[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2024202237A1 - Metal material and sliding component - Google Patents

Metal material and sliding component Download PDF

Info

Publication number
WO2024202237A1
WO2024202237A1 PCT/JP2023/042409 JP2023042409W WO2024202237A1 WO 2024202237 A1 WO2024202237 A1 WO 2024202237A1 JP 2023042409 W JP2023042409 W JP 2023042409W WO 2024202237 A1 WO2024202237 A1 WO 2024202237A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal material
layer
plating
amorphous
metal
Prior art date
Application number
PCT/JP2023/042409
Other languages
French (fr)
Japanese (ja)
Inventor
康則 佐々木
良聡 小林
明宏 柿谷
山田 真二
Original Assignee
Jx金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx金属株式会社 filed Critical Jx金属株式会社
Publication of WO2024202237A1 publication Critical patent/WO2024202237A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • C25D5/12Electroplating with more than one layer of the same or of different metals at least one layer being of nickel or chromium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/02Contact members
    • H01R13/03Contact members characterised by the material, e.g. plating, or coating materials

Definitions

  • This specification discloses technology relating to metal materials in which a plating layer is formed on a substrate, and sliding parts.
  • the metal material may have a plated layer formed on the base material in order to prevent metal diffusion, etc.
  • Patent Document 1 states, "...nickel-phosphorus alloy coatings in particular have characteristics such as high corrosion resistance, high lubricity, high hardness, and high resistivity, and are used as plating coatings for sliding members and piping equipment used under harsh conditions, as well as being commonly used as thin-film resistors in the electronics industry, or as a substitute for gold in connectors.”
  • Patent Document 2 also states that "The bath of Composition Example 1 (paragraph [0016]) produces Ni-P alloy-CNT composite plating with a high phosphorus concentration, so-called high phosphorus type (P concentration: 12 to 13 mass%), and these composite plating films exhibit a low friction coefficient and high hardness. On the other hand, in terms of electromagnetic wave shielding properties, a film in which CNT is composited to a low phosphorus type Ni-P alloy (P concentration: 2 to 4 mass%) is desired.”
  • the metal materials used in the sliding parts mentioned above are required to have excellent wear resistance and to prevent the plating layer from wearing away even when repeatedly rubbed against other metal materials.
  • This specification provides a metal material with excellent wear resistance and a sliding part in which wear of the metal material is suppressed.
  • the metallic material disclosed in this specification has a substrate and a plating layer formed on the substrate, the plating layer including an amorphous layer containing Ni, and the metallic material is used in a sliding part in which the surface of the plating layer slides against the surface of another metallic material, the other metallic material including a crystalline layer containing Ni.
  • another metal material disclosed in this specification has a substrate and a plating layer formed on the substrate, the plating layer includes an amorphous layer, and the metal material is used in a sliding part in which the surface of the plating layer slides against the surface of another metal material, the other metal material including a crystalline layer that is softer than the amorphous layer.
  • the sliding part disclosed in this specification comprises a first metal material and a second metal material, the first metal material having a substrate and a plating layer formed on the substrate, the plating layer of the first metal material includes an amorphous layer containing Ni, and the second metal material includes a crystalline layer containing Ni, and the first metal material and the second metal material are used by sliding against each other on their respective surfaces.
  • the above metal materials have excellent wear resistance.
  • the above sliding parts are designed to suppress wear of the metal materials.
  • FIG. 1 is a partial cross-sectional view showing a metal material according to an embodiment of the present invention, taken along a direction perpendicular to a surface of the metal material; 2 is a similar cross-sectional view showing a schematic diagram of a sliding state when the metal material in FIG. 1 and another metal material are used as sliding parts.
  • FIG. 4 is a similar cross-sectional view showing another example of a plating layer formed on a base material made of a metal material.
  • FIG. FIG. 1 is a schematic diagram showing a microstrip line of a sample when measuring the transmission loss of a metal material.
  • FIG. 2 is a diagram showing the shapes and dimensions of the terminal and flat plate used in Test Example 1.
  • 1 shows the appearance of the flat plates and terminals after testing in Examples 1 and 2 and Comparative Examples 1 and 2 in Test Example 1, and the results of the chipped area of the cross section of the flat plates.
  • 1 is a graph showing the relationship between frequency and transmission loss for each metal material in Test Example 2.
  • 13 is a graph showing the relationship between frequency and transmission loss for each metal material in Test Example 3.
  • 6 shows TEM images and diffraction images of each metal material in Test Example 4.
  • the metal material 1 illustrated in Fig. 1 has a substrate 2 and a plating layer 3 formed on the substrate 2.
  • the metal material 1 is used for a sliding part 101 together with another metal material 51 as illustrated in Fig. 2.
  • the other metal material 51 is often a plated layer 53 formed on a base material 52, like the metal material 1.
  • the plated layer 3 of the metal material 1 includes an amorphous layer 4.
  • the other metal material 51 includes a crystalline layer 54.
  • both the amorphous layer 4 of the metal material 1 and the crystalline layer 54 of the other metal material 51 contain Ni.
  • the crystalline layer 54 of the other metal material 51 is softer than the amorphous layer 4 of the metal material 1.
  • the sliding part 101 is used by sliding the metal material 1 and the other metal material 51 on the surfaces 5, 55 of the respective plated layers 3, 53, as shown by the arrows in FIG. 2.
  • the plating layer 3 of the metal material 1 includes an amorphous layer 4, while the other metal material 51 that slides against it includes a crystalline layer 54, and when the amorphous layer 4 and the crystalline layer 54 contain Ni and/or the crystalline layer 54 is softer than the amorphous layer 4, the metal material 1 and the other metal material 51 have excellent wear resistance.
  • wear of the plating layers 3 and 53 is significantly suppressed when the metal material 1 and the other metal material 51 slide against each other. Therefore, the metal material 1 of the embodiment described here exhibits excellent wear resistance, and the sliding part 101 can be said to be one in which wear of the metal materials 1 and 51 is suppressed.
  • the metal material 1 when it is necessary to distinguish between the two metal materials 1, 51 that the sliding part 101 has, one of them, the metal material 1, will be referred to as the "metal material” or the “first metal material”, and the other metal material 51 will be referred to as the “other metal material” or the “second metal material”. In explanations common to both the two metal materials 1, 51, they may be simply referred to as the "metal material”.
  • the material of the base material 2, 52 of the metal material 1, 51 is not particularly limited and may be any metal or alloy.
  • the material of the base material 2, 52 may be, for example, Cu (copper), Al (aluminum), Fe (iron), or an alloy containing at least one of them.
  • the material of the base material 2, 52 is preferably Cu or a Cu alloy, more specifically, phosphor bronze, brass, Corson copper, oxygen-free copper, tough pitch copper, etc.
  • the materials of the base material 2, 52 may be C11000, C10200, C19400, C70250, C26000, C52100, etc., which are standards established by the Copper Development Association (CDA).
  • the substrate 2 of the metal material 1 and the substrate 52 of the other metal material 51 may be made of the same material, but may also be made of different materials.
  • the dimensions and shapes of the substrates 2 and 52 may be changed as appropriate depending on the sliding parts in which the metal materials 1 and 51 are used.
  • the amorphous layer 4 constitutes at least a part of the plating layer 3 of the metal material 1.
  • the amorphous layer 4 contains Ni (nickel) as a main component, which is an element of more than 50 mass %, but is not limited thereto.
  • the amorphous layer 4 containing Ni preferably further contains P (phosphorus).
  • the Ni-P amorphous layer 4 has a dense amorphous structure, and therefore tends to be harder than the crystalline layer 54 described below, which contains mainly Ni.
  • the metal material 1 used in sliding contact with another metal material 51 containing a crystalline layer 54 whose main component is Ni preferably contains Ni and P.
  • the amorphous layer 4 containing Ni and P is non-magnetic, which reduces the dielectric loss in the transmission loss. Therefore, the metal material 1 containing such an amorphous layer 4 can be suitably used in high-frequency components, particularly sliding components 101, through which a specific high-frequency internal signal flows, as described below.
  • the amorphous layer 4 containing Ni and P often has an amorphous structure when the P content is 8 mass% or more.
  • the P content of the amorphous layer 4 is preferably 8 mass% to 15 mass%. If the P content is 15 mass% or less, the decrease in the conductivity of the amorphous layer 4 due to the inclusion of P can be suppressed. More preferably, the P content is 10 mass% to 13 mass%.
  • the amorphous layer 4 contains Ni, it is also preferable that it further contains W (tungsten).
  • the Ni-W amorphous layer 4 also has a dense amorphous structure and is harder than the Ni crystalline layer 54, and is expected to have the effect of improving wear resistance, similar to Ni-P.
  • the W content of the amorphous layer 4 containing Ni and W is preferably 20% by mass to 40% by mass.
  • the amorphous layer 4 contains Ni it may further contain P and W.
  • the measurement conditions for the standard specimen are as follows: standard specimen: InP wafer (P content 50 at%), crystal used: PETH, X-ray used: K ⁇ , acceleration voltage 15 kV, irradiation current 1 ⁇ 10 -7 A, beam diameter 10 ⁇ m, and under these measurement conditions, the X-ray intensity at the peak position of P (197.235 mm) of the standard specimen is measured five times, and the average value is calculated.
  • standard specimen InP wafer (P content 50 at%)
  • crystal used PETH
  • X-ray used K ⁇
  • acceleration voltage 15 kV acceleration voltage 15 kV
  • irradiation current 1 ⁇ 10 -7 A irradiation current 1 ⁇ 10 -7 A
  • beam diameter 10 ⁇ m the average value is calculated.
  • the central portion of the sample of the metal material 1 having the amorphous layer 4 formed on the substrate 2 is measured five times under the same measurement conditions as those for the standard sample, and the average value of the X-ray intensity at the P peak position (197.235
  • the W content can be measured by TEM-EDX (energy dispersive X-ray spectroscopy) using a JEM-2100F manufactured by JEOL Ltd. More specifically, the W content is measured at the center of the Ni-W layer in the thickness direction.
  • the measurement of the W content by TEM-EDX (energy dispersive X-ray spectroscopy) can be performed as follows.
  • Equipment (EDX) Energy dispersive X-ray analyzer (JED-2300T) manufactured by JEOL Ltd.
  • STEM image observation + EDX analysis Mode STEM mode Acceleration voltage: 200 kV Spot size: 0.15 nm Magnification: 80,000 times
  • the remainder other than P or W is often substantially composed of Ni, but it may also contain at least one impurity selected from the group consisting of Cu, Pb, and Zn in a total amount of 15 mass ppm or less.
  • the amorphous layer 4 has an amorphous structure can be confirmed by processing a cross section of the metal material 1 with an FIB-SIM (SMI3050SE, manufactured by Hitachi High-Technologies Corporation) and observing the cross section with a TEM (JEM-2100F, manufactured by JEOL Ltd.).
  • FIB-SIM SMI3050SE, manufactured by Hitachi High-Technologies Corporation
  • JEM-2100F TEM
  • the amorphous layer 4 of the metal material 1 may be harder than the crystalline layer 54 of the other metal material 51.
  • the Vickers hardness of the amorphous layer 4 may be 500 Hv to 600 Hv.
  • the Vickers hardness of the crystalline layer 54 will be described later, but it is preferable that the difference in Vickers hardness between the amorphous layer 4 and the crystalline layer 54 is 100 Hv or more, more preferably 150 Hv or more, and particularly preferably 150 Hv to 300 Hv. It is believed that wear of the metal materials 1, 51 is suppressed during sliding on the sliding part 101 due to such a difference in hardness between the amorphous layer 4 and the crystalline layer 54.
  • the Vickers hardness of the amorphous layer 4 and the crystalline layer 54 can be measured using a microhardness tester MHT-2 manufactured by Matsuzawa Seiki Seisakusho Co., Ltd. (currently Matsuzawa Corporation). More specifically, the metal materials 1 and 51 are filled with acrylic resin while standing vertically, cut down to the measurement point, polished, and then a square pyramidal diamond indenter is pressed into the amorphous layer 4 and the crystalline layer 54, and the diagonal length of the depression created after the test force is released is measured.
  • the test conditions are a test force of 500 gf and a holding time of 10 seconds, and the diagonal length is measured by taking the average of the X and Y measurements.
  • the measured value is the median value of five measurements, and the hardness is calculated from the Vickers hardness calculation table based on this median value and the test force.
  • the thickness of the amorphous layer 4 is preferably 1 ⁇ m to 6 ⁇ m. If the thickness of the amorphous layer 4 is less than 1 ⁇ m, pits and pinholes are likely to occur, and corrosion resistance may decrease. On the other hand, if the thickness of the amorphous layer 4 exceeds 6 ⁇ m, there is a concern that cracks may occur when the metal material 1 is bent due to the hardness of the amorphous layer 4.
  • the thickness of the amorphous layer 4 can be measured by a fluorescent X-ray thickness meter.
  • the thicknesses of layers other than the amorphous layer 4 of the plating layer 3 and the thicknesses of other plating layers described later can also be measured in the same manner.
  • the plating thickness can be measured by a fluorescent X-ray thickness meter as follows.
  • Equipment Fluorescent X-ray thickness gauge FT9500X manufactured by Hitachi High-Tech Corporation
  • X-ray tube Mo Detector: drift type semiconductor detector
  • X-ray optical system polycapillary system Beam diameter: 30 ⁇ m
