[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2024201915A1 - Structural material and method for manufacturing same - Google Patents

Structural material and method for manufacturing same Download PDF

Info

Publication number
WO2024201915A1
WO2024201915A1 PCT/JP2023/013244 JP2023013244W WO2024201915A1 WO 2024201915 A1 WO2024201915 A1 WO 2024201915A1 JP 2023013244 W JP2023013244 W JP 2023013244W WO 2024201915 A1 WO2024201915 A1 WO 2024201915A1
Authority
WO
WIPO (PCT)
Prior art keywords
structural material
sintered body
silicon particles
distributed
outer periphery
Prior art date
Application number
PCT/JP2023/013244
Other languages
French (fr)
Japanese (ja)
Inventor
航基 若旅
竜太 笠田
浩 余
創介 近藤
優貴 陣場
Original Assignee
国立大学法人東北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東北大学 filed Critical 国立大学法人東北大学
Priority to PCT/JP2023/013244 priority Critical patent/WO2024201915A1/en
Publication of WO2024201915A1 publication Critical patent/WO2024201915A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials

Definitions

  • the present invention relates to structural materials and manufacturing methods thereof.
  • Titanium diboride (TiB 2 ) structural material is a type of ultra-high temperature ceramic with a melting point of 3000°C or higher, and is expected to be a high-temperature structural material with electrical conductivity, but is known to be vulnerable to high-temperature oxidation.
  • the mechanical strength of titanium diboride structural material is significantly reduced in the high-temperature range of 1000°C or higher.
  • a film of boron oxide (B 2 O 3 ) is formed on the surface of the structural material, which functions as a protective coating.
  • this protective coating evaporates, causing rapid oxidation inside the structural material, resulting in a reduction in strength.
  • silicon compounds SiC, MoSi2 , etc.
  • SiC, MoSi2 , etc. silicon compounds
  • a SiO2 glass phase that is stable even at high temperatures is formed on the surface of structural materials to which silicon compounds have been added, so oxidation inside the structural materials can be prevented.
  • this silicon compound causes a decrease in strength due to a mechanism other than oxidation (Non-Patent Document 1). It is believed that the reason is that Si distributed inside the structural materials embrittles the grain boundaries of TiB2 , inducing grain boundary fracture.
  • the present invention was made in consideration of the above circumstances, and aims to provide a structural material that is oxidation resistant and capable of maintaining its strength in high-temperature environments, as well as a manufacturing method thereof.
  • the present invention adopts the following measures.
  • a structural material according to one aspect of the present invention comprises a sintered body containing titanium diboride as a main component, and a plurality of silicon particles distributed on the outer periphery of the sintered body.
  • some of the silicon particles may be distributed in voids contained in the outer periphery.
  • another portion of the plurality of silicon particles may be distributed at grain boundaries included in the outer periphery.
  • the number density of the silicon particles may decrease as the distance from the surface of the sintered body increases.
  • the sintered body may contain a boride of a transition metal.
  • the open porosity of the sintered body is 1% or less.
  • a method for manufacturing a structural material according to one aspect of the present invention is a method for manufacturing a structural material according to any one of (1) to (6) above, which includes an impregnation process step of impregnating the sintered body with molten silicon.
  • the temperature of the molten silicon in the impregnation process is 1420°C or higher and 3225°C or lower.
  • the present invention provides a structural material that is oxidation resistant and capable of maintaining its strength in high-temperature environments, as well as a manufacturing method thereof.
  • FIG. 1 is a cross-sectional view of a structural material according to a first embodiment of the present invention.
  • FIG. 1B is an enlarged view of a portion of the structural member of FIG. 1B is an enlarged view of a portion of the structural material of FIG. 1A in a state in which the structural material of the embodiment has been oxidized at high temperature;
  • 4A to 4C are diagrams illustrating a manufacturing method of the structural material according to the embodiment.
  • 1 is a backscattered electron image of a cross section of a structural material according to Example 1.
  • 3B is an enlarged image of the outer periphery of the structural material from the backscattered electron image of FIG. 3A.
  • FIG. 2 is an element mapping diagram of a cross section of the structural material according to Example 1.
  • FIG. 1 is a cross-sectional view of a structural material according to a first embodiment of the present invention.
  • FIG. 1B is an enlarged view of a portion of the structural member of FIG. 1B is an
  • FIG. 4B is an enlarged view of the outer periphery of the structural material in the element mapping diagram of FIG. 4A.
  • 1 is a graph showing the results of isothermal oxidation thermogravimetry performed on the structural materials of Examples 1 to 4 and Comparative Examples 1 and 2.
  • 1 is a graph showing the results of crystal phase identification performed by XRD measurement on the structural material of Example 1.
  • 1 is a graph showing the results of crystal phase identification performed by XRD measurement on the structural material of Example 2.
  • 1 is a graph showing the results of crystal phase identification performed by XRD measurement on the structural material of Example 3.
  • 1 is a graph showing the results of crystal phase identification performed by XRD measurement on the structural material of Example 4.
  • 1 is a graph showing the change in open porosity of the structural materials of Examples 1 to 4.
  • First Embodiment (Structural materials) 1A is a cross-sectional view of a structural material 100 according to a first embodiment of the present invention.
  • the structural material 100 mainly comprises a sintered body 101 of titanium diboride (TiB 2 ) and a plurality of silicon particles 102 distributed in an outer periphery 101A of the sintered body 101.
  • the shape of the silicon particles in this embodiment is not limited to granular (spherical, etc.) shapes, but also includes shapes extending along voids.
  • the sintered body 101 contains titanium diboride as a main component.
  • the shape and size of the sintered body 101 are not particularly limited, but the porosity of the sintered body 101 has a suitable range. As described later, during high-temperature oxidation of the sintered body 101, it is necessary to distribute an amount of silicon particles 102 capable of forming a SiO2 phase in the voids (open pores) connected to the outside of the sintered body.
  • the voids connected to the outside of the sintered body may be simply referred to as voids.
  • the sintered body 101 is obtained by sintering a powder containing titanium diboride as a main component.
  • the sintering method is not particularly limited, but for example, a spark plasma sintering method may be used.
  • the sintering temperature may be, for example, 1300°C to 2000°C, and the sintering time may be, for example, 5 minutes to 15 minutes.
  • the pressure during sintering may be 50 MPa or more and 60 MPa or less.
  • FIG. 1B is an enlarged view of a portion P near the surface of the structural material in FIG. 1A.
  • Silicon particles 102 are distributed mainly in voids contained in the outer periphery 101A of the sintered body. These voids are spaces formed between the crystal grains that make up the sintered body 101 when the sintered body 10 is formed.
  • the number density of silicon particles 102 distributed in outer periphery 101A should be high enough to exhibit oxidation resistance at high temperatures, at least on the outermost surface. For example, when formed through an impregnation process described below, the number density of silicon particles 102 distributed in outer periphery 101A tends to decrease the farther away from surface 101a of the sintered body, but if possible, it may be uniform regardless of the distance (depth) from surface 101a of the sintered body.
