電材料よりなる。スペーサ453の端面453Aが、半導体装置401の中央部、より具体的には、第1主面3の中央部(アクティブ領域6(図20等参照)の中央部6a)に接している。これにより、半導体装置401の第1主面3では、中央部6aのみ冷却される。 The spacer 453 is a columnar body extending in the normal direction Z. The spacer 453 is disposed between the first heat dissipation pad 451 and the second heat dissipation pad 452. The spacer 453 is made of a conductive material such as copper. An end face 453A of the spacer 453 contacts the center of the semiconductor device 401, more specifically, the center of the first main surface 3 (the center 6a of the active region 6 (see FIG. 20, etc.)). As a result, only the center 6a is cooled on the first main surface 3 of the semiconductor device 401.
 半導体装置401において発生する熱は、第1放熱パッド451、スペーサ453および第2放熱パッド452を介して放熱される。第1放熱パッド451の配置面451Aが半導体装置401の第2主面4の全域に接しており、これにより、半導体装置401の第2主面4が均一に冷却される。一方、半導体装置401の第1主面3には、中央部のみ、スペーサ453の端面453Aが接している。 Heat generated in the semiconductor device 401 is dissipated via the first heat dissipation pad 451, the spacer 453, and the second heat dissipation pad 452. The placement surface 451A of the first heat dissipation pad 451 contacts the entire second main surface 4 of the semiconductor device 401, thereby uniformly cooling the second main surface 4 of the semiconductor device 401. Meanwhile, the end surface 453A of the spacer 453 contacts the first main surface 3 of the semiconductor device 401 only at the center.
 以上により、図20および図21を参照して、半導体装置401においては、アクティブ領域6の中央部6aは、放熱し易い領域である。一方、アクティブ領域6の外周部6bは、中央部6aに比べ、放熱しにくい領域である。IGBT領域8およびダイオード領域9の千鳥状パターンが、アクティブ領域6のうち放熱しにくい外周部6bに形成されるので、アクティブ領域6の外周部6bにおける温度上昇を抑制できる。これにより、半導体装置401の最大温度を低減できる。 As described above, referring to Figures 20 and 21, in the semiconductor device 401, the central portion 6a of the active region 6 is an area that dissipates heat easily. On the other hand, the peripheral portion 6b of the active region 6 is an area that dissipates heat less easily than the central portion 6a. Since the staggered pattern of the IGBT region 8 and the diode region 9 is formed in the peripheral portion 6b of the active region 6, which is less likely to dissipate heat, it is possible to suppress a rise in temperature in the peripheral portion 6b of the active region 6. This makes it possible to reduce the maximum temperature of the semiconductor device 401.
 また、半導体パッケージ450と同様のパッケージ構造が、半導体装置1、半導体装置151または半導体装置201に適用されてもよい。 In addition, a package structure similar to the semiconductor package 450 may be applied to the semiconductor device 1, the semiconductor device 151, or the semiconductor device 201.
 本開示の実施形態は、さらに他の形態で実施することもできる。 The embodiments of the present disclosure may also be implemented in other forms.
 前述の各実施形態において、半導体層2は、n-型の半導体基板31に代えて、p型の半導体基板と、半導体基板の上に形成されたn-型エピタキシャル層とを含む積層構造を有していてもよい。この場合、p型の半導体基板が、コレクタ領域34に対向する。また、n-型のエピタキシャル層が、ドリフト領域30に対向する。 In each of the above-described embodiments, the semiconductor layer 2 may have a layered structure including a p-type semiconductor substrate and an n - type epitaxial layer formed on the semiconductor substrate, instead of the n - type semiconductor substrate 31. In this case, the p-type semiconductor substrate faces the collector region 34. Furthermore, the n - type epitaxial layer faces the drift region 30.
 p型の半導体基板は、シリコン製であってもよい。n-型のエピタキシャル層は、シリコン製であってもよい。n-型のエピタキシャル層は、p型の半導体基板の主面からシリコンをエピタキシャル成長して形成される。 The p-type semiconductor substrate may be made of silicon. The n - type epitaxial layer may be made of silicon. The n- type epitaxial layer is formed by epitaxially growing silicon from the main surface of the p-type semiconductor substrate.
 前述の各実施形態において、各半導体部分の導電型が反転された構造が採用されてもよい。つまり、p型の部分がn型に形成され、n型の部分がp型に形成されてもよい。 In each of the above-mentioned embodiments, a structure in which the conductivity type of each semiconductor portion is inverted may be adopted. In other words, the p-type portion may be formed as n-type, and the n-type portion may be formed as p-type.
 この明細書および図面の記載から以下に付記する特徴が抽出され得る。 The following features can be extracted from the description in this specification and the drawings.