  • Measurement method Thin film FP (Fundamental Parameter) method
  • a plating bath for the substrate 2 is a nickel sulfate bath, and nickel (II) sulfate hexahydrate or the like is added to set the nickel sulfate concentration to 205 g/L to 295 g/L, the phosphorous acid concentration to 68 g/L to 95 g/L, the current density to 7 A/dm 2 to 13 A/dm 2 , and the solution temperature to 55° C. to 65° C.
  • the amorphous layer 4 can be formed by electroless plating instead of electrolytic plating.
  • the other metal material 51 is a plated layer 53 formed on a base material 52 , at least a portion of the plated layer 53 contains a crystalline layer 54 .
  • the crystalline layer 54 has, for example, the same main component as the main component of the amorphous layer 4 described above, and typically contains Ni as the main component, but is not limited to this. Furthermore, in this case, the Ni content can be nearly 100 mass % and the crystalline layer 54 can be made of Ni alone. However, the crystalline layer 54 may also contain other elements.
  • the Ni content can be measured using an electron probe microanalyzer (EPMA, JXA-8500F manufactured by JEOL Ltd.).
  • the crystalline layer 54 may be softer than the amorphous layer 4 described above.
  • the Vickers hardness of the crystalline layer 54 may be 200Hv to 400Hv.
  • the thickness of the crystalline layer 54 is preferably 1 ⁇ m to 6 ⁇ m. If the thickness of the crystalline layer 54 is less than 1 ⁇ m, pits and pinholes are likely to occur, and corrosion resistance may decrease. On the other hand, if the thickness of the amorphous layer 4 exceeds 6 ⁇ m, there is a concern that cracks may occur when the other metal material 51 is bent.
  • the crystalline layer 54 can be formed by, but is not limited to, subjecting the base material 52 to non-gloss, semi-gloss, roughened Ni plating.
  • the plating solution may be, for example, a nickel sulfamate plating solution, with a current density of 3 A/ dm2 to 20 A/ dm2 and a solution temperature of 40°C to 60°C.
  • the plating layer 3, 53 of the metal material 1, 51 may include a top layer containing at least one metal selected from the group consisting of Au, Ag, Sn, Pd and Cu.
  • Fig. 3 shows an example of the metal material 11 in which a top layer 16 is further formed on an amorphous layer 14 on a substrate 12.
  • the top layer may be formed on other metal materials.
  • the outermost layer 16 is exposed on the surface 15 of the plating layer 13, and since the outermost layer 16 of the above material is relatively soft and thin, it is considered that it has almost no effect on the wear resistance.
  • the transmission loss can be further reduced due to the high electrical conductivity, making the metal material 11 even more suitable for use in sliding parts that are also high-frequency parts. This is because the influence of the skin effect is strong in high-frequency parts.
  • the thickness of the outermost layer 16 may be 0.005 ⁇ m to 5 ⁇ m. If the thickness of the outermost layer 16 is too thin, it may not be possible to reduce transmission loss significantly, whereas if it is too thick, there is a concern that there may be no change in transmission loss, that there may be a slight effect on abrasion resistance, and that the cost of precious metals may be high.
  • the outermost layer 16 when the outermost layer 16 is formed by Au-Co plating (hard plating), the Au content of the outermost layer 16 may be about 99.7% by mass. When the outermost layer 16 is formed by pure Au plating (soft plating), the Au content of the outermost layer 16 may be nearly 100% by mass. When the outermost layer 16 contains other metals (Ag, Sn, Pd, or Cu), the content of the metal may be nearly 100% by mass. In addition, the outermost layer 16 may further contain Co, such as Au-Co. In addition, it is also possible to form two or more outermost layers of different materials. The metal content of the outermost layer 16 can be measured by using X-ray photoelectron spectroscopy (XPS, 5600MC manufactured by ULVAC-PHI, Inc.).
  • XPS X-ray photoelectron spectroscopy
  • the measurement conditions for XPS can be as follows. Ultimate vacuum: 5.7 ⁇ 10 -7 Pa Detection diameter: 800 ⁇ m Excitation source: MgK Output: 400W Incident angle: 81 degrees Take-off angle: 45 degrees Neutralization gun: None Sputtering conditions Ion species: Ar+ Acceleration voltage: 2 kV Sweep area: 3mm x 3mm Rate: 1.7 nm/min ( SiO2 equivalent)
  • the base material 12 on which the amorphous layer 14 has been formed can be plated using an appropriate plating solution depending on the material of the outermost layer 16.
  • the plating solution for example, in the case of the outermost layer 16 containing Ag, Silbrex Bright HS manufactured by EEJA or the like can be suitably used, and in the case of the outermost layer 16 containing Au, a hard Au plating solution or the like can be suitably used.
  • the current density may be 5 A/dm 2 to 25 A/dm 2 and the solution temperature may be 30° C. to 60° C.
  • the current density may be 5 A/dm 2 to 60 A/dm 2 and the solution temperature may be 50° C. to 60° C.
  • the metal material 1 has a small transmission loss, and preferably has an absolute value of 4 dB or less when a current of a frequency of 10 GHz is passed through it.
  • the transmission loss is often measured as a negative value, and the smaller the absolute value is and the closer to zero it is, the smaller the transmission loss is, and the more desirable the metal material 1 is for the sliding part 101, which is also a high-frequency part.
  • the transmission loss of the metal material 1 can be measured using a network analyzer. More specifically, as a sample to be set in the network analyzer, a microstrip line is used in which a dielectric layer is provided on a copper foil, and further, on the dielectric layer, a copper wiring with a plating layer formed around it is provided. To prepare this sample, a metal foil made of the material of the substrate 2 is bonded to each side of the dielectric layer by a heat press at 300°C, and then the metal foil on one side is made into wiring by circuit etching, and plating corresponding to the plating layer 3 is applied around the wiring. The wiring corresponds to the substrate.
  • the sliding component 101 includes a first metal material 1 as the metal material 1 and a second metal material 51 as another metal material 51 .
  • the surface 5 of the plating layer 3 of the first metal material 1 and the surface 55 of the plating layer 53 of the second metal material 51 are pressed against each other in a direction perpendicular to the surfaces 5, 55 (the vertical direction in FIG. 2), and as shown in FIG. 2, the first metal material 1 and the second metal material 51 may be displaced in opposite directions relative to each other in a direction roughly along the surfaces 5, 55 (the horizontal direction in FIG. 2).
  • the plating layers 3, 53 may rub against each other and wear away.
  • the plating layer 3 of the first metal material 1 includes an amorphous layer 4
  • the plating layer 53 of the second metal material 51 includes a crystalline layer 54
  • the amorphous layer 4 and the crystalline layer 54 contain Ni and/or the crystalline layer 54 is softer than the amorphous layer 4, wear of the plating layers 3, 53 can be effectively suppressed.
  • the first metal material 1 has a convex portion provided on the surface 5. This is because, when a convex portion is provided on the first metal material 1 including the hard amorphous layer 4 and this is slid against the second metal material 51 including the soft crystalline layer 54, the result was that wear was suppressed compared to when a convex portion is provided on the second metal material 51. Therefore, it is preferable that the first metal material 1 has a convex portion protruding toward the surface 55 side of the second metal material 51 and sliding against the surface 55 while being pressed against the surface 55 when used in the sliding part 101.
  • the first metal material 1 has a pressing portion provided on the surface 5.
  • a pressing portion may be the above-mentioned convex portion.
  • the sliding part 101 is a board-to-board connector
  • the receptacle having the convex portion of the board-to-board connector is made of the first metal material 1
  • the plug is made of the second metal material 51.
  • one of the metal materials that is biased toward the other metal material by a spring material such as a leaf spring is made of the metal material 1.
  • the sliding part 101 described above is not particularly limited as long as the two metal materials 1, 51 slide against each other when in use, but can be, for example, a connector, switch, gear, bearing, washer, etc.
  • the embodiment described here may be able to reduce transmission loss in the metal materials 1, 51, and is therefore effective when applied to the sliding part 101, which is a high-frequency part through which a current of a frequency of 1 GHz to 15 GHz, typically 7 GHz to 15 GHz, flows.
  • the sliding part 101 which is a high-frequency part through which a current of a frequency of 1 GHz to 15 GHz, typically 7 GHz to 15 GHz, flows.
  • high-frequency sliding parts 101 include connectors and switches mounted on communication devices such as in-vehicle radar and mobile phones, such as smartphones.
  • electrical signals in such high-frequency bands are used due to the increase in communication speed and the increase in the amount and diversification of information, and in the transmission of high-frequency electrical signals, it is necessary to reduce transmission loss not only during propagation through space but also inside the communication device.
  • Test Example 1 A terminal and a flat plate having the shape and dimensions shown in Fig. 5 were prepared.
  • the protruding portion of the terminal was set to protrude from the flat surface by a height of 30 ⁇ m.
  • Both the terminal and the flat plate had a base material made of a copper alloy containing 0.12 mass% Sn (NKE012 manufactured by JX Metals Corporation) and having a thickness of 0.15 mm.
  • the longitudinal direction of both the terminal and the flat plate was set to be perpendicular to the rolling direction of the base material.
  • Example 1 the flat plate was plated with Ni plating to a thickness of 1.5 ⁇ m, and the terminals were plated with Ni-P plating to a thickness of 1.5 ⁇ m (P concentration: 11% by mass).
  • Example 2 the flat plate was plated with Ni-P plating to a thickness of 1.5 ⁇ m (P concentration: 11% by mass), and the terminals were plated with Ni plating to a thickness of 1.5 ⁇ m.
  • both the flat plate and the terminals were plated with Ni plating to a thickness of 1.5 ⁇ m.
  • both the flat plate and the terminals were plated with Ni-P plating to a thickness of 1.5 ⁇ m (P concentration 11% by mass).
  • the plate after sliding was observed with a laser microscope (Keyence Corporation's shape analysis laser microscope VK-X1000) and the scraped area on the cross section was measured.
  • the measurement conditions were: scan mode: laser confocal, shooting magnification: 1200x, measurement size: standard (1024x768), measurement pitch: 0.13 ⁇ m.
  • Test Example 1 shows that wear resistance is improved when one substrate is Ni-P plated and the other substrate is Ni plated, compared to when both substrates are Ni-P plated, which is harder than Ni plating.
  • the layer formed on the substrate by Ni-P plating is an amorphous layer, and the layer formed on the substrate by Ni plating is a crystalline layer.
  • the Vickers hardness of the amorphous layer formed by Ni-P plating was 500 Hv
  • the Vickers hardness of the crystalline layer formed by Ni plating was 300 Hv.
  • Example 2 wear was suppressed more in Example 1, where the terminal with the convex portion contained an amorphous layer and the flat plate contained a crystalline layer, than in Example 2, where the opposite was true.
  • the reason for this is not entirely clear, but it is thought to be important that the tip of the convex portion (real contact surface) is hard enough not to deform when shear stress is applied to the convex portion during sliding. If the tip of the convex portion were to deform, the real contact area would increase and greater stress would be applied, generating wear powder, and it is presumed that the convex portion would become entangled in this wear powder, making it easier to scrape the flat plate.
  • Test Example 2 The transmission loss of each of the metal material having a matte Ni plating on the substrate and the metal material having a Ni-P plating on the substrate was measured using a network analyzer (N5247A manufactured by Keysight).
  • a 50 ⁇ m thick LCP resin was used as the dielectric layer, and a 12 ⁇ m thick oxygen-free copper foil was used as the metal foil.
  • One side of the oxygen-free copper foil was etched to form a wiring with a width of 124 ⁇ m.
  • a matte Ni plating was performed using a nickel sulfamate plating solution under the conditions of a current density of 10 A/dm 2 and a solution temperature of 60° C. As a result, a Ni layer was formed around the wiring.
  • Ni-P plating bath a Ni sulfate bath was used as the plating bath for Ni-P plating, and the conditions were Ni(II) sulfate hexahydrate: 250 g/L, phosphorous acid: 82 g/L, current density: 10 A/dm 2 , and temperature: 60° C.
  • Ni-P layer with a P content of 12 mass% was formed around the wiring.
  • the thickness of each Ni layer and Ni-P layer was 2 ⁇ m.
  • the matte Ni-plated sample and the Ni-P-plated sample were each set in a network analyzer, and the transmission loss was measured using the method described above. The results are shown in Figure 7.
  • Figure 7 shows that the absolute value of the transmission loss of the Ni-P plated sample is smaller than that of the Ni plated sample at frequencies below approximately 15 GHz.
  • Test Example 3 For metal material samples in which an outermost layer was formed by plating Ag or Au to a thickness of 0.3 ⁇ m on the Ni layer of the sample of Test Example 2, the transmission loss was measured in the same manner as in Test Example 2. The results are shown in FIG.
  • Silbrex Bright HS manufactured by EEJA was used, and the conditions were a current density of 10 A/ dm2 and a solution temperature of 60°C.
  • Au plating a hard Au plating solution was used, and the conditions were a current density of 10 A/ dm2 and a solution temperature of 60°C.
  • Test Example 4 A metal material having a crystalline layer or an amorphous layer formed on a substrate made of oxygen-free copper (C1020) was produced by applying a matte Ni plating or Ni-P plating to the substrate.
  • the conditions for the matte Ni plating and the Ni-P plating were the same as in Test Example 2.
  • the P content of the Ni-P plating was 10 mass %. This is thought to be due to variation.
  • the amorphous layer has an amorphous structure is confirmed by the fact that no crystal structure can be confirmed in the TEM image of the Ni-P layer.
  • the fact that the crystalline layer (Ni layer) has a crystalline structure is confirmed by the fact that a crystal structure can be confirmed in the TEM image.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