  • the silicon particles 102 are distributed in the voids, some of the silicon particles 102 may be distributed in the grain boundaries (crystal grain boundaries) that make up the sintered body 100. These grain boundaries are the contact surfaces between the crystal particles that are in close contact with each other within the sintered body 101.
  • FIG. 1C is an enlarged view of a portion P of the structural material of FIG. 1A in a state where the structural material 100 has been oxidized at high temperature.
  • the outer peripheral portion 101A of the sintered body 101 oxidized at high temperature becomes a SiO 2 phase (glass phase) consisting of SiO 2 crystal grains 103.
  • the SiO 2 phase can prevent oxidation inside the sintered body and increase the oxidation resistance.
  • the thickness of the SiO 2 phase is approximately the same as the thickness of the region where the silicon grains were distributed.
  • (Method of manufacturing structural materials) 2 is a diagram for explaining a manufacturing method of the structural material 100.
  • the structural material 100 can be manufactured mainly through an impregnation process in which a sintered body 101 containing titanium diboride as a main component is immersed in molten silicon 105 contained in a predetermined container 104, and an outer peripheral portion 101A of the sintered body 101 is impregnated with the molten silicon 105.
  • the sintered body 101 is obtained by heating a powder whose main component is titanium diboride while applying pressure.
  • the powder to be heated may contain impurities to the extent that they do not significantly affect the physical properties of the sintered body 101, but it must not contain materials such as silicon that cause grain boundary fracture.
  • the heating to melt the single crystal silicon may be performed before impregnating the sintered body 101, or may be performed after contacting the sintered body 101 and simultaneously with heating the sintered body 101.
  • the sintered body contains TiB2 as the main component and further contains a boride of a transition metal.
  • the boride of a transition metal may be any boride that does not significantly affect the physical properties (melting point, etc.) of the main component TiB2 , and examples thereof include ZrB2 , CrB2 , and TaB2 .
  • the ratio of the volume of the boride of a transition metal to the volume of TiB2 is preferably 0 vol% or more and 20 vol% or less, and more preferably about 20 vol%.
  • Example 1 The structural material of the first embodiment was manufactured.
  • a TiB2 powder (purity 99%, particle size 2-3 ⁇ m) was subjected to discharge plasma treatment at 1600 ° C, 15 minutes, and 60 MPa, and sintered.
  • This sintered body was cut into a plurality of pieces using an electric discharge machine and a low-speed saw.
  • the size (volume) of each cut sintered body was set to about 18 mm 3 (3 mm ⁇ 3 mm ⁇ 2 mm).
  • each cut sintered body (40 mg or more, 100 mg or less) and a small piece of Si (1 g) were sealed in a quartz tube at 10 -4 Pa, and this quartz tube was heat-treated at 1450 ° C for 1 hour using an electric furnace.
  • the structural material in which the sintered body was impregnated with Si was taken out from the quartz tube after the heat treatment, and its surface was polished to #2000.
  • Example 4 Another structural material of the second embodiment was manufactured.
  • the manufacturing conditions were the same as those of Example 2, except that a mixed powder of TiB2 powder (purity 99%, particle size 2-3 ⁇ m) and TaB2 powder was used as the sintered body.
  • Comparative Example 1 A structural material was manufactured from a sintered body that was not impregnated with Si. The sintered body was manufactured under the same conditions as in Example 1.
  • Comparative Example 2 Another structural material was manufactured from a sintered body that was not impregnated with Si. The sintered body was manufactured under the same conditions as in Example 2.
  • Fig. 3A is a backscattered electron image of the cross section of the structural material.
  • Fig. 3B is an enlarged image of a portion P1 of the outer periphery of the structural material in the backscattered electron image of Fig. 3A.
  • Fig. 4A is a Si element mapping diagram of the same cross section as Fig. 3A.
  • Fig. 4B is an enlarged image of a portion P1 of the outer periphery of the structural material in the Si element mapping diagram of Fig. 4A.
  • the structural material is formed with an outer periphery 101A where silicon particles are distributed, and an interior 101B where silicon particles are not distributed.
  • the thickness of the outer periphery 101A i.e., the width of the area where silicon particles are distributed, is approximately 0.4 to 1.0 mm measured from the surface 101a.
  • voids 106 are formed between the TiB2 crystal grains in the outer periphery 101A of the sintered body. It can be seen from Fig. 4B that silicon particles are distributed at the positions of these voids 106. It can also be seen that a larger number of silicon particles 102 are distributed in the relatively large voids 106, grain boundary triple junctions, etc.
  • FIG. 5 is a graph showing the results.
  • the horizontal axis of the graph indicates the measurement time (minutes).
  • the vertical axes on the left and right of the graph indicate the temperature (°C) and the oxidation mass gain (%), respectively.
  • the oxidation mass gain is the mass gain due to oxidation normalized by the mass before measurement.
  • Figure 10 is a graph showing the measurement results.
  • the horizontal axis of the graph indicates the timing of the measurement (before or after the Si impregnation treatment), and the vertical axis of the graph indicates the open porosity (%).
  • the open porosity was measured in an area of 42.0 mm2 (surface area of a rectangular parallelepiped (3.0 mm x 3.0 mm x 2.0 mm)).
  • the present invention provides a structural material that is oxidation resistant and capable of maintaining its strength in high-temperature environments, as well as a manufacturing method thereof.
  • Structural material 101 Sintered body 101A Outer periphery of sintered body 101B Inside of sintered body 101a Outermost surface of sintered body (structural material) 101b Boundary between outer periphery and inside of sintered body 102 Silicon particle 103 SiO2 crystal particle 104 Container 105 Molten silicon 106 Void in sintered body D Thickness of outer periphery P Part of structural material P1 Part of outer periphery of structural material R Average diameter

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Products (AREA)

Abstract

A structural material (100) according to the present invention comprises: a sintered body (101) containing titanium diboride as the main component; and a plurality of silicon particles (102) distributed in the outer peripheral part (101A) of the sintered body.

Description

構造材とその製造方法Structural materials and their manufacturing methods

 本発明は、構造材とその製造方法に関する。 The present invention relates to structural materials and manufacturing methods thereof.

 二ホウ化チタン(TiB)の構造材は、3000℃以上の融点を有する超高温セラミックスの一種であり、導電性を有する高温構造材として期待されているが、高温酸化に弱いことが知られている。二ホウ化チタンの構造材の機械的な強度は、1000℃以上の高温領域で著しく低下する。700℃~1000℃の低温領域では、構造材の表面に酸化ホウ素(B)の膜が形成され、保護被膜として機能する。これに対し、高温領域では、この保護被膜が蒸発するため、構造材の内部の酸化が急速に進むことにより、強度低下が起きる。 Titanium diboride (TiB 2 ) structural material is a type of ultra-high temperature ceramic with a melting point of 3000°C or higher, and is expected to be a high-temperature structural material with electrical conductivity, but is known to be vulnerable to high-temperature oxidation. The mechanical strength of titanium diboride structural material is significantly reduced in the high-temperature range of 1000°C or higher. In the low-temperature range of 700°C to 1000°C, a film of boron oxide (B 2 O 3 ) is formed on the surface of the structural material, which functions as a protective coating. In contrast, in the high-temperature range, this protective coating evaporates, causing rapid oxidation inside the structural material, resulting in a reduction in strength.