 [付記1-1]
 第1主面(3)およびその反対側の第2主面(4)を有する半導体層(2)と、
 前記半導体層(2)に形成されたIGBT領域(8)であって、ゲートトレンチ(39)が形成されたIGBT領域(8)と、
 前記半導体層(2)に形成されたダイオード領域(9)と、
 前記第1主面(3)上に形成された複数のゲート配線(19b)とを含み、
 前記IGBT領域(8)および前記ダイオード領域(9)を含むアクティブ領域(6)のうち所定の領域において、前記IGBT領域(8)および前記ダイオード領域(9)の一方が基準領域(8B)であり、他方が前記基準領域(8B)とは異なる異種領域(9A,9B,9C)であり、
 前記基準領域(8B)が、平面視において前記ゲートトレンチ(39)の延伸方向と垂直な第1方向(X)に、前記異種領域(9B)と対向しており、
 前記アクティブ領域(6)のうち所定の領域において、前記基準領域(8B)が、平面視において前記ゲートトレンチ(39)の前記延伸方向と平行な第2方向(Y)に、前記異種領域(9A)と、前記複数のゲート配線(19b)に含まれる第1ゲート配線(19bA)を挟んでさらに対向している、半導体装置(1,151,201,301,401)。
[Appendix 1-1]
A semiconductor layer (2) having a first major surface (3) and a second major surface (4) opposite thereto;
An IGBT region (8) formed in the semiconductor layer (2), the IGBT region (8) having a gate trench (39) formed therein;
a diode region (9) formed in the semiconductor layer (2);
a plurality of gate wirings (19b) formed on the first main surface (3);
In a predetermined region of an active region (6) including the IGBT region (8) and the diode region (9), one of the IGBT region (8) and the diode region (9) is a reference region (8B), and the other is a heterogeneous region (9A, 9B, 9C) different from the reference region (8B);
the reference region (8B) faces the heterogeneous region (9B) in a first direction (X) perpendicular to an extension direction of the gate trench (39) in a plan view;
A semiconductor device (1, 151, 201, 301, 401), wherein, in a predetermined region of the active region (6), the reference region (8B) is further opposed to the heterogeneous region (9A) in a second direction (Y) parallel to the extension direction of the gate trench (39) in a planar view, across a first gate wiring (19bA) included in the plurality of gate wirings (19b).
 この構成によれば、アクティブ領域(6)のうち所定の領域において、IGBT領域(8)およびダイオード領域(9)の一方の基準領域(8B)が、平面視においてゲートトレンチ(39)の延伸方向と平行な第2方向(Y)に、IGBT領域(8)およびダイオード領域(9)の他方の異種領域(9A)と、第1ゲート配線(19bA)を挟んで対向している。そのため、アクティブ領域(6)のうち所定の領域において、基準領域(8B)が、第1ゲート配線(19bA)を挟んで基準領域(8B)と同種の同種領域(8A)と第2方向(Y)に対向していないか、あるいは同種領域(8A)と第2方向(Y)に対向しても、同種領域(8C)との対向幅が狭い。これにより、基準領域(8B)および同種領域(8A)に電流が流れる場合に、アクティブ領域(6)のうち所定の領域において発熱量が局所的に増大することを抑制できる。ゆえに、アクティブ領域(6)のうち所定の領域における温度上昇を抑制できる。 According to this configuration, in a predetermined region of the active region (6), one of the reference regions (8B) of the IGBT region (8) and the diode region (9) faces the other heterogeneous region (9A) of the IGBT region (8) and the diode region (9) across the first gate wiring (19bA) in the second direction (Y) parallel to the extension direction of the gate trench (39) in a plan view. Therefore, in a predetermined region of the active region (6), the reference region (8B) does not face the homogeneous region (8A) of the same type as the reference region (8B) across the first gate wiring (19bA) in the second direction (Y), or even if it faces the homogeneous region (8A) in the second direction (Y), the facing width with the homogeneous region (8C) is narrow. This makes it possible to suppress a local increase in the amount of heat generated in a predetermined region of the active region (6) when a current flows through the reference region (8B) and the homogeneous region (8A). Therefore, it is possible to suppress temperature rise in a specific area of the active area (6).
 [付記1-2]
 前記複数のゲート配線(19b)が、前記第1ゲート配線(19bA)と、前記第1ゲート配線(19bA)に沿って延びる第2ゲート配線(19bB)とを含み、
 前記基準領域(8B)が、前記第1ゲート配線(19bA)と前記第2ゲート配線(19bB)とによって、前記第2方向(Y)に挟まれており、
 前記基準領域(8B)が、前記異種領域(9C)と、前記第2ゲート配線(19bB)を挟んで前記第2方向(Y)にさらに対向している、付記1-1に記載の半導体装置(1,151,201,301,401)。
[Appendix 1-2]
the plurality of gate wirings (19b) include the first gate wiring (19bA) and a second gate wiring (19bB) extending along the first gate wiring (19bA);
the reference region (8B) is sandwiched in the second direction (Y) by the first gate wiring (19bA) and the second gate wiring (19bB);
The semiconductor device (1, 151, 201, 301, 401) according to Appendix 1-1, wherein the reference region (8B) is further opposed to the heterogeneous region (9C) in the second direction (Y) across the second gate wiring (19bB).