This metal material 1 has a base material 2 and a plating layer 3 formed on the base material 2. The plating layer 3 contains an amorphous layer 4 containing Ni. The metal material 1 is used for a sliding component 101 that slides, at the surface 5 of the plating layer 3, against the surface 55 of another metal material 51. The other metal material 51 includes a crystalline layer 54 containing Ni.

Description

金属材料及び摺動部品Metallic materials and sliding parts
 この明細書は、基材上にめっき層を形成した金属材料及び、摺動部品に関する技術を開示するものである。 This specification discloses technology relating to metal materials in which a plating layer is formed on a substrate, and sliding parts.
 コネクタやスイッチ、ギヤ、ベアリング、ワッシャー等のように、使用時に一方の金属材料と他方の金属材料とが互いに摺動する摺動部品では、金属の拡散を抑えること等を目的として、当該金属材料を、基材にめっき層が形成されたものとすることがある。 In sliding parts in which one metal material slides against another during use, such as connectors, switches, gears, bearings, washers, etc., the metal material may have a plated layer formed on the base material in order to prevent metal diffusion, etc.
 これに関し、たとえば特許文献1には、「・・・なかでもニッケル-リン合金被膜は高耐蝕性、高潤滑性、高硬度、高抵抗率等の特徴を有し、過酷な条件下で使用される摺動部材や配管設備のめっき被膜として利用されているほか、電子工業における薄膜抵抗体、あるいはコネクタの金の代替品としての用途に通用されている。」との記載がある。 In this regard, for example, Patent Document 1 states, "...nickel-phosphorus alloy coatings in particular have characteristics such as high corrosion resistance, high lubricity, high hardness, and high resistivity, and are used as plating coatings for sliding members and piping equipment used under harsh conditions, as well as being commonly used as thin-film resistors in the electronics industry, or as a substitute for gold in connectors."
 また特許文献2では、「組成例1(段落[0016])の浴からはリン濃度が高い、いわゆる高リンタイプ(P濃度:12~13mass%)のNi-P合金-CNT複合めっきが得られ、これらの複合めっき膜は低い摩擦係数を示し、硬度も高い。一方、電磁波シールド特性はリン濃度が低い低リンタイプ(P濃度:2~4mass%)のNi-P合金にCNTを複合した膜が望まれる。」と記載されている。 Patent Document 2 also states that "The bath of Composition Example 1 (paragraph [0016]) produces Ni-P alloy-CNT composite plating with a high phosphorus concentration, so-called high phosphorus type (P concentration: 12 to 13 mass%), and these composite plating films exhibit a low friction coefficient and high hardness. On the other hand, in terms of electromagnetic wave shielding properties, a film in which CNT is composited to a low phosphorus type Ni-P alloy (P concentration: 2 to 4 mass%) is desired."
特開平03-010086号公報Japanese Patent Application Publication No. 03-010086 特開2010-215977号公報JP 2010-215977 A
 上述した摺動部品に用いられる金属材料は、他の金属材料が繰返し擦り付けられても、めっき層の摩耗が生じ難く、優れた耐摩耗性を有することが求められる。 The metal materials used in the sliding parts mentioned above are required to have excellent wear resistance and to prevent the plating layer from wearing away even when repeatedly rubbed against other metal materials.
 この明細書では、耐摩耗性に優れた金属材料及び、金属材料の摩耗の発生が抑制された摺動部品を提供する。 This specification provides a metal material with excellent wear resistance and a sliding part in which wear of the metal material is suppressed.
 この明細書で開示する金属材料は、基材と、前記基材上に形成されためっき層とを有するものであって、前記めっき層が、Niを含有する非晶質層を含み、当該金属材料が前記めっき層の表面で、他の金属材料の表面と摺動する摺動部品に用いられ、前記他の金属材料に、Niを含有する結晶質層が含まれるというものである。 The metallic material disclosed in this specification has a substrate and a plating layer formed on the substrate, the plating layer including an amorphous layer containing Ni, and the metallic material is used in a sliding part in which the surface of the plating layer slides against the surface of another metallic material, the other metallic material including a crystalline layer containing Ni.
 また、この明細書で開示する別の金属材料は、基材と、前記基材上に形成されためっき層とを有するものであって、前記めっき層が非晶質層を含み、当該金属材料が前記めっき層の表面で、他の金属材料の表面と摺動する摺動部品に用いられ、前記他の金属材料に、前記非晶質層よりも柔らかい結晶質層が含まれるというものである。 Furthermore, another metal material disclosed in this specification has a substrate and a plating layer formed on the substrate, the plating layer includes an amorphous layer, and the metal material is used in a sliding part in which the surface of the plating layer slides against the surface of another metal material, the other metal material including a crystalline layer that is softer than the amorphous layer.
 この明細書で開示する摺動部品は、第一金属材料及び第二金属材料を備えるものであって、前記第一金属材料が、基材と、前記基材上に形成されためっき層とを有し、前記第一金属材料の前記めっき層が、Niを含有する非晶質層を含み、前記第二金属材料が、Niを含有する結晶質層を含み、前記第一金属材料と前記第二金属材料とを、それぞれの表面で摺動させて用いられるものである。 The sliding part disclosed in this specification comprises a first metal material and a second metal material, the first metal material having a substrate and a plating layer formed on the substrate, the plating layer of the first metal material includes an amorphous layer containing Ni, and the second metal material includes a crystalline layer containing Ni, and the first metal material and the second metal material are used by sliding against each other on their respective surfaces.
 上記の金属材料は、耐摩耗性に優れたものである。上記の摺動部品は、金属材料の摩耗の発生が抑制されたものである。 The above metal materials have excellent wear resistance. The above sliding parts are designed to suppress wear of the metal materials.
実施形態の金属材料を模式的に示す、表面に直交する方向に沿う部分断面図である。1 is a partial cross-sectional view showing a metal material according to an embodiment of the present invention, taken along a direction perpendicular to a surface of the metal material; 図1の金属材料と他の金属材料を摺動部品として用いた場合の摺動時の様子を模式的に示す、同様の断面図である。2 is a similar cross-sectional view showing a schematic diagram of a sliding state when the metal material in FIG. 1 and another metal material are used as sliding parts. FIG. 金属材料の基材上に形成するめっき層の他の例を示す、同様の断面図である。4 is a similar cross-sectional view showing another example of a plating layer formed on a base material made of a metal material. FIG. 金属材料の伝送損失を測定する際の試料のマイクロストリップラインを示す模式図である。FIG. 1 is a schematic diagram showing a microstrip line of a sample when measuring the transmission loss of a metal material. 試験例1に用いた端子及び平板の形状及び寸法を示す図である。FIG. 2 is a diagram showing the shapes and dimensions of the terminal and flat plate used in Test Example 1. 試験例1における実施例1及び2並びに比較例1及び2の試験後の平板及び端子の外観並びに、平板の断面の削れ面積の結果である。1 shows the appearance of the flat plates and terminals after testing in Examples 1 and 2 and Comparative Examples 1 and 2 in Test Example 1, and the results of the chipped area of the cross section of the flat plates. 試験例2の各金属材料における周波数と伝送損失との関係を示すグラフである。1 is a graph showing the relationship between frequency and transmission loss for each metal material in Test Example 2. 試験例3の各金属材料における周波数と伝送損失との関係を示すグラフである。13 is a graph showing the relationship between frequency and transmission loss for each metal material in Test Example 3. 試験例4の各金属材料のTEM画像及び回折像である。6 shows TEM images and diffraction images of each metal material in Test Example 4.
 以下に、上述した金属材料及び摺動部品の実施の形態について詳細に説明する。
 図1に例示する当該金属材料1は、基材2と、基材2上に形成されためっき層3とを有するものである。当該金属材料1は、図2に示すように、他の金属材料51とともに摺動部品101に用いられる。
Hereinafter, the above-mentioned metal material and sliding part will be described in detail.
The metal material 1 illustrated in Fig. 1 has a substrate 2 and a plating layer 3 formed on the substrate 2. The metal material 1 is used for a sliding part 101 together with another metal material 51 as illustrated in Fig. 2.
 他の金属材料51は、多くの場合、当該金属材料1のように、基材52上にめっき層53が形成されたものである。但し、当該金属材料1のめっき層3には、非晶質層4が含まれる。一方、他の金属材料51には、結晶質層54が含まれる。一の実施形態では、当該金属材料1の非晶質層4及び他の金属材料51の結晶質層54がともに、Niを含有するものである。他の実施形態では、他の金属材料51の結晶質層54が、当該金属材料1の非晶質層4よりも柔らかいものである。そして、摺動部品101は、図2に矢印で示すように、当該金属材料1と他の金属材料51とを、それぞれのめっき層3、53の表面5、55で摺動させて用いられる。 The other metal material 51 is often a plated layer 53 formed on a base material 52, like the metal material 1. However, the plated layer 3 of the metal material 1 includes an amorphous layer 4. Meanwhile, the other metal material 51 includes a crystalline layer 54. In one embodiment, both the amorphous layer 4 of the metal material 1 and the crystalline layer 54 of the other metal material 51 contain Ni. In another embodiment, the crystalline layer 54 of the other metal material 51 is softer than the amorphous layer 4 of the metal material 1. The sliding part 101 is used by sliding the metal material 1 and the other metal material 51 on the surfaces 5, 55 of the respective plated layers 3, 53, as shown by the arrows in FIG. 2.
 上記のように、当該金属材料1のめっき層3が非晶質層4を含むのに対し、それと摺動する他の金属材料51が結晶質層54を含む場合であって、非晶質層4及び結晶質層54がNiを含有する場合及び/又は結晶質層54が非晶質層4よりも柔らかい場合は、当該金属材料1や他の金属材料51が耐摩耗性に優れたものになることが、新たな知見として得られた。この場合、詳細については実施例の項目にて後述するが、当該金属材料1と他の金属材料51とを摺動させたときの、めっき層3、53の摩耗が有意に抑制される。そのため、ここで述べる実施形態の金属材料1は、優れた耐摩耗性を発揮するものであり、摺動部品101は、金属材料1、51の摩耗の発生が抑制されたものであるといえる。 As described above, when the plating layer 3 of the metal material 1 includes an amorphous layer 4, while the other metal material 51 that slides against it includes a crystalline layer 54, and when the amorphous layer 4 and the crystalline layer 54 contain Ni and/or the crystalline layer 54 is softer than the amorphous layer 4, the metal material 1 and the other metal material 51 have excellent wear resistance. In this case, although details will be described later in the Examples section, wear of the plating layers 3 and 53 is significantly suppressed when the metal material 1 and the other metal material 51 slide against each other. Therefore, the metal material 1 of the embodiment described here exhibits excellent wear resistance, and the sliding part 101 can be said to be one in which wear of the metal materials 1 and 51 is suppressed.
 なおここでは、摺動部品101が備える二個の金属材料1、51を互いに区別する必要があるときは、それらのうちの一方の金属材料1のことを「当該金属材料」又は「第一金属材料」と称し、他方の金属材料51のことを「他の金属材料」又は「第二金属材料」と称する。二個の金属材料1、51に共通する説明では、単に「金属材料」と称することがある。 Note that, when it is necessary to distinguish between the two metal materials 1, 51 that the sliding part 101 has, one of them, the metal material 1, will be referred to as the "metal material" or the "first metal material", and the other metal material 51 will be referred to as the "other metal material" or the "second metal material". In explanations common to both the two metal materials 1, 51, they may be simply referred to as the "metal material".
(基材)
 金属材料1、51の基材2、52の材質は特に問わず、任意の金属もしくは合金とすることができる。基材2、52の材質は、たとえば、Cu(銅)、Al(アルミニウム)もしくはFe(鉄)、又は、それらのうちの少なくとも一種を含む合金等とすることがある。
(Substrate)
The material of the base material 2, 52 of the metal material 1, 51 is not particularly limited and may be any metal or alloy. The material of the base material 2, 52 may be, for example, Cu (copper), Al (aluminum), Fe (iron), or an alloy containing at least one of them.
 高い導電率及び強度を有するとの観点から、基材2、52の材質として好ましくは、CuやCu合金、より具体的には、リン青銅や黄銅、コルソン銅、無酸素銅、タフピッチ銅等が挙げられる。特に、銅開発協会(Copper Development Association、CDA)で定められた規格のC11000、C10200、C19400、C70250、C26000又はC52100等を、基材2、52の材料とすることがある。 From the viewpoint of having high electrical conductivity and strength, the material of the base material 2, 52 is preferably Cu or a Cu alloy, more specifically, phosphor bronze, brass, Corson copper, oxygen-free copper, tough pitch copper, etc. In particular, the materials of the base material 2, 52 may be C11000, C10200, C19400, C70250, C26000, C52100, etc., which are standards established by the Copper Development Association (CDA).
 当該金属材料1の基材2と他の金属材料51の基材52は、互いに同じ材質とすることがあるが、異なる材質であってもよい。基材2、52の寸法及び形状は、金属材料1、51が用いられる摺動部品に応じて適宜変更され得る。 The substrate 2 of the metal material 1 and the substrate 52 of the other metal material 51 may be made of the same material, but may also be made of different materials. The dimensions and shapes of the substrates 2 and 52 may be changed as appropriate depending on the sliding parts in which the metal materials 1 and 51 are used.
(非晶質層)
 非晶質層4は、当該金属材料1のめっき層3の少なくとも一部を構成するものである。典型的には、非晶質層4は、50質量%を超える元素である主成分としてNi(ニッケル)を含有するものであるが、これに限らない。
(Amorphous layer)
The amorphous layer 4 constitutes at least a part of the plating layer 3 of the metal material 1. Typically, the amorphous layer 4 contains Ni (nickel) as a main component, which is an element of more than 50 mass %, but is not limited thereto.
 Niを含有する非晶質層4は、さらにP(リン)を含有することが好ましい。Ni-Pの非晶質層4は、緻密なアモルファス構造(非晶質構造)であることから、主としてNiを含有する後述の結晶質層54よりも硬いものになる傾向がある。主成分がNiである結晶質層54を含む他の金属材料51と摺動させて用いられる当該金属材料1は、Ni及びPを含有することが好ましい。 The amorphous layer 4 containing Ni preferably further contains P (phosphorus). The Ni-P amorphous layer 4 has a dense amorphous structure, and therefore tends to be harder than the crystalline layer 54 described below, which contains mainly Ni. The metal material 1 used in sliding contact with another metal material 51 containing a crystalline layer 54 whose main component is Ni preferably contains Ni and P.