 高温領域での酸化による強度低下を抑える取り組みとして、構造材の焼結時に、シリコンの化合物(SiC、MoSi等)の添加が行われている。高温領域において、シリコンの化合物を添加した構造材の表面には、高温でも安定なSiOガラス相が形成されるため、構造材の内部の酸化を防ぐことができる。しかしながら、このシリコン化合物の添加によって、酸化とは別のメカニズムによる強度低下が起きることが分かっている(非特許文献1)。構造材の内部に分布するSiが、TiBの粒界を脆化し、粒界破壊を誘発していることが原因と考えられる。 In an effort to suppress the decrease in strength due to oxidation in high-temperature regions, silicon compounds (SiC, MoSi2 , etc.) are added when sintering structural materials. In high-temperature regions, a SiO2 glass phase that is stable even at high temperatures is formed on the surface of structural materials to which silicon compounds have been added, so oxidation inside the structural materials can be prevented. However, it has been found that the addition of this silicon compound causes a decrease in strength due to a mechanism other than oxidation (Non-Patent Document 1). It is believed that the reason is that Si distributed inside the structural materials embrittles the grain boundaries of TiB2 , inducing grain boundary fracture.

B.R. Golla, A. Mukhopadhyay, B. Basu, S.K. Thimmappa, Prog. Mater. Sci. 111 (2020) 100651B.R. Golla, A. Mukhopadhyay, B. Basu, S.K. Thimmappa, Prog. Mater. Sci. 111 (2020) 100651

 本発明は上記事情に鑑みてなされたものであり、高温環境下において、耐酸化性を有するとともに、強度を維持することを可能とする構造材と、その製造方法を提供することを目的とする。 The present invention was made in consideration of the above circumstances, and aims to provide a structural material that is oxidation resistant and capable of maintaining its strength in high-temperature environments, as well as a manufacturing method thereof.

 上記課題を解決するため、本発明は以下の手段を採用している。 To solve the above problems, the present invention adopts the following measures.

(1)本発明の一態様に係る構造材は、二ホウ化チタンを主成分として含む焼結体と、前記焼結体の外周部に分布する複数のシリコン粒子と、を備える。 (1) A structural material according to one aspect of the present invention comprises a sintered body containing titanium diboride as a main component, and a plurality of silicon particles distributed on the outer periphery of the sintered body.

(2)上記(1)に記載の構造材において、複数の前記シリコン粒子のうち一部が、前記外周部に含まれる空隙に分布していてもよい。 (2) In the structural material described in (1) above, some of the silicon particles may be distributed in voids contained in the outer periphery.

(3)上記(1)または(2)のいずれかに記載の構造材において、複数の前記シリコン粒子のうち他の一部が、前記外周部に含まれる粒界に分布していてもよい。 (3) In the structural material described in either (1) or (2) above, another portion of the plurality of silicon particles may be distributed at grain boundaries included in the outer periphery.

(4)上記(1)~(3)のいずれか一つに記載の構造材において、前記シリコン粒子の数密度が、前記焼結体の表面から遠ざかるほど小さくなっていてもよい。 (4) In the structural material described in any one of (1) to (3) above, the number density of the silicon particles may decrease as the distance from the surface of the sintered body increases.

(5)上記(1)~(4)のいずれか一つに記載の構造材において、前記焼結体は、遷移金属のホウ化物を含んでもよい。 (5) In the structural material described in any one of (1) to (4) above, the sintered body may contain a boride of a transition metal.

(6)上記(1)~(5)のいずれか一つに記載の構造材において、前記焼結体の開気孔率が、1%以下であることが好ましい。 (6) In the structural material described in any one of (1) to (5) above, it is preferable that the open porosity of the sintered body is 1% or less.

(7)本発明の一態様に係る構造材の製造方法は、上記(1)~(6)のいずれか一つに記載の構造材の製造方法であって、前記焼結体に溶融シリコンを含浸させる、含浸処理工程を有する。 (7) A method for manufacturing a structural material according to one aspect of the present invention is a method for manufacturing a structural material according to any one of (1) to (6) above, which includes an impregnation process step of impregnating the sintered body with molten silicon.

(8)上記(7)に記載の構造材の製造方法において、前記含浸処理工程において、前記溶融シリコンの温度を、1420℃以上3225℃以下とすることが好ましい。 (8) In the manufacturing method of the structural material described in (7) above, it is preferable that the temperature of the molten silicon in the impregnation process is 1420°C or higher and 3225°C or lower.

 本発明によれば、高温環境下において、耐酸化性を有するとともに、強度を維持することを可能とする構造材と、その製造方法を提供することができる。 The present invention provides a structural material that is oxidation resistant and capable of maintaining its strength in high-temperature environments, as well as a manufacturing method thereof.

本発明の第一実施形態に係る構造材の断面図である。1 is a cross-sectional view of a structural material according to a first embodiment of the present invention. 図1Aの構造材の一部を拡大した図である。FIG. 1B is an enlarged view of a portion of the structural member of FIG. 同実施形態の構造材を高温酸化させた状態で、図1Aの構造材の一部を拡大した図である。1B is an enlarged view of a portion of the structural material of FIG. 1A in a state in which the structural material of the embodiment has been oxidized at high temperature; 同実施形態の構造材の製造方法について、説明する図である。4A to 4C are diagrams illustrating a manufacturing method of the structural material according to the embodiment. 実施例1に係る構造材の断面の後方散乱電子像である。1 is a backscattered electron image of a cross section of a structural material according to Example 1. 図3Aの後方散乱電子像のうち、構造材の外周部を拡大した像である。3B is an enlarged image of the outer periphery of the structural material from the backscattered electron image of FIG. 3A. 実施例1に係る構造材の断面の元素マッピング図である。FIG. 2 is an element mapping diagram of a cross section of the structural material according to Example 1. 図4Aの元素マッピング図のうち、構造材の外周部を拡大した図である。FIG. 4B is an enlarged view of the outer periphery of the structural material in the element mapping diagram of FIG. 4A. 実施例1~4、比較例1、2の構造材に対し、等温酸化熱重量測定を行った結果を示すグラフである。1 is a graph showing the results of isothermal oxidation thermogravimetry performed on the structural materials of Examples 1 to 4 and Comparative Examples 1 and 2. 実施例1の構造材に対し、XRD測定により、結晶相同定を行った結果を示すグラフである。1 is a graph showing the results of crystal phase identification performed by XRD measurement on the structural material of Example 1. 実施例2の構造材に対し、XRD測定により、結晶相同定を行った結果を示すグラフである。1 is a graph showing the results of crystal phase identification performed by XRD measurement on the structural material of Example 2. 実施例3の構造材に対し、XRD測定により、結晶相同定を行った結果を示すグラフである。1 is a graph showing the results of crystal phase identification performed by XRD measurement on the structural material of Example 3. 実施例4の構造材に対し、XRD測定により、結晶相同定を行った結果を示すグラフである。1 is a graph showing the results of crystal phase identification performed by XRD measurement on the structural material of Example 4. 実施例1~4の構造材の開気孔率の変化を示すグラフである。1 is a graph showing the change in open porosity of the structural materials of Examples 1 to 4.