 [付記1-3]
 前記基準領域(8B)が、前記基準領域(8B)から独立して形成され、前記基準領域(8B)と同種の同種領域(8A)と、前記第1ゲート配線(19bA)を挟んで前記第2方向(Y)にさらに対向している、付記1-1または付記1-2に記載の半導体装置(1,151,301,401)。
[Appendix 1-3]
The semiconductor device (1, 151, 301, 401) described in Appendix 1-1 or Appendix 1-2, wherein the reference region (8B) is formed independently of the reference region (8B) and is further opposed to a homogeneous region (8A) of the same type as the reference region (8B) in the second direction (Y) across the first gate wiring (19bA).
 [付記1-4]
 前記基準領域(8B)が、前記IGBT領域(8)からなる基準IGBT領域(8B)を含み、
 前記基準IGBT領域(8B)が、前記同種領域(8A)である同種IGBT領域(8A)と、前記第1ゲート配線(19bA)を挟んで前記第2方向(Y)に対向している、付記1-3に記載の半導体装置(1,151,301,401)。
[Appendix 1-4]
the reference region (8B) includes a reference IGBT region (8B) consisting of the IGBT region (8);
The semiconductor device (1, 151, 301, 401) described in Appendix 1-3, wherein the reference IGBT region (8B) faces a homogeneous IGBT region (8A) that is the homogeneous region (8A) in the second direction (Y) across the first gate wiring (19bA).
 [付記1-5]
 前記基準IGBT領域(8A)と前記同種IGBT領域(8A)とが前記第2方向(Y)に対向する対向幅(W1,W2)が、前記第1ゲート配線(19b)の線幅(W3)以上である、付記1-4に記載の半導体装置(1,151,301,401)。
[Appendix 1-5]
The semiconductor device (1, 151, 301, 401) described in Appendix 1-4, wherein an opposing width (W1, W2) between the reference IGBT region (8A) and the homogeneous IGBT region (8A) in the second direction (Y) is equal to or greater than a line width (W3) of the first gate wiring (19b).
 [付記1-6]
 前記基準領域(8B)が、前記基準領域(8B)から独立して形成され、前記基準領域(8B)と同種の同種領域(8A)と、前記第2方向(Y)に対向していない、付記1-1または付記1-2に記載の半導体装置(201)。
[Appendix 1-6]
The semiconductor device (201) according to claim 1-1 or 1-2, wherein the reference region (8B) is formed independently of the reference region (8B) and does not face a homogeneous region (8A) of the same type as the reference region (8B) in the second direction (Y).
 [付記1-7]
 前記所定の領域が、平面視において前記アクティブ領域(6)の中央部(6a)を含む領域である、付記1-1~付記1-6のいずれか一項に記載の半導体装置(1,151,201,301)。
[Appendix 1-7]
The semiconductor device (1, 151, 201, 301) according to any one of Supplementary Notes 1-1 to 1-6, wherein the predetermined region is a region including a central portion (6a) of the active region (6) in a planar view.
 [付記1-8]
 前記第2主面(4)は、その全域が、放熱ユニット(110)に接触する領域であり、
 前記第1主面(3)には、放熱ユニットが接触しない、付記1-7に記載の半導体装置(1,151,201,301)。
[Appendix 1-8]
The second main surface (4) is an area whose entire area is in contact with the heat dissipation unit (110),
The semiconductor device (1, 151, 201, 301) according to appendix 1-7, wherein a heat dissipation unit is not in contact with the first main surface (3).
 [付記1-9]
 前記所定の領域が、平面視において前記アクティブ領域(6)の外周部(6b)を含む領域である、付記1-1~付記1-6に記載の半導体装置(1,151,201,401)。
[Appendix 1-9]
The semiconductor device (1, 151, 201, 401) according to any one of claims 1-1 to 1-6, wherein the predetermined region is a region including an outer periphery (6b) of the active region (6) in a plan view.
 [付記1-10]
 前記第2主面(4)の全域および前記第1主面(3)の中央部(6a)が、放熱ユニット(451,453)に接触する領域であり、
 前記第1主面(3)の外周部(6a)には、放熱ユニットが接触しない、付記1-9に記載の半導体装置(1,151,201,401)。
[Appendix 1-10]
The entire second main surface (4) and a central portion (6a) of the first main surface (3) are in contact with a heat dissipation unit (451, 453),
The semiconductor device (1, 151, 201, 401) according to appendix 1-9, wherein a heat dissipation unit is not in contact with the outer periphery (6a) of the first main surface (3).
 [付記1-11]
 前記所定の領域が、前記アクティブ領域(6)の全域である、付記1-7または付記1-9に記載の半導体装置(1,151,201)。
[Appendix 1-11]
The semiconductor device (1, 151, 201) according to Supplementary Note 1-7 or Supplementary Note 1-9, wherein the predetermined area is the entire area of the active area (6).