 その上、Ni及びPを含有する非晶質層4は、非磁性であることに起因して伝送損失における誘電損失が小さくなる。このため、かかる非晶質層4を含む当該金属材料1は特に、摺動部品101のなかでも、後述するような所定の高周波数の内部信号が流れる高周波部品に好適に用いることができる。 Furthermore, the amorphous layer 4 containing Ni and P is non-magnetic, which reduces the dielectric loss in the transmission loss. Therefore, the metal material 1 containing such an amorphous layer 4 can be suitably used in high-frequency components, particularly sliding components 101, through which a specific high-frequency internal signal flows, as described below.
 Ni及びPを含有する非晶質層4は、P含有量が8質量%以上である場合に、アモルファス構造になることが多い。非晶質層4のP含有量は、8質量%~15質量%であることが好ましい。P含有量を15質量%以下とすれば、Pを含有することによる非晶質層4の導電率の低下を抑えることができる。より好ましくは、P含有量は、10質量%~13質量%である。 The amorphous layer 4 containing Ni and P often has an amorphous structure when the P content is 8 mass% or more. The P content of the amorphous layer 4 is preferably 8 mass% to 15 mass%. If the P content is 15 mass% or less, the decrease in the conductivity of the amorphous layer 4 due to the inclusion of P can be suppressed. More preferably, the P content is 10 mass% to 13 mass%.
 また非晶質層4は、Niを含有する場合、さらにW(タングステン)を含有することも好ましい。Ni-Wの非晶質層4も、緻密なアモルファス構造であってNiの結晶質層54よりも硬いので、Ni-Pと同様に耐摩耗性向上の効果が見込まれるからである。Ni及びWを含有する非晶質層4のW含有量は、好ましくは20質量%~40質量%である。
 また、非晶質層4は、Niを含有する場合、さらにP及びWを含有してもよい。
When the amorphous layer 4 contains Ni, it is also preferable that it further contains W (tungsten). The Ni-W amorphous layer 4 also has a dense amorphous structure and is harder than the Ni crystalline layer 54, and is expected to have the effect of improving wear resistance, similar to Ni-P. The W content of the amorphous layer 4 containing Ni and W is preferably 20% by mass to 40% by mass.
In addition, when the amorphous layer 4 contains Ni, it may further contain P and W.
 上記のP含有量を測定するには、電子プローブマイクロアナライザー(EPMA、日本電子株式会社製のJXA-8500F)を用いることができる。より詳細には、電子プローブマイクロアナライザーを用いて、標準試料及びサンプルのそれぞれについて、Pのピーク位置(197.235mm)のX線強度を測定し、式:P含有量(at%)=(サンプルのX線強度の平均値)÷(標準試料のX線強度の平均値)×50により算出する。標準試料の測定条件としては、標準試料:InPウェハー(P含有量50at%)、使用結晶:PETH、使用X線:Kα、加速電圧15kV、照射電流1×10-7A、ビーム径10μmとし、この測定条件で、標準試料のPのピーク位置(197.235mm)のX線強度を5回測定し、その平均値を算出する。サンプルの測定では、基材2上に非晶質層4が形成された当該金属材料1のサンプルについて、標準試料の測定と同様の測定条件でサンプルの中央部を5回測定し、Pのピーク位置(197.235mm)のX線強度の平均値を算出する。
 また、上記のW含有量は、日本電子株式会社製のJEM-2100Fを用いて、TEM-EDX(エネルギー分散型X線分光法)により測定することができる。より詳細には、Ni-W層の厚み方向の中央部分のW含有量を測定する。TEM-EDX(エネルギー分散型X線分光法)によるW含有量の測定は以下のように行うことができる。
装置(TEM):日本電子株式会社製 電界放出形透過電子顕微鏡(JEM-2100F)
装置(EDX):日本電子株式会社製 エネルギー分散型X線分析装置(JED-2300T)
 STEM像観察+EDX分析
 モード:STEMモード
 加速電圧:200kV
 スポットサイズ:0.15nm
 倍率:8万倍
To measure the P content, an electron probe microanalyzer (EPMA, JXA-8500F manufactured by JEOL Ltd.) can be used. More specifically, the X-ray intensity at the peak position of P (197.235 mm) is measured for each of the standard specimen and the sample using the electron probe microanalyzer, and the P content (at%) is calculated using the formula: P content (at%) = (average value of X-ray intensity of sample) ÷ (average value of X-ray intensity of standard specimen) × 50. The measurement conditions for the standard specimen are as follows: standard specimen: InP wafer (P content 50 at%), crystal used: PETH, X-ray used: Kα, acceleration voltage 15 kV, irradiation current 1 × 10 -7 A, beam diameter 10 μm, and under these measurement conditions, the X-ray intensity at the peak position of P (197.235 mm) of the standard specimen is measured five times, and the average value is calculated. In measuring the sample, the central portion of the sample of the metal material 1 having the amorphous layer 4 formed on the substrate 2 is measured five times under the same measurement conditions as those for the standard sample, and the average value of the X-ray intensity at the P peak position (197.235 mm) is calculated.
The W content can be measured by TEM-EDX (energy dispersive X-ray spectroscopy) using a JEM-2100F manufactured by JEOL Ltd. More specifically, the W content is measured at the center of the Ni-W layer in the thickness direction. The measurement of the W content by TEM-EDX (energy dispersive X-ray spectroscopy) can be performed as follows.
Equipment (TEM): Field emission transmission electron microscope (JEM-2100F) manufactured by JEOL Ltd.
Equipment (EDX): Energy dispersive X-ray analyzer (JED-2300T) manufactured by JEOL Ltd.
STEM image observation + EDX analysis Mode: STEM mode Acceleration voltage: 200 kV
Spot size: 0.15 nm
Magnification: 80,000 times
 NiとP又はWとを含有する非晶質層4では、P又はW以外の残部は実質的にNiからなることが多いが、不純物として、Cu、Pb及びZnからなる群から選択される少なくとも一種が合計15質量ppm以下で含まれることもある。 In the amorphous layer 4 containing Ni and P or W, the remainder other than P or W is often substantially composed of Ni, but it may also contain at least one impurity selected from the group consisting of Cu, Pb, and Zn in a total amount of 15 mass ppm or less.
 非晶質層4がアモルファス(非晶質)構造であることは、当該金属材料1に対して、FIB-SIM(株式会社日立ハイテク製のSMI3050SE)で断面加工し、TEM(日本電子株式会社製のJEM-2100F)で断面を観察することにより確認することができる。 The fact that the amorphous layer 4 has an amorphous structure can be confirmed by processing a cross section of the metal material 1 with an FIB-SIM (SMI3050SE, manufactured by Hitachi High-Technologies Corporation) and observing the cross section with a TEM (JEM-2100F, manufactured by JEOL Ltd.).
 当該金属材料1の非晶質層4は、他の金属材料51の結晶質層54よりも硬いことがある。非晶質層4のビッカース硬度は、500Hv~600Hvになる場合がある。結晶質層54のビッカース硬度については後述するが、非晶質層4のビッカース硬度と結晶質層54とのビッカース硬度の差は、100Hv以上、さらに150Hv以上、特に150Hv~300Hvであることが好ましい。非晶質層4と結晶質層54との間のこのような硬さの違い等に起因して、摺動部品101での摺動時に金属材料1、51の摩耗が抑制されると考えられる。 The amorphous layer 4 of the metal material 1 may be harder than the crystalline layer 54 of the other metal material 51. The Vickers hardness of the amorphous layer 4 may be 500 Hv to 600 Hv. The Vickers hardness of the crystalline layer 54 will be described later, but it is preferable that the difference in Vickers hardness between the amorphous layer 4 and the crystalline layer 54 is 100 Hv or more, more preferably 150 Hv or more, and particularly preferably 150 Hv to 300 Hv. It is believed that wear of the metal materials 1, 51 is suppressed during sliding on the sliding part 101 due to such a difference in hardness between the amorphous layer 4 and the crystalline layer 54.
 非晶質層4や結晶質層54のビッカース硬度は、松澤精機製作所株式会社(現:株式会社マツザワ)の微小硬度計MHT-2を用いて測定することができる。より詳細には、金属材料1、51を垂直に立てた状態でアクリル樹脂埋めを行い、測定箇所まで削り、研磨した後に、非晶質層4や結晶質層54に正四角錐のダイヤモンド圧子を押し込み、試験力を解除した後にできた窪みの対角線長さを測定する。試験条件としては、試験力500gf、保持時間10秒とし、対角線長さ測定はX、Y測定の平均をとる。測定値は5回行った値の中央値を採用し、この中央値と試験力を元にビッカース硬さ算出表から硬さを算出する。 The Vickers hardness of the amorphous layer 4 and the crystalline layer 54 can be measured using a microhardness tester MHT-2 manufactured by Matsuzawa Seiki Seisakusho Co., Ltd. (currently Matsuzawa Corporation). More specifically, the metal materials 1 and 51 are filled with acrylic resin while standing vertically, cut down to the measurement point, polished, and then a square pyramidal diamond indenter is pressed into the amorphous layer 4 and the crystalline layer 54, and the diagonal length of the depression created after the test force is released is measured. The test conditions are a test force of 500 gf and a holding time of 10 seconds, and the diagonal length is measured by taking the average of the X and Y measurements. The measured value is the median value of five measurements, and the hardness is calculated from the Vickers hardness calculation table based on this median value and the test force.
 非晶質層4の厚みは、1μm~6μmとすることが好ましい。非晶質層4の厚みが1μm未満になると、ピットやピンホールが発生しやすく耐食性が低下するおそれがある。一方、非晶質層4の厚みが6μmを超えると、非晶質層4が硬いことに起因して、当該金属材料1を曲げた際に割れが発生することが懸念される。非晶質層4の厚みの測定は、蛍光X線膜厚計により行うことができる。めっき層3の非晶質層4以外の層の厚み、および後述する他のめっき層の厚みも、これと同様にして測定可能である。蛍光X線膜厚計によるめっき厚みの測定は以下のように行なうことができる。
装置:株式会社日立ハイテク製 蛍光X線膜厚計FT9500X
X線管球:Mo
検出器:ドリフト型半導体検出器
X線光学系:ポリキャピラリー方式
ビーム径(直径):30μm
測定方法:薄膜FP(Fundamental Parameter)法
The thickness of the amorphous layer 4 is preferably 1 μm to 6 μm. If the thickness of the amorphous layer 4 is less than 1 μm, pits and pinholes are likely to occur, and corrosion resistance may decrease. On the other hand, if the thickness of the amorphous layer 4 exceeds 6 μm, there is a concern that cracks may occur when the metal material 1 is bent due to the hardness of the amorphous layer 4. The thickness of the amorphous layer 4 can be measured by a fluorescent X-ray thickness meter. The thicknesses of layers other than the amorphous layer 4 of the plating layer 3 and the thicknesses of other plating layers described later can also be measured in the same manner. The plating thickness can be measured by a fluorescent X-ray thickness meter as follows.
Equipment: Fluorescent X-ray thickness gauge FT9500X manufactured by Hitachi High-Tech Corporation
X-ray tube: Mo
Detector: drift type semiconductor detector X-ray optical system: polycapillary system Beam diameter: 30 μm
Measurement method: Thin film FP (Fundamental Parameter) method
 当該金属材料1の製造時に、基材2上に非晶質層4を形成するには、基材2に対して、たとえば、めっき浴を硫酸Ni浴とし、硫酸Ni(II)六水和物等を添加して硫酸Ni濃度を205g/L~295g/L、亜リン酸濃度を68g/L~95g/L、電流密度を7A/dm2~13A/dm2、液温を55℃~65℃とすることで形成できる。あるいは、非晶質層4は、電解めっきではなく、無電解めっきによって形成することもできる。 In order to form the amorphous layer 4 on the substrate 2 during the production of the metallic material 1, for example, a plating bath for the substrate 2 is a nickel sulfate bath, and nickel (II) sulfate hexahydrate or the like is added to set the nickel sulfate concentration to 205 g/L to 295 g/L, the phosphorous acid concentration to 68 g/L to 95 g/L, the current density to 7 A/dm 2 to 13 A/dm 2 , and the solution temperature to 55° C. to 65° C. Alternatively, the amorphous layer 4 can be formed by electroless plating instead of electrolytic plating.
(結晶質層)
 他の金属材料51が、基材52上にめっき層53を形成したものである場合、そのめっき層53の少なくとも一部に、結晶質層54が含まれる。
(Crystalline Layer)
When the other metal material 51 is a plated layer 53 formed on a base material 52 , at least a portion of the plated layer 53 contains a crystalline layer 54 .
 結晶質層54は、たとえば、主成分が上記の非晶質層4の主成分と同一であり、典型的には、主成分としてNiを含有するものであるが、これに限らない。さらにこの場合、Ni含有量がほぼ100質量%であってNiのみからなる結晶質層54とすることができる。但し、結晶質層54は、他の元素を含むものであってもよい。Ni含有量は、電子プローブマイクロアナライザー(EPMA、日本電子株式会社製のJXA-8500F)を用いることにより測定することができる。 The crystalline layer 54 has, for example, the same main component as the main component of the amorphous layer 4 described above, and typically contains Ni as the main component, but is not limited to this. Furthermore, in this case, the Ni content can be nearly 100 mass % and the crystalline layer 54 can be made of Ni alone. However, the crystalline layer 54 may also contain other elements. The Ni content can be measured using an electron probe microanalyzer (EPMA, JXA-8500F manufactured by JEOL Ltd.).
 結晶質層54は、上述した非晶質層4よりも柔らかいことがある。結晶質層54のビッカース硬度は、200Hv~400Hvになる場合がある。 The crystalline layer 54 may be softer than the amorphous layer 4 described above. The Vickers hardness of the crystalline layer 54 may be 200Hv to 400Hv.
 結晶質層54の厚みは1μm~6μmとすることが好ましい。結晶質層54の厚みが1μm未満になると、ピットやピンホールが発生しやすく耐食性が低下するおそれがある。一方、非晶質層4の厚みが6μmを超えると、他の金属材料51を曲げた際に割れが発生することが懸念される。 The thickness of the crystalline layer 54 is preferably 1 μm to 6 μm. If the thickness of the crystalline layer 54 is less than 1 μm, pits and pinholes are likely to occur, and corrosion resistance may decrease. On the other hand, if the thickness of the amorphous layer 4 exceeds 6 μm, there is a concern that cracks may occur when the other metal material 51 is bent.
 結晶質層54を形成するには、これに限らないが、基材52に対して、無光沢、半光沢又は粗化等のNiめっきを施すことにより行うことができる。めっき液には、たとえばスルファミン酸ニッケルめっき液を使用することがあり、電流密度を3A/dm2~20A/dm2、液温を40℃~60℃とする場合がある。 The crystalline layer 54 can be formed by, but is not limited to, subjecting the base material 52 to non-gloss, semi-gloss, roughened Ni plating. The plating solution may be, for example, a nickel sulfamate plating solution, with a current density of 3 A/ dm2 to 20 A/ dm2 and a solution temperature of 40°C to 60°C.
(最表層)
 金属材料1、51のめっき層3、53は、Au、Ag、Sn、Pd及びCuからなる群から選択される少なくとも一種の金属を含有する最表層を含むものであってもよい。たとえば図3には、基材12上の非晶質層14上にさらに最表層16を形成した当該金属材料11の一例を示している。なお、他の金属材料に最表層を形成してもよい。
(Top layer)
The plating layer 3, 53 of the metal material 1, 51 may include a top layer containing at least one metal selected from the group consisting of Au, Ag, Sn, Pd and Cu. For example, Fig. 3 shows an example of the metal material 11 in which a top layer 16 is further formed on an amorphous layer 14 on a substrate 12. The top layer may be formed on other metal materials.