 以下、本発明を適用した実施形態に係る構造材とその製造方法について、図面を用いて詳細に説明する。なお、以下の説明で用いる図面は、特徴をわかりやすくするために、便宜上特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率などが実際と同じであるとは限らない。また、以下の説明において例示される材料、寸法等は一例であって、本発明はそれらに限定されるものではなく、その要旨を変更しない範囲で適宜変更して実施することが可能である。 Below, a structural material according to an embodiment of the present invention and a manufacturing method thereof will be described in detail with reference to the drawings. Note that the drawings used in the following description may show characteristic parts enlarged for the sake of convenience in order to make the features easier to understand, and the dimensional ratios of each component may not necessarily be the same as in reality. Furthermore, the materials, dimensions, etc. exemplified in the following description are merely examples, and the present invention is not limited to them, and may be modified as appropriate within the scope of the present invention.

<第一実施形態>
(構造材)
 図1Aは、本発明の第一実施形態に係る構造材100の断面図である。構造材100は、主に、二ホウ化チタン(TiB)の焼結体101と、焼結体101の外周部101Aに分布する複数のシリコン粒子102とを備える。本実施形態のシリコン粒子の形状は、粒状(球状等)のものに限らず、空隙に沿って延在する形状のものも含む。
First Embodiment
(Structural materials)
1A is a cross-sectional view of a structural material 100 according to a first embodiment of the present invention. The structural material 100 mainly comprises a sintered body 101 of titanium diboride (TiB 2 ) and a plurality of silicon particles 102 distributed in an outer periphery 101A of the sintered body 101. The shape of the silicon particles in this embodiment is not limited to granular (spherical, etc.) shapes, but also includes shapes extending along voids.

 焼結体101は、二ホウ化チタンを主成分として含む。焼結体101の形状、大きさについては、特に限定されないが、焼結体101の空隙率については好適な範囲がある。後述するように、焼結体101の高温酸化時に、SiO相を形成できる量のシリコン粒子102を、焼結体の外部と接続される空隙(開気孔)に分布させる必要がある。以下では、焼結体の外部と接続される空隙を、単に空隙と呼ぶ場合がある。 The sintered body 101 contains titanium diboride as a main component. The shape and size of the sintered body 101 are not particularly limited, but the porosity of the sintered body 101 has a suitable range. As described later, during high-temperature oxidation of the sintered body 101, it is necessary to distribute an amount of silicon particles 102 capable of forming a SiO2 phase in the voids (open pores) connected to the outside of the sintered body. Hereinafter, the voids connected to the outside of the sintered body may be simply referred to as voids.

 焼結体101は、二ホウ化チタンを主成分として含む粉末を、焼結させることによって得られる。焼結の方法としては、特に限定されないが、例えば放電プラズマ焼結法を用いてもよい。焼結温度は、例えば1300℃~2000℃とし、焼結時間は、例えば5分~15分とすることができる。また、焼結時の圧力は、50MPa以上、60MPa以下とすることができる。 The sintered body 101 is obtained by sintering a powder containing titanium diboride as a main component. The sintering method is not particularly limited, but for example, a spark plasma sintering method may be used. The sintering temperature may be, for example, 1300°C to 2000°C, and the sintering time may be, for example, 5 minutes to 15 minutes. The pressure during sintering may be 50 MPa or more and 60 MPa or less.

 図1Bは、図1Aの構造材のうち、表面近傍の一部Pを拡大した図である。シリコン粒子102は、主に、焼結体の外周部101Aに含まれる空隙に入って分布する。この空隙は、焼結体10の形成時に、焼結体101を構成する結晶粒子同士の間に形成されている空間である。 FIG. 1B is an enlarged view of a portion P near the surface of the structural material in FIG. 1A. Silicon particles 102 are distributed mainly in voids contained in the outer periphery 101A of the sintered body. These voids are spaces formed between the crystal grains that make up the sintered body 101 when the sintered body 10 is formed.

 シリコン粒子102が分布する焼結体の外周部101Aは、表面101aから内側に所定の厚みDを有する領域であり、換言すると、焼結体101の任意の断面において、表面(最外周)101aから内側に所定の厚みDを有する領域である。外周部101Aで囲まれた内部(中央部)101Bには、シリコン粒子102が分布しておらず、シリコン粒子102を分布させる前(焼結直後)の状態がほぼ維持されている。焼結体の外周部101Aと内部101Bとの境界101bは、例えば電子プローブマイクロアナライザ(EPMA)等を用いて確認することができる。 The outer periphery 101A of the sintered body in which the silicon particles 102 are distributed is a region having a predetermined thickness D from the surface 101a inward, in other words, a region having a predetermined thickness D from the surface (outermost periphery) 101a in any cross section of the sintered body 101. In the interior (center) 101B surrounded by the outer periphery 101A, no silicon particles 102 are distributed, and the state before the silicon particles 102 were distributed (immediately after sintering) is almost maintained. The boundary 101b between the outer periphery 101A and the interior 101B of the sintered body can be confirmed using, for example, an electron probe microanalyzer (EPMA) or the like.

 外周部101Aに分布するシリコン粒子102の数密度は、少なくとも最表面において、高温での耐酸化性を示せる程度に高ければよい。例えば、後述する含浸処理工程を経て形成する場合には、外周部101Aに分布するシリコン粒子102の数密度は、焼結体の表面101aから遠ざかるほど小さくなりやすいが、可能であれば、焼結体の表面101aからの距離(深さ)によらず一様であってもよい。 The number density of silicon particles 102 distributed in outer periphery 101A should be high enough to exhibit oxidation resistance at high temperatures, at least on the outermost surface. For example, when formed through an impregnation process described below, the number density of silicon particles 102 distributed in outer periphery 101A tends to decrease the farther away from surface 101a of the sintered body, but if possible, it may be uniform regardless of the distance (depth) from surface 101a of the sintered body.