 [付記1-12]
 単位配列(UA)をさらに含み、
 前記単位配列(UA)が、前記基準領域(8B)と、前記基準領域(8B)に前記第1方向(X)および前記第2方向(Y)に隣り合う複数の前記異種領域(9A,9B,9C)と、前記基準領域(8B)に前記第1方向(X)および前記第2方向(Y)のいずれにも交差する2つの斜め方向両側において前記基準領域(8B)に隣り合い、かつ前記基準領域(8B)から独立した前記同種領域(8A,8C)とを含み、
 前記単位配列(UA)が、平面視において前記アクティブ領域(6)の全域に形成されている、付記1-3~付記1-6のいずれか一項に記載の半導体装置(1,151,201,301,401)。
[Appendix 1-12]
Further comprising a unit sequence (UA),
the unit array (UA) includes the reference region (8B), a plurality of the heterogeneous regions (9A, 9B, 9C) adjacent to the reference region (8B) in the first direction (X) and the second direction (Y), and the homogeneous regions (8A, 8C) adjacent to the reference region (8B) on both sides of two diagonal directions intersecting both the first direction (X) and the second direction (Y) and independent of the reference region (8B),
The semiconductor device (1, 151, 201, 301, 401) according to any one of Supplementary Notes 1-3 to 1-6, wherein the unit array (UA) is formed over the entire active region (6) in a planar view.
 [付記1-13]
 前記IGBT領域および前記ダイオード領域が、それぞれ、複数の前記IGBT領域および複数の前記ダイオード領域を含み、
 前記第1主面には、複数の前記IGBT領域および複数の前記ダイオード領域を含む領域配列であって、複数の前記IGBT領域および複数の前記ダイオード領域が前記第1方向に沿って交互に並んだ領域配列が、前記第2方向に間隔を空けて複数配列されており、
 複数の前記領域配列のうち所定の前記領域配列に含まれる複数の前記IGBT領域が、前記所定の前記領域配列に対して前記第2方向に隣り合う前記領域配列に含まれる複数の前記ダイオード領域のそれぞれと、前記第2方向に対向しており、
 前記所定の前記領域配列に含まれる複数の前記ダイオード領域が、前記所定の前記領域配列に対して前記第2方向に隣り合う前記領域配列に含まれる複数の前記IGBT領域のそれぞれと、前記第2方向に対向している、付記1-1に記載の半導体装置。
[Appendix 1-13]
the IGBT region and the diode region each include a plurality of the IGBT regions and a plurality of the diode regions,
a plurality of region arrays including a plurality of the IGBT regions and a plurality of the diode regions, the plurality of the IGBT regions and the plurality of the diode regions being alternately arranged along the first direction, the plurality of region arrays being arranged at intervals in the second direction on the first main surface;
a plurality of the IGBT regions included in a predetermined region array among the plurality of region arrays face, in the second direction, each of a plurality of the diode regions included in a region array adjacent in the second direction to the predetermined region array,
The semiconductor device according to claim 1-1, wherein the plurality of diode regions included in the predetermined region array are opposed in the second direction to each of the plurality of IGBT regions included in the region array adjacent to the predetermined region array in the second direction.
 [付記1-14]
 前記ダイオード領域(9)が、前記第2主面(4)の表層部に形成されたカソード領域(61)を含み、
 前記カソード領域(61)が、前記境界領域(72)を横切って前記IGBT領域側に引き出された引き出し領域(182)を含む、付記1-1~付記1-13のいずれか一項に記載の半導体装置(1,151,301,401)。
[Appendix 1-14]
The diode region (9) includes a cathode region (61) formed in a surface layer portion of the second main surface (4),
The semiconductor device (1, 151, 301, 401) according to any one of Supplementary Notes 1-1 to 1-13, wherein the cathode region (61) includes an extraction region (182) that crosses the boundary region (72) and is extracted to the IGBT region side.
 [付記1-15]
 平面視において、前記アクティブ領域(6)に占める前記ダイオード領域(9)の面積比率が、25%以上45%以下である、付記1-1~付記1-14のいずれか一項に記載の半導体装置(1,151,301,401)。
[Appendix 1-15]
The semiconductor device (1, 151, 301, 401) according to any one of Supplementary Notes 1-1 to 1-14, wherein, in a plan view, the area ratio of the diode region (9) to the active region (6) is 25% or more and 45% or less.
 [付記1-16]
 前記IGBT領域(8)および前記ダイオード領域(9)が、それぞれ、複数のIGBT領域(8)および複数のダイオード領域(9)を含み、
 平面視において、前記複数のIGBT領域(8)および前記複数のダイオード領域(9)が、それぞれ千鳥状である、付記1-1~付記1-15のいずれか一項に記載の半導体装置(1,151,201)。
[Appendix 1-16]
the IGBT region (8) and the diode region (9) each include a plurality of IGBT regions (8) and a plurality of diode regions (9);
The semiconductor device (1, 151, 201) according to any one of Appendix 1-1 to Appendix 1-15, wherein, in a plan view, the plurality of IGBT regions (8) and the plurality of diode regions (9) are each staggered.