 この場合、最表層16がめっき層13の表面15に露出するところ、上記の材質の最表層16は比較的柔らかく薄いことから、耐摩耗性にほぼ影響を及ぼさないと考えられる。最表層16を設けた場合は、導電率が高いことに起因して伝送損失をさらに低減させることができるので、当該金属材料11は、高周波部品でもある摺動部品の用途により一層適したものになる。高周波部品では、表皮効果の影響が強く表れるためである。 In this case, the outermost layer 16 is exposed on the surface 15 of the plating layer 13, and since the outermost layer 16 of the above material is relatively soft and thin, it is considered that it has almost no effect on the wear resistance. When the outermost layer 16 is provided, the transmission loss can be further reduced due to the high electrical conductivity, making the metal material 11 even more suitable for use in sliding parts that are also high-frequency parts. This is because the influence of the skin effect is strong in high-frequency parts.
 最表層16の厚みは、0.005μm~5μmとする場合がある。最表層16の厚みが薄すぎる場合は、伝送損失をそれほど低減できないことがあり、厚すぎる場合は、伝送損失に変化がないことや、耐摩耗性に僅かながらも影響を及ぼす可能性が否定できないこと、貴金属代が高くなることの懸念がある。 The thickness of the outermost layer 16 may be 0.005 μm to 5 μm. If the thickness of the outermost layer 16 is too thin, it may not be possible to reduce transmission loss significantly, whereas if it is too thick, there is a concern that there may be no change in transmission loss, that there may be a slight effect on abrasion resistance, and that the cost of precious metals may be high.
 たとえば、最表層16をAu-Coめっき(硬質めっき)で形成した場合、最表層16のAu含有量は、99.7質量%程度になることがある。あるいは、最表層16を純Auめっき(軟質めっき)で形成した場合、最表層16のAu含有量は、ほぼ100質量%になることがある。あるいは、最表層16が、他の金属(Ag、Sn、Pd又はCu)を含有する場合、当該金属の含有量は、ほぼ100質量%になることがある。また、たとえばAu-Coのように、さらにCoを含む最表層16を形成してもよい。また、異なる材質の最表層を二層以上形成することも可能である。最表層16の当該金属含有量は、X線光電子分光法(XPS、アルバック・ファイ株式会社製 5600MC)を用いることにより測定することができる。XPSの測定条件は以下とすることができる。
到達真空度:5.7×10-7 Pa
検出直径:800μm
励起源:MgK
出力:400W
入射角:81度
取り出し角:45度
中和銃:なし
スパッタ条件
  イオン種:Ar+
  加速電圧:2kV
  掃引領域:3mm×3mm
  レート:1.7nm/min(SiO2換算)
For example, when the outermost layer 16 is formed by Au-Co plating (hard plating), the Au content of the outermost layer 16 may be about 99.7% by mass. When the outermost layer 16 is formed by pure Au plating (soft plating), the Au content of the outermost layer 16 may be nearly 100% by mass. When the outermost layer 16 contains other metals (Ag, Sn, Pd, or Cu), the content of the metal may be nearly 100% by mass. In addition, the outermost layer 16 may further contain Co, such as Au-Co. In addition, it is also possible to form two or more outermost layers of different materials. The metal content of the outermost layer 16 can be measured by using X-ray photoelectron spectroscopy (XPS, 5600MC manufactured by ULVAC-PHI, Inc.). The measurement conditions for XPS can be as follows.
Ultimate vacuum: 5.7×10 -7 Pa
Detection diameter: 800 μm
Excitation source: MgK
Output: 400W
Incident angle: 81 degrees Take-off angle: 45 degrees Neutralization gun: None Sputtering conditions Ion species: Ar+
Acceleration voltage: 2 kV
Sweep area: 3mm x 3mm
Rate: 1.7 nm/min ( SiO2 equivalent)
 当該金属材料11の製造時には、最表層16を形成するため、非晶質層14を形成した基材12に対し、最表層16の材質に応じて適切なめっき液を用いて、めっきを施すことができる。めっき液としては、たとえば、Agを含有する最表層16の場合はEEJA製シルブレックスブライトHS等が、またAuを含有する最表層16の場合は硬質Auめっき液等がそれぞれ好適に用いられ得る。たとえばAgめっきでは、電流密度を5A/dm2~25A/dm2、液温を30℃~60℃とすることがある。また、たとえばAuめっきでは、電流密度を5A/dm2~60A/dm2、液温を50℃~60℃とすることがある。 During the manufacture of the metal material 11, in order to form the outermost layer 16, the base material 12 on which the amorphous layer 14 has been formed can be plated using an appropriate plating solution depending on the material of the outermost layer 16. As the plating solution, for example, in the case of the outermost layer 16 containing Ag, Silbrex Bright HS manufactured by EEJA or the like can be suitably used, and in the case of the outermost layer 16 containing Au, a hard Au plating solution or the like can be suitably used. For example, in Ag plating, the current density may be 5 A/dm 2 to 25 A/dm 2 and the solution temperature may be 30° C. to 60° C. Also, for example, in Au plating, the current density may be 5 A/dm 2 to 60 A/dm 2 and the solution temperature may be 50° C. to 60° C.
(伝送損失)
 当該金属材料1は、伝送損失が小さいものであり、好ましくは、10GHzの周波数の電流を流したときの伝送損失の絶対値が4dB以下である。伝送損失は、多くの場合、負の値として測定されるところ、その絶対値が小さくゼロに近いほど、伝送損失が小さく、高周波部品でもある摺動部品101用の当該金属材料1として望ましいものであるといえる。
(Transmission loss)
The metal material 1 has a small transmission loss, and preferably has an absolute value of 4 dB or less when a current of a frequency of 10 GHz is passed through it. The transmission loss is often measured as a negative value, and the smaller the absolute value is and the closer to zero it is, the smaller the transmission loss is, and the more desirable the metal material 1 is for the sliding part 101, which is also a high-frequency part.
 当該金属材料1の伝送損失は、ネットワークアナライザを用いて測定することができる。より詳細には、ネットワークアナライザにセットする試料として、図4に示すように、銅箔上に誘電体層を設け、さらに誘電体層上に、周囲にめっき層を形成した銅配線を設けたマイクロストリップラインを使用する。この試料を作製するには、300℃の熱プレスにより、誘電体層の両面のそれぞれに、基材2の材質からなる金属箔を接合し、次いで、回路エッチングにより一方側の金属箔を配線とし、その配線の周囲にめっき層3に対応するめっきを施すことにより行うことができる。配線は基材に相当する。この試料をネットワークアナライザ(Keysight製のN5247A)にセットして、試料に流す交流電流の通過電力と反射電力を測定し、それらの電圧P1及び電圧P2から、式:伝送損失=10×lоg(P2/P1)より、伝送損失を求めることができる。測定は、試料のマイクロストリップライン4本について行い、それらの平均値を伝送損失とする。 The transmission loss of the metal material 1 can be measured using a network analyzer. More specifically, as a sample to be set in the network analyzer, a microstrip line is used in which a dielectric layer is provided on a copper foil, and further, on the dielectric layer, a copper wiring with a plating layer formed around it is provided. To prepare this sample, a metal foil made of the material of the substrate 2 is bonded to each side of the dielectric layer by a heat press at 300°C, and then the metal foil on one side is made into wiring by circuit etching, and plating corresponding to the plating layer 3 is applied around the wiring. The wiring corresponds to the substrate. This sample is set in a network analyzer (Keysight N5247A) to measure the passing power and reflected power of the AC current passed through the sample, and the transmission loss can be calculated from the voltages P1 and P2 by the formula: transmission loss = 10 x log (P2/P1). Measurements are performed on four microstrip lines of the sample, and the average value is taken as the transmission loss.
(摺動部品)
 摺動部品101は、当該金属材料1としての第一金属材料1と、他の金属材料51としての第二金属材料51とを備えるものである。
(Sliding parts)
The sliding component 101 includes a first metal material 1 as the metal material 1 and a second metal material 51 as another metal material 51 .
 摺動部品101では、第一金属材料1のめっき層3の表面5と第二金属材料51のめっき層53の表面55とを、表面5、55に直交する方向(図2では上下方向)に押し付けた状態で、図2に示すように、第一金属材料1と第二金属材料51とを、表面5、55にほぼ沿う方向(図2の左右方向)で相対的に互いに逆向きに変位させることがある。 In the sliding part 101, the surface 5 of the plating layer 3 of the first metal material 1 and the surface 55 of the plating layer 53 of the second metal material 51 are pressed against each other in a direction perpendicular to the surfaces 5, 55 (the vertical direction in FIG. 2), and as shown in FIG. 2, the first metal material 1 and the second metal material 51 may be displaced in opposite directions relative to each other in a direction roughly along the surfaces 5, 55 (the horizontal direction in FIG. 2).
 このようにして第一金属材料1と第二金属材料51を各めっき層3、53の表面5、55で摺動させると、めっき層3、53が擦れて摩耗し得る。これに対し、上述したように、第一金属材料1のめっき層3が非晶質層4を含むとともに第二金属材料51のめっき層53が結晶質層54を含み、かつ、非晶質層4及び結晶質層54がNiを含有するものとし及び/又は結晶質層54が非晶質層4よりも柔らかいものとしたときは、めっき層3、53の摩耗を有効に抑制することができる。 In this manner, when the first metal material 1 and the second metal material 51 are caused to slide on the surfaces 5, 55 of the plating layers 3, 53, the plating layers 3, 53 may rub against each other and wear away. In contrast, as described above, when the plating layer 3 of the first metal material 1 includes an amorphous layer 4 and the plating layer 53 of the second metal material 51 includes a crystalline layer 54, and the amorphous layer 4 and the crystalline layer 54 contain Ni and/or the crystalline layer 54 is softer than the amorphous layer 4, wear of the plating layers 3, 53 can be effectively suppressed.
 仮に摺動部品101のいずれか一方の金属材料1又は51が、対向する他方の金属材料51又は1の表面55又は5に向かって突出する凸部を有するものである場合、第一金属材料1を、表面5に凸部が設けられたものとすることが好ましい。これは、硬質の非晶質層4を含む第一金属材料1に凸部を設けて、これと、軟質の結晶質層54を含む第二金属材料51とを摺動させたときに、第二金属材料51に凸部を設けた場合に比して、摩耗が抑制されるという結果が得られたことによるものである。したがって、第一金属材料1は、摺動部品101に用いたときに、第二金属材料51の表面55側に突出して、該表面55に押し付けられながら該表面55と摺動する凸部を有するものであることが好適である。 If one of the metal materials 1 or 51 of the sliding part 101 has a convex portion protruding toward the surface 55 or 5 of the opposing other metal material 51 or 1, it is preferable that the first metal material 1 has a convex portion provided on the surface 5. This is because, when a convex portion is provided on the first metal material 1 including the hard amorphous layer 4 and this is slid against the second metal material 51 including the soft crystalline layer 54, the result was that wear was suppressed compared to when a convex portion is provided on the second metal material 51. Therefore, it is preferable that the first metal material 1 has a convex portion protruding toward the surface 55 side of the second metal material 51 and sliding against the surface 55 while being pressed against the surface 55 when used in the sliding part 101.
 また、いずれか一方の金属材料1又は51が、ばね材による付勢等によって、対向する他方の金属材料51又は1の表面55又は5に押し付けられながら該表面55又は5と擦動する押し付け部を有する場合、第一金属材料1を、表面5に押し付け部が設けられたものすることが好ましい。そのような押し付け部は、上記の凸部である場合がある。 Furthermore, when either one of the metal materials 1 or 51 has a pressing portion that rubs against the surface 55 or 5 of the opposing other metal material 51 or 1 while being pressed against the surface 55 or 5 by the force of a spring material or the like, it is preferable that the first metal material 1 has a pressing portion provided on the surface 5. Such a pressing portion may be the above-mentioned convex portion.
 たとえば、摺動部品101が基板対基板コネクタである場合は、基板対基板コネクタの凸部を有するレセプタクルを第一金属材料1で構成し、プラグを第二金属材料51で構成することが好ましい。また、摺動部品101の二個の金属材料のうち、板ばね等のばね材によって他方の金属材料に向けて付勢される一方の金属材料を、当該金属材料1とすることが好ましい場合もある。 For example, if the sliding part 101 is a board-to-board connector, it is preferable that the receptacle having the convex portion of the board-to-board connector is made of the first metal material 1, and the plug is made of the second metal material 51. Also, of the two metal materials of the sliding part 101, it may be preferable that one of the metal materials that is biased toward the other metal material by a spring material such as a leaf spring is made of the metal material 1.
 以上に述べた摺動部品101は、その使用時に二個の金属材料1、51が互いに摺動することがあるものであれば特に限定されないが、具体的にはコネクタやスイッチ、ギヤ、ベアリング、ワッシャー等とすることができる。 The sliding part 101 described above is not particularly limited as long as the two metal materials 1, 51 slide against each other when in use, but can be, for example, a connector, switch, gear, bearing, washer, etc.
 なかでも、ここで述べた実施形態は、金属材料1、51での伝送損失を低減できる場合があることから、1GHz~15GHzの周波数、典型的には7GHz~15GHzの周波数の電流が流れる高周波部品である摺動部品101に適用することが有効である。そのような高周波部品でもある摺動部品101としては、車載レーダーや、いわゆるスマートフォンに代表される携帯電話等の通信機器に搭載されるコネクタやスイッチ等がある。近年の通信機器では、通信速度の高速化ならびに情報量の増加及び情報の多様化等に伴い、そのような高周波数帯域の電気信号が用いられており、高周波数の電気信号の伝送では、空間の伝播時のみならず通信機器の内部でも伝送損失を低減することが求められる。 In particular, the embodiment described here may be able to reduce transmission loss in the metal materials 1, 51, and is therefore effective when applied to the sliding part 101, which is a high-frequency part through which a current of a frequency of 1 GHz to 15 GHz, typically 7 GHz to 15 GHz, flows. Examples of such high-frequency sliding parts 101 include connectors and switches mounted on communication devices such as in-vehicle radar and mobile phones, such as smartphones. In recent communication devices, electrical signals in such high-frequency bands are used due to the increase in communication speed and the increase in the amount and diversification of information, and in the transmission of high-frequency electrical signals, it is necessary to reduce transmission loss not only during propagation through space but also inside the communication device.
 次に、上述した金属材料、摺動部品の効果を試験により確認したので、以下に説明する。但し、ここでの説明は単なる例示を目的としたものであり、これに限定されることを意図するものではない。 Next, the effects of the metal materials and sliding parts mentioned above have been confirmed through testing and are explained below. However, the explanation here is merely for illustrative purposes and is not intended to be limiting.
(試験例1)
 図5に示す形状及び寸法の端子および平板を準備した。端子の凸部は平坦面から30μmの高さで突出するものとした。端子及び平板はともに、Snを0.12質量%含む銅合金(JX金属株式会社製のNKE012)製であって厚みが0.15mmの基材を有するものとした。なお、端子および平板ともに、長手方向が基材の圧延方向と直交する方向とした。
(Test Example 1)