 図1Bでは、シリコン粒子102が、焼結体の表面101aから一様な深さ領域の空隙に、理想的に分布している場合を例示しているが、実際には、空隙のランダムな分布に伴い、シリコン粒子102が分布する深さについてはばらつくことが多い。 In FIG. 1B, the silicon particles 102 are ideally distributed in the voids at a uniform depth from the surface 101a of the sintered body, but in reality, the depth at which the silicon particles 102 are distributed often varies due to the random distribution of the voids.

 シリコン粒子の102の多くが空隙に分布するが、一部のシリコン粒子102が、焼結体100を構成する粒界(結晶粒界)に分布していてもよい。この粒界は、焼結体101内で密着する結晶粒子同士の接触面である。 Although most of the silicon particles 102 are distributed in the voids, some of the silicon particles 102 may be distributed in the grain boundaries (crystal grain boundaries) that make up the sintered body 100. These grain boundaries are the contact surfaces between the crystal particles that are in close contact with each other within the sintered body 101.

 図1Cは、構造材100を高温酸化させた状態で、図1Aの構造材の一部Pを拡大した図である。高温酸化した焼結体101の外周部101Aは、SiOの結晶粒子103からなるSiO相(ガラス相)となる。SiO相は、焼結体の内部の酸化を防ぎ、耐酸化性を高めることができる。SiO相の厚みは、シリコン粒子が分布していた領域の厚みと同程度である。 1C is an enlarged view of a portion P of the structural material of FIG. 1A in a state where the structural material 100 has been oxidized at high temperature. The outer peripheral portion 101A of the sintered body 101 oxidized at high temperature becomes a SiO 2 phase (glass phase) consisting of SiO 2 crystal grains 103. The SiO 2 phase can prevent oxidation inside the sintered body and increase the oxidation resistance. The thickness of the SiO 2 phase is approximately the same as the thickness of the region where the silicon grains were distributed.

(構造材の製造方法)
 図2は、構造材100の製造方法について、説明する図である。構造材100は、主に、所定の容器104に収容した溶融シリコン105に、二ホウ化チタンを主成分として含む焼結体101を浸漬し、焼結体101の外周部101Aに溶融シリコン105を含浸させる含浸処理工程を経て、製造することができる。
(Method of manufacturing structural materials)
2 is a diagram for explaining a manufacturing method of the structural material 100. The structural material 100 can be manufactured mainly through an impregnation process in which a sintered body 101 containing titanium diboride as a main component is immersed in molten silicon 105 contained in a predetermined container 104, and an outer peripheral portion 101A of the sintered body 101 is impregnated with the molten silicon 105.

 焼結体101は、二ホウ化チタンを主成分とする粉末を、圧力を加えながら加熱することによって得られる。加熱する粉末には、焼結体101の物性に大きく影響しない程度の不純物が含まれてもよいが、粒界破壊を引き起こすシリコン等の材料を含まないものとする。 The sintered body 101 is obtained by heating a powder whose main component is titanium diboride while applying pressure. The powder to be heated may contain impurities to the extent that they do not significantly affect the physical properties of the sintered body 101, but it must not contain materials such as silicon that cause grain boundary fracture.

 溶融シリコン104は、例えば、単結晶シリコンを融点(1420℃)以上の温度で加熱して、溶融させたものである。含浸処理工程の処理中は、溶融シリコンの温度を、1420℃以上、3225℃以下とすることが好ましい。 The molten silicon 104 is, for example, single crystal silicon that has been heated to a temperature above its melting point (1420°C) and melted. During the impregnation process, it is preferable to keep the temperature of the molten silicon at 1420°C or higher and 3225°C or lower.

 なお、単結晶シリコンを溶融させる加熱は、焼結体101に含浸させる前に行ってもよいし、焼結体101を接触させてから、焼結体101の加熱と同時に行ってもよい。 The heating to melt the single crystal silicon may be performed before impregnating the sintered body 101, or may be performed after contacting the sintered body 101 and simultaneously with heating the sintered body 101.

 以上のように、本実施形態の構造材100は、耐酸化性の向上と高温強度の維持を両立するものである。本実施形態の構造材100では、焼結体101の外周部101Aにシリコン粒子102が分布している。そのため、高温酸化した際に、シリコン粒子102が分布している外周部101Aが、安定なSiO保護被膜となって内部の酸化を防ぎ、耐酸化性を向上させることができる。また、本実施形態の構造材100では、焼結体101のうち外周部101Aを除いた内側の大部分には、シリコン粒子102が分布していない。そのため、高温酸化した際のシリコン粒子102を起点とする粒界破壊を防ぐことができ、機械的な強度を維持することができる。さらに、焼結体101の内側部分が、導電材料であるホウ化チタンで構成されるため、シリコン粒子102が分布している場合に比べて、高い電気伝導性を実現することができる。 As described above, the structural material 100 of this embodiment achieves both improved oxidation resistance and maintenance of high-temperature strength. In the structural material 100 of this embodiment, silicon particles 102 are distributed in the outer periphery 101A of the sintered body 101. Therefore, when oxidized at high temperature, the outer periphery 101A in which the silicon particles 102 are distributed becomes a stable SiO 2 protective film to prevent internal oxidation and improve oxidation resistance. In addition, in the structural material 100 of this embodiment, silicon particles 102 are not distributed in most of the inner part of the sintered body 101 except for the outer periphery 101A. Therefore, grain boundary fracture originating from the silicon particles 102 during high-temperature oxidation can be prevented, and mechanical strength can be maintained. Furthermore, since the inner part of the sintered body 101 is made of titanium boride, which is a conductive material, higher electrical conductivity can be achieved compared to when the silicon particles 102 are distributed.

<第二実施形態>
 本発明の第二実施形態に係る構造材では、焼結体が、TiBを主成分として含むとともに、さらに遷移金属のホウ化物を含む。遷移金属のホウ化物としては、主成分であるTiBの物性(融点等)に大きく影響を及ぼさないものであればよいが、例えば、ZrB、CrB、TaB等が挙げられる。TiBの体積に対する遷移金属のホウ化物の体積の比率は、0vol%以上、20vol%以下であることが好ましく、好ましくは20vol%程度であればより好ましい。焼結体が遷移金属のホウ化物を含むTiB複合基材であること以外の構成は、第一実施形態の構造材101の構成と同様であり、構造材101と同様の効果を奏する。
Second Embodiment
In the structural material according to the second embodiment of the present invention, the sintered body contains TiB2 as the main component and further contains a boride of a transition metal. The boride of a transition metal may be any boride that does not significantly affect the physical properties (melting point, etc.) of the main component TiB2 , and examples thereof include ZrB2 , CrB2 , and TaB2 . The ratio of the volume of the boride of a transition metal to the volume of TiB2 is preferably 0 vol% or more and 20 vol% or less, and more preferably about 20 vol%. The structure of the structural material according to the second embodiment of the present invention is the same as that of the structural material 101 according to the first embodiment, except that the sintered body is a TiB2 composite substrate containing a boride of a transition metal, and the structural material 101 has the same effect as the structural material 101.