1    :半導体装置
2    :半導体層
3    :第1主面
4    :第2主面
5A   :側面
5B   :側面
5C   :側面
5D   :側面
6    :アクティブ領域
6a   :中央部
6b   :外周部
7    :外側領域
8    :IGBT領域
8A   :IGBT領域(同種IGBT領域、同種領域)
8B   :IGBT領域(基準IGBT領域、基準領域)
8C   :IGBT領域(同種IGBT領域、同種領域)
9    :ダイオード領域
9A   :ダイオード領域(異種ダイオード領域、異種領域)
9B   :ダイオード領域(異種ダイオード領域、異種領域)
9C   :ダイオード領域(異種ダイオード領域、異種領域)
11   :センサ領域
12   :IGBT配列(領域配列)
12A  :第1配列
12B  :第2配列
12C  :第3配列
12D  :第4配列
12E  :第5配列
12F  :第6配列
13   :エミッタ端子電極
14   :ゲート端子電極
15   :第1センス端子電極
16   :第2センス端子電極
17   :電流検出端子電極
18   :開放端子電極
19   :ゲート配線
19a  :第1領域
19b  :第2領域
19bA :第1ゲート配線
19bB :第2ゲート配線
20   :第1センス配線
20a  :第1領域
20b  :第2領域
21   :第2センス配線
21a  :第1領域
21b  :第2領域
22   :第1電極層
23   :第2電極層
24   :第3電極層
30   :ドリフト領域
31   :半導体基板
32   :コレクタ端子電極
33   :バッファ層
34   :コレクタ領域
35   :FET構造
36   :トレンチゲート構造
37   :第1外側トレンチゲート構造
38   :第2外側トレンチゲート構造
39   :ゲートトレンチ
40   :ゲート絶縁層
41   :ゲート導電層
41a  :ゲート引き出し電極層
42   :ダミーFET構造
45   :ボディ領域
46   :エミッタ領域
47   :キャリアストレージ領域
48   :コンタクトトレンチ
49   :コンタクト領域
55   :領域分離絶縁層
61   :カソード領域
62   :アノード領域
63   :セル分離構造
64   :セル分離トレンチ
65   :セル分離絶縁層
66   :セル分離電極層
67   :リセス
68   :pn接合部
69   :ダイオードセル領域
72   :境界領域
73   :エミッタトレンチ構造
73A  :終端エミッタトレンチ構造
74   :エミッタトレンチ
75   :エミッタ絶縁層
76   :エミッタ電位電極層
76a  :引き出し電極層
79   :層間絶縁層
80   :第1絶縁層
81   :第2絶縁層
82   :第3絶縁層
83   :エミッタ開口
84   :ダイオード開口
86   :第1開口
91   :エミッタプラグ電極
92   :バリア電極層
93   :主電極層
94   :第1プラグ電極
101  :半導体パッケージ
102  :電極
103  :電極
104  :電極
105  :電極
106  :電極
107  :電極
108  :樹脂パッケージ
108A :第1面
108B :第2面
108C :平坦面
108D :テーパ面
108E :平坦面
108F :テーパ面
108H :ネジ穴
109  :実装基板
110  :ダイボンディングパッド(放熱ユニット)
110A :配置面
110B :裏面
111  :リード
111A :連結部
112  :孔
112B :端子部
113  :孔
114  :ハンダ
115  :ワイヤボンディングパッド
116  :リード
117  :ワイヤボンディングパッド
118  :リード
119  :ワイヤボンディングパッド
120  :リード
121  :ワイヤボンディングパッド
122  :リード
123  :ワイヤボンディングパッド
124  :リード
129  :放熱板
130  :ネジ
133  :ワイヤ
134  :ワイヤ
135  :ワイヤ
136  :ワイヤ
151  :半導体装置
182  :引き出し領域
201  :半導体装置
301  :半導体装置
401  :半導体装置
450  :半導体パッケージ
451  :第1放熱パッド(放熱ユニット)
451A :配置面
452  :第2放熱パッド
453  :スペーサ(放熱ユニット)
453A :端面
454  :樹脂パッケージ
456  :第1リード
457  :第2リード
458  :第3リード
459  :第4リード
460  :第5リード
461  :第6リード
471  :ワイヤ
472  :ワイヤ
473  :ワイヤ
474  :ワイヤ
475  :ワイヤ
D    :pn接合ダイオード
D1   :深さ
D2   :深さ
D3   :深さ
P1   :第1ピッチ
P2   :第2ピッチ
UA   :単位配列
W    :重なり幅
W1   :第1対向幅(対向幅)
W2   :第2対向幅(対向幅)
W3   :線幅
W4   :第1間隔
W5   :第2間隔
WD   :幅
WG   :幅
X    :第1方向
Y    :第2方向
Y1   :一方側
Y2   :他方側
Z    :法線方向
1: Semiconductor device 2: Semiconductor layer 3: First principal surface 4: Second principal surface 5A: Side surface 5B: Side surface 5C: Side surface 5D: Side surface 6: Active region 6a: Central portion 6b: Peripheral portion 7: Outer region 8: IGBT area 8A: IGBT area (same type IGBT area, same type area)
8B: IGBT area (reference IGBT area, reference area)
8C: IGBT area (same type IGBT area, homogeneous area)
9: Diode region 9A: Diode region (heterogeneous diode region, heterogeneous region)
9B: Diode region (heterogeneous diode region, heterogeneous region)
9C: Diode region (heterogeneous diode region, heterogeneous region)
11: Sensor region 12: IGBT array (region array)
12A: First array 12B: Second array 12C: Third array 12D: Fourth array 12E: Fifth array 12F: Sixth array 13: Emitter terminal electrode 14: Gate terminal electrode 15: First sense terminal electrode 16: 2. Sense terminal electrode 17: Current detection terminal electrode 18: Open terminal electrode 19: Gate wiring 19a: First region 19b: Second region 19bA: First gate wiring 19bB: Second gate wiring 20: First sense wiring 20a: First region 20b: second region 21: second sense wiring 21a: first region 21b: second region 22: first electrode layer 23: second electrode layer 24: third electrode layer 30: drift region 31: semiconductor substrate 32 : Collector terminal electrode 33 : Buffer layer 34 : collector region 35 : FET structure 36 : trench gate structure 37 : first outer trench gate structure 38 : second outer trench gate structure 39 : gate trench 40 : gate insulating layer 41 : gate conductive layer 41 a : gate extraction electrode