A terminal and a flat plate having the shape and dimensions shown in Fig. 5 were prepared. The protruding portion of the terminal was set to protrude from the flat surface by a height of 30 μm. Both the terminal and the flat plate had a base material made of a copper alloy containing 0.12 mass% Sn (NKE012 manufactured by JX Metals Corporation) and having a thickness of 0.15 mm. The longitudinal direction of both the terminal and the flat plate was set to be perpendicular to the rolling direction of the base material.
 実施例1では、平板に厚み1.5μmのNiめっきを、端子に厚み1.5μmのNi-Pめっき(P濃度11質量%)をそれぞれ施した。実施例2では、平板に厚み1.5μmのNi-Pめっき(P濃度11質量%)を、端子に厚み1.5μmのNiめっきをそれぞれ施した。 In Example 1, the flat plate was plated with Ni plating to a thickness of 1.5 μm, and the terminals were plated with Ni-P plating to a thickness of 1.5 μm (P concentration: 11% by mass). In Example 2, the flat plate was plated with Ni-P plating to a thickness of 1.5 μm (P concentration: 11% by mass), and the terminals were plated with Ni plating to a thickness of 1.5 μm.
 比較例1では、平板及び端子の両方に、厚み1.5μmのNiめっきを施した。比較例2では、平板及び端子の両方に、厚み1.5μmのNi-Pめっき(P濃度11質量%)を施した。 In Comparative Example 1, both the flat plate and the terminals were plated with Ni plating to a thickness of 1.5 μm. In Comparative Example 2, both the flat plate and the terminals were plated with Ni-P plating to a thickness of 1.5 μm (P concentration 11% by mass).
 実施例1及び2並びに比較例1及び2のそれぞれの端子及び平板について、下記の条件の下、平板に端子の凸部を接触させた状態で端子に荷重をかけて摺動させた。
 荷重:200g
 摺動方向:基材の圧延方向に対して直角方向
 摺動距離:24mm/1往復
 摺動速度:960mm/min
 摺動回数:20往復
For each of the terminals and flat plates of Examples 1 and 2 and Comparative Examples 1 and 2, a load was applied to the terminal and the terminal was caused to slide with the protruding portion of the terminal in contact with the flat plate under the following conditions.
Load: 200g
Sliding direction: perpendicular to the rolling direction of the substrate Sliding distance: 24 mm/1 round trip Sliding speed: 960 mm/min
Number of strokes: 20 times
 摺動後の平板をレーザー顕微鏡(株式会社キーエンス製の形状解析レーザー顕微鏡VK-X1000)で観察し、断面における削れ面積を測定した。測定条件は、スキャンモード:レーザーコンフォーカル、撮影倍率:1200倍、測定サイズ:標準(1024x768)、測定ピッチ:0.13μmとした。 The plate after sliding was observed with a laser microscope (Keyence Corporation's shape analysis laser microscope VK-X1000) and the scraped area on the cross section was measured. The measurement conditions were: scan mode: laser confocal, shooting magnification: 1200x, measurement size: standard (1024x768), measurement pitch: 0.13μm.
 その結果、削れ面積は、実施例1では33μm2、実施例2では425μm2、比較例1では1981μm2、比較例2では1079μm2であった。実施例1及び2並びに比較例1及び2の試験後の平板及び端子の外観、並びに、平板の断面の削れ面積を、図6に示す。 As a result, the scraped area was 33 μm in Example 1, 425 μm in Example 2, 1981 μm in Comparative Example 1, and 1079 μm in Comparative Example 2. The appearances of the flat plates and terminals after the tests in Examples 1 and 2 and Comparative Examples 1 and 2, and the scraped area of the cross section of the flat plates are shown in FIG.
 これまでは、互いに摺動する二個の金属材料のそれぞれが硬いほど、耐摩耗性が高くなると考えられていた。これに対し、試験例1の上記の結果より、二個の基材の両方に、Niめっきよりも硬いNi-Pめっきを施した場合よりも、一方の基材にNi-Pめっきを施し、他方の基材にNiめっきを施した場合のほうが、耐摩耗性が向上することがわかった。Ni-Pめっきにより基材上に形成される層は非晶質層であり、Niめっきにより基材上に形成される層は結晶質層である。  Until now, it was thought that the harder the two metal materials that slide against each other, the higher the wear resistance would be. In contrast, the above results of Test Example 1 show that wear resistance is improved when one substrate is Ni-P plated and the other substrate is Ni plated, compared to when both substrates are Ni-P plated, which is harder than Ni plating. The layer formed on the substrate by Ni-P plating is an amorphous layer, and the layer formed on the substrate by Ni plating is a crystalline layer.
 また、Ni-Pめっきによる非晶質層のビッカース硬度は500Hvであり、Niめっきによる結晶質層のビッカース硬度は300Hvであった。 In addition, the Vickers hardness of the amorphous layer formed by Ni-P plating was 500 Hv, while the Vickers hardness of the crystalline layer formed by Ni plating was 300 Hv.
 また、凸部を有する端子が非晶質層を含み、平板が結晶質層を含む実施例1のほうが、それとは逆の実施例2よりも、摩耗が抑制されていた。この理由は必ずしも明らかではないが、摺動時に凸部にせん断応力が加えられた際に、凸部の先端(真実接触面)が変形しない程度に硬いことが重要であると考えられる。仮に凸部の先端が変形してしまうと、真実接触面積が増大し、より大きな応力がかかるため摩耗粉が生じ、凸部がこの摩耗粉を巻き込むことによって平板をより削りやすくなると推察される。 Furthermore, wear was suppressed more in Example 1, where the terminal with the convex portion contained an amorphous layer and the flat plate contained a crystalline layer, than in Example 2, where the opposite was true. The reason for this is not entirely clear, but it is thought to be important that the tip of the convex portion (real contact surface) is hard enough not to deform when shear stress is applied to the convex portion during sliding. If the tip of the convex portion were to deform, the real contact area would increase and greater stress would be applied, generating wear powder, and it is presumed that the convex portion would become entangled in this wear powder, making it easier to scrape the flat plate.
 上記の試験の他、平板及び端子のNiめっきの結晶質層又はNi-Pめっきの非晶質層上に、厚み1μmのAuめっき(最表層)を施しても、上記の実施例1及び2並びに比較例1及び2のような摩耗の大小関係に影響がないことを別途確認した。最表層を設けても耐摩耗性に影響を及ぼさない理由は、Au、Ag、Sn、Pd、Cu等の最表層は、NiやNi-Pに比べて柔らかく、薄いためであると考えられる。なお、最表層は、導通信頼性の向上を目的として設けられるところ、摺動によって多少摩耗しても信頼性は低下しない。 In addition to the above tests, it was separately confirmed that applying a 1 μm thick Au plating (outermost layer) to the crystalline Ni plating layer or the amorphous Ni-P plating layer of the flat plate and terminals did not affect the magnitude of wear as in the above Examples 1 and 2 and Comparative Examples 1 and 2. The reason that the provision of the outermost layer does not affect wear resistance is believed to be because outermost layers of Au, Ag, Sn, Pd, Cu, etc. are softer and thinner than Ni and Ni-P. The outermost layer is provided for the purpose of improving electrical conductivity reliability, and even if it wears slightly due to sliding, reliability does not decrease.
(試験例2)
 基材上に、無光沢Niめっきを施した金属材料と、Ni-Pめっきを施した金属材料のそれぞれについて、ネットワークアナライザ(Keysight製のN5247A)を用いて、伝送損失を測定した。
(Test Example 2)
The transmission loss of each of the metal material having a matte Ni plating on the substrate and the metal material having a Ni-P plating on the substrate was measured using a network analyzer (N5247A manufactured by Keysight).
 ネットワークアナライザにセットする試料であるマイクロストリップラインの作製では、誘電体層として厚み50μmのLCP樹脂を使用し、金属箔として厚み12μmの無酸素銅箔を使用した。片側の無酸素銅箔をエッチングして幅124μmの配線を形成した。この配線に施すめっきとして、無光沢Niめっきは、スルファミン酸ニッケルめっき液を使用し、電流密度:10A/dm2、液温:60℃の条件とした。これにより、配線の周囲にNi層が形成された。一方、Ni-Pめっきは、めっき浴として硫酸Ni浴を使用し、硫酸Ni(II)六水和物:250g/L、亜リン酸:82g/L、電流密度:10A/dm2、温度:60℃の条件とした。これにより、配線の周囲に、P含有量が12質量%のNi-P層が形成された。いずれのNi層及びNi-P層も、厚みは2μmとした。 In the preparation of the microstrip line, which is a sample to be set in the network analyzer, a 50 μm thick LCP resin was used as the dielectric layer, and a 12 μm thick oxygen-free copper foil was used as the metal foil. One side of the oxygen-free copper foil was etched to form a wiring with a width of 124 μm. As plating for this wiring, a matte Ni plating was performed using a nickel sulfamate plating solution under the conditions of a current density of 10 A/dm 2 and a solution temperature of 60° C. As a result, a Ni layer was formed around the wiring. On the other hand, a Ni sulfate bath was used as the plating bath for Ni-P plating, and the conditions were Ni(II) sulfate hexahydrate: 250 g/L, phosphorous acid: 82 g/L, current density: 10 A/dm 2 , and temperature: 60° C. As a result, a Ni-P layer with a P content of 12 mass% was formed around the wiring. The thickness of each Ni layer and Ni-P layer was 2 μm.
 無光沢Niめっきを施した試料と、Ni-Pめっきを施した試料のそれぞれについて、ネットワークアナライザにセットし、先述した方法により伝送損失を測定した。その結果を図7に示す。 The matte Ni-plated sample and the Ni-P-plated sample were each set in a network analyzer, and the transmission loss was measured using the method described above. The results are shown in Figure 7.
 図7より、Ni-Pめっきを施した試料は、約15GHz以下の周波数で、Niめっきを施した試料に比して伝送損失の絶対値が小さいことがわかる。 Figure 7 shows that the absolute value of the transmission loss of the Ni-P plated sample is smaller than that of the Ni plated sample at frequencies below approximately 15 GHz.
(試験例3)
 試験例2の試料のNi層上に、Agめっき又はAuめっきを0.3μm施して最表層を設けた金属材料の試料について、試験例2と同様にして、伝送損失を測定した。その結果を図8に示す。
(Test Example 3)
For metal material samples in which an outermost layer was formed by plating Ag or Au to a thickness of 0.3 μm on the Ni layer of the sample of Test Example 2, the transmission loss was measured in the same manner as in Test Example 2. The results are shown in FIG.
 なお、Agめっきは、EEJA製のシルブレックスブライトHSを使用し、電流密度10A/dm2、液温60℃の条件とした。Auめっきは、硬質Auめっき液を使用し、電流密度10A/dm2、液温60℃の条件とした。 For Ag plating, Silbrex Bright HS manufactured by EEJA was used, and the conditions were a current density of 10 A/ dm2 and a solution temperature of 60°C. For Au plating, a hard Au plating solution was used, and the conditions were a current density of 10 A/ dm2 and a solution temperature of 60°C.
 図8からわかるように、最表層を設けることにより、伝送損失の絶対値が小さくなる傾向がある。これは、高周波領域では表皮効果の影響が強く表れることから、最表層に導電性の高い貴金属を被覆すると伝送損失における導電損失が小さくなることによるものと推測される。そのため、Auよりも導電率の高いAgのほうが、伝送損失が低減されている。図8は、Ni層上に最表層を形成した場合のデータであるが、メカニズム上、Ni層をNi-P層に代えたとしても、同様の結果が得られると考えられる。 As can be seen from Figure 8, there is a tendency for the absolute value of transmission loss to decrease by providing a top surface layer. This is presumably because, since the skin effect is strongly evident in the high frequency range, coating the top surface layer with a highly conductive precious metal reduces the conductive loss in transmission loss. As a result, Ag, which has a higher conductivity than Au, reduces transmission loss. Figure 8 shows data for a top surface layer formed on a Ni layer, but from a mechanical standpoint, it is believed that similar results would be obtained even if the Ni layer were replaced with a Ni-P layer.
(試験例4)
 無酸素銅製(C1020)の基材上に、無光沢Niめっき又はNi-Pめっきを施して、結晶質層又は非晶質層のめっき層を形成した金属材料を作製した。
(Test Example 4)
A metal material having a crystalline layer or an amorphous layer formed on a substrate made of oxygen-free copper (C1020) was produced by applying a matte Ni plating or Ni-P plating to the substrate.
 ここで、無光沢Niめっきの条件およびNi-Pめっきの条件は、試験例2と同様とした。なお、Ni-PめっきのP含有量は10質量%であった。これは、バラつきによるものと考えられる。 Here, the conditions for the matte Ni plating and the Ni-P plating were the same as in Test Example 2. The P content of the Ni-P plating was 10 mass %. This is thought to be due to variation.
 上記の各金属材料について、FIB-SIM(株式会社日立ハイテク製のSMI3050SE)で断面加工し、TEM(日本電子株式会社製のJEM-2100F)で断面を観察した。それにより、図9に示すTEM画像及び回折像が得られた。図9より、非晶質層(Ni-P層)は、TEM画像において結晶構造を確認できないことから、アモルファス構造であることがわかる。なお、回折像においてもスポットではなく同心円状のハローパターンが確認されることからも、非晶質層(Ni-P層)がアモルファス構造であることがわかる。非晶質層がアモルファス構造であることは、このように、Ni-P層のTEM画像において結晶構造を確認できないことによって認められる。同様に、結晶質層(Ni層)が結晶構造であることは、TEM画像において結晶構造を確認できることによって認められる。 The cross-sections of each of the above metal materials were processed using a FIB-SIM (SMI3050SE, manufactured by Hitachi High-Technologies Corporation) and the cross-sections were observed using a TEM (JEM-2100F, manufactured by JEOL Ltd.). As a result, the TEM image and diffraction image shown in Figure 9 were obtained. From Figure 9, it can be seen that the amorphous layer (Ni-P layer) has an amorphous structure, since no crystal structure can be confirmed in the TEM image. It can also be seen that the amorphous layer (Ni-P layer) has an amorphous structure, since a concentric halo pattern, rather than spots, can be confirmed in the diffraction image. The fact that the amorphous layer has an amorphous structure is confirmed by the fact that no crystal structure can be confirmed in the TEM image of the Ni-P layer. Similarly, the fact that the crystalline layer (Ni layer) has a crystalline structure is confirmed by the fact that a crystal structure can be confirmed in the TEM image.
 以上の試験、特に試験例1の結果より、先述した金属材料、摺動部品は、耐摩耗性に優れたもの、金属材料の摩耗の発生が抑制されたものであることが示唆された。 The results of the above tests, particularly Test Example 1, suggest that the metal materials and sliding parts described above have excellent wear resistance and suppress the occurrence of wear of the metal materials.
 1、11 当該金属材料(第一金属材料)
 2、12 基材
 3、13 めっき層
 4、14 非晶質層
 5、15 表面
 16 最表層
 51 他の金属材料(第二金属材料)
 52 基材
 53 めっき層
 54 結晶質層
 55 表面
 101 摺動部品
1, 11 The metal material (first metal material)
2, 12 Substrate 3, 13 Plating layer 4, 14 Amorphous layer 5, 15 Surface 16 Outermost layer 51 Other metal material (second metal material)
52 Base material 53 Plating layer 54 Crystalline layer 55 Surface 101 Sliding part