 以下、実施例により、本発明の効果をより明らかなものとする。なお、本発明は、以下の実施例に限定されるものではなく、その要旨を変更しない範囲で適宜変更して実施することができる。 The effects of the present invention will be made clearer by the following examples. Note that the present invention is not limited to the following examples, and can be modified as appropriate without departing from the gist of the present invention.

(実施例1)
 上記第一実施形態の構造材を製造した。焼結体として、TiBの粉末(純度99%、粒径2~3μm)に対し、1600℃、15分、60MPaの条件で放電プラズマ処理を行い、焼結させたものを用いた。この焼結体を、放電加工機とロースピードソーを用いて複数に切り分けた。切り分けた各焼結体のサイズ(体積)が、約18mm(3mm×3mm×2mm)になるようにした。含浸処理工程として、切り分けた各焼結体(40mg以上、100mg以下)とSiの小片(1g)とを石英管に10-4Paで封入し、この石英管を、電気炉を用いて1450℃で1時間の熱処理を行った。熱処理後の石英管から、焼結体にSiが含浸された構造材を取り出し、その表面を#2000まで研磨した。
Example 1
The structural material of the first embodiment was manufactured. As the sintered body, a TiB2 powder (purity 99%, particle size 2-3 μm) was subjected to discharge plasma treatment at 1600 ° C, 15 minutes, and 60 MPa, and sintered. This sintered body was cut into a plurality of pieces using an electric discharge machine and a low-speed saw. The size (volume) of each cut sintered body was set to about 18 mm 3 (3 mm × 3 mm × 2 mm). As the impregnation process, each cut sintered body (40 mg or more, 100 mg or less) and a small piece of Si (1 g) were sealed in a quartz tube at 10 -4 Pa, and this quartz tube was heat-treated at 1450 ° C for 1 hour using an electric furnace. The structural material in which the sintered body was impregnated with Si was taken out from the quartz tube after the heat treatment, and its surface was polished to #2000.

(実施例2)
 上記第二実施形態の構造材を製造した。焼結体として、TiBの粉末(純度99%、粒径2~3μm)と、ZrBの粉末(純度97%、粒径5~10μm)の粉末と、を混合した混合粉末に対し、1800℃、15分、60MPaの条件で放電プラズマ処理を行い、焼結させたものを用いた。TiBの粉末とZrBの粉末の混合は、卓上型ポットミル回転台を用い、400rpm、24時間の条件で行った。TiBの体積に対するZrBの体積の比率が20vol%程度になるように、混合する粉末の量を調整した。焼結体の選択以外の製造条件については、実施例1と同様とした。
Example 2
The structural material of the second embodiment was manufactured. As the sintered body, a mixed powder of TiB2 powder (purity 99%, particle size 2-3 μm) and ZrB2 powder (purity 97%, particle size 5-10 μm) was mixed, and discharge plasma treatment was performed at 1800 ° C, 15 minutes, and 60 MPa, and sintered. The TiB2 powder and ZrB2 powder were mixed using a tabletop pot mill rotating table at 400 rpm for 24 hours. The amount of powder to be mixed was adjusted so that the ratio of the volume of ZrB2 to the volume of TiB2 was about 20 vol%. The manufacturing conditions other than the selection of the sintered body were the same as those in Example 1.

(実施例3)
 上記第二実施形態の他の構造材を製造した。焼結体として、TiBの粉末(純度99%、粒径2~3μm)と、CrBの粉末とを混合した混合粉末を用いた以外の製造条件については、実施例2と同様とした。
Example 3
Another structural material of the second embodiment was manufactured. The manufacturing conditions were the same as those of Example 2, except that a mixed powder of TiB2 powder (purity 99%, particle size 2-3 μm) and CrB2 powder was used as the sintered body.

(実施例4)
 上記第二実施形態の他の構造材を製造した。焼結体として、TiBの粉末(純度99%、粒径2~3μm)と、TaBの粉末の粉末とを混合した混合粉末を用いた以外の製造条件については、実施例2と同様とした。
Example 4
Another structural material of the second embodiment was manufactured. The manufacturing conditions were the same as those of Example 2, except that a mixed powder of TiB2 powder (purity 99%, particle size 2-3 μm) and TaB2 powder was used as the sintered body.

(比較例1)
 Siの含浸処理を行っていない焼結体からなる構造材を製造した。焼結体は、実施例1と同様の条件で作製した。
(Comparative Example 1)
A structural material was manufactured from a sintered body that was not impregnated with Si. The sintered body was manufactured under the same conditions as in Example 1.

(比較例2)
 Siの含浸処理を行っていない焼結体からなる他の構造材を製造した。焼結体は、実施例2と同様の条件で作製した。
(Comparative Example 2)
Another structural material was manufactured from a sintered body that was not impregnated with Si. The sintered body was manufactured under the same conditions as in Example 2.

 実施例1で得た構造材について、EPMAを用いて元素マッピング分析を行った。図3Aは、構造材の断面の後方散乱電子像である。図3Bは、図3Aの後方散乱電子像のうち、構造材の外周部の一部Pを拡大した像である。図4Aは、図3Aと同じ断面のSi元素マッピング図である。図4Bは、図4AのSi元素マッピング図のうち、図3Bと同じ外周部の一部Pを拡大した図である。 The structural material obtained in Example 1 was subjected to elemental mapping analysis using EPMA. Fig. 3A is a backscattered electron image of the cross section of the structural material. Fig. 3B is an enlarged image of a portion P1 of the outer periphery of the structural material in the backscattered electron image of Fig. 3A. Fig. 4A is a Si element mapping diagram of the same cross section as Fig. 3A. Fig. 4B is an enlarged image of a portion P1 of the outer periphery of the structural material in the Si element mapping diagram of Fig. 4A.

 図4Aから、構造材に、シリコン粒子が分布する外周部101Aと、シリコン粒子が分布しない内部101Bが形成されていることが分かる。外周部101Aの厚み、すなわち、シリコン粒子が分布する領域の幅は、表面101aから測って0.4~1.0mm程度である。 From Figure 4A, it can be seen that the structural material is formed with an outer periphery 101A where silicon particles are distributed, and an interior 101B where silicon particles are not distributed. The thickness of the outer periphery 101A, i.e., the width of the area where silicon particles are distributed, is approximately 0.4 to 1.0 mm measured from the surface 101a.

 図3Bから、焼結体の外周部101Aに、TiBの結晶粒子同士の間に、空隙106が形成されていることが分かる。図4Bから、この空隙106の位置に、シリコン粒子が分布していることが分かる。また、比較的大きい空隙106、粒界三重点等に、より多くのシリコン粒子102が分布していることが分かる。 It can be seen from Fig. 3B that voids 106 are formed between the TiB2 crystal grains in the outer periphery 101A of the sintered body. It can be seen from Fig. 4B that silicon particles are distributed at the positions of these voids 106. It can also be seen that a larger number of silicon particles 102 are distributed in the relatively large voids 106, grain boundary triple junctions, etc.