layer 42 : Dummy FET structure 45: body region 46: emitter region 47: carrier storage region 48: contact trench 49: contact region 55: region isolation insulating layer 61: cathode region 62: anode region 63: cell isolation structure 64: cell isolation trench 65: Cell isolation insulating layer 66 : Cell isolation electrode layer 67 : Recess 68 : pn junction 69 : Diode cell region 72 : Boundary region 73 : Emitter trench structure 73A : Termination emitter trench structure 74 : Emitter trench 75 : Emitter insulating layer 76 : emitter potential electrode layer 76a : extraction electrode layer 79 : interlayer insulating layer 80 : first insulating layer 81 : second insulating layer 82 : third insulating layer 83 : emitter opening 84 : diode opening 86 : first opening 91 : emitter plug Electrode 92 : Barrier electrode layer 93 : Main electrode layer 94 : First plug electrode 101 : Semiconductor package 102 : Electrode 103 : Electrode 104 : Electrode 105 : Electrode 106 : Electrode 107 : Electrode 108 : Resin package 108A : First surface 108B : Second surface 108C: Flat surface 108D: Tapered surface 108E: Flat surface 108F: Tapered surface 108H: Screw hole 109: Mounting substrate 110: Die bonding pad (heat dissipation unit)
110A: placement surface 110B: back surface 111: lead 111A: connection portion 112: hole 112B: terminal portion 113: hole 114: solder 115: wire bonding pad 116: lead 117: wire bonding pad 118: lead 119: wire bonding pad 120: Lead 121: Wire bonding pad 122: Lead 123: Wire bonding pad 124: Lead 129: Heat sink 130: Screw 133: Wire 134: Wire 135: Wire 136: Wire 151: Semiconductor device 182: Lead-out region 201: Semiconductor device 301: Semiconductor device 401: Semiconductor device 450: Semiconductor package 451: First heat dissipation pad (heat dissipation unit)
451A: Placement surface 452: Second heat dissipation pad 453: Spacer (heat dissipation unit)
453A: End surface 454: Resin package 456: First lead 457: Second lead 458: Third lead 459: Fourth lead 460: Fifth lead 461: Sixth lead 471: Wire 472: Wire 473: Wire 474: Wire 475 : Wire D : pn junction diode D1 : Depth D2 : Depth D3 : Depth P1 : First pitch P2 : Second pitch UA : Unit array W : Overlap width W1 : First opposing width (opposing width)
W2: Second opposing width (opposing width)
W3: Line width W4: First interval W5: Second interval WD: Width WG: Width X: First direction Y: Second direction Y1: One side Y2: Other side Z: Normal direction

Claims (15)

  1.  第1主面およびその反対側の第2主面を有する半導体層と、
     前記半導体層に形成されたIGBT領域であって、ゲートトレンチが形成されたIGBT領域と、
     前記半導体層に形成されたダイオード領域と、
     前記第1主面上に形成された複数のゲート配線とを含み、
     前記IGBT領域および前記ダイオード領域を含むアクティブ領域のうち所定の領域において、前記IGBT領域および前記ダイオード領域の一方が基準領域であり、他方が前記基準領域とは異なる異種領域であり、
     前記基準領域が、平面視において前記ゲートトレンチの延伸方向と垂直な第1方向に、前記異種領域と対向しており、
     前記アクティブ領域のうち所定の領域において、前記基準領域が、平面視において前記ゲートトレンチの前記延伸方向と平行な第2方向に、前記異種領域と、前記複数のゲート配線に含まれる第1ゲート配線を挟んでさらに対向している、半導体装置。
    a semiconductor layer having a first major surface and an opposite second major surface;
    an IGBT region formed in the semiconductor layer, the IGBT region having a gate trench;
    a diode region formed in the semiconductor layer;
    a plurality of gate wirings formed on the first main surface;
    In a predetermined region of an active region including the IGBT region and the diode region, one of the IGBT region and the diode region is a reference region, and the other is a heterogeneous region different from the reference region,
    the reference region faces the different region in a first direction perpendicular to an extension direction of the gate trench in a plan view;
    a first gate wiring included in the plurality of gate wirings is sandwiched between the first gate wiring and the second gate wiring, the first gate wiring being ... and the second gate wiring being sandwiched between the first gate wiring and the second gate wiring, in a second direction parallel to the extension direction of the gate trench in a planar view.