Claims (18)

  1.  基材と、前記基材上に形成されためっき層とを有する金属材料であって、
     前記めっき層が、Niを含有する非晶質層を含み、
     当該金属材料が前記めっき層の表面で、他の金属材料の表面と摺動する摺動部品に用いられ、前記他の金属材料に、Niを含有する結晶質層が含まれる、金属材料。
    A metal material having a substrate and a plating layer formed on the substrate,
    The plating layer includes an amorphous layer containing Ni,
    The metallic material is used in a sliding part in which the surface of the plating layer slides against the surface of another metallic material, the other metallic material including a crystalline layer containing Ni.
  2.  基材と、前記基材上に形成されためっき層とを有する金属材料であって、
     前記めっき層が非晶質層を含み、
     当該金属材料が前記めっき層の表面で、他の金属材料の表面と摺動する摺動部品に用いられ、前記他の金属材料に、前記非晶質層よりも柔らかい結晶質層が含まれる、金属材料。
    A metal material having a substrate and a plating layer formed on the substrate,
    The plating layer includes an amorphous layer,
    The metal material is used in a sliding part in which the surface of the plating layer slides against the surface of another metal material, and the other metal material includes a crystalline layer that is softer than the amorphous layer.
  3.  当該金属材料の前記非晶質層の主成分と、前記他の金属材料の前記結晶質層の主成分とが同一である、請求項2に記載の金属材料。 The metallic material according to claim 2, wherein the main component of the amorphous layer of the metallic material is the same as the main component of the crystalline layer of the other metallic material.
  4.  前記主成分がNiである、請求項3に記載の金属材料。 The metallic material according to claim 3, wherein the main component is Ni.
  5.  当該金属材料の前記非晶質層が、P及び/又はWを含有する、請求項1~4のいずれか一項に記載の金属材料。 The metallic material according to any one of claims 1 to 4, wherein the amorphous layer of the metallic material contains P and/or W.
  6.  当該金属材料の前記めっき層が、Au、Ag、Sn、Pd及びCuからなる群から選択される少なくとも一種の金属を含有する最表層を含む、請求項1~4のいずれか一項に記載の金属材料。 The metal material according to any one of claims 1 to 4, wherein the plating layer of the metal material includes an outermost layer containing at least one metal selected from the group consisting of Au, Ag, Sn, Pd, and Cu.
  7.  当該金属材料の前記非晶質層のビッカース硬度と、前記他の金属材料の前記結晶質層のビッカース硬度との差が、100Hv以上である、請求項1~4のいずれか一項に記載の金属材料。 The metal material according to any one of claims 1 to 4, wherein the difference between the Vickers hardness of the amorphous layer of the metal material and the Vickers hardness of the crystalline layer of the other metal material is 100 Hv or more.
  8.  前記摺動部品で前記他の金属材料の前記表面に押し付けられながら該表面と摺動する押し付け部を有する、請求項1~4のいずれか一項に記載の金属材料。 The metal material according to any one of claims 1 to 4, wherein the sliding part has a pressing part that is pressed against the surface of the other metal material and slides against the surface.
  9.  前記押し付け部が、前記他の金属材料の前記表面側に突出する凸部である、請求項8に記載の金属材料。 The metal material according to claim 8, wherein the pressing portion is a protrusion that protrudes toward the surface side of the other metal material.
  10.  前記摺動部品が、1GHz~15GHzの周波数の電流が流れる高周波部品である、請求項1~4のいずれか一項に記載の金属材料。 The metallic material according to any one of claims 1 to 4, wherein the sliding part is a high-frequency part through which a current with a frequency of 1 GHz to 15 GHz flows.
  11.  前記摺動部品がコネクタ又はスイッチである、請求項1~4のいずれか一項に記載の金属材料。 The metal material according to any one of claims 1 to 4, wherein the sliding part is a connector or a switch.
  12.  第一金属材料及び第二金属材料を備える摺動部品であって、
     前記第一金属材料が、基材と、前記基材上に形成されためっき層とを有し、
     前記第一金属材料の前記めっき層が、Niを含有する非晶質層を含み、前記第二金属材料が、Niを含有する結晶質層を含み、
     前記第一金属材料と前記第二金属材料とを、それぞれの表面で摺動させて用いられる、摺動部品。
    A sliding component comprising a first metal material and a second metal material,
    The first metal material has a substrate and a plating layer formed on the substrate,
    The plating layer of the first metal material includes an amorphous layer containing Ni, and the second metal material includes a crystalline layer containing Ni,
    A sliding component, in which the first metal material and the second metal material are used by sliding against each other on their surfaces.
  13.  前記第一金属材料の前記非晶質層が、P及び/又はWを含有する、請求項12に記載の摺動部品。 The sliding part according to claim 12, wherein the amorphous layer of the first metal material contains P and/or W.
  14.  前記第一金属材料の前記めっき層が、Au、Ag、Sn、Pd及びCuからなる群から選択される少なくとも一種の金属を含有する最表層を含む、請求項12又は13に記載の摺動部品。 The sliding part according to claim 12 or 13, wherein the plating layer of the first metal material includes an outermost layer containing at least one metal selected from the group consisting of Au, Ag, Sn, Pd, and Cu.
  15.  前記第一金属材料が、前記第二金属材料の前記表面に押し付けられながら該表面と摺動する押し付け部を有する、請求項12又は13に記載の摺動部品。 The sliding part according to claim 12 or 13, wherein the first metal material has a pressing portion that is pressed against the surface of the second metal material and slides against the surface.
  16.  前記押し付け部が、前記第二金属材料の前記表面側に突出する凸部である、請求項15に記載の摺動部品。 The sliding component according to claim 15, wherein the pressing portion is a protrusion that protrudes toward the surface side of the second metal material.
  17.  1GHz~15GHzの周波数の電流が流れる高周波部品である、請求項12又は13に記載の摺動部品。 The sliding part according to claim 12 or 13, which is a high-frequency part through which a current with a frequency of 1 GHz to 15 GHz flows.
  18.  コネクタ又はスイッチである、請求項12又は13に記載の摺動部品。 The sliding part according to claim 12 or 13, which is a connector or a switch.
PCT/JP2023/042409 2023-03-30 2023-11-27 Metal material and sliding component WO2024202237A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2023056744 2023-03-30
JP2023-056744 2023-03-30