 実施例1~4、比較例1、2の構造材に対し、1300℃で熱重量測定を行った。図5は、その結果を示すグラフである。グラフの横軸は測定時間(分)を示す。グラフの左右の縦軸は、それぞれ温度(℃)、酸化増量(%)を示す。酸化増量は、酸化によって増えた質量を測定前の質量で規格化したものである。 Thermogravimetric measurements were performed at 1300°C on the structural materials of Examples 1 to 4 and Comparative Examples 1 and 2. Figure 5 is a graph showing the results. The horizontal axis of the graph indicates the measurement time (minutes). The vertical axes on the left and right of the graph indicate the temperature (°C) and the oxidation mass gain (%), respectively. The oxidation mass gain is the mass gain due to oxidation normalized by the mass before measurement.

 Siの含浸処理を行っていない比較例1、2の構造材では、測定時間が100分になる当たりで、質量が急激に増大し、その後も時間経過とともに増加し続けている。これに対し、Siの含浸処理を行った実施例1の構造材では、比較例1、2のような質量の急激な増大が見られず、質量の増加傾向が比較例1、2に比べて緩やかになっている。実施例2~4の構造材では、質量の増加傾向が、実施例1よりもさらに緩やか(ほぼ一定)になっている。これらの結果から、実施例1~4の構造材では、Siの含浸処理を行うことによって、構造材の内部の酸化を抑えることができ、耐酸化性が向上していることが分かる。特に、実施例2~4の構造材では、酸化をほぼ完全に抑えられていることが分かる。 In the structural materials of Comparative Examples 1 and 2, which were not impregnated with Si, the mass increased rapidly at about 100 minutes of measurement time, and continued to increase over time thereafter. In contrast, in the structural material of Example 1, which was impregnated with Si, the sudden increase in mass seen in Comparative Examples 1 and 2 was not observed, and the mass increase trend was more gradual than in Comparative Examples 1 and 2. In the structural materials of Examples 2 to 4, the mass increase trend was even more gradual (almost constant) than in Example 1. From these results, it can be seen that in the structural materials of Examples 1 to 4, the Si impregnation process can suppress oxidation inside the structural material, improving oxidation resistance. In particular, it can be seen that oxidation is almost completely suppressed in the structural materials of Examples 2 to 4.

 実施例1~4の構造材に対し、XRD測定により、結晶相同定を行った。図6は、実施例1、比較例1の構造材に対する結果を示すグラフである。図7は、実施例2、比較例2の構造材に対する結果を示すグラフである。図8は、実施例3の構造材に対する結果を示すグラフである。図9は、実施例4の構造材に対する結果を示すグラフである。グラフの横軸は回折角を示し、グラフの縦軸は回折強度を示している。 Crystal phase identification was performed by XRD measurement on the structural materials of Examples 1 to 4. Figure 6 is a graph showing the results for the structural materials of Example 1 and Comparative Example 1. Figure 7 is a graph showing the results for the structural materials of Example 2 and Comparative Example 2. Figure 8 is a graph showing the results for the structural material of Example 3. Figure 9 is a graph showing the results for the structural material of Example 4. The horizontal axis of the graph indicates the diffraction angle, and the vertical axis of the graph indicates the diffraction intensity.

 比較例1、2の構造材の表面においては、焼結体に含まれる遷移金属酸化物(金属ホウ化物等)のみが同定されている。一方、実施例1~4の構造材の表面においては、焼結体に含まれる遷移金属酸化物とともに、SiOが同定されている。これらの結果から、Si含浸処理によって、焼結体の表面に、耐酸化性の保護被膜として機能するSiO相が形成されていることが分かる。 Only the transition metal oxides (metal borides, etc.) contained in the sintered body were identified on the surface of the structural materials of Comparative Examples 1 and 2. On the other hand, SiO2 was identified along with the transition metal oxides contained in the sintered body on the surface of the structural materials of Examples 1 to 4. These results show that the Si impregnation treatment forms a SiO2 phase on the surface of the sintered body that functions as an oxidation-resistant protective coating.

 実施例1~4の焼結体に対し、EPMAを用いて、Si含浸処理の前後における開気孔率の変化を測定した。図10は、その測定結果を示すグラフである。グラフの横軸は測定のタイミング(Si含浸処理の前または後)を示し、グラフの縦軸は開気孔率(%)を示している。開気孔率は、42.0mm(直方体(3.0mm×3.0mm×2.0mm)の表面積)の領域で測定した。 The change in open porosity before and after the Si impregnation treatment was measured for the sintered bodies of Examples 1 to 4 using an EPMA. Figure 10 is a graph showing the measurement results. The horizontal axis of the graph indicates the timing of the measurement (before or after the Si impregnation treatment), and the vertical axis of the graph indicates the open porosity (%). The open porosity was measured in an area of 42.0 mm2 (surface area of a rectangular parallelepiped (3.0 mm x 3.0 mm x 2.0 mm)).

 これらの結果から、Si含浸処理を行う前は、実施例1~4の間で開気孔率に大きな差があったが、Si含浸処理を行った後には、この差がほぼなくなり、いずれも1%以内に収まっていることが分かる。これは、Si含浸処理によって、シリコン粒子が開気孔を経由して焼結体に侵入し、焼結体の外周部の開気孔がシリコン粒子で埋められたためであると考えられる。 From these results, it can be seen that before the Si impregnation treatment, there was a large difference in open porosity between Examples 1 to 4, but after the Si impregnation treatment, this difference almost disappeared, falling within 1% in all cases. This is thought to be because the Si impregnation treatment caused silicon particles to penetrate the sintered body through the open pores, filling the open pores on the periphery of the sintered body with silicon particles.

 本発明によれば、高温環境下において、耐酸化性を有するとともに、強度を維持することを可能とする構造材と、その製造方法を提供することができる。 The present invention provides a structural material that is oxidation resistant and capable of maintaining its strength in high-temperature environments, as well as a manufacturing method thereof.