  2.  前記複数のゲート配線が、前記第1ゲート配線と、前記第1ゲート配線に沿って延びる第2ゲート配線とを含み、
     前記基準領域が、前記第1ゲート配線と前記第2ゲート配線とによって、前記第2方向に挟まれており、
     前記基準領域が、前記異種領域と、前記第2ゲート配線を挟んで前記第2方向にさらに対向している、請求項1に記載の半導体装置。
    the plurality of gate wirings include the first gate wiring and a second gate wiring extending along the first gate wiring,
    the reference region is sandwiched in the second direction by the first gate wiring and the second gate wiring,
    2 . The semiconductor device according to claim 1 , wherein said reference region is further opposed to said different type region in said second direction with said second gate wiring therebetween.
  3.  前記基準領域が、前記基準領域から独立して形成され、前記基準領域と同種の同種領域と、前記第1ゲート配線を挟んで前記第2方向にさらに対向している、請求項1または2に記載の半導体装置。 The semiconductor device according to claim 1 or 2, wherein the reference region is formed independently of the reference region and is further opposed in the second direction to a homogeneous region of the same type as the reference region, with the first gate wiring interposed therebetween.
  4.  前記基準領域が、前記IGBT領域からなる基準IGBT領域を含み、
     前記基準IGBT領域が、前記同種領域である同種IGBT領域と、前記第1ゲート配線を挟んで前記第2方向に対向している、請求項3に記載の半導体装置。
    the reference region includes a reference IGBT region formed of the IGBT region,
    4. The semiconductor device according to claim 3, wherein said reference IGBT region faces said homogeneous IGBT region, which is said homogeneous region, in said second direction with said first gate wiring interposed therebetween.
  5.  前記基準IGBT領域と前記同種IGBT領域とが前記第2方向に対向する対向幅が、前記第1ゲート配線の線幅以上である、請求項4に記載の半導体装置。 The semiconductor device according to claim 4, wherein the width of the reference IGBT region and the homogeneous IGBT region facing each other in the second direction is equal to or greater than the line width of the first gate wiring.
  6.  前記基準領域が、前記基準領域から独立して形成され、前記基準領域と同種の同種領域と、前記第2方向に対向していない、請求項1または2に記載の半導体装置。 The semiconductor device according to claim 1 or 2, wherein the reference region is formed independently of the reference region and does not face a homogeneous region of the same type as the reference region in the second direction.
  7.  前記所定の領域が、平面視において前記アクティブ領域の中央部を含む領域である、請求項1~6のいずれか一項に記載の半導体装置。 The semiconductor device according to any one of claims 1 to 6, wherein the predetermined region is a region that includes a central portion of the active region in a plan view.
  8.  前記第2主面は、その全域が、放熱ユニットに接触する領域であり、
     前記第1主面には、放熱ユニットが接触しない、請求項7に記載の半導体装置。
    the second main surface is an area whose entire area is in contact with a heat dissipation unit,
    The semiconductor device according to claim 7 , wherein a heat dissipation unit is not in contact with the first main surface.
  9.  前記所定の領域が、平面視において前記アクティブ領域の外周部を含む領域である、請求項1~6のいずれか一項に記載の半導体装置。 The semiconductor device according to any one of claims 1 to 6, wherein the predetermined region is a region that includes the outer periphery of the active region in a plan view.
  10.  前記第2主面の全域および前記第1主面の中央部が、放熱ユニットに接触する領域であり、
     前記第1主面の外周部には、放熱ユニットが接触しない、請求項9に記載の半導体装置。
    the entire second main surface and a central portion of the first main surface are in contact with a heat dissipation unit,
    The semiconductor device according to claim 9 , wherein a heat dissipation unit is not in contact with an outer periphery of the first main surface.
  11.  単位配列をさらに含み、
     前記単位配列が、前記基準領域と、前記基準領域に前記第1方向および前記第2方向に隣り合う複数の前記異種領域と、前記基準領域に前記第1方向および前記第2方向のいずれにも交差する2つの斜め方向両側において前記基準領域に隣り合い、かつ前記基準領域から独立した前記同種領域とを含み、
     前記単位配列が、平面視において前記アクティブ領域の全域に形成されている、請求項3~6のいずれか一項に記載の半導体装置。
    Further comprising a unit sequence,
    the unit array includes the reference region, a plurality of the heterogeneous regions adjacent to the reference region in the first direction and the second direction, and the homogeneous regions adjacent to the reference region on both sides of two oblique directions intersecting the reference region in both the first direction and the second direction and independent of the reference region,
    7. The semiconductor device according to claim 3, wherein the unit array is formed over the entire active region in a plan view.
  12.  前記IGBT領域および前記ダイオード領域が、それぞれ、複数の前記IGBT領域および複数の前記ダイオード領域を含み、
     前記第1主面には、複数の前記IGBT領域および複数の前記ダイオード領域を含む領域配列であって、複数の前記IGBT領域および複数の前記ダイオード領域が前記第1方向に沿って交互に並んだ領域配列が、前記第2方向に間隔を空けて複数配列されており、
     複数の前記領域配列のうち所定の前記領域配列に含まれる複数の前記IGBT領域が、前記所定の前記領域配列に対して前記第2方向に隣り合う前記領域配列に含まれる複数の前記ダイオード領域のそれぞれと、前記第2方向に対向しており、
     前記所定の前記領域配列に含まれる複数の前記ダイオード領域が、前記所定の前記領域配列に対して前記第2方向に隣り合う前記領域配列に含まれる複数の前記IGBT領域のそれぞれと、前記第2方向に対向している、請求項1に記載の半導体装置。
    the IGBT region and the diode region each include a plurality of the IGBT regions and a plurality of the diode regions,
    a plurality of region arrays including a plurality of the IGBT regions and a plurality of the diode regions, the plurality of the IGBT regions and the plurality of the diode regions being alternately arranged along the first direction, the plurality of region arrays being arranged at intervals in the second direction on the first main surface;
    a plurality of the IGBT regions included in a predetermined region array among the plurality of region arrays face, in the second direction, each of a plurality of the diode regions included in a region array adjacent in the second direction to the predetermined region array,
    2. The semiconductor device according to claim 1, wherein a plurality of the diode regions included in the predetermined region array face in the second direction, respectively, a plurality of the IGBT regions included in the region array adjacent in the second direction to the predetermined region array.
  13.  前記ダイオード領域が、前記第2主面の表層部に形成されたカソード領域を含み、
     前記カソード領域が、前記ダイオード領域と前記IGBT領域との境界である境界領域を横切って前記IGBT領域側に引き出された引き出し領域を含む、請求項1~12のいずれか一項に記載の半導体装置。
    the diode region includes a cathode region formed in a surface layer portion of the second main surface,
    13. The semiconductor device according to claim 1, wherein the cathode region includes a lead-out region that crosses a boundary region that is a boundary between the diode region and the IGBT region and is led out to the IGBT region side.
  14.  平面視において、前記アクティブ領域に占める前記ダイオード領域の面積比率が、25%以上45%以下である、請求項1~13のいずれか一項に記載の半導体装置。 The semiconductor device according to any one of claims 1 to 13, wherein the area ratio of the diode region to the active region in a plan view is 25% or more and 45% or less.
  15.  前記IGBT領域および前記ダイオード領域が、それぞれ、複数のIGBT領域および複数のダイオード領域を含み、
     平面視において、前記複数のIGBT領域および前記複数のダイオード領域が、それぞれ千鳥状である、請求項1~14のいずれか一項に記載の半導体装置。
    the IGBT region and the diode region each include a plurality of IGBT regions and a plurality of diode regions;
    15. The semiconductor device according to claim 1, wherein the plurality of IGBT regions and the plurality of diode regions are each arranged in a staggered pattern in a plan view.
PCT/JP2024/008084 2023-03-31 2024-03-04 Semiconductor device WO2024202987A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2023-059174 2023-03-31
JP2023059174 2023-03-31

Publications (1)

Publication Number Publication Date
WO2024202987A1 true WO2024202987A1 (en) 2024-10-03

Family

ID=92905371

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2024/008084 WO2024202987A1 (en) 2023-03-31 2024-03-04 Semiconductor device

Country Status (1)

Country Link
WO (1) WO2024202987A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019140348A (en) * 2018-02-15 2019-08-22 富士電機株式会社 Semiconductor device
JP2022178755A (en) * 2021-05-21 2022-12-02 富士電機株式会社 semiconductor module
JP2023013642A (en) * 2021-07-16 2023-01-26 株式会社デンソー Semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019140348A (en) * 2018-02-15 2019-08-22 富士電機株式会社 Semiconductor device
JP2022178755A (en) * 2021-05-21 2022-12-02 富士電機株式会社 semiconductor module
JP2023013642A (en) * 2021-07-16 2023-01-26 株式会社デンソー Semiconductor device

Similar Documents

Publication Publication Date Title
JP4097417B2 (en) Semiconductor device
US12074161B2 (en) Semiconductor device
US20240178223A1 (en) Semiconductor device
WO2024202987A1 (en) Semiconductor device
CN111446244B (en) Semiconductor device with a semiconductor device having a plurality of semiconductor chips
JP2021197384A (en) Semiconductor device
WO2024195460A1 (en) Semiconductor device
WO2021060085A1 (en) Semiconductor device
US20240379662A1 (en) Semiconductor device
KR20220044502A (en) semiconductor device
US5821616A (en) Power MOS device chip and package assembly
US20240178305A1 (en) Semiconductor device
US11901328B2 (en) Semiconductor device
WO2023090137A1 (en) Semiconductor element and semiconductor device
WO2023166827A1 (en) Semiconductor device and semiconductor module
US20240203835A1 (en) Semiconductor device
WO2022219930A1 (en) Semiconductor device and semiconductor module
WO2022034828A1 (en) Semiconductor device
JP2023087383A (en) Semiconductor device
JP2021168334A (en) Semiconductor device
JP2024085029A (en) Semiconductor Device
JP2021180275A (en) Semiconductor device
JP2021040062A (en) Semiconductor device