Publications (1)

Publication Number Publication Date
WO2024202237A1 true WO2024202237A1 (en) 2024-10-03

Family

ID=92903824

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/042409 WO2024202237A1 (en) 2023-03-30 2023-11-27 Metal material and sliding component

Country Status (1)

Country Link
WO (1) WO2024202237A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003323929A (en) * 2002-02-26 2003-11-14 Auto Network Gijutsu Kenkyusho:Kk Arc resistant terminal pair
CN102534732A (en) * 2011-12-20 2012-07-04 湖南科技大学 Pulse-electrodeposited Ni-Co-P/HBN composite plating and preparation method thereof
WO2012164992A1 (en) * 2011-06-03 2012-12-06 パナソニック株式会社 Electrical contact component
JP2017186667A (en) * 2016-03-30 2017-10-12 日本軽金属株式会社 Plating treatment material and slide member
US20180269603A1 (en) * 2017-03-14 2018-09-20 Diehl Metal Applications Gmbh Plug-in connector
WO2019031549A1 (en) * 2017-08-08 2019-02-14 三菱マテリアル株式会社 Terminal material with silver coating film, and terminal with silver coating film
JP2021160117A (en) * 2020-03-31 2021-10-11 株式会社日立製作所 Laminate, metal plating liquid, and laminate manufacturing method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003323929A (en) * 2002-02-26 2003-11-14 Auto Network Gijutsu Kenkyusho:Kk Arc resistant terminal pair
WO2012164992A1 (en) * 2011-06-03 2012-12-06 パナソニック株式会社 Electrical contact component
CN102534732A (en) * 2011-12-20 2012-07-04 湖南科技大学 Pulse-electrodeposited Ni-Co-P/HBN composite plating and preparation method thereof
JP2017186667A (en) * 2016-03-30 2017-10-12 日本軽金属株式会社 Plating treatment material and slide member
US20180269603A1 (en) * 2017-03-14 2018-09-20 Diehl Metal Applications Gmbh Plug-in connector
WO2019031549A1 (en) * 2017-08-08 2019-02-14 三菱マテリアル株式会社 Terminal material with silver coating film, and terminal with silver coating film
JP2021160117A (en) * 2020-03-31 2021-10-11 株式会社日立製作所 Laminate, metal plating liquid, and laminate manufacturing method

Similar Documents

Publication Publication Date Title
RU2566103C1 (en) Metal material for electronic system and method of its manufacturing
EP2811051B1 (en) Press-fit terminal and electronic component utilizing same
JP5284526B1 (en) Metal material for electronic parts and method for producing the same
CA2879453C (en) Metallic material for electronic components, and connector terminals, connectors and electronic components using same
JP5968668B2 (en) Metal materials for electronic parts
KR102102583B1 (en) Electrical contact material and manufacturing method thereof
WO2014054190A1 (en) Metal material for use in electronic component, and method for producing same
WO2014054189A1 (en) Metal material for use in electronic component, and method for producing same
KR20190093520A (en) Surface treatment of metallic material for burn in test socket, connector for burn in test socket using surface treatment of metallic material, and burn in test socket
KR20190111992A (en) Connector terminal material and terminal and wire terminal structure
US20170076834A1 (en) Electrical contact material, method of producing an electrical contact material, and terminal
CN110997984B (en) Tin-plated copper terminal material, terminal and wire terminal part structure
WO2024202237A1 (en) Metal material and sliding component
JP5298233B2 (en) Metal material for electronic parts and method for producing the same
JP6503159B2 (en) Metal material for electronic parts, connector terminal using the same, connector and electronic parts
JP2020187971A (en) Connector terminal, terminal-attached wire and terminal pair
TW202438720A (en) Metal materials and sliding parts
CN109155208B (en) Coating material for electrical contacts and method for producing said coating material
JP2020056056A (en) Copper terminal material, copper terminal, and manufacturing method of copper terminal material
WO2024150745A1 (en) Metal material
WO2022123818A1 (en) Ag-coated material, ag-coated material manufacturing method, and terminal component
WO2024150746A1 (en) Metal material
WO2023188446A1 (en) Production method for silver-plated material, silver-coated sheet metal, and conductive component
WO2024116940A1 (en) Production method for silver coating material, silver coating material, and energizing component
WO2019031549A1 (en) Terminal material with silver coating film, and terminal with silver coating film