 100  構造材
 101  焼結体
 101A  焼結体の外周部
 101B  焼結体の内部
 101a  焼結体(構造材)の最表面
 101b  焼結体の外周部と内部との境界
 102  シリコン粒子
 103  SiOの結晶粒子
 104  容器
 105  溶融シリコン
 106  焼結体の空隙
 D  外周部の厚み
 P  構造材の一部
 P  構造材の外周部の一部
 R  平均径
100 Structural material 101 Sintered body 101A Outer periphery of sintered body 101B Inside of sintered body 101a Outermost surface of sintered body (structural material) 101b Boundary between outer periphery and inside of sintered body 102 Silicon particle 103 SiO2 crystal particle 104 Container 105 Molten silicon 106 Void in sintered body D Thickness of outer periphery P Part of structural material P1 Part of outer periphery of structural material R Average diameter

Claims (8)

 二ホウ化チタンを主成分として含む焼結体と、
 前記焼結体の外周部に分布する複数のシリコン粒子と、を備えることを特徴とする構造材。
A sintered body containing titanium diboride as a main component;
and a plurality of silicon particles distributed on the outer periphery of the sintered body.
 複数の前記シリコン粒子のうち一部が、前記外周部に含まれる空隙に分布していることを特徴とする請求項1に記載の構造材。 The structural material according to claim 1, characterized in that some of the silicon particles are distributed in voids contained in the outer periphery.  複数の前記シリコン粒子のうち他の一部が、前記外周部に含まれる粒界に分布していることを特徴とする請求項1または2のいずれかに記載の構造材。 The structural material according to either claim 1 or 2, characterized in that another portion of the plurality of silicon particles is distributed at grain boundaries included in the outer periphery.  前記シリコン粒子の数密度が、前記焼結体の表面から遠ざかるほど小さくなっていることを特徴とする請求項1または2のいずれかに記載の構造材。 The structural material according to either claim 1 or 2, characterized in that the number density of the silicon particles decreases the further away from the surface of the sintered body.  前記焼結体は、遷移金属のホウ化物を含むことを特徴とする請求項1または2のいずれか構造材。 The structural material according to claim 1 or 2, characterized in that the sintered body contains a boride of a transition metal.  前記焼結体の開気孔率が、1%以下であることを特徴とする請求項1または2のいずれかに記載の構造材。 The structural material according to either claim 1 or 2, characterized in that the open porosity of the sintered body is 1% or less.  請求項1または2のいずれかに記載の構造材の製造方法であって、
 前記焼結体に溶融シリコンを含浸させる、含浸処理工程を有することを特徴とする構造材の製造方法。
A method for producing a structural material according to claim 1 or 2, comprising the steps of:
A method for manufacturing a structural material, comprising the step of impregnating the sintered body with molten silicon.
 前記含浸処理工程において、前記溶融シリコンの温度を、1420℃以上、3225℃以下とすることを特徴とする請求項7に記載の構造材の製造方法。 The method for manufacturing a structural material according to claim 7, characterized in that the temperature of the molten silicon during the impregnation process is 1420°C or higher and 3225°C or lower.
PCT/JP2023/013244 2023-03-30 2023-03-30 Structural material and method for manufacturing same WO2024201915A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2023/013244 WO2024201915A1 (en) 2023-03-30 2023-03-30 Structural material and method for manufacturing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2023/013244 WO2024201915A1 (en) 2023-03-30 2023-03-30 Structural material and method for manufacturing same

Publications (1)

Publication Number Publication Date
WO2024201915A1 true WO2024201915A1 (en) 2024-10-03

Family

ID=92904375

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/013244 WO2024201915A1 (en) 2023-03-30 2023-03-30 Structural material and method for manufacturing same

Country Status (1)

Country Link
WO (1) WO2024201915A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5490312A (en) * 1977-12-28 1979-07-18 Kogyo Gijutsuin Sintered body by electric discharge of titanium diboride
WO2009023226A2 (en) * 2007-08-14 2009-02-19 The Penn State Research Foundation 3-d printing of near net shape products
CN105084902A (en) * 2015-07-31 2015-11-25 东北大学 Method for preparing titanium-diboride-based ceramic composite material
JP2016132612A (en) * 2015-01-22 2016-07-25 株式会社シンターランド Die for sintering, and manufacturing method thereof
CN106278281A (en) * 2016-08-16 2017-01-04 东北大学 A kind of boronation titanio composite cathode material and preparation method thereof
CN113582700A (en) * 2021-06-29 2021-11-02 东北大学 Preparation method of low-cost titanium boride ceramic composite material

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5490312A (en) * 1977-12-28 1979-07-18 Kogyo Gijutsuin Sintered body by electric discharge of titanium diboride
WO2009023226A2 (en) * 2007-08-14 2009-02-19 The Penn State Research Foundation 3-d printing of near net shape products
JP2016132612A (en) * 2015-01-22 2016-07-25 株式会社シンターランド Die for sintering, and manufacturing method thereof
CN105084902A (en) * 2015-07-31 2015-11-25 东北大学 Method for preparing titanium-diboride-based ceramic composite material
CN106278281A (en) * 2016-08-16 2017-01-04 东北大学 A kind of boronation titanio composite cathode material and preparation method thereof
CN113582700A (en) * 2021-06-29 2021-11-02 东北大学 Preparation method of low-cost titanium boride ceramic composite material

Similar Documents

Publication Publication Date Title
US9938444B2 (en) Method for producing silicon nitride substrate
WO2014038459A1 (en) Metal-carbon composite material, method for producing metal-carbon composite material and sliding member
JP7578835B2 (en) Method for preparing silicon nitride ceramic material
KR102657287B1 (en) Ceramic structure, method for manufacturing the same, and member for semiconductor manufacturing apparatus
WO2017030360A1 (en) Silicon nitride sintered compact with high thermal conductivity, and method for manufacturing same
TWI728327B (en) Composite sintered body, semiconductor manufacturing apparatus member, and method of manufacturing composite sintered body
KR101970952B1 (en) Manufacturing method of plasma resistant and conductive ceramic-nanocarbon composite
KR102655133B1 (en) Composite sintered body, semiconductor manufacturing apparatus member, and method of manufacturing composite sintered body
JP4987238B2 (en) Aluminum nitride sintered body, semiconductor manufacturing member, and aluminum nitride sintered body manufacturing method
US20090233087A1 (en) Yttrium oxide material, member for semiconductor-manufacturing apparatus, and method for producing yttrium oxide material
KR102205178B1 (en) MgO AND METHOD FOR MANUFACTURING THE SAME, AND HIGH THERMAL CONDUCTIVE MgO COMPOSITION, AND MgO CERAMICS USING THE SAME
JP2022126705A (en) High temperature component
JP2022126705A5 (en)
WO2024201915A1 (en) Structural material and method for manufacturing same
US9676631B2 (en) Reaction bonded silicon carbide bodies made from high purity carbonaceous preforms
JP7213399B1 (en) Refractory member and manufacturing method thereof
JP2020097509A (en) Mullite-based sintered compact and method for producing the same
JP3888766B2 (en) Electrostatic chuck and manufacturing method thereof
JP2016017196A (en) Ti OXIDE SPUTTERING TARGET AND METHOD FOR MANUFACTURING THE SAME
KR101961836B1 (en) Pure monoclinic sintered zirconia material and method of manufacturing
JP5746573B2 (en) Sputtering target
WO2018164118A1 (en) Paste composition, carbide sintered body, method for producing same, and refractory member
JP5750022B2 (en) Alumina sintered body and manufacturing method thereof
JP3665553B2 (en) Conductive low thermal expansion ceramic sintered body
CN104163628A (en) method for preparing HfC-SiC multiphase ceramic

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23930553

Country of ref document: EP

Kind code of ref document